Diff for /imach/src/imach.c between versions 1.48 and 1.99

version 1.48, 2002/06/10 13:12:49 version 1.99, 2004/06/05 08:57:40
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.99  2004/06/05 08:57:40  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.98  2004/05/16 15:05:56  brouard
   first survey ("cross") where individuals from different ages are    New version 0.97 . First attempt to estimate force of mortality
   interviewed on their health status or degree of disability (in the    directly from the data i.e. without the need of knowing the health
   case of a health survey which is our main interest) -2- at least a    state at each age, but using a Gompertz model: log u =a + b*age .
   second wave of interviews ("longitudinal") which measure each change    This is the basic analysis of mortality and should be done before any
   (if any) in individual health status.  Health expectancies are    other analysis, in order to test if the mortality estimated from the
   computed from the time spent in each health state according to a    cross-longitudinal survey is different from the mortality estimated
   model. More health states you consider, more time is necessary to reach the    from other sources like vital statistic data.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    The same imach parameter file can be used but the option for mle should be -3.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Agnès, who wrote this part of the code, tried to keep most of the
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    former routines in order to include the new code within the former code.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    The output is very simple: only an estimate of the intercept and of
   where the markup *Covariates have to be included here again* invites    the slope with 95% confident intervals.
   you to do it.  More covariates you add, slower the  
   convergence.    Current limitations:
     A) Even if you enter covariates, i.e. with the
   The advantage of this computer programme, compared to a simple    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   multinomial logistic model, is clear when the delay between waves is not    B) There is no computation of Life Expectancy nor Life Table.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.97  2004/02/20 13:25:42  lievre
   account using an interpolation or extrapolation.      Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.96  2003/07/15 15:38:55  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   states. This elementary transition (by month or quarter trimester,    rewritten within the same printf. Workaround: many printfs.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.95  2003/07/08 07:54:34  brouard
   and the contribution of each individual to the likelihood is simply    * imach.c (Repository):
   hPijx.    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.93  2003/06/25 16:33:55  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): On windows (cygwin) function asctime_r doesn't
   from the European Union.    exist so I changed back to asctime which exists.
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.96b
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.92  2003/06/25 16:30:45  brouard
   **********************************************************************/    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
 #include <math.h>  
 #include <stdio.h>    Revision 1.91  2003/06/25 15:30:29  brouard
 #include <stdlib.h>    * imach.c (Repository): Duplicated warning errors corrected.
 #include <unistd.h>    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define MAXLINE 256    is stamped in powell.  We created a new html file for the graphs
 #define GNUPLOTPROGRAM "gnuplot"    concerning matrix of covariance. It has extension -cov.htm.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.90  2003/06/24 12:34:15  brouard
 /*#define DEBUG*/    (Module): Some bugs corrected for windows. Also, when
 #define windows    mle=-1 a template is output in file "or"mypar.txt with the design
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    of the covariance matrix to be input.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Some bugs corrected for windows. Also, when
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.88  2003/06/23 17:54:56  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.87  2003/06/18 12:26:01  brouard
 #define YEARM 12. /* Number of months per year */    Version 0.96
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.86  2003/06/17 20:04:08  brouard
 #ifdef windows    (Module): Change position of html and gnuplot routines and added
 #define DIRSEPARATOR '\\'    routine fileappend.
 #else  
 #define DIRSEPARATOR '/'    Revision 1.85  2003/06/17 13:12:43  brouard
 #endif    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    prior to the death. In this case, dh was negative and likelihood
 int erreur; /* Error number */    was wrong (infinity). We still send an "Error" but patch by
 int nvar;    assuming that the date of death was just one stepm after the
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    interview.
 int npar=NPARMAX;    (Repository): Because some people have very long ID (first column)
 int nlstate=2; /* Number of live states */    we changed int to long in num[] and we added a new lvector for
 int ndeath=1; /* Number of dead states */    memory allocation. But we also truncated to 8 characters (left
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    truncation)
 int popbased=0;    (Repository): No more line truncation errors.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.84  2003/06/13 21:44:43  brouard
 int maxwav; /* Maxim number of waves */    * imach.c (Repository): Replace "freqsummary" at a correct
 int jmin, jmax; /* min, max spacing between 2 waves */    place. It differs from routine "prevalence" which may be called
 int mle, weightopt;    many times. Probs is memory consuming and must be used with
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    parcimony.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.83  2003/06/10 13:39:11  lievre
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    *** empty log message ***
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.82  2003/06/05 15:57:20  brouard
 FILE *fichtm; /* Html File */    Add log in  imach.c and  fullversion number is now printed.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];  */
 FILE  *ficresvij;  /*
 char fileresv[FILENAMELENGTH];     Interpolated Markov Chain
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Short summary of the programme:
 char title[MAXLINE];    
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    This program computes Healthy Life Expectancies from
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 char filerest[FILENAMELENGTH];    second wave of interviews ("longitudinal") which measure each change
 char fileregp[FILENAMELENGTH];    (if any) in individual health status.  Health expectancies are
 char popfile[FILENAMELENGTH];    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 #define NR_END 1    probability to be observed in state j at the second wave
 #define FREE_ARG char*    conditional to be observed in state i at the first wave. Therefore
 #define FTOL 1.0e-10    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define NRANSI    complex model than "constant and age", you should modify the program
 #define ITMAX 200    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 #define TOL 2.0e-4    convergence.
   
 #define CGOLD 0.3819660    The advantage of this computer programme, compared to a simple
 #define ZEPS 1.0e-10    multinomial logistic model, is clear when the delay between waves is not
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 #define GOLD 1.618034    account using an interpolation or extrapolation.  
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 static double maxarg1,maxarg2;    split into an exact number (nh*stepm) of unobserved intermediate
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    states. This elementary transition (by month, quarter,
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    semester or year) is modelled as a multinomial logistic.  The hPx
      matrix is simply the matrix product of nh*stepm elementary matrices
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    and the contribution of each individual to the likelihood is simply
 #define rint(a) floor(a+0.5)    hPijx.
   
 static double sqrarg;    Also this programme outputs the covariance matrix of the parameters but also
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    of the life expectancies. It also computes the stable prevalence. 
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int imx;             Institut national d'études démographiques, Paris.
 int stepm;    This software have been partly granted by Euro-REVES, a concerted action
 /* Stepm, step in month: minimum step interpolation*/    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 int estepm;    software can be distributed freely for non commercial use. Latest version
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    can be accessed at http://euroreves.ined.fr/imach .
   
 int m,nb;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    
 double **pmmij, ***probs, ***mobaverage;    **********************************************************************/
 double dateintmean=0;  /*
     main
 double *weight;    read parameterfile
 int **s; /* Status */    read datafile
 double *agedc, **covar, idx;    concatwav
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    freqsummary
     if (mle >= 1)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */      mlikeli
 double ftolhess; /* Tolerance for computing hessian */    print results files
     if mle==1 
 /**************** split *************************/       computes hessian
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
    char *s;                             /* pointer */    open gnuplot file
    int  l1, l2;                         /* length counters */    open html file
     stable prevalence
    l1 = strlen( path );                 /* length of path */     for age prevalim()
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    h Pij x
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    variance of p varprob
    if ( s == NULL ) {                   /* no directory, so use current */    forecasting if prevfcast==1 prevforecast call prevalence()
 #if     defined(__bsd__)                /* get current working directory */    health expectancies
       extern char       *getwd( );    Variance-covariance of DFLE
     prevalence()
       if ( getwd( dirc ) == NULL ) {     movingaverage()
 #else    varevsij() 
       extern char       *getcwd( );    if popbased==1 varevsij(,popbased)
     total life expectancies
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Variance of stable prevalence
 #endif   end
          return( GLOCK_ERROR_GETCWD );  */
       }  
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */   
       l2 = strlen( s );                 /* length of filename */  #include <math.h>
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #include <stdio.h>
       strcpy( name, s );                /* save file name */  #include <stdlib.h>
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #include <unistd.h>
       dirc[l1-l2] = 0;                  /* add zero */  
    }  /* #include <sys/time.h> */
    l1 = strlen( dirc );                 /* length of directory */  #include <time.h>
 #ifdef windows  #include "timeval.h"
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  /* #include <libintl.h> */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  /* #define _(String) gettext (String) */
 #endif  
    s = strrchr( name, '.' );            /* find last / */  #define MAXLINE 256
    s++;  #define GNUPLOTPROGRAM "gnuplot"
    strcpy(ext,s);                       /* save extension */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    l1= strlen( name);  #define FILENAMELENGTH 132
    l2= strlen( s)+1;  /*#define DEBUG*/
    strncpy( finame, name, l1-l2);  /*#define windows*/
    finame[l1-l2]= 0;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    return( 0 );                         /* we're done */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /******************************************/  
   #define NINTERVMAX 8
 void replace(char *s, char*t)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int i;  #define NCOVMAX 8 /* Maximum number of covariates */
   int lg=20;  #define MAXN 20000
   i=0;  #define YEARM 12. /* Number of months per year */
   lg=strlen(t);  #define AGESUP 130
   for(i=0; i<= lg; i++) {  #define AGEBASE 40
     (s[i] = t[i]);  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     if (t[i]== '\\') s[i]='/';  #ifdef unix
   }  #define DIRSEPARATOR '/'
 }  #define ODIRSEPARATOR '\\'
   #else
 int nbocc(char *s, char occ)  #define DIRSEPARATOR '\\'
 {  #define ODIRSEPARATOR '/'
   int i,j=0;  #endif
   int lg=20;  
   i=0;  /* $Id$ */
   lg=strlen(s);  /* $State$ */
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   }  char fullversion[]="$Revision$ $Date$"; 
   return j;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 void cutv(char *u,char *v, char*t, char occ)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   int i,lg,j,p=0;  int ndeath=1; /* Number of dead states */
   i=0;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   for(j=0; j<=strlen(t)-1; j++) {  int popbased=0;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   lg=strlen(t);  int jmin, jmax; /* min, max spacing between 2 waves */
   for(j=0; j<p; j++) {  int gipmx, gsw; /* Global variables on the number of contributions 
     (u[j] = t[j]);                     to the likelihood and the sum of weights (done by funcone)*/
   }  int mle, weightopt;
      u[p]='\0';  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    for(j=0; j<= lg; j++) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     if (j>=(p+1))(v[j-p-1] = t[j]);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   }  double jmean; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /********************** nrerror ********************/  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 void nrerror(char error_text[])  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   fprintf(stderr,"ERREUR ...\n");  long ipmx; /* Number of contributions */
   fprintf(stderr,"%s\n",error_text);  double sw; /* Sum of weights */
   exit(1);  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /*********************** vector *******************/  FILE *ficresilk;
 double *vector(int nl, int nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   double *v;  FILE *fichtm, *fichtmcov; /* Html File */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  FILE *ficreseij;
   if (!v) nrerror("allocation failure in vector");  char filerese[FILENAMELENGTH];
   return v-nl+NR_END;  FILE  *ficresvij;
 }  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /************************ free vector ******************/  char fileresvpl[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /************************ivector *******************************/  int  outcmd=0;
 int *ivector(long nl,long nh)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!v) nrerror("allocation failure in ivector");  char filerest[FILENAMELENGTH];
   return v-nl+NR_END;  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /******************free ivector **************************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 void free_ivector(int *v, long nl, long nh)  
 {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   free((FREE_ARG)(v+nl-NR_END));  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /******************* imatrix *******************************/  long time_value;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  extern long time();
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char strcurr[80], strfor[80];
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define NR_END 1
   int **m;  #define FREE_ARG char*
    #define FTOL 1.0e-10
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define NRANSI 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ITMAX 200 
   m += NR_END;  
   m -= nrl;  #define TOL 2.0e-4 
    
    #define CGOLD 0.3819660 
   /* allocate rows and set pointers to them */  #define ZEPS 1.0e-10 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define GOLD 1.618034 
   m[nrl] -= ncl;  #define GLIMIT 100.0 
    #define TINY 1.0e-20 
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    static double maxarg1,maxarg2;
   /* return pointer to array of pointers to rows */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   return m;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /****************** free_imatrix *************************/  #define rint(a) floor(a+0.5)
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  static double sqrarg;
       long nch,ncl,nrh,nrl;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
      /* free an int matrix allocated by imatrix() */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  int agegomp= AGEGOMP;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  int imx; 
 }  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  int m,nb;
   long *num;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   if (!m) nrerror("allocation failure 1 in matrix()");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m += NR_END;  double **pmmij, ***probs;
   m -= nrl;  double *ageexmed,*agecens;
   double dateintmean=0;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double *weight;
   m[nrl] += NR_END;  int **s; /* Status */
   m[nrl] -= ncl;  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /*************************free matrix ************************/  /**************** split *************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   free((FREE_ARG)(m+nrl-NR_END));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /******************* ma3x *******************************/    int   l1, l2;                         /* length counters */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    l1 = strlen(path );                   /* length of path */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double ***m;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   if (!m) nrerror("allocation failure 1 in matrix()");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m += NR_END;      /* get current working directory */
   m -= nrl;      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));        return( GLOCK_ERROR_GETCWD );
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      }
   m[nrl] += NR_END;      strcpy( name, path );               /* we've got it */
   m[nrl] -= ncl;    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      strcpy( name, ss );         /* save file name */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl][ncl] += NR_END;      dirc[l1-l2] = 0;                    /* add zero */
   m[nrl][ncl] -= nll;    }
   for (j=ncl+1; j<=nch; j++)    l1 = strlen( dirc );                  /* length of directory */
     m[nrl][j]=m[nrl][j-1]+nlay;    /*#ifdef windows
      if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   for (i=nrl+1; i<=nrh; i++) {  #else
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
     for (j=ncl+1; j<=nch; j++)  #endif
       m[i][j]=m[i][j-1]+nlay;    */
   }    ss = strrchr( name, '.' );            /* find last / */
   return m;    if (ss >0){
 }      ss++;
       strcpy(ext,ss);                     /* save extension */
 /*************************free ma3x ************************/      l1= strlen( name);
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      l2= strlen(ss)+1;
 {      strncpy( finame, name, l1-l2);
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      finame[l1-l2]= 0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));    return( 0 );                          /* we're done */
 }  }
   
 /***************** f1dim *************************/  
 extern int ncom;  /******************************************/
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  void replace_back_to_slash(char *s, char*t)
    {
 double f1dim(double x)    int i;
 {    int lg=0;
   int j;    i=0;
   double f;    lg=strlen(t);
   double *xt;    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
   xt=vector(1,ncom);      if (t[i]== '\\') s[i]='/';
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    }
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /*****************brent *************************/    int lg=20;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    i=0;
 {    lg=strlen(s);
   int iter;    for(i=0; i<= lg; i++) {
   double a,b,d,etemp;    if  (s[i] == occ ) j++;
   double fu,fv,fw,fx;    }
   double ftemp;    return j;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  
    void cutv(char *u,char *v, char*t, char occ)
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    /* cuts string t into u and v where u is ended by char occ excluding it
   x=w=v=bx;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   fw=fv=fx=(*f)(x);       gives u="abcedf" and v="ghi2j" */
   for (iter=1;iter<=ITMAX;iter++) {    int i,lg,j,p=0;
     xm=0.5*(a+b);    i=0;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    for(j=0; j<=strlen(t)-1; j++) {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     printf(".");fflush(stdout);    }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    lg=strlen(t);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for(j=0; j<p; j++) {
 #endif      (u[j] = t[j]);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    }
       *xmin=x;       u[p]='\0';
       return fx;  
     }     for(j=0; j<= lg; j++) {
     ftemp=fu;      if (j>=(p+1))(v[j-p-1] = t[j]);
     if (fabs(e) > tol1) {    }
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /********************** nrerror ********************/
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  void nrerror(char error_text[])
       q=fabs(q);  {
       etemp=e;    fprintf(stderr,"ERREUR ...\n");
       e=d;    fprintf(stderr,"%s\n",error_text);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    exit(EXIT_FAILURE);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  /*********************** vector *******************/
         d=p/q;  double *vector(int nl, int nh)
         u=x+d;  {
         if (u-a < tol2 || b-u < tol2)    double *v;
           d=SIGN(tol1,xm-x);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       }    if (!v) nrerror("allocation failure in vector");
     } else {    return v-nl+NR_END;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /************************ free vector ******************/
     fu=(*f)(u);  void free_vector(double*v, int nl, int nh)
     if (fu <= fx) {  {
       if (u >= x) a=x; else b=x;    free((FREE_ARG)(v+nl-NR_END));
       SHFT(v,w,x,u)  }
         SHFT(fv,fw,fx,fu)  
         } else {  /************************ivector *******************************/
           if (u < x) a=u; else b=u;  int *ivector(long nl,long nh)
           if (fu <= fw || w == x) {  {
             v=w;    int *v;
             w=u;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
             fv=fw;    if (!v) nrerror("allocation failure in ivector");
             fw=fu;    return v-nl+NR_END;
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  /******************free ivector **************************/
           }  void free_ivector(int *v, long nl, long nh)
         }  {
   }    free((FREE_ARG)(v+nl-NR_END));
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /************************lvector *******************************/
 }  long *lvector(long nl,long nh)
   {
 /****************** mnbrak ***********************/    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!v) nrerror("allocation failure in ivector");
             double (*func)(double))    return v-nl+NR_END;
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /******************free lvector **************************/
    void free_lvector(long *v, long nl, long nh)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    free((FREE_ARG)(v+nl-NR_END));
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /******************* imatrix *******************************/
       }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   *cx=(*bx)+GOLD*(*bx-*ax);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   *fc=(*func)(*cx);  { 
   while (*fb > *fc) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     r=(*bx-*ax)*(*fb-*fc);    int **m; 
     q=(*bx-*cx)*(*fb-*fa);    
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    /* allocate pointers to rows */ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     if ((*bx-u)*(u-*cx) > 0.0) {    m += NR_END; 
       fu=(*func)(u);    m -= nrl; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    
       fu=(*func)(u);    
       if (fu < *fc) {    /* allocate rows and set pointers to them */ 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           SHFT(*fb,*fc,fu,(*func)(u))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           }    m[nrl] += NR_END; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl] -= ncl; 
       u=ulim;    
       fu=(*func)(u);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);    /* return pointer to array of pointers to rows */ 
       fu=(*func)(u);    return m; 
     }  } 
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /****************** free_imatrix *************************/
       }  void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl; 
 /*************** linmin ************************/       /* free an int matrix allocated by imatrix() */ 
   { 
 int ncom;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 double *pcom,*xicom;    free((FREE_ARG) (m+nrl-NR_END)); 
 double (*nrfunc)(double []);  } 
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /******************* matrix *******************************/
 {  double **matrix(long nrl, long nrh, long ncl, long nch)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double f1dim(double x);    double **m;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int j;    if (!m) nrerror("allocation failure 1 in matrix()");
   double xx,xmin,bx,ax;    m += NR_END;
   double fx,fb,fa;    m -= nrl;
    
   ncom=n;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   pcom=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   xicom=vector(1,n);    m[nrl] += NR_END;
   nrfunc=func;    m[nrl] -= ncl;
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     xicom[j]=xi[j];    return m;
   }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   ax=0.0;     */
   xx=1.0;  }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /*************************free matrix ************************/
 #ifdef DEBUG  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  /******************* ma3x *******************************/
   free_vector(xicom,1,n);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   free_vector(pcom,1,n);  {
 }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             double (*func)(double []))    if (!m) nrerror("allocation failure 1 in matrix()");
 {    m += NR_END;
   void linmin(double p[], double xi[], int n, double *fret,    m -= nrl;
               double (*func)(double []));  
   int i,ibig,j;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double del,t,*pt,*ptt,*xit;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double fp,fptt;    m[nrl] += NR_END;
   double *xits;    m[nrl] -= ncl;
   pt=vector(1,n);  
   ptt=vector(1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   xit=vector(1,n);  
   xits=vector(1,n);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   *fret=(*func)(p);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for (j=1;j<=n;j++) pt[j]=p[j];    m[nrl][ncl] += NR_END;
   for (*iter=1;;++(*iter)) {    m[nrl][ncl] -= nll;
     fp=(*fret);    for (j=ncl+1; j<=nch; j++) 
     ibig=0;      m[nrl][j]=m[nrl][j-1]+nlay;
     del=0.0;    
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for (i=nrl+1; i<=nrh; i++) {
     for (i=1;i<=n;i++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       printf(" %d %.12f",i, p[i]);      for (j=ncl+1; j<=nch; j++) 
     printf("\n");        m[i][j]=m[i][j-1]+nlay;
     for (i=1;i<=n;i++) {    }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    return m; 
       fptt=(*fret);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 #ifdef DEBUG             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       printf("fret=%lf \n",*fret);    */
 #endif  }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /*************************free ma3x ************************/
       if (fabs(fptt-(*fret)) > del) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         del=fabs(fptt-(*fret));  {
         ibig=i;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       printf("%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /*************** function subdirf ***********/
         printf(" x(%d)=%.12e",j,xit[j]);  char *subdirf(char fileres[])
       }  {
       for(j=1;j<=n;j++)    /* Caution optionfilefiname is hidden */
         printf(" p=%.12e",p[j]);    strcpy(tmpout,optionfilefiname);
       printf("\n");    strcat(tmpout,"/"); /* Add to the right */
 #endif    strcat(tmpout,fileres);
     }    return tmpout;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  /*************** function subdirf2 ***********/
       k[0]=1;  char *subdirf2(char fileres[], char *preop)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    
       for (j=1;j<=n;j++)    /* Caution optionfilefiname is hidden */
         printf(" %.12e",p[j]);    strcpy(tmpout,optionfilefiname);
       printf("\n");    strcat(tmpout,"/");
       for(l=0;l<=1;l++) {    strcat(tmpout,preop);
         for (j=1;j<=n;j++) {    strcat(tmpout,fileres);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return tmpout;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*************** function subdirf3 ***********/
       }  char *subdirf3(char fileres[], char *preop, char *preop2)
 #endif  {
     
     /* Caution optionfilefiname is hidden */
       free_vector(xit,1,n);    strcpy(tmpout,optionfilefiname);
       free_vector(xits,1,n);    strcat(tmpout,"/");
       free_vector(ptt,1,n);    strcat(tmpout,preop);
       free_vector(pt,1,n);    strcat(tmpout,preop2);
       return;    strcat(tmpout,fileres);
     }    return tmpout;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /***************** f1dim *************************/
       xit[j]=p[j]-pt[j];  extern int ncom; 
       pt[j]=p[j];  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
     fptt=(*func)(ptt);   
     if (fptt < fp) {  double f1dim(double x) 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  { 
       if (t < 0.0) {    int j; 
         linmin(p,xit,n,fret,func);    double f;
         for (j=1;j<=n;j++) {    double *xt; 
           xi[j][ibig]=xi[j][n];   
           xi[j][n]=xit[j];    xt=vector(1,ncom); 
         }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 #ifdef DEBUG    f=(*nrfunc)(xt); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free_vector(xt,1,ncom); 
         for(j=1;j<=n;j++)    return f; 
           printf(" %.12e",xit[j]);  } 
         printf("\n");  
 #endif  /*****************brent *************************/
       }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
   }    int iter; 
 }    double a,b,d,etemp;
     double fu,fv,fw,fx;
 /**** Prevalence limit ****************/    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double e=0.0; 
 {   
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    a=(ax < cx ? ax : cx); 
      matrix by transitions matrix until convergence is reached */    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
   int i, ii,j,k;    fw=fv=fx=(*f)(x); 
   double min, max, maxmin, maxmax,sumnew=0.;    for (iter=1;iter<=ITMAX;iter++) { 
   double **matprod2();      xm=0.5*(a+b); 
   double **out, cov[NCOVMAX], **pmij();      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double **newm;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double agefin, delaymax=50 ; /* Max number of years to converge */      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
     for (j=1;j<=nlstate+ndeath;j++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
    cov[1]=1.;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
          *xmin=x; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        return fx; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      } 
     newm=savm;      ftemp=fu;
     /* Covariates have to be included here again */      if (fabs(e) > tol1) { 
      cov[2]=agefin;        r=(x-w)*(fx-fv); 
          q=(x-v)*(fx-fw); 
       for (k=1; k<=cptcovn;k++) {        p=(x-v)*q-(x-w)*r; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        q=2.0*(q-r); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        etemp=e; 
       for (k=1; k<=cptcovprod;k++)        e=d; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        else { 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          d=p/q; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          u=x+d; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
     savm=oldm;        } 
     oldm=newm;      } else { 
     maxmax=0.;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=1;j<=nlstate;j++){      } 
       min=1.;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       max=0.;      fu=(*f)(u); 
       for(i=1; i<=nlstate; i++) {      if (fu <= fx) { 
         sumnew=0;        if (u >= x) a=x; else b=x; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        SHFT(v,w,x,u) 
         prlim[i][j]= newm[i][j]/(1-sumnew);          SHFT(fv,fw,fx,fu) 
         max=FMAX(max,prlim[i][j]);          } else { 
         min=FMIN(min,prlim[i][j]);            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
       maxmin=max-min;              v=w; 
       maxmax=FMAX(maxmax,maxmin);              w=u; 
     }              fv=fw; 
     if(maxmax < ftolpl){              fw=fu; 
       return prlim;            } else if (fu <= fv || v == x || v == w) { 
     }              v=u; 
   }              fv=fu; 
 }            } 
           } 
 /*************** transition probabilities ***************/    } 
     nrerror("Too many iterations in brent"); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    *xmin=x; 
 {    return fx; 
   double s1, s2;  } 
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /****************** mnbrak ***********************/
   
     for(i=1; i<= nlstate; i++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(j=1; j<i;j++){              double (*func)(double)) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  { 
         /*s2 += param[i][j][nc]*cov[nc];*/    double ulim,u,r,q, dum;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double fu; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/   
       }    *fa=(*func)(*ax); 
       ps[i][j]=s2;    *fb=(*func)(*bx); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
     for(j=i+1; j<=nlstate+ndeath;j++){        SHFT(dum,*fb,*fa,dum) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    *cx=(*bx)+GOLD*(*bx-*ax); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    *fc=(*func)(*cx); 
       }    while (*fb > *fc) { 
       ps[i][j]=s2;      r=(*bx-*ax)*(*fb-*fc); 
     }      q=(*bx-*cx)*(*fb-*fa); 
   }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     /*ps[3][2]=1;*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for(i=1; i<= nlstate; i++){      if ((*bx-u)*(u-*cx) > 0.0) { 
      s1=0;        fu=(*func)(u); 
     for(j=1; j<i; j++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       s1+=exp(ps[i][j]);        fu=(*func)(u); 
     for(j=i+1; j<=nlstate+ndeath; j++)        if (fu < *fc) { 
       s1+=exp(ps[i][j]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     ps[i][i]=1./(s1+1.);            SHFT(*fb,*fc,fu,(*func)(u)) 
     for(j=1; j<i; j++)            } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for(j=i+1; j<=nlstate+ndeath; j++)        u=ulim; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fu=(*func)(u); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      } else { 
   } /* end i */        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      } 
     for(jj=1; jj<= nlstate+ndeath; jj++){      SHFT(*ax,*bx,*cx,u) 
       ps[ii][jj]=0;        SHFT(*fa,*fb,*fc,fu) 
       ps[ii][ii]=1;        } 
     }  } 
   }  
   /*************** linmin ************************/
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  int ncom; 
     for(jj=1; jj<= nlstate+ndeath; jj++){  double *pcom,*xicom;
      printf("%lf ",ps[ii][jj]);  double (*nrfunc)(double []); 
    }   
     printf("\n ");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
     printf("\n ");printf("%lf ",cov[2]);*/    double brent(double ax, double bx, double cx, 
 /*                 double (*f)(double), double tol, double *xmin); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double f1dim(double x); 
   goto end;*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     return ps;                double *fc, double (*func)(double)); 
 }    int j; 
     double xx,xmin,bx,ax; 
 /**************** Product of 2 matrices ******************/    double fx,fb,fa;
    
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    ncom=n; 
 {    pcom=vector(1,n); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    xicom=vector(1,n); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    nrfunc=func; 
   /* in, b, out are matrice of pointers which should have been initialized    for (j=1;j<=n;j++) { 
      before: only the contents of out is modified. The function returns      pcom[j]=p[j]; 
      a pointer to pointers identical to out */      xicom[j]=xi[j]; 
   long i, j, k;    } 
   for(i=nrl; i<= nrh; i++)    ax=0.0; 
     for(k=ncolol; k<=ncoloh; k++)    xx=1.0; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         out[i][k] +=in[i][j]*b[j][k];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   return out;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
     for (j=1;j<=n;j++) { 
 /************* Higher Matrix Product ***************/      xi[j] *= xmin; 
       p[j] += xi[j]; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    } 
 {    free_vector(xicom,1,n); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    free_vector(pcom,1,n); 
      duration (i.e. until  } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  char *asc_diff_time(long time_sec, char ascdiff[])
      (typically every 2 years instead of every month which is too big).  {
      Model is determined by parameters x and covariates have to be    long sec_left, days, hours, minutes;
      included manually here.    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
      */    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   int i, j, d, h, k;    minutes = (sec_left) /60;
   double **out, cov[NCOVMAX];    sec_left = (sec_left) % (60);
   double **newm;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   /* Hstepm could be zero and should return the unit matrix */  }
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*************** powell ************************/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       po[i][j][0]=(i==j ? 1.0 : 0.0);              double (*func)(double [])) 
     }  { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    void linmin(double p[], double xi[], int n, double *fret, 
   for(h=1; h <=nhstepm; h++){                double (*func)(double [])); 
     for(d=1; d <=hstepm; d++){    int i,ibig,j; 
       newm=savm;    double del,t,*pt,*ptt,*xit;
       /* Covariates have to be included here again */    double fp,fptt;
       cov[1]=1.;    double *xits;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    int niterf, itmp;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)    pt=vector(1,n); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    ptt=vector(1,n); 
       for (k=1; k<=cptcovprod;k++)    xit=vector(1,n); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    xits=vector(1,n); 
     *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    for (*iter=1;;++(*iter)) { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      fp=(*fret); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      ibig=0; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      del=0.0; 
       savm=oldm;      last_time=curr_time;
       oldm=newm;      (void) gettimeofday(&curr_time,&tzp);
     }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for(i=1; i<=nlstate+ndeath; i++)      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       for(j=1;j<=nlstate+ndeath;j++) {      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
         po[i][j][h]=newm[i][j];      */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);     for (i=1;i<=n;i++) {
          */        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
   } /* end h */        fprintf(ficrespow," %.12lf", p[i]);
   return po;      }
 }      printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
 /*************** log-likelihood *************/      if(*iter <=3){
 double func( double *x)        tm = *localtime(&curr_time.tv_sec);
 {        strcpy(strcurr,asctime(&tmf));
   int i, ii, j, k, mi, d, kk;  /*       asctime_r(&tm,strcurr); */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        forecast_time=curr_time;
   double **out;        itmp = strlen(strcurr);
   double sw; /* Sum of weights */        if(strcurr[itmp-1]=='\n')
   double lli; /* Individual log likelihood */          strcurr[itmp-1]='\0';
   long ipmx;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /*extern weight */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /* We are differentiating ll according to initial status */        for(niterf=10;niterf<=30;niterf+=10){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   /*for(i=1;i<imx;i++)          tmf = *localtime(&forecast_time.tv_sec);
     printf(" %d\n",s[4][i]);  /*      asctime_r(&tmf,strfor); */
   */          strcpy(strfor,asctime(&tmf));
   cov[1]=1.;          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   for(k=1; k<=nlstate; k++) ll[k]=0.;          strfor[itmp-1]='\0';
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for(mi=1; mi<= wav[i]-1; mi++){        }
       for (ii=1;ii<=nlstate+ndeath;ii++)      }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1;i<=n;i++) { 
       for(d=0; d<dh[mi][i]; d++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         newm=savm;        fptt=(*fret); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #ifdef DEBUG
         for (kk=1; kk<=cptcovage;kk++) {        printf("fret=%lf \n",*fret);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fprintf(ficlog,"fret=%lf \n",*fret);
         }  #endif
                printf("%d",i);fflush(stdout);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"%d",i);fflush(ficlog);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        linmin(p,xit,n,fret,func); 
         savm=oldm;        if (fabs(fptt-(*fret)) > del) { 
         oldm=newm;          del=fabs(fptt-(*fret)); 
                  ibig=i; 
                } 
       } /* end mult */  #ifdef DEBUG
              printf("%d %.12e",i,(*fret));
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        fprintf(ficlog,"%d %.12e",i,(*fret));
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        for (j=1;j<=n;j++) {
       ipmx +=1;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       sw += weight[i];          printf(" x(%d)=%.12e",j,xit[j]);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     } /* end of wave */        }
   } /* end of individual */        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          fprintf(ficlog," p=%.12e",p[j]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        printf("\n");
   return -l;        fprintf(ficlog,"\n");
 }  #endif
       } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 /*********** Maximum Likelihood Estimation ***************/  #ifdef DEBUG
         int k[2],l;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        k[0]=1;
 {        k[1]=-1;
   int i,j, iter;        printf("Max: %.12e",(*func)(p));
   double **xi,*delti;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double fret;        for (j=1;j<=n;j++) {
   xi=matrix(1,npar,1,npar);          printf(" %.12e",p[j]);
   for (i=1;i<=npar;i++)          fprintf(ficlog," %.12e",p[j]);
     for (j=1;j<=npar;j++)        }
       xi[i][j]=(i==j ? 1.0 : 0.0);        printf("\n");
   printf("Powell\n");        fprintf(ficlog,"\n");
   powell(p,xi,npar,ftol,&iter,&fret,func);        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /**** Computes Hessian and covariance matrix ***/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        }
 {  #endif
   double  **a,**y,*x,pd;  
   double **hess;  
   int i, j,jk;        free_vector(xit,1,n); 
   int *indx;        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   double hessii(double p[], double delta, int theta, double delti[]);        free_vector(pt,1,n); 
   double hessij(double p[], double delti[], int i, int j);        return; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   hess=matrix(1,npar,1,npar);        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   printf("\nCalculation of the hessian matrix. Wait...\n");        pt[j]=p[j]; 
   for (i=1;i<=npar;i++){      } 
     printf("%d",i);fflush(stdout);      fptt=(*func)(ptt); 
     hess[i][i]=hessii(p,ftolhess,i,delti);      if (fptt < fp) { 
     /*printf(" %f ",p[i]);*/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     /*printf(" %lf ",hess[i][i]);*/        if (t < 0.0) { 
   }          linmin(p,xit,n,fret,func); 
            for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++) {            xi[j][ibig]=xi[j][n]; 
     for (j=1;j<=npar;j++)  {            xi[j][n]=xit[j]; 
       if (j>i) {          }
         printf(".%d%d",i,j);fflush(stdout);  #ifdef DEBUG
         hess[i][j]=hessij(p,delti,i,j);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         hess[j][i]=hess[i][j];              fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         /*printf(" %lf ",hess[i][j]);*/          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
     }            fprintf(ficlog," %.12e",xit[j]);
   }          }
   printf("\n");          printf("\n");
           fprintf(ficlog,"\n");
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  #endif
          }
   a=matrix(1,npar,1,npar);      } 
   y=matrix(1,npar,1,npar);    } 
   x=vector(1,npar);  } 
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  /**** Prevalence limit (stable prevalence)  ****************/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   for (j=1;j<=npar;j++) {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for (i=1;i<=npar;i++) x[i]=0;       matrix by transitions matrix until convergence is reached */
     x[j]=1;  
     lubksb(a,npar,indx,x);    int i, ii,j,k;
     for (i=1;i<=npar;i++){    double min, max, maxmin, maxmax,sumnew=0.;
       matcov[i][j]=x[i];    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
   }    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=npar;j++) {      for (j=1;j<=nlstate+ndeath;j++){
       printf("%.3e ",hess[i][j]);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
     printf("\n");  
   }     cov[1]=1.;
    
   /* Recompute Inverse */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      newm=savm;
   ludcmp(a,npar,indx,&pd);      /* Covariates have to be included here again */
        cov[2]=agefin;
   /*  printf("\n#Hessian matrix recomputed#\n");    
         for (k=1; k<=cptcovn;k++) {
   for (j=1;j<=npar;j++) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (i=1;i<=npar;i++) x[i]=0;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     x[j]=1;        }
     lubksb(a,npar,indx,x);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (i=1;i<=npar;i++){        for (k=1; k<=cptcovprod;k++)
       y[i][j]=x[i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       printf("%.3e ",y[i][j]);  
     }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     printf("\n");        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   free_matrix(a,1,npar,1,npar);      savm=oldm;
   free_matrix(y,1,npar,1,npar);      oldm=newm;
   free_vector(x,1,npar);      maxmax=0.;
   free_ivector(indx,1,npar);      for(j=1;j<=nlstate;j++){
   free_matrix(hess,1,npar,1,npar);        min=1.;
         max=0.;
         for(i=1; i<=nlstate; i++) {
 }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 /*************** hessian matrix ****************/          prlim[i][j]= newm[i][j]/(1-sumnew);
 double hessii( double x[], double delta, int theta, double delti[])          max=FMAX(max,prlim[i][j]);
 {          min=FMIN(min,prlim[i][j]);
   int i;        }
   int l=1, lmax=20;        maxmin=max-min;
   double k1,k2;        maxmax=FMAX(maxmax,maxmin);
   double p2[NPARMAX+1];      }
   double res;      if(maxmax < ftolpl){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        return prlim;
   double fx;      }
   int k=0,kmax=10;    }
   double l1;  }
   
   fx=func(x);  /*************** transition probabilities ***************/ 
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     l1=pow(10,l);  {
     delts=delt;    double s1, s2;
     for(k=1 ; k <kmax; k=k+1){    /*double t34;*/
       delt = delta*(l1*k);    int i,j,j1, nc, ii, jj;
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;      for(i=1; i<= nlstate; i++){
       p2[theta]=x[theta]-delt;        for(j=1; j<i;j++){
       k2=func(p2)-fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       /*res= (k1-2.0*fx+k2)/delt/delt; */            /*s2 += param[i][j][nc]*cov[nc];*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
        /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 #ifdef DEBUG          }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          ps[i][j]=s2;
 #endif  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for(j=i+1; j<=nlstate+ndeath;j++){
         k=kmax;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         k=kmax; l=lmax*10.;          }
       }          ps[i][j]=s2;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;      }
       }      /*ps[3][2]=1;*/
     }      
   }      for(i=1; i<= nlstate; i++){
   delti[theta]=delts;        s1=0;
   return res;        for(j=1; j<i; j++)
            s1+=exp(ps[i][j]);
 }        for(j=i+1; j<=nlstate+ndeath; j++)
           s1+=exp(ps[i][j]);
 double hessij( double x[], double delti[], int thetai,int thetaj)        ps[i][i]=1./(s1+1.);
 {        for(j=1; j<i; j++)
   int i;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   int l=1, l1, lmax=20;        for(j=i+1; j<=nlstate+ndeath; j++)
   double k1,k2,k3,k4,res,fx;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double p2[NPARMAX+1];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   int k;      } /* end i */
       
   fx=func(x);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for (k=1; k<=2; k++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
     for (i=1;i<=npar;i++) p2[i]=x[i];          ps[ii][jj]=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;          ps[ii][ii]=1;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;      }
        
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     k2=func(p2)-fx;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*       } */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*       printf("\n "); */
     k3=func(p2)-fx;  /*        } */
    /*        printf("\n ");printf("%lf ",cov[2]); */
     p2[thetai]=x[thetai]-delti[thetai]/k;         /*
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     k4=func(p2)-fx;        goto end;*/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      return ps;
 #ifdef DEBUG  }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /**************** Product of 2 matrices ******************/
   }  
   return res;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 /************** Inverse of matrix **************/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 void ludcmp(double **a, int n, int *indx, double *d)    /* in, b, out are matrice of pointers which should have been initialized 
 {       before: only the contents of out is modified. The function returns
   int i,imax,j,k;       a pointer to pointers identical to out */
   double big,dum,sum,temp;    long i, j, k;
   double *vv;    for(i=nrl; i<= nrh; i++)
        for(k=ncolol; k<=ncoloh; k++)
   vv=vector(1,n);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   *d=1.0;          out[i][k] +=in[i][j]*b[j][k];
   for (i=1;i<=n;i++) {  
     big=0.0;    return out;
     for (j=1;j<=n;j++)  }
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  /************* Higher Matrix Product ***************/
   }  
   for (j=1;j<=n;j++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for (i=1;i<j;i++) {  {
       sum=a[i][j];    /* Computes the transition matrix starting at age 'age' over 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];       'nhstepm*hstepm*stepm' months (i.e. until
       a[i][j]=sum;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
     big=0.0;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for (i=j;i<=n;i++) {       (typically every 2 years instead of every month which is too big 
       sum=a[i][j];       for the memory).
       for (k=1;k<j;k++)       Model is determined by parameters x and covariates have to be 
         sum -= a[i][k]*a[k][j];       included manually here. 
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {       */
         big=dum;  
         imax=i;    int i, j, d, h, k;
       }    double **out, cov[NCOVMAX];
     }    double **newm;
     if (j != imax) {  
       for (k=1;k<=n;k++) {    /* Hstepm could be zero and should return the unit matrix */
         dum=a[imax][k];    for (i=1;i<=nlstate+ndeath;i++)
         a[imax][k]=a[j][k];      for (j=1;j<=nlstate+ndeath;j++){
         a[j][k]=dum;        oldm[i][j]=(i==j ? 1.0 : 0.0);
       }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       *d = -(*d);      }
       vv[imax]=vv[j];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(h=1; h <=nhstepm; h++){
     indx[j]=imax;      for(d=1; d <=hstepm; d++){
     if (a[j][j] == 0.0) a[j][j]=TINY;        newm=savm;
     if (j != n) {        /* Covariates have to be included here again */
       dum=1.0/(a[j][j]);        cov[1]=1.;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }        for (k=1; k<=cptcovage;k++)
   free_vector(vv,1,n);  /* Doesn't work */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 ;        for (k=1; k<=cptcovprod;k++)
 }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 void lubksb(double **a, int n, int *indx, double b[])  
 {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   int i,ii=0,ip,j;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double sum;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=n;i++) {        savm=oldm;
     ip=indx[i];        oldm=newm;
     sum=b[ip];      }
     b[ip]=b[i];      for(i=1; i<=nlstate+ndeath; i++)
     if (ii)        for(j=1;j<=nlstate+ndeath;j++) {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          po[i][j][h]=newm[i][j];
     else if (sum) ii=i;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     b[i]=sum;           */
   }        }
   for (i=n;i>=1;i--) {    } /* end h */
     sum=b[i];    return po;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  }
     b[i]=sum/a[i][i];  
   }  
 }  /*************** log-likelihood *************/
   double func( double *x)
 /************ Frequencies ********************/  {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    int i, ii, j, k, mi, d, kk;
 {  /* Some frequencies */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double sw; /* Sum of weights */
   double ***freq; /* Frequencies */    double lli; /* Individual log likelihood */
   double *pp;    int s1, s2;
   double pos, k2, dateintsum=0,k2cpt=0;    double bbh, survp;
   FILE *ficresp;    long ipmx;
   char fileresp[FILENAMELENGTH];    /*extern weight */
      /* We are differentiating ll according to initial status */
   pp=vector(1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*for(i=1;i<imx;i++) 
   strcpy(fileresp,"p");      printf(" %d\n",s[4][i]);
   strcat(fileresp,fileres);    */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    cov[1]=1.;
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    if(mle==1){
   j1=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   j=cptcoveff;        for(mi=1; mi<= wav[i]-1; mi++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   for(k1=1; k1<=j;k1++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       j1++;            }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          for(d=0; d<dh[mi][i]; d++){
         scanf("%d", i);*/            newm=savm;
       for (i=-1; i<=nlstate+ndeath; i++)              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (jk=-1; jk<=nlstate+ndeath; jk++)              for (kk=1; kk<=cptcovage;kk++) {
           for(m=agemin; m <= agemax+3; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             freq[i][jk][m]=0;            }
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       dateintsum=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       k2cpt=0;            savm=oldm;
       for (i=1; i<=imx; i++) {            oldm=newm;
         bool=1;          } /* end mult */
         if  (cptcovn>0) {        
           for (z1=1; z1<=cptcoveff; z1++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /* But now since version 0.9 we anticipate for bias and large stepm.
               bool=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         }           * (in months) between two waves is not a multiple of stepm, we rounded to 
         if (bool==1) {           * the nearest (and in case of equal distance, to the lowest) interval but now
           for(m=firstpass; m<=lastpass; m++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             k2=anint[m][i]+(mint[m][i]/12.);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           * probability in order to take into account the bias as a fraction of the way
               if(agev[m][i]==0) agev[m][i]=agemax+1;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * -stepm/2 to stepm/2 .
               if (m<lastpass) {           * For stepm=1 the results are the same as for previous versions of Imach.
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * For stepm > 1 the results are less biased than in previous versions. 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           */
               }          s1=s[mw[mi][i]][i];
                        s2=s[mw[mi+1][i]][i];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          bbh=(double)bh[mi][i]/(double)stepm; 
                 dateintsum=dateintsum+k2;          /* bias is positive if real duration
                 k2cpt++;           * is higher than the multiple of stepm and negative otherwise.
               }           */
             }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           }          if( s2 > nlstate){ 
         }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       }               to the likelihood is the probability to die between last step unit time and current 
                       step unit time, which is also the differences between probability to die before dh 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);               and probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
       if  (cptcovn>0) {          as if date of death was unknown. Death was treated as any other
         fprintf(ficresp, "\n#********** Variable ");          health state: the date of the interview describes the actual state
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          and not the date of a change in health state. The former idea was
         fprintf(ficresp, "**********\n#");          to consider that at each interview the state was recorded
       }          (healthy, disable or death) and IMaCh was corrected; but when we
       for(i=1; i<=nlstate;i++)          introduced the exact date of death then we should have modified
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          the contribution of an exact death to the likelihood. This new
       fprintf(ficresp, "\n");          contribution is smaller and very dependent of the step unit
                stepm. It is no more the probability to die between last interview
       for(i=(int)agemin; i <= (int)agemax+3; i++){          and month of death but the probability to survive from last
         if(i==(int)agemax+3)          interview up to one month before death multiplied by the
           printf("Total");          probability to die within a month. Thanks to Chris
         else          Jackson for correcting this bug.  Former versions increased
           printf("Age %d", i);          mortality artificially. The bad side is that we add another loop
         for(jk=1; jk <=nlstate ; jk++){          which slows down the processing. The difference can be up to 10%
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          lower mortality.
             pp[jk] += freq[jk][m][i];            */
         }            lli=log(out[s1][s2] - savm[s1][s2]);
         for(jk=1; jk <=nlstate ; jk++){          }else{
           for(m=-1, pos=0; m <=0 ; m++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             pos += freq[jk][m][i];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           if(pp[jk]>=1.e-10)          } 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           else          /*if(lli ==000.0)*/
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
           sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        } /* end of wave */
             pp[jk] += freq[jk][m][i];      } /* end of individual */
         }    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           pos += pp[jk];        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           if(pos>=1.e-5)            for (j=1;j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }
           if( i <= (int) agemax){          for(d=0; d<=dh[mi][i]; d++){
             if(pos>=1.e-5){            newm=savm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               probs[i][jk][j1]= pp[jk]/pos;            for (kk=1; kk<=cptcovage;kk++) {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }            }
             else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
                  } /* end mult */
         for(jk=-1; jk <=nlstate+ndeath; jk++)        
           for(m=-1; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          s2=s[mw[mi+1][i]][i];
         if(i <= (int) agemax)          bbh=(double)bh[mi][i]/(double)stepm; 
           fprintf(ficresp,"\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         printf("\n");          ipmx +=1;
       }          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   dateintmean=dateintsum/k2cpt;      } /* end of individual */
      }  else if(mle==3){  /* exponential inter-extrapolation */
   fclose(ficresp);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_vector(pp,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   /* End of Freq */            for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Prevalence ********************/            }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          for(d=0; d<dh[mi][i]; d++){
 {  /* Some frequencies */            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            for (kk=1; kk<=cptcovage;kk++) {
   double ***freq; /* Frequencies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double *pp;            }
   double pos, k2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   pp=vector(1,nlstate);            savm=oldm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            oldm=newm;
            } /* end mult */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        
   j1=0;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   j=cptcoveff;          bbh=(double)bh[mi][i]/(double)stepm; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            ipmx +=1;
   for(k1=1; k1<=j;k1++){          sw += weight[i];
     for(i1=1; i1<=ncodemax[k1];i1++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       j1++;        } /* end of wave */
            } /* end of individual */
       for (i=-1; i<=nlstate+ndeath; i++)      }else if (mle==4){  /* ml=4 no inter-extrapolation */
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             freq[i][jk][m]=0;        for(mi=1; mi<= wav[i]-1; mi++){
                for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i<=imx; i++) {            for (j=1;j<=nlstate+ndeath;j++){
         bool=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (z1=1; z1<=cptcoveff; z1++)            }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for(d=0; d<dh[mi][i]; d++){
               bool=0;            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (bool==1) {            for (kk=1; kk<=cptcovage;kk++) {
           for(m=firstpass; m<=lastpass; m++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             k2=anint[m][i]+(mint[m][i]/12.);            }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          
               if(agev[m][i]==0) agev[m][i]=agemax+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if(agev[m][i]==1) agev[m][i]=agemax+2;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if (m<lastpass) {            savm=oldm;
                 if (calagedate>0)            oldm=newm;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          } /* end mult */
                 else        
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          s1=s[mw[mi][i]][i];
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          s2=s[mw[mi+1][i]][i];
               }          if( s2 > nlstate){ 
             }            lli=log(out[s1][s2] - savm[s1][s2]);
           }          }else{
         }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          }
       for(i=(int)agemin; i <= (int)agemax+3; i++){          ipmx +=1;
         for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             pp[jk] += freq[jk][m][i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
           for(m=-1, pos=0; m <=0 ; m++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             pos += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
         for(jk=1; jk <=nlstate ; jk++){                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if( i <= (int) agemax){            for (kk=1; kk<=cptcovage;kk++) {
             if(pos>=1.e-5){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               probs[i][jk][j1]= pp[jk]/pos;            }
             }          
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                    savm=oldm;
       }            oldm=newm;
     }          } /* end mult */
   }        
           s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   free_vector(pp,1,nlstate);          ipmx +=1;
            sw += weight[i];
 }  /* End of Freq */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 /************* Waves Concatenation ***************/        } /* end of wave */
       } /* end of individual */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    } /* End of if */
 {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      Death is a valid wave (if date is known).    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    return -l;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  }
      and mw[mi+1][i]. dh depends on stepm.  
      */  /*************** log-likelihood *************/
   double funcone( double *x)
   int i, mi, m;  {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* Same as likeli but slower because of a lot of printf and if */
      double sum=0., jmean=0.;*/    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   int j, k=0,jk, ju, jl;    double **out;
   double sum=0.;    double lli; /* Individual log likelihood */
   jmin=1e+5;    double llt;
   jmax=-1;    int s1, s2;
   jmean=0.;    double bbh, survp;
   for(i=1; i<=imx; i++){    /*extern weight */
     mi=0;    /* We are differentiating ll according to initial status */
     m=firstpass;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     while(s[m][i] <= nlstate){    /*for(i=1;i<imx;i++) 
       if(s[m][i]>=1)      printf(" %d\n",s[4][i]);
         mw[++mi][i]=m;    */
       if(m >=lastpass)    cov[1]=1.;
         break;  
       else    for(k=1; k<=nlstate; k++) ll[k]=0.;
         m++;  
     }/* end while */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (s[m][i] > nlstate){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       mi++;     /* Death is another wave */      for(mi=1; mi<= wav[i]-1; mi++){
       /* if(mi==0)  never been interviewed correctly before death */        for (ii=1;ii<=nlstate+ndeath;ii++)
          /* Only death is a correct wave */          for (j=1;j<=nlstate+ndeath;j++){
       mw[mi][i]=m;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
     wav[i]=mi;        for(d=0; d<dh[mi][i]; d++){
     if(mi==0)          newm=savm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=imx; i++){          }
     for(mi=1; mi<wav[i];mi++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if (stepm <=0)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         dh[mi][i]=1;          savm=oldm;
       else{          oldm=newm;
         if (s[mw[mi+1][i]][i] > nlstate) {        } /* end mult */
           if (agedc[i] < 2*AGESUP) {        
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        s1=s[mw[mi][i]][i];
           if(j==0) j=1;  /* Survives at least one month after exam */        s2=s[mw[mi+1][i]][i];
           k=k+1;        bbh=(double)bh[mi][i]/(double)stepm; 
           if (j >= jmax) jmax=j;        /* bias is positive if real duration
           if (j <= jmin) jmin=j;         * is higher than the multiple of stepm and negative otherwise.
           sum=sum+j;         */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           }          lli=log(out[s1][s2] - savm[s1][s2]);
         }        } else if (mle==1){
         else{          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        } else if(mle==2){
           k=k+1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           if (j >= jmax) jmax=j;        } else if(mle==3){  /* exponential inter-extrapolation */
           else if (j <= jmin)jmin=j;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           sum=sum+j;          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         jk= j/stepm;          lli=log(out[s1][s2]); /* Original formula */
         jl= j -jk*stepm;        } /* End of if */
         ju= j -(jk+1)*stepm;        ipmx +=1;
         if(jl <= -ju)        sw += weight[i];
           dh[mi][i]=jk;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           dh[mi][i]=jk+1;        if(globpr){
         if(dh[mi][i]==0)          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
           dh[mi][i]=1; /* At least one step */   %10.6f %10.6f %10.6f ", \
       }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   jmean=sum/k;            llt +=ll[k]*gipmx/gsw;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
  }          }
 /*********** Tricode ****************************/          fprintf(ficresilk," %10.6f\n", -llt);
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {      } /* end of wave */
   int Ndum[20],ij=1, k, j, i;    } /* end of individual */
   int cptcode=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   cptcoveff=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (k=0; k<19; k++) Ndum[k]=0;    if(globpr==0){ /* First time we count the contributions and weights */
   for (k=1; k<=7; k++) ncodemax[k]=0;      gipmx=ipmx;
       gsw=sw;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    }
     for (i=1; i<=imx; i++) {    return -l;
       ij=(int)(covar[Tvar[j]][i]);  }
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  /*************** function likelione ***********/
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     for (i=0; i<=cptcode; i++) {    /* This routine should help understanding what is done with 
       if(Ndum[i]!=0) ncodemax[j]++;       the selection of individuals/waves and
     }       to check the exact contribution to the likelihood.
     ij=1;       Plotting could be done.
      */
     int k;
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {    if(*globpri !=0){ /* Just counts and sums, no printings */
         if (Ndum[k] != 0) {      strcpy(fileresilk,"ilk"); 
           nbcode[Tvar[j]][ij]=k;      strcat(fileresilk,fileres);
                if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           ij++;        printf("Problem with resultfile: %s\n", fileresilk);
         }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         if (ij > ncodemax[j]) break;      }
       }        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   }        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
  for (k=0; k<19; k++) Ndum[k]=0;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
  for (i=1; i<=ncovmodel-2; i++) {    }
       ij=Tvar[i];  
       Ndum[ij]++;    *fretone=(*funcone)(p);
     }    if(*globpri !=0){
       fclose(ficresilk);
  ij=1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
  for (i=1; i<=10; i++) {      fflush(fichtm); 
    if((Ndum[i]!=0) && (i<=ncovcol)){    } 
      Tvaraff[ij]=i;    return;
      ij++;  }
    }  
  }  
    /*********** Maximum Likelihood Estimation ***************/
     cptcoveff=ij-1;  
 }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
 /*********** Health Expectancies ****************/    int i,j, iter;
     double **xi;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    double fret;
     double fretone; /* Only one call to likelihood */
 {    /*  char filerespow[FILENAMELENGTH];*/
   /* Health expectancies */    xi=matrix(1,npar,1,npar);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    for (i=1;i<=npar;i++)
   double age, agelim, hf;      for (j=1;j<=npar;j++)
   double ***p3mat,***varhe;        xi[i][j]=(i==j ? 1.0 : 0.0);
   double **dnewm,**doldm;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double *xp;    strcpy(filerespow,"pow"); 
   double **gp, **gm;    strcat(filerespow,fileres);
   double ***gradg, ***trgradg;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int theta;      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    }
   xp=vector(1,npar);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   dnewm=matrix(1,nlstate*2,1,npar);    for (i=1;i<=nlstate;i++)
   doldm=matrix(1,nlstate*2,1,nlstate*2);      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficreseij,"# Health expectancies\n");    fprintf(ficrespow,"\n");
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    fclose(ficrespow);
   fprintf(ficreseij,"\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   if(estepm < stepm){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  }
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months  /**** Computes Hessian and covariance matrix ***/
    * This is mainly to measure the difference between two models: for example  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    * if stepm=24 months pijx are given only every 2 years and by summing them  {
    * we are calculating an estimate of the Life Expectancy assuming a linear    double  **a,**y,*x,pd;
    * progression inbetween and thus overestimating or underestimating according    double **hess;
    * to the curvature of the survival function. If, for the same date, we    int i, j,jk;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    int *indx;
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
    * curvature will be obtained if estepm is as small as stepm. */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   /* For example we decided to compute the life expectancy with the smallest unit */    void ludcmp(double **a, int npar, int *indx, double *d) ;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double gompertz(double p[]);
      nhstepm is the number of hstepm from age to agelim    hess=matrix(1,npar,1,npar);
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    printf("\nCalculation of the hessian matrix. Wait...\n");
      and note for a fixed period like estepm months */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    for (i=1;i<=npar;i++){
      survival function given by stepm (the optimization length). Unfortunately it      printf("%d",i);fflush(stdout);
      means that if the survival funtion is printed only each two years of age and if      fprintf(ficlog,"%d",i);fflush(ficlog);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     
      results. So we changed our mind and took the option of the best precision.       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   */      
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   agelim=AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     /* nhstepm age range expressed in number of stepm */    for (i=1;i<=npar;i++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      for (j=1;j<=npar;j++)  {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        if (j>i) { 
     /* if (stepm >= YEARM) hstepm=1;*/          printf(".%d%d",i,j);fflush(stdout);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          
     gp=matrix(0,nhstepm,1,nlstate*2);          hess[j][i]=hess[i][j];    
     gm=matrix(0,nhstepm,1,nlstate*2);          /*printf(" %lf ",hess[i][j]);*/
         }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      printf("\n");
      fprintf(ficlog,"\n");
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     /* Computing Variances of health expectancies */    
     a=matrix(1,npar,1,npar);
      for(theta=1; theta <=npar; theta++){    y=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++){    x=vector(1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    indx=ivector(1,npar);
       }    for (i=1;i<=npar;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      ludcmp(a,npar,indx,&pd);
       cptj=0;  
       for(j=1; j<= nlstate; j++){    for (j=1;j<=npar;j++) {
         for(i=1; i<=nlstate; i++){      for (i=1;i<=npar;i++) x[i]=0;
           cptj=cptj+1;      x[j]=1;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      lubksb(a,npar,indx,x);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for (i=1;i<=npar;i++){ 
           }        matcov[i][j]=x[i];
         }      }
       }    }
        
          printf("\n#Hessian matrix#\n");
       for(i=1; i<=npar; i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++) { 
              printf("%.3e ",hess[i][j]);
       cptj=0;        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(j=1; j<= nlstate; j++){      }
         for(i=1;i<=nlstate;i++){      printf("\n");
           cptj=cptj+1;      fprintf(ficlog,"\n");
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    /* Recompute Inverse */
         }    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(j=1; j<= nlstate*2; j++)    ludcmp(a,npar,indx,&pd);
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /*  printf("\n#Hessian matrix recomputed#\n");
         }  
      }    for (j=1;j<=npar;j++) {
          for (i=1;i<=npar;i++) x[i]=0;
 /* End theta */      x[j]=1;
       lubksb(a,npar,indx,x);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
      for(h=0; h<=nhstepm-1; h++)        printf("%.3e ",y[i][j]);
       for(j=1; j<=nlstate*2;j++)        fprintf(ficlog,"%.3e ",y[i][j]);
         for(theta=1; theta <=npar; theta++)      }
           trgradg[h][j][theta]=gradg[h][theta][j];      printf("\n");
            fprintf(ficlog,"\n");
     }
      for(i=1;i<=nlstate*2;i++)    */
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
      printf("%d|",(int)age);fflush(stdout);    free_vector(x,1,npar);
      for(h=0;h<=nhstepm-1;h++){    free_ivector(indx,1,npar);
       for(k=0;k<=nhstepm-1;k++){    free_matrix(hess,1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  
         for(i=1;i<=nlstate*2;i++)  }
           for(j=1;j<=nlstate*2;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  /*************** hessian matrix ****************/
       }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     }  {
     /* Computing expectancies */    int i;
     for(i=1; i<=nlstate;i++)    int l=1, lmax=20;
       for(j=1; j<=nlstate;j++)    double k1,k2;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double p2[NPARMAX+1];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double res;
              double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double fx;
     int k=0,kmax=10;
         }    double l1;
   
     fprintf(ficreseij,"%3.0f",age );    fx=func(x);
     cptj=0;    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(i=1; i<=nlstate;i++)    for(l=0 ; l <=lmax; l++){
       for(j=1; j<=nlstate;j++){      l1=pow(10,l);
         cptj++;      delts=delt;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      for(k=1 ; k <kmax; k=k+1){
       }        delt = delta*(l1*k);
     fprintf(ficreseij,"\n");        p2[theta]=x[theta] +delt;
            k1=func(p2)-fx;
     free_matrix(gm,0,nhstepm,1,nlstate*2);        p2[theta]=x[theta]-delt;
     free_matrix(gp,0,nhstepm,1,nlstate*2);        k2=func(p2)-fx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
   }  #ifdef DEBUG
   printf("\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_vector(xp,1,npar);  #endif
   free_matrix(dnewm,1,nlstate*2,1,npar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          k=kmax;
 }        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 /************ Variance ******************/          k=kmax; l=lmax*10.;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        }
 {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   /* Variance of health expectancies */          delts=delt;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   double **newm;      }
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm, h, nstepm ;    delti[theta]=delts;
   int k, cptcode;    return res; 
   double *xp;    
   double **gp, **gm;  }
   double ***gradg, ***trgradg;  
   double ***p3mat;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double age,agelim, hf;  {
   int theta;    int i;
     int l=1, l1, lmax=20;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    double k1,k2,k3,k4,res,fx;
   fprintf(ficresvij,"# Age");    double p2[NPARMAX+1];
   for(i=1; i<=nlstate;i++)    int k;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    fx=func(x);
   fprintf(ficresvij,"\n");    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   xp=vector(1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   dnewm=matrix(1,nlstate,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   doldm=matrix(1,nlstate,1,nlstate);      k1=func(p2)-fx;
      
   if(estepm < stepm){      p2[thetai]=x[thetai]+delti[thetai]/k;
     printf ("Problem %d lower than %d\n",estepm, stepm);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k2=func(p2)-fx;
   else  hstepm=estepm;      
   /* For example we decided to compute the life expectancy with the smallest unit */      p2[thetai]=x[thetai]-delti[thetai]/k;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      nhstepm is the number of hstepm from age to agelim      k3=func(p2)-fx;
      nstepm is the number of stepm from age to agelin.    
      Look at hpijx to understand the reason of that which relies in memory size      p2[thetai]=x[thetai]-delti[thetai]/k;
      and note for a fixed period like k years */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      k4=func(p2)-fx;
      survival function given by stepm (the optimization length). Unfortunately it      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      means that if the survival funtion is printed only each two years of age and if  #ifdef DEBUG
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      results. So we changed our mind and took the option of the best precision.      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   */  #endif
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    }
   agelim = AGESUP;    return res;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  /************** Inverse of matrix **************/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void ludcmp(double **a, int n, int *indx, double *d) 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  { 
     gp=matrix(0,nhstepm,1,nlstate);    int i,imax,j,k; 
     gm=matrix(0,nhstepm,1,nlstate);    double big,dum,sum,temp; 
     double *vv; 
     for(theta=1; theta <=npar; theta++){   
       for(i=1; i<=npar; i++){ /* Computes gradient */    vv=vector(1,n); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    *d=1.0; 
       }    for (i=1;i<=n;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        big=0.0; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (popbased==1) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         for(i=1; i<=nlstate;i++)      vv[i]=1.0/big; 
           prlim[i][i]=probs[(int)age][i][ij];    } 
       }    for (j=1;j<=n;j++) { 
        for (i=1;i<j;i++) { 
       for(j=1; j<= nlstate; j++){        sum=a[i][j]; 
         for(h=0; h<=nhstepm; h++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        a[i][j]=sum; 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      } 
         }      big=0.0; 
       }      for (i=j;i<=n;i++) { 
            sum=a[i][j]; 
       for(i=1; i<=npar; i++) /* Computes gradient */        for (k=1;k<j;k++) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          sum -= a[i][k]*a[k][j]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          a[i][j]=sum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
       if (popbased==1) {          imax=i; 
         for(i=1; i<=nlstate;i++)        } 
           prlim[i][i]=probs[(int)age][i][ij];      } 
       }      if (j != imax) { 
         for (k=1;k<=n;k++) { 
       for(j=1; j<= nlstate; j++){          dum=a[imax][k]; 
         for(h=0; h<=nhstepm; h++){          a[imax][k]=a[j][k]; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          a[j][k]=dum; 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        } 
         }        *d = -(*d); 
       }        vv[imax]=vv[j]; 
       } 
       for(j=1; j<= nlstate; j++)      indx[j]=imax; 
         for(h=0; h<=nhstepm; h++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      if (j != n) { 
         }        dum=1.0/(a[j][j]); 
     } /* End theta */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    } 
     free_vector(vv,1,n);  /* Doesn't work */
     for(h=0; h<=nhstepm; h++)  ;
       for(j=1; j<=nlstate;j++)  } 
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    int i,ii=0,ip,j; 
     for(i=1;i<=nlstate;i++)    double sum; 
       for(j=1;j<=nlstate;j++)   
         vareij[i][j][(int)age] =0.;    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
     for(h=0;h<=nhstepm;h++){      sum=b[ip]; 
       for(k=0;k<=nhstepm;k++){      b[ip]=b[i]; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      if (ii) 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for(i=1;i<=nlstate;i++)      else if (sum) ii=i; 
           for(j=1;j<=nlstate;j++)      b[i]=sum; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    } 
       }    for (i=n;i>=1;i--) { 
     }      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     fprintf(ficresvij,"%.0f ",age );      b[i]=sum/a[i][i]; 
     for(i=1; i<=nlstate;i++)    } 
       for(j=1; j<=nlstate;j++){  } 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }  /************ Frequencies ********************/
     fprintf(ficresvij,"\n");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     free_matrix(gp,0,nhstepm,1,nlstate);  {  /* Some frequencies */
     free_matrix(gm,0,nhstepm,1,nlstate);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    int first;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***freq; /* Frequencies */
   } /* End age */    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
   free_vector(xp,1,npar);    FILE *ficresp;
   free_matrix(doldm,1,nlstate,1,npar);    char fileresp[FILENAMELENGTH];
   free_matrix(dnewm,1,nlstate,1,nlstate);    
     pp=vector(1,nlstate);
 }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
 /************ Variance of prevlim ******************/    strcat(fileresp,fileres);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    if((ficresp=fopen(fileresp,"w"))==NULL) {
 {      printf("Problem with prevalence resultfile: %s\n", fileresp);
   /* Variance of prevalence limit */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      exit(0);
   double **newm;    }
   double **dnewm,**doldm;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   int i, j, nhstepm, hstepm;    j1=0;
   int k, cptcode;    
   double *xp;    j=cptcoveff;
   double *gp, *gm;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double **gradg, **trgradg;  
   double age,agelim;    first=1;
   int theta;  
        for(k1=1; k1<=j;k1++){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficresvpl,"# Age");        j1++;
   for(i=1; i<=nlstate;i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       fprintf(ficresvpl," %1d-%1d",i,i);          scanf("%d", i);*/
   fprintf(ficresvpl,"\n");        for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
   xp=vector(1,npar);            for(m=iagemin; m <= iagemax+3; m++)
   dnewm=matrix(1,nlstate,1,npar);              freq[i][jk][m]=0;
   doldm=matrix(1,nlstate,1,nlstate);  
        for (i=1; i<=nlstate; i++)  
   hstepm=1*YEARM; /* Every year of age */        for(m=iagemin; m <= iagemax+3; m++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          prop[i][m]=0;
   agelim = AGESUP;        
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        dateintsum=0;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        k2cpt=0;
     if (stepm >= YEARM) hstepm=1;        for (i=1; i<=imx; i++) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          bool=1;
     gradg=matrix(1,npar,1,nlstate);          if  (cptcovn>0) {
     gp=vector(1,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
     gm=vector(1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
     for(theta=1; theta <=npar; theta++){          }
       for(i=1; i<=npar; i++){ /* Computes gradient */          if (bool==1){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for(m=firstpass; m<=lastpass; m++){
       }              k2=anint[m][i]+(mint[m][i]/12.);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for(i=1;i<=nlstate;i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         gp[i] = prlim[i][i];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=1; i<=npar; i++) /* Computes gradient */                if (m<lastpass) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(i=1;i<=nlstate;i++)                }
         gm[i] = prlim[i][i];                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       for(i=1;i<=nlstate;i++)                  dateintsum=dateintsum+k2;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                  k2cpt++;
     } /* End theta */                }
                 /*}*/
     trgradg =matrix(1,nlstate,1,npar);            }
           }
     for(j=1; j<=nlstate;j++)        }
       for(theta=1; theta <=npar; theta++)         
         trgradg[j][theta]=gradg[theta][j];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     for(i=1;i<=nlstate;i++)        if  (cptcovn>0) {
       varpl[i][(int)age] =0.;          fprintf(ficresp, "\n#********** Variable "); 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          fprintf(ficresp, "**********\n#");
     for(i=1;i<=nlstate;i++)        }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficresvpl,"%.0f ",age );        fprintf(ficresp, "\n");
     for(i=1; i<=nlstate;i++)        
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for(i=iagemin; i <= iagemax+3; i++){
     fprintf(ficresvpl,"\n");          if(i==iagemax+3){
     free_vector(gp,1,nlstate);            fprintf(ficlog,"Total");
     free_vector(gm,1,nlstate);          }else{
     free_matrix(gradg,1,npar,1,nlstate);            if(first==1){
     free_matrix(trgradg,1,nlstate,1,npar);              first=0;
   } /* End age */              printf("See log file for details...\n");
             }
   free_vector(xp,1,npar);            fprintf(ficlog,"Age %d", i);
   free_matrix(doldm,1,nlstate,1,npar);          }
   free_matrix(dnewm,1,nlstate,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 }              pp[jk] += freq[jk][m][i]; 
           }
 /************ Variance of one-step probabilities  ******************/          for(jk=1; jk <=nlstate ; jk++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            for(m=-1, pos=0; m <=0 ; m++)
 {              pos += freq[jk][m][i];
   int i, j,  i1, k1, l1;            if(pp[jk]>=1.e-10){
   int k2, l2, j1,  z1;              if(first==1){
   int k=0,l, cptcode;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int first=1;              }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double **dnewm,**doldm;            }else{
   double *xp;              if(first==1)
   double *gp, *gm;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double **gradg, **trgradg;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double **mu;            }
   double age,agelim, cov[NCOVMAX];          }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;          for(jk=1; jk <=nlstate ; jk++){
   char fileresprob[FILENAMELENGTH];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   char fileresprobcov[FILENAMELENGTH];              pp[jk] += freq[jk][m][i];
   char fileresprobcor[FILENAMELENGTH];          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double ***varpij;            pos += pp[jk];
             posprop += prop[jk][i];
   strcpy(fileresprob,"prob");          }
   strcat(fileresprob,fileres);          for(jk=1; jk <=nlstate ; jk++){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            if(pos>=1.e-5){
     printf("Problem with resultfile: %s\n", fileresprob);              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcpy(fileresprobcov,"probcov");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcat(fileresprobcov,fileres);            }else{
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {              if(first==1)
     printf("Problem with resultfile: %s\n", fileresprobcov);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   strcpy(fileresprobcor,"probcor");            }
   strcat(fileresprobcor,fileres);            if( i <= iagemax){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {              if(pos>=1.e-5){
     printf("Problem with resultfile: %s\n", fileresprobcor);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   }                /*probs[i][jk][j1]= pp[jk]/pos;*/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              else
                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            }
   fprintf(ficresprob,"# Age");          }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          
   fprintf(ficresprobcov,"# Age");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            for(m=-1; m <=nlstate+ndeath; m++)
   fprintf(ficresprobcov,"# Age");              if(freq[jk][m][i] !=0 ) {
               if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   for(i=1; i<=nlstate;i++)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(j=1; j<=(nlstate+ndeath);j++){              }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          if(i <= iagemax)
       fprintf(ficresprobcov," p%1d-%1d ",i,j);            fprintf(ficresp,"\n");
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          if(first==1)
     }              printf("Others in log...\n");
   fprintf(ficresprob,"\n");          fprintf(ficlog,"\n");
   fprintf(ficresprobcov,"\n");        }
   fprintf(ficresprobcor,"\n");      }
   xp=vector(1,npar);    }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    dateintmean=dateintsum/k2cpt; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));   
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    fclose(ficresp);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   first=1;    free_vector(pp,1,nlstate);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    /* End of Freq */
     exit(0);  }
   }  
   else{  /************ Prevalence ********************/
     fprintf(ficgp,"\n# Routine varprob");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     printf("Problem with html file: %s\n", optionfilehtm);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     exit(0);       We still use firstpass and lastpass as another selection.
   }    */
   else{   
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    double ***freq; /* Frequencies */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    double *pp, **prop;
     double pos,posprop; 
   }    double  y2; /* in fractional years */
   cov[1]=1;    int iagemin, iagemax;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    iagemin= (int) agemin;
   j1=0;    iagemax= (int) agemax;
   for(k1=1; k1<=1;k1++){    /*pp=vector(1,nlstate);*/
     for(i1=1; i1<=ncodemax[k1];i1++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     j1++;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
     if  (cptcovn>0) {    
       fprintf(ficresprob, "\n#********** Variable ");    j=cptcoveff;
       fprintf(ficresprobcov, "\n#********** Variable ");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficgp, "\n#********** Variable ");    
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");    for(k1=1; k1<=j;k1++){
       fprintf(ficresprobcor, "\n#********** Variable ");      for(i1=1; i1<=ncodemax[k1];i1++){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        j1++;
       fprintf(ficresprob, "**********\n#");        
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (i=1; i<=nlstate; i++)  
       fprintf(ficresprobcov, "**********\n#");          for(m=iagemin; m <= iagemax+3; m++)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            prop[i][m]=0.0;
       fprintf(ficgp, "**********\n#");       
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (i=1; i<=imx; i++) { /* Each individual */
       fprintf(ficgp, "**********\n#");          bool=1;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          if  (cptcovn>0) {
       fprintf(fichtm, "**********\n#");            for (z1=1; z1<=cptcoveff; z1++) 
     }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                    bool=0;
       for (age=bage; age<=fage; age ++){          } 
         cov[2]=age;          if (bool==1) { 
         for (k=1; k<=cptcovn;k++) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for (k=1; k<=cptcovprod;k++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                        if (s[m][i]>0 && s[m][i]<=nlstate) { 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         gp=vector(1,(nlstate)*(nlstate+ndeath));                  prop[s[m][i]][iagemax+3] += weight[i]; 
         gm=vector(1,(nlstate)*(nlstate+ndeath));                } 
                  }
         for(theta=1; theta <=npar; theta++){            } /* end selection of waves */
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
                  for(i=iagemin; i <= iagemax+3; i++){  
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          
                    for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           k=0;            posprop += prop[jk][i]; 
           for(i=1; i<= (nlstate); i++){          } 
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;          for(jk=1; jk <=nlstate ; jk++){     
               gp[k]=pmmij[i][j];            if( i <=  iagemax){ 
             }              if(posprop>=1.e-5){ 
           }                probs[i][jk][j1]= prop[jk][i]/posprop;
                        } 
           for(i=1; i<=npar; i++)            } 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          }/* end jk */ 
            }/* end i */ 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      } /* end i1 */
           k=0;    } /* end k1 */
           for(i=1; i<=(nlstate); i++){    
             for(j=1; j<=(nlstate+ndeath);j++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
               k=k+1;    /*free_vector(pp,1,nlstate);*/
               gm[k]=pmmij[i][j];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             }  }  /* End of prevalence */
           }  
        /************* Waves Concatenation ***************/
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)       Death is a valid wave (if date is known).
           for(theta=1; theta <=npar; theta++)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             trgradg[j][theta]=gradg[theta][j];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
               and mw[mi+1][i]. dh depends on stepm.
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);       */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
            int i, mi, m;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               double sum=0., jmean=0.;*/
         k=0;    int first;
         for(i=1; i<=(nlstate); i++){    int j, k=0,jk, ju, jl;
           for(j=1; j<=(nlstate+ndeath);j++){    double sum=0.;
             k=k+1;    first=0;
             mu[k][(int) age]=pmmij[i][j];    jmin=1e+5;
           }    jmax=-1;
         }    jmean=0.;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    for(i=1; i<=imx; i++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      mi=0;
             varpij[i][j][(int)age] = doldm[i][j];      m=firstpass;
       while(s[m][i] <= nlstate){
         /*printf("\n%d ",(int)age);        if(s[m][i]>=1)
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          mw[++mi][i]=m;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        if(m >=lastpass)
      }*/          break;
         else
         fprintf(ficresprob,"\n%d ",(int)age);          m++;
         fprintf(ficresprobcov,"\n%d ",(int)age);      }/* end while */
         fprintf(ficresprobcor,"\n%d ",(int)age);      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        /* if(mi==0)  never been interviewed correctly before death */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));           /* Only death is a correct wave */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        mw[mi][i]=m;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }      wav[i]=mi;
         i=0;      if(mi==0){
         for (k=1; k<=(nlstate);k++){        nbwarn++;
           for (l=1; l<=(nlstate+ndeath);l++){        if(first==0){
             i=i++;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          first=1;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        }
             for (j=1; j<=i;j++){        if(first==1){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        }
             }      } /* end mi==0 */
           }    } /* End individuals */
         }/* end of loop for state */  
       } /* end of loop for age */    for(i=1; i<=imx; i++){
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      for(mi=1; mi<wav[i];mi++){
       for (k1=1; k1<=(nlstate);k1++){        if (stepm <=0)
         for (l1=1; l1<=(nlstate+ndeath);l1++){          dh[mi][i]=1;
           if(l1==k1) continue;        else{
           i=(k1-1)*(nlstate+ndeath)+l1;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           for (k2=1; k2<=(nlstate);k2++){            if (agedc[i] < 2*AGESUP) {
             for (l2=1; l2<=(nlstate+ndeath);l2++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(l2==k2) continue;              if(j==0) j=1;  /* Survives at least one month after exam */
               j=(k2-1)*(nlstate+ndeath)+l2;              else if(j<0){
               if(j<=i) continue;                nberr++;
               for (age=bage; age<=fage; age ++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 if ((int)age %5==0){                j=1; /* Temporary Dangerous patch */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                   mu1=mu[i][(int) age]/stepm*YEARM ;              }
                   mu2=mu[j][(int) age]/stepm*YEARM;              k=k+1;
                   /* Computing eigen value of matrix of covariance */              if (j >= jmax) jmax=j;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              if (j <= jmin) jmin=j;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              sum=sum+j;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   /* Eigen vectors */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            }
                   v21=sqrt(1.-v11*v11);          }
                   v12=-v21;          else{
                   v22=v11;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                   /*printf(fignu*/            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            k=k+1;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            if (j >= jmax) jmax=j;
                   if(first==1){            else if (j <= jmin)jmin=j;
                     first=0;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                     fprintf(ficgp,"\nset parametric;set nolabel");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);            if(j<0){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              nberr++;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);            }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            sum=sum+j;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          jk= j/stepm;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          jl= j -jk*stepm;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          ju= j -(jk+1)*stepm;
                   }else{          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                     first=0;            if(jl==0){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);              dh[mi][i]=jk;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              bh[mi][i]=0;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            }else{ /* We want a negative bias in order to only have interpolation ie
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                    * at the price of an extra matrix product in likelihood */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              dh[mi][i]=jk+1;
                   }/* if first */              bh[mi][i]=ju;
                 } /* age mod 5 */            }
               } /* end loop age */          }else{
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);            if(jl <= -ju){
               first=1;              dh[mi][i]=jk;
             } /*l12 */              bh[mi][i]=jl;       /* bias is positive if real duration
           } /* k12 */                                   * is higher than the multiple of stepm and negative otherwise.
         } /*l1 */                                   */
       }/* k1 */            }
     } /* loop covariates */            else{
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);              dh[mi][i]=jk+1;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              bh[mi][i]=ju;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            if(dh[mi][i]==0){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              dh[mi][i]=1; /* At least one step */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              bh[mi][i]=ju; /* At least one step */
   }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   free_vector(xp,1,npar);            }
   fclose(ficresprob);          } /* end if mle */
   fclose(ficresprobcov);        }
   fclose(ficresprobcor);      } /* end wave */
   fclose(ficgp);    }
   fclose(fichtm);    jmean=sum/k;
 }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  /*********** Tricode ****************************/
                   int lastpass, int stepm, int weightopt, char model[],\  void tricode(int *Tvar, int **nbcode, int imx)
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  {
                   int popforecast, int estepm ,\    
                   double jprev1, double mprev1,double anprev1, \    int Ndum[20],ij=1, k, j, i, maxncov=19;
                   double jprev2, double mprev2,double anprev2){    int cptcode=0;
   int jj1, k1, i1, cpt;    cptcoveff=0; 
   /*char optionfilehtm[FILENAMELENGTH];*/   
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    for (k=0; k<maxncov; k++) Ndum[k]=0;
     printf("Problem with %s \n",optionfilehtm), exit(0);    for (k=1; k<=7; k++) ncodemax[k]=0;
   }  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n                                 modality*/ 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        Ndum[ij]++; /*store the modality */
  - Life expectancies by age and initial health status (estepm=%2d months):        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n      }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      for (i=0; i<=cptcode; i++) {
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n      ij=1; 
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
  if(popforecast==1) fprintf(fichtm,"\n          if (Ndum[k] != 0) {
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            nbcode[Tvar[j]][ij]=k; 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         <br>",fileres,fileres,fileres,fileres);            
  else            ij++;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          }
 fprintf(fichtm," <li>Graphs</li><p>");          if (ij > ncodemax[j]) break; 
         }  
  m=cptcoveff;      } 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    }  
   
  jj1=0;   for (k=0; k< maxncov; k++) Ndum[k]=0;
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){   for (i=1; i<=ncovmodel-2; i++) { 
      jj1++;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      if (cptcovn > 0) {     ij=Tvar[i];
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");     Ndum[ij]++;
        for (cpt=1; cpt<=cptcoveff;cpt++)   }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");   ij=1;
      }   for (i=1; i<= maxncov; i++) {
      /* Pij */     if((Ndum[i]!=0) && (i<=ncovcol)){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>       Tvaraff[ij]=i; /*For printing */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           ij++;
      /* Quasi-incidences */     }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>   }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);   
        /* Stable prevalence in each health state */   cptcoveff=ij-1; /*Number of simple covariates*/
        for(cpt=1; cpt<nlstate;cpt++){  }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  /*********** Health Expectancies ****************/
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>  {
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      /* Health expectancies */
      }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
      for(cpt=1; cpt<=nlstate;cpt++) {    double age, agelim, hf;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    double ***p3mat,***varhe;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double **dnewm,**doldm;
      }    double *xp;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    double **gp, **gm;
 health expectancies in states (1) and (2): e%s%d.png<br>    double ***gradg, ***trgradg;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    int theta;
    }  
  }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 fclose(fichtm);    xp=vector(1,npar);
 }    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 /******************* Gnuplot file **************/    
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    for(i=1; i<=nlstate;i++)
   int ng;      for(j=1; j<=nlstate;j++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     printf("Problem with file %s",optionfilegnuplot);    fprintf(ficreseij,"\n");
   }  
     if(estepm < stepm){
 #ifdef windows      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    }
 #endif    else  hstepm=estepm;   
 m=pow(2,cptcoveff);    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
  /* 1eme*/     * if stepm=24 months pijx are given only every 2 years and by summing them
   for (cpt=1; cpt<= nlstate ; cpt ++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
    for (k1=1; k1<= m ; k1 ++) {     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
 #ifdef windows     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * to compare the new estimate of Life expectancy with the same linear 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);     * hypothesis. A more precise result, taking into account a more precise
 #endif     * curvature will be obtained if estepm is as small as stepm. */
 #ifdef unix  
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /* For example we decided to compute the life expectancy with the smallest unit */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 #endif       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
 for (i=1; i<= nlstate ; i ++) {       Look at hpijx to understand the reason of that which relies in memory size
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       and note for a fixed period like estepm months */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 }       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       means that if the survival funtion is printed only each two years of age and if
     for (i=1; i<= nlstate ; i ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       results. So we changed our mind and took the option of the best precision.
   else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    agelim=AGESUP;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* nhstepm age range expressed in number of stepm */
 }        nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 #ifdef unix      /* if (stepm >= YEARM) hstepm=1;*/
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 #endif      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   /*2 eme*/      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   for (k1=1; k1<= m ; k1 ++) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      /* Computing  Variances of health expectancies */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");       for(theta=1; theta <=npar; theta++){
 }          for(i=1; i<=npar; i++){ 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (j=1; j<= nlstate+1 ; j ++) {    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        cptj=0;
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate; j++){
 }            for(i=1; i<=nlstate; i++){
       fprintf(ficgp,"\" t\"\" w l 0,");            cptj=cptj+1;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       for (j=1; j<= nlstate+1 ; j ++) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       
       else fprintf(ficgp,"\" t\"\" w l 0,");       
     }        for(i=1; i<=npar; i++) 
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /*3eme*/        
         cptj=0;
   for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<= nlstate; j++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {          for(i=1;i<=nlstate;i++){
       k=2+nlstate*(2*cpt-2);            cptj=cptj+1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(j=1; j<= nlstate*nlstate; j++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 */          }
       for (i=1; i< nlstate ; i ++) {       } 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);     
   /* End theta */
       }  
     }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   }  
         for(h=0; h<=nhstepm-1; h++)
   /* CV preval stat */        for(j=1; j<=nlstate*nlstate;j++)
     for (k1=1; k1<= m ; k1 ++) {          for(theta=1; theta <=npar; theta++)
     for (cpt=1; cpt<nlstate ; cpt ++) {            trgradg[h][j][theta]=gradg[h][theta][j];
       k=3;       
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);       for(i=1;i<=nlstate*nlstate;i++)
         for(j=1;j<=nlstate*nlstate;j++)
       for (i=1; i< nlstate ; i ++)          varhe[i][j][(int)age] =0.;
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       printf("%d|",(int)age);fflush(stdout);
             fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       l=3+(nlstate+ndeath)*cpt;       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        for(k=0;k<=nhstepm-1;k++){
       for (i=1; i< nlstate ; i ++) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         l=3+(nlstate+ndeath)*cpt;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         fprintf(ficgp,"+$%d",l+i+1);          for(i=1;i<=nlstate*nlstate;i++)
       }            for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     }        }
   }        }
        /* Computing expectancies */
   /* proba elementaires */      for(i=1; i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){        for(j=1; j<=nlstate;j++)
     for(k=1; k <=(nlstate+ndeath); k++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       if (k != i) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         for(j=1; j <=ncovmodel; j++){            
          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;          }
           fprintf(ficgp,"\n");  
         }      fprintf(ficreseij,"%3.0f",age );
       }      cptj=0;
     }      for(i=1; i<=nlstate;i++)
    }        for(j=1; j<=nlstate;j++){
           cptj++;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
      for(jk=1; jk <=m; jk++) {        }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      fprintf(ficreseij,"\n");
        if (ng==2)     
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        else      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
          fprintf(ficgp,"\nset title \"Probability\"\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        i=1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        for(k2=1; k2<=nlstate; k2++) {    }
          k3=i;    printf("\n");
          for(k=1; k<=(nlstate+ndeath); k++) {    fprintf(ficlog,"\n");
            if (k != k2){  
              if(ng==2)    free_vector(xp,1,npar);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
              else    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
              ij=1;  }
              for(j=3; j <=ncovmodel; j++) {  
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /************ Variance ******************/
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                  ij++;  {
                }    /* Variance of health expectancies */
                else    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* double **newm;*/
              }    double **dnewm,**doldm;
              fprintf(ficgp,")/(1");    double **dnewmp,**doldmp;
                  int i, j, nhstepm, hstepm, h, nstepm ;
              for(k1=1; k1 <=nlstate; k1++){      int k, cptcode;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double *xp;
                ij=1;    double **gp, **gm;  /* for var eij */
                for(j=3; j <=ncovmodel; j++){    double ***gradg, ***trgradg; /*for var eij */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double **gradgp, **trgradgp; /* for var p point j */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double *gpp, *gmp; /* for var p point j */
                    ij++;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                  }    double ***p3mat;
                  else    double age,agelim, hf;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double ***mobaverage;
                }    int theta;
                fprintf(ficgp,")");    char digit[4];
              }    char digitp[25];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    char fileresprobmorprev[FILENAMELENGTH];
              i=i+ncovmodel;  
            }    if(popbased==1){
          }      if(mobilav!=0)
        }        strcpy(digitp,"-populbased-mobilav-");
      }      else strcpy(digitp,"-populbased-nomobil-");
    }    }
    fclose(ficgp);    else 
 }  /* end gnuplot */      strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
 /*************** Moving average **************/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   int i, cpt, cptcod;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      }
       for (i=1; i<=nlstate;i++)    }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;    strcpy(fileresprobmorprev,"prmorprev"); 
        sprintf(digit,"%-d",ij);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       for (i=1; i<=nlstate;i++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           for (cpt=0;cpt<=4;cpt++){    strcat(fileresprobmorprev,fileres);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         }    }
       }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
 /************** Forecasting ******************/      for(i=1; i<=nlstate;i++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficresprobmorprev,"\n");
   int *popage;    fprintf(ficgp,"\n# Routine varevsij");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   double *popeffectif,*popcount;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double ***p3mat;  /*   } */
   char fileresf[FILENAMELENGTH];    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
  agelim=AGESUP;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
      fprintf(ficresvij,"\n");
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);    xp=vector(1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    dnewm=matrix(1,nlstate,1,npar);
     printf("Problem with forecast resultfile: %s\n", fileresf);    doldm=matrix(1,nlstate,1,nlstate);
   }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
   if (mobilav==1) {    gmp=vector(nlstate+1,nlstate+ndeath);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);    
   }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
   agelim=AGESUP;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   hstepm=1;       nstepm is the number of stepm from age to agelin. 
   hstepm=hstepm/stepm;       Look at hpijx to understand the reason of that which relies in memory size
   yp1=modf(dateintmean,&yp);       and note for a fixed period like k years */
   anprojmean=yp;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   yp2=modf((yp1*12),&yp);       survival function given by stepm (the optimization length). Unfortunately it
   mprojmean=yp;       means that if the survival funtion is printed every two years of age and if
   yp1=modf((yp2*30.5),&yp);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   jprojmean=yp;       results. So we changed our mind and took the option of the best precision.
   if(jprojmean==0) jprojmean=1;    */
   if(mprojmean==0) jprojmean=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   for(cptcov=1;cptcov<=i2;cptcov++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=k+1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficresf,"\n#******");      gp=matrix(0,nhstepm,1,nlstate);
       for(j=1;j<=cptcoveff;j++) {      gm=matrix(0,nhstepm,1,nlstate);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }  
       fprintf(ficresf,"******\n");      for(theta=1; theta <=npar; theta++){
       fprintf(ficresf,"# StartingAge FinalAge");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
              }
              hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          if (popbased==1) {
           if(mobilav ==0){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            for(i=1; i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              prlim[i][i]=probs[(int)age][i][ij];
           nhstepm = nhstepm/hstepm;          }else{ /* mobilav */ 
                      for(i=1; i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              prlim[i][i]=mobaverage[(int)age][i][ij];
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
            
           for (h=0; h<=nhstepm; h++){        for(j=1; j<= nlstate; j++){
             if (h==(int) (calagedate+YEARM*cpt)) {          for(h=0; h<=nhstepm; h++){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                      /* This for computing probability of death (h=1 means
                 if (mobilav==1)           computed over hstepm matrices product = hstepm*stepm months) 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];           as a weighted average of prlim.
                 else {        */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                 }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               }        }    
               if (h==(int)(calagedate+12*cpt)){        /* end probability of death */
                 fprintf(ficresf," %.3f", kk1);  
                                for(i=1; i<=npar; i++) /* Computes gradient x - delta */
               }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
         }        if (popbased==1) {
       }          if(mobilav ==0){
     }            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
                  }else{ /* mobilav */ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   fclose(ficresf);          }
 }        }
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   int *popage;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }
   double *popeffectif,*popcount;        }
   double ***p3mat,***tabpop,***tabpopprev;        /* This for computing probability of death (h=1 means
   char filerespop[FILENAMELENGTH];           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   agelim=AGESUP;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        /* end probability of death */
    
          for(j=1; j<= nlstate; j++) /* vareij */
   strcpy(filerespop,"pop");          for(h=0; h<=nhstepm; h++){
   strcat(filerespop,fileres);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          }
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   printf("Computing forecasting: result on file '%s' \n", filerespop);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
       } /* End theta */
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for(theta=1; theta <=npar; theta++)
   if (stepm<=12) stepsize=1;            trgradg[h][j][theta]=gradg[h][theta][j];
    
   agelim=AGESUP;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          for(theta=1; theta <=npar; theta++)
   hstepm=1;          trgradgp[j][theta]=gradgp[theta][j];
   hstepm=hstepm/stepm;    
    
   if (popforecast==1) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     if((ficpop=fopen(popfile,"r"))==NULL) {      for(i=1;i<=nlstate;i++)
       printf("Problem with population file : %s\n",popfile);exit(0);        for(j=1;j<=nlstate;j++)
     }          vareij[i][j][(int)age] =0.;
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);      for(h=0;h<=nhstepm;h++){
     popcount=vector(0,AGESUP);        for(k=0;k<=nhstepm;k++){
              matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     i=1;            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
     imx=i;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        }
   }      }
     
   for(cptcov=1;cptcov<=i2;cptcov++){      /* pptj */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       k=k+1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       fprintf(ficrespop,"\n#******");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       for(j=1;j<=cptcoveff;j++) {        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          varppt[j][i]=doldmp[j][i];
       }      /* end ppptj */
       fprintf(ficrespop,"******\n");      /*  x centered again */
       fprintf(ficrespop,"# Age");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       if (popforecast==1)  fprintf(ficrespop," [Population]");   
            if (popbased==1) {
       for (cpt=0; cpt<=0;cpt++) {        if(mobilav ==0){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(i=1; i<=nlstate;i++)
                    prlim[i][i]=probs[(int)age][i][ij];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }else{ /* mobilav */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;            prlim[i][i]=mobaverage[(int)age][i][ij];
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
           oldm=oldms;savm=savms;               
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* This for computing probability of death (h=1 means
                 computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           for (h=0; h<=nhstepm; h++){         as a weighted average of prlim.
             if (h==(int) (calagedate+YEARM*cpt)) {      */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             for(j=1; j<=nlstate+ndeath;j++) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
               kk1=0.;kk2=0;      }    
               for(i=1; i<=nlstate;i++) {                    /* end probability of death */
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                 else {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                 }        for(i=1; i<=nlstate;i++){
               }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               if (h==(int)(calagedate+12*cpt)){        }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      } 
                   /*fprintf(ficrespop," %.3f", kk1);      fprintf(ficresprobmorprev,"\n");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }      fprintf(ficresvij,"%.0f ",age );
             }      for(i=1; i<=nlstate;i++)
             for(i=1; i<=nlstate;i++){        for(j=1; j<=nlstate;j++){
               kk1=0.;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                 for(j=1; j<=nlstate;j++){        }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      fprintf(ficresvij,"\n");
                 }      free_matrix(gp,0,nhstepm,1,nlstate);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      free_matrix(gm,0,nhstepm,1,nlstate);
             }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    } /* End age */
           }    free_vector(gpp,nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(gmp,nlstate+1,nlstate+ndeath);
         }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   /******/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           nhstepm = nhstepm/hstepm;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
              fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           oldm=oldms;savm=savms;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           for (h=0; h<=nhstepm; h++){  */
             if (h==(int) (calagedate+YEARM*cpt)) {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    free_vector(xp,1,npar);
               kk1=0.;kk2=0;    free_matrix(doldm,1,nlstate,1,nlstate);
               for(i=1; i<=nlstate;i++) {                  free_matrix(dnewm,1,nlstate,1,npar);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           }    fclose(ficresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fflush(ficgp);
         }    fflush(fichtm); 
       }  }  /* end varevsij */
    }  
   }  /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
     /* Variance of prevalence limit */
   if (popforecast==1) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     free_ivector(popage,0,AGESUP);    double **newm;
     free_vector(popeffectif,0,AGESUP);    double **dnewm,**doldm;
     free_vector(popcount,0,AGESUP);    int i, j, nhstepm, hstepm;
   }    int k, cptcode;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *xp;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *gp, *gm;
   fclose(ficrespop);    double **gradg, **trgradg;
 }    double age,agelim;
     int theta;
 /***********************************************/     
 /**************** Main Program *****************/    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 /***********************************************/    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
 int main(int argc, char *argv[])        fprintf(ficresvpl," %1d-%1d",i,i);
 {    fprintf(ficresvpl,"\n");
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    xp=vector(1,npar);
   double agedeb, agefin,hf;    dnewm=matrix(1,nlstate,1,npar);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    doldm=matrix(1,nlstate,1,nlstate);
     
   double fret;    hstepm=1*YEARM; /* Every year of age */
   double **xi,tmp,delta;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   double dum; /* Dummy variable */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double ***p3mat;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   int *indx;      if (stepm >= YEARM) hstepm=1;
   char line[MAXLINE], linepar[MAXLINE];      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      gradg=matrix(1,npar,1,nlstate);
   int firstobs=1, lastobs=10;      gp=vector(1,nlstate);
   int sdeb, sfin; /* Status at beginning and end */      gm=vector(1,nlstate);
   int c,  h , cpt,l;  
   int ju,jl, mi;      for(theta=1; theta <=npar; theta++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(i=1; i<=npar; i++){ /* Computes gradient */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int mobilav=0,popforecast=0;        }
   int hstepm, nhstepm;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   double bage, fage, age, agelim, agebase;      
   double ftolpl=FTOL;        for(i=1; i<=npar; i++) /* Computes gradient */
   double **prlim;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double *severity;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double ***param; /* Matrix of parameters */        for(i=1;i<=nlstate;i++)
   double  *p;          gm[i] = prlim[i][i];
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */        for(i=1;i<=nlstate;i++)
   double *delti; /* Scale */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double ***eij, ***vareij;      } /* End theta */
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;      trgradg =matrix(1,nlstate,1,npar);
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   char z[1]="c", occ;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 #include <sys/time.h>      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 #include <time.h>      for(i=1;i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   /* long total_usecs;      fprintf(ficresvpl,"%.0f ",age );
   struct timeval start_time, end_time;      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      fprintf(ficresvpl,"\n");
   getcwd(pathcd, size);      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   printf("\n%s",version);      free_matrix(gradg,1,npar,1,nlstate);
   if(argc <=1){      free_matrix(trgradg,1,nlstate,1,npar);
     printf("\nEnter the parameter file name: ");    } /* End age */
     scanf("%s",pathtot);  
   }    free_vector(xp,1,npar);
   else{    free_matrix(doldm,1,nlstate,1,npar);
     strcpy(pathtot,argv[1]);    free_matrix(dnewm,1,nlstate,1,nlstate);
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  }
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  /************ Variance of one-step probabilities  ******************/
   /* cutv(path,optionfile,pathtot,'\\');*/  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    int i, j=0,  i1, k1, l1, t, tj;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int k2, l2, j1,  z1;
   chdir(path);    int k=0,l, cptcode;
   replace(pathc,path);    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 /*-------- arguments in the command line --------*/    double **dnewm,**doldm;
     double *xp;
   strcpy(fileres,"r");    double *gp, *gm;
   strcat(fileres, optionfilefiname);    double **gradg, **trgradg;
   strcat(fileres,".txt");    /* Other files have txt extension */    double **mu;
     double age,agelim, cov[NCOVMAX];
   /*---------arguments file --------*/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    char fileresprob[FILENAMELENGTH];
     printf("Problem with optionfile %s\n",optionfile);    char fileresprobcov[FILENAMELENGTH];
     goto end;    char fileresprobcor[FILENAMELENGTH];
   }  
     double ***varpij;
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    strcpy(fileresprob,"prob"); 
   if((ficparo=fopen(filereso,"w"))==NULL) {    strcat(fileresprob,fileres);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(fileresprobcov,"probcov"); 
     ungetc(c,ficpar);    strcat(fileresprobcov,fileres);
     fgets(line, MAXLINE, ficpar);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     puts(line);      printf("Problem with resultfile: %s\n", fileresprobcov);
     fputs(line,ficparo);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }    }
   ungetc(c,ficpar);    strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      printf("Problem with resultfile: %s\n", fileresprobcor);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     puts(line);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fputs(line,ficparo);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   ungetc(c,ficpar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      
        fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficresprob,"# Age");
   cptcovn=0;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   ncovmodel=2+cptcovn;    fprintf(ficresprobcov,"# Age");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
    
   /* Read guess parameters */    for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */      for(j=1; j<=(nlstate+ndeath);j++){
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     ungetc(c,ficpar);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     puts(line);      }  
     fputs(line,ficparo);   /* fprintf(ficresprob,"\n");
   }    fprintf(ficresprobcov,"\n");
   ungetc(c,ficpar);    fprintf(ficresprobcor,"\n");
     */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   xp=vector(1,npar);
     for(i=1; i <=nlstate; i++)    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fscanf(ficpar,"%1d%1d",&i1,&j1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficparo,"%1d%1d",i1,j1);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       printf("%1d%1d",i,j);    first=1;
       for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\n# Routine varprob");
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         printf(" %lf",param[i][j][k]);    fprintf(fichtm,"\n");
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       fscanf(ficpar,"\n");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       printf("\n");    file %s<br>\n",optionfilehtmcov);
       fprintf(ficparo,"\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     }  and drawn. It helps understanding how is the covariance between two incidences.\
     They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   p=param[1][1];  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
    standard deviations wide on each axis. <br>\
   /* Reads comments: lines beginning with '#' */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   while((c=getc(ficpar))=='#' && c!= EOF){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     ungetc(c,ficpar);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    cov[1]=1;
     fputs(line,ficparo);    tj=cptcoveff;
   }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   ungetc(c,ficpar);    j1=0;
     for(t=1; t<=tj;t++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(i1=1; i1<=ncodemax[t];i1++){ 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        j1++;
   for(i=1; i <=nlstate; i++){        if  (cptcovn>0) {
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficresprob, "\n#********** Variable "); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%1d%1d",i,j);          fprintf(ficresprob, "**********\n#\n");
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficresprobcov, "\n#********** Variable "); 
       for(k=1; k<=ncovmodel;k++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fscanf(ficpar,"%le",&delti3[i][j][k]);          fprintf(ficresprobcov, "**********\n#\n");
         printf(" %le",delti3[i][j][k]);          
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficgp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fscanf(ficpar,"\n");          fprintf(ficgp, "**********\n#\n");
       printf("\n");          
       fprintf(ficparo,"\n");          
     }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   delti=delti3[1][1];          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   /* Reads comments: lines beginning with '#' */          fprintf(ficresprobcor, "\n#********** Variable ");    
   while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficresprobcor, "**********\n#");    
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        
     fputs(line,ficparo);        for (age=bage; age<=fage; age ++){ 
   }          cov[2]=age;
   ungetc(c,ficpar);          for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   matcov=matrix(1,npar,1,npar);          }
   for(i=1; i <=npar; i++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     fscanf(ficpar,"%s",&str);          for (k=1; k<=cptcovprod;k++)
     printf("%s",str);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     fprintf(ficparo,"%s",str);          
     for(j=1; j <=i; j++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       fscanf(ficpar," %le",&matcov[i][j]);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       printf(" %.5le",matcov[i][j]);          gp=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficparo," %.5le",matcov[i][j]);          gm=vector(1,(nlstate)*(nlstate+ndeath));
     }      
     fscanf(ficpar,"\n");          for(theta=1; theta <=npar; theta++){
     printf("\n");            for(i=1; i<=npar; i++)
     fprintf(ficparo,"\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   }            
   for(i=1; i <=npar; i++)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     for(j=i+1;j<=npar;j++)            
       matcov[i][j]=matcov[j][i];            k=0;
                for(i=1; i<= (nlstate); i++){
   printf("\n");              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
     /*-------- Rewriting paramater file ----------*/              }
      strcpy(rfileres,"r");    /* "Rparameterfile */            }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            
      strcat(rfileres,".");    /* */            for(i=1; i<=npar; i++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     if((ficres =fopen(rfileres,"w"))==NULL) {      
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     }            k=0;
     fprintf(ficres,"#%s\n",version);            for(i=1; i<=(nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
     /*-------- data file ----------*/                k=k+1;
     if((fic=fopen(datafile,"r"))==NULL)    {                gm[k]=pmmij[i][j];
       printf("Problem with datafile: %s\n", datafile);goto end;              }
     }            }
        
     n= lastobs;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     severity = vector(1,maxwav);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     outcome=imatrix(1,maxwav+1,1,n);          }
     num=ivector(1,n);  
     moisnais=vector(1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     annais=vector(1,n);            for(theta=1; theta <=npar; theta++)
     moisdc=vector(1,n);              trgradg[j][theta]=gradg[theta][j];
     andc=vector(1,n);          
     agedc=vector(1,n);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     cod=ivector(1,n);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     weight=vector(1,n);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     mint=matrix(1,maxwav,1,n);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     anint=matrix(1,maxwav,1,n);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);              pmij(pmmij,cov,ncovmodel,x,nlstate);
     tab=ivector(1,NCOVMAX);          
     ncodemax=ivector(1,8);          k=0;
           for(i=1; i<=(nlstate); i++){
     i=1;            for(j=1; j<=(nlstate+ndeath);j++){
     while (fgets(line, MAXLINE, fic) != NULL)    {              k=k+1;
       if ((i >= firstobs) && (i <=lastobs)) {              mu[k][(int) age]=pmmij[i][j];
                    }
         for (j=maxwav;j>=1;j--){          }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           strcpy(line,stra);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              varpij[i][j][(int)age] = doldm[i][j];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }          /*printf("\n%d ",(int)age);
                    for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcor,"\n%d ",(int)age);
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         num[i]=atol(stra);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                    fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          }
           i=0;
         i=i+1;          for (k=1; k<=(nlstate);k++){
       }            for (l=1; l<=(nlstate+ndeath);l++){ 
     }              i=i++;
     /* printf("ii=%d", ij);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
        scanf("%d",i);*/              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   imx=i-1; /* Number of individuals */              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   /* for (i=1; i<=imx; i++){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          }/* end of loop for state */
     }*/        } /* end of loop for age */
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;        /* Confidence intervalle of pij  */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        /*
            fprintf(ficgp,"\nset noparametric;unset label");
            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   /* Calculation of the number of parameter from char model*/          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   Tvar=ivector(1,15);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   Tprod=ivector(1,15);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   Tvaraff=ivector(1,15);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   Tvard=imatrix(1,15,1,2);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   Tage=ivector(1,15);              */
      
   if (strlen(model) >1){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     j=0, j1=0, k1=1, k2=1;        first1=1;
     j=nbocc(model,'+');        for (k2=1; k2<=(nlstate);k2++){
     j1=nbocc(model,'*');          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     cptcovn=j+1;            if(l2==k2) continue;
     cptcovprod=j1;            j=(k2-1)*(nlstate+ndeath)+l2;
                for (k1=1; k1<=(nlstate);k1++){
     strcpy(modelsav,model);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                if(l1==k1) continue;
       printf("Error. Non available option model=%s ",model);                i=(k1-1)*(nlstate+ndeath)+l1;
       goto end;                if(i<=j) continue;
     }                for (age=bage; age<=fage; age ++){ 
                      if ((int)age %5==0){
     for(i=(j+1); i>=1;i--){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       cutv(stra,strb,modelsav,'+');                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
       /*scanf("%d",i);*/                    mu2=mu[j][(int) age]/stepm*YEARM;
       if (strchr(strb,'*')) {                    c12=cv12/sqrt(v1*v2);
         cutv(strd,strc,strb,'*');                    /* Computing eigen value of matrix of covariance */
         if (strcmp(strc,"age")==0) {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           cptcovprod--;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           cutv(strb,stre,strd,'V');                    /* Eigen vectors */
           Tvar[i]=atoi(stre);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           cptcovage++;                    /*v21=sqrt(1.-v11*v11); *//* error */
             Tage[cptcovage]=i;                    v21=(lc1-v1)/cv12*v11;
             /*printf("stre=%s ", stre);*/                    v12=-v21;
         }                    v22=v11;
         else if (strcmp(strd,"age")==0) {                    tnalp=v21/v11;
           cptcovprod--;                    if(first1==1){
           cutv(strb,stre,strc,'V');                      first1=0;
           Tvar[i]=atoi(stre);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           cptcovage++;                    }
           Tage[cptcovage]=i;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         }                    /*printf(fignu*/
         else {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           cutv(strb,stre,strc,'V');                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           Tvar[i]=ncovcol+k1;                    if(first==1){
           cutv(strb,strc,strd,'V');                      first=0;
           Tprod[k1]=i;                      fprintf(ficgp,"\nset parametric;unset label");
           Tvard[k1][1]=atoi(strc);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           Tvard[k1][2]=atoi(stre);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           Tvar[cptcovn+k2]=Tvard[k1][1];                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           for (k=1; k<=lastobs;k++)  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           k1++;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           k2=k2+2;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       else {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
        /*  scanf("%d",i);*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       cutv(strd,strc,strb,'V');                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       Tvar[i]=atoi(strc);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }else{
       strcpy(modelsav,stra);                        first=0;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         scanf("%d",i);*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   printf("cptcovprod=%d ", cptcovprod);                    }/* if first */
   scanf("%d ",i);*/                  } /* age mod 5 */
     fclose(fic);                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     /*  if(mle==1){*/                first=1;
     if (weightopt != 1) { /* Maximisation without weights*/              } /*l12 */
       for(i=1;i<=n;i++) weight[i]=1.0;            } /* k12 */
     }          } /*l1 */
     /*-calculation of age at interview from date of interview and age at death -*/        }/* k1 */
     agev=matrix(1,maxwav,1,imx);      } /* loop covariates */
     }
     for (i=1; i<=imx; i++) {    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       for(m=2; (m<= maxwav); m++) {    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    free_vector(xp,1,npar);
          anint[m][i]=9999;    fclose(ficresprob);
          s[m][i]=-1;    fclose(ficresprobcov);
        }    fclose(ficresprobcor);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fflush(ficgp);
       }    fflush(fichtmcov);
     }  }
   
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  /******************* Printing html file ***********/
       for(m=1; (m<= maxwav); m++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         if(s[m][i] >0){                    int lastpass, int stepm, int weightopt, char model[],\
           if (s[m][i] >= nlstate+1) {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
             if(agedc[i]>0)                    int popforecast, int estepm ,\
               if(moisdc[i]!=99 && andc[i]!=9999)                    double jprev1, double mprev1,double anprev1, \
                 agev[m][i]=agedc[i];                    double jprev2, double mprev2,double anprev2){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    int jj1, k1, i1, cpt;
            else {  
               if (andc[i]!=9999){     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
               printf("Warning negative age at death: %d line:%d\n",num[i],i);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
               agev[m][i]=-1;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
               }     fprintf(fichtm,"\
             }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
           }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
           else if(s[m][i] !=9){ /* Should no more exist */     fprintf(fichtm,"\
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
             if(mint[m][i]==99 || anint[m][i]==9999)             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
               agev[m][i]=1;     fprintf(fichtm,"\
             else if(agev[m][i] <agemin){   - Life expectancies by age and initial health status (estepm=%2d months): \
               agemin=agev[m][i];     <a href=\"%s\">%s</a> <br>\n</li>",
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
             }  
             else if(agev[m][i] >agemax){  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   m=cptcoveff;
             }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/   jj1=0;
           }   for(k1=1; k1<=m;k1++){
           else { /* =9 */     for(i1=1; i1<=ncodemax[k1];i1++){
             agev[m][i]=1;       jj1++;
             s[m][i]=-1;       if (cptcovn > 0) {
           }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         }         for (cpt=1; cpt<=cptcoveff;cpt++) 
         else /*= 0 Unknown */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           agev[m][i]=1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       }       }
           /* Pij */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     for (i=1; i<=imx; i++)  {  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       for(m=1; (m<= maxwav); m++){       /* Quasi-incidences */
         if (s[m][i] > (nlstate+ndeath)) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           printf("Error: Wrong value in nlstate or ndeath\n");     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
           goto end;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
         }         /* Stable prevalence in each health state */
       }         for(cpt=1; cpt<nlstate;cpt++){
     }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
     free_vector(severity,1,maxwav);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     free_imatrix(outcome,1,maxwav+1,1,n);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     free_vector(moisnais,1,n);       }
     free_vector(annais,1,n);     } /* end i1 */
     /* free_matrix(mint,1,maxwav,1,n);   }/* End k1 */
        free_matrix(anint,1,maxwav,1,n);*/   fprintf(fichtm,"</ul>");
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);  
    fprintf(fichtm,"\
      \n<br><li><h4> Result files (second order: variances)</h4>\n\
     wav=ivector(1,imx);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     /* Concatenates waves */   fprintf(fichtm,"\
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
       Tcode=ivector(1,100);   fprintf(fichtm,"\
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       ncodemax[1]=1;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   fprintf(fichtm,"\
         - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
    codtab=imatrix(1,100,1,10);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    h=0;   fprintf(fichtm,"\
    m=pow(2,cptcoveff);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    for(k=1;k<=cptcoveff; k++){   fprintf(fichtm,"\
      for(i=1; i <=(m/pow(2,k));i++){   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
        for(j=1; j <= ncodemax[k]; j++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;  /*  if(popforecast==1) fprintf(fichtm,"\n */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
          }  /*      <br>",fileres,fileres,fileres,fileres); */
        }  /*  else  */
      }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    }   fflush(fichtm);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){   m=cptcoveff;
       for(k=1; k <=cptcovn; k++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }   jj1=0;
       printf("\n");   for(k1=1; k1<=m;k1++){
       }     for(i1=1; i1<=ncodemax[k1];i1++){
       scanf("%d",i);*/       jj1++;
           if (cptcovn > 0) {
    /* Calculates basic frequencies. Computes observed prevalence at single age         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        and prints on file fileres'p'. */         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(cpt=1; cpt<=nlstate;cpt++) {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       }
             fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     /* For Powell, parameters are in a vector p[] starting at p[1]  health expectancies in states (1) and (2): %s%d.png<br>\
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */     } /* end i1 */
    }/* End k1 */
     if(mle==1){   fprintf(fichtm,"</ul>");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   fflush(fichtm);
     }  }
      
     /*--------- results files --------------*/  /******************* Gnuplot file **************/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
     char dirfileres[132],optfileres[132];
    jk=1;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int ng;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
    for(i=1,jk=1; i <=nlstate; i++){  /*     printf("Problem with file %s",optionfilegnuplot); */
      for(k=1; k <=(nlstate+ndeath); k++){  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
        if (k != i)  /*   } */
          {  
            printf("%d%d ",i,k);    /*#ifdef windows */
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficgp,"cd \"%s\" \n",pathc);
            for(j=1; j <=ncovmodel; j++){      /*#endif */
              printf("%f ",p[jk]);    m=pow(2,cptcoveff);
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    strcpy(dirfileres,optionfilefiname);
            }    strcpy(optfileres,"vpl");
            printf("\n");   /* 1eme*/
            fprintf(ficres,"\n");    for (cpt=1; cpt<= nlstate ; cpt ++) {
          }     for (k1=1; k1<= m ; k1 ++) {
      }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
    }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
  if(mle==1){       fprintf(ficgp,"set xlabel \"Age\" \n\
     /* Computing hessian and covariance matrix */  set ylabel \"Probability\" \n\
     ftolhess=ftol; /* Usually correct */  set ter png small\n\
     hesscov(matcov, p, npar, delti, ftolhess, func);  set size 0.65,0.65\n\
  }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");       for (i=1; i<= nlstate ; i ++) {
      for(i=1,jk=1; i <=nlstate; i++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for(j=1; j <=nlstate+ndeath; j++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
         if (j!=i) {       }
           fprintf(ficres,"%1d%1d",i,j);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           printf("%1d%1d",i,j);       for (i=1; i<= nlstate ; i ++) {
           for(k=1; k<=ncovmodel;k++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             printf(" %.5e",delti[jk]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
             fprintf(ficres," %.5e",delti[jk]);       } 
             jk++;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           }       for (i=1; i<= nlstate ; i ++) {
           printf("\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficres,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }       }  
       }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }     }
        }
     k=1;    /*2 eme*/
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    for (k1=1; k1<= m ; k1 ++) { 
     for(i=1;i<=npar;i++){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       /*  if (k>nlstate) k=1;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       i1=(i-1)/(ncovmodel*nlstate)+1;      
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      for (i=1; i<= nlstate+1 ; i ++) {
       printf("%s%d%d",alph[k],i1,tab[i]);*/        k=2*i;
       fprintf(ficres,"%3d",i);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       printf("%3d",i);        for (j=1; j<= nlstate+1 ; j ++) {
       for(j=1; j<=i;j++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficres," %.5e",matcov[i][j]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         printf(" %.5e",matcov[i][j]);        }   
       }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       fprintf(ficres,"\n");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       printf("\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       k++;        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
              else fprintf(ficgp," \%%*lf (\%%*lf)");
     while((c=getc(ficpar))=='#' && c!= EOF){        }   
       ungetc(c,ficpar);        fprintf(ficgp,"\" t\"\" w l 0,");
       fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       puts(line);        for (j=1; j<= nlstate+1 ; j ++) {
       fputs(line,ficparo);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
     ungetc(c,ficpar);        }   
     estepm=0;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        else fprintf(ficgp,"\" t\"\" w l 0,");
     if (estepm==0 || estepm < stepm) estepm=stepm;      }
     if (fage <= 2) {    }
       bage = ageminpar;    
       fage = agemaxpar;    /*3eme*/
     }    
        for (k1=1; k1<= m ; k1 ++) { 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        k=2+nlstate*(2*cpt-2);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
          fprintf(ficgp,"set ter png small\n\
     while((c=getc(ficpar))=='#' && c!= EOF){  set size 0.65,0.65\n\
     ungetc(c,ficpar);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     fgets(line, MAXLINE, ficpar);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     puts(line);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     fputs(line,ficparo);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   ungetc(c,ficpar);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for (i=1; i< nlstate ; i ++) {
                fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);        } 
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);    
   }    /* CV preval stable (period) */
   ungetc(c,ficpar);    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   fscanf(ficpar,"pop_based=%d\n",&popbased);  unset log y\n\
   fprintf(ficparo,"pop_based=%d\n",popbased);    plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   fprintf(ficres,"pop_based=%d\n",popbased);          
          for (i=1; i< nlstate ; i ++)
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"+$%d",k+i+1);
     ungetc(c,ficpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     fgets(line, MAXLINE, ficpar);        
     puts(line);        l=3+(nlstate+ndeath)*cpt;
     fputs(line,ficparo);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   }        for (i=1; i< nlstate ; i ++) {
   ungetc(c,ficpar);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      } 
     }  
     
 while((c=getc(ficpar))=='#' && c!= EOF){    /* proba elementaires */
     ungetc(c,ficpar);    for(i=1,jk=1; i <=nlstate; i++){
     fgets(line, MAXLINE, ficpar);      for(k=1; k <=(nlstate+ndeath); k++){
     puts(line);        if (k != i) {
     fputs(line,ficparo);          for(j=1; j <=ncovmodel; j++){
   }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   ungetc(c,ficpar);            jk++; 
             fprintf(ficgp,"\n");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      }
      }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 /*------------ gnuplot -------------*/       for(jk=1; jk <=m; jk++) {
   strcpy(optionfilegnuplot,optionfilefiname);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   strcat(optionfilegnuplot,".gp");         if (ng==2)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     printf("Problem with file %s",optionfilegnuplot);         else
   }           fprintf(ficgp,"\nset title \"Probability\"\n");
   fclose(ficgp);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);         i=1;
 /*--------- index.htm --------*/         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
   strcpy(optionfilehtm,optionfile);           for(k=1; k<=(nlstate+ndeath); k++) {
   strcat(optionfilehtm,".htm");             if (k != k2){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {               if(ng==2)
     printf("Problem with %s \n",optionfilehtm), exit(0);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   }               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n               ij=1;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n               for(j=3; j <=ncovmodel; j++) {
 \n                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 Total number of observations=%d <br>\n                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                   ij++;
 <hr  size=\"2\" color=\"#EC5E5E\">                 }
  <ul><li>Parameter files<br>\n                 else
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);               }
   fclose(fichtm);               fprintf(ficgp,")/(1");
                
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);               for(k1=1; k1 <=nlstate; k1++){   
                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 /*------------ free_vector  -------------*/                 ij=1;
  chdir(path);                 for(j=3; j <=ncovmodel; j++){
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  free_ivector(wav,1,imx);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                     ij++;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                     }
  free_ivector(num,1,n);                   else
  free_vector(agedc,1,n);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                 }
  fclose(ficparo);                 fprintf(ficgp,")");
  fclose(ficres);               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   /*--------------- Prevalence limit --------------*/               i=i+ncovmodel;
               }
   strcpy(filerespl,"pl");           } /* end k */
   strcat(filerespl,fileres);         } /* end k2 */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       } /* end jk */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;     } /* end ng */
   }     fflush(ficgp); 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  }  /* end gnuplot */
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /*************** Moving average **************/
   fprintf(ficrespl,"\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
    
   prlim=matrix(1,nlstate,1,nlstate);    int i, cpt, cptcod;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int modcovmax =1;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int mobilavrange, mob;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double age;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   k=0;                             a covariate has 2 modalities */
   agebase=ageminpar;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   agelim=agemaxpar;  
   ftolpl=1.e-10;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   i1=cptcoveff;      if(mobilav==1) mobilavrange=5; /* default */
   if (cptcovn < 1){i1=1;}      else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
   for(cptcov=1;cptcov<=i1;cptcov++){        for (i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
         k=k+1;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      /* We keep the original values on the extreme ages bage, fage and for 
         fprintf(ficrespl,"\n#******");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         for(j=1;j<=cptcoveff;j++)         we use a 5 terms etc. until the borders are no more concerned. 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      */ 
         fprintf(ficrespl,"******\n");      for (mob=3;mob <=mobilavrange;mob=mob+2){
                for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         for (age=agebase; age<=agelim; age++){          for (i=1; i<=nlstate;i++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           fprintf(ficrespl,"%.0f",age );              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           for(i=1; i<=nlstate;i++)                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           fprintf(ficrespl," %.5f", prlim[i][i]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           fprintf(ficrespl,"\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         }                }
       }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     }            }
   fclose(ficrespl);          }
         }/* end age */
   /*------------- h Pij x at various ages ------------*/      }/* end mob */
      }else return -1;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    return 0;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  }/* End movingaverage */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);  /************** Forecasting ******************/
    prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* proj1, year, month, day of starting projection 
   /*if (stepm<=24) stepsize=2;*/       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
   agelim=AGESUP;       anproj2 year of en of projection (same day and month as proj1).
   hstepm=stepsize*YEARM; /* Every year of age */    */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      int *popage;
   k=0;    double agec; /* generic age */
   for(cptcov=1;cptcov<=i1;cptcov++){    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double *popeffectif,*popcount;
       k=k+1;    double ***p3mat;
         fprintf(ficrespij,"\n#****** ");    double ***mobaverage;
         for(j=1;j<=cptcoveff;j++)    char fileresf[FILENAMELENGTH];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    agelim=AGESUP;
            prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    strcpy(fileresf,"f"); 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    strcat(fileresf,fileres);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficresf=fopen(fileresf,"w"))==NULL) {
           oldm=oldms;savm=savms;      printf("Problem with forecast resultfile: %s\n", fileresf);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficrespij,"# Age");    }
           for(i=1; i<=nlstate;i++)    printf("Computing forecasting: result on file '%s' \n", fileresf);
             for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    if (mobilav!=0) {
             for(i=1; i<=nlstate;i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               for(j=1; j<=nlstate+ndeath;j++)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             fprintf(ficrespij,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
              }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           fprintf(ficrespij,"\n");  
         }    stepsize=(int) (stepm+YEARM-1)/YEARM;
     }    if (stepm<=12) stepsize=1;
   }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    }
     else  hstepm=estepm;   
   fclose(ficrespij);  
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   /*---------- Forecasting ------------------*/                                 fractional in yp1 */
   if((stepm == 1) && (strcmp(model,".")==0)){    anprojmean=yp;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    yp2=modf((yp1*12),&yp);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    mprojmean=yp;
   }    yp1=modf((yp2*30.5),&yp);
   else{    jprojmean=yp;
     erreur=108;    if(jprojmean==0) jprojmean=1;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    if(mprojmean==0) jprojmean=1;
   }  
      i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   /*---------- Health expectancies and variances ------------*/    
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   strcpy(filerest,"t");    
   strcat(filerest,fileres);    fprintf(ficresf,"#****** Routine prevforecast **\n");
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /*            if (h==(int)(YEARM*yearp)){ */
   }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
   strcpy(filerese,"e");        for(j=1;j<=cptcoveff;j++) {
   strcat(filerese,fileres);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   if((ficreseij=fopen(filerese,"w"))==NULL) {        }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        fprintf(ficresf,"******\n");
   }        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
  strcpy(fileresv,"v");            fprintf(ficresf," p%d%d",i,j);
   strcat(fileresv,fileres);          fprintf(ficresf," p.%d",j);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   }          fprintf(ficresf,"\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   k=0;            nhstepm = nhstepm/hstepm; 
   for(cptcov=1;cptcov<=i1;cptcov++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            oldm=oldms;savm=savms;
       k=k+1;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       fprintf(ficrest,"\n#****** ");          
       for(j=1;j<=cptcoveff;j++)            for (h=0; h<=nhstepm; h++){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if (h*hstepm/YEARM*stepm ==yearp) {
       fprintf(ficrest,"******\n");                fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
       fprintf(ficreseij,"\n#****** ");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(j=1;j<=cptcoveff;j++)                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              } 
       fprintf(ficreseij,"******\n");              for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
       fprintf(ficresvij,"\n#****** ");                for(i=1; i<=nlstate;i++) {
       for(j=1;j<=cptcoveff;j++)                  if (mobilav==1) 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       fprintf(ficresvij,"******\n");                  else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                  }
       oldm=oldms;savm=savms;                  if (h*hstepm/YEARM*stepm== yearp) {
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                      fprintf(ficresf," %.3f", p3mat[i][j][h]);
                    }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                } /* end i */
       oldm=oldms;savm=savms;                if (h*hstepm/YEARM*stepm==yearp) {
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                  fprintf(ficresf," %.3f", ppij);
                    }
               }/* end j */
              } /* end h */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          } /* end agec */
       fprintf(ficrest,"\n");        } /* end yearp */
       } /* end cptcod */
       epj=vector(1,nlstate+1);    } /* end  cptcov */
       for(age=bage; age <=fage ;age++){         
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)    fclose(ficresf);
             prlim[i][i]=probs[(int)age][i][k];  }
         }  
          /************** Forecasting *****not tested NB*************/
         fprintf(ficrest," %4.0f",age);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    int *popage;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    double calagedatem, agelim, kk1, kk2;
           }    double *popeffectif,*popcount;
           epj[nlstate+1] +=epj[j];    double ***p3mat,***tabpop,***tabpopprev;
         }    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             vepp += vareij[i][j][(int)age];    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    agelim=AGESUP;
         for(j=1;j <=nlstate;j++){    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    
         }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficrest,"\n");    
       }    
     }    strcpy(filerespop,"pop"); 
   }    strcat(filerespop,fileres);
 free_matrix(mint,1,maxwav,1,n);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      printf("Problem with forecast resultfile: %s\n", filerespop);
     free_vector(weight,1,n);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   fclose(ficreseij);    }
   fclose(ficresvij);    printf("Computing forecasting: result on file '%s' \n", filerespop);
   fclose(ficrest);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   /*------- Variance limit prevalence------*/      if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(fileresvpl,"vpl");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   strcat(fileresvpl,fileres);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      }
     exit(0);    }
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   k=0;    
   for(cptcov=1;cptcov<=i1;cptcov++){    agelim=AGESUP;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    hstepm=1;
       fprintf(ficresvpl,"\n#****** ");    hstepm=hstepm/stepm; 
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (popforecast==1) {
       fprintf(ficresvpl,"******\n");      if((ficpop=fopen(popfile,"r"))==NULL) {
              printf("Problem with population file : %s\n",popfile);exit(0);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       oldm=oldms;savm=savms;      } 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      popage=ivector(0,AGESUP);
     }      popeffectif=vector(0,AGESUP);
  }      popcount=vector(0,AGESUP);
       
   fclose(ficresvpl);      i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   /*---------- End : free ----------------*/     
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      imx=i;
        for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
      for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        k=k+1;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficrespop,"\n#******");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(j=1;j<=cptcoveff;j++) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
          }
   free_matrix(matcov,1,npar,1,npar);        fprintf(ficrespop,"******\n");
   free_vector(delti,1,npar);        fprintf(ficrespop,"# Age");
   free_matrix(agev,1,maxwav,1,imx);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        if (popforecast==1)  fprintf(ficrespop," [Population]");
         
   fprintf(fichtm,"\n</body>");        for (cpt=0; cpt<=0;cpt++) { 
   fclose(fichtm);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   fclose(ficgp);          
            for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   if(erreur >0)            nhstepm = nhstepm/hstepm; 
     printf("End of Imach with error or warning %d\n",erreur);            
   else   printf("End of Imach\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          
   /*printf("Total time was %d uSec.\n", total_usecs);*/            for (h=0; h<=nhstepm; h++){
   /*------ End -----------*/              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
  end:              for(j=1; j<=nlstate+ndeath;j++) {
 #ifdef windows                kk1=0.;kk2=0;
   /* chdir(pathcd);*/                for(i=1; i<=nlstate;i++) {              
 #endif                  if (mobilav==1) 
  /*system("wgnuplot graph.plt");*/                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
  /*system("../gp37mgw/wgnuplot graph.plt");*/                  else {
  /*system("cd ../gp37mgw");*/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                  }
  strcpy(plotcmd,GNUPLOTPROGRAM);                }
  strcat(plotcmd," ");                if (h==(int)(calagedatem+12*cpt)){
  strcat(plotcmd,optionfilegnuplot);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
  system(plotcmd);                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 #ifdef windows                }
   while (z[0] != 'q') {              }
     /* chdir(path); */              for(i=1; i<=nlstate;i++){
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                kk1=0.;
     scanf("%s",z);                  for(j=1; j<=nlstate;j++){
     if (z[0] == 'c') system("./imach");                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     else if (z[0] == 'e') system(optionfilehtm);                  }
     else if (z[0] == 'g') system(plotcmd);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     else if (z[0] == 'q') exit(0);              }
   }  
 #endif              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 }                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.99


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>