|
|
| version 1.48, 2002/06/10 13:12:49 | version 1.82, 2003/06/05 15:57:20 |
|---|---|
| Line 1 | Line 1 |
| /* $Id$ | /* $Id$ |
| Interpolated Markov Chain | $State$ |
| $Log$ | |
| Short summary of the programme: | Revision 1.82 2003/06/05 15:57:20 brouard |
| Add log in imach.c and fullversion number is now printed. | |
| This program computes Healthy Life Expectancies from | |
| cross-longitudinal data. Cross-longitudinal data consist in: -1- a | */ |
| first survey ("cross") where individuals from different ages are | /* |
| interviewed on their health status or degree of disability (in the | Interpolated Markov Chain |
| case of a health survey which is our main interest) -2- at least a | |
| second wave of interviews ("longitudinal") which measure each change | Short summary of the programme: |
| (if any) in individual health status. Health expectancies are | |
| computed from the time spent in each health state according to a | This program computes Healthy Life Expectancies from |
| model. More health states you consider, more time is necessary to reach the | cross-longitudinal data. Cross-longitudinal data consist in: -1- a |
| Maximum Likelihood of the parameters involved in the model. The | first survey ("cross") where individuals from different ages are |
| simplest model is the multinomial logistic model where pij is the | interviewed on their health status or degree of disability (in the |
| probability to be observed in state j at the second wave | case of a health survey which is our main interest) -2- at least a |
| conditional to be observed in state i at the first wave. Therefore | second wave of interviews ("longitudinal") which measure each change |
| the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where | (if any) in individual health status. Health expectancies are |
| 'age' is age and 'sex' is a covariate. If you want to have a more | computed from the time spent in each health state according to a |
| complex model than "constant and age", you should modify the program | model. More health states you consider, more time is necessary to reach the |
| where the markup *Covariates have to be included here again* invites | Maximum Likelihood of the parameters involved in the model. The |
| you to do it. More covariates you add, slower the | simplest model is the multinomial logistic model where pij is the |
| convergence. | probability to be observed in state j at the second wave |
| conditional to be observed in state i at the first wave. Therefore | |
| The advantage of this computer programme, compared to a simple | the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where |
| multinomial logistic model, is clear when the delay between waves is not | 'age' is age and 'sex' is a covariate. If you want to have a more |
| identical for each individual. Also, if a individual missed an | complex model than "constant and age", you should modify the program |
| intermediate interview, the information is lost, but taken into | where the markup *Covariates have to be included here again* invites |
| account using an interpolation or extrapolation. | you to do it. More covariates you add, slower the |
| convergence. | |
| hPijx is the probability to be observed in state i at age x+h | |
| conditional to the observed state i at age x. The delay 'h' can be | The advantage of this computer programme, compared to a simple |
| split into an exact number (nh*stepm) of unobserved intermediate | multinomial logistic model, is clear when the delay between waves is not |
| states. This elementary transition (by month or quarter trimester, | identical for each individual. Also, if a individual missed an |
| semester or year) is model as a multinomial logistic. The hPx | intermediate interview, the information is lost, but taken into |
| matrix is simply the matrix product of nh*stepm elementary matrices | account using an interpolation or extrapolation. |
| and the contribution of each individual to the likelihood is simply | |
| hPijx. | hPijx is the probability to be observed in state i at age x+h |
| conditional to the observed state i at age x. The delay 'h' can be | |
| Also this programme outputs the covariance matrix of the parameters but also | split into an exact number (nh*stepm) of unobserved intermediate |
| of the life expectancies. It also computes the prevalence limits. | states. This elementary transition (by month, quarter, |
| semester or year) is modelled as a multinomial logistic. The hPx | |
| Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). | matrix is simply the matrix product of nh*stepm elementary matrices |
| Institut national d'études démographiques, Paris. | and the contribution of each individual to the likelihood is simply |
| This software have been partly granted by Euro-REVES, a concerted action | hPijx. |
| from the European Union. | |
| It is copyrighted identically to a GNU software product, ie programme and | Also this programme outputs the covariance matrix of the parameters but also |
| software can be distributed freely for non commercial use. Latest version | of the life expectancies. It also computes the stable prevalence. |
| can be accessed at http://euroreves.ined.fr/imach . | |
| **********************************************************************/ | Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
| Institut national d'études démographiques, Paris. | |
| #include <math.h> | This software have been partly granted by Euro-REVES, a concerted action |
| #include <stdio.h> | from the European Union. |
| #include <stdlib.h> | It is copyrighted identically to a GNU software product, ie programme and |
| #include <unistd.h> | software can be distributed freely for non commercial use. Latest version |
| can be accessed at http://euroreves.ined.fr/imach . | |
| #define MAXLINE 256 | |
| #define GNUPLOTPROGRAM "gnuplot" | Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach |
| /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ | or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so |
| #define FILENAMELENGTH 80 | |
| /*#define DEBUG*/ | **********************************************************************/ |
| #define windows | /* |
| #define GLOCK_ERROR_NOPATH -1 /* empty path */ | main |
| #define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ | read parameterfile |
| read datafile | |
| #define MAXPARM 30 /* Maximum number of parameters for the optimization */ | concatwav |
| #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */ | if (mle >= 1) |
| mlikeli | |
| #define NINTERVMAX 8 | print results files |
| #define NLSTATEMAX 8 /* Maximum number of live states (for func) */ | if mle==1 |
| #define NDEATHMAX 8 /* Maximum number of dead states (for func) */ | computes hessian |
| #define NCOVMAX 8 /* Maximum number of covariates */ | read end of parameter file: agemin, agemax, bage, fage, estepm |
| #define MAXN 20000 | begin-prev-date,... |
| #define YEARM 12. /* Number of months per year */ | open gnuplot file |
| #define AGESUP 130 | open html file |
| #define AGEBASE 40 | stable prevalence |
| #ifdef windows | for age prevalim() |
| #define DIRSEPARATOR '\\' | h Pij x |
| #else | variance of p varprob |
| #define DIRSEPARATOR '/' | forecasting if prevfcast==1 prevforecast call prevalence() |
| #endif | health expectancies |
| Variance-covariance of DFLE | |
| char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES "; | prevalence() |
| int erreur; /* Error number */ | movingaverage() |
| int nvar; | varevsij() |
| int cptcovn, cptcovage=0, cptcoveff=0,cptcov; | if popbased==1 varevsij(,popbased) |
| int npar=NPARMAX; | total life expectancies |
| int nlstate=2; /* Number of live states */ | Variance of stable prevalence |
| int ndeath=1; /* Number of dead states */ | end |
| int ncovmodel, ncovcol; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ | */ |
| int popbased=0; | |
| int *wav; /* Number of waves for this individuual 0 is possible */ | |
| int maxwav; /* Maxim number of waves */ | |
| int jmin, jmax; /* min, max spacing between 2 waves */ | #include <math.h> |
| int mle, weightopt; | #include <stdio.h> |
| int **mw; /* mw[mi][i] is number of the mi wave for this individual */ | #include <stdlib.h> |
| int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */ | #include <unistd.h> |
| double jmean; /* Mean space between 2 waves */ | |
| double **oldm, **newm, **savm; /* Working pointers to matrices */ | #define MAXLINE 256 |
| double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ | #define GNUPLOTPROGRAM "gnuplot" |
| FILE *fic,*ficpar, *ficparo,*ficres, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop; | /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
| FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor; | #define FILENAMELENGTH 80 |
| FILE *fichtm; /* Html File */ | /*#define DEBUG*/ |
| FILE *ficreseij; | #define windows |
| char filerese[FILENAMELENGTH]; | #define GLOCK_ERROR_NOPATH -1 /* empty path */ |
| FILE *ficresvij; | #define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ |
| char fileresv[FILENAMELENGTH]; | |
| FILE *ficresvpl; | #define MAXPARM 30 /* Maximum number of parameters for the optimization */ |
| char fileresvpl[FILENAMELENGTH]; | #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */ |
| char title[MAXLINE]; | |
| char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH]; | #define NINTERVMAX 8 |
| char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH]; | #define NLSTATEMAX 8 /* Maximum number of live states (for func) */ |
| #define NDEATHMAX 8 /* Maximum number of dead states (for func) */ | |
| char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; | #define NCOVMAX 8 /* Maximum number of covariates */ |
| #define MAXN 20000 | |
| char filerest[FILENAMELENGTH]; | #define YEARM 12. /* Number of months per year */ |
| char fileregp[FILENAMELENGTH]; | #define AGESUP 130 |
| char popfile[FILENAMELENGTH]; | #define AGEBASE 40 |
| #ifdef windows | |
| char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH]; | #define DIRSEPARATOR '\\' |
| #define ODIRSEPARATOR '/' | |
| #define NR_END 1 | #else |
| #define FREE_ARG char* | #define DIRSEPARATOR '/' |
| #define FTOL 1.0e-10 | #define ODIRSEPARATOR '\\' |
| #endif | |
| #define NRANSI | |
| #define ITMAX 200 | /* $Id$ */ |
| /* $State$ */ | |
| #define TOL 2.0e-4 | |
| char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES "; | |
| #define CGOLD 0.3819660 | char fullversion[]="$Revision$ $Date$"; |
| #define ZEPS 1.0e-10 | int erreur; /* Error number */ |
| #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); | int nvar; |
| int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov; | |
| #define GOLD 1.618034 | int npar=NPARMAX; |
| #define GLIMIT 100.0 | int nlstate=2; /* Number of live states */ |
| #define TINY 1.0e-20 | int ndeath=1; /* Number of dead states */ |
| int ncovmodel, ncovcol; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ | |
| static double maxarg1,maxarg2; | int popbased=0; |
| #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2)) | |
| #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2)) | int *wav; /* Number of waves for this individuual 0 is possible */ |
| int maxwav; /* Maxim number of waves */ | |
| #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a)) | int jmin, jmax; /* min, max spacing between 2 waves */ |
| #define rint(a) floor(a+0.5) | int mle, weightopt; |
| int **mw; /* mw[mi][i] is number of the mi wave for this individual */ | |
| static double sqrarg; | int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */ |
| #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg) | int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
| #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} | * wave mi and wave mi+1 is not an exact multiple of stepm. */ |
| double jmean; /* Mean space between 2 waves */ | |
| int imx; | double **oldm, **newm, **savm; /* Working pointers to matrices */ |
| int stepm; | double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ |
| /* Stepm, step in month: minimum step interpolation*/ | FILE *fic,*ficpar, *ficparo,*ficres, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop; |
| FILE *ficlog, *ficrespow; | |
| int estepm; | FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor; |
| /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/ | FILE *ficresprobmorprev; |
| FILE *fichtm; /* Html File */ | |
| int m,nb; | FILE *ficreseij; |
| int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage; | char filerese[FILENAMELENGTH]; |
| double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; | FILE *ficresvij; |
| double **pmmij, ***probs, ***mobaverage; | char fileresv[FILENAMELENGTH]; |
| double dateintmean=0; | FILE *ficresvpl; |
| char fileresvpl[FILENAMELENGTH]; | |
| double *weight; | char title[MAXLINE]; |
| int **s; /* Status */ | char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH]; |
| double *agedc, **covar, idx; | char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH]; |
| int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff; | |
| char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; | |
| double ftol=FTOL; /* Tolerance for computing Max Likelihood */ | char filelog[FILENAMELENGTH]; /* Log file */ |
| double ftolhess; /* Tolerance for computing hessian */ | char filerest[FILENAMELENGTH]; |
| char fileregp[FILENAMELENGTH]; | |
| /**************** split *************************/ | char popfile[FILENAMELENGTH]; |
| static int split( char *path, char *dirc, char *name, char *ext, char *finame ) | |
| { | char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH]; |
| char *s; /* pointer */ | |
| int l1, l2; /* length counters */ | #define NR_END 1 |
| #define FREE_ARG char* | |
| l1 = strlen( path ); /* length of path */ | #define FTOL 1.0e-10 |
| if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH ); | |
| s = strrchr( path, DIRSEPARATOR ); /* find last / */ | #define NRANSI |
| if ( s == NULL ) { /* no directory, so use current */ | #define ITMAX 200 |
| #if defined(__bsd__) /* get current working directory */ | |
| extern char *getwd( ); | #define TOL 2.0e-4 |
| if ( getwd( dirc ) == NULL ) { | #define CGOLD 0.3819660 |
| #else | #define ZEPS 1.0e-10 |
| extern char *getcwd( ); | #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); |
| if ( getcwd( dirc, FILENAME_MAX ) == NULL ) { | #define GOLD 1.618034 |
| #endif | #define GLIMIT 100.0 |
| return( GLOCK_ERROR_GETCWD ); | #define TINY 1.0e-20 |
| } | |
| strcpy( name, path ); /* we've got it */ | static double maxarg1,maxarg2; |
| } else { /* strip direcotry from path */ | #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2)) |
| s++; /* after this, the filename */ | #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2)) |
| l2 = strlen( s ); /* length of filename */ | |
| if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); | #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a)) |
| strcpy( name, s ); /* save file name */ | #define rint(a) floor(a+0.5) |
| strncpy( dirc, path, l1 - l2 ); /* now the directory */ | |
| dirc[l1-l2] = 0; /* add zero */ | static double sqrarg; |
| } | #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg) |
| l1 = strlen( dirc ); /* length of directory */ | #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} |
| #ifdef windows | |
| if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; } | int imx; |
| #else | int stepm; |
| if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; } | /* Stepm, step in month: minimum step interpolation*/ |
| #endif | |
| s = strrchr( name, '.' ); /* find last / */ | int estepm; |
| s++; | /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/ |
| strcpy(ext,s); /* save extension */ | |
| l1= strlen( name); | int m,nb; |
| l2= strlen( s)+1; | int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage; |
| strncpy( finame, name, l1-l2); | double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
| finame[l1-l2]= 0; | double **pmmij, ***probs; |
| return( 0 ); /* we're done */ | double dateintmean=0; |
| } | |
| double *weight; | |
| int **s; /* Status */ | |
| /******************************************/ | double *agedc, **covar, idx; |
| int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff; | |
| void replace(char *s, char*t) | |
| { | double ftol=FTOL; /* Tolerance for computing Max Likelihood */ |
| int i; | double ftolhess; /* Tolerance for computing hessian */ |
| int lg=20; | |
| i=0; | /**************** split *************************/ |
| lg=strlen(t); | static int split( char *path, char *dirc, char *name, char *ext, char *finame ) |
| for(i=0; i<= lg; i++) { | { |
| (s[i] = t[i]); | char *ss; /* pointer */ |
| if (t[i]== '\\') s[i]='/'; | int l1, l2; /* length counters */ |
| } | |
| } | l1 = strlen(path ); /* length of path */ |
| if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH ); | |
| int nbocc(char *s, char occ) | ss= strrchr( path, DIRSEPARATOR ); /* find last / */ |
| { | if ( ss == NULL ) { /* no directory, so use current */ |
| int i,j=0; | /*if(strrchr(path, ODIRSEPARATOR )==NULL) |
| int lg=20; | printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/ |
| i=0; | /* get current working directory */ |
| lg=strlen(s); | /* extern char* getcwd ( char *buf , int len);*/ |
| for(i=0; i<= lg; i++) { | if ( getcwd( dirc, FILENAME_MAX ) == NULL ) { |
| if (s[i] == occ ) j++; | return( GLOCK_ERROR_GETCWD ); |
| } | } |
| return j; | strcpy( name, path ); /* we've got it */ |
| } | } else { /* strip direcotry from path */ |
| ss++; /* after this, the filename */ | |
| void cutv(char *u,char *v, char*t, char occ) | l2 = strlen( ss ); /* length of filename */ |
| { | if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); |
| int i,lg,j,p=0; | strcpy( name, ss ); /* save file name */ |
| i=0; | strncpy( dirc, path, l1 - l2 ); /* now the directory */ |
| for(j=0; j<=strlen(t)-1; j++) { | dirc[l1-l2] = 0; /* add zero */ |
| if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; | } |
| } | l1 = strlen( dirc ); /* length of directory */ |
| #ifdef windows | |
| lg=strlen(t); | if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; } |
| for(j=0; j<p; j++) { | #else |
| (u[j] = t[j]); | if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; } |
| } | #endif |
| u[p]='\0'; | ss = strrchr( name, '.' ); /* find last / */ |
| ss++; | |
| for(j=0; j<= lg; j++) { | strcpy(ext,ss); /* save extension */ |
| if (j>=(p+1))(v[j-p-1] = t[j]); | l1= strlen( name); |
| } | l2= strlen(ss)+1; |
| } | strncpy( finame, name, l1-l2); |
| finame[l1-l2]= 0; | |
| /********************** nrerror ********************/ | return( 0 ); /* we're done */ |
| } | |
| void nrerror(char error_text[]) | |
| { | |
| fprintf(stderr,"ERREUR ...\n"); | /******************************************/ |
| fprintf(stderr,"%s\n",error_text); | |
| exit(1); | void replace(char *s, char*t) |
| } | { |
| /*********************** vector *******************/ | int i; |
| double *vector(int nl, int nh) | int lg=20; |
| { | i=0; |
| double *v; | lg=strlen(t); |
| v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double))); | for(i=0; i<= lg; i++) { |
| if (!v) nrerror("allocation failure in vector"); | (s[i] = t[i]); |
| return v-nl+NR_END; | if (t[i]== '\\') s[i]='/'; |
| } | } |
| } | |
| /************************ free vector ******************/ | |
| void free_vector(double*v, int nl, int nh) | int nbocc(char *s, char occ) |
| { | { |
| free((FREE_ARG)(v+nl-NR_END)); | int i,j=0; |
| } | int lg=20; |
| i=0; | |
| /************************ivector *******************************/ | lg=strlen(s); |
| int *ivector(long nl,long nh) | for(i=0; i<= lg; i++) { |
| { | if (s[i] == occ ) j++; |
| int *v; | } |
| v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int))); | return j; |
| if (!v) nrerror("allocation failure in ivector"); | } |
| return v-nl+NR_END; | |
| } | void cutv(char *u,char *v, char*t, char occ) |
| { | |
| /******************free ivector **************************/ | /* cuts string t into u and v where u is ended by char occ excluding it |
| void free_ivector(int *v, long nl, long nh) | and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2) |
| { | gives u="abcedf" and v="ghi2j" */ |
| free((FREE_ARG)(v+nl-NR_END)); | int i,lg,j,p=0; |
| } | i=0; |
| for(j=0; j<=strlen(t)-1; j++) { | |
| /******************* imatrix *******************************/ | if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; |
| int **imatrix(long nrl, long nrh, long ncl, long nch) | } |
| /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ | |
| { | lg=strlen(t); |
| long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; | for(j=0; j<p; j++) { |
| int **m; | (u[j] = t[j]); |
| } | |
| /* allocate pointers to rows */ | u[p]='\0'; |
| m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); | |
| if (!m) nrerror("allocation failure 1 in matrix()"); | for(j=0; j<= lg; j++) { |
| m += NR_END; | if (j>=(p+1))(v[j-p-1] = t[j]); |
| m -= nrl; | } |
| } | |
| /* allocate rows and set pointers to them */ | /********************** nrerror ********************/ |
| m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); | |
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | void nrerror(char error_text[]) |
| m[nrl] += NR_END; | { |
| m[nrl] -= ncl; | fprintf(stderr,"ERREUR ...\n"); |
| fprintf(stderr,"%s\n",error_text); | |
| for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; | exit(EXIT_FAILURE); |
| } | |
| /* return pointer to array of pointers to rows */ | /*********************** vector *******************/ |
| return m; | double *vector(int nl, int nh) |
| } | { |
| double *v; | |
| /****************** free_imatrix *************************/ | v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double))); |
| void free_imatrix(m,nrl,nrh,ncl,nch) | if (!v) nrerror("allocation failure in vector"); |
| int **m; | return v-nl+NR_END; |
| long nch,ncl,nrh,nrl; | } |
| /* free an int matrix allocated by imatrix() */ | |
| { | /************************ free vector ******************/ |
| free((FREE_ARG) (m[nrl]+ncl-NR_END)); | void free_vector(double*v, int nl, int nh) |
| free((FREE_ARG) (m+nrl-NR_END)); | { |
| } | free((FREE_ARG)(v+nl-NR_END)); |
| } | |
| /******************* matrix *******************************/ | |
| double **matrix(long nrl, long nrh, long ncl, long nch) | /************************ivector *******************************/ |
| { | char *cvector(long nl,long nh) |
| long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; | { |
| double **m; | char *v; |
| v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char))); | |
| m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | if (!v) nrerror("allocation failure in cvector"); |
| if (!m) nrerror("allocation failure 1 in matrix()"); | return v-nl+NR_END; |
| m += NR_END; | } |
| m -= nrl; | |
| /******************free ivector **************************/ | |
| m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | void free_cvector(char *v, long nl, long nh) |
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | { |
| m[nrl] += NR_END; | free((FREE_ARG)(v+nl-NR_END)); |
| m[nrl] -= ncl; | } |
| for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | /************************ivector *******************************/ |
| return m; | int *ivector(long nl,long nh) |
| } | { |
| int *v; | |
| /*************************free matrix ************************/ | v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int))); |
| void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) | if (!v) nrerror("allocation failure in ivector"); |
| { | return v-nl+NR_END; |
| free((FREE_ARG)(m[nrl]+ncl-NR_END)); | } |
| free((FREE_ARG)(m+nrl-NR_END)); | |
| } | /******************free ivector **************************/ |
| void free_ivector(int *v, long nl, long nh) | |
| /******************* ma3x *******************************/ | { |
| double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh) | free((FREE_ARG)(v+nl-NR_END)); |
| { | } |
| long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1; | |
| double ***m; | /******************* imatrix *******************************/ |
| int **imatrix(long nrl, long nrh, long ncl, long nch) | |
| m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ |
| if (!m) nrerror("allocation failure 1 in matrix()"); | { |
| m += NR_END; | long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; |
| m -= nrl; | int **m; |
| m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | /* allocate pointers to rows */ |
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); |
| m[nrl] += NR_END; | if (!m) nrerror("allocation failure 1 in matrix()"); |
| m[nrl] -= ncl; | m += NR_END; |
| m -= nrl; | |
| for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | |
| m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double))); | /* allocate rows and set pointers to them */ |
| if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()"); | m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); |
| m[nrl][ncl] += NR_END; | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
| m[nrl][ncl] -= nll; | m[nrl] += NR_END; |
| for (j=ncl+1; j<=nch; j++) | m[nrl] -= ncl; |
| m[nrl][j]=m[nrl][j-1]+nlay; | |
| for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; | |
| for (i=nrl+1; i<=nrh; i++) { | |
| m[i][ncl]=m[i-1l][ncl]+ncol*nlay; | /* return pointer to array of pointers to rows */ |
| for (j=ncl+1; j<=nch; j++) | return m; |
| m[i][j]=m[i][j-1]+nlay; | } |
| } | |
| return m; | /****************** free_imatrix *************************/ |
| } | void free_imatrix(m,nrl,nrh,ncl,nch) |
| int **m; | |
| /*************************free ma3x ************************/ | long nch,ncl,nrh,nrl; |
| void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh) | /* free an int matrix allocated by imatrix() */ |
| { | { |
| free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END)); | free((FREE_ARG) (m[nrl]+ncl-NR_END)); |
| free((FREE_ARG)(m[nrl]+ncl-NR_END)); | free((FREE_ARG) (m+nrl-NR_END)); |
| free((FREE_ARG)(m+nrl-NR_END)); | } |
| } | |
| /******************* matrix *******************************/ | |
| /***************** f1dim *************************/ | double **matrix(long nrl, long nrh, long ncl, long nch) |
| extern int ncom; | { |
| extern double *pcom,*xicom; | long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; |
| extern double (*nrfunc)(double []); | double **m; |
| double f1dim(double x) | m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); |
| { | if (!m) nrerror("allocation failure 1 in matrix()"); |
| int j; | m += NR_END; |
| double f; | m -= nrl; |
| double *xt; | |
| m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | |
| xt=vector(1,ncom); | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
| for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; | m[nrl] += NR_END; |
| f=(*nrfunc)(xt); | m[nrl] -= ncl; |
| free_vector(xt,1,ncom); | |
| return f; | for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; |
| } | return m; |
| /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) | |
| /*****************brent *************************/ | */ |
| double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin) | } |
| { | |
| int iter; | /*************************free matrix ************************/ |
| double a,b,d,etemp; | void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) |
| double fu,fv,fw,fx; | { |
| double ftemp; | free((FREE_ARG)(m[nrl]+ncl-NR_END)); |
| double p,q,r,tol1,tol2,u,v,w,x,xm; | free((FREE_ARG)(m+nrl-NR_END)); |
| double e=0.0; | } |
| a=(ax < cx ? ax : cx); | /******************* ma3x *******************************/ |
| b=(ax > cx ? ax : cx); | double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh) |
| x=w=v=bx; | { |
| fw=fv=fx=(*f)(x); | long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1; |
| for (iter=1;iter<=ITMAX;iter++) { | double ***m; |
| xm=0.5*(a+b); | |
| tol2=2.0*(tol1=tol*fabs(x)+ZEPS); | m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*))); |
| /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/ | if (!m) nrerror("allocation failure 1 in matrix()"); |
| printf(".");fflush(stdout); | m += NR_END; |
| #ifdef DEBUG | m -= nrl; |
| printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); | |
| /* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */ | m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); |
| #endif | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
| if (fabs(x-xm) <= (tol2-0.5*(b-a))){ | m[nrl] += NR_END; |
| *xmin=x; | m[nrl] -= ncl; |
| return fx; | |
| } | for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; |
| ftemp=fu; | |
| if (fabs(e) > tol1) { | m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double))); |
| r=(x-w)*(fx-fv); | if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()"); |
| q=(x-v)*(fx-fw); | m[nrl][ncl] += NR_END; |
| p=(x-v)*q-(x-w)*r; | m[nrl][ncl] -= nll; |
| q=2.0*(q-r); | for (j=ncl+1; j<=nch; j++) |
| if (q > 0.0) p = -p; | m[nrl][j]=m[nrl][j-1]+nlay; |
| q=fabs(q); | |
| etemp=e; | for (i=nrl+1; i<=nrh; i++) { |
| e=d; | m[i][ncl]=m[i-1l][ncl]+ncol*nlay; |
| if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) | for (j=ncl+1; j<=nch; j++) |
| d=CGOLD*(e=(x >= xm ? a-x : b-x)); | m[i][j]=m[i][j-1]+nlay; |
| else { | } |
| d=p/q; | return m; |
| u=x+d; | /* gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1]) |
| if (u-a < tol2 || b-u < tol2) | &(m[i][j][k]) <=> *((*(m+i) + j)+k) |
| d=SIGN(tol1,xm-x); | */ |
| } | } |
| } else { | |
| d=CGOLD*(e=(x >= xm ? a-x : b-x)); | /*************************free ma3x ************************/ |
| } | void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh) |
| u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); | { |
| fu=(*f)(u); | free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END)); |
| if (fu <= fx) { | free((FREE_ARG)(m[nrl]+ncl-NR_END)); |
| if (u >= x) a=x; else b=x; | free((FREE_ARG)(m+nrl-NR_END)); |
| SHFT(v,w,x,u) | } |
| SHFT(fv,fw,fx,fu) | |
| } else { | /***************** f1dim *************************/ |
| if (u < x) a=u; else b=u; | extern int ncom; |
| if (fu <= fw || w == x) { | extern double *pcom,*xicom; |
| v=w; | extern double (*nrfunc)(double []); |
| w=u; | |
| fv=fw; | double f1dim(double x) |
| fw=fu; | { |
| } else if (fu <= fv || v == x || v == w) { | int j; |
| v=u; | double f; |
| fv=fu; | double *xt; |
| } | |
| } | xt=vector(1,ncom); |
| } | for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; |
| nrerror("Too many iterations in brent"); | f=(*nrfunc)(xt); |
| *xmin=x; | free_vector(xt,1,ncom); |
| return fx; | return f; |
| } | } |
| /****************** mnbrak ***********************/ | /*****************brent *************************/ |
| double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin) | |
| void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, | { |
| double (*func)(double)) | int iter; |
| { | double a,b,d,etemp; |
| double ulim,u,r,q, dum; | double fu,fv,fw,fx; |
| double fu; | double ftemp; |
| double p,q,r,tol1,tol2,u,v,w,x,xm; | |
| *fa=(*func)(*ax); | double e=0.0; |
| *fb=(*func)(*bx); | |
| if (*fb > *fa) { | a=(ax < cx ? ax : cx); |
| SHFT(dum,*ax,*bx,dum) | b=(ax > cx ? ax : cx); |
| SHFT(dum,*fb,*fa,dum) | x=w=v=bx; |
| } | fw=fv=fx=(*f)(x); |
| *cx=(*bx)+GOLD*(*bx-*ax); | for (iter=1;iter<=ITMAX;iter++) { |
| *fc=(*func)(*cx); | xm=0.5*(a+b); |
| while (*fb > *fc) { | tol2=2.0*(tol1=tol*fabs(x)+ZEPS); |
| r=(*bx-*ax)*(*fb-*fc); | /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/ |
| q=(*bx-*cx)*(*fb-*fa); | printf(".");fflush(stdout); |
| u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ | fprintf(ficlog,".");fflush(ficlog); |
| (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); | #ifdef DEBUG |
| ulim=(*bx)+GLIMIT*(*cx-*bx); | printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); |
| if ((*bx-u)*(u-*cx) > 0.0) { | fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); |
| fu=(*func)(u); | /* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */ |
| } else if ((*cx-u)*(u-ulim) > 0.0) { | #endif |
| fu=(*func)(u); | if (fabs(x-xm) <= (tol2-0.5*(b-a))){ |
| if (fu < *fc) { | *xmin=x; |
| SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) | return fx; |
| SHFT(*fb,*fc,fu,(*func)(u)) | } |
| } | ftemp=fu; |
| } else if ((u-ulim)*(ulim-*cx) >= 0.0) { | if (fabs(e) > tol1) { |
| u=ulim; | r=(x-w)*(fx-fv); |
| fu=(*func)(u); | q=(x-v)*(fx-fw); |
| } else { | p=(x-v)*q-(x-w)*r; |
| u=(*cx)+GOLD*(*cx-*bx); | q=2.0*(q-r); |
| fu=(*func)(u); | if (q > 0.0) p = -p; |
| } | q=fabs(q); |
| SHFT(*ax,*bx,*cx,u) | etemp=e; |
| SHFT(*fa,*fb,*fc,fu) | e=d; |
| } | if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
| } | d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
| else { | |
| /*************** linmin ************************/ | d=p/q; |
| u=x+d; | |
| int ncom; | if (u-a < tol2 || b-u < tol2) |
| double *pcom,*xicom; | d=SIGN(tol1,xm-x); |
| double (*nrfunc)(double []); | } |
| } else { | |
| void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) | d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
| { | } |
| double brent(double ax, double bx, double cx, | u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); |
| double (*f)(double), double tol, double *xmin); | fu=(*f)(u); |
| double f1dim(double x); | if (fu <= fx) { |
| void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, | if (u >= x) a=x; else b=x; |
| double *fc, double (*func)(double)); | SHFT(v,w,x,u) |
| int j; | SHFT(fv,fw,fx,fu) |
| double xx,xmin,bx,ax; | } else { |
| double fx,fb,fa; | if (u < x) a=u; else b=u; |
| if (fu <= fw || w == x) { | |
| ncom=n; | v=w; |
| pcom=vector(1,n); | w=u; |
| xicom=vector(1,n); | fv=fw; |
| nrfunc=func; | fw=fu; |
| for (j=1;j<=n;j++) { | } else if (fu <= fv || v == x || v == w) { |
| pcom[j]=p[j]; | v=u; |
| xicom[j]=xi[j]; | fv=fu; |
| } | } |
| ax=0.0; | } |
| xx=1.0; | } |
| mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); | nrerror("Too many iterations in brent"); |
| *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); | *xmin=x; |
| #ifdef DEBUG | return fx; |
| printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); | } |
| #endif | |
| for (j=1;j<=n;j++) { | /****************** mnbrak ***********************/ |
| xi[j] *= xmin; | |
| p[j] += xi[j]; | void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, |
| } | double (*func)(double)) |
| free_vector(xicom,1,n); | { |
| free_vector(pcom,1,n); | double ulim,u,r,q, dum; |
| } | double fu; |
| /*************** powell ************************/ | *fa=(*func)(*ax); |
| void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, | *fb=(*func)(*bx); |
| double (*func)(double [])) | if (*fb > *fa) { |
| { | SHFT(dum,*ax,*bx,dum) |
| void linmin(double p[], double xi[], int n, double *fret, | SHFT(dum,*fb,*fa,dum) |
| double (*func)(double [])); | } |
| int i,ibig,j; | *cx=(*bx)+GOLD*(*bx-*ax); |
| double del,t,*pt,*ptt,*xit; | *fc=(*func)(*cx); |
| double fp,fptt; | while (*fb > *fc) { |
| double *xits; | r=(*bx-*ax)*(*fb-*fc); |
| pt=vector(1,n); | q=(*bx-*cx)*(*fb-*fa); |
| ptt=vector(1,n); | u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
| xit=vector(1,n); | (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); |
| xits=vector(1,n); | ulim=(*bx)+GLIMIT*(*cx-*bx); |
| *fret=(*func)(p); | if ((*bx-u)*(u-*cx) > 0.0) { |
| for (j=1;j<=n;j++) pt[j]=p[j]; | fu=(*func)(u); |
| for (*iter=1;;++(*iter)) { | } else if ((*cx-u)*(u-ulim) > 0.0) { |
| fp=(*fret); | fu=(*func)(u); |
| ibig=0; | if (fu < *fc) { |
| del=0.0; | SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
| printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret); | SHFT(*fb,*fc,fu,(*func)(u)) |
| for (i=1;i<=n;i++) | } |
| printf(" %d %.12f",i, p[i]); | } else if ((u-ulim)*(ulim-*cx) >= 0.0) { |
| printf("\n"); | u=ulim; |
| for (i=1;i<=n;i++) { | fu=(*func)(u); |
| for (j=1;j<=n;j++) xit[j]=xi[j][i]; | } else { |
| fptt=(*fret); | u=(*cx)+GOLD*(*cx-*bx); |
| #ifdef DEBUG | fu=(*func)(u); |
| printf("fret=%lf \n",*fret); | } |
| #endif | SHFT(*ax,*bx,*cx,u) |
| printf("%d",i);fflush(stdout); | SHFT(*fa,*fb,*fc,fu) |
| linmin(p,xit,n,fret,func); | } |
| if (fabs(fptt-(*fret)) > del) { | } |
| del=fabs(fptt-(*fret)); | |
| ibig=i; | /*************** linmin ************************/ |
| } | |
| #ifdef DEBUG | int ncom; |
| printf("%d %.12e",i,(*fret)); | double *pcom,*xicom; |
| for (j=1;j<=n;j++) { | double (*nrfunc)(double []); |
| xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); | |
| printf(" x(%d)=%.12e",j,xit[j]); | void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
| } | { |
| for(j=1;j<=n;j++) | double brent(double ax, double bx, double cx, |
| printf(" p=%.12e",p[j]); | double (*f)(double), double tol, double *xmin); |
| printf("\n"); | double f1dim(double x); |
| #endif | void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, |
| } | double *fc, double (*func)(double)); |
| if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { | int j; |
| #ifdef DEBUG | double xx,xmin,bx,ax; |
| int k[2],l; | double fx,fb,fa; |
| k[0]=1; | |
| k[1]=-1; | ncom=n; |
| printf("Max: %.12e",(*func)(p)); | pcom=vector(1,n); |
| for (j=1;j<=n;j++) | xicom=vector(1,n); |
| printf(" %.12e",p[j]); | nrfunc=func; |
| printf("\n"); | for (j=1;j<=n;j++) { |
| for(l=0;l<=1;l++) { | pcom[j]=p[j]; |
| for (j=1;j<=n;j++) { | xicom[j]=xi[j]; |
| ptt[j]=p[j]+(p[j]-pt[j])*k[l]; | } |
| printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); | ax=0.0; |
| } | xx=1.0; |
| printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); | mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); |
| } | *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); |
| #endif | #ifdef DEBUG |
| printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); | |
| fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); | |
| free_vector(xit,1,n); | #endif |
| free_vector(xits,1,n); | for (j=1;j<=n;j++) { |
| free_vector(ptt,1,n); | xi[j] *= xmin; |
| free_vector(pt,1,n); | p[j] += xi[j]; |
| return; | } |
| } | free_vector(xicom,1,n); |
| if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); | free_vector(pcom,1,n); |
| for (j=1;j<=n;j++) { | } |
| ptt[j]=2.0*p[j]-pt[j]; | |
| xit[j]=p[j]-pt[j]; | /*************** powell ************************/ |
| pt[j]=p[j]; | void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
| } | double (*func)(double [])) |
| fptt=(*func)(ptt); | { |
| if (fptt < fp) { | void linmin(double p[], double xi[], int n, double *fret, |
| t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); | double (*func)(double [])); |
| if (t < 0.0) { | int i,ibig,j; |
| linmin(p,xit,n,fret,func); | double del,t,*pt,*ptt,*xit; |
| for (j=1;j<=n;j++) { | double fp,fptt; |
| xi[j][ibig]=xi[j][n]; | double *xits; |
| xi[j][n]=xit[j]; | pt=vector(1,n); |
| } | ptt=vector(1,n); |
| #ifdef DEBUG | xit=vector(1,n); |
| printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); | xits=vector(1,n); |
| for(j=1;j<=n;j++) | *fret=(*func)(p); |
| printf(" %.12e",xit[j]); | for (j=1;j<=n;j++) pt[j]=p[j]; |
| printf("\n"); | for (*iter=1;;++(*iter)) { |
| #endif | fp=(*fret); |
| } | ibig=0; |
| } | del=0.0; |
| } | printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret); |
| } | fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret); |
| fprintf(ficrespow,"%d %.12f",*iter,*fret); | |
| /**** Prevalence limit ****************/ | for (i=1;i<=n;i++) { |
| printf(" %d %.12f",i, p[i]); | |
| double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij) | fprintf(ficlog," %d %.12lf",i, p[i]); |
| { | fprintf(ficrespow," %.12lf", p[i]); |
| /* Computes the prevalence limit in each live state at age x by left multiplying the unit | } |
| matrix by transitions matrix until convergence is reached */ | printf("\n"); |
| fprintf(ficlog,"\n"); | |
| int i, ii,j,k; | fprintf(ficrespow,"\n"); |
| double min, max, maxmin, maxmax,sumnew=0.; | for (i=1;i<=n;i++) { |
| double **matprod2(); | for (j=1;j<=n;j++) xit[j]=xi[j][i]; |
| double **out, cov[NCOVMAX], **pmij(); | fptt=(*fret); |
| double **newm; | #ifdef DEBUG |
| double agefin, delaymax=50 ; /* Max number of years to converge */ | printf("fret=%lf \n",*fret); |
| fprintf(ficlog,"fret=%lf \n",*fret); | |
| for (ii=1;ii<=nlstate+ndeath;ii++) | #endif |
| for (j=1;j<=nlstate+ndeath;j++){ | printf("%d",i);fflush(stdout); |
| oldm[ii][j]=(ii==j ? 1.0 : 0.0); | fprintf(ficlog,"%d",i);fflush(ficlog); |
| } | linmin(p,xit,n,fret,func); |
| if (fabs(fptt-(*fret)) > del) { | |
| cov[1]=1.; | del=fabs(fptt-(*fret)); |
| ibig=i; | |
| /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | } |
| for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ | #ifdef DEBUG |
| newm=savm; | printf("%d %.12e",i,(*fret)); |
| /* Covariates have to be included here again */ | fprintf(ficlog,"%d %.12e",i,(*fret)); |
| cov[2]=agefin; | for (j=1;j<=n;j++) { |
| xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); | |
| for (k=1; k<=cptcovn;k++) { | printf(" x(%d)=%.12e",j,xit[j]); |
| cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | fprintf(ficlog," x(%d)=%.12e",j,xit[j]); |
| /* printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/ | } |
| } | for(j=1;j<=n;j++) { |
| for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | printf(" p=%.12e",p[j]); |
| for (k=1; k<=cptcovprod;k++) | fprintf(ficlog," p=%.12e",p[j]); |
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | } |
| printf("\n"); | |
| /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ | fprintf(ficlog,"\n"); |
| /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ | #endif |
| /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ | } |
| out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); | if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { |
| #ifdef DEBUG | |
| savm=oldm; | int k[2],l; |
| oldm=newm; | k[0]=1; |
| maxmax=0.; | k[1]=-1; |
| for(j=1;j<=nlstate;j++){ | printf("Max: %.12e",(*func)(p)); |
| min=1.; | fprintf(ficlog,"Max: %.12e",(*func)(p)); |
| max=0.; | for (j=1;j<=n;j++) { |
| for(i=1; i<=nlstate; i++) { | printf(" %.12e",p[j]); |
| sumnew=0; | fprintf(ficlog," %.12e",p[j]); |
| for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; | } |
| prlim[i][j]= newm[i][j]/(1-sumnew); | printf("\n"); |
| max=FMAX(max,prlim[i][j]); | fprintf(ficlog,"\n"); |
| min=FMIN(min,prlim[i][j]); | for(l=0;l<=1;l++) { |
| } | for (j=1;j<=n;j++) { |
| maxmin=max-min; | ptt[j]=p[j]+(p[j]-pt[j])*k[l]; |
| maxmax=FMAX(maxmax,maxmin); | printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); |
| } | fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); |
| if(maxmax < ftolpl){ | } |
| return prlim; | printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); |
| } | fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); |
| } | } |
| } | #endif |
| /*************** transition probabilities ***************/ | |
| free_vector(xit,1,n); | |
| double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) | free_vector(xits,1,n); |
| { | free_vector(ptt,1,n); |
| double s1, s2; | free_vector(pt,1,n); |
| /*double t34;*/ | return; |
| int i,j,j1, nc, ii, jj; | } |
| if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); | |
| for(i=1; i<= nlstate; i++){ | for (j=1;j<=n;j++) { |
| for(j=1; j<i;j++){ | ptt[j]=2.0*p[j]-pt[j]; |
| for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | xit[j]=p[j]-pt[j]; |
| /*s2 += param[i][j][nc]*cov[nc];*/ | pt[j]=p[j]; |
| s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | } |
| /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/ | fptt=(*func)(ptt); |
| } | if (fptt < fp) { |
| ps[i][j]=s2; | t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); |
| /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/ | if (t < 0.0) { |
| } | linmin(p,xit,n,fret,func); |
| for(j=i+1; j<=nlstate+ndeath;j++){ | for (j=1;j<=n;j++) { |
| for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | xi[j][ibig]=xi[j][n]; |
| s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | xi[j][n]=xit[j]; |
| /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/ | } |
| } | #ifdef DEBUG |
| ps[i][j]=s2; | printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
| } | fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
| } | for(j=1;j<=n;j++){ |
| /*ps[3][2]=1;*/ | printf(" %.12e",xit[j]); |
| fprintf(ficlog," %.12e",xit[j]); | |
| for(i=1; i<= nlstate; i++){ | } |
| s1=0; | printf("\n"); |
| for(j=1; j<i; j++) | fprintf(ficlog,"\n"); |
| s1+=exp(ps[i][j]); | #endif |
| for(j=i+1; j<=nlstate+ndeath; j++) | } |
| s1+=exp(ps[i][j]); | } |
| ps[i][i]=1./(s1+1.); | } |
| for(j=1; j<i; j++) | } |
| ps[i][j]= exp(ps[i][j])*ps[i][i]; | |
| for(j=i+1; j<=nlstate+ndeath; j++) | /**** Prevalence limit (stable prevalence) ****************/ |
| ps[i][j]= exp(ps[i][j])*ps[i][i]; | |
| /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ | double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij) |
| } /* end i */ | { |
| /* Computes the prevalence limit in each live state at age x by left multiplying the unit | |
| for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ | matrix by transitions matrix until convergence is reached */ |
| for(jj=1; jj<= nlstate+ndeath; jj++){ | |
| ps[ii][jj]=0; | int i, ii,j,k; |
| ps[ii][ii]=1; | double min, max, maxmin, maxmax,sumnew=0.; |
| } | double **matprod2(); |
| } | double **out, cov[NCOVMAX], **pmij(); |
| double **newm; | |
| double agefin, delaymax=50 ; /* Max number of years to converge */ | |
| /* for(ii=1; ii<= nlstate+ndeath; ii++){ | |
| for(jj=1; jj<= nlstate+ndeath; jj++){ | for (ii=1;ii<=nlstate+ndeath;ii++) |
| printf("%lf ",ps[ii][jj]); | for (j=1;j<=nlstate+ndeath;j++){ |
| } | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| printf("\n "); | } |
| } | |
| printf("\n ");printf("%lf ",cov[2]);*/ | cov[1]=1.; |
| /* | |
| for(i=1; i<= npar; i++) printf("%f ",x[i]); | /* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
| goto end;*/ | for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ |
| return ps; | newm=savm; |
| } | /* Covariates have to be included here again */ |
| cov[2]=agefin; | |
| /**************** Product of 2 matrices ******************/ | |
| for (k=1; k<=cptcovn;k++) { | |
| double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b) | cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; |
| { | /* printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/ |
| /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times | } |
| b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ | for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; |
| /* in, b, out are matrice of pointers which should have been initialized | for (k=1; k<=cptcovprod;k++) |
| before: only the contents of out is modified. The function returns | cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; |
| a pointer to pointers identical to out */ | |
| long i, j, k; | /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
| for(i=nrl; i<= nrh; i++) | /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
| for(k=ncolol; k<=ncoloh; k++) | /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
| for(j=ncl,out[i][k]=0.; j<=nch; j++) | out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); |
| out[i][k] +=in[i][j]*b[j][k]; | |
| savm=oldm; | |
| return out; | oldm=newm; |
| } | maxmax=0.; |
| for(j=1;j<=nlstate;j++){ | |
| min=1.; | |
| /************* Higher Matrix Product ***************/ | max=0.; |
| for(i=1; i<=nlstate; i++) { | |
| double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) | sumnew=0; |
| { | for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; |
| /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month | prlim[i][j]= newm[i][j]/(1-sumnew); |
| duration (i.e. until | max=FMAX(max,prlim[i][j]); |
| age (in years) age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. | min=FMIN(min,prlim[i][j]); |
| Output is stored in matrix po[i][j][h] for h every 'hstepm' step | } |
| (typically every 2 years instead of every month which is too big). | maxmin=max-min; |
| Model is determined by parameters x and covariates have to be | maxmax=FMAX(maxmax,maxmin); |
| included manually here. | } |
| if(maxmax < ftolpl){ | |
| */ | return prlim; |
| } | |
| int i, j, d, h, k; | } |
| double **out, cov[NCOVMAX]; | } |
| double **newm; | |
| /*************** transition probabilities ***************/ | |
| /* Hstepm could be zero and should return the unit matrix */ | |
| for (i=1;i<=nlstate+ndeath;i++) | double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
| for (j=1;j<=nlstate+ndeath;j++){ | { |
| oldm[i][j]=(i==j ? 1.0 : 0.0); | double s1, s2; |
| po[i][j][0]=(i==j ? 1.0 : 0.0); | /*double t34;*/ |
| } | int i,j,j1, nc, ii, jj; |
| /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | |
| for(h=1; h <=nhstepm; h++){ | for(i=1; i<= nlstate; i++){ |
| for(d=1; d <=hstepm; d++){ | for(j=1; j<i;j++){ |
| newm=savm; | for (nc=1, s2=0.;nc <=ncovmodel; nc++){ |
| /* Covariates have to be included here again */ | /*s2 += param[i][j][nc]*cov[nc];*/ |
| cov[1]=1.; | s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; |
| cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM; | /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/ |
| for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | } |
| for (k=1; k<=cptcovage;k++) | ps[i][j]=s2; |
| cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/ |
| for (k=1; k<=cptcovprod;k++) | } |
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | for(j=i+1; j<=nlstate+ndeath;j++){ |
| for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | |
| s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | |
| /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ | /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/ |
| /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ | } |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, | ps[i][j]=s2; |
| pmij(pmmij,cov,ncovmodel,x,nlstate)); | } |
| savm=oldm; | } |
| oldm=newm; | /*ps[3][2]=1;*/ |
| } | |
| for(i=1; i<=nlstate+ndeath; i++) | for(i=1; i<= nlstate; i++){ |
| for(j=1;j<=nlstate+ndeath;j++) { | s1=0; |
| po[i][j][h]=newm[i][j]; | for(j=1; j<i; j++) |
| /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]); | s1+=exp(ps[i][j]); |
| */ | for(j=i+1; j<=nlstate+ndeath; j++) |
| } | s1+=exp(ps[i][j]); |
| } /* end h */ | ps[i][i]=1./(s1+1.); |
| return po; | for(j=1; j<i; j++) |
| } | ps[i][j]= exp(ps[i][j])*ps[i][i]; |
| for(j=i+1; j<=nlstate+ndeath; j++) | |
| ps[i][j]= exp(ps[i][j])*ps[i][i]; | |
| /*************** log-likelihood *************/ | /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
| double func( double *x) | } /* end i */ |
| { | |
| int i, ii, j, k, mi, d, kk; | for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
| double l, ll[NLSTATEMAX], cov[NCOVMAX]; | for(jj=1; jj<= nlstate+ndeath; jj++){ |
| double **out; | ps[ii][jj]=0; |
| double sw; /* Sum of weights */ | ps[ii][ii]=1; |
| double lli; /* Individual log likelihood */ | } |
| long ipmx; | } |
| /*extern weight */ | |
| /* We are differentiating ll according to initial status */ | |
| /* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ | /* for(ii=1; ii<= nlstate+ndeath; ii++){ |
| /*for(i=1;i<imx;i++) | for(jj=1; jj<= nlstate+ndeath; jj++){ |
| printf(" %d\n",s[4][i]); | printf("%lf ",ps[ii][jj]); |
| */ | } |
| cov[1]=1.; | printf("\n "); |
| } | |
| for(k=1; k<=nlstate; k++) ll[k]=0.; | printf("\n ");printf("%lf ",cov[2]);*/ |
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | /* |
| for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | for(i=1; i<= npar; i++) printf("%f ",x[i]); |
| for(mi=1; mi<= wav[i]-1; mi++){ | goto end;*/ |
| for (ii=1;ii<=nlstate+ndeath;ii++) | return ps; |
| for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0); | } |
| for(d=0; d<dh[mi][i]; d++){ | |
| newm=savm; | /**************** Product of 2 matrices ******************/ |
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | |
| for (kk=1; kk<=cptcovage;kk++) { | double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b) |
| cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | { |
| } | /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times |
| b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ | |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | /* in, b, out are matrice of pointers which should have been initialized |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | before: only the contents of out is modified. The function returns |
| savm=oldm; | a pointer to pointers identical to out */ |
| oldm=newm; | long i, j, k; |
| for(i=nrl; i<= nrh; i++) | |
| for(k=ncolol; k<=ncoloh; k++) | |
| } /* end mult */ | for(j=ncl,out[i][k]=0.; j<=nch; j++) |
| out[i][k] +=in[i][j]*b[j][k]; | |
| lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); | |
| /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ | return out; |
| ipmx +=1; | } |
| sw += weight[i]; | |
| ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | |
| } /* end of wave */ | /************* Higher Matrix Product ***************/ |
| } /* end of individual */ | |
| double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) | |
| for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; | { |
| /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ | /* Computes the transition matrix starting at age 'age' over |
| l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ | 'nhstepm*hstepm*stepm' months (i.e. until |
| return -l; | age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
| } | nhstepm*hstepm matrices. |
| Output is stored in matrix po[i][j][h] for h every 'hstepm' step | |
| (typically every 2 years instead of every month which is too big | |
| /*********** Maximum Likelihood Estimation ***************/ | for the memory). |
| Model is determined by parameters x and covariates have to be | |
| void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) | included manually here. |
| { | |
| int i,j, iter; | */ |
| double **xi,*delti; | |
| double fret; | int i, j, d, h, k; |
| xi=matrix(1,npar,1,npar); | double **out, cov[NCOVMAX]; |
| for (i=1;i<=npar;i++) | double **newm; |
| for (j=1;j<=npar;j++) | |
| xi[i][j]=(i==j ? 1.0 : 0.0); | /* Hstepm could be zero and should return the unit matrix */ |
| printf("Powell\n"); | for (i=1;i<=nlstate+ndeath;i++) |
| powell(p,xi,npar,ftol,&iter,&fret,func); | for (j=1;j<=nlstate+ndeath;j++){ |
| oldm[i][j]=(i==j ? 1.0 : 0.0); | |
| printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); | po[i][j][0]=(i==j ? 1.0 : 0.0); |
| fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); | } |
| /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | |
| } | for(h=1; h <=nhstepm; h++){ |
| for(d=1; d <=hstepm; d++){ | |
| /**** Computes Hessian and covariance matrix ***/ | newm=savm; |
| void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) | /* Covariates have to be included here again */ |
| { | cov[1]=1.; |
| double **a,**y,*x,pd; | cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM; |
| double **hess; | for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; |
| int i, j,jk; | for (k=1; k<=cptcovage;k++) |
| int *indx; | cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; |
| for (k=1; k<=cptcovprod;k++) | |
| double hessii(double p[], double delta, int theta, double delti[]); | cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; |
| double hessij(double p[], double delti[], int i, int j); | |
| void lubksb(double **a, int npar, int *indx, double b[]) ; | |
| void ludcmp(double **a, int npar, int *indx, double *d) ; | /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
| /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ | |
| hess=matrix(1,npar,1,npar); | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
| pmij(pmmij,cov,ncovmodel,x,nlstate)); | |
| printf("\nCalculation of the hessian matrix. Wait...\n"); | savm=oldm; |
| for (i=1;i<=npar;i++){ | oldm=newm; |
| printf("%d",i);fflush(stdout); | } |
| hess[i][i]=hessii(p,ftolhess,i,delti); | for(i=1; i<=nlstate+ndeath; i++) |
| /*printf(" %f ",p[i]);*/ | for(j=1;j<=nlstate+ndeath;j++) { |
| /*printf(" %lf ",hess[i][i]);*/ | po[i][j][h]=newm[i][j]; |
| } | /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]); |
| */ | |
| for (i=1;i<=npar;i++) { | } |
| for (j=1;j<=npar;j++) { | } /* end h */ |
| if (j>i) { | return po; |
| printf(".%d%d",i,j);fflush(stdout); | } |
| hess[i][j]=hessij(p,delti,i,j); | |
| hess[j][i]=hess[i][j]; | |
| /*printf(" %lf ",hess[i][j]);*/ | /*************** log-likelihood *************/ |
| } | double func( double *x) |
| } | { |
| } | int i, ii, j, k, mi, d, kk; |
| printf("\n"); | double l, ll[NLSTATEMAX], cov[NCOVMAX]; |
| double **out; | |
| printf("\nInverting the hessian to get the covariance matrix. Wait...\n"); | double sw; /* Sum of weights */ |
| double lli; /* Individual log likelihood */ | |
| a=matrix(1,npar,1,npar); | int s1, s2; |
| y=matrix(1,npar,1,npar); | double bbh, survp; |
| x=vector(1,npar); | long ipmx; |
| indx=ivector(1,npar); | /*extern weight */ |
| for (i=1;i<=npar;i++) | /* We are differentiating ll according to initial status */ |
| for (j=1;j<=npar;j++) a[i][j]=hess[i][j]; | /* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
| ludcmp(a,npar,indx,&pd); | /*for(i=1;i<imx;i++) |
| printf(" %d\n",s[4][i]); | |
| for (j=1;j<=npar;j++) { | */ |
| for (i=1;i<=npar;i++) x[i]=0; | cov[1]=1.; |
| x[j]=1; | |
| lubksb(a,npar,indx,x); | for(k=1; k<=nlstate; k++) ll[k]=0.; |
| for (i=1;i<=npar;i++){ | |
| matcov[i][j]=x[i]; | if(mle==1){ |
| } | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
| } | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
| for(mi=1; mi<= wav[i]-1; mi++){ | |
| printf("\n#Hessian matrix#\n"); | for (ii=1;ii<=nlstate+ndeath;ii++) |
| for (i=1;i<=npar;i++) { | for (j=1;j<=nlstate+ndeath;j++){ |
| for (j=1;j<=npar;j++) { | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| printf("%.3e ",hess[i][j]); | savm[ii][j]=(ii==j ? 1.0 : 0.0); |
| } | } |
| printf("\n"); | for(d=0; d<dh[mi][i]; d++){ |
| } | newm=savm; |
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | |
| /* Recompute Inverse */ | for (kk=1; kk<=cptcovage;kk++) { |
| for (i=1;i<=npar;i++) | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
| for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; | } |
| ludcmp(a,npar,indx,&pd); | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | |
| /* printf("\n#Hessian matrix recomputed#\n"); | savm=oldm; |
| oldm=newm; | |
| for (j=1;j<=npar;j++) { | } /* end mult */ |
| for (i=1;i<=npar;i++) x[i]=0; | |
| x[j]=1; | /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
| lubksb(a,npar,indx,x); | /* But now since version 0.9 we anticipate for bias and large stepm. |
| for (i=1;i<=npar;i++){ | * If stepm is larger than one month (smallest stepm) and if the exact delay |
| y[i][j]=x[i]; | * (in months) between two waves is not a multiple of stepm, we rounded to |
| printf("%.3e ",y[i][j]); | * the nearest (and in case of equal distance, to the lowest) interval but now |
| } | * we keep into memory the bias bh[mi][i] and also the previous matrix product |
| printf("\n"); | * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
| } | * probability in order to take into account the bias as a fraction of the way |
| */ | * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
| * -stepm/2 to stepm/2 . | |
| free_matrix(a,1,npar,1,npar); | * For stepm=1 the results are the same as for previous versions of Imach. |
| free_matrix(y,1,npar,1,npar); | * For stepm > 1 the results are less biased than in previous versions. |
| free_vector(x,1,npar); | */ |
| free_ivector(indx,1,npar); | s1=s[mw[mi][i]][i]; |
| free_matrix(hess,1,npar,1,npar); | s2=s[mw[mi+1][i]][i]; |
| bbh=(double)bh[mi][i]/(double)stepm; | |
| /* bias is positive if real duration | |
| } | * is higher than the multiple of stepm and negative otherwise. |
| */ | |
| /*************** hessian matrix ****************/ | /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
| double hessii( double x[], double delta, int theta, double delti[]) | if( s2 > nlstate){ |
| { | /* i.e. if s2 is a death state and if the date of death is known then the contribution |
| int i; | to the likelihood is the probability to die between last step unit time and current |
| int l=1, lmax=20; | step unit time, which is also the differences between probability to die before dh |
| double k1,k2; | and probability to die before dh-stepm . |
| double p2[NPARMAX+1]; | In version up to 0.92 likelihood was computed |
| double res; | as if date of death was unknown. Death was treated as any other |
| double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4; | health state: the date of the interview describes the actual state |
| double fx; | and not the date of a change in health state. The former idea was |
| int k=0,kmax=10; | to consider that at each interview the state was recorded |
| double l1; | (healthy, disable or death) and IMaCh was corrected; but when we |
| introduced the exact date of death then we should have modified | |
| fx=func(x); | the contribution of an exact death to the likelihood. This new |
| for (i=1;i<=npar;i++) p2[i]=x[i]; | contribution is smaller and very dependent of the step unit |
| for(l=0 ; l <=lmax; l++){ | stepm. It is no more the probability to die between last interview |
| l1=pow(10,l); | and month of death but the probability to survive from last |
| delts=delt; | interview up to one month before death multiplied by the |
| for(k=1 ; k <kmax; k=k+1){ | probability to die within a month. Thanks to Chris |
| delt = delta*(l1*k); | Jackson for correcting this bug. Former versions increased |
| p2[theta]=x[theta] +delt; | mortality artificially. The bad side is that we add another loop |
| k1=func(p2)-fx; | which slows down the processing. The difference can be up to 10% |
| p2[theta]=x[theta]-delt; | lower mortality. |
| k2=func(p2)-fx; | */ |
| /*res= (k1-2.0*fx+k2)/delt/delt; */ | lli=log(out[s1][s2] - savm[s1][s2]); |
| res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */ | }else{ |
| lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ | |
| #ifdef DEBUG | /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
| printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); | } |
| #endif | /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
| /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */ | /*if(lli ==000.0)*/ |
| if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){ | /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
| k=kmax; | ipmx +=1; |
| } | sw += weight[i]; |
| else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */ | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| k=kmax; l=lmax*10.; | } /* end of wave */ |
| } | } /* end of individual */ |
| else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ | } else if(mle==2){ |
| delts=delt; | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
| } | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
| } | for(mi=1; mi<= wav[i]-1; mi++){ |
| } | for (ii=1;ii<=nlstate+ndeath;ii++) |
| delti[theta]=delts; | for (j=1;j<=nlstate+ndeath;j++){ |
| return res; | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| savm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| } | } |
| for(d=0; d<=dh[mi][i]; d++){ | |
| double hessij( double x[], double delti[], int thetai,int thetaj) | newm=savm; |
| { | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
| int i; | for (kk=1; kk<=cptcovage;kk++) { |
| int l=1, l1, lmax=20; | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
| double k1,k2,k3,k4,res,fx; | } |
| double p2[NPARMAX+1]; | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| int k; | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| savm=oldm; | |
| fx=func(x); | oldm=newm; |
| for (k=1; k<=2; k++) { | } /* end mult */ |
| for (i=1;i<=npar;i++) p2[i]=x[i]; | |
| p2[thetai]=x[thetai]+delti[thetai]/k; | /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
| p2[thetaj]=x[thetaj]+delti[thetaj]/k; | /* But now since version 0.9 we anticipate for bias and large stepm. |
| k1=func(p2)-fx; | * If stepm is larger than one month (smallest stepm) and if the exact delay |
| * (in months) between two waves is not a multiple of stepm, we rounded to | |
| p2[thetai]=x[thetai]+delti[thetai]/k; | * the nearest (and in case of equal distance, to the lowest) interval but now |
| p2[thetaj]=x[thetaj]-delti[thetaj]/k; | * we keep into memory the bias bh[mi][i] and also the previous matrix product |
| k2=func(p2)-fx; | * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
| * probability in order to take into account the bias as a fraction of the way | |
| p2[thetai]=x[thetai]-delti[thetai]/k; | * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
| p2[thetaj]=x[thetaj]+delti[thetaj]/k; | * -stepm/2 to stepm/2 . |
| k3=func(p2)-fx; | * For stepm=1 the results are the same as for previous versions of Imach. |
| * For stepm > 1 the results are less biased than in previous versions. | |
| p2[thetai]=x[thetai]-delti[thetai]/k; | */ |
| p2[thetaj]=x[thetaj]-delti[thetaj]/k; | s1=s[mw[mi][i]][i]; |
| k4=func(p2)-fx; | s2=s[mw[mi+1][i]][i]; |
| res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */ | bbh=(double)bh[mi][i]/(double)stepm; |
| #ifdef DEBUG | /* bias is positive if real duration |
| printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); | * is higher than the multiple of stepm and negative otherwise. |
| #endif | */ |
| } | lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
| return res; | /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
| } | /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */ |
| /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | |
| /************** Inverse of matrix **************/ | /*if(lli ==000.0)*/ |
| void ludcmp(double **a, int n, int *indx, double *d) | /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
| { | ipmx +=1; |
| int i,imax,j,k; | sw += weight[i]; |
| double big,dum,sum,temp; | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| double *vv; | } /* end of wave */ |
| } /* end of individual */ | |
| vv=vector(1,n); | } else if(mle==3){ /* exponential inter-extrapolation */ |
| *d=1.0; | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
| for (i=1;i<=n;i++) { | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
| big=0.0; | for(mi=1; mi<= wav[i]-1; mi++){ |
| for (j=1;j<=n;j++) | for (ii=1;ii<=nlstate+ndeath;ii++) |
| if ((temp=fabs(a[i][j])) > big) big=temp; | for (j=1;j<=nlstate+ndeath;j++){ |
| if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| vv[i]=1.0/big; | savm[ii][j]=(ii==j ? 1.0 : 0.0); |
| } | } |
| for (j=1;j<=n;j++) { | for(d=0; d<dh[mi][i]; d++){ |
| for (i=1;i<j;i++) { | newm=savm; |
| sum=a[i][j]; | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
| for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; | for (kk=1; kk<=cptcovage;kk++) { |
| a[i][j]=sum; | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
| } | } |
| big=0.0; | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| for (i=j;i<=n;i++) { | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| sum=a[i][j]; | savm=oldm; |
| for (k=1;k<j;k++) | oldm=newm; |
| sum -= a[i][k]*a[k][j]; | } /* end mult */ |
| a[i][j]=sum; | |
| if ( (dum=vv[i]*fabs(sum)) >= big) { | /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
| big=dum; | /* But now since version 0.9 we anticipate for bias and large stepm. |
| imax=i; | * If stepm is larger than one month (smallest stepm) and if the exact delay |
| } | * (in months) between two waves is not a multiple of stepm, we rounded to |
| } | * the nearest (and in case of equal distance, to the lowest) interval but now |
| if (j != imax) { | * we keep into memory the bias bh[mi][i] and also the previous matrix product |
| for (k=1;k<=n;k++) { | * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
| dum=a[imax][k]; | * probability in order to take into account the bias as a fraction of the way |
| a[imax][k]=a[j][k]; | * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
| a[j][k]=dum; | * -stepm/2 to stepm/2 . |
| } | * For stepm=1 the results are the same as for previous versions of Imach. |
| *d = -(*d); | * For stepm > 1 the results are less biased than in previous versions. |
| vv[imax]=vv[j]; | */ |
| } | s1=s[mw[mi][i]][i]; |
| indx[j]=imax; | s2=s[mw[mi+1][i]][i]; |
| if (a[j][j] == 0.0) a[j][j]=TINY; | bbh=(double)bh[mi][i]/(double)stepm; |
| if (j != n) { | /* bias is positive if real duration |
| dum=1.0/(a[j][j]); | * is higher than the multiple of stepm and negative otherwise. |
| for (i=j+1;i<=n;i++) a[i][j] *= dum; | */ |
| } | /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */ |
| } | lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
| free_vector(vv,1,n); /* Doesn't work */ | /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
| ; | /*if(lli ==000.0)*/ |
| } | /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
| ipmx +=1; | |
| void lubksb(double **a, int n, int *indx, double b[]) | sw += weight[i]; |
| { | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| int i,ii=0,ip,j; | } /* end of wave */ |
| double sum; | } /* end of individual */ |
| }else{ /* ml=4 no inter-extrapolation */ | |
| for (i=1;i<=n;i++) { | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
| ip=indx[i]; | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
| sum=b[ip]; | for(mi=1; mi<= wav[i]-1; mi++){ |
| b[ip]=b[i]; | for (ii=1;ii<=nlstate+ndeath;ii++) |
| if (ii) | for (j=1;j<=nlstate+ndeath;j++){ |
| for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| else if (sum) ii=i; | savm[ii][j]=(ii==j ? 1.0 : 0.0); |
| b[i]=sum; | } |
| } | for(d=0; d<dh[mi][i]; d++){ |
| for (i=n;i>=1;i--) { | newm=savm; |
| sum=b[i]; | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
| for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; | for (kk=1; kk<=cptcovage;kk++) { |
| b[i]=sum/a[i][i]; | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
| } | } |
| } | |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | |
| /************ Frequencies ********************/ | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| void freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2) | savm=oldm; |
| { /* Some frequencies */ | oldm=newm; |
| } /* end mult */ | |
| int i, m, jk, k1,i1, j1, bool, z1,z2,j; | |
| double ***freq; /* Frequencies */ | lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
| double *pp; | ipmx +=1; |
| double pos, k2, dateintsum=0,k2cpt=0; | sw += weight[i]; |
| FILE *ficresp; | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| char fileresp[FILENAMELENGTH]; | } /* end of wave */ |
| } /* end of individual */ | |
| pp=vector(1,nlstate); | } /* End of if */ |
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
| strcpy(fileresp,"p"); | /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
| strcat(fileresp,fileres); | l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
| if((ficresp=fopen(fileresp,"w"))==NULL) { | return -l; |
| printf("Problem with prevalence resultfile: %s\n", fileresp); | } |
| exit(0); | |
| } | |
| freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); | /*********** Maximum Likelihood Estimation ***************/ |
| j1=0; | |
| void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) | |
| j=cptcoveff; | { |
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | int i,j, iter; |
| double **xi; | |
| for(k1=1; k1<=j;k1++){ | double fret; |
| for(i1=1; i1<=ncodemax[k1];i1++){ | char filerespow[FILENAMELENGTH]; |
| j1++; | xi=matrix(1,npar,1,npar); |
| /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); | for (i=1;i<=npar;i++) |
| scanf("%d", i);*/ | for (j=1;j<=npar;j++) |
| for (i=-1; i<=nlstate+ndeath; i++) | xi[i][j]=(i==j ? 1.0 : 0.0); |
| for (jk=-1; jk<=nlstate+ndeath; jk++) | printf("Powell\n"); fprintf(ficlog,"Powell\n"); |
| for(m=agemin; m <= agemax+3; m++) | strcpy(filerespow,"pow"); |
| freq[i][jk][m]=0; | strcat(filerespow,fileres); |
| if((ficrespow=fopen(filerespow,"w"))==NULL) { | |
| dateintsum=0; | printf("Problem with resultfile: %s\n", filerespow); |
| k2cpt=0; | fprintf(ficlog,"Problem with resultfile: %s\n", filerespow); |
| for (i=1; i<=imx; i++) { | } |
| bool=1; | fprintf(ficrespow,"# Powell\n# iter -2*LL"); |
| if (cptcovn>0) { | for (i=1;i<=nlstate;i++) |
| for (z1=1; z1<=cptcoveff; z1++) | for(j=1;j<=nlstate+ndeath;j++) |
| if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
| bool=0; | fprintf(ficrespow,"\n"); |
| } | powell(p,xi,npar,ftol,&iter,&fret,func); |
| if (bool==1) { | |
| for(m=firstpass; m<=lastpass; m++){ | fclose(ficrespow); |
| k2=anint[m][i]+(mint[m][i]/12.); | printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); |
| if ((k2>=dateprev1) && (k2<=dateprev2)) { | fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
| if(agev[m][i]==0) agev[m][i]=agemax+1; | fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
| if(agev[m][i]==1) agev[m][i]=agemax+2; | |
| if (m<lastpass) { | } |
| freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | |
| freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i]; | /**** Computes Hessian and covariance matrix ***/ |
| } | void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) |
| { | |
| if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) { | double **a,**y,*x,pd; |
| dateintsum=dateintsum+k2; | double **hess; |
| k2cpt++; | int i, j,jk; |
| } | int *indx; |
| } | |
| } | double hessii(double p[], double delta, int theta, double delti[]); |
| } | double hessij(double p[], double delti[], int i, int j); |
| } | void lubksb(double **a, int npar, int *indx, double b[]) ; |
| void ludcmp(double **a, int npar, int *indx, double *d) ; | |
| fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | |
| hess=matrix(1,npar,1,npar); | |
| if (cptcovn>0) { | |
| fprintf(ficresp, "\n#********** Variable "); | printf("\nCalculation of the hessian matrix. Wait...\n"); |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n"); |
| fprintf(ficresp, "**********\n#"); | for (i=1;i<=npar;i++){ |
| } | printf("%d",i);fflush(stdout); |
| for(i=1; i<=nlstate;i++) | fprintf(ficlog,"%d",i);fflush(ficlog); |
| fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); | hess[i][i]=hessii(p,ftolhess,i,delti); |
| fprintf(ficresp, "\n"); | /*printf(" %f ",p[i]);*/ |
| /*printf(" %lf ",hess[i][i]);*/ | |
| for(i=(int)agemin; i <= (int)agemax+3; i++){ | } |
| if(i==(int)agemax+3) | |
| printf("Total"); | for (i=1;i<=npar;i++) { |
| else | for (j=1;j<=npar;j++) { |
| printf("Age %d", i); | if (j>i) { |
| for(jk=1; jk <=nlstate ; jk++){ | printf(".%d%d",i,j);fflush(stdout); |
| for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) | fprintf(ficlog,".%d%d",i,j);fflush(ficlog); |
| pp[jk] += freq[jk][m][i]; | hess[i][j]=hessij(p,delti,i,j); |
| } | hess[j][i]=hess[i][j]; |
| for(jk=1; jk <=nlstate ; jk++){ | /*printf(" %lf ",hess[i][j]);*/ |
| for(m=-1, pos=0; m <=0 ; m++) | } |
| pos += freq[jk][m][i]; | } |
| if(pp[jk]>=1.e-10) | } |
| printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); | printf("\n"); |
| else | fprintf(ficlog,"\n"); |
| printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); | |
| } | printf("\nInverting the hessian to get the covariance matrix. Wait...\n"); |
| fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n"); | |
| for(jk=1; jk <=nlstate ; jk++){ | |
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | a=matrix(1,npar,1,npar); |
| pp[jk] += freq[jk][m][i]; | y=matrix(1,npar,1,npar); |
| } | x=vector(1,npar); |
| indx=ivector(1,npar); | |
| for(jk=1,pos=0; jk <=nlstate ; jk++) | for (i=1;i<=npar;i++) |
| pos += pp[jk]; | for (j=1;j<=npar;j++) a[i][j]=hess[i][j]; |
| for(jk=1; jk <=nlstate ; jk++){ | ludcmp(a,npar,indx,&pd); |
| if(pos>=1.e-5) | |
| printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); | for (j=1;j<=npar;j++) { |
| else | for (i=1;i<=npar;i++) x[i]=0; |
| printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); | x[j]=1; |
| if( i <= (int) agemax){ | lubksb(a,npar,indx,x); |
| if(pos>=1.e-5){ | for (i=1;i<=npar;i++){ |
| fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos); | matcov[i][j]=x[i]; |
| probs[i][jk][j1]= pp[jk]/pos; | } |
| /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ | } |
| } | |
| else | printf("\n#Hessian matrix#\n"); |
| fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos); | fprintf(ficlog,"\n#Hessian matrix#\n"); |
| } | for (i=1;i<=npar;i++) { |
| } | for (j=1;j<=npar;j++) { |
| printf("%.3e ",hess[i][j]); | |
| for(jk=-1; jk <=nlstate+ndeath; jk++) | fprintf(ficlog,"%.3e ",hess[i][j]); |
| for(m=-1; m <=nlstate+ndeath; m++) | } |
| if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); | printf("\n"); |
| if(i <= (int) agemax) | fprintf(ficlog,"\n"); |
| fprintf(ficresp,"\n"); | } |
| printf("\n"); | |
| } | /* Recompute Inverse */ |
| } | for (i=1;i<=npar;i++) |
| } | for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; |
| dateintmean=dateintsum/k2cpt; | ludcmp(a,npar,indx,&pd); |
| fclose(ficresp); | /* printf("\n#Hessian matrix recomputed#\n"); |
| free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); | |
| free_vector(pp,1,nlstate); | for (j=1;j<=npar;j++) { |
| for (i=1;i<=npar;i++) x[i]=0; | |
| /* End of Freq */ | x[j]=1; |
| } | lubksb(a,npar,indx,x); |
| for (i=1;i<=npar;i++){ | |
| /************ Prevalence ********************/ | y[i][j]=x[i]; |
| void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate) | printf("%.3e ",y[i][j]); |
| { /* Some frequencies */ | fprintf(ficlog,"%.3e ",y[i][j]); |
| } | |
| int i, m, jk, k1, i1, j1, bool, z1,z2,j; | printf("\n"); |
| double ***freq; /* Frequencies */ | fprintf(ficlog,"\n"); |
| double *pp; | } |
| double pos, k2; | */ |
| pp=vector(1,nlstate); | free_matrix(a,1,npar,1,npar); |
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | free_matrix(y,1,npar,1,npar); |
| free_vector(x,1,npar); | |
| freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); | free_ivector(indx,1,npar); |
| j1=0; | free_matrix(hess,1,npar,1,npar); |
| j=cptcoveff; | |
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | } |
| for(k1=1; k1<=j;k1++){ | /*************** hessian matrix ****************/ |
| for(i1=1; i1<=ncodemax[k1];i1++){ | double hessii( double x[], double delta, int theta, double delti[]) |
| j1++; | { |
| int i; | |
| for (i=-1; i<=nlstate+ndeath; i++) | int l=1, lmax=20; |
| for (jk=-1; jk<=nlstate+ndeath; jk++) | double k1,k2; |
| for(m=agemin; m <= agemax+3; m++) | double p2[NPARMAX+1]; |
| freq[i][jk][m]=0; | double res; |
| double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4; | |
| for (i=1; i<=imx; i++) { | double fx; |
| bool=1; | int k=0,kmax=10; |
| if (cptcovn>0) { | double l1; |
| for (z1=1; z1<=cptcoveff; z1++) | |
| if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | fx=func(x); |
| bool=0; | for (i=1;i<=npar;i++) p2[i]=x[i]; |
| } | for(l=0 ; l <=lmax; l++){ |
| if (bool==1) { | l1=pow(10,l); |
| for(m=firstpass; m<=lastpass; m++){ | delts=delt; |
| k2=anint[m][i]+(mint[m][i]/12.); | for(k=1 ; k <kmax; k=k+1){ |
| if ((k2>=dateprev1) && (k2<=dateprev2)) { | delt = delta*(l1*k); |
| if(agev[m][i]==0) agev[m][i]=agemax+1; | p2[theta]=x[theta] +delt; |
| if(agev[m][i]==1) agev[m][i]=agemax+2; | k1=func(p2)-fx; |
| if (m<lastpass) { | p2[theta]=x[theta]-delt; |
| if (calagedate>0) | k2=func(p2)-fx; |
| freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i]; | /*res= (k1-2.0*fx+k2)/delt/delt; */ |
| else | res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */ |
| freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | |
| freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; | #ifdef DEBUG |
| } | printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
| } | fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
| } | #endif |
| } | /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */ |
| } | if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){ |
| for(i=(int)agemin; i <= (int)agemax+3; i++){ | k=kmax; |
| for(jk=1; jk <=nlstate ; jk++){ | } |
| for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) | else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */ |
| pp[jk] += freq[jk][m][i]; | k=kmax; l=lmax*10.; |
| } | } |
| for(jk=1; jk <=nlstate ; jk++){ | else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ |
| for(m=-1, pos=0; m <=0 ; m++) | delts=delt; |
| pos += freq[jk][m][i]; | } |
| } | } |
| } | |
| for(jk=1; jk <=nlstate ; jk++){ | delti[theta]=delts; |
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | return res; |
| pp[jk] += freq[jk][m][i]; | |
| } | } |
| for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk]; | double hessij( double x[], double delti[], int thetai,int thetaj) |
| { | |
| for(jk=1; jk <=nlstate ; jk++){ | int i; |
| if( i <= (int) agemax){ | int l=1, l1, lmax=20; |
| if(pos>=1.e-5){ | double k1,k2,k3,k4,res,fx; |
| probs[i][jk][j1]= pp[jk]/pos; | double p2[NPARMAX+1]; |
| } | int k; |
| } | |
| } | fx=func(x); |
| for (k=1; k<=2; k++) { | |
| } | for (i=1;i<=npar;i++) p2[i]=x[i]; |
| } | p2[thetai]=x[thetai]+delti[thetai]/k; |
| } | p2[thetaj]=x[thetaj]+delti[thetaj]/k; |
| k1=func(p2)-fx; | |
| free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); | p2[thetai]=x[thetai]+delti[thetai]/k; |
| free_vector(pp,1,nlstate); | p2[thetaj]=x[thetaj]-delti[thetaj]/k; |
| k2=func(p2)-fx; | |
| } /* End of Freq */ | |
| p2[thetai]=x[thetai]-delti[thetai]/k; | |
| /************* Waves Concatenation ***************/ | p2[thetaj]=x[thetaj]+delti[thetaj]/k; |
| k3=func(p2)-fx; | |
| void concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) | |
| { | p2[thetai]=x[thetai]-delti[thetai]/k; |
| /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. | p2[thetaj]=x[thetaj]-delti[thetaj]/k; |
| Death is a valid wave (if date is known). | k4=func(p2)-fx; |
| mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i | res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */ |
| dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i] | #ifdef DEBUG |
| and mw[mi+1][i]. dh depends on stepm. | printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
| */ | fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
| #endif | |
| int i, mi, m; | } |
| /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; | return res; |
| double sum=0., jmean=0.;*/ | } |
| int j, k=0,jk, ju, jl; | /************** Inverse of matrix **************/ |
| double sum=0.; | void ludcmp(double **a, int n, int *indx, double *d) |
| jmin=1e+5; | { |
| jmax=-1; | int i,imax,j,k; |
| jmean=0.; | double big,dum,sum,temp; |
| for(i=1; i<=imx; i++){ | double *vv; |
| mi=0; | |
| m=firstpass; | vv=vector(1,n); |
| while(s[m][i] <= nlstate){ | *d=1.0; |
| if(s[m][i]>=1) | for (i=1;i<=n;i++) { |
| mw[++mi][i]=m; | big=0.0; |
| if(m >=lastpass) | for (j=1;j<=n;j++) |
| break; | if ((temp=fabs(a[i][j])) > big) big=temp; |
| else | if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); |
| m++; | vv[i]=1.0/big; |
| }/* end while */ | } |
| if (s[m][i] > nlstate){ | for (j=1;j<=n;j++) { |
| mi++; /* Death is another wave */ | for (i=1;i<j;i++) { |
| /* if(mi==0) never been interviewed correctly before death */ | sum=a[i][j]; |
| /* Only death is a correct wave */ | for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; |
| mw[mi][i]=m; | a[i][j]=sum; |
| } | } |
| big=0.0; | |
| wav[i]=mi; | for (i=j;i<=n;i++) { |
| if(mi==0) | sum=a[i][j]; |
| printf("Warning, no any valid information for:%d line=%d\n",num[i],i); | for (k=1;k<j;k++) |
| } | sum -= a[i][k]*a[k][j]; |
| a[i][j]=sum; | |
| for(i=1; i<=imx; i++){ | if ( (dum=vv[i]*fabs(sum)) >= big) { |
| for(mi=1; mi<wav[i];mi++){ | big=dum; |
| if (stepm <=0) | imax=i; |
| dh[mi][i]=1; | } |
| else{ | } |
| if (s[mw[mi+1][i]][i] > nlstate) { | if (j != imax) { |
| if (agedc[i] < 2*AGESUP) { | for (k=1;k<=n;k++) { |
| j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); | dum=a[imax][k]; |
| if(j==0) j=1; /* Survives at least one month after exam */ | a[imax][k]=a[j][k]; |
| k=k+1; | a[j][k]=dum; |
| if (j >= jmax) jmax=j; | } |
| if (j <= jmin) jmin=j; | *d = -(*d); |
| sum=sum+j; | vv[imax]=vv[j]; |
| /*if (j<0) printf("j=%d num=%d \n",j,i); */ | } |
| } | indx[j]=imax; |
| } | if (a[j][j] == 0.0) a[j][j]=TINY; |
| else{ | if (j != n) { |
| j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); | dum=1.0/(a[j][j]); |
| k=k+1; | for (i=j+1;i<=n;i++) a[i][j] *= dum; |
| if (j >= jmax) jmax=j; | } |
| else if (j <= jmin)jmin=j; | } |
| /* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ | free_vector(vv,1,n); /* Doesn't work */ |
| sum=sum+j; | ; |
| } | } |
| jk= j/stepm; | |
| jl= j -jk*stepm; | void lubksb(double **a, int n, int *indx, double b[]) |
| ju= j -(jk+1)*stepm; | { |
| if(jl <= -ju) | int i,ii=0,ip,j; |
| dh[mi][i]=jk; | double sum; |
| else | |
| dh[mi][i]=jk+1; | for (i=1;i<=n;i++) { |
| if(dh[mi][i]==0) | ip=indx[i]; |
| dh[mi][i]=1; /* At least one step */ | sum=b[ip]; |
| } | b[ip]=b[i]; |
| } | if (ii) |
| } | for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; |
| jmean=sum/k; | else if (sum) ii=i; |
| printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); | b[i]=sum; |
| } | } |
| /*********** Tricode ****************************/ | for (i=n;i>=1;i--) { |
| void tricode(int *Tvar, int **nbcode, int imx) | sum=b[i]; |
| { | for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; |
| int Ndum[20],ij=1, k, j, i; | b[i]=sum/a[i][i]; |
| int cptcode=0; | } |
| cptcoveff=0; | } |
| for (k=0; k<19; k++) Ndum[k]=0; | /************ Frequencies ********************/ |
| for (k=1; k<=7; k++) ncodemax[k]=0; | void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2) |
| { /* Some frequencies */ | |
| for (j=1; j<=(cptcovn+2*cptcovprod); j++) { | |
| for (i=1; i<=imx; i++) { | int i, m, jk, k1,i1, j1, bool, z1,z2,j; |
| ij=(int)(covar[Tvar[j]][i]); | int first; |
| Ndum[ij]++; | double ***freq; /* Frequencies */ |
| /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ | double *pp, **prop; |
| if (ij > cptcode) cptcode=ij; | double pos,posprop, k2, dateintsum=0,k2cpt=0; |
| } | FILE *ficresp; |
| char fileresp[FILENAMELENGTH]; | |
| for (i=0; i<=cptcode; i++) { | |
| if(Ndum[i]!=0) ncodemax[j]++; | pp=vector(1,nlstate); |
| } | prop=matrix(1,nlstate,iagemin,iagemax+3); |
| ij=1; | strcpy(fileresp,"p"); |
| strcat(fileresp,fileres); | |
| if((ficresp=fopen(fileresp,"w"))==NULL) { | |
| for (i=1; i<=ncodemax[j]; i++) { | printf("Problem with prevalence resultfile: %s\n", fileresp); |
| for (k=0; k<=19; k++) { | fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
| if (Ndum[k] != 0) { | exit(0); |
| nbcode[Tvar[j]][ij]=k; | } |
| freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3); | |
| ij++; | j1=0; |
| } | |
| if (ij > ncodemax[j]) break; | j=cptcoveff; |
| } | if (cptcovn<1) {j=1;ncodemax[1]=1;} |
| } | |
| } | first=1; |
| for (k=0; k<19; k++) Ndum[k]=0; | for(k1=1; k1<=j;k1++){ |
| for(i1=1; i1<=ncodemax[k1];i1++){ | |
| for (i=1; i<=ncovmodel-2; i++) { | j1++; |
| ij=Tvar[i]; | /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
| Ndum[ij]++; | scanf("%d", i);*/ |
| } | for (i=-1; i<=nlstate+ndeath; i++) |
| for (jk=-1; jk<=nlstate+ndeath; jk++) | |
| ij=1; | for(m=iagemin; m <= iagemax+3; m++) |
| for (i=1; i<=10; i++) { | freq[i][jk][m]=0; |
| if((Ndum[i]!=0) && (i<=ncovcol)){ | |
| Tvaraff[ij]=i; | for (i=1; i<=nlstate; i++) |
| ij++; | for(m=iagemin; m <= iagemax+3; m++) |
| } | prop[i][m]=0; |
| } | |
| dateintsum=0; | |
| cptcoveff=ij-1; | k2cpt=0; |
| } | for (i=1; i<=imx; i++) { |
| bool=1; | |
| /*********** Health Expectancies ****************/ | if (cptcovn>0) { |
| for (z1=1; z1<=cptcoveff; z1++) | |
| void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov ) | if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) |
| bool=0; | |
| { | } |
| /* Health expectancies */ | if (bool==1){ |
| int i, j, nhstepm, hstepm, h, nstepm, k, cptj; | for(m=firstpass; m<=lastpass; m++){ |
| double age, agelim, hf; | k2=anint[m][i]+(mint[m][i]/12.); |
| double ***p3mat,***varhe; | if ((k2>=dateprev1) && (k2<=dateprev2)) { |
| double **dnewm,**doldm; | if(agev[m][i]==0) agev[m][i]=iagemax+1; |
| double *xp; | if(agev[m][i]==1) agev[m][i]=iagemax+2; |
| double **gp, **gm; | if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
| double ***gradg, ***trgradg; | if (m<lastpass) { |
| int theta; | freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; |
| freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; | |
| varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage); | } |
| xp=vector(1,npar); | |
| dnewm=matrix(1,nlstate*2,1,npar); | if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) { |
| doldm=matrix(1,nlstate*2,1,nlstate*2); | dateintsum=dateintsum+k2; |
| k2cpt++; | |
| fprintf(ficreseij,"# Health expectancies\n"); | } |
| fprintf(ficreseij,"# Age"); | } |
| for(i=1; i<=nlstate;i++) | } |
| for(j=1; j<=nlstate;j++) | } |
| fprintf(ficreseij," %1d-%1d (SE)",i,j); | } |
| fprintf(ficreseij,"\n"); | |
| fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | |
| if(estepm < stepm){ | |
| printf ("Problem %d lower than %d\n",estepm, stepm); | if (cptcovn>0) { |
| } | fprintf(ficresp, "\n#********** Variable "); |
| else hstepm=estepm; | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| /* We compute the life expectancy from trapezoids spaced every estepm months | fprintf(ficresp, "**********\n#"); |
| * This is mainly to measure the difference between two models: for example | } |
| * if stepm=24 months pijx are given only every 2 years and by summing them | for(i=1; i<=nlstate;i++) |
| * we are calculating an estimate of the Life Expectancy assuming a linear | fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
| * progression inbetween and thus overestimating or underestimating according | fprintf(ficresp, "\n"); |
| * to the curvature of the survival function. If, for the same date, we | |
| * estimate the model with stepm=1 month, we can keep estepm to 24 months | for(i=iagemin; i <= iagemax+3; i++){ |
| * to compare the new estimate of Life expectancy with the same linear | if(i==iagemax+3){ |
| * hypothesis. A more precise result, taking into account a more precise | fprintf(ficlog,"Total"); |
| * curvature will be obtained if estepm is as small as stepm. */ | }else{ |
| if(first==1){ | |
| /* For example we decided to compute the life expectancy with the smallest unit */ | first=0; |
| /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. | printf("See log file for details...\n"); |
| nhstepm is the number of hstepm from age to agelim | } |
| nstepm is the number of stepm from age to agelin. | fprintf(ficlog,"Age %d", i); |
| Look at hpijx to understand the reason of that which relies in memory size | } |
| and note for a fixed period like estepm months */ | for(jk=1; jk <=nlstate ; jk++){ |
| /* We decided (b) to get a life expectancy respecting the most precise curvature of the | for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
| survival function given by stepm (the optimization length). Unfortunately it | pp[jk] += freq[jk][m][i]; |
| means that if the survival funtion is printed only each two years of age and if | } |
| you sum them up and add 1 year (area under the trapezoids) you won't get the same | for(jk=1; jk <=nlstate ; jk++){ |
| results. So we changed our mind and took the option of the best precision. | for(m=-1, pos=0; m <=0 ; m++) |
| */ | pos += freq[jk][m][i]; |
| hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | if(pp[jk]>=1.e-10){ |
| if(first==1){ | |
| agelim=AGESUP; | printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | } |
| /* nhstepm age range expressed in number of stepm */ | fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
| nstepm=(int) rint((agelim-age)*YEARM/stepm); | }else{ |
| /* Typically if 20 years nstepm = 20*12/6=40 stepm */ | if(first==1) |
| /* if (stepm >= YEARM) hstepm=1;*/ | printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
| nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | } |
| gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2); | } |
| gp=matrix(0,nhstepm,1,nlstate*2); | |
| gm=matrix(0,nhstepm,1,nlstate*2); | for(jk=1; jk <=nlstate ; jk++){ |
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | |
| /* Computed by stepm unit matrices, product of hstepm matrices, stored | pp[jk] += freq[jk][m][i]; |
| in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ | } |
| hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij); | for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){ |
| pos += pp[jk]; | |
| posprop += prop[jk][i]; | |
| hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ | } |
| for(jk=1; jk <=nlstate ; jk++){ | |
| /* Computing Variances of health expectancies */ | if(pos>=1.e-5){ |
| if(first==1) | |
| for(theta=1; theta <=npar; theta++){ | printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
| for(i=1; i<=npar; i++){ | fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | }else{ |
| } | if(first==1) |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
| fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); | |
| cptj=0; | } |
| for(j=1; j<= nlstate; j++){ | if( i <= iagemax){ |
| for(i=1; i<=nlstate; i++){ | if(pos>=1.e-5){ |
| cptj=cptj+1; | fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop); |
| for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){ | probs[i][jk][j1]= pp[jk]/pos; |
| gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ |
| } | } |
| } | else |
| } | fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop); |
| } | |
| } | |
| for(i=1; i<=npar; i++) | |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | for(jk=-1; jk <=nlstate+ndeath; jk++) |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | for(m=-1; m <=nlstate+ndeath; m++) |
| if(freq[jk][m][i] !=0 ) { | |
| cptj=0; | if(first==1) |
| for(j=1; j<= nlstate; j++){ | printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); |
| for(i=1;i<=nlstate;i++){ | fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]); |
| cptj=cptj+1; | } |
| for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){ | if(i <= iagemax) |
| gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | fprintf(ficresp,"\n"); |
| } | if(first==1) |
| } | printf("Others in log...\n"); |
| } | fprintf(ficlog,"\n"); |
| for(j=1; j<= nlstate*2; j++) | } |
| for(h=0; h<=nhstepm-1; h++){ | } |
| gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | } |
| } | dateintmean=dateintsum/k2cpt; |
| } | |
| fclose(ficresp); | |
| /* End theta */ | free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3); |
| free_vector(pp,1,nlstate); | |
| trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar); | free_matrix(prop,1,nlstate,iagemin, iagemax+3); |
| /* End of Freq */ | |
| for(h=0; h<=nhstepm-1; h++) | } |
| for(j=1; j<=nlstate*2;j++) | |
| for(theta=1; theta <=npar; theta++) | /************ Prevalence ********************/ |
| trgradg[h][j][theta]=gradg[h][theta][j]; | void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
| { | |
| /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people | |
| for(i=1;i<=nlstate*2;i++) | in each health status at the date of interview (if between dateprev1 and dateprev2). |
| for(j=1;j<=nlstate*2;j++) | We still use firstpass and lastpass as another selection. |
| varhe[i][j][(int)age] =0.; | */ |
| printf("%d|",(int)age);fflush(stdout); | int i, m, jk, k1, i1, j1, bool, z1,z2,j; |
| for(h=0;h<=nhstepm-1;h++){ | double ***freq; /* Frequencies */ |
| for(k=0;k<=nhstepm-1;k++){ | double *pp, **prop; |
| matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov); | double pos,posprop; |
| matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]); | double y2; /* in fractional years */ |
| for(i=1;i<=nlstate*2;i++) | int iagemin, iagemax; |
| for(j=1;j<=nlstate*2;j++) | |
| varhe[i][j][(int)age] += doldm[i][j]*hf*hf; | iagemin= (int) agemin; |
| } | iagemax= (int) agemax; |
| } | /*pp=vector(1,nlstate);*/ |
| /* Computing expectancies */ | prop=matrix(1,nlstate,iagemin,iagemax+3); |
| for(i=1; i<=nlstate;i++) | /* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
| for(j=1; j<=nlstate;j++) | j1=0; |
| for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ | |
| eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf; | j=cptcoveff; |
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | |
| /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ | |
| for(k1=1; k1<=j;k1++){ | |
| } | for(i1=1; i1<=ncodemax[k1];i1++){ |
| j1++; | |
| fprintf(ficreseij,"%3.0f",age ); | |
| cptj=0; | for (i=1; i<=nlstate; i++) |
| for(i=1; i<=nlstate;i++) | for(m=iagemin; m <= iagemax+3; m++) |
| for(j=1; j<=nlstate;j++){ | prop[i][m]=0.0; |
| cptj++; | |
| fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) ); | for (i=1; i<=imx; i++) { /* Each individual */ |
| } | bool=1; |
| fprintf(ficreseij,"\n"); | if (cptcovn>0) { |
| for (z1=1; z1<=cptcoveff; z1++) | |
| free_matrix(gm,0,nhstepm,1,nlstate*2); | if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) |
| free_matrix(gp,0,nhstepm,1,nlstate*2); | bool=0; |
| free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2); | } |
| free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar); | if (bool==1) { |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/ |
| } | y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
| printf("\n"); | if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
| if(agev[m][i]==0) agev[m][i]=iagemax+1; | |
| free_vector(xp,1,npar); | if(agev[m][i]==1) agev[m][i]=iagemax+2; |
| free_matrix(dnewm,1,nlstate*2,1,npar); | if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); |
| free_matrix(doldm,1,nlstate*2,1,nlstate*2); | if (s[m][i]>0 && s[m][i]<=nlstate) { |
| free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage); | /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
| } | prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
| prop[s[m][i]][iagemax+3] += weight[i]; | |
| /************ Variance ******************/ | } |
| void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm) | } |
| { | } /* end selection of waves */ |
| /* Variance of health expectancies */ | } |
| /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ | } |
| double **newm; | for(i=iagemin; i <= iagemax+3; i++){ |
| double **dnewm,**doldm; | |
| int i, j, nhstepm, hstepm, h, nstepm ; | for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
| int k, cptcode; | posprop += prop[jk][i]; |
| double *xp; | } |
| double **gp, **gm; | |
| double ***gradg, ***trgradg; | for(jk=1; jk <=nlstate ; jk++){ |
| double ***p3mat; | if( i <= iagemax){ |
| double age,agelim, hf; | if(posprop>=1.e-5){ |
| int theta; | probs[i][jk][j1]= prop[jk][i]/posprop; |
| } | |
| fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are the stable prevalence in health states i\n"); | } |
| fprintf(ficresvij,"# Age"); | }/* end jk */ |
| for(i=1; i<=nlstate;i++) | }/* end i */ |
| for(j=1; j<=nlstate;j++) | } /* end i1 */ |
| fprintf(ficresvij," Cov(e%1d, e%1d)",i,j); | } /* end k1 */ |
| fprintf(ficresvij,"\n"); | |
| /* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ | |
| xp=vector(1,npar); | /*free_vector(pp,1,nlstate);*/ |
| dnewm=matrix(1,nlstate,1,npar); | free_matrix(prop,1,nlstate, iagemin,iagemax+3); |
| doldm=matrix(1,nlstate,1,nlstate); | } /* End of prevalence */ |
| if(estepm < stepm){ | /************* Waves Concatenation ***************/ |
| printf ("Problem %d lower than %d\n",estepm, stepm); | |
| } | void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
| else hstepm=estepm; | { |
| /* For example we decided to compute the life expectancy with the smallest unit */ | /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. |
| /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. | Death is a valid wave (if date is known). |
| nhstepm is the number of hstepm from age to agelim | mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
| nstepm is the number of stepm from age to agelin. | dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
| Look at hpijx to understand the reason of that which relies in memory size | and mw[mi+1][i]. dh depends on stepm. |
| and note for a fixed period like k years */ | */ |
| /* We decided (b) to get a life expectancy respecting the most precise curvature of the | |
| survival function given by stepm (the optimization length). Unfortunately it | int i, mi, m; |
| means that if the survival funtion is printed only each two years of age and if | /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
| you sum them up and add 1 year (area under the trapezoids) you won't get the same | double sum=0., jmean=0.;*/ |
| results. So we changed our mind and took the option of the best precision. | int first; |
| */ | int j, k=0,jk, ju, jl; |
| hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | double sum=0.; |
| agelim = AGESUP; | first=0; |
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | jmin=1e+5; |
| nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | jmax=-1; |
| nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | jmean=0.; |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | for(i=1; i<=imx; i++){ |
| gradg=ma3x(0,nhstepm,1,npar,1,nlstate); | mi=0; |
| gp=matrix(0,nhstepm,1,nlstate); | m=firstpass; |
| gm=matrix(0,nhstepm,1,nlstate); | while(s[m][i] <= nlstate){ |
| if(s[m][i]>=1) | |
| for(theta=1; theta <=npar; theta++){ | mw[++mi][i]=m; |
| for(i=1; i<=npar; i++){ /* Computes gradient */ | if(m >=lastpass) |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | break; |
| } | else |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | m++; |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | }/* end while */ |
| if (s[m][i] > nlstate){ | |
| if (popbased==1) { | mi++; /* Death is another wave */ |
| for(i=1; i<=nlstate;i++) | /* if(mi==0) never been interviewed correctly before death */ |
| prlim[i][i]=probs[(int)age][i][ij]; | /* Only death is a correct wave */ |
| } | mw[mi][i]=m; |
| } | |
| for(j=1; j<= nlstate; j++){ | |
| for(h=0; h<=nhstepm; h++){ | wav[i]=mi; |
| for(i=1, gp[h][j]=0.;i<=nlstate;i++) | if(mi==0){ |
| gp[h][j] += prlim[i][i]*p3mat[i][j][h]; | if(first==0){ |
| } | printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i); |
| } | first=1; |
| } | |
| for(i=1; i<=npar; i++) /* Computes gradient */ | if(first==1){ |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i); |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | } |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | } /* end mi==0 */ |
| } /* End individuals */ | |
| if (popbased==1) { | |
| for(i=1; i<=nlstate;i++) | for(i=1; i<=imx; i++){ |
| prlim[i][i]=probs[(int)age][i][ij]; | for(mi=1; mi<wav[i];mi++){ |
| } | if (stepm <=0) |
| dh[mi][i]=1; | |
| for(j=1; j<= nlstate; j++){ | else{ |
| for(h=0; h<=nhstepm; h++){ | if (s[mw[mi+1][i]][i] > nlstate) { /* A death */ |
| for(i=1, gm[h][j]=0.;i<=nlstate;i++) | if (agedc[i] < 2*AGESUP) { |
| gm[h][j] += prlim[i][i]*p3mat[i][j][h]; | j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
| } | if(j==0) j=1; /* Survives at least one month after exam */ |
| } | k=k+1; |
| if (j >= jmax) jmax=j; | |
| for(j=1; j<= nlstate; j++) | if (j <= jmin) jmin=j; |
| for(h=0; h<=nhstepm; h++){ | sum=sum+j; |
| gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | /*if (j<0) printf("j=%d num=%d \n",j,i);*/ |
| } | /* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
| } /* End theta */ | if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
| } | |
| trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); | } |
| else{ | |
| for(h=0; h<=nhstepm; h++) | j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
| for(j=1; j<=nlstate;j++) | /* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
| for(theta=1; theta <=npar; theta++) | k=k+1; |
| trgradg[h][j][theta]=gradg[h][theta][j]; | if (j >= jmax) jmax=j; |
| else if (j <= jmin)jmin=j; | |
| hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ | /* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
| for(i=1;i<=nlstate;i++) | /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ |
| for(j=1;j<=nlstate;j++) | if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
| vareij[i][j][(int)age] =0.; | sum=sum+j; |
| } | |
| for(h=0;h<=nhstepm;h++){ | jk= j/stepm; |
| for(k=0;k<=nhstepm;k++){ | jl= j -jk*stepm; |
| matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); | ju= j -(jk+1)*stepm; |
| matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); | if(mle <=1){ |
| for(i=1;i<=nlstate;i++) | if(jl==0){ |
| for(j=1;j<=nlstate;j++) | dh[mi][i]=jk; |
| vareij[i][j][(int)age] += doldm[i][j]*hf*hf; | bh[mi][i]=0; |
| } | }else{ /* We want a negative bias in order to only have interpolation ie |
| } | * at the price of an extra matrix product in likelihood */ |
| dh[mi][i]=jk+1; | |
| fprintf(ficresvij,"%.0f ",age ); | bh[mi][i]=ju; |
| for(i=1; i<=nlstate;i++) | } |
| for(j=1; j<=nlstate;j++){ | }else{ |
| fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); | if(jl <= -ju){ |
| } | dh[mi][i]=jk; |
| fprintf(ficresvij,"\n"); | bh[mi][i]=jl; /* bias is positive if real duration |
| free_matrix(gp,0,nhstepm,1,nlstate); | * is higher than the multiple of stepm and negative otherwise. |
| free_matrix(gm,0,nhstepm,1,nlstate); | */ |
| free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); | } |
| free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); | else{ |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | dh[mi][i]=jk+1; |
| } /* End age */ | bh[mi][i]=ju; |
| } | |
| free_vector(xp,1,npar); | if(dh[mi][i]==0){ |
| free_matrix(doldm,1,nlstate,1,npar); | dh[mi][i]=1; /* At least one step */ |
| free_matrix(dnewm,1,nlstate,1,nlstate); | bh[mi][i]=ju; /* At least one step */ |
| /* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ | |
| } | } |
| } | |
| /************ Variance of prevlim ******************/ | } /* end if mle */ |
| void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) | } /* end wave */ |
| { | } |
| /* Variance of prevalence limit */ | jmean=sum/k; |
| /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ | printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); |
| double **newm; | fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); |
| double **dnewm,**doldm; | } |
| int i, j, nhstepm, hstepm; | |
| int k, cptcode; | /*********** Tricode ****************************/ |
| double *xp; | void tricode(int *Tvar, int **nbcode, int imx) |
| double *gp, *gm; | { |
| double **gradg, **trgradg; | |
| double age,agelim; | int Ndum[20],ij=1, k, j, i, maxncov=19; |
| int theta; | int cptcode=0; |
| cptcoveff=0; | |
| fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n"); | |
| fprintf(ficresvpl,"# Age"); | for (k=0; k<maxncov; k++) Ndum[k]=0; |
| for(i=1; i<=nlstate;i++) | for (k=1; k<=7; k++) ncodemax[k]=0; |
| fprintf(ficresvpl," %1d-%1d",i,i); | |
| fprintf(ficresvpl,"\n"); | for (j=1; j<=(cptcovn+2*cptcovprod); j++) { |
| for (i=1; i<=imx; i++) { /*reads the data file to get the maximum | |
| xp=vector(1,npar); | modality*/ |
| dnewm=matrix(1,nlstate,1,npar); | ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/ |
| doldm=matrix(1,nlstate,1,nlstate); | Ndum[ij]++; /*store the modality */ |
| /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ | |
| hstepm=1*YEARM; /* Every year of age */ | if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable |
| hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ | Tvar[j]. If V=sex and male is 0 and |
| agelim = AGESUP; | female is 1, then cptcode=1.*/ |
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | } |
| nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | |
| if (stepm >= YEARM) hstepm=1; | for (i=0; i<=cptcode; i++) { |
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */ |
| gradg=matrix(1,npar,1,nlstate); | } |
| gp=vector(1,nlstate); | |
| gm=vector(1,nlstate); | ij=1; |
| for (i=1; i<=ncodemax[j]; i++) { | |
| for(theta=1; theta <=npar; theta++){ | for (k=0; k<= maxncov; k++) { |
| for(i=1; i<=npar; i++){ /* Computes gradient */ | if (Ndum[k] != 0) { |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | nbcode[Tvar[j]][ij]=k; |
| } | /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | |
| for(i=1;i<=nlstate;i++) | ij++; |
| gp[i] = prlim[i][i]; | } |
| if (ij > ncodemax[j]) break; | |
| for(i=1; i<=npar; i++) /* Computes gradient */ | } |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | } |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | } |
| for(i=1;i<=nlstate;i++) | |
| gm[i] = prlim[i][i]; | for (k=0; k< maxncov; k++) Ndum[k]=0; |
| for(i=1;i<=nlstate;i++) | for (i=1; i<=ncovmodel-2; i++) { |
| gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; | /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
| } /* End theta */ | ij=Tvar[i]; |
| Ndum[ij]++; | |
| trgradg =matrix(1,nlstate,1,npar); | } |
| for(j=1; j<=nlstate;j++) | ij=1; |
| for(theta=1; theta <=npar; theta++) | for (i=1; i<= maxncov; i++) { |
| trgradg[j][theta]=gradg[theta][j]; | if((Ndum[i]!=0) && (i<=ncovcol)){ |
| Tvaraff[ij]=i; /*For printing */ | |
| for(i=1;i<=nlstate;i++) | ij++; |
| varpl[i][(int)age] =0.; | } |
| matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); | } |
| matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); | |
| for(i=1;i<=nlstate;i++) | cptcoveff=ij-1; /*Number of simple covariates*/ |
| varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ | } |
| fprintf(ficresvpl,"%.0f ",age ); | /*********** Health Expectancies ****************/ |
| for(i=1; i<=nlstate;i++) | |
| fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); | void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov ) |
| fprintf(ficresvpl,"\n"); | |
| free_vector(gp,1,nlstate); | { |
| free_vector(gm,1,nlstate); | /* Health expectancies */ |
| free_matrix(gradg,1,npar,1,nlstate); | int i, j, nhstepm, hstepm, h, nstepm, k, cptj; |
| free_matrix(trgradg,1,nlstate,1,npar); | double age, agelim, hf; |
| } /* End age */ | double ***p3mat,***varhe; |
| double **dnewm,**doldm; | |
| free_vector(xp,1,npar); | double *xp; |
| free_matrix(doldm,1,nlstate,1,npar); | double **gp, **gm; |
| free_matrix(dnewm,1,nlstate,1,nlstate); | double ***gradg, ***trgradg; |
| int theta; | |
| } | |
| varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage); | |
| /************ Variance of one-step probabilities ******************/ | xp=vector(1,npar); |
| void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax) | dnewm=matrix(1,nlstate*nlstate,1,npar); |
| { | doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate); |
| int i, j, i1, k1, l1; | |
| int k2, l2, j1, z1; | fprintf(ficreseij,"# Health expectancies\n"); |
| int k=0,l, cptcode; | fprintf(ficreseij,"# Age"); |
| int first=1; | for(i=1; i<=nlstate;i++) |
| double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2; | for(j=1; j<=nlstate;j++) |
| double **dnewm,**doldm; | fprintf(ficreseij," %1d-%1d (SE)",i,j); |
| double *xp; | fprintf(ficreseij,"\n"); |
| double *gp, *gm; | |
| double **gradg, **trgradg; | if(estepm < stepm){ |
| double **mu; | printf ("Problem %d lower than %d\n",estepm, stepm); |
| double age,agelim, cov[NCOVMAX]; | } |
| double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ | else hstepm=estepm; |
| int theta; | /* We compute the life expectancy from trapezoids spaced every estepm months |
| char fileresprob[FILENAMELENGTH]; | * This is mainly to measure the difference between two models: for example |
| char fileresprobcov[FILENAMELENGTH]; | * if stepm=24 months pijx are given only every 2 years and by summing them |
| char fileresprobcor[FILENAMELENGTH]; | * we are calculating an estimate of the Life Expectancy assuming a linear |
| * progression in between and thus overestimating or underestimating according | |
| double ***varpij; | * to the curvature of the survival function. If, for the same date, we |
| * estimate the model with stepm=1 month, we can keep estepm to 24 months | |
| strcpy(fileresprob,"prob"); | * to compare the new estimate of Life expectancy with the same linear |
| strcat(fileresprob,fileres); | * hypothesis. A more precise result, taking into account a more precise |
| if((ficresprob=fopen(fileresprob,"w"))==NULL) { | * curvature will be obtained if estepm is as small as stepm. */ |
| printf("Problem with resultfile: %s\n", fileresprob); | |
| } | /* For example we decided to compute the life expectancy with the smallest unit */ |
| strcpy(fileresprobcov,"probcov"); | /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
| strcat(fileresprobcov,fileres); | nhstepm is the number of hstepm from age to agelim |
| if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { | nstepm is the number of stepm from age to agelin. |
| printf("Problem with resultfile: %s\n", fileresprobcov); | Look at hpijx to understand the reason of that which relies in memory size |
| } | and note for a fixed period like estepm months */ |
| strcpy(fileresprobcor,"probcor"); | /* We decided (b) to get a life expectancy respecting the most precise curvature of the |
| strcat(fileresprobcor,fileres); | survival function given by stepm (the optimization length). Unfortunately it |
| if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { | means that if the survival funtion is printed only each two years of age and if |
| printf("Problem with resultfile: %s\n", fileresprobcor); | you sum them up and add 1 year (area under the trapezoids) you won't get the same |
| } | results. So we changed our mind and took the option of the best precision. |
| printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); | */ |
| printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); | hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
| printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); | |
| agelim=AGESUP; | |
| fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); | for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
| fprintf(ficresprob,"# Age"); | /* nhstepm age range expressed in number of stepm */ |
| fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); | nstepm=(int) rint((agelim-age)*YEARM/stepm); |
| fprintf(ficresprobcov,"# Age"); | /* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
| fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); | /* if (stepm >= YEARM) hstepm=1;*/ |
| fprintf(ficresprobcov,"# Age"); | nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate); | |
| for(i=1; i<=nlstate;i++) | gp=matrix(0,nhstepm,1,nlstate*nlstate); |
| for(j=1; j<=(nlstate+ndeath);j++){ | gm=matrix(0,nhstepm,1,nlstate*nlstate); |
| fprintf(ficresprob," p%1d-%1d (SE)",i,j); | |
| fprintf(ficresprobcov," p%1d-%1d ",i,j); | /* Computed by stepm unit matrices, product of hstepm matrices, stored |
| fprintf(ficresprobcor," p%1d-%1d ",i,j); | in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ |
| } | hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij); |
| fprintf(ficresprob,"\n"); | |
| fprintf(ficresprobcov,"\n"); | |
| fprintf(ficresprobcor,"\n"); | hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
| xp=vector(1,npar); | |
| dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); | /* Computing Variances of health expectancies */ |
| doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); | |
| mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); | for(theta=1; theta <=npar; theta++){ |
| varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); | for(i=1; i<=npar; i++){ |
| first=1; | xp[i] = x[i] + (i==theta ?delti[theta]:0); |
| if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { | } |
| printf("Problem with gnuplot file: %s\n", optionfilegnuplot); | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
| exit(0); | |
| } | cptj=0; |
| else{ | for(j=1; j<= nlstate; j++){ |
| fprintf(ficgp,"\n# Routine varprob"); | for(i=1; i<=nlstate; i++){ |
| } | cptj=cptj+1; |
| if((fichtm=fopen(optionfilehtm,"a"))==NULL) { | for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){ |
| printf("Problem with html file: %s\n", optionfilehtm); | gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; |
| exit(0); | } |
| } | } |
| else{ | } |
| fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n"); | |
| fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); | |
| fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n"); | for(i=1; i<=npar; i++) |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | |
| } | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
| cov[1]=1; | |
| j=cptcoveff; | cptj=0; |
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | for(j=1; j<= nlstate; j++){ |
| j1=0; | for(i=1;i<=nlstate;i++){ |
| for(k1=1; k1<=1;k1++){ | cptj=cptj+1; |
| for(i1=1; i1<=ncodemax[k1];i1++){ | for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){ |
| j1++; | |
| gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | |
| if (cptcovn>0) { | } |
| fprintf(ficresprob, "\n#********** Variable "); | } |
| fprintf(ficresprobcov, "\n#********** Variable "); | } |
| fprintf(ficgp, "\n#********** Variable "); | for(j=1; j<= nlstate*nlstate; j++) |
| fprintf(fichtm, "\n<h4>********** Variable</h4>\n "); | for(h=0; h<=nhstepm-1; h++){ |
| fprintf(ficresprobcor, "\n#********** Variable "); | gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | } |
| fprintf(ficresprob, "**********\n#"); | } |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | |
| fprintf(ficresprobcov, "**********\n#"); | /* End theta */ |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | |
| fprintf(ficgp, "**********\n#"); | trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar); |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | |
| fprintf(ficgp, "**********\n#"); | for(h=0; h<=nhstepm-1; h++) |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | for(j=1; j<=nlstate*nlstate;j++) |
| fprintf(fichtm, "**********\n#"); | for(theta=1; theta <=npar; theta++) |
| } | trgradg[h][j][theta]=gradg[h][theta][j]; |
| for (age=bage; age<=fage; age ++){ | |
| cov[2]=age; | for(i=1;i<=nlstate*nlstate;i++) |
| for (k=1; k<=cptcovn;k++) { | for(j=1;j<=nlstate*nlstate;j++) |
| cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]]; | varhe[i][j][(int)age] =0.; |
| } | |
| for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | printf("%d|",(int)age);fflush(stdout); |
| for (k=1; k<=cptcovprod;k++) | fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | for(h=0;h<=nhstepm-1;h++){ |
| for(k=0;k<=nhstepm-1;k++){ | |
| gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); | matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); |
| trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); | matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); |
| gp=vector(1,(nlstate)*(nlstate+ndeath)); | for(i=1;i<=nlstate*nlstate;i++) |
| gm=vector(1,(nlstate)*(nlstate+ndeath)); | for(j=1;j<=nlstate*nlstate;j++) |
| varhe[i][j][(int)age] += doldm[i][j]*hf*hf; | |
| for(theta=1; theta <=npar; theta++){ | } |
| for(i=1; i<=npar; i++) | } |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | /* Computing expectancies */ |
| for(i=1; i<=nlstate;i++) | |
| pmij(pmmij,cov,ncovmodel,xp,nlstate); | for(j=1; j<=nlstate;j++) |
| for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ | |
| k=0; | eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf; |
| for(i=1; i<= (nlstate); i++){ | |
| for(j=1; j<=(nlstate+ndeath);j++){ | /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
| k=k+1; | |
| gp[k]=pmmij[i][j]; | } |
| } | |
| } | fprintf(ficreseij,"%3.0f",age ); |
| cptj=0; | |
| for(i=1; i<=npar; i++) | for(i=1; i<=nlstate;i++) |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | for(j=1; j<=nlstate;j++){ |
| cptj++; | |
| pmij(pmmij,cov,ncovmodel,xp,nlstate); | fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) ); |
| k=0; | } |
| for(i=1; i<=(nlstate); i++){ | fprintf(ficreseij,"\n"); |
| for(j=1; j<=(nlstate+ndeath);j++){ | |
| k=k+1; | free_matrix(gm,0,nhstepm,1,nlstate*nlstate); |
| gm[k]=pmmij[i][j]; | free_matrix(gp,0,nhstepm,1,nlstate*nlstate); |
| } | free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate); |
| } | free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar); |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) | } |
| gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta]; | printf("\n"); |
| } | fprintf(ficlog,"\n"); |
| for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) | free_vector(xp,1,npar); |
| for(theta=1; theta <=npar; theta++) | free_matrix(dnewm,1,nlstate*nlstate,1,npar); |
| trgradg[j][theta]=gradg[theta][j]; | free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); |
| free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); | |
| matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); | } |
| matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); | |
| /************ Variance ******************/ | |
| pmij(pmmij,cov,ncovmodel,x,nlstate); | void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav) |
| { | |
| k=0; | /* Variance of health expectancies */ |
| for(i=1; i<=(nlstate); i++){ | /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
| for(j=1; j<=(nlstate+ndeath);j++){ | /* double **newm;*/ |
| k=k+1; | double **dnewm,**doldm; |
| mu[k][(int) age]=pmmij[i][j]; | double **dnewmp,**doldmp; |
| } | int i, j, nhstepm, hstepm, h, nstepm ; |
| } | int k, cptcode; |
| for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) | double *xp; |
| for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) | double **gp, **gm; /* for var eij */ |
| varpij[i][j][(int)age] = doldm[i][j]; | double ***gradg, ***trgradg; /*for var eij */ |
| double **gradgp, **trgradgp; /* for var p point j */ | |
| /*printf("\n%d ",(int)age); | double *gpp, *gmp; /* for var p point j */ |
| for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ | double **varppt; /* for var p point j nlstate to nlstate+ndeath */ |
| printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); | double ***p3mat; |
| }*/ | double age,agelim, hf; |
| double ***mobaverage; | |
| fprintf(ficresprob,"\n%d ",(int)age); | int theta; |
| fprintf(ficresprobcov,"\n%d ",(int)age); | char digit[4]; |
| fprintf(ficresprobcor,"\n%d ",(int)age); | char digitp[25]; |
| for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) | char fileresprobmorprev[FILENAMELENGTH]; |
| fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); | |
| for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ | if(popbased==1){ |
| fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); | if(mobilav!=0) |
| fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); | strcpy(digitp,"-populbased-mobilav-"); |
| } | else strcpy(digitp,"-populbased-nomobil-"); |
| i=0; | } |
| for (k=1; k<=(nlstate);k++){ | else |
| for (l=1; l<=(nlstate+ndeath);l++){ | strcpy(digitp,"-stablbased-"); |
| i=i++; | |
| fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); | if (mobilav!=0) { |
| fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| for (j=1; j<=i;j++){ | if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ |
| fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
| fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); | printf(" Error in movingaverage mobilav=%d\n",mobilav); |
| } | } |
| } | } |
| }/* end of loop for state */ | |
| } /* end of loop for age */ | strcpy(fileresprobmorprev,"prmorprev"); |
| /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ | sprintf(digit,"%-d",ij); |
| for (k1=1; k1<=(nlstate);k1++){ | /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/ |
| for (l1=1; l1<=(nlstate+ndeath);l1++){ | strcat(fileresprobmorprev,digit); /* Tvar to be done */ |
| if(l1==k1) continue; | strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */ |
| i=(k1-1)*(nlstate+ndeath)+l1; | strcat(fileresprobmorprev,fileres); |
| for (k2=1; k2<=(nlstate);k2++){ | if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) { |
| for (l2=1; l2<=(nlstate+ndeath);l2++){ | printf("Problem with resultfile: %s\n", fileresprobmorprev); |
| if(l2==k2) continue; | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev); |
| j=(k2-1)*(nlstate+ndeath)+l2; | } |
| if(j<=i) continue; | printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
| for (age=bage; age<=fage; age ++){ | fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
| if ((int)age %5==0){ | fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
| v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; | fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
| v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; | for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
| cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; | fprintf(ficresprobmorprev," p.%-d SE",j); |
| mu1=mu[i][(int) age]/stepm*YEARM ; | for(i=1; i<=nlstate;i++) |
| mu2=mu[j][(int) age]/stepm*YEARM; | fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j); |
| /* Computing eigen value of matrix of covariance */ | } |
| lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)); | fprintf(ficresprobmorprev,"\n"); |
| lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)); | if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { |
| printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2); | printf("Problem with gnuplot file: %s\n", optionfilegnuplot); |
| /* Eigen vectors */ | fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot); |
| v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); | exit(0); |
| v21=sqrt(1.-v11*v11); | } |
| v12=-v21; | else{ |
| v22=v11; | fprintf(ficgp,"\n# Routine varevsij"); |
| /*printf(fignu*/ | } |
| /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ | if((fichtm=fopen(optionfilehtm,"a"))==NULL) { |
| /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */ | printf("Problem with html file: %s\n", optionfilehtm); |
| if(first==1){ | fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); |
| first=0; | exit(0); |
| fprintf(ficgp,"\nset parametric;set nolabel"); | } |
| fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1); | else{ |
| fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); | fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
| fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1); | fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
| fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1); | } |
| fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1); | varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
| fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1); | |
| fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1); | fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are the stable prevalence in health states i\n"); |
| fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\ | fprintf(ficresvij,"# Age"); |
| mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \ | for(i=1; i<=nlstate;i++) |
| mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age); | for(j=1; j<=nlstate;j++) |
| }else{ | fprintf(ficresvij," Cov(e%1d, e%1d)",i,j); |
| first=0; | fprintf(ficresvij,"\n"); |
| fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1); | |
| fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1); | xp=vector(1,npar); |
| fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\ | dnewm=matrix(1,nlstate,1,npar); |
| mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \ | doldm=matrix(1,nlstate,1,nlstate); |
| mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age); | dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar); |
| }/* if first */ | doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
| } /* age mod 5 */ | |
| } /* end loop age */ | gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath); |
| fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1); | gpp=vector(nlstate+1,nlstate+ndeath); |
| first=1; | gmp=vector(nlstate+1,nlstate+ndeath); |
| } /*l12 */ | trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
| } /* k12 */ | |
| } /*l1 */ | if(estepm < stepm){ |
| }/* k1 */ | printf ("Problem %d lower than %d\n",estepm, stepm); |
| } /* loop covariates */ | } |
| free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); | else hstepm=estepm; |
| free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); | /* For example we decided to compute the life expectancy with the smallest unit */ |
| free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); | /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
| free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); | nhstepm is the number of hstepm from age to agelim |
| free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | nstepm is the number of stepm from age to agelin. |
| free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | Look at hpijx to understand the reason of that which relies in memory size |
| } | and note for a fixed period like k years */ |
| free_vector(xp,1,npar); | /* We decided (b) to get a life expectancy respecting the most precise curvature of the |
| fclose(ficresprob); | survival function given by stepm (the optimization length). Unfortunately it |
| fclose(ficresprobcov); | means that if the survival funtion is printed every two years of age and if |
| fclose(ficresprobcor); | you sum them up and add 1 year (area under the trapezoids) you won't get the same |
| fclose(ficgp); | results. So we changed our mind and took the option of the best precision. |
| fclose(fichtm); | */ |
| } | hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
| agelim = AGESUP; | |
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | |
| /******************* Printing html file ***********/ | nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
| void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \ | nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
| int lastpass, int stepm, int weightopt, char model[],\ | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ | gradg=ma3x(0,nhstepm,1,npar,1,nlstate); |
| int popforecast, int estepm ,\ | gp=matrix(0,nhstepm,1,nlstate); |
| double jprev1, double mprev1,double anprev1, \ | gm=matrix(0,nhstepm,1,nlstate); |
| double jprev2, double mprev2,double anprev2){ | |
| int jj1, k1, i1, cpt; | |
| /*char optionfilehtm[FILENAMELENGTH];*/ | for(theta=1; theta <=npar; theta++){ |
| if((fichtm=fopen(optionfilehtm,"a"))==NULL) { | for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
| printf("Problem with %s \n",optionfilehtm), exit(0); | xp[i] = x[i] + (i==theta ?delti[theta]:0); |
| } | } |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | |
| fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
| - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n | |
| - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n | if (popbased==1) { |
| - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n | if(mobilav ==0){ |
| - Life expectancies by age and initial health status (estepm=%2d months): | for(i=1; i<=nlstate;i++) |
| <a href=\"e%s\">e%s</a> <br>\n</li>", \ | prlim[i][i]=probs[(int)age][i][ij]; |
| jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres); | }else{ /* mobilav */ |
| for(i=1; i<=nlstate;i++) | |
| fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n | prlim[i][i]=mobaverage[(int)age][i][ij]; |
| - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n | } |
| - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n | } |
| - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n | |
| - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n | for(j=1; j<= nlstate; j++){ |
| - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n | for(h=0; h<=nhstepm; h++){ |
| - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n | for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
| - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres); | gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
| } | |
| if(popforecast==1) fprintf(fichtm,"\n | } |
| - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n | /* This for computing probability of death (h=1 means |
| - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n | computed over hstepm matrices product = hstepm*stepm months) |
| <br>",fileres,fileres,fileres,fileres); | as a weighted average of prlim. |
| else | */ |
| fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); | for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
| fprintf(fichtm," <li>Graphs</li><p>"); | for(i=1,gpp[j]=0.; i<= nlstate; i++) |
| gpp[j] += prlim[i][i]*p3mat[i][j][1]; | |
| m=cptcoveff; | } |
| if (cptcovn < 1) {m=1;ncodemax[1]=1;} | /* end probability of death */ |
| jj1=0; | for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
| for(k1=1; k1<=m;k1++){ | xp[i] = x[i] - (i==theta ?delti[theta]:0); |
| for(i1=1; i1<=ncodemax[k1];i1++){ | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
| jj1++; | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
| if (cptcovn > 0) { | |
| fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | if (popbased==1) { |
| for (cpt=1; cpt<=cptcoveff;cpt++) | if(mobilav ==0){ |
| fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); | for(i=1; i<=nlstate;i++) |
| fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); | prlim[i][i]=probs[(int)age][i][ij]; |
| } | }else{ /* mobilav */ |
| /* Pij */ | for(i=1; i<=nlstate;i++) |
| fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br> | prlim[i][i]=mobaverage[(int)age][i][ij]; |
| <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); | } |
| /* Quasi-incidences */ | } |
| fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> | |
| <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); | for(j=1; j<= nlstate; j++){ |
| /* Stable prevalence in each health state */ | for(h=0; h<=nhstepm; h++){ |
| for(cpt=1; cpt<nlstate;cpt++){ | for(i=1, gm[h][j]=0.;i<=nlstate;i++) |
| fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> | gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
| <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | } |
| } | } |
| for(cpt=1; cpt<=nlstate;cpt++) { | /* This for computing probability of death (h=1 means |
| fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident | computed over hstepm matrices product = hstepm*stepm months) |
| interval) in state (%d): v%s%d%d.png <br> | as a weighted average of prlim. |
| <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | */ |
| } | for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
| for(cpt=1; cpt<=nlstate;cpt++) { | for(i=1,gmp[j]=0.; i<= nlstate; i++) |
| fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> | gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
| <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | } |
| } | /* end probability of death */ |
| fprintf(fichtm,"\n<br>- Total life expectancy by age and | |
| health expectancies in states (1) and (2): e%s%d.png<br> | for(j=1; j<= nlstate; j++) /* vareij */ |
| <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); | for(h=0; h<=nhstepm; h++){ |
| } | gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
| } | } |
| fclose(fichtm); | |
| } | for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
| gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; | |
| /******************* Gnuplot file **************/ | } |
| void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ | |
| } /* End theta */ | |
| int m,cpt,k1,i,k,j,jk,k2,k3,ij,l; | |
| int ng; | trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
| if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { | |
| printf("Problem with file %s",optionfilegnuplot); | for(h=0; h<=nhstepm; h++) /* veij */ |
| } | for(j=1; j<=nlstate;j++) |
| for(theta=1; theta <=npar; theta++) | |
| #ifdef windows | trgradg[h][j][theta]=gradg[h][theta][j]; |
| fprintf(ficgp,"cd \"%s\" \n",pathc); | |
| #endif | for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
| m=pow(2,cptcoveff); | for(theta=1; theta <=npar; theta++) |
| trgradgp[j][theta]=gradgp[theta][j]; | |
| /* 1eme*/ | |
| for (cpt=1; cpt<= nlstate ; cpt ++) { | |
| for (k1=1; k1<= m ; k1 ++) { | hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
| for(i=1;i<=nlstate;i++) | |
| #ifdef windows | for(j=1;j<=nlstate;j++) |
| fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | vareij[i][j][(int)age] =0.; |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1); | |
| #endif | for(h=0;h<=nhstepm;h++){ |
| #ifdef unix | for(k=0;k<=nhstepm;k++){ |
| fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres); | matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); |
| #endif | for(i=1;i<=nlstate;i++) |
| for(j=1;j<=nlstate;j++) | |
| for (i=1; i<= nlstate ; i ++) { | vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | } |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | } |
| } | |
| fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1); | /* pptj */ |
| for (i=1; i<= nlstate ; i ++) { | matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | for(j=nlstate+1;j<=nlstate+ndeath;j++) |
| } | for(i=nlstate+1;i<=nlstate+ndeath;i++) |
| fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); | varppt[j][i]=doldmp[j][i]; |
| for (i=1; i<= nlstate ; i ++) { | /* end ppptj */ |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | /* x centered again */ |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
| } | prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij); |
| fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1)); | |
| #ifdef unix | if (popbased==1) { |
| fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n"); | if(mobilav ==0){ |
| #endif | for(i=1; i<=nlstate;i++) |
| } | prlim[i][i]=probs[(int)age][i][ij]; |
| } | }else{ /* mobilav */ |
| /*2 eme*/ | for(i=1; i<=nlstate;i++) |
| prlim[i][i]=mobaverage[(int)age][i][ij]; | |
| for (k1=1; k1<= m ; k1 ++) { | } |
| fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1); | } |
| fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage); | |
| /* This for computing probability of death (h=1 means | |
| for (i=1; i<= nlstate+1 ; i ++) { | computed over hstepm (estepm) matrices product = hstepm*stepm months) |
| k=2*i; | as a weighted average of prlim. |
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1); | */ |
| for (j=1; j<= nlstate+1 ; j ++) { | for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | for(i=1,gmp[j]=0.;i<= nlstate; i++) |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
| } | } |
| if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,"); | /* end probability of death */ |
| else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1); | |
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1); | fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
| for (j=1; j<= nlstate+1 ; j ++) { | for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | for(i=1; i<=nlstate;i++){ |
| } | fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); |
| fprintf(ficgp,"\" t\"\" w l 0,"); | } |
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1); | } |
| for (j=1; j<= nlstate+1 ; j ++) { | fprintf(ficresprobmorprev,"\n"); |
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | fprintf(ficresvij,"%.0f ",age ); |
| } | for(i=1; i<=nlstate;i++) |
| if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0"); | for(j=1; j<=nlstate;j++){ |
| else fprintf(ficgp,"\" t\"\" w l 0,"); | fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); |
| } | } |
| } | fprintf(ficresvij,"\n"); |
| free_matrix(gp,0,nhstepm,1,nlstate); | |
| /*3eme*/ | free_matrix(gm,0,nhstepm,1,nlstate); |
| free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); | |
| for (k1=1; k1<= m ; k1 ++) { | free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); |
| for (cpt=1; cpt<= nlstate ; cpt ++) { | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| k=2+nlstate*(2*cpt-2); | } /* End age */ |
| fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | free_vector(gpp,nlstate+1,nlstate+ndeath); |
| fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt); | free_vector(gmp,nlstate+1,nlstate+ndeath); |
| /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath); |
| for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
| fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65"); |
| fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ |
| for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); |
| fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | /* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ |
| /* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ | |
| */ | /* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
| for (i=1; i< nlstate ; i ++) { | fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l 1 ",fileresprobmorprev); |
| fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1); | fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev); |
| fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev); | |
| } | fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev); |
| } | fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit); |
| } | /* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit); |
| */ | |
| /* CV preval stat */ | fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); |
| for (k1=1; k1<= m ; k1 ++) { | |
| for (cpt=1; cpt<nlstate ; cpt ++) { | free_vector(xp,1,npar); |
| k=3; | free_matrix(doldm,1,nlstate,1,nlstate); |
| fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | free_matrix(dnewm,1,nlstate,1,npar); |
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1); | free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
| free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar); | |
| for (i=1; i< nlstate ; i ++) | free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
| fprintf(ficgp,"+$%d",k+i+1); | if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1); | fclose(ficresprobmorprev); |
| fclose(ficgp); | |
| l=3+(nlstate+ndeath)*cpt; | fclose(fichtm); |
| fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1); | } |
| for (i=1; i< nlstate ; i ++) { | |
| l=3+(nlstate+ndeath)*cpt; | /************ Variance of prevlim ******************/ |
| fprintf(ficgp,"+$%d",l+i+1); | void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) |
| } | { |
| fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1); | /* Variance of prevalence limit */ |
| } | /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
| } | double **newm; |
| double **dnewm,**doldm; | |
| /* proba elementaires */ | int i, j, nhstepm, hstepm; |
| for(i=1,jk=1; i <=nlstate; i++){ | int k, cptcode; |
| for(k=1; k <=(nlstate+ndeath); k++){ | double *xp; |
| if (k != i) { | double *gp, *gm; |
| for(j=1; j <=ncovmodel; j++){ | double **gradg, **trgradg; |
| double age,agelim; | |
| fprintf(ficgp,"p%d=%f ",jk,p[jk]); | int theta; |
| jk++; | |
| fprintf(ficgp,"\n"); | fprintf(ficresvpl,"# Standard deviation of stable prevalences \n"); |
| } | fprintf(ficresvpl,"# Age"); |
| } | for(i=1; i<=nlstate;i++) |
| } | fprintf(ficresvpl," %1d-%1d",i,i); |
| } | fprintf(ficresvpl,"\n"); |
| for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/ | xp=vector(1,npar); |
| for(jk=1; jk <=m; jk++) { | dnewm=matrix(1,nlstate,1,npar); |
| fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); | doldm=matrix(1,nlstate,1,nlstate); |
| if (ng==2) | |
| fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); | hstepm=1*YEARM; /* Every year of age */ |
| else | hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ |
| fprintf(ficgp,"\nset title \"Probability\"\n"); | agelim = AGESUP; |
| fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot [%.f:%.f] ",ageminpar,agemaxpar); | for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
| i=1; | nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
| for(k2=1; k2<=nlstate; k2++) { | if (stepm >= YEARM) hstepm=1; |
| k3=i; | nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
| for(k=1; k<=(nlstate+ndeath); k++) { | gradg=matrix(1,npar,1,nlstate); |
| if (k != k2){ | gp=vector(1,nlstate); |
| if(ng==2) | gm=vector(1,nlstate); |
| fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); | |
| else | for(theta=1; theta <=npar; theta++){ |
| fprintf(ficgp," exp(p%d+p%d*x",i,i+1); | for(i=1; i<=npar; i++){ /* Computes gradient */ |
| ij=1; | xp[i] = x[i] + (i==theta ?delti[theta]:0); |
| for(j=3; j <=ncovmodel; j++) { | } |
| if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
| fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | for(i=1;i<=nlstate;i++) |
| ij++; | gp[i] = prlim[i][i]; |
| } | |
| else | for(i=1; i<=npar; i++) /* Computes gradient */ |
| fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | xp[i] = x[i] - (i==theta ?delti[theta]:0); |
| } | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
| fprintf(ficgp,")/(1"); | for(i=1;i<=nlstate;i++) |
| gm[i] = prlim[i][i]; | |
| for(k1=1; k1 <=nlstate; k1++){ | |
| fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); | for(i=1;i<=nlstate;i++) |
| ij=1; | gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; |
| for(j=3; j <=ncovmodel; j++){ | } /* End theta */ |
| if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | |
| fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | trgradg =matrix(1,nlstate,1,npar); |
| ij++; | |
| } | for(j=1; j<=nlstate;j++) |
| else | for(theta=1; theta <=npar; theta++) |
| fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | trgradg[j][theta]=gradg[theta][j]; |
| } | |
| fprintf(ficgp,")"); | for(i=1;i<=nlstate;i++) |
| } | varpl[i][(int)age] =0.; |
| fprintf(ficgp,") t \"p%d%d\" ", k2,k); | matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
| if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); | matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
| i=i+ncovmodel; | for(i=1;i<=nlstate;i++) |
| } | varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
| } | |
| } | fprintf(ficresvpl,"%.0f ",age ); |
| } | for(i=1; i<=nlstate;i++) |
| } | fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
| fclose(ficgp); | fprintf(ficresvpl,"\n"); |
| } /* end gnuplot */ | free_vector(gp,1,nlstate); |
| free_vector(gm,1,nlstate); | |
| free_matrix(gradg,1,npar,1,nlstate); | |
| /*************** Moving average **************/ | free_matrix(trgradg,1,nlstate,1,npar); |
| void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){ | } /* End age */ |
| int i, cpt, cptcod; | free_vector(xp,1,npar); |
| for (agedeb=ageminpar; agedeb<=fage; agedeb++) | free_matrix(doldm,1,nlstate,1,npar); |
| for (i=1; i<=nlstate;i++) | free_matrix(dnewm,1,nlstate,1,nlstate); |
| for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++) | |
| mobaverage[(int)agedeb][i][cptcod]=0.; | } |
| for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){ | /************ Variance of one-step probabilities ******************/ |
| for (i=1; i<=nlstate;i++){ | void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax) |
| for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | { |
| for (cpt=0;cpt<=4;cpt++){ | int i, j=0, i1, k1, l1, t, tj; |
| mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod]; | int k2, l2, j1, z1; |
| } | int k=0,l, cptcode; |
| mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5; | int first=1, first1; |
| } | double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
| } | double **dnewm,**doldm; |
| } | double *xp; |
| double *gp, *gm; | |
| } | double **gradg, **trgradg; |
| double **mu; | |
| double age,agelim, cov[NCOVMAX]; | |
| /************** Forecasting ******************/ | double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ |
| prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){ | int theta; |
| char fileresprob[FILENAMELENGTH]; | |
| int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; | char fileresprobcov[FILENAMELENGTH]; |
| int *popage; | char fileresprobcor[FILENAMELENGTH]; |
| double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | |
| double *popeffectif,*popcount; | double ***varpij; |
| double ***p3mat; | |
| char fileresf[FILENAMELENGTH]; | strcpy(fileresprob,"prob"); |
| strcat(fileresprob,fileres); | |
| agelim=AGESUP; | if((ficresprob=fopen(fileresprob,"w"))==NULL) { |
| calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM; | printf("Problem with resultfile: %s\n", fileresprob); |
| fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); | |
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | } |
| strcpy(fileresprobcov,"probcov"); | |
| strcat(fileresprobcov,fileres); | |
| strcpy(fileresf,"f"); | if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { |
| strcat(fileresf,fileres); | printf("Problem with resultfile: %s\n", fileresprobcov); |
| if((ficresf=fopen(fileresf,"w"))==NULL) { | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov); |
| printf("Problem with forecast resultfile: %s\n", fileresf); | } |
| } | strcpy(fileresprobcor,"probcor"); |
| printf("Computing forecasting: result on file '%s' \n", fileresf); | strcat(fileresprobcor,fileres); |
| if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { | |
| if (cptcoveff==0) ncodemax[cptcoveff]=1; | printf("Problem with resultfile: %s\n", fileresprobcor); |
| fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor); | |
| if (mobilav==1) { | } |
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
| movingaverage(agedeb, fage, ageminpar, mobaverage); | fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
| } | printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
| fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); | |
| stepsize=(int) (stepm+YEARM-1)/YEARM; | printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
| if (stepm<=12) stepsize=1; | fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
| agelim=AGESUP; | fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); |
| fprintf(ficresprob,"# Age"); | |
| hstepm=1; | fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); |
| hstepm=hstepm/stepm; | fprintf(ficresprobcov,"# Age"); |
| yp1=modf(dateintmean,&yp); | fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); |
| anprojmean=yp; | fprintf(ficresprobcov,"# Age"); |
| yp2=modf((yp1*12),&yp); | |
| mprojmean=yp; | |
| yp1=modf((yp2*30.5),&yp); | for(i=1; i<=nlstate;i++) |
| jprojmean=yp; | for(j=1; j<=(nlstate+ndeath);j++){ |
| if(jprojmean==0) jprojmean=1; | fprintf(ficresprob," p%1d-%1d (SE)",i,j); |
| if(mprojmean==0) jprojmean=1; | fprintf(ficresprobcov," p%1d-%1d ",i,j); |
| fprintf(ficresprobcor," p%1d-%1d ",i,j); | |
| fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); | } |
| /* fprintf(ficresprob,"\n"); | |
| for(cptcov=1;cptcov<=i2;cptcov++){ | fprintf(ficresprobcov,"\n"); |
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | fprintf(ficresprobcor,"\n"); |
| k=k+1; | */ |
| fprintf(ficresf,"\n#******"); | xp=vector(1,npar); |
| for(j=1;j<=cptcoveff;j++) { | dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
| fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
| } | mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); |
| fprintf(ficresf,"******\n"); | varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); |
| fprintf(ficresf,"# StartingAge FinalAge"); | first=1; |
| for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j); | if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { |
| printf("Problem with gnuplot file: %s\n", optionfilegnuplot); | |
| fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot); | |
| for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { | exit(0); |
| fprintf(ficresf,"\n"); | } |
| fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt); | else{ |
| fprintf(ficgp,"\n# Routine varprob"); | |
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | } |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | if((fichtm=fopen(optionfilehtm,"a"))==NULL) { |
| nhstepm = nhstepm/hstepm; | printf("Problem with html file: %s\n", optionfilehtm); |
| fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | exit(0); |
| oldm=oldms;savm=savms; | } |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | else{ |
| fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); | |
| for (h=0; h<=nhstepm; h++){ | fprintf(fichtm,"\n"); |
| if (h==(int) (calagedate+YEARM*cpt)) { | |
| fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm); | fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n"); |
| } | fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); |
| for(j=1; j<=nlstate+ndeath;j++) { | fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n"); |
| kk1=0.;kk2=0; | |
| for(i=1; i<=nlstate;i++) { | } |
| if (mobilav==1) | |
| kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | cov[1]=1; |
| else { | tj=cptcoveff; |
| kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
| } | j1=0; |
| for(t=1; t<=tj;t++){ | |
| } | for(i1=1; i1<=ncodemax[t];i1++){ |
| if (h==(int)(calagedate+12*cpt)){ | j1++; |
| fprintf(ficresf," %.3f", kk1); | if (cptcovn>0) { |
| fprintf(ficresprob, "\n#********** Variable "); | |
| } | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| } | fprintf(ficresprob, "**********\n#\n"); |
| } | fprintf(ficresprobcov, "\n#********** Variable "); |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| } | fprintf(ficresprobcov, "**********\n#\n"); |
| } | |
| } | fprintf(ficgp, "\n#********** Variable "); |
| } | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| fprintf(ficgp, "**********\n#\n"); | |
| if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| fclose(ficresf); | fprintf(fichtm, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
| } | for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| /************** Forecasting ******************/ | fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
| populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ | |
| fprintf(ficresprobcor, "\n#********** Variable "); | |
| int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| int *popage; | fprintf(ficresprobcor, "**********\n#"); |
| double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | } |
| double *popeffectif,*popcount; | |
| double ***p3mat,***tabpop,***tabpopprev; | for (age=bage; age<=fage; age ++){ |
| char filerespop[FILENAMELENGTH]; | cov[2]=age; |
| for (k=1; k<=cptcovn;k++) { | |
| tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]]; |
| tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | } |
| agelim=AGESUP; | for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; |
| calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; | for (k=1; k<=cptcovprod;k++) |
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | |
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | |
| gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); | |
| trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); | |
| strcpy(filerespop,"pop"); | gp=vector(1,(nlstate)*(nlstate+ndeath)); |
| strcat(filerespop,fileres); | gm=vector(1,(nlstate)*(nlstate+ndeath)); |
| if((ficrespop=fopen(filerespop,"w"))==NULL) { | |
| printf("Problem with forecast resultfile: %s\n", filerespop); | for(theta=1; theta <=npar; theta++){ |
| } | for(i=1; i<=npar; i++) |
| printf("Computing forecasting: result on file '%s' \n", filerespop); | xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
| if (cptcoveff==0) ncodemax[cptcoveff]=1; | pmij(pmmij,cov,ncovmodel,xp,nlstate); |
| if (mobilav==1) { | k=0; |
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | for(i=1; i<= (nlstate); i++){ |
| movingaverage(agedeb, fage, ageminpar, mobaverage); | for(j=1; j<=(nlstate+ndeath);j++){ |
| } | k=k+1; |
| gp[k]=pmmij[i][j]; | |
| stepsize=(int) (stepm+YEARM-1)/YEARM; | } |
| if (stepm<=12) stepsize=1; | } |
| agelim=AGESUP; | for(i=1; i<=npar; i++) |
| xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); | |
| hstepm=1; | |
| hstepm=hstepm/stepm; | pmij(pmmij,cov,ncovmodel,xp,nlstate); |
| k=0; | |
| if (popforecast==1) { | for(i=1; i<=(nlstate); i++){ |
| if((ficpop=fopen(popfile,"r"))==NULL) { | for(j=1; j<=(nlstate+ndeath);j++){ |
| printf("Problem with population file : %s\n",popfile);exit(0); | k=k+1; |
| } | gm[k]=pmmij[i][j]; |
| popage=ivector(0,AGESUP); | } |
| popeffectif=vector(0,AGESUP); | } |
| popcount=vector(0,AGESUP); | |
| for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) | |
| i=1; | gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; |
| while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; | } |
| imx=i; | for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) |
| for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; | for(theta=1; theta <=npar; theta++) |
| } | trgradg[j][theta]=gradg[theta][j]; |
| for(cptcov=1;cptcov<=i2;cptcov++){ | matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); |
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); |
| k=k+1; | free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); |
| fprintf(ficrespop,"\n#******"); | free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); |
| for(j=1;j<=cptcoveff;j++) { | free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
| fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
| } | |
| fprintf(ficrespop,"******\n"); | pmij(pmmij,cov,ncovmodel,x,nlstate); |
| fprintf(ficrespop,"# Age"); | |
| for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); | k=0; |
| if (popforecast==1) fprintf(ficrespop," [Population]"); | for(i=1; i<=(nlstate); i++){ |
| for(j=1; j<=(nlstate+ndeath);j++){ | |
| for (cpt=0; cpt<=0;cpt++) { | k=k+1; |
| fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | mu[k][(int) age]=pmmij[i][j]; |
| } | |
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | } |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) |
| nhstepm = nhstepm/hstepm; | for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) |
| varpij[i][j][(int)age] = doldm[i][j]; | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| oldm=oldms;savm=savms; | /*printf("\n%d ",(int)age); |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
| printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); | |
| for (h=0; h<=nhstepm; h++){ | fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
| if (h==(int) (calagedate+YEARM*cpt)) { | }*/ |
| fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | |
| } | fprintf(ficresprob,"\n%d ",(int)age); |
| for(j=1; j<=nlstate+ndeath;j++) { | fprintf(ficresprobcov,"\n%d ",(int)age); |
| kk1=0.;kk2=0; | fprintf(ficresprobcor,"\n%d ",(int)age); |
| for(i=1; i<=nlstate;i++) { | |
| if (mobilav==1) | for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) |
| kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); |
| else { | for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
| kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); |
| } | fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); |
| } | } |
| if (h==(int)(calagedate+12*cpt)){ | i=0; |
| tabpop[(int)(agedeb)][j][cptcod]=kk1; | for (k=1; k<=(nlstate);k++){ |
| /*fprintf(ficrespop," %.3f", kk1); | for (l=1; l<=(nlstate+ndeath);l++){ |
| if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ | i=i++; |
| } | fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); |
| } | fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); |
| for(i=1; i<=nlstate;i++){ | for (j=1; j<=i;j++){ |
| kk1=0.; | fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); |
| for(j=1; j<=nlstate;j++){ | fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); |
| kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; | } |
| } | } |
| tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)]; | }/* end of loop for state */ |
| } | } /* end of loop for age */ |
| if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) | /* Confidence intervalle of pij */ |
| fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); | /* |
| } | fprintf(ficgp,"\nset noparametric;unset label"); |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\""); |
| } | fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); |
| } | fprintf(fichtm,"\n<br>Probability with confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname); |
| fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname); | |
| /******/ | fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname); |
| fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob); | |
| for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { | */ |
| fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | |
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | first1=1; |
| nhstepm = nhstepm/hstepm; | for (k2=1; k2<=(nlstate);k2++){ |
| for (l2=1; l2<=(nlstate+ndeath);l2++){ | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | if(l2==k2) continue; |
| oldm=oldms;savm=savms; | j=(k2-1)*(nlstate+ndeath)+l2; |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | for (k1=1; k1<=(nlstate);k1++){ |
| for (h=0; h<=nhstepm; h++){ | for (l1=1; l1<=(nlstate+ndeath);l1++){ |
| if (h==(int) (calagedate+YEARM*cpt)) { | if(l1==k1) continue; |
| fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | i=(k1-1)*(nlstate+ndeath)+l1; |
| } | if(i<=j) continue; |
| for(j=1; j<=nlstate+ndeath;j++) { | for (age=bage; age<=fage; age ++){ |
| kk1=0.;kk2=0; | if ((int)age %5==0){ |
| for(i=1; i<=nlstate;i++) { | v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; |
| kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; | v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; |
| } | cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; |
| if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1); | mu1=mu[i][(int) age]/stepm*YEARM ; |
| } | mu2=mu[j][(int) age]/stepm*YEARM; |
| } | c12=cv12/sqrt(v1*v2); |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | /* Computing eigen value of matrix of covariance */ |
| } | lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
| } | lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
| } | /* Eigen vectors */ |
| } | v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
| /*v21=sqrt(1.-v11*v11); *//* error */ | |
| if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | v21=(lc1-v1)/cv12*v11; |
| v12=-v21; | |
| if (popforecast==1) { | v22=v11; |
| free_ivector(popage,0,AGESUP); | tnalp=v21/v11; |
| free_vector(popeffectif,0,AGESUP); | if(first1==1){ |
| free_vector(popcount,0,AGESUP); | first1=0; |
| } | printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
| free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | } |
| free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
| fclose(ficrespop); | /*printf(fignu*/ |
| } | /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ |
| /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */ | |
| /***********************************************/ | if(first==1){ |
| /**************** Main Program *****************/ | first=0; |
| /***********************************************/ | fprintf(ficgp,"\nset parametric;unset label"); |
| fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); | |
| int main(int argc, char *argv[]) | fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); |
| { | fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2); |
| fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2); | |
| int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod; | fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12); |
| double agedeb, agefin,hf; | fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2); |
| double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; | fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
| fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); | |
| double fret; | fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ |
| double **xi,tmp,delta; | mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ |
| mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); | |
| double dum; /* Dummy variable */ | }else{ |
| double ***p3mat; | first=0; |
| int *indx; | fprintf(fichtm," %d (%.3f),",(int) age, c12); |
| char line[MAXLINE], linepar[MAXLINE]; | fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
| char path[80],pathc[80],pathcd[80],pathtot[80],model[20]; | fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
| int firstobs=1, lastobs=10; | fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ |
| int sdeb, sfin; /* Status at beginning and end */ | mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ |
| int c, h , cpt,l; | mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
| int ju,jl, mi; | }/* if first */ |
| int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; | } /* age mod 5 */ |
| int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab; | } /* end loop age */ |
| int mobilav=0,popforecast=0; | fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2); |
| int hstepm, nhstepm; | first=1; |
| double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate; | } /*l12 */ |
| } /* k12 */ | |
| double bage, fage, age, agelim, agebase; | } /*l1 */ |
| double ftolpl=FTOL; | }/* k1 */ |
| double **prlim; | } /* loop covariates */ |
| double *severity; | } |
| double ***param; /* Matrix of parameters */ | free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
| double *p; | free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
| double **matcov; /* Matrix of covariance */ | free_vector(xp,1,npar); |
| double ***delti3; /* Scale */ | fclose(ficresprob); |
| double *delti; /* Scale */ | fclose(ficresprobcov); |
| double ***eij, ***vareij; | fclose(ficresprobcor); |
| double **varpl; /* Variances of prevalence limits by age */ | fclose(ficgp); |
| double *epj, vepp; | fclose(fichtm); |
| double kk1, kk2; | } |
| double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2; | |
| /******************* Printing html file ***********/ | |
| char *alph[]={"a","a","b","c","d","e"}, str[4]; | void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \ |
| int lastpass, int stepm, int weightopt, char model[],\ | |
| int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ | |
| char z[1]="c", occ; | int popforecast, int estepm ,\ |
| #include <sys/time.h> | double jprev1, double mprev1,double anprev1, \ |
| #include <time.h> | double jprev2, double mprev2,double anprev2){ |
| char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80]; | int jj1, k1, i1, cpt; |
| /*char optionfilehtm[FILENAMELENGTH];*/ | |
| /* long total_usecs; | if((fichtm=fopen(optionfilehtm,"a"))==NULL) { |
| struct timeval start_time, end_time; | printf("Problem with %s \n",optionfilehtm), exit(0); |
| fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); | |
| gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */ | } |
| getcwd(pathcd, size); | |
| fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n | |
| printf("\n%s",version); | - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n |
| if(argc <=1){ | - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n |
| printf("\nEnter the parameter file name: "); | - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n |
| scanf("%s",pathtot); | - Life expectancies by age and initial health status (estepm=%2d months): |
| } | <a href=\"e%s\">e%s</a> <br>\n</li>", \ |
| else{ | jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres); |
| strcpy(pathtot,argv[1]); | |
| } | fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
| /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/ | |
| /*cygwin_split_path(pathtot,path,optionfile); | m=cptcoveff; |
| printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/ | if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
| /* cutv(path,optionfile,pathtot,'\\');*/ | |
| jj1=0; | |
| split(pathtot,path,optionfile,optionfilext,optionfilefiname); | for(k1=1; k1<=m;k1++){ |
| printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); | for(i1=1; i1<=ncodemax[k1];i1++){ |
| chdir(path); | jj1++; |
| replace(pathc,path); | if (cptcovn > 0) { |
| fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | |
| /*-------- arguments in the command line --------*/ | for (cpt=1; cpt<=cptcoveff;cpt++) |
| fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); | |
| strcpy(fileres,"r"); | fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
| strcat(fileres, optionfilefiname); | } |
| strcat(fileres,".txt"); /* Other files have txt extension */ | /* Pij */ |
| fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> | |
| /*---------arguments file --------*/ | <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); |
| /* Quasi-incidences */ | |
| if((ficpar=fopen(optionfile,"r"))==NULL) { | fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> |
| printf("Problem with optionfile %s\n",optionfile); | <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); |
| goto end; | /* Stable prevalence in each health state */ |
| } | for(cpt=1; cpt<nlstate;cpt++){ |
| fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> | |
| strcpy(filereso,"o"); | <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); |
| strcat(filereso,fileres); | } |
| if((ficparo=fopen(filereso,"w"))==NULL) { | for(cpt=1; cpt<=nlstate;cpt++) { |
| printf("Problem with Output resultfile: %s\n", filereso);goto end; | fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> |
| } | <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); |
| } | |
| /* Reads comments: lines beginning with '#' */ | fprintf(fichtm,"\n<br>- Total life expectancy by age and |
| while((c=getc(ficpar))=='#' && c!= EOF){ | health expectancies in states (1) and (2): e%s%d.png<br> |
| ungetc(c,ficpar); | <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); |
| fgets(line, MAXLINE, ficpar); | } /* end i1 */ |
| puts(line); | }/* End k1 */ |
| fputs(line,ficparo); | fprintf(fichtm,"</ul>"); |
| } | |
| ungetc(c,ficpar); | |
| fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n | |
| fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); | - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n |
| printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); | - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n |
| fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); | - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n |
| while((c=getc(ficpar))=='#' && c!= EOF){ | - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n |
| ungetc(c,ficpar); | - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n |
| fgets(line, MAXLINE, ficpar); | - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n |
| puts(line); | - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres); |
| fputs(line,ficparo); | |
| } | /* if(popforecast==1) fprintf(fichtm,"\n */ |
| ungetc(c,ficpar); | /* - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */ |
| /* - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ | |
| /* <br>",fileres,fileres,fileres,fileres); */ | |
| covar=matrix(0,NCOVMAX,1,n); | /* else */ |
| cptcovn=0; | /* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
| if (strlen(model)>1) cptcovn=nbocc(model,'+')+1; | fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); |
| ncovmodel=2+cptcovn; | m=cptcoveff; |
| nvar=ncovmodel-1; /* Suppressing age as a basic covariate */ | if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
| /* Read guess parameters */ | jj1=0; |
| /* Reads comments: lines beginning with '#' */ | for(k1=1; k1<=m;k1++){ |
| while((c=getc(ficpar))=='#' && c!= EOF){ | for(i1=1; i1<=ncodemax[k1];i1++){ |
| ungetc(c,ficpar); | jj1++; |
| fgets(line, MAXLINE, ficpar); | if (cptcovn > 0) { |
| puts(line); | fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
| fputs(line,ficparo); | for (cpt=1; cpt<=cptcoveff;cpt++) |
| } | fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); |
| ungetc(c,ficpar); | fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
| } | |
| param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | for(cpt=1; cpt<=nlstate;cpt++) { |
| for(i=1; i <=nlstate; i++) | fprintf(fichtm,"<br>- Observed and period prevalence (with confident |
| for(j=1; j <=nlstate+ndeath-1; j++){ | interval) in state (%d): v%s%d%d.png <br> |
| fscanf(ficpar,"%1d%1d",&i1,&j1); | <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); |
| fprintf(ficparo,"%1d%1d",i1,j1); | } |
| printf("%1d%1d",i,j); | } /* end i1 */ |
| for(k=1; k<=ncovmodel;k++){ | }/* End k1 */ |
| fscanf(ficpar," %lf",¶m[i][j][k]); | fprintf(fichtm,"</ul>"); |
| printf(" %lf",param[i][j][k]); | fclose(fichtm); |
| fprintf(ficparo," %lf",param[i][j][k]); | } |
| } | |
| fscanf(ficpar,"\n"); | /******************* Gnuplot file **************/ |
| printf("\n"); | void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ |
| fprintf(ficparo,"\n"); | |
| } | int m,cpt,k1,i,k,j,jk,k2,k3,ij,l; |
| int ng; | |
| npar= (nlstate+ndeath-1)*nlstate*ncovmodel; | if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { |
| printf("Problem with file %s",optionfilegnuplot); | |
| p=param[1][1]; | fprintf(ficlog,"Problem with file %s",optionfilegnuplot); |
| } | |
| /* Reads comments: lines beginning with '#' */ | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | /*#ifdef windows */ |
| ungetc(c,ficpar); | fprintf(ficgp,"cd \"%s\" \n",pathc); |
| fgets(line, MAXLINE, ficpar); | /*#endif */ |
| puts(line); | m=pow(2,cptcoveff); |
| fputs(line,ficparo); | |
| } | /* 1eme*/ |
| ungetc(c,ficpar); | for (cpt=1; cpt<= nlstate ; cpt ++) { |
| for (k1=1; k1<= m ; k1 ++) { | |
| delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); |
| delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */ | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1); |
| for(i=1; i <=nlstate; i++){ | |
| for(j=1; j <=nlstate+ndeath-1; j++){ | for (i=1; i<= nlstate ; i ++) { |
| fscanf(ficpar,"%1d%1d",&i1,&j1); | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
| printf("%1d%1d",i,j); | else fprintf(ficgp," \%%*lf (\%%*lf)"); |
| fprintf(ficparo,"%1d%1d",i1,j1); | } |
| for(k=1; k<=ncovmodel;k++){ | fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1); |
| fscanf(ficpar,"%le",&delti3[i][j][k]); | for (i=1; i<= nlstate ; i ++) { |
| printf(" %le",delti3[i][j][k]); | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
| fprintf(ficparo," %le",delti3[i][j][k]); | else fprintf(ficgp," \%%*lf (\%%*lf)"); |
| } | } |
| fscanf(ficpar,"\n"); | fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); |
| printf("\n"); | for (i=1; i<= nlstate ; i ++) { |
| fprintf(ficparo,"\n"); | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
| } | else fprintf(ficgp," \%%*lf (\%%*lf)"); |
| } | } |
| delti=delti3[1][1]; | fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1)); |
| } | |
| /* Reads comments: lines beginning with '#' */ | } |
| while((c=getc(ficpar))=='#' && c!= EOF){ | /*2 eme*/ |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | for (k1=1; k1<= m ; k1 ++) { |
| puts(line); | fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1); |
| fputs(line,ficparo); | fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage); |
| } | |
| ungetc(c,ficpar); | for (i=1; i<= nlstate+1 ; i ++) { |
| k=2*i; | |
| matcov=matrix(1,npar,1,npar); | fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1); |
| for(i=1; i <=npar; i++){ | for (j=1; j<= nlstate+1 ; j ++) { |
| fscanf(ficpar,"%s",&str); | if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); |
| printf("%s",str); | else fprintf(ficgp," \%%*lf (\%%*lf)"); |
| fprintf(ficparo,"%s",str); | } |
| for(j=1; j <=i; j++){ | if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,"); |
| fscanf(ficpar," %le",&matcov[i][j]); | else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1); |
| printf(" %.5le",matcov[i][j]); | fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1); |
| fprintf(ficparo," %.5le",matcov[i][j]); | for (j=1; j<= nlstate+1 ; j ++) { |
| } | if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); |
| fscanf(ficpar,"\n"); | else fprintf(ficgp," \%%*lf (\%%*lf)"); |
| printf("\n"); | } |
| fprintf(ficparo,"\n"); | fprintf(ficgp,"\" t\"\" w l 0,"); |
| } | fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1); |
| for(i=1; i <=npar; i++) | for (j=1; j<= nlstate+1 ; j ++) { |
| for(j=i+1;j<=npar;j++) | if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); |
| matcov[i][j]=matcov[j][i]; | else fprintf(ficgp," \%%*lf (\%%*lf)"); |
| } | |
| printf("\n"); | if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0"); |
| else fprintf(ficgp,"\" t\"\" w l 0,"); | |
| } | |
| /*-------- Rewriting paramater file ----------*/ | } |
| strcpy(rfileres,"r"); /* "Rparameterfile */ | |
| strcat(rfileres,optionfilefiname); /* Parameter file first name*/ | /*3eme*/ |
| strcat(rfileres,"."); /* */ | |
| strcat(rfileres,optionfilext); /* Other files have txt extension */ | for (k1=1; k1<= m ; k1 ++) { |
| if((ficres =fopen(rfileres,"w"))==NULL) { | for (cpt=1; cpt<= nlstate ; cpt ++) { |
| printf("Problem writing new parameter file: %s\n", fileres);goto end; | k=2+nlstate*(2*cpt-2); |
| } | fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); |
| fprintf(ficres,"#%s\n",version); | fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt); |
| /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | |
| /*-------- data file ----------*/ | for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
| if((fic=fopen(datafile,"r"))==NULL) { | fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
| printf("Problem with datafile: %s\n", datafile);goto end; | fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
| } | for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
| fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | |
| n= lastobs; | |
| severity = vector(1,maxwav); | */ |
| outcome=imatrix(1,maxwav+1,1,n); | for (i=1; i< nlstate ; i ++) { |
| num=ivector(1,n); | fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1); |
| moisnais=vector(1,n); | |
| annais=vector(1,n); | } |
| moisdc=vector(1,n); | } |
| andc=vector(1,n); | } |
| agedc=vector(1,n); | |
| cod=ivector(1,n); | /* CV preval stable (period) */ |
| weight=vector(1,n); | for (k1=1; k1<= m ; k1 ++) { |
| for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ | for (cpt=1; cpt<=nlstate ; cpt ++) { |
| mint=matrix(1,maxwav,1,n); | k=3; |
| anint=matrix(1,maxwav,1,n); | fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); |
| s=imatrix(1,maxwav+1,1,n); | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1); |
| adl=imatrix(1,maxwav+1,1,n); | |
| tab=ivector(1,NCOVMAX); | for (i=1; i<= nlstate ; i ++) |
| ncodemax=ivector(1,8); | fprintf(ficgp,"+$%d",k+i+1); |
| fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1); | |
| i=1; | |
| while (fgets(line, MAXLINE, fic) != NULL) { | l=3+(nlstate+ndeath)*cpt; |
| if ((i >= firstobs) && (i <=lastobs)) { | fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1); |
| for (i=1; i< nlstate ; i ++) { | |
| for (j=maxwav;j>=1;j--){ | l=3+(nlstate+ndeath)*cpt; |
| cutv(stra, strb,line,' '); s[j][i]=atoi(strb); | fprintf(ficgp,"+$%d",l+i+1); |
| strcpy(line,stra); | } |
| cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1); |
| cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | } |
| } | } |
| cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra); | /* proba elementaires */ |
| cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra); | for(i=1,jk=1; i <=nlstate; i++){ |
| for(k=1; k <=(nlstate+ndeath); k++){ | |
| cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra); | if (k != i) { |
| cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra); | for(j=1; j <=ncovmodel; j++){ |
| fprintf(ficgp,"p%d=%f ",jk,p[jk]); | |
| cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra); | jk++; |
| for (j=ncovcol;j>=1;j--){ | fprintf(ficgp,"\n"); |
| cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra); | } |
| } | } |
| num[i]=atol(stra); | } |
| } | |
| /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){ | |
| printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/ | for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/ |
| for(jk=1; jk <=m; jk++) { | |
| i=i+1; | fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); |
| } | if (ng==2) |
| } | fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); |
| /* printf("ii=%d", ij); | else |
| scanf("%d",i);*/ | fprintf(ficgp,"\nset title \"Probability\"\n"); |
| imx=i-1; /* Number of individuals */ | fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot [%.f:%.f] ",ageminpar,agemaxpar); |
| i=1; | |
| /* for (i=1; i<=imx; i++){ | for(k2=1; k2<=nlstate; k2++) { |
| if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3; | k3=i; |
| if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3; | for(k=1; k<=(nlstate+ndeath); k++) { |
| if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3; | if (k != k2){ |
| }*/ | if(ng==2) |
| /* for (i=1; i<=imx; i++){ | fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); |
| if (s[4][i]==9) s[4][i]=-1; | else |
| printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/ | fprintf(ficgp," exp(p%d+p%d*x",i,i+1); |
| ij=1; | |
| for(j=3; j <=ncovmodel; j++) { | |
| /* Calculation of the number of parameter from char model*/ | if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { |
| Tvar=ivector(1,15); | fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); |
| Tprod=ivector(1,15); | ij++; |
| Tvaraff=ivector(1,15); | } |
| Tvard=imatrix(1,15,1,2); | else |
| Tage=ivector(1,15); | fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]); |
| } | |
| if (strlen(model) >1){ | fprintf(ficgp,")/(1"); |
| j=0, j1=0, k1=1, k2=1; | |
| j=nbocc(model,'+'); | for(k1=1; k1 <=nlstate; k1++){ |
| j1=nbocc(model,'*'); | fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); |
| cptcovn=j+1; | ij=1; |
| cptcovprod=j1; | for(j=3; j <=ncovmodel; j++){ |
| if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | |
| strcpy(modelsav,model); | fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); |
| if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){ | ij++; |
| printf("Error. Non available option model=%s ",model); | } |
| goto end; | else |
| } | fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]); |
| } | |
| for(i=(j+1); i>=1;i--){ | fprintf(ficgp,")"); |
| cutv(stra,strb,modelsav,'+'); | } |
| if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); | fprintf(ficgp,") t \"p%d%d\" ", k2,k); |
| /* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ | if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); |
| /*scanf("%d",i);*/ | i=i+ncovmodel; |
| if (strchr(strb,'*')) { | } |
| cutv(strd,strc,strb,'*'); | } /* end k */ |
| if (strcmp(strc,"age")==0) { | } /* end k2 */ |
| cptcovprod--; | } /* end jk */ |
| cutv(strb,stre,strd,'V'); | } /* end ng */ |
| Tvar[i]=atoi(stre); | fclose(ficgp); |
| cptcovage++; | } /* end gnuplot */ |
| Tage[cptcovage]=i; | |
| /*printf("stre=%s ", stre);*/ | |
| } | /*************** Moving average **************/ |
| else if (strcmp(strd,"age")==0) { | int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){ |
| cptcovprod--; | |
| cutv(strb,stre,strc,'V'); | int i, cpt, cptcod; |
| Tvar[i]=atoi(stre); | int modcovmax =1; |
| cptcovage++; | int mobilavrange, mob; |
| Tage[cptcovage]=i; | double age; |
| } | |
| else { | modcovmax=2*cptcoveff;/* Max number of modalities. We suppose |
| cutv(strb,stre,strc,'V'); | a covariate has 2 modalities */ |
| Tvar[i]=ncovcol+k1; | if (cptcovn<1) modcovmax=1; /* At least 1 pass */ |
| cutv(strb,strc,strd,'V'); | |
| Tprod[k1]=i; | if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
| Tvard[k1][1]=atoi(strc); | if(mobilav==1) mobilavrange=5; /* default */ |
| Tvard[k1][2]=atoi(stre); | else mobilavrange=mobilav; |
| Tvar[cptcovn+k2]=Tvard[k1][1]; | for (age=bage; age<=fage; age++) |
| Tvar[cptcovn+k2+1]=Tvard[k1][2]; | for (i=1; i<=nlstate;i++) |
| for (k=1; k<=lastobs;k++) | for (cptcod=1;cptcod<=modcovmax;cptcod++) |
| covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k]; | mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
| k1++; | /* We keep the original values on the extreme ages bage, fage and for |
| k2=k2+2; | fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2 |
| } | we use a 5 terms etc. until the borders are no more concerned. |
| } | */ |
| else { | for (mob=3;mob <=mobilavrange;mob=mob+2){ |
| /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ | for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
| /* scanf("%d",i);*/ | for (i=1; i<=nlstate;i++){ |
| cutv(strd,strc,strb,'V'); | for (cptcod=1;cptcod<=modcovmax;cptcod++){ |
| Tvar[i]=atoi(strc); | mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
| } | for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
| strcpy(modelsav,stra); | mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
| /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); | mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
| scanf("%d",i);*/ | } |
| } | mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
| } | } |
| } | |
| /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); | }/* end age */ |
| printf("cptcovprod=%d ", cptcovprod); | }/* end mob */ |
| scanf("%d ",i);*/ | }else return -1; |
| fclose(fic); | return 0; |
| }/* End movingaverage */ | |
| /* if(mle==1){*/ | |
| if (weightopt != 1) { /* Maximisation without weights*/ | |
| for(i=1;i<=n;i++) weight[i]=1.0; | /************** Forecasting ******************/ |
| } | prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
| /*-calculation of age at interview from date of interview and age at death -*/ | /* proj1, year, month, day of starting projection |
| agev=matrix(1,maxwav,1,imx); | agemin, agemax range of age |
| dateprev1 dateprev2 range of dates during which prevalence is computed | |
| for (i=1; i<=imx; i++) { | anproj2 year of en of projection (same day and month as proj1). |
| for(m=2; (m<= maxwav); m++) { | */ |
| if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){ | int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1; |
| anint[m][i]=9999; | int *popage; |
| s[m][i]=-1; | double agec; /* generic age */ |
| } | double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
| if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1; | double *popeffectif,*popcount; |
| } | double ***p3mat; |
| } | double ***mobaverage; |
| char fileresf[FILENAMELENGTH]; | |
| for (i=1; i<=imx; i++) { | |
| agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); | agelim=AGESUP; |
| for(m=1; (m<= maxwav); m++){ | prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
| if(s[m][i] >0){ | |
| if (s[m][i] >= nlstate+1) { | strcpy(fileresf,"f"); |
| if(agedc[i]>0) | strcat(fileresf,fileres); |
| if(moisdc[i]!=99 && andc[i]!=9999) | if((ficresf=fopen(fileresf,"w"))==NULL) { |
| agev[m][i]=agedc[i]; | printf("Problem with forecast resultfile: %s\n", fileresf); |
| /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ | fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
| else { | } |
| if (andc[i]!=9999){ | printf("Computing forecasting: result on file '%s' \n", fileresf); |
| printf("Warning negative age at death: %d line:%d\n",num[i],i); | fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf); |
| agev[m][i]=-1; | |
| } | if (cptcoveff==0) ncodemax[cptcoveff]=1; |
| } | |
| } | if (mobilav!=0) { |
| else if(s[m][i] !=9){ /* Should no more exist */ | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); | if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ |
| if(mint[m][i]==99 || anint[m][i]==9999) | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
| agev[m][i]=1; | printf(" Error in movingaverage mobilav=%d\n",mobilav); |
| else if(agev[m][i] <agemin){ | } |
| agemin=agev[m][i]; | } |
| /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/ | |
| } | stepsize=(int) (stepm+YEARM-1)/YEARM; |
| else if(agev[m][i] >agemax){ | if (stepm<=12) stepsize=1; |
| agemax=agev[m][i]; | if(estepm < stepm){ |
| /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/ | printf ("Problem %d lower than %d\n",estepm, stepm); |
| } | } |
| /*agev[m][i]=anint[m][i]-annais[i];*/ | else hstepm=estepm; |
| /* agev[m][i] = age[i]+2*m;*/ | |
| } | hstepm=hstepm/stepm; |
| else { /* =9 */ | yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
| agev[m][i]=1; | fractional in yp1 */ |
| s[m][i]=-1; | anprojmean=yp; |
| } | yp2=modf((yp1*12),&yp); |
| } | mprojmean=yp; |
| else /*= 0 Unknown */ | yp1=modf((yp2*30.5),&yp); |
| agev[m][i]=1; | jprojmean=yp; |
| } | if(jprojmean==0) jprojmean=1; |
| if(mprojmean==0) jprojmean=1; | |
| } | |
| for (i=1; i<=imx; i++) { | i1=cptcoveff; |
| for(m=1; (m<= maxwav); m++){ | if (cptcovn < 1){i1=1;} |
| if (s[m][i] > (nlstate+ndeath)) { | |
| printf("Error: Wrong value in nlstate or ndeath\n"); | fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
| goto end; | |
| } | fprintf(ficresf,"#****** Routine prevforecast **\n"); |
| } | |
| } | /* if (h==(int)(YEARM*yearp)){ */ |
| for(cptcov=1, k=0;cptcov<=i1;cptcov++){ | |
| printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
| k=k+1; | |
| free_vector(severity,1,maxwav); | fprintf(ficresf,"\n#******"); |
| free_imatrix(outcome,1,maxwav+1,1,n); | for(j=1;j<=cptcoveff;j++) { |
| free_vector(moisnais,1,n); | fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); |
| free_vector(annais,1,n); | } |
| /* free_matrix(mint,1,maxwav,1,n); | fprintf(ficresf,"******\n"); |
| free_matrix(anint,1,maxwav,1,n);*/ | fprintf(ficresf,"# Covariate valuofcovar yearproj age"); |
| free_vector(moisdc,1,n); | for(j=1; j<=nlstate+ndeath;j++){ |
| free_vector(andc,1,n); | for(i=1; i<=nlstate;i++) |
| fprintf(ficresf," p%d%d",i,j); | |
| fprintf(ficresf," p.%d",j); | |
| wav=ivector(1,imx); | } |
| dh=imatrix(1,lastpass-firstpass+1,1,imx); | for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
| mw=imatrix(1,lastpass-firstpass+1,1,imx); | fprintf(ficresf,"\n"); |
| fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); | |
| /* Concatenates waves */ | |
| concatwav(wav, dh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); | for (agec=fage; agec>=(ageminpar-1); agec--){ |
| nhstepm=(int) rint((agelim-agec)*YEARM/stepm); | |
| nhstepm = nhstepm/hstepm; | |
| Tcode=ivector(1,100); | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); | oldm=oldms;savm=savms; |
| ncodemax[1]=1; | hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); |
| if (cptcovn > 0) tricode(Tvar,nbcode,imx); | |
| for (h=0; h<=nhstepm; h++){ | |
| codtab=imatrix(1,100,1,10); | if (h*hstepm/YEARM*stepm ==yearp) { |
| h=0; | fprintf(ficresf,"\n"); |
| m=pow(2,cptcoveff); | for(j=1;j<=cptcoveff;j++) |
| fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| for(k=1;k<=cptcoveff; k++){ | fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
| for(i=1; i <=(m/pow(2,k));i++){ | } |
| for(j=1; j <= ncodemax[k]; j++){ | for(j=1; j<=nlstate+ndeath;j++) { |
| for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){ | ppij=0.; |
| h++; | for(i=1; i<=nlstate;i++) { |
| if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j; | if (mobilav==1) |
| /* printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/ | ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; |
| } | else { |
| } | ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; |
| } | } |
| } | if (h*hstepm/YEARM*stepm== yearp) { |
| /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); | fprintf(ficresf," %.3f", p3mat[i][j][h]); |
| codtab[1][2]=1;codtab[2][2]=2; */ | } |
| /* for(i=1; i <=m ;i++){ | } /* end i */ |
| for(k=1; k <=cptcovn; k++){ | if (h*hstepm/YEARM*stepm==yearp) { |
| printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); | fprintf(ficresf," %.3f", ppij); |
| } | } |
| printf("\n"); | }/* end j */ |
| } | } /* end h */ |
| scanf("%d",i);*/ | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| } /* end agec */ | |
| /* Calculates basic frequencies. Computes observed prevalence at single age | } /* end yearp */ |
| and prints on file fileres'p'. */ | } /* end cptcod */ |
| } /* end cptcov */ | |
| if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | fclose(ficresf); |
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | } |
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | /************** Forecasting *****not tested NB*************/ |
| populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ | |
| /* For Powell, parameters are in a vector p[] starting at p[1] | |
| so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ | int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |
| p=param[1][1]; /* *(*(*(param +1)+1)+0) */ | int *popage; |
| double calagedatem, agelim, kk1, kk2; | |
| if(mle==1){ | double *popeffectif,*popcount; |
| mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); | double ***p3mat,***tabpop,***tabpopprev; |
| } | double ***mobaverage; |
| char filerespop[FILENAMELENGTH]; | |
| /*--------- results files --------------*/ | |
| fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); | tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| agelim=AGESUP; | |
| jk=1; | calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; |
| fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | |
| printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
| for(i=1,jk=1; i <=nlstate; i++){ | |
| for(k=1; k <=(nlstate+ndeath); k++){ | |
| if (k != i) | strcpy(filerespop,"pop"); |
| { | strcat(filerespop,fileres); |
| printf("%d%d ",i,k); | if((ficrespop=fopen(filerespop,"w"))==NULL) { |
| fprintf(ficres,"%1d%1d ",i,k); | printf("Problem with forecast resultfile: %s\n", filerespop); |
| for(j=1; j <=ncovmodel; j++){ | fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); |
| printf("%f ",p[jk]); | } |
| fprintf(ficres,"%f ",p[jk]); | printf("Computing forecasting: result on file '%s' \n", filerespop); |
| jk++; | fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); |
| } | |
| printf("\n"); | if (cptcoveff==0) ncodemax[cptcoveff]=1; |
| fprintf(ficres,"\n"); | |
| } | if (mobilav!=0) { |
| } | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| } | if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ |
| if(mle==1){ | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
| /* Computing hessian and covariance matrix */ | printf(" Error in movingaverage mobilav=%d\n",mobilav); |
| ftolhess=ftol; /* Usually correct */ | } |
| hesscov(matcov, p, npar, delti, ftolhess, func); | } |
| } | |
| fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); | stepsize=(int) (stepm+YEARM-1)/YEARM; |
| printf("# Scales (for hessian or gradient estimation)\n"); | if (stepm<=12) stepsize=1; |
| for(i=1,jk=1; i <=nlstate; i++){ | |
| for(j=1; j <=nlstate+ndeath; j++){ | agelim=AGESUP; |
| if (j!=i) { | |
| fprintf(ficres,"%1d%1d",i,j); | hstepm=1; |
| printf("%1d%1d",i,j); | hstepm=hstepm/stepm; |
| for(k=1; k<=ncovmodel;k++){ | |
| printf(" %.5e",delti[jk]); | if (popforecast==1) { |
| fprintf(ficres," %.5e",delti[jk]); | if((ficpop=fopen(popfile,"r"))==NULL) { |
| jk++; | printf("Problem with population file : %s\n",popfile);exit(0); |
| } | fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); |
| printf("\n"); | } |
| fprintf(ficres,"\n"); | popage=ivector(0,AGESUP); |
| } | popeffectif=vector(0,AGESUP); |
| } | popcount=vector(0,AGESUP); |
| } | |
| i=1; | |
| k=1; | while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; |
| fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); | |
| printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); | imx=i; |
| for(i=1;i<=npar;i++){ | for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; |
| /* if (k>nlstate) k=1; | } |
| i1=(i-1)/(ncovmodel*nlstate)+1; | |
| fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]); | for(cptcov=1,k=0;cptcov<=i2;cptcov++){ |
| printf("%s%d%d",alph[k],i1,tab[i]);*/ | for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
| fprintf(ficres,"%3d",i); | k=k+1; |
| printf("%3d",i); | fprintf(ficrespop,"\n#******"); |
| for(j=1; j<=i;j++){ | for(j=1;j<=cptcoveff;j++) { |
| fprintf(ficres," %.5e",matcov[i][j]); | fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); |
| printf(" %.5e",matcov[i][j]); | } |
| } | fprintf(ficrespop,"******\n"); |
| fprintf(ficres,"\n"); | fprintf(ficrespop,"# Age"); |
| printf("\n"); | for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); |
| k++; | if (popforecast==1) fprintf(ficrespop," [Population]"); |
| } | |
| for (cpt=0; cpt<=0;cpt++) { | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
| puts(line); | nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
| fputs(line,ficparo); | nhstepm = nhstepm/hstepm; |
| } | |
| ungetc(c,ficpar); | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| estepm=0; | oldm=oldms;savm=savms; |
| fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); | hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
| if (estepm==0 || estepm < stepm) estepm=stepm; | |
| if (fage <= 2) { | for (h=0; h<=nhstepm; h++){ |
| bage = ageminpar; | if (h==(int) (calagedatem+YEARM*cpt)) { |
| fage = agemaxpar; | fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
| } | } |
| for(j=1; j<=nlstate+ndeath;j++) { | |
| fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); | kk1=0.;kk2=0; |
| fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | for(i=1; i<=nlstate;i++) { |
| fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | if (mobilav==1) |
| kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | else { |
| ungetc(c,ficpar); | kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; |
| fgets(line, MAXLINE, ficpar); | } |
| puts(line); | } |
| fputs(line,ficparo); | if (h==(int)(calagedatem+12*cpt)){ |
| } | tabpop[(int)(agedeb)][j][cptcod]=kk1; |
| ungetc(c,ficpar); | /*fprintf(ficrespop," %.3f", kk1); |
| if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ | |
| fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2); | } |
| fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | } |
| fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | for(i=1; i<=nlstate;i++){ |
| kk1=0.; | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | for(j=1; j<=nlstate;j++){ |
| ungetc(c,ficpar); | kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; |
| fgets(line, MAXLINE, ficpar); | } |
| puts(line); | tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; |
| fputs(line,ficparo); | } |
| } | |
| ungetc(c,ficpar); | if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) |
| fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); | |
| } | |
| dateprev1=anprev1+mprev1/12.+jprev1/365.; | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| dateprev2=anprev2+mprev2/12.+jprev2/365.; | } |
| } | |
| fscanf(ficpar,"pop_based=%d\n",&popbased); | |
| fprintf(ficparo,"pop_based=%d\n",popbased); | /******/ |
| fprintf(ficres,"pop_based=%d\n",popbased); | |
| for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
| ungetc(c,ficpar); | for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
| fgets(line, MAXLINE, ficpar); | nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
| puts(line); | nhstepm = nhstepm/hstepm; |
| fputs(line,ficparo); | |
| } | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| ungetc(c,ficpar); | oldm=oldms;savm=savms; |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | |
| fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav); | for (h=0; h<=nhstepm; h++){ |
| fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav); | if (h==(int) (calagedatem+YEARM*cpt)) { |
| fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav); | fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
| } | |
| for(j=1; j<=nlstate+ndeath;j++) { | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | kk1=0.;kk2=0; |
| ungetc(c,ficpar); | for(i=1; i<=nlstate;i++) { |
| fgets(line, MAXLINE, ficpar); | kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; |
| puts(line); | } |
| fputs(line,ficparo); | if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); |
| } | } |
| ungetc(c,ficpar); | } |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1); | } |
| fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | } |
| fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | } |
| } | |
| freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | |
| if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| /*------------ gnuplot -------------*/ | |
| strcpy(optionfilegnuplot,optionfilefiname); | if (popforecast==1) { |
| strcat(optionfilegnuplot,".gp"); | free_ivector(popage,0,AGESUP); |
| if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) { | free_vector(popeffectif,0,AGESUP); |
| printf("Problem with file %s",optionfilegnuplot); | free_vector(popcount,0,AGESUP); |
| } | } |
| fclose(ficgp); | free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p); | free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| /*--------- index.htm --------*/ | fclose(ficrespop); |
| } | |
| strcpy(optionfilehtm,optionfile); | |
| strcat(optionfilehtm,".htm"); | /***********************************************/ |
| if((fichtm=fopen(optionfilehtm,"w"))==NULL) { | /**************** Main Program *****************/ |
| printf("Problem with %s \n",optionfilehtm), exit(0); | /***********************************************/ |
| } | |
| int main(int argc, char *argv[]) | |
| fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n | { |
| Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n | int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
| \n | int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod; |
| Total number of observations=%d <br>\n | double agedeb, agefin,hf; |
| Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n | double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; |
| <hr size=\"2\" color=\"#EC5E5E\"> | |
| <ul><li>Parameter files<br>\n | double fret; |
| - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n | double **xi,tmp,delta; |
| - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot); | |
| fclose(fichtm); | double dum; /* Dummy variable */ |
| double ***p3mat; | |
| printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); | double ***mobaverage; |
| int *indx; | |
| /*------------ free_vector -------------*/ | char line[MAXLINE], linepar[MAXLINE]; |
| chdir(path); | char path[80],pathc[80],pathcd[80],pathtot[80],model[80]; |
| int firstobs=1, lastobs=10; | |
| free_ivector(wav,1,imx); | int sdeb, sfin; /* Status at beginning and end */ |
| free_imatrix(dh,1,lastpass-firstpass+1,1,imx); | int c, h , cpt,l; |
| free_imatrix(mw,1,lastpass-firstpass+1,1,imx); | int ju,jl, mi; |
| free_ivector(num,1,n); | int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; |
| free_vector(agedc,1,n); | int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; |
| /*free_matrix(covar,1,NCOVMAX,1,n);*/ | int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
| fclose(ficparo); | int mobilav=0,popforecast=0; |
| fclose(ficres); | int hstepm, nhstepm; |
| double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000; | |
| double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000; | |
| /*--------------- Prevalence limit --------------*/ | |
| double bage, fage, age, agelim, agebase; | |
| strcpy(filerespl,"pl"); | double ftolpl=FTOL; |
| strcat(filerespl,fileres); | double **prlim; |
| if((ficrespl=fopen(filerespl,"w"))==NULL) { | double *severity; |
| printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end; | double ***param; /* Matrix of parameters */ |
| } | double *p; |
| printf("Computing prevalence limit: result on file '%s' \n", filerespl); | double **matcov; /* Matrix of covariance */ |
| fprintf(ficrespl,"#Prevalence limit\n"); | double ***delti3; /* Scale */ |
| fprintf(ficrespl,"#Age "); | double *delti; /* Scale */ |
| for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); | double ***eij, ***vareij; |
| fprintf(ficrespl,"\n"); | double **varpl; /* Variances of prevalence limits by age */ |
| double *epj, vepp; | |
| prlim=matrix(1,nlstate,1,nlstate); | double kk1, kk2; |
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; |
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | char *alph[]={"a","a","b","c","d","e"}, str[4]; |
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | |
| k=0; | char z[1]="c", occ; |
| agebase=ageminpar; | #include <sys/time.h> |
| agelim=agemaxpar; | #include <time.h> |
| ftolpl=1.e-10; | char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80]; |
| i1=cptcoveff; | |
| if (cptcovn < 1){i1=1;} | /* long total_usecs; |
| struct timeval start_time, end_time; | |
| for(cptcov=1;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */ |
| k=k+1; | getcwd(pathcd, size); |
| /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/ | |
| fprintf(ficrespl,"\n#******"); | printf("\n%s\n%s",version,fullversion); |
| for(j=1;j<=cptcoveff;j++) | if(argc <=1){ |
| fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | printf("\nEnter the parameter file name: "); |
| fprintf(ficrespl,"******\n"); | scanf("%s",pathtot); |
| } | |
| for (age=agebase; age<=agelim; age++){ | else{ |
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | strcpy(pathtot,argv[1]); |
| fprintf(ficrespl,"%.0f",age ); | } |
| for(i=1; i<=nlstate;i++) | /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/ |
| fprintf(ficrespl," %.5f", prlim[i][i]); | /*cygwin_split_path(pathtot,path,optionfile); |
| fprintf(ficrespl,"\n"); | printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/ |
| } | /* cutv(path,optionfile,pathtot,'\\');*/ |
| } | |
| } | split(pathtot,path,optionfile,optionfilext,optionfilefiname); |
| fclose(ficrespl); | printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); |
| chdir(path); | |
| /*------------- h Pij x at various ages ------------*/ | replace(pathc,path); |
| strcpy(filerespij,"pij"); strcat(filerespij,fileres); | /*-------- arguments in the command line --------*/ |
| if((ficrespij=fopen(filerespij,"w"))==NULL) { | |
| printf("Problem with Pij resultfile: %s\n", filerespij);goto end; | /* Log file */ |
| } | strcat(filelog, optionfilefiname); |
| printf("Computing pij: result on file '%s' \n", filerespij); | strcat(filelog,".log"); /* */ |
| if((ficlog=fopen(filelog,"w"))==NULL) { | |
| stepsize=(int) (stepm+YEARM-1)/YEARM; | printf("Problem with logfile %s\n",filelog); |
| /*if (stepm<=24) stepsize=2;*/ | goto end; |
| } | |
| agelim=AGESUP; | fprintf(ficlog,"Log filename:%s\n",filelog); |
| hstepm=stepsize*YEARM; /* Every year of age */ | fprintf(ficlog,"\n%s",version); |
| hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ | fprintf(ficlog,"\nEnter the parameter file name: "); |
| fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); | |
| k=0; | fflush(ficlog); |
| for(cptcov=1;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | /* */ |
| k=k+1; | strcpy(fileres,"r"); |
| fprintf(ficrespij,"\n#****** "); | strcat(fileres, optionfilefiname); |
| for(j=1;j<=cptcoveff;j++) | strcat(fileres,".txt"); /* Other files have txt extension */ |
| fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficrespij,"******\n"); | /*---------arguments file --------*/ |
| for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ | if((ficpar=fopen(optionfile,"r"))==NULL) { |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | printf("Problem with optionfile %s\n",optionfile); |
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | fprintf(ficlog,"Problem with optionfile %s\n",optionfile); |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | goto end; |
| oldm=oldms;savm=savms; | } |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | |
| fprintf(ficrespij,"# Age"); | strcpy(filereso,"o"); |
| for(i=1; i<=nlstate;i++) | strcat(filereso,fileres); |
| for(j=1; j<=nlstate+ndeath;j++) | if((ficparo=fopen(filereso,"w"))==NULL) { |
| fprintf(ficrespij," %1d-%1d",i,j); | printf("Problem with Output resultfile: %s\n", filereso); |
| fprintf(ficrespij,"\n"); | fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso); |
| for (h=0; h<=nhstepm; h++){ | goto end; |
| fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); | } |
| for(i=1; i<=nlstate;i++) | |
| for(j=1; j<=nlstate+ndeath;j++) | /* Reads comments: lines beginning with '#' */ |
| fprintf(ficrespij," %.5f", p3mat[i][j][h]); | while((c=getc(ficpar))=='#' && c!= EOF){ |
| fprintf(ficrespij,"\n"); | ungetc(c,ficpar); |
| } | fgets(line, MAXLINE, ficpar); |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | puts(line); |
| fprintf(ficrespij,"\n"); | fputs(line,ficparo); |
| } | } |
| } | ungetc(c,ficpar); |
| } | |
| fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); | |
| varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax); | printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); |
| fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); | |
| fclose(ficrespij); | while((c=getc(ficpar))=='#' && c!= EOF){ |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| /*---------- Forecasting ------------------*/ | puts(line); |
| if((stepm == 1) && (strcmp(model,".")==0)){ | fputs(line,ficparo); |
| prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1); | } |
| if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1); | ungetc(c,ficpar); |
| } | |
| else{ | |
| erreur=108; | covar=matrix(0,NCOVMAX,1,n); |
| printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); | cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/ |
| } | if (strlen(model)>1) cptcovn=nbocc(model,'+')+1; |
| ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */ | |
| /*---------- Health expectancies and variances ------------*/ | nvar=ncovmodel-1; /* Suppressing age as a basic covariate */ |
| strcpy(filerest,"t"); | /* Read guess parameters */ |
| strcat(filerest,fileres); | /* Reads comments: lines beginning with '#' */ |
| if((ficrest=fopen(filerest,"w"))==NULL) { | while((c=getc(ficpar))=='#' && c!= EOF){ |
| printf("Problem with total LE resultfile: %s\n", filerest);goto end; | ungetc(c,ficpar); |
| } | fgets(line, MAXLINE, ficpar); |
| printf("Computing Total LEs with variances: file '%s' \n", filerest); | puts(line); |
| fputs(line,ficparo); | |
| } | |
| strcpy(filerese,"e"); | ungetc(c,ficpar); |
| strcat(filerese,fileres); | |
| if((ficreseij=fopen(filerese,"w"))==NULL) { | param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
| printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | for(i=1; i <=nlstate; i++) |
| } | for(j=1; j <=nlstate+ndeath-1; j++){ |
| printf("Computing Health Expectancies: result on file '%s' \n", filerese); | fscanf(ficpar,"%1d%1d",&i1,&j1); |
| fprintf(ficparo,"%1d%1d",i1,j1); | |
| strcpy(fileresv,"v"); | if(mle==1) |
| strcat(fileresv,fileres); | printf("%1d%1d",i,j); |
| if((ficresvij=fopen(fileresv,"w"))==NULL) { | fprintf(ficlog,"%1d%1d",i,j); |
| printf("Problem with variance resultfile: %s\n", fileresv);exit(0); | for(k=1; k<=ncovmodel;k++){ |
| } | fscanf(ficpar," %lf",¶m[i][j][k]); |
| printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | if(mle==1){ |
| calagedate=-1; | printf(" %lf",param[i][j][k]); |
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | fprintf(ficlog," %lf",param[i][j][k]); |
| } | |
| k=0; | else |
| for(cptcov=1;cptcov<=i1;cptcov++){ | fprintf(ficlog," %lf",param[i][j][k]); |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | fprintf(ficparo," %lf",param[i][j][k]); |
| k=k+1; | } |
| fprintf(ficrest,"\n#****** "); | fscanf(ficpar,"\n"); |
| for(j=1;j<=cptcoveff;j++) | if(mle==1) |
| fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | printf("\n"); |
| fprintf(ficrest,"******\n"); | fprintf(ficlog,"\n"); |
| fprintf(ficparo,"\n"); | |
| fprintf(ficreseij,"\n#****** "); | } |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ |
| fprintf(ficreseij,"******\n"); | |
| p=param[1][1]; | |
| fprintf(ficresvij,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) | /* Reads comments: lines beginning with '#' */ |
| fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | while((c=getc(ficpar))=='#' && c!= EOF){ |
| fprintf(ficresvij,"******\n"); | ungetc(c,ficpar); |
| fgets(line, MAXLINE, ficpar); | |
| eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | puts(line); |
| oldm=oldms;savm=savms; | fputs(line,ficparo); |
| evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov); | } |
| ungetc(c,ficpar); | |
| vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | |
| oldm=oldms;savm=savms; | delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
| varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm); | /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */ |
| for(i=1; i <=nlstate; i++){ | |
| for(j=1; j <=nlstate+ndeath-1; j++){ | |
| fscanf(ficpar,"%1d%1d",&i1,&j1); | |
| fprintf(ficrest,"#Total LEs with variances: e.. (std) "); | printf("%1d%1d",i,j); |
| for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); | fprintf(ficparo,"%1d%1d",i1,j1); |
| fprintf(ficrest,"\n"); | for(k=1; k<=ncovmodel;k++){ |
| fscanf(ficpar,"%le",&delti3[i][j][k]); | |
| epj=vector(1,nlstate+1); | printf(" %le",delti3[i][j][k]); |
| for(age=bage; age <=fage ;age++){ | fprintf(ficparo," %le",delti3[i][j][k]); |
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | } |
| if (popbased==1) { | fscanf(ficpar,"\n"); |
| for(i=1; i<=nlstate;i++) | printf("\n"); |
| prlim[i][i]=probs[(int)age][i][k]; | fprintf(ficparo,"\n"); |
| } | } |
| } | |
| fprintf(ficrest," %4.0f",age); | delti=delti3[1][1]; |
| for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ | |
| for(i=1, epj[j]=0.;i <=nlstate;i++) { | |
| epj[j] += prlim[i][i]*eij[i][j][(int)age]; | /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ |
| /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ | |
| } | /* Reads comments: lines beginning with '#' */ |
| epj[nlstate+1] +=epj[j]; | while((c=getc(ficpar))=='#' && c!= EOF){ |
| } | ungetc(c,ficpar); |
| fgets(line, MAXLINE, ficpar); | |
| for(i=1, vepp=0.;i <=nlstate;i++) | puts(line); |
| for(j=1;j <=nlstate;j++) | fputs(line,ficparo); |
| vepp += vareij[i][j][(int)age]; | } |
| fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); | ungetc(c,ficpar); |
| for(j=1;j <=nlstate;j++){ | |
| fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); | matcov=matrix(1,npar,1,npar); |
| } | for(i=1; i <=npar; i++){ |
| fprintf(ficrest,"\n"); | fscanf(ficpar,"%s",&str); |
| } | if(mle==1) |
| } | printf("%s",str); |
| } | fprintf(ficlog,"%s",str); |
| free_matrix(mint,1,maxwav,1,n); | fprintf(ficparo,"%s",str); |
| free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n); | for(j=1; j <=i; j++){ |
| free_vector(weight,1,n); | fscanf(ficpar," %le",&matcov[i][j]); |
| fclose(ficreseij); | if(mle==1){ |
| fclose(ficresvij); | printf(" %.5le",matcov[i][j]); |
| fclose(ficrest); | fprintf(ficlog," %.5le",matcov[i][j]); |
| fclose(ficpar); | } |
| free_vector(epj,1,nlstate+1); | else |
| fprintf(ficlog," %.5le",matcov[i][j]); | |
| /*------- Variance limit prevalence------*/ | fprintf(ficparo," %.5le",matcov[i][j]); |
| } | |
| strcpy(fileresvpl,"vpl"); | fscanf(ficpar,"\n"); |
| strcat(fileresvpl,fileres); | if(mle==1) |
| if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { | printf("\n"); |
| printf("Problem with variance prev lim resultfile: %s\n", fileresvpl); | fprintf(ficlog,"\n"); |
| exit(0); | fprintf(ficparo,"\n"); |
| } | } |
| printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl); | for(i=1; i <=npar; i++) |
| for(j=i+1;j<=npar;j++) | |
| k=0; | matcov[i][j]=matcov[j][i]; |
| for(cptcov=1;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | if(mle==1) |
| k=k+1; | printf("\n"); |
| fprintf(ficresvpl,"\n#****** "); | fprintf(ficlog,"\n"); |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficresvpl,"******\n"); | /*-------- Rewriting paramater file ----------*/ |
| strcpy(rfileres,"r"); /* "Rparameterfile */ | |
| varpl=matrix(1,nlstate,(int) bage, (int) fage); | strcat(rfileres,optionfilefiname); /* Parameter file first name*/ |
| oldm=oldms;savm=savms; | strcat(rfileres,"."); /* */ |
| varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k); | strcat(rfileres,optionfilext); /* Other files have txt extension */ |
| } | if((ficres =fopen(rfileres,"w"))==NULL) { |
| } | printf("Problem writing new parameter file: %s\n", fileres);goto end; |
| fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end; | |
| fclose(ficresvpl); | } |
| fprintf(ficres,"#%s\n",version); | |
| /*---------- End : free ----------------*/ | |
| free_matrix(varpl,1,nlstate,(int) bage, (int)fage); | /*-------- data file ----------*/ |
| if((fic=fopen(datafile,"r"))==NULL) { | |
| free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); | printf("Problem with datafile: %s\n", datafile);goto end; |
| free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); | fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end; |
| } | |
| free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); | n= lastobs; |
| free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); | severity = vector(1,maxwav); |
| free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); | outcome=imatrix(1,maxwav+1,1,n); |
| free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); | num=ivector(1,n); |
| moisnais=vector(1,n); | |
| free_matrix(matcov,1,npar,1,npar); | annais=vector(1,n); |
| free_vector(delti,1,npar); | moisdc=vector(1,n); |
| free_matrix(agev,1,maxwav,1,imx); | andc=vector(1,n); |
| free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | agedc=vector(1,n); |
| cod=ivector(1,n); | |
| fprintf(fichtm,"\n</body>"); | weight=vector(1,n); |
| fclose(fichtm); | for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ |
| fclose(ficgp); | mint=matrix(1,maxwav,1,n); |
| anint=matrix(1,maxwav,1,n); | |
| s=imatrix(1,maxwav+1,1,n); | |
| if(erreur >0) | tab=ivector(1,NCOVMAX); |
| printf("End of Imach with error or warning %d\n",erreur); | ncodemax=ivector(1,8); |
| else printf("End of Imach\n"); | |
| /* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */ | i=1; |
| while (fgets(line, MAXLINE, fic) != NULL) { | |
| /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/ | if ((i >= firstobs) && (i <=lastobs)) { |
| /*printf("Total time was %d uSec.\n", total_usecs);*/ | |
| /*------ End -----------*/ | for (j=maxwav;j>=1;j--){ |
| cutv(stra, strb,line,' '); s[j][i]=atoi(strb); | |
| strcpy(line,stra); | |
| end: | cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra); |
| #ifdef windows | cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra); |
| /* chdir(pathcd);*/ | } |
| #endif | |
| /*system("wgnuplot graph.plt");*/ | cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra); |
| /*system("../gp37mgw/wgnuplot graph.plt");*/ | cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra); |
| /*system("cd ../gp37mgw");*/ | |
| /* system("..\\gp37mgw\\wgnuplot graph.plt");*/ | cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra); |
| strcpy(plotcmd,GNUPLOTPROGRAM); | cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra); |
| strcat(plotcmd," "); | |
| strcat(plotcmd,optionfilegnuplot); | cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra); |
| system(plotcmd); | for (j=ncovcol;j>=1;j--){ |
| cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra); | |
| #ifdef windows | } |
| while (z[0] != 'q') { | num[i]=atol(stra); |
| /* chdir(path); */ | |
| printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: "); | /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){ |
| scanf("%s",z); | printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/ |
| if (z[0] == 'c') system("./imach"); | |
| else if (z[0] == 'e') system(optionfilehtm); | i=i+1; |
| else if (z[0] == 'g') system(plotcmd); | } |
| else if (z[0] == 'q') exit(0); | } |
| } | /* printf("ii=%d", ij); |
| #endif | scanf("%d",i);*/ |
| } | imx=i-1; /* Number of individuals */ |
| /* for (i=1; i<=imx; i++){ | |
| if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3; | |
| if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3; | |
| if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3; | |
| }*/ | |
| /* for (i=1; i<=imx; i++){ | |
| if (s[4][i]==9) s[4][i]=-1; | |
| printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/ | |
| for (i=1; i<=imx; i++) | |
| /*if ((s[3][i]==3) || (s[4][i]==3)) weight[i]=0.08; | |
| else weight[i]=1;*/ | |
| /* Calculation of the number of parameter from char model*/ | |
| Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */ | |
| Tprod=ivector(1,15); | |
| Tvaraff=ivector(1,15); | |
| Tvard=imatrix(1,15,1,2); | |
| Tage=ivector(1,15); | |
| if (strlen(model) >1){ /* If there is at least 1 covariate */ | |
| j=0, j1=0, k1=1, k2=1; | |
| j=nbocc(model,'+'); /* j=Number of '+' */ | |
| j1=nbocc(model,'*'); /* j1=Number of '*' */ | |
| cptcovn=j+1; | |
| cptcovprod=j1; /*Number of products */ | |
| strcpy(modelsav,model); | |
| if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){ | |
| printf("Error. Non available option model=%s ",model); | |
| fprintf(ficlog,"Error. Non available option model=%s ",model); | |
| goto end; | |
| } | |
| /* This loop fills the array Tvar from the string 'model'.*/ | |
| for(i=(j+1); i>=1;i--){ | |
| cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ | |
| if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ | |
| /* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ | |
| /*scanf("%d",i);*/ | |
| if (strchr(strb,'*')) { /* Model includes a product */ | |
| cutv(strd,strc,strb,'*'); /* strd*strc Vm*Vn (if not *age)*/ | |
| if (strcmp(strc,"age")==0) { /* Vn*age */ | |
| cptcovprod--; | |
| cutv(strb,stre,strd,'V'); | |
| Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/ | |
| cptcovage++; | |
| Tage[cptcovage]=i; | |
| /*printf("stre=%s ", stre);*/ | |
| } | |
| else if (strcmp(strd,"age")==0) { /* or age*Vn */ | |
| cptcovprod--; | |
| cutv(strb,stre,strc,'V'); | |
| Tvar[i]=atoi(stre); | |
| cptcovage++; | |
| Tage[cptcovage]=i; | |
| } | |
| else { /* Age is not in the model */ | |
| cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/ | |
| Tvar[i]=ncovcol+k1; | |
| cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */ | |
| Tprod[k1]=i; | |
| Tvard[k1][1]=atoi(strc); /* m*/ | |
| Tvard[k1][2]=atoi(stre); /* n */ | |
| Tvar[cptcovn+k2]=Tvard[k1][1]; | |
| Tvar[cptcovn+k2+1]=Tvard[k1][2]; | |
| for (k=1; k<=lastobs;k++) | |
| covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k]; | |
| k1++; | |
| k2=k2+2; | |
| } | |
| } | |
| else { /* no more sum */ | |
| /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ | |
| /* scanf("%d",i);*/ | |
| cutv(strd,strc,strb,'V'); | |
| Tvar[i]=atoi(strc); | |
| } | |
| strcpy(modelsav,stra); | |
| /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); | |
| scanf("%d",i);*/ | |
| } /* end of loop + */ | |
| } /* end model */ | |
| /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. | |
| If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ | |
| /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); | |
| printf("cptcovprod=%d ", cptcovprod); | |
| fprintf(ficlog,"cptcovprod=%d ", cptcovprod); | |
| scanf("%d ",i); | |
| fclose(fic);*/ | |
| /* if(mle==1){*/ | |
| if (weightopt != 1) { /* Maximisation without weights*/ | |
| for(i=1;i<=n;i++) weight[i]=1.0; | |
| } | |
| /*-calculation of age at interview from date of interview and age at death -*/ | |
| agev=matrix(1,maxwav,1,imx); | |
| for (i=1; i<=imx; i++) { | |
| for(m=2; (m<= maxwav); m++) { | |
| if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){ | |
| anint[m][i]=9999; | |
| s[m][i]=-1; | |
| } | |
| if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){ | |
| printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i); | |
| fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i); | |
| s[m][i]=-1; | |
| } | |
| if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ | |
| printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); | |
| fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); | |
| s[m][i]=-1; | |
| } | |
| } | |
| } | |
| for (i=1; i<=imx; i++) { | |
| agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); | |
| for(m=firstpass; (m<= lastpass); m++){ | |
| if(s[m][i] >0){ | |
| if (s[m][i] >= nlstate+1) { | |
| if(agedc[i]>0) | |
| if((int)moisdc[i]!=99 && (int)andc[i]!=9999) | |
| agev[m][i]=agedc[i]; | |
| /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ | |
| else { | |
| if ((int)andc[i]!=9999){ | |
| printf("Warning negative age at death: %d line:%d\n",num[i],i); | |
| fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i); | |
| agev[m][i]=-1; | |
| } | |
| } | |
| } | |
| else if(s[m][i] !=9){ /* Standard case, age in fractional | |
| years but with the precision of a | |
| month */ | |
| agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); | |
| if((int)mint[m][i]==99 || (int)anint[m][i]==9999) | |
| agev[m][i]=1; | |
| else if(agev[m][i] <agemin){ | |
| agemin=agev[m][i]; | |
| /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/ | |
| } | |
| else if(agev[m][i] >agemax){ | |
| agemax=agev[m][i]; | |
| /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/ | |
| } | |
| /*agev[m][i]=anint[m][i]-annais[i];*/ | |
| /* agev[m][i] = age[i]+2*m;*/ | |
| } | |
| else { /* =9 */ | |
| agev[m][i]=1; | |
| s[m][i]=-1; | |
| } | |
| } | |
| else /*= 0 Unknown */ | |
| agev[m][i]=1; | |
| } | |
| } | |
| for (i=1; i<=imx; i++) { | |
| for(m=firstpass; (m<=lastpass); m++){ | |
| if (s[m][i] > (nlstate+ndeath)) { | |
| printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); | |
| fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); | |
| goto end; | |
| } | |
| } | |
| } | |
| /*for (i=1; i<=imx; i++){ | |
| for (m=firstpass; (m<lastpass); m++){ | |
| printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]); | |
| } | |
| }*/ | |
| printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | |
| fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | |
| free_vector(severity,1,maxwav); | |
| free_imatrix(outcome,1,maxwav+1,1,n); | |
| free_vector(moisnais,1,n); | |
| free_vector(annais,1,n); | |
| /* free_matrix(mint,1,maxwav,1,n); | |
| free_matrix(anint,1,maxwav,1,n);*/ | |
| free_vector(moisdc,1,n); | |
| free_vector(andc,1,n); | |
| wav=ivector(1,imx); | |
| dh=imatrix(1,lastpass-firstpass+1,1,imx); | |
| bh=imatrix(1,lastpass-firstpass+1,1,imx); | |
| mw=imatrix(1,lastpass-firstpass+1,1,imx); | |
| /* Concatenates waves */ | |
| concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); | |
| /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ | |
| Tcode=ivector(1,100); | |
| nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); | |
| ncodemax[1]=1; | |
| if (cptcovn > 0) tricode(Tvar,nbcode,imx); | |
| codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of | |
| the estimations*/ | |
| h=0; | |
| m=pow(2,cptcoveff); | |
| for(k=1;k<=cptcoveff; k++){ | |
| for(i=1; i <=(m/pow(2,k));i++){ | |
| for(j=1; j <= ncodemax[k]; j++){ | |
| for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){ | |
| h++; | |
| if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j; | |
| /* printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/ | |
| } | |
| } | |
| } | |
| } | |
| /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); | |
| codtab[1][2]=1;codtab[2][2]=2; */ | |
| /* for(i=1; i <=m ;i++){ | |
| for(k=1; k <=cptcovn; k++){ | |
| printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); | |
| } | |
| printf("\n"); | |
| } | |
| scanf("%d",i);*/ | |
| /* Calculates basic frequencies. Computes observed prevalence at single age | |
| and prints on file fileres'p'. */ | |
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | |
| /* For Powell, parameters are in a vector p[] starting at p[1] | |
| so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ | |
| p=param[1][1]; /* *(*(*(param +1)+1)+0) */ | |
| if(mle>=1){ /* Could be 1 or 2 */ | |
| mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); | |
| } | |
| /*--------- results files --------------*/ | |
| fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); | |
| jk=1; | |
| fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | |
| printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | |
| fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | |
| for(i=1,jk=1; i <=nlstate; i++){ | |
| for(k=1; k <=(nlstate+ndeath); k++){ | |
| if (k != i) | |
| { | |
| printf("%d%d ",i,k); | |
| fprintf(ficlog,"%d%d ",i,k); | |
| fprintf(ficres,"%1d%1d ",i,k); | |
| for(j=1; j <=ncovmodel; j++){ | |
| printf("%f ",p[jk]); | |
| fprintf(ficlog,"%f ",p[jk]); | |
| fprintf(ficres,"%f ",p[jk]); | |
| jk++; | |
| } | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| fprintf(ficres,"\n"); | |
| } | |
| } | |
| } | |
| if(mle==1){ | |
| /* Computing hessian and covariance matrix */ | |
| ftolhess=ftol; /* Usually correct */ | |
| hesscov(matcov, p, npar, delti, ftolhess, func); | |
| } | |
| fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); | |
| printf("# Scales (for hessian or gradient estimation)\n"); | |
| fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); | |
| for(i=1,jk=1; i <=nlstate; i++){ | |
| for(j=1; j <=nlstate+ndeath; j++){ | |
| if (j!=i) { | |
| fprintf(ficres,"%1d%1d",i,j); | |
| printf("%1d%1d",i,j); | |
| fprintf(ficlog,"%1d%1d",i,j); | |
| for(k=1; k<=ncovmodel;k++){ | |
| printf(" %.5e",delti[jk]); | |
| fprintf(ficlog," %.5e",delti[jk]); | |
| fprintf(ficres," %.5e",delti[jk]); | |
| jk++; | |
| } | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| fprintf(ficres,"\n"); | |
| } | |
| } | |
| } | |
| fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); | |
| if(mle==1) | |
| printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); | |
| fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); | |
| for(i=1,k=1;i<=npar;i++){ | |
| /* if (k>nlstate) k=1; | |
| i1=(i-1)/(ncovmodel*nlstate)+1; | |
| fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]); | |
| printf("%s%d%d",alph[k],i1,tab[i]); | |
| */ | |
| fprintf(ficres,"%3d",i); | |
| if(mle==1) | |
| printf("%3d",i); | |
| fprintf(ficlog,"%3d",i); | |
| for(j=1; j<=i;j++){ | |
| fprintf(ficres," %.5e",matcov[i][j]); | |
| if(mle==1) | |
| printf(" %.5e",matcov[i][j]); | |
| fprintf(ficlog," %.5e",matcov[i][j]); | |
| } | |
| fprintf(ficres,"\n"); | |
| if(mle==1) | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| k++; | |
| } | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| puts(line); | |
| fputs(line,ficparo); | |
| } | |
| ungetc(c,ficpar); | |
| estepm=0; | |
| fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); | |
| if (estepm==0 || estepm < stepm) estepm=stepm; | |
| if (fage <= 2) { | |
| bage = ageminpar; | |
| fage = agemaxpar; | |
| } | |
| fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); | |
| fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | |
| fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| puts(line); | |
| fputs(line,ficparo); | |
| } | |
| ungetc(c,ficpar); | |
| fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); | |
| fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | |
| fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | |
| printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | |
| fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| puts(line); | |
| fputs(line,ficparo); | |
| } | |
| ungetc(c,ficpar); | |
| dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; | |
| dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; | |
| fscanf(ficpar,"pop_based=%d\n",&popbased); | |
| fprintf(ficparo,"pop_based=%d\n",popbased); | |
| fprintf(ficres,"pop_based=%d\n",popbased); | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| puts(line); | |
| fputs(line,ficparo); | |
| } | |
| ungetc(c,ficpar); | |
| fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); | |
| fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | |
| printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | |
| fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | |
| fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | |
| /* day and month of proj2 are not used but only year anproj2.*/ | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | |
| ungetc(c,ficpar); | |
| fgets(line, MAXLINE, ficpar); | |
| puts(line); | |
| fputs(line,ficparo); | |
| } | |
| ungetc(c,ficpar); | |
| fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1); | |
| fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | |
| fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | |
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); | |
| /*------------ gnuplot -------------*/ | |
| strcpy(optionfilegnuplot,optionfilefiname); | |
| strcat(optionfilegnuplot,".gp"); | |
| if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) { | |
| printf("Problem with file %s",optionfilegnuplot); | |
| } | |
| else{ | |
| fprintf(ficgp,"\n# %s\n", version); | |
| fprintf(ficgp,"# %s\n", optionfilegnuplot); | |
| fprintf(ficgp,"set missing 'NaNq'\n"); | |
| } | |
| fclose(ficgp); | |
| printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p); | |
| /*--------- index.htm --------*/ | |
| strcpy(optionfilehtm,optionfile); | |
| strcat(optionfilehtm,".htm"); | |
| if((fichtm=fopen(optionfilehtm,"w"))==NULL) { | |
| printf("Problem with %s \n",optionfilehtm), exit(0); | |
| } | |
| fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n | |
| Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n | |
| \n | |
| Total number of observations=%d <br>\n | |
| Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n | |
| Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n | |
| <hr size=\"2\" color=\"#EC5E5E\"> | |
| <ul><li><h4>Parameter files</h4>\n | |
| - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n | |
| - Log file of the run: <a href=\"%s\">%s</a><br>\n | |
| - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot); | |
| fclose(fichtm); | |
| printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); | |
| /*------------ free_vector -------------*/ | |
| chdir(path); | |
| free_ivector(wav,1,imx); | |
| free_imatrix(dh,1,lastpass-firstpass+1,1,imx); | |
| free_imatrix(bh,1,lastpass-firstpass+1,1,imx); | |
| free_imatrix(mw,1,lastpass-firstpass+1,1,imx); | |
| free_ivector(num,1,n); | |
| free_vector(agedc,1,n); | |
| /*free_matrix(covar,0,NCOVMAX,1,n);*/ | |
| /*free_matrix(covar,1,NCOVMAX,1,n);*/ | |
| fclose(ficparo); | |
| fclose(ficres); | |
| /*--------------- Prevalence limit (stable prevalence) --------------*/ | |
| strcpy(filerespl,"pl"); | |
| strcat(filerespl,fileres); | |
| if((ficrespl=fopen(filerespl,"w"))==NULL) { | |
| printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end; | |
| fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end; | |
| } | |
| printf("Computing stable prevalence: result on file '%s' \n", filerespl); | |
| fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl); | |
| fprintf(ficrespl,"#Stable prevalence \n"); | |
| fprintf(ficrespl,"#Age "); | |
| for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); | |
| fprintf(ficrespl,"\n"); | |
| prlim=matrix(1,nlstate,1,nlstate); | |
| agebase=ageminpar; | |
| agelim=agemaxpar; | |
| ftolpl=1.e-10; | |
| i1=cptcoveff; | |
| if (cptcovn < 1){i1=1;} | |
| for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | |
| k=k+1; | |
| /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/ | |
| fprintf(ficrespl,"\n#******"); | |
| printf("\n#******"); | |
| fprintf(ficlog,"\n#******"); | |
| for(j=1;j<=cptcoveff;j++) { | |
| fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| } | |
| fprintf(ficrespl,"******\n"); | |
| printf("******\n"); | |
| fprintf(ficlog,"******\n"); | |
| for (age=agebase; age<=agelim; age++){ | |
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | |
| fprintf(ficrespl,"%.0f ",age ); | |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| for(i=1; i<=nlstate;i++) | |
| fprintf(ficrespl," %.5f", prlim[i][i]); | |
| fprintf(ficrespl,"\n"); | |
| } | |
| } | |
| } | |
| fclose(ficrespl); | |
| /*------------- h Pij x at various ages ------------*/ | |
| strcpy(filerespij,"pij"); strcat(filerespij,fileres); | |
| if((ficrespij=fopen(filerespij,"w"))==NULL) { | |
| printf("Problem with Pij resultfile: %s\n", filerespij);goto end; | |
| fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end; | |
| } | |
| printf("Computing pij: result on file '%s' \n", filerespij); | |
| fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); | |
| stepsize=(int) (stepm+YEARM-1)/YEARM; | |
| /*if (stepm<=24) stepsize=2;*/ | |
| agelim=AGESUP; | |
| hstepm=stepsize*YEARM; /* Every year of age */ | |
| hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ | |
| /* hstepm=1; aff par mois*/ | |
| fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); | |
| for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | |
| k=k+1; | |
| fprintf(ficrespij,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficrespij,"******\n"); | |
| for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ | |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | |
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | |
| /* nhstepm=nhstepm*YEARM; aff par mois*/ | |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| oldm=oldms;savm=savms; | |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | |
| fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); | |
| for(i=1; i<=nlstate;i++) | |
| for(j=1; j<=nlstate+ndeath;j++) | |
| fprintf(ficrespij," %1d-%1d",i,j); | |
| fprintf(ficrespij,"\n"); | |
| for (h=0; h<=nhstepm; h++){ | |
| fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); | |
| for(i=1; i<=nlstate;i++) | |
| for(j=1; j<=nlstate+ndeath;j++) | |
| fprintf(ficrespij," %.5f", p3mat[i][j][h]); | |
| fprintf(ficrespij,"\n"); | |
| } | |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | |
| fprintf(ficrespij,"\n"); | |
| } | |
| } | |
| } | |
| varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax); | |
| fclose(ficrespij); | |
| /*---------- Forecasting ------------------*/ | |
| /*if((stepm == 1) && (strcmp(model,".")==0)){*/ | |
| if(prevfcast==1){ | |
| /* if(stepm ==1){*/ | |
| prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); | |
| /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/ | |
| /* } */ | |
| /* else{ */ | |
| /* erreur=108; */ | |
| /* printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ | |
| /* fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ | |
| /* } */ | |
| } | |
| /*---------- Health expectancies and variances ------------*/ | |
| strcpy(filerest,"t"); | |
| strcat(filerest,fileres); | |
| if((ficrest=fopen(filerest,"w"))==NULL) { | |
| printf("Problem with total LE resultfile: %s\n", filerest);goto end; | |
| fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end; | |
| } | |
| printf("Computing Total LEs with variances: file '%s' \n", filerest); | |
| fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); | |
| strcpy(filerese,"e"); | |
| strcat(filerese,fileres); | |
| if((ficreseij=fopen(filerese,"w"))==NULL) { | |
| printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | |
| fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | |
| } | |
| printf("Computing Health Expectancies: result on file '%s' \n", filerese); | |
| fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese); | |
| strcpy(fileresv,"v"); | |
| strcat(fileresv,fileres); | |
| if((ficresvij=fopen(fileresv,"w"))==NULL) { | |
| printf("Problem with variance resultfile: %s\n", fileresv);exit(0); | |
| fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); | |
| } | |
| printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | |
| fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | |
| /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */ | |
| prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); | |
| /* printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d, mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\ | |
| ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass); | |
| */ | |
| if (mobilav!=0) { | |
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ | |
| fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | |
| printf(" Error in movingaverage mobilav=%d\n",mobilav); | |
| } | |
| } | |
| for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | |
| k=k+1; | |
| fprintf(ficrest,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficrest,"******\n"); | |
| fprintf(ficreseij,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficreseij,"******\n"); | |
| fprintf(ficresvij,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficresvij,"******\n"); | |
| eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | |
| oldm=oldms;savm=savms; | |
| evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov); | |
| vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | |
| oldm=oldms;savm=savms; | |
| varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav); | |
| if(popbased==1){ | |
| varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav); | |
| } | |
| fprintf(ficrest,"#Total LEs with variances: e.. (std) "); | |
| for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); | |
| fprintf(ficrest,"\n"); | |
| epj=vector(1,nlstate+1); | |
| for(age=bage; age <=fage ;age++){ | |
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | |
| if (popbased==1) { | |
| if(mobilav ==0){ | |
| for(i=1; i<=nlstate;i++) | |
| prlim[i][i]=probs[(int)age][i][k]; | |
| }else{ /* mobilav */ | |
| for(i=1; i<=nlstate;i++) | |
| prlim[i][i]=mobaverage[(int)age][i][k]; | |
| } | |
| } | |
| fprintf(ficrest," %4.0f",age); | |
| for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ | |
| for(i=1, epj[j]=0.;i <=nlstate;i++) { | |
| epj[j] += prlim[i][i]*eij[i][j][(int)age]; | |
| /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ | |
| } | |
| epj[nlstate+1] +=epj[j]; | |
| } | |
| for(i=1, vepp=0.;i <=nlstate;i++) | |
| for(j=1;j <=nlstate;j++) | |
| vepp += vareij[i][j][(int)age]; | |
| fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); | |
| for(j=1;j <=nlstate;j++){ | |
| fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); | |
| } | |
| fprintf(ficrest,"\n"); | |
| } | |
| free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); | |
| free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); | |
| free_vector(epj,1,nlstate+1); | |
| } | |
| } | |
| free_vector(weight,1,n); | |
| free_imatrix(Tvard,1,15,1,2); | |
| free_imatrix(s,1,maxwav+1,1,n); | |
| free_matrix(anint,1,maxwav,1,n); | |
| free_matrix(mint,1,maxwav,1,n); | |
| free_ivector(cod,1,n); | |
| free_ivector(tab,1,NCOVMAX); | |
| fclose(ficreseij); | |
| fclose(ficresvij); | |
| fclose(ficrest); | |
| fclose(ficpar); | |
| /*------- Variance of stable prevalence------*/ | |
| strcpy(fileresvpl,"vpl"); | |
| strcat(fileresvpl,fileres); | |
| if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { | |
| printf("Problem with variance of stable prevalence resultfile: %s\n", fileresvpl); | |
| exit(0); | |
| } | |
| printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl); | |
| for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | |
| k=k+1; | |
| fprintf(ficresvpl,"\n#****** "); | |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficresvpl,"******\n"); | |
| varpl=matrix(1,nlstate,(int) bage, (int) fage); | |
| oldm=oldms;savm=savms; | |
| varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k); | |
| free_matrix(varpl,1,nlstate,(int) bage, (int)fage); | |
| } | |
| } | |
| fclose(ficresvpl); | |
| /*---------- End : free ----------------*/ | |
| free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); | |
| free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); | |
| free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); | |
| free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); | |
| free_matrix(covar,0,NCOVMAX,1,n); | |
| free_matrix(matcov,1,npar,1,npar); | |
| /*free_vector(delti,1,npar);*/ | |
| free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | |
| free_matrix(agev,1,maxwav,1,imx); | |
| free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | |
| if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | |
| free_ivector(ncodemax,1,8); | |
| free_ivector(Tvar,1,15); | |
| free_ivector(Tprod,1,15); | |
| free_ivector(Tvaraff,1,15); | |
| free_ivector(Tage,1,15); | |
| free_ivector(Tcode,1,100); | |
| /* fclose(fichtm);*/ | |
| /* fclose(ficgp);*/ /* ALready done */ | |
| if(erreur >0){ | |
| printf("End of Imach with error or warning %d\n",erreur); | |
| fprintf(ficlog,"End of Imach with error or warning %d\n",erreur); | |
| }else{ | |
| printf("End of Imach\n"); | |
| fprintf(ficlog,"End of Imach\n"); | |
| } | |
| printf("See log file on %s\n",filelog); | |
| fclose(ficlog); | |
| /* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */ | |
| /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/ | |
| /*printf("Total time was %d uSec.\n", total_usecs);*/ | |
| /*------ End -----------*/ | |
| end: | |
| #ifdef windows | |
| /* chdir(pathcd);*/ | |
| #endif | |
| /*system("wgnuplot graph.plt");*/ | |
| /*system("../gp37mgw/wgnuplot graph.plt");*/ | |
| /*system("cd ../gp37mgw");*/ | |
| /* system("..\\gp37mgw\\wgnuplot graph.plt");*/ | |
| strcpy(plotcmd,GNUPLOTPROGRAM); | |
| strcat(plotcmd," "); | |
| strcat(plotcmd,optionfilegnuplot); | |
| printf("Starting graphs with: %s",plotcmd);fflush(stdout); | |
| system(plotcmd); | |
| printf(" Wait..."); | |
| /*#ifdef windows*/ | |
| while (z[0] != 'q') { | |
| /* chdir(path); */ | |
| printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: "); | |
| scanf("%s",z); | |
| if (z[0] == 'c') system("./imach"); | |
| else if (z[0] == 'e') system(optionfilehtm); | |
| else if (z[0] == 'g') system(plotcmd); | |
| else if (z[0] == 'q') exit(0); | |
| } | |
| /*#endif */ | |
| } | |