Diff for /imach/src/imach.c between versions 1.50 and 1.146

version 1.50, 2002/06/26 23:25:02 version 1.146, 2014/06/16 10:20:28
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.146  2014/06/16 10:20:28  brouard
      Summary: Merge
   This program computes Healthy Life Expectancies from    Author: Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Merge, before building revised version.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.145  2014/06/10 21:23:15  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: Debugging with valgrind
   (if any) in individual health status.  Health expectancies are    Author: Nicolas Brouard
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Lot of changes in order to output the results with some covariates
   Maximum Likelihood of the parameters involved in the model.  The    After the Edimburgh REVES conference 2014, it seems mandatory to
   simplest model is the multinomial logistic model where pij is the    improve the code.
   probability to be observed in state j at the second wave    No more memory valgrind error but a lot has to be done in order to
   conditional to be observed in state i at the first wave. Therefore    continue the work of splitting the code into subroutines.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Also, decodemodel has been improved. Tricode is still not
   'age' is age and 'sex' is a covariate. If you want to have a more    optimal. nbcode should be improved. Documentation has been added in
   complex model than "constant and age", you should modify the program    the source code.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.143  2014/01/26 09:45:38  brouard
   convergence.    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
   The advantage of this computer programme, compared to a simple    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   multinomial logistic model, is clear when the delay between waves is not    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.142  2014/01/26 03:57:36  brouard
   account using an interpolation or extrapolation.      Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
   hPijx is the probability to be observed in state i at age x+h    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.141  2014/01/26 02:42:01  brouard
   states. This elementary transition (by month or quarter trimester,    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.140  2011/09/02 10:37:54  brouard
   and the contribution of each individual to the likelihood is simply    Summary: times.h is ok with mingw32 now.
   hPijx.  
     Revision 1.139  2010/06/14 07:50:17  brouard
   Also this programme outputs the covariance matrix of the parameters but also    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   of the life expectancies. It also computes the prevalence limits.    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.138  2010/04/30 18:19:40  brouard
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.137  2010/04/29 18:11:38  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Checking covariates for more complex models
   software can be distributed freely for non commercial use. Latest version    than V1+V2. A lot of change to be done. Unstable.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.136  2010/04/26 20:30:53  brouard
      (Module): merging some libgsl code. Fixing computation
 #include <math.h>    of likelione (using inter/intrapolation if mle = 0) in order to
 #include <stdio.h>    get same likelihood as if mle=1.
 #include <stdlib.h>    Some cleaning of code and comments added.
 #include <unistd.h>  
     Revision 1.135  2009/10/29 15:33:14  brouard
 #define MAXLINE 256    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.134  2009/10/29 13:18:53  brouard
 #define FILENAMELENGTH 80    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 /*#define DEBUG*/  
 #define windows    Revision 1.133  2009/07/06 10:21:25  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    just nforces
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.132  2009/07/06 08:22:05  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Many tings
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.131  2009/06/20 16:22:47  brouard
 #define NINTERVMAX 8    Some dimensions resccaled
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.130  2009/05/26 06:44:34  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Max Covariate is now set to 20 instead of 8. A
 #define MAXN 20000    lot of cleaning with variables initialized to 0. Trying to make
 #define YEARM 12. /* Number of months per year */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.129  2007/08/31 13:49:27  lievre
 #ifdef windows    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.128  2006/06/30 13:02:05  brouard
 #else    (Module): Clarifications on computing e.j
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.127  2006/04/28 18:11:50  brouard
 #endif    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    loop. Now we define nhstepma in the age loop.
 int erreur; /* Error number */    (Module): In order to speed up (in case of numerous covariates) we
 int nvar;    compute health expectancies (without variances) in a first step
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    and then all the health expectancies with variances or standard
 int npar=NPARMAX;    deviation (needs data from the Hessian matrices) which slows the
 int nlstate=2; /* Number of live states */    computation.
 int ndeath=1; /* Number of dead states */    In the future we should be able to stop the program is only health
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    expectancies and graph are needed without standard deviations.
 int popbased=0;  
     Revision 1.126  2006/04/28 17:23:28  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Yes the sum of survivors was wrong since
 int maxwav; /* Maxim number of waves */    imach-114 because nhstepm was no more computed in the age
 int jmin, jmax; /* min, max spacing between 2 waves */    loop. Now we define nhstepma in the age loop.
 int mle, weightopt;    Version 0.98h
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.125  2006/04/04 15:20:31  lievre
 double jmean; /* Mean space between 2 waves */    Errors in calculation of health expectancies. Age was not initialized.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Forecasting file added.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.124  2006/03/22 17:13:53  lievre
 FILE *ficlog;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    The log-likelihood is printed in the log file
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.123  2006/03/20 10:52:43  brouard
 FILE *ficreseij;    * imach.c (Module): <title> changed, corresponds to .htm file
 char filerese[FILENAMELENGTH];    name. <head> headers where missing.
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    * imach.c (Module): Weights can have a decimal point as for
 FILE  *ficresvpl;    English (a comma might work with a correct LC_NUMERIC environment,
 char fileresvpl[FILENAMELENGTH];    otherwise the weight is truncated).
 char title[MAXLINE];    Modification of warning when the covariates values are not 0 or
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    1.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Version 0.98g
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.122  2006/03/20 09:45:41  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    (Module): Weights can have a decimal point as for
 char filerest[FILENAMELENGTH];    English (a comma might work with a correct LC_NUMERIC environment,
 char fileregp[FILENAMELENGTH];    otherwise the weight is truncated).
 char popfile[FILENAMELENGTH];    Modification of warning when the covariates values are not 0 or
     1.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Version 0.98g
   
 #define NR_END 1    Revision 1.121  2006/03/16 17:45:01  lievre
 #define FREE_ARG char*    * imach.c (Module): Comments concerning covariates added
 #define FTOL 1.0e-10  
     * imach.c (Module): refinements in the computation of lli if
 #define NRANSI    status=-2 in order to have more reliable computation if stepm is
 #define ITMAX 200    not 1 month. Version 0.98f
   
 #define TOL 2.0e-4    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 #define CGOLD 0.3819660    status=-2 in order to have more reliable computation if stepm is
 #define ZEPS 1.0e-10    not 1 month. Version 0.98f
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.119  2006/03/15 17:42:26  brouard
 #define GOLD 1.618034    (Module): Bug if status = -2, the loglikelihood was
 #define GLIMIT 100.0    computed as likelihood omitting the logarithm. Version O.98e
 #define TINY 1.0e-20  
     Revision 1.118  2006/03/14 18:20:07  brouard
 static double maxarg1,maxarg2;    (Module): varevsij Comments added explaining the second
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    table of variances if popbased=1 .
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
      (Module): Function pstamp added
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): Version 0.98d
 #define rint(a) floor(a+0.5)  
     Revision 1.117  2006/03/14 17:16:22  brouard
 static double sqrarg;    (Module): varevsij Comments added explaining the second
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    table of variances if popbased=1 .
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 int imx;    (Module): Version 0.98d
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 int estepm;    varian-covariance of ej. is needed (Saito).
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.115  2006/02/27 12:17:45  brouard
 int m,nb;    (Module): One freematrix added in mlikeli! 0.98c
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.114  2006/02/26 12:57:58  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Some improvements in processing parameter
 double dateintmean=0;    filename with strsep.
   
 double *weight;    Revision 1.113  2006/02/24 14:20:24  brouard
 int **s; /* Status */    (Module): Memory leaks checks with valgrind and:
 double *agedc, **covar, idx;    datafile was not closed, some imatrix were not freed and on matrix
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    allocation too.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.112  2006/01/30 09:55:26  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 /**************** split *************************/    Revision 1.111  2006/01/25 20:38:18  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): Lots of cleaning and bugs added (Gompertz)
 {    (Module): Comments can be added in data file. Missing date values
    char *s;                             /* pointer */    can be a simple dot '.'.
    int  l1, l2;                         /* length counters */  
     Revision 1.110  2006/01/25 00:51:50  brouard
    l1 = strlen( path );                 /* length of path */    (Module): Lots of cleaning and bugs added (Gompertz)
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Revision 1.109  2006/01/24 19:37:15  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): Comments (lines starting with a #) are allowed in data.
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.108  2006/01/19 18:05:42  lievre
 #if     defined(__bsd__)                /* get current working directory */    Gnuplot problem appeared...
       extern char       *getwd( );    To be fixed
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.107  2006/01/19 16:20:37  brouard
 #else    Test existence of gnuplot in imach path
       extern char       *getcwd( );  
     Revision 1.106  2006/01/19 13:24:36  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Some cleaning and links added in html output
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.105  2006/01/05 20:23:19  lievre
       }    *** empty log message ***
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.104  2005/09/30 16:11:43  lievre
       s++;                              /* after this, the filename */    (Module): sump fixed, loop imx fixed, and simplifications.
       l2 = strlen( s );                 /* length of filename */    (Module): If the status is missing at the last wave but we know
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    that the person is alive, then we can code his/her status as -2
       strcpy( name, s );                /* save file name */    (instead of missing=-1 in earlier versions) and his/her
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    contributions to the likelihood is 1 - Prob of dying from last
       dirc[l1-l2] = 0;                  /* add zero */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    }    the healthy state at last known wave). Version is 0.98
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.103  2005/09/30 15:54:49  lievre
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): sump fixed, loop imx fixed, and simplifications.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.102  2004/09/15 17:31:30  brouard
 #endif    Add the possibility to read data file including tab characters.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.101  2004/09/15 10:38:38  brouard
    strcpy(ext,s);                       /* save extension */    Fix on curr_time
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.100  2004/07/12 18:29:06  brouard
    strncpy( finame, name, l1-l2);    Add version for Mac OS X. Just define UNIX in Makefile
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.99  2004/06/05 08:57:40  brouard
 }    *** empty log message ***
   
     Revision 1.98  2004/05/16 15:05:56  brouard
 /******************************************/    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 void replace(char *s, char*t)    state at each age, but using a Gompertz model: log u =a + b*age .
 {    This is the basic analysis of mortality and should be done before any
   int i;    other analysis, in order to test if the mortality estimated from the
   int lg=20;    cross-longitudinal survey is different from the mortality estimated
   i=0;    from other sources like vital statistic data.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    The same imach parameter file can be used but the option for mle should be -3.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Agnès, who wrote this part of the code, tried to keep most of the
   }    former routines in order to include the new code within the former code.
 }  
     The output is very simple: only an estimate of the intercept and of
 int nbocc(char *s, char occ)    the slope with 95% confident intervals.
 {  
   int i,j=0;    Current limitations:
   int lg=20;    A) Even if you enter covariates, i.e. with the
   i=0;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   lg=strlen(s);    B) There is no computation of Life Expectancy nor Life Table.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.97  2004/02/20 13:25:42  lievre
   }    Version 0.96d. Population forecasting command line is (temporarily)
   return j;    suppressed.
 }  
     Revision 1.96  2003/07/15 15:38:55  brouard
 void cutv(char *u,char *v, char*t, char occ)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 {    rewritten within the same printf. Workaround: many printfs.
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    Revision 1.95  2003/07/08 07:54:34  brouard
      gives u="abcedf" and v="ghi2j" */    * imach.c (Repository):
   int i,lg,j,p=0;    (Repository): Using imachwizard code to output a more meaningful covariance
   i=0;    matrix (cov(a12,c31) instead of numbers.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.94  2003/06/27 13:00:02  brouard
   }    Just cleaning
   
   lg=strlen(t);    Revision 1.93  2003/06/25 16:33:55  brouard
   for(j=0; j<p; j++) {    (Module): On windows (cygwin) function asctime_r doesn't
     (u[j] = t[j]);    exist so I changed back to asctime which exists.
   }    (Module): Version 0.96b
      u[p]='\0';  
     Revision 1.92  2003/06/25 16:30:45  brouard
    for(j=0; j<= lg; j++) {    (Module): On windows (cygwin) function asctime_r doesn't
     if (j>=(p+1))(v[j-p-1] = t[j]);    exist so I changed back to asctime which exists.
   }  
 }    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 /********************** nrerror ********************/    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 void nrerror(char error_text[])    is stamped in powell.  We created a new html file for the graphs
 {    concerning matrix of covariance. It has extension -cov.htm.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.90  2003/06/24 12:34:15  brouard
   exit(1);    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
 /*********************** vector *******************/    of the covariance matrix to be input.
 double *vector(int nl, int nh)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   double *v;    (Module): Some bugs corrected for windows. Also, when
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!v) nrerror("allocation failure in vector");    of the covariance matrix to be input.
   return v-nl+NR_END;  
 }    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.87  2003/06/18 12:26:01  brouard
 {    Version 0.96
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 /************************ivector *******************************/    routine fileappend.
 int *ivector(long nl,long nh)  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   int *v;    * imach.c (Repository): Check when date of death was earlier that
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    current date of interview. It may happen when the death was just
   if (!v) nrerror("allocation failure in ivector");    prior to the death. In this case, dh was negative and likelihood
   return v-nl+NR_END;    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /******************free ivector **************************/    (Repository): Because some people have very long ID (first column)
 void free_ivector(int *v, long nl, long nh)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   free((FREE_ARG)(v+nl-NR_END));    truncation)
 }    (Repository): No more line truncation errors.
   
 /******************* imatrix *******************************/    Revision 1.84  2003/06/13 21:44:43  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    * imach.c (Repository): Replace "freqsummary" at a correct
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    parcimony.
   int **m;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
   /* allocate pointers to rows */    Revision 1.83  2003/06/10 13:39:11  lievre
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    *** empty log message ***
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.82  2003/06/05 15:57:20  brouard
   m -= nrl;    Add log in  imach.c and  fullversion number is now printed.
    
    */
   /* allocate rows and set pointers to them */  /*
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     Interpolated Markov Chain
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Short summary of the programme:
   m[nrl] -= ncl;    
      This program computes Healthy Life Expectancies from
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      first survey ("cross") where individuals from different ages are
   /* return pointer to array of pointers to rows */    interviewed on their health status or degree of disability (in the
   return m;    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /****************** free_imatrix *************************/    computed from the time spent in each health state according to a
 void free_imatrix(m,nrl,nrh,ncl,nch)    model. More health states you consider, more time is necessary to reach the
       int **m;    Maximum Likelihood of the parameters involved in the model.  The
       long nch,ncl,nrh,nrl;    simplest model is the multinomial logistic model where pij is the
      /* free an int matrix allocated by imatrix() */    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   free((FREE_ARG) (m+nrl-NR_END));    'age' is age and 'sex' is a covariate. If you want to have a more
 }    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 /******************* matrix *******************************/    you to do it.  More covariates you add, slower the
 double **matrix(long nrl, long nrh, long ncl, long nch)    convergence.
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    The advantage of this computer programme, compared to a simple
   double **m;    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    intermediate interview, the information is lost, but taken into
   if (!m) nrerror("allocation failure 1 in matrix()");    account using an interpolation or extrapolation.  
   m += NR_END;  
   m -= nrl;    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    split into an exact number (nh*stepm) of unobserved intermediate
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    states. This elementary transition (by month, quarter,
   m[nrl] += NR_END;    semester or year) is modelled as a multinomial logistic.  The hPx
   m[nrl] -= ncl;    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    hPijx.
   return m;  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
 /*************************free matrix ************************/    
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 {             Institut national d'études démographiques, Paris.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    This software have been partly granted by Euro-REVES, a concerted action
   free((FREE_ARG)(m+nrl-NR_END));    from the European Union.
 }    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 /******************* ma3x *******************************/    can be accessed at http://euroreves.ined.fr/imach .
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   double ***m;    
     **********************************************************************/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /*
   if (!m) nrerror("allocation failure 1 in matrix()");    main
   m += NR_END;    read parameterfile
   m -= nrl;    read datafile
     concatwav
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    freqsummary
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (mle >= 1)
   m[nrl] += NR_END;      mlikeli
   m[nrl] -= ncl;    print results files
     if mle==1 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));        begin-prev-date,...
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    open gnuplot file
   m[nrl][ncl] += NR_END;    open html file
   m[nrl][ncl] -= nll;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   for (j=ncl+1; j<=nch; j++)     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     m[nrl][j]=m[nrl][j-1]+nlay;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
        freexexit2 possible for memory heap.
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    h Pij x                         | pij_nom  ficrestpij
     for (j=ncl+1; j<=nch; j++)     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       m[i][j]=m[i][j-1]+nlay;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   }         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   return m;  
 }         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
          1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 /*************************free ma3x ************************/    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    forecasting if prevfcast==1 prevforecast call prevalence()
   free((FREE_ARG)(m+nrl-NR_END));    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /***************** f1dim *************************/     movingaverage()
 extern int ncom;    varevsij() 
 extern double *pcom,*xicom;    if popbased==1 varevsij(,popbased)
 extern double (*nrfunc)(double []);    total life expectancies
      Variance of period (stable) prevalence
 double f1dim(double x)   end
 {  */
   int j;  
   double f;  
   double *xt;  
     
   xt=vector(1,ncom);  #include <math.h>
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #include <stdio.h>
   f=(*nrfunc)(xt);  #include <stdlib.h>
   free_vector(xt,1,ncom);  #include <string.h>
   return f;  #include <unistd.h>
 }  
   #include <limits.h>
 /*****************brent *************************/  #include <sys/types.h>
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #include <sys/stat.h>
 {  #include <errno.h>
   int iter;  extern int errno;
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  #ifdef LINUX
   double ftemp;  #include <time.h>
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #include "timeval.h"
   double e=0.0;  #else
    #include <sys/time.h>
   a=(ax < cx ? ax : cx);  #endif
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  #ifdef GSL
   fw=fv=fx=(*f)(x);  #include <gsl/gsl_errno.h>
   for (iter=1;iter<=ITMAX;iter++) {  #include <gsl/gsl_multimin.h>
     xm=0.5*(a+b);  #endif
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /* #include <libintl.h> */
     printf(".");fflush(stdout);  /* #define _(String) gettext (String) */
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define GNUPLOTPROGRAM "gnuplot"
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #endif  #define FILENAMELENGTH 132
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       return fx;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     }  
     ftemp=fu;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     if (fabs(e) > tol1) {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  #define NINTERVMAX 8
       p=(x-v)*q-(x-w)*r;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       q=2.0*(q-r);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       if (q > 0.0) p = -p;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       q=fabs(q);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       etemp=e;  #define MAXN 20000
       e=d;  #define YEARM 12. /**< Number of months per year */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define AGESUP 130
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define AGEBASE 40
       else {  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
         d=p/q;  #ifdef UNIX
         u=x+d;  #define DIRSEPARATOR '/'
         if (u-a < tol2 || b-u < tol2)  #define CHARSEPARATOR "/"
           d=SIGN(tol1,xm-x);  #define ODIRSEPARATOR '\\'
       }  #else
     } else {  #define DIRSEPARATOR '\\'
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define CHARSEPARATOR "\\"
     }  #define ODIRSEPARATOR '/'
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #endif
     fu=(*f)(u);  
     if (fu <= fx) {  <<<<<<< imach.c
       if (u >= x) a=x; else b=x;  /* $Id$ */
       SHFT(v,w,x,u)  =======
         SHFT(fv,fw,fx,fu)  /* $Id$ */
         } else {  >>>>>>> 1.145
           if (u < x) a=u; else b=u;  /* $State$ */
           if (fu <= fw || w == x) {  
             v=w;  <<<<<<< imach.c
             w=u;  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
             fv=fw;  char fullversion[]="$Revision$ $Date$"; 
             fw=fu;  =======
           } else if (fu <= fv || v == x || v == w) {  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
             v=u;  char fullversion[]="$Revision$ $Date$"; 
             fv=fu;  >>>>>>> 1.145
           }  char strstart[80];
         }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   }  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   nrerror("Too many iterations in brent");  int nvar=0, nforce=0; /* Number of variables, number of forces */
   *xmin=x;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   return fx;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 }  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 /****************** mnbrak ***********************/  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   int cptcovprodnoage=0; /**< Number of covariate products without age */   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int cptcoveff=0; /* Total number of covariates to vary for printing results */
             double (*func)(double))  int cptcov=0; /* Working variable */
 {  int npar=NPARMAX;
   double ulim,u,r,q, dum;  int nlstate=2; /* Number of live states */
   double fu;  int ndeath=1; /* Number of dead states */
    int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   *fa=(*func)(*ax);  int popbased=0;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  int *wav; /* Number of waves for this individuual 0 is possible */
     SHFT(dum,*ax,*bx,dum)  int maxwav=0; /* Maxim number of waves */
       SHFT(dum,*fb,*fa,dum)  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       }  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   *cx=(*bx)+GOLD*(*bx-*ax);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   *fc=(*func)(*cx);                     to the likelihood and the sum of weights (done by funcone)*/
   while (*fb > *fc) {  int mle=1, weightopt=0;
     r=(*bx-*ax)*(*fb-*fc);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     q=(*bx-*cx)*(*fb-*fa);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double jmean=1; /* Mean space between 2 waves */
     if ((*bx-u)*(u-*cx) > 0.0) {  double **matprod2(); /* test */
       fu=(*func)(u);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       fu=(*func)(u);  /*FILE *fic ; */ /* Used in readdata only */
       if (fu < *fc) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  FILE *ficlog, *ficrespow;
           SHFT(*fb,*fc,fu,(*func)(u))  int globpr=0; /* Global variable for printing or not */
           }  double fretone; /* Only one call to likelihood */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  long ipmx=0; /* Number of contributions */
       u=ulim;  double sw; /* Sum of weights */
       fu=(*func)(u);  char filerespow[FILENAMELENGTH];
     } else {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       u=(*cx)+GOLD*(*cx-*bx);  FILE *ficresilk;
       fu=(*func)(u);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     }  FILE *ficresprobmorprev;
     SHFT(*ax,*bx,*cx,u)  FILE *fichtm, *fichtmcov; /* Html File */
       SHFT(*fa,*fb,*fc,fu)  FILE *ficreseij;
       }  char filerese[FILENAMELENGTH];
 }  FILE *ficresstdeij;
   char fileresstde[FILENAMELENGTH];
 /*************** linmin ************************/  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 int ncom;  FILE  *ficresvij;
 double *pcom,*xicom;  char fileresv[FILENAMELENGTH];
 double (*nrfunc)(double []);  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double brent(double ax, double bx, double cx,  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
                double (*f)(double), double tol, double *xmin);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double f1dim(double x);  char command[FILENAMELENGTH];
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int  outcmd=0;
               double *fc, double (*func)(double));  
   int j;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  char filelog[FILENAMELENGTH]; /* Log file */
    char filerest[FILENAMELENGTH];
   ncom=n;  char fileregp[FILENAMELENGTH];
   pcom=vector(1,n);  char popfile[FILENAMELENGTH];
   xicom=vector(1,n);  
   nrfunc=func;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     xicom[j]=xi[j];  struct timezone tzp;
   }  extern int gettimeofday();
   ax=0.0;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   xx=1.0;  long time_value;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  extern long time();
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  char strcurr[80], strfor[80];
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char *endptr;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  long lval;
 #endif  double dval;
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  #define NR_END 1
     p[j] += xi[j];  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  #define NRANSI 
 }  #define ITMAX 200 
   
 /*************** powell ************************/  #define TOL 2.0e-4 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   void linmin(double p[], double xi[], int n, double *fret,  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
               double (*func)(double []));  
   int i,ibig,j;  #define GOLD 1.618034 
   double del,t,*pt,*ptt,*xit;  #define GLIMIT 100.0 
   double fp,fptt;  #define TINY 1.0e-20 
   double *xits;  
   pt=vector(1,n);  static double maxarg1,maxarg2;
   ptt=vector(1,n);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   xit=vector(1,n);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   xits=vector(1,n);    
   *fret=(*func)(p);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for (j=1;j<=n;j++) pt[j]=p[j];  #define rint(a) floor(a+0.5)
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  static double sqrarg;
     ibig=0;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     del=0.0;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int agegomp= AGEGOMP;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  int imx; 
       printf(" %d %.12f",i, p[i]);  int stepm=1;
     fprintf(ficlog," %d %.12f",i, p[i]);  /* Stepm, step in month: minimum step interpolation*/
     printf("\n");  
     fprintf(ficlog,"\n");  int estepm;
     for (i=1;i<=n;i++) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  int m,nb;
 #ifdef DEBUG  long *num;
       printf("fret=%lf \n",*fret);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       fprintf(ficlog,"fret=%lf \n",*fret);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 #endif  double **pmmij, ***probs;
       printf("%d",i);fflush(stdout);  double *ageexmed,*agecens;
       fprintf(ficlog,"%d",i);fflush(ficlog);  double dateintmean=0;
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  double *weight;
         del=fabs(fptt-(*fret));  int **s; /* Status */
         ibig=i;  double *agedc;
       }  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
 #ifdef DEBUG                    * covar=matrix(0,NCOVMAX,1,n); 
       printf("%d %.12e",i,(*fret));                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       fprintf(ficlog,"%d %.12e",i,(*fret));  double  idx; 
       for (j=1;j<=n;j++) {  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  int *Ndum; /** Freq of modality (tricode */
         printf(" x(%d)=%.12e",j,xit[j]);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       }  double *lsurv, *lpop, *tpop;
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         fprintf(ficlog," p=%.12e",p[j]);  double ftolhess; /**< Tolerance for computing hessian */
       }  
       printf("\n");  /**************** split *************************/
       fprintf(ficlog,"\n");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 #endif  {
     }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #ifdef DEBUG    */ 
       int k[2],l;    char  *ss;                            /* pointer */
       k[0]=1;    int   l1, l2;                         /* length counters */
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    l1 = strlen(path );                   /* length of path */
       fprintf(ficlog,"Max: %.12e",(*func)(p));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       for (j=1;j<=n;j++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         printf(" %.12e",p[j]);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         fprintf(ficlog," %.12e",p[j]);      strcpy( name, path );               /* we got the fullname name because no directory */
       }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       printf("\n");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       fprintf(ficlog,"\n");      /* get current working directory */
       for(l=0;l<=1;l++) {      /*    extern  char* getcwd ( char *buf , int len);*/
         for (j=1;j<=n;j++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        return( GLOCK_ERROR_GETCWD );
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      }
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      /* got dirc from getcwd*/
         }      printf(" DIRC = %s \n",dirc);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    } else {                              /* strip direcotry from path */
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      ss++;                               /* after this, the filename */
       }      l2 = strlen( ss );                  /* length of filename */
 #endif      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
       free_vector(xit,1,n);      dirc[l1-l2] = 0;                    /* add zero */
       free_vector(xits,1,n);      printf(" DIRC2 = %s \n",dirc);
       free_vector(ptt,1,n);    }
       free_vector(pt,1,n);    /* We add a separator at the end of dirc if not exists */
       return;    l1 = strlen( dirc );                  /* length of directory */
     }    if( dirc[l1-1] != DIRSEPARATOR ){
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      dirc[l1] =  DIRSEPARATOR;
     for (j=1;j<=n;j++) {      dirc[l1+1] = 0; 
       ptt[j]=2.0*p[j]-pt[j];      printf(" DIRC3 = %s \n",dirc);
       xit[j]=p[j]-pt[j];    }
       pt[j]=p[j];    ss = strrchr( name, '.' );            /* find last / */
     }    if (ss >0){
     fptt=(*func)(ptt);      ss++;
     if (fptt < fp) {      strcpy(ext,ss);                     /* save extension */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      l1= strlen( name);
       if (t < 0.0) {      l2= strlen(ss)+1;
         linmin(p,xit,n,fret,func);      strncpy( finame, name, l1-l2);
         for (j=1;j<=n;j++) {      finame[l1-l2]= 0;
           xi[j][ibig]=xi[j][n];    }
           xi[j][n]=xit[j];  
         }    return( 0 );                          /* we're done */
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){  /******************************************/
           printf(" %.12e",xit[j]);  
           fprintf(ficlog," %.12e",xit[j]);  void replace_back_to_slash(char *s, char*t)
         }  {
         printf("\n");    int i;
         fprintf(ficlog,"\n");    int lg=0;
 #endif    i=0;
       }    lg=strlen(t);
     }    for(i=0; i<= lg; i++) {
   }      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /**** Prevalence limit ****************/  }
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  char *trimbb(char *out, char *in)
 {  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    char *s;
      matrix by transitions matrix until convergence is reached */    s=out;
     while (*in != '\0'){
   int i, ii,j,k;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   double min, max, maxmin, maxmax,sumnew=0.;        in++;
   double **matprod2();      }
   double **out, cov[NCOVMAX], **pmij();      *out++ = *in++;
   double **newm;    }
   double agefin, delaymax=50 ; /* Max number of years to converge */    *out='\0';
     return s;
   for (ii=1;ii<=nlstate+ndeath;ii++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char *cutl(char *blocc, char *alocc, char *in, char occ)
     }  {
     /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
    cov[1]=1.;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         gives blocc="abcdef2ghi" and alocc="j".
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    */
     newm=savm;    char *s, *t, *bl;
     /* Covariates have to be included here again */    t=in;s=in;
      cov[2]=agefin;    while ((*in != occ) && (*in != '\0')){
        *alocc++ = *in++;
       for (k=1; k<=cptcovn;k++) {    }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    if( *in == occ){
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      *(alocc)='\0';
       }      s=++in;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    }
       for (k=1; k<=cptcovprod;k++)   
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    if (s == t) {/* occ not found */
       *(alocc-(in-s))='\0';
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      in=s;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    while ( *in != '\0'){
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      *blocc++ = *in++;
     }
     savm=oldm;  
     oldm=newm;    *blocc='\0';
     maxmax=0.;    return t;
     for(j=1;j<=nlstate;j++){  }
       min=1.;  char *cutv(char *blocc, char *alocc, char *in, char occ)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
         sumnew=0;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];       gives blocc="abcdef2ghi" and alocc="j".
         prlim[i][j]= newm[i][j]/(1-sumnew);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
         max=FMAX(max,prlim[i][j]);    */
         min=FMIN(min,prlim[i][j]);    char *s, *t;
       }    t=in;s=in;
       maxmin=max-min;    while (*in != '\0'){
       maxmax=FMAX(maxmax,maxmin);      while( *in == occ){
     }        *blocc++ = *in++;
     if(maxmax < ftolpl){        s=in;
       return prlim;      }
     }      *blocc++ = *in++;
   }    }
 }    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
 /*************** transition probabilities ***************/    else
       *(blocc-(in-s)-1)='\0';
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    in=s;
 {    while ( *in != '\0'){
   double s1, s2;      *alocc++ = *in++;
   /*double t34;*/    }
   int i,j,j1, nc, ii, jj;  
     *alocc='\0';
     for(i=1; i<= nlstate; i++){    return s;
     for(j=1; j<i;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  int nbocc(char *s, char occ)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    int i,j=0;
       }    int lg=20;
       ps[i][j]=s2;    i=0;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    lg=strlen(s);
     }    for(i=0; i<= lg; i++) {
     for(j=i+1; j<=nlstate+ndeath;j++){    if  (s[i] == occ ) j++;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return j;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /* void cutv(char *u,char *v, char*t, char occ) */
     }  /* { */
   }  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     /*ps[3][2]=1;*/  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*      gives u="abcdef2ghi" and v="j" *\/ */
   for(i=1; i<= nlstate; i++){  /*   int i,lg,j,p=0; */
      s1=0;  /*   i=0; */
     for(j=1; j<i; j++)  /*   lg=strlen(t); */
       s1+=exp(ps[i][j]);  /*   for(j=0; j<=lg-1; j++) { */
     for(j=i+1; j<=nlstate+ndeath; j++)  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       s1+=exp(ps[i][j]);  /*   } */
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  /*   for(j=0; j<p; j++) { */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*     (u[j] = t[j]); */
     for(j=i+1; j<=nlstate+ndeath; j++)  /*   } */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*      u[p]='\0'; */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /*   } */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /* } */
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /********************** nrerror ********************/
     }  
   }  void nrerror(char error_text[])
   {
     fprintf(stderr,"ERREUR ...\n");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    fprintf(stderr,"%s\n",error_text);
     for(jj=1; jj<= nlstate+ndeath; jj++){    exit(EXIT_FAILURE);
      printf("%lf ",ps[ii][jj]);  }
    }  /*********************** vector *******************/
     printf("\n ");  double *vector(int nl, int nh)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    double *v;
 /*    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    if (!v) nrerror("allocation failure in vector");
   goto end;*/    return v-nl+NR_END;
     return ps;  }
 }  
   /************************ free vector ******************/
 /**************** Product of 2 matrices ******************/  void free_vector(double*v, int nl, int nh)
   {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /************************ivector *******************************/
   /* in, b, out are matrice of pointers which should have been initialized  int *ivector(long nl,long nh)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    int *v;
   long i, j, k;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for(i=nrl; i<= nrh; i++)    if (!v) nrerror("allocation failure in ivector");
     for(k=ncolol; k<=ncoloh; k++)    return v-nl+NR_END;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   /******************free ivector **************************/
   return out;  void free_ivector(int *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
   }
 /************* Higher Matrix Product ***************/  
   /************************lvector *******************************/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  long *lvector(long nl,long nh)
 {  {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    long *v;
      duration (i.e. until    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    if (!v) nrerror("allocation failure in ivector");
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    return v-nl+NR_END;
      (typically every 2 years instead of every month which is too big).  }
      Model is determined by parameters x and covariates have to be  
      included manually here.  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
      */  {
     free((FREE_ARG)(v+nl-NR_END));
   int i, j, d, h, k;  }
   double **out, cov[NCOVMAX];  
   double **newm;  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
   /* Hstepm could be zero and should return the unit matrix */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (i=1;i<=nlstate+ndeath;i++)  { 
     for (j=1;j<=nlstate+ndeath;j++){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    int **m; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    
     }    /* allocate pointers to rows */ 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for(h=1; h <=nhstepm; h++){    if (!m) nrerror("allocation failure 1 in matrix()"); 
     for(d=1; d <=hstepm; d++){    m += NR_END; 
       newm=savm;    m -= nrl; 
       /* Covariates have to be included here again */    
       cov[1]=1.;    
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /* allocate rows and set pointers to them */ 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for (k=1; k<=cptcovage;k++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl] += NR_END; 
       for (k=1; k<=cptcovprod;k++)    m[nrl] -= ncl; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /* return pointer to array of pointers to rows */ 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    return m; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /****************** free_imatrix *************************/
       oldm=newm;  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
     for(i=1; i<=nlstate+ndeath; i++)        long nch,ncl,nrh,nrl; 
       for(j=1;j<=nlstate+ndeath;j++) {       /* free an int matrix allocated by imatrix() */ 
         po[i][j][h]=newm[i][j];  { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
          */    free((FREE_ARG) (m+nrl-NR_END)); 
       }  } 
   } /* end h */  
   return po;  /******************* matrix *******************************/
 }  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*************** log-likelihood *************/    double **m;
 double func( double *x)  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int i, ii, j, k, mi, d, kk;    if (!m) nrerror("allocation failure 1 in matrix()");
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    m += NR_END;
   double **out;    m -= nrl;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   long ipmx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   /*extern weight */    m[nrl] += NR_END;
   /* We are differentiating ll according to initial status */    m[nrl] -= ncl;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     printf(" %d\n",s[4][i]);    return m;
   */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   cov[1]=1.;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   for(k=1; k<=nlstate; k++) ll[k]=0.;     */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /*************************free matrix ************************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
       for(d=0; d<dh[mi][i]; d++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         newm=savm;    free((FREE_ARG)(m+nrl-NR_END));
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /******************* ma3x *******************************/
         }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
          {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double ***m;
         savm=oldm;  
         oldm=newm;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
            if (!m) nrerror("allocation failure 1 in matrix()");
            m += NR_END;
       } /* end mult */    m -= nrl;
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ipmx +=1;    m[nrl] += NR_END;
       sw += weight[i];    m[nrl] -= ncl;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   } /* end of individual */  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    m[nrl][ncl] += NR_END;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    m[nrl][ncl] -= nll;
   return -l;    for (j=ncl+1; j<=nch; j++) 
 }      m[nrl][j]=m[nrl][j-1]+nlay;
     
     for (i=nrl+1; i<=nrh; i++) {
 /*********** Maximum Likelihood Estimation ***************/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        m[i][j]=m[i][j-1]+nlay;
 {    }
   int i,j, iter;    return m; 
   double **xi,*delti;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double fret;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   xi=matrix(1,npar,1,npar);    */
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*************************free ma3x ************************/
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   powell(p,xi,npar,ftol,&iter,&fret,func);  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    free((FREE_ARG)(m+nrl-NR_END));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   
 }  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
 /**** Computes Hessian and covariance matrix ***/  {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   double  **a,**y,*x,pd;    strcat(tmpout,"/"); /* Add to the right */
   double **hess;    strcat(tmpout,fileres);
   int i, j,jk;    return tmpout;
   int *indx;  }
   
   double hessii(double p[], double delta, int theta, double delti[]);  /*************** function subdirf2 ***********/
   double hessij(double p[], double delti[], int i, int j);  char *subdirf2(char fileres[], char *preop)
   void lubksb(double **a, int npar, int *indx, double b[]) ;  {
   void ludcmp(double **a, int npar, int *indx, double *d) ;    
     /* Caution optionfilefiname is hidden */
   hess=matrix(1,npar,1,npar);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   printf("\nCalculation of the hessian matrix. Wait...\n");    strcat(tmpout,preop);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    strcat(tmpout,fileres);
   for (i=1;i<=npar;i++){    return tmpout;
     printf("%d",i);fflush(stdout);  }
     fprintf(ficlog,"%d",i);fflush(ficlog);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*************** function subdirf3 ***********/
     /*printf(" %f ",p[i]);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
     /*printf(" %lf ",hess[i][i]);*/  {
   }    
      /* Caution optionfilefiname is hidden */
   for (i=1;i<=npar;i++) {    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=npar;j++)  {    strcat(tmpout,"/");
       if (j>i) {    strcat(tmpout,preop);
         printf(".%d%d",i,j);fflush(stdout);    strcat(tmpout,preop2);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    strcat(tmpout,fileres);
         hess[i][j]=hessij(p,delti,i,j);    return tmpout;
         hess[j][i]=hess[i][j];      }
         /*printf(" %lf ",hess[i][j]);*/  
       }  /***************** f1dim *************************/
     }  extern int ncom; 
   }  extern double *pcom,*xicom;
   printf("\n");  extern double (*nrfunc)(double []); 
   fprintf(ficlog,"\n");   
   double f1dim(double x) 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  { 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    int j; 
      double f;
   a=matrix(1,npar,1,npar);    double *xt; 
   y=matrix(1,npar,1,npar);   
   x=vector(1,npar);    xt=vector(1,ncom); 
   indx=ivector(1,npar);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for (i=1;i<=npar;i++)    f=(*nrfunc)(xt); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    free_vector(xt,1,ncom); 
   ludcmp(a,npar,indx,&pd);    return f; 
   } 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /*****************brent *************************/
     x[j]=1;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     lubksb(a,npar,indx,x);  { 
     for (i=1;i<=npar;i++){    int iter; 
       matcov[i][j]=x[i];    double a,b,d,etemp;
     }    double fu,fv,fw,fx;
   }    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   printf("\n#Hessian matrix#\n");    double e=0.0; 
   fprintf(ficlog,"\n#Hessian matrix#\n");   
   for (i=1;i<=npar;i++) {    a=(ax < cx ? ax : cx); 
     for (j=1;j<=npar;j++) {    b=(ax > cx ? ax : cx); 
       printf("%.3e ",hess[i][j]);    x=w=v=bx; 
       fprintf(ficlog,"%.3e ",hess[i][j]);    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
     printf("\n");      xm=0.5*(a+b); 
     fprintf(ficlog,"\n");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
   /* Recompute Inverse */      fprintf(ficlog,".");fflush(ficlog);
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   ludcmp(a,npar,indx,&pd);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   /*  printf("\n#Hessian matrix recomputed#\n");  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for (j=1;j<=npar;j++) {        *xmin=x; 
     for (i=1;i<=npar;i++) x[i]=0;        return fx; 
     x[j]=1;      } 
     lubksb(a,npar,indx,x);      ftemp=fu;
     for (i=1;i<=npar;i++){      if (fabs(e) > tol1) { 
       y[i][j]=x[i];        r=(x-w)*(fx-fv); 
       printf("%.3e ",y[i][j]);        q=(x-v)*(fx-fw); 
       fprintf(ficlog,"%.3e ",y[i][j]);        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
     printf("\n");        if (q > 0.0) p = -p; 
     fprintf(ficlog,"\n");        q=fabs(q); 
   }        etemp=e; 
   */        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   free_matrix(a,1,npar,1,npar);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   free_matrix(y,1,npar,1,npar);        else { 
   free_vector(x,1,npar);          d=p/q; 
   free_ivector(indx,1,npar);          u=x+d; 
   free_matrix(hess,1,npar,1,npar);          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
         } 
 }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /*************** hessian matrix ****************/      } 
 double hessii( double x[], double delta, int theta, double delti[])      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 {      fu=(*f)(u); 
   int i;      if (fu <= fx) { 
   int l=1, lmax=20;        if (u >= x) a=x; else b=x; 
   double k1,k2;        SHFT(v,w,x,u) 
   double p2[NPARMAX+1];          SHFT(fv,fw,fx,fu) 
   double res;          } else { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            if (u < x) a=u; else b=u; 
   double fx;            if (fu <= fw || w == x) { 
   int k=0,kmax=10;              v=w; 
   double l1;              w=u; 
               fv=fw; 
   fx=func(x);              fw=fu; 
   for (i=1;i<=npar;i++) p2[i]=x[i];            } else if (fu <= fv || v == x || v == w) { 
   for(l=0 ; l <=lmax; l++){              v=u; 
     l1=pow(10,l);              fv=fu; 
     delts=delt;            } 
     for(k=1 ; k <kmax; k=k+1){          } 
       delt = delta*(l1*k);    } 
       p2[theta]=x[theta] +delt;    nrerror("Too many iterations in brent"); 
       k1=func(p2)-fx;    *xmin=x; 
       p2[theta]=x[theta]-delt;    return fx; 
       k2=func(p2)-fx;  } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /****************** mnbrak ***********************/
        
 #ifdef DEBUG  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);              double (*func)(double)) 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  { 
 #endif    double ulim,u,r,q, dum;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double fu; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){   
         k=kmax;    *fa=(*func)(*ax); 
       }    *fb=(*func)(*bx); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    if (*fb > *fa) { 
         k=kmax; l=lmax*10.;      SHFT(dum,*ax,*bx,dum) 
       }        SHFT(dum,*fb,*fa,dum) 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        } 
         delts=delt;    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
   }      r=(*bx-*ax)*(*fb-*fc); 
   delti[theta]=delts;      q=(*bx-*cx)*(*fb-*fa); 
   return res;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
          (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
 double hessij( double x[], double delti[], int thetai,int thetaj)        fu=(*func)(u); 
 {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   int i;        fu=(*func)(u); 
   int l=1, l1, lmax=20;        if (fu < *fc) { 
   double k1,k2,k3,k4,res,fx;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double p2[NPARMAX+1];            SHFT(*fb,*fc,fu,(*func)(u)) 
   int k;            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   fx=func(x);        u=ulim; 
   for (k=1; k<=2; k++) {        fu=(*func)(u); 
     for (i=1;i<=npar;i++) p2[i]=x[i];      } else { 
     p2[thetai]=x[thetai]+delti[thetai]/k;        u=(*cx)+GOLD*(*cx-*bx); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fu=(*func)(u); 
     k1=func(p2)-fx;      } 
        SHFT(*ax,*bx,*cx,u) 
     p2[thetai]=x[thetai]+delti[thetai]/k;        SHFT(*fa,*fb,*fc,fu) 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        } 
     k2=func(p2)-fx;  } 
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*************** linmin ************************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  int ncom; 
    double *pcom,*xicom;
     p2[thetai]=x[thetai]-delti[thetai]/k;  double (*nrfunc)(double []); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;   
     k4=func(p2)-fx;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  { 
 #ifdef DEBUG    double brent(double ax, double bx, double cx, 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);                 double (*f)(double), double tol, double *xmin); 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double f1dim(double x); 
 #endif    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   }                double *fc, double (*func)(double)); 
   return res;    int j; 
 }    double xx,xmin,bx,ax; 
     double fx,fb,fa;
 /************** Inverse of matrix **************/   
 void ludcmp(double **a, int n, int *indx, double *d)    ncom=n; 
 {    pcom=vector(1,n); 
   int i,imax,j,k;    xicom=vector(1,n); 
   double big,dum,sum,temp;    nrfunc=func; 
   double *vv;    for (j=1;j<=n;j++) { 
        pcom[j]=p[j]; 
   vv=vector(1,n);      xicom[j]=xi[j]; 
   *d=1.0;    } 
   for (i=1;i<=n;i++) {    ax=0.0; 
     big=0.0;    xx=1.0; 
     for (j=1;j<=n;j++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       if ((temp=fabs(a[i][j])) > big) big=temp;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  #ifdef DEBUG
     vv[i]=1.0/big;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (j=1;j<=n;j++) {  #endif
     for (i=1;i<j;i++) {    for (j=1;j<=n;j++) { 
       sum=a[i][j];      xi[j] *= xmin; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      p[j] += xi[j]; 
       a[i][j]=sum;    } 
     }    free_vector(xicom,1,n); 
     big=0.0;    free_vector(pcom,1,n); 
     for (i=j;i<=n;i++) {  } 
       sum=a[i][j];  
       for (k=1;k<j;k++)  char *asc_diff_time(long time_sec, char ascdiff[])
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    long sec_left, days, hours, minutes;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    days = (time_sec) / (60*60*24);
         big=dum;    sec_left = (time_sec) % (60*60*24);
         imax=i;    hours = (sec_left) / (60*60) ;
       }    sec_left = (sec_left) %(60*60);
     }    minutes = (sec_left) /60;
     if (j != imax) {    sec_left = (sec_left) % (60);
       for (k=1;k<=n;k++) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         dum=a[imax][k];    return ascdiff;
         a[imax][k]=a[j][k];  }
         a[j][k]=dum;  
       }  /*************** powell ************************/
       *d = -(*d);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       vv[imax]=vv[j];              double (*func)(double [])) 
     }  { 
     indx[j]=imax;    void linmin(double p[], double xi[], int n, double *fret, 
     if (a[j][j] == 0.0) a[j][j]=TINY;                double (*func)(double [])); 
     if (j != n) {    int i,ibig,j; 
       dum=1.0/(a[j][j]);    double del,t,*pt,*ptt,*xit;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double fp,fptt;
     }    double *xits;
   }    int niterf, itmp;
   free_vector(vv,1,n);  /* Doesn't work */  
 ;    pt=vector(1,n); 
 }    ptt=vector(1,n); 
     xit=vector(1,n); 
 void lubksb(double **a, int n, int *indx, double b[])    xits=vector(1,n); 
 {    *fret=(*func)(p); 
   int i,ii=0,ip,j;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double sum;    for (*iter=1;;++(*iter)) { 
        fp=(*fret); 
   for (i=1;i<=n;i++) {      ibig=0; 
     ip=indx[i];      del=0.0; 
     sum=b[ip];      last_time=curr_time;
     b[ip]=b[i];      (void) gettimeofday(&curr_time,&tzp);
     if (ii)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     else if (sum) ii=i;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     b[i]=sum;     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
   for (i=n;i>=1;i--) {        fprintf(ficlog," %d %.12lf",i, p[i]);
     sum=b[i];        fprintf(ficrespow," %.12lf", p[i]);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      }
     b[i]=sum/a[i][i];      printf("\n");
   }      fprintf(ficlog,"\n");
 }      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
 /************ Frequencies ********************/        tm = *localtime(&curr_time.tv_sec);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        strcpy(strcurr,asctime(&tm));
 {  /* Some frequencies */  /*       asctime_r(&tm,strcurr); */
          forecast_time=curr_time; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        itmp = strlen(strcurr);
   int first;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double ***freq; /* Frequencies */          strcurr[itmp-1]='\0';
   double *pp;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double pos, k2, dateintsum=0,k2cpt=0;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   FILE *ficresp;        for(niterf=10;niterf<=30;niterf+=10){
   char fileresp[FILENAMELENGTH];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
   pp=vector(1,nlstate);  /*      asctime_r(&tmf,strfor); */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          strcpy(strfor,asctime(&tmf));
   strcpy(fileresp,"p");          itmp = strlen(strfor);
   strcat(fileresp,fileres);          if(strfor[itmp-1]=='\n')
   if((ficresp=fopen(fileresp,"w"))==NULL) {          strfor[itmp-1]='\0';
     printf("Problem with prevalence resultfile: %s\n", fileresp);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     exit(0);        }
   }      }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (i=1;i<=n;i++) { 
   j1=0;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
          fptt=(*fret); 
   j=cptcoveff;  #ifdef DEBUG
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   first=1;  #endif
         printf("%d",i);fflush(stdout);
   for(k1=1; k1<=j;k1++){        fprintf(ficlog,"%d",i);fflush(ficlog);
     for(i1=1; i1<=ncodemax[k1];i1++){        linmin(p,xit,n,fret,func); 
       j1++;        if (fabs(fptt-(*fret)) > del) { 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          del=fabs(fptt-(*fret)); 
         scanf("%d", i);*/          ibig=i; 
       for (i=-1; i<=nlstate+ndeath; i++)          } 
         for (jk=-1; jk<=nlstate+ndeath; jk++)    #ifdef DEBUG
           for(m=agemin; m <= agemax+3; m++)        printf("%d %.12e",i,(*fret));
             freq[i][jk][m]=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
              for (j=1;j<=n;j++) {
       dateintsum=0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       k2cpt=0;          printf(" x(%d)=%.12e",j,xit[j]);
       for (i=1; i<=imx; i++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         bool=1;        }
         if  (cptcovn>0) {        for(j=1;j<=n;j++) {
           for (z1=1; z1<=cptcoveff; z1++)          printf(" p=%.12e",p[j]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          fprintf(ficlog," p=%.12e",p[j]);
               bool=0;        }
         }        printf("\n");
         if (bool==1) {        fprintf(ficlog,"\n");
           for(m=firstpass; m<=lastpass; m++){  #endif
             k2=anint[m][i]+(mint[m][i]/12.);      } 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;  #ifdef DEBUG
               if(agev[m][i]==1) agev[m][i]=agemax+2;        int k[2],l;
               if (m<lastpass) {        k[0]=1;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        k[1]=-1;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        printf("Max: %.12e",(*func)(p));
               }        fprintf(ficlog,"Max: %.12e",(*func)(p));
                      for (j=1;j<=n;j++) {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          printf(" %.12e",p[j]);
                 dateintsum=dateintsum+k2;          fprintf(ficlog," %.12e",p[j]);
                 k2cpt++;        }
               }        printf("\n");
             }        fprintf(ficlog,"\n");
           }        for(l=0;l<=1;l++) {
         }          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                    printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
       if  (cptcovn>0) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         fprintf(ficresp, "\n#********** Variable ");          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresp, "**********\n#");  #endif
       }  
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        free_vector(xit,1,n); 
       fprintf(ficresp, "\n");        free_vector(xits,1,n); 
              free_vector(ptt,1,n); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){        free_vector(pt,1,n); 
         if(i==(int)agemax+3){        return; 
           fprintf(ficlog,"Total");      } 
         }else{      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
           if(first==1){      for (j=1;j<=n;j++) { 
             first=0;        ptt[j]=2.0*p[j]-pt[j]; 
             printf("See log file for details...\n");        xit[j]=p[j]-pt[j]; 
           }        pt[j]=p[j]; 
           fprintf(ficlog,"Age %d", i);      } 
         }      fptt=(*func)(ptt); 
         for(jk=1; jk <=nlstate ; jk++){      if (fptt < fp) { 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
             pp[jk] += freq[jk][m][i];        if (t < 0.0) { 
         }          linmin(p,xit,n,fret,func); 
         for(jk=1; jk <=nlstate ; jk++){          for (j=1;j<=n;j++) { 
           for(m=-1, pos=0; m <=0 ; m++)            xi[j][ibig]=xi[j][n]; 
             pos += freq[jk][m][i];            xi[j][n]=xit[j]; 
           if(pp[jk]>=1.e-10){          }
             if(first==1){  #ifdef DEBUG
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          for(j=1;j<=n;j++){
           }else{            printf(" %.12e",xit[j]);
             if(first==1)            fprintf(ficlog," %.12e",xit[j]);
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          }
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          printf("\n");
           }          fprintf(ficlog,"\n");
         }  #endif
         }
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    } 
             pp[jk] += freq[jk][m][i];  } 
         }  
   /**** Prevalence limit (stable or period prevalence)  ****************/
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         for(jk=1; jk <=nlstate ; jk++){  {
           if(pos>=1.e-5){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
             if(first==1)       matrix by transitions matrix until convergence is reached */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    int i, ii,j,k;
           }else{    double min, max, maxmin, maxmax,sumnew=0.;
             if(first==1)    /* double **matprod2(); */ /* test */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double **out, cov[NCOVMAX+1], **pmij();
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double **newm;
           }    double agefin, delaymax=50 ; /* Max number of years to converge */
           if( i <= (int) agemax){  
             if(pos>=1.e-5){    for (ii=1;ii<=nlstate+ndeath;ii++)
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for (j=1;j<=nlstate+ndeath;j++){
               probs[i][jk][j1]= pp[jk]/pos;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      }
             }  
             else     cov[1]=1.;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);   
           }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
              newm=savm;
         for(jk=-1; jk <=nlstate+ndeath; jk++)      /* Covariates have to be included here again */
           for(m=-1; m <=nlstate+ndeath; m++)      cov[2]=agefin;
             if(freq[jk][m][i] !=0 ) {      
             if(first==1)      for (k=1; k<=cptcovn;k++) {
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
             }      }
         if(i <= (int) agemax)      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           fprintf(ficresp,"\n");      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
         if(first==1)      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
           printf("Others in log...\n");      
         fprintf(ficlog,"\n");      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   }      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   dateintmean=dateintsum/k2cpt;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   fclose(ficresp);      
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      savm=oldm;
   free_vector(pp,1,nlstate);      oldm=newm;
        maxmax=0.;
   /* End of Freq */      for(j=1;j<=nlstate;j++){
 }        min=1.;
         max=0.;
 /************ Prevalence ********************/        for(i=1; i<=nlstate; i++) {
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          sumnew=0;
 {  /* Some frequencies */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   double ***freq; /* Frequencies */          max=FMAX(max,prlim[i][j]);
   double *pp;          min=FMIN(min,prlim[i][j]);
   double pos, k2;        }
         maxmin=max-min;
   pp=vector(1,nlstate);        maxmax=FMAX(maxmax,maxmin);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
        if(maxmax < ftolpl){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        return prlim;
   j1=0;      }
      }
   j=cptcoveff;  }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /*************** transition probabilities ***************/ 
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       j1++;  {
          /* According to parameters values stored in x and the covariate's values stored in cov,
       for (i=-1; i<=nlstate+ndeath; i++)         computes the probability to be observed in state j being in state i by appying the
         for (jk=-1; jk<=nlstate+ndeath; jk++)         model to the ncovmodel covariates (including constant and age).
           for(m=agemin; m <= agemax+3; m++)       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
             freq[i][jk][m]=0;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
             ncth covariate in the global vector x is given by the formula:
       for (i=1; i<=imx; i++) {       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         bool=1;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         if  (cptcovn>0) {       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           for (z1=1; z1<=cptcoveff; z1++)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       Outputs ps[i][j] the probability to be observed in j being in j according to
               bool=0;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         }    */
         if (bool==1) {    double s1, lnpijopii;
           for(m=firstpass; m<=lastpass; m++){    /*double t34;*/
             k2=anint[m][i]+(mint[m][i]/12.);    int i,j,j1, nc, ii, jj;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for(i=1; i<= nlstate; i++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for(j=1; j<i;j++){
               if (m<lastpass) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                 if (calagedate>0)            /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                 else  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
               }  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             }        }
           }        for(j=i+1; j<=nlstate+ndeath;j++){
         }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       }            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
       for(i=(int)agemin; i <= (int)agemax+3; i++){            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
         for(jk=1; jk <=nlstate ; jk++){  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          }
             pp[jk] += freq[jk][m][i];          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }        }
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pos=0; m <=0 ; m++)      
             pos += freq[jk][m][i];      for(i=1; i<= nlstate; i++){
         }        s1=0;
                for(j=1; j<i; j++){
         for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             pp[jk] += freq[jk][m][i];        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
                  s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                }
         for(jk=1; jk <=nlstate ; jk++){            /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
           if( i <= (int) agemax){        ps[i][i]=1./(s1+1.);
             if(pos>=1.e-5){        /* Computing other pijs */
               probs[i][jk][j1]= pp[jk]/pos;        for(j=1; j<i; j++)
             }          ps[i][j]= exp(ps[i][j])*ps[i][i];
           }        for(j=i+1; j<=nlstate+ndeath; j++)
         }/* end jk */          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }/* end i */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i1 */      } /* end i */
   } /* end k1 */      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          for(jj=1; jj<= nlstate+ndeath; jj++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ps[ii][jj]=0;
   free_vector(pp,1,nlstate);          ps[ii][ii]=1;
          }
 }  /* End of Freq */      }
       
 /************* Waves Concatenation ***************/      
       /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 {      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      /*   } */
      Death is a valid wave (if date is known).      /*   printf("\n "); */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      /* } */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      /* printf("\n ");printf("%lf ",cov[2]);*/
      and mw[mi+1][i]. dh depends on stepm.      /*
      */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
   int i, mi, m;      return ps;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  }
      double sum=0., jmean=0.;*/  
   int first;  /**************** Product of 2 matrices ******************/
   int j, k=0,jk, ju, jl;  
   double sum=0.;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   first=0;  {
   jmin=1e+5;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   jmax=-1;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   jmean=0.;    /* in, b, out are matrice of pointers which should have been initialized 
   for(i=1; i<=imx; i++){       before: only the contents of out is modified. The function returns
     mi=0;       a pointer to pointers identical to out */
     m=firstpass;    int i, j, k;
     while(s[m][i] <= nlstate){    for(i=nrl; i<= nrh; i++)
       if(s[m][i]>=1)      for(k=ncolol; k<=ncoloh; k++){
         mw[++mi][i]=m;        out[i][k]=0.;
       if(m >=lastpass)        for(j=ncl; j<=nch; j++)
         break;          out[i][k] +=in[i][j]*b[j][k];
       else      }
         m++;    return out;
     }/* end while */  }
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */  /************* Higher Matrix Product ***************/
          /* Only death is a correct wave */  
       mw[mi][i]=m;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
     /* Computes the transition matrix starting at age 'age' over 
     wav[i]=mi;       'nhstepm*hstepm*stepm' months (i.e. until
     if(mi==0){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       if(first==0){       nhstepm*hstepm matrices. 
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         first=1;       (typically every 2 years instead of every month which is too big 
       }       for the memory).
       if(first==1){       Model is determined by parameters x and covariates have to be 
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);       included manually here. 
       }  
     } /* end mi==0 */       */
   }  
     int i, j, d, h, k;
   for(i=1; i<=imx; i++){    double **out, cov[NCOVMAX+1];
     for(mi=1; mi<wav[i];mi++){    double **newm;
       if (stepm <=0)  
         dh[mi][i]=1;    /* Hstepm could be zero and should return the unit matrix */
       else{    for (i=1;i<=nlstate+ndeath;i++)
         if (s[mw[mi+1][i]][i] > nlstate) {      for (j=1;j<=nlstate+ndeath;j++){
           if (agedc[i] < 2*AGESUP) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        po[i][j][0]=(i==j ? 1.0 : 0.0);
           if(j==0) j=1;  /* Survives at least one month after exam */      }
           k=k+1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           if (j >= jmax) jmax=j;    for(h=1; h <=nhstepm; h++){
           if (j <= jmin) jmin=j;      for(d=1; d <=hstepm; d++){
           sum=sum+j;        newm=savm;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        /* Covariates have to be included here again */
           }        cov[1]=1.;
         }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         else{        for (k=1; k<=cptcovn;k++) 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           k=k+1;        for (k=1; k<=cptcovage;k++)
           if (j >= jmax) jmax=j;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           else if (j <= jmin)jmin=j;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           sum=sum+j;  
         }  
         jk= j/stepm;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         jl= j -jk*stepm;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         ju= j -(jk+1)*stepm;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         if(jl <= -ju)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           dh[mi][i]=jk;        savm=oldm;
         else        oldm=newm;
           dh[mi][i]=jk+1;      }
         if(dh[mi][i]==0)      for(i=1; i<=nlstate+ndeath; i++)
           dh[mi][i]=1; /* At least one step */        for(j=1;j<=nlstate+ndeath;j++) {
       }          po[i][j][h]=newm[i][j];
     }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   }        }
   jmean=sum/k;      /*printf("h=%d ",h);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    } /* end h */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  /*     printf("\n H=%d \n",h); */
  }    return po;
   }
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  
 {  /*************** log-likelihood *************/
   int Ndum[20],ij=1, k, j, i;  double func( double *x)
   int cptcode=0;  {
   cptcoveff=0;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   for (k=0; k<19; k++) Ndum[k]=0;    double **out;
   for (k=1; k<=7; k++) ncodemax[k]=0;    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int s1, s2;
     for (i=1; i<=imx; i++) {    double bbh, survp;
       ij=(int)(covar[Tvar[j]][i]);    long ipmx;
       Ndum[ij]++;    /*extern weight */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    /* We are differentiating ll according to initial status */
       if (ij > cptcode) cptcode=ij;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     for (i=0; i<=cptcode; i++) {    */
       if(Ndum[i]!=0) ncodemax[j]++;    cov[1]=1.;
     }  
     ij=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     if(mle==1){
     for (i=1; i<=ncodemax[j]; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=0; k<=19; k++) {        /* Computes the values of the ncovmodel covariates of the model
         if (Ndum[k] != 0) {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
           nbcode[Tvar[j]][ij]=k;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                     to be observed in j being in i according to the model.
           ij++;         */
         }        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
         if (ij > ncodemax[j]) break;          cov[2+k]=covar[Tvar[k]][i];
       }          }
     }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   }             is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
  for (k=0; k<19; k++) Ndum[k]=0;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
  for (i=1; i<=ncovmodel-2; i++) {            for (j=1;j<=nlstate+ndeath;j++){
    ij=Tvar[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    Ndum[ij]++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  }            }
           for(d=0; d<dh[mi][i]; d++){
  ij=1;            newm=savm;
  for (i=1; i<=10; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    if((Ndum[i]!=0) && (i<=ncovcol)){            for (kk=1; kk<=cptcovage;kk++) {
      Tvaraff[ij]=i;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
      ij++;            }
    }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
  cptcoveff=ij-1;            oldm=newm;
 }          } /* end mult */
         
 /*********** Health Expectancies ****************/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
 {           * the nearest (and in case of equal distance, to the lowest) interval but now
   /* Health expectancies */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double age, agelim, hf;           * probability in order to take into account the bias as a fraction of the way
   double ***p3mat,***varhe;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   double **dnewm,**doldm;           * -stepm/2 to stepm/2 .
   double *xp;           * For stepm=1 the results are the same as for previous versions of Imach.
   double **gp, **gm;           * For stepm > 1 the results are less biased than in previous versions. 
   double ***gradg, ***trgradg;           */
   int theta;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          bbh=(double)bh[mi][i]/(double)stepm; 
   xp=vector(1,npar);          /* bias bh is positive if real duration
   dnewm=matrix(1,nlstate*2,1,npar);           * is higher than the multiple of stepm and negative otherwise.
   doldm=matrix(1,nlstate*2,1,nlstate*2);           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   fprintf(ficreseij,"# Health expectancies\n");          if( s2 > nlstate){ 
   fprintf(ficreseij,"# Age");            /* i.e. if s2 is a death state and if the date of death is known 
   for(i=1; i<=nlstate;i++)               then the contribution to the likelihood is the probability to 
     for(j=1; j<=nlstate;j++)               die between last step unit time and current  step unit time, 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);               which is also equal to probability to die before dh 
   fprintf(ficreseij,"\n");               minus probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
   if(estepm < stepm){          as if date of death was unknown. Death was treated as any other
     printf ("Problem %d lower than %d\n",estepm, stepm);          health state: the date of the interview describes the actual state
   }          and not the date of a change in health state. The former idea was
   else  hstepm=estepm;            to consider that at each interview the state was recorded
   /* We compute the life expectancy from trapezoids spaced every estepm months          (healthy, disable or death) and IMaCh was corrected; but when we
    * This is mainly to measure the difference between two models: for example          introduced the exact date of death then we should have modified
    * if stepm=24 months pijx are given only every 2 years and by summing them          the contribution of an exact death to the likelihood. This new
    * we are calculating an estimate of the Life Expectancy assuming a linear          contribution is smaller and very dependent of the step unit
    * progression inbetween and thus overestimating or underestimating according          stepm. It is no more the probability to die between last interview
    * to the curvature of the survival function. If, for the same date, we          and month of death but the probability to survive from last
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          interview up to one month before death multiplied by the
    * to compare the new estimate of Life expectancy with the same linear          probability to die within a month. Thanks to Chris
    * hypothesis. A more precise result, taking into account a more precise          Jackson for correcting this bug.  Former versions increased
    * curvature will be obtained if estepm is as small as stepm. */          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
   /* For example we decided to compute the life expectancy with the smallest unit */          lower mortality.
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            */
      nhstepm is the number of hstepm from age to agelim            lli=log(out[s1][s2] - savm[s1][s2]);
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */          } else if  (s2==-2) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            for (j=1,survp=0. ; j<=nlstate; j++) 
      survival function given by stepm (the optimization length). Unfortunately it              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      means that if the survival funtion is printed only each two years of age and if            /*survp += out[s1][j]; */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            lli= log(survp);
      results. So we changed our mind and took the option of the best precision.          }
   */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
   agelim=AGESUP;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            lli= log(survp); 
     /* nhstepm age range expressed in number of stepm */          } 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          else if  (s2==-5) { 
     /* if (stepm >= YEARM) hstepm=1;*/            for (j=1,survp=0. ; j<=2; j++)  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli= log(survp); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          } 
     gp=matrix(0,nhstepm,1,nlstate*2);          
     gm=matrix(0,nhstepm,1,nlstate*2);          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          } 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          ipmx +=1;
           sw += weight[i];
     /* Computing Variances of health expectancies */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
      for(theta=1; theta <=npar; theta++){      } /* end of individual */
       for(i=1; i<=npar; i++){    }  else if(mle==2){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
       cptj=0;            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate; j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           cptj=cptj+1;            }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          for(d=0; d<=dh[mi][i]; d++){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            savm=oldm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              oldm=newm;
                } /* end mult */
       cptj=0;        
       for(j=1; j<= nlstate; j++){          s1=s[mw[mi][i]][i];
         for(i=1;i<=nlstate;i++){          s2=s[mw[mi+1][i]][i];
           cptj=cptj+1;          bbh=(double)bh[mi][i]/(double)stepm; 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
       for(j=1; j<= nlstate*2; j++)      } /* end of individual */
         for(h=0; h<=nhstepm-1; h++){    }  else if(mle==3){  /* exponential inter-extrapolation */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      }        for(mi=1; mi<= wav[i]-1; mi++){
              for (ii=1;ii<=nlstate+ndeath;ii++)
 /* End theta */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
      for(h=0; h<=nhstepm-1; h++)          for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<=nlstate*2;j++)            newm=savm;
         for(theta=1; theta <=npar; theta++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           trgradg[h][j][theta]=gradg[h][theta][j];            for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
      for(i=1;i<=nlstate*2;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1;j<=nlstate*2;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         varhe[i][j][(int)age] =0.;            savm=oldm;
             oldm=newm;
      printf("%d|",(int)age);fflush(stdout);          } /* end mult */
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        
      for(h=0;h<=nhstepm-1;h++){          s1=s[mw[mi][i]][i];
       for(k=0;k<=nhstepm-1;k++){          s2=s[mw[mi+1][i]][i];
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          bbh=(double)bh[mi][i]/(double)stepm; 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(i=1;i<=nlstate*2;i++)          ipmx +=1;
           for(j=1;j<=nlstate*2;j++)          sw += weight[i];
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
     /* Computing expectancies */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          for (ii=1;ii<=nlstate+ndeath;ii++)
                      for (j=1;j<=nlstate+ndeath;j++){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<dh[mi][i]; d++){
     fprintf(ficreseij,"%3.0f",age );            newm=savm;
     cptj=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<=nlstate;j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         cptj++;            }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficreseij,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
     free_matrix(gm,0,nhstepm,1,nlstate*2);            oldm=newm;
     free_matrix(gp,0,nhstepm,1,nlstate*2);          } /* end mult */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          s1=s[mw[mi][i]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          s2=s[mw[mi+1][i]][i];
   }          if( s2 > nlstate){ 
   printf("\n");            lli=log(out[s1][s2] - savm[s1][s2]);
   fprintf(ficlog,"\n");          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   free_vector(xp,1,npar);          }
   free_matrix(dnewm,1,nlstate*2,1,npar);          ipmx +=1;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          sw += weight[i];
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
 /************ Variance ******************/      } /* end of individual */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Variance of health expectancies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for(mi=1; mi<= wav[i]-1; mi++){
   /* double **newm;*/          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **dnewm,**doldm;            for (j=1;j<=nlstate+ndeath;j++){
   double **dnewmp,**doldmp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm ;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k, cptcode;            }
   double *xp;          for(d=0; d<dh[mi][i]; d++){
   double **gp, **gm;  /* for var eij */            newm=savm;
   double ***gradg, ***trgradg; /*for var eij */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **gradgp, **trgradgp; /* for var p point j */            for (kk=1; kk<=cptcovage;kk++) {
   double *gpp, *gmp; /* for var p point j */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */            }
   double ***p3mat;          
   double age,agelim, hf;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int theta;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char digit[4];            savm=oldm;
   char digitp[16];            oldm=newm;
           } /* end mult */
   char fileresprobmorprev[FILENAMELENGTH];        
           s1=s[mw[mi][i]][i];
   if(popbased==1)          s2=s[mw[mi+1][i]][i];
     strcpy(digitp,"-populbased-");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   else          ipmx +=1;
     strcpy(digitp,"-stablbased-");          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcpy(fileresprobmorprev,"prmorprev");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   sprintf(digit,"%-d",ij);        } /* end of wave */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      } /* end of individual */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    } /* End of if */
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   strcat(fileresprobmorprev,fileres);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    return -l;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  }
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  /*************** log-likelihood *************/
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  double funcone( double *x)
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");  {
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    /* Same as likeli but slower because of a lot of printf and if */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    int i, ii, j, k, mi, d, kk;
     fprintf(ficresprobmorprev," p.%-d SE",j);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for(i=1; i<=nlstate;i++)    double **out;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    double lli; /* Individual log likelihood */
   }      double llt;
   fprintf(ficresprobmorprev,"\n");    int s1, s2;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double bbh, survp;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    /*extern weight */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    /* We are differentiating ll according to initial status */
     exit(0);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   else{      printf(" %d\n",s[4][i]);
     fprintf(ficgp,"\n# Routine varevsij");    */
   }    cov[1]=1.;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   else{      for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
   }          for (j=1;j<=nlstate+ndeath;j++){
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          }
   fprintf(ficresvij,"# Age");        for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=nlstate;i++)          newm=savm;
     for(j=1; j<=nlstate;j++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresvij,"\n");            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
   xp=vector(1,npar);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   dnewm=matrix(1,nlstate,1,npar);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   doldm=matrix(1,nlstate,1,nlstate);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           savm=oldm;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          oldm=newm;
   gpp=vector(nlstate+1,nlstate+ndeath);        } /* end mult */
   gmp=vector(nlstate+1,nlstate+ndeath);        
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        s1=s[mw[mi][i]][i];
          s2=s[mw[mi+1][i]][i];
   if(estepm < stepm){        bbh=(double)bh[mi][i]/(double)stepm; 
     printf ("Problem %d lower than %d\n",estepm, stepm);        /* bias is positive if real duration
   }         * is higher than the multiple of stepm and negative otherwise.
   else  hstepm=estepm;           */
   /* For example we decided to compute the life expectancy with the smallest unit */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          lli=log(out[s1][s2] - savm[s1][s2]);
      nhstepm is the number of hstepm from age to agelim        } else if  (s2==-2) {
      nstepm is the number of stepm from age to agelin.          for (j=1,survp=0. ; j<=nlstate; j++) 
      Look at hpijx to understand the reason of that which relies in memory size            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      and note for a fixed period like k years */          lli= log(survp);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        }else if (mle==1){
      survival function given by stepm (the optimization length). Unfortunately it          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      means that if the survival funtion is printed only each two years of age and if        } else if(mle==2){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      results. So we changed our mind and took the option of the best precision.        } else if(mle==3){  /* exponential inter-extrapolation */
   */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   agelim = AGESUP;          lli=log(out[s1][s2]); /* Original formula */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } else{  /* mle=0 back to 1 */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          /*lli=log(out[s1][s2]); */ /* Original formula */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* End of if */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        ipmx +=1;
     gp=matrix(0,nhstepm,1,nlstate);        sw += weight[i];
     gm=matrix(0,nhstepm,1,nlstate);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     for(theta=1; theta <=npar; theta++){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(i=1; i<=npar; i++){ /* Computes gradient */   %11.6f %11.6f %11.6f ", \
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
           prlim[i][i]=probs[(int)age][i][ij];        }
       }      } /* end of wave */
      } /* end of individual */
       for(j=1; j<= nlstate; j++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(h=0; h<=nhstepm; h++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    if(globpr==0){ /* First time we count the contributions and weights */
         }      gipmx=ipmx;
       }      gsw=sw;
       /* This for computing forces of mortality (h=1)as a weighted average */    }
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    return -l;
         for(i=1; i<= nlstate; i++)  }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  
       }      
       /* end force of mortality */  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* This routine should help understanding what is done with 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         the selection of individuals/waves and
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       to check the exact contribution to the likelihood.
         Plotting could be done.
       if (popbased==1) {     */
         for(i=1; i<=nlstate;i++)    int k;
           prlim[i][i]=probs[(int)age][i][ij];  
       }    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
       for(j=1; j<= nlstate; j++){      strcat(fileresilk,fileres);
         for(h=0; h<=nhstepm; h++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        printf("Problem with resultfile: %s\n", fileresilk);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }      }
       }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       /* This for computing force of mortality (h=1)as a weighted average */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         for(i=1; i<= nlstate; i++)      for(k=1; k<=nlstate; k++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }          fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       /* end force of mortality */    }
   
       for(j=1; j<= nlstate; j++) /* vareij */    *fretone=(*funcone)(p);
         for(h=0; h<=nhstepm; h++){    if(*globpri !=0){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      fclose(ficresilk);
         }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      fflush(fichtm); 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    } 
       }    return;
   }
     } /* End theta */  
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  /*********** Maximum Likelihood Estimation ***************/
   
     for(h=0; h<=nhstepm; h++) /* veij */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(j=1; j<=nlstate;j++)  {
         for(theta=1; theta <=npar; theta++)    int i,j, iter;
           trgradg[h][j][theta]=gradg[h][theta][j];    double **xi;
     double fret;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    double fretone; /* Only one call to likelihood */
       for(theta=1; theta <=npar; theta++)    /*  char filerespow[FILENAMELENGTH];*/
         trgradgp[j][theta]=gradgp[theta][j];    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (j=1;j<=npar;j++)
     for(i=1;i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
       for(j=1;j<=nlstate;j++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         vareij[i][j][(int)age] =0.;    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
     for(h=0;h<=nhstepm;h++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(k=0;k<=nhstepm;k++){      printf("Problem with resultfile: %s\n", filerespow);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    }
         for(i=1;i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           for(j=1;j<=nlstate;j++)    for (i=1;i<=nlstate;i++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for(j=1;j<=nlstate+ndeath;j++)
       }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }    fprintf(ficrespow,"\n");
   
     /* pptj */    powell(p,xi,npar,ftol,&iter,&fret,func);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    free_matrix(xi,1,npar,1,npar);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    fclose(ficrespow);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         varppt[j][i]=doldmp[j][i];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     /* end ppptj */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  }
    
     if (popbased==1) {  /**** Computes Hessian and covariance matrix ***/
       for(i=1; i<=nlstate;i++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         prlim[i][i]=probs[(int)age][i][ij];  {
     }    double  **a,**y,*x,pd;
        double **hess;
     /* This for computing force of mortality (h=1)as a weighted average */    int i, j,jk;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    int *indx;
       for(i=1; i<= nlstate; i++)  
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     }        double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     /* end force of mortality */    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    double gompertz(double p[]);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    hess=matrix(1,npar,1,npar);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  
       for(i=1; i<=nlstate;i++){    printf("\nCalculation of the hessian matrix. Wait...\n");
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
     }      printf("%d",i);fflush(stdout);
     fprintf(ficresprobmorprev,"\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
      
     fprintf(ficresvij,"%.0f ",age );       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     for(i=1; i<=nlstate;i++)      
       for(j=1; j<=nlstate;j++){      /*  printf(" %f ",p[i]);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       }    }
     fprintf(ficresvij,"\n");    
     free_matrix(gp,0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++) {
     free_matrix(gm,0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++)  {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        if (j>i) { 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          printf(".%d%d",i,j);fflush(stdout);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   } /* End age */          hess[i][j]=hessij(p,delti,i,j,func,npar);
   free_vector(gpp,nlstate+1,nlstate+ndeath);          
   free_vector(gmp,nlstate+1,nlstate+ndeath);          hess[j][i]=hess[i][j];    
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          /*printf(" %lf ",hess[i][j]);*/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    printf("\n");
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    fprintf(ficlog,"\n");
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   free_vector(xp,1,npar);    x=vector(1,npar);
   free_matrix(doldm,1,nlstate,1,nlstate);    indx=ivector(1,npar);
   free_matrix(dnewm,1,nlstate,1,npar);    for (i=1;i<=npar;i++)
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    ludcmp(a,npar,indx,&pd);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   fclose(ficresprobmorprev);    for (j=1;j<=npar;j++) {
   fclose(ficgp);      for (i=1;i<=npar;i++) x[i]=0;
   fclose(fichtm);      x[j]=1;
       lubksb(a,npar,indx,x);
 }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
 /************ Variance of prevlim ******************/      }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    }
 {  
   /* Variance of prevalence limit */    printf("\n#Hessian matrix#\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficlog,"\n#Hessian matrix#\n");
   double **newm;    for (i=1;i<=npar;i++) { 
   double **dnewm,**doldm;      for (j=1;j<=npar;j++) { 
   int i, j, nhstepm, hstepm;        printf("%.3e ",hess[i][j]);
   int k, cptcode;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double *xp;      }
   double *gp, *gm;      printf("\n");
   double **gradg, **trgradg;      fprintf(ficlog,"\n");
   double age,agelim;    }
   int theta;  
        /* Recompute Inverse */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    for (i=1;i<=npar;i++)
   fprintf(ficresvpl,"# Age");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   for(i=1; i<=nlstate;i++)    ludcmp(a,npar,indx,&pd);
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");    /*  printf("\n#Hessian matrix recomputed#\n");
   
   xp=vector(1,npar);    for (j=1;j<=npar;j++) {
   dnewm=matrix(1,nlstate,1,npar);      for (i=1;i<=npar;i++) x[i]=0;
   doldm=matrix(1,nlstate,1,nlstate);      x[j]=1;
        lubksb(a,npar,indx,x);
   hstepm=1*YEARM; /* Every year of age */      for (i=1;i<=npar;i++){ 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        y[i][j]=x[i];
   agelim = AGESUP;        printf("%.3e ",y[i][j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"%.3e ",y[i][j]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
     if (stepm >= YEARM) hstepm=1;      printf("\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficlog,"\n");
     gradg=matrix(1,npar,1,nlstate);    }
     gp=vector(1,nlstate);    */
     gm=vector(1,nlstate);  
     free_matrix(a,1,npar,1,npar);
     for(theta=1; theta <=npar; theta++){    free_matrix(y,1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_vector(x,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  }
      
       for(i=1; i<=npar; i++) /* Computes gradient */  /*************** hessian matrix ****************/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(i=1;i<=nlstate;i++)    int i;
         gm[i] = prlim[i][i];    int l=1, lmax=20;
     double k1,k2;
       for(i=1;i<=nlstate;i++)    double p2[MAXPARM+1]; /* identical to x */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double res;
     } /* End theta */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     trgradg =matrix(1,nlstate,1,npar);    int k=0,kmax=10;
     double l1;
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)    fx=func(x);
         trgradg[j][theta]=gradg[theta][j];    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     for(i=1;i<=nlstate;i++)      l1=pow(10,l);
       varpl[i][(int)age] =0.;      delts=delt;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for(k=1 ; k <kmax; k=k+1){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        delt = delta*(l1*k);
     for(i=1;i<=nlstate;i++)        p2[theta]=x[theta] +delt;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
         p2[theta]=x[theta]-delt;
     fprintf(ficresvpl,"%.0f ",age );        k2=func(p2)-fx;
     for(i=1; i<=nlstate;i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     fprintf(ficresvpl,"\n");        
     free_vector(gp,1,nlstate);  #ifdef DEBUGHESS
     free_vector(gm,1,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_matrix(gradg,1,npar,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_matrix(trgradg,1,nlstate,1,npar);  #endif
   } /* End age */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   free_vector(xp,1,npar);          k=kmax;
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
 }        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 /************ Variance of one-step probabilities  ******************/          delts=delt;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        }
 {      }
   int i, j=0,  i1, k1, l1, t, tj;    }
   int k2, l2, j1,  z1;    delti[theta]=delts;
   int k=0,l, cptcode;    return res; 
   int first=1, first1;    
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;  }
   double **dnewm,**doldm;  
   double *xp;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double *gp, *gm;  {
   double **gradg, **trgradg;    int i;
   double **mu;    int l=1, l1, lmax=20;
   double age,agelim, cov[NCOVMAX];    double k1,k2,k3,k4,res,fx;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    double p2[MAXPARM+1];
   int theta;    int k;
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];    fx=func(x);
   char fileresprobcor[FILENAMELENGTH];    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   double ***varpij;      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   strcpy(fileresprob,"prob");      k1=func(p2)-fx;
   strcat(fileresprob,fileres);    
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      p2[thetai]=x[thetai]+delti[thetai]/k;
     printf("Problem with resultfile: %s\n", fileresprob);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      k2=func(p2)-fx;
   }    
   strcpy(fileresprobcov,"probcov");      p2[thetai]=x[thetai]-delti[thetai]/k;
   strcat(fileresprobcov,fileres);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      k3=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprobcov);    
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcpy(fileresprobcor,"probcor");      k4=func(p2)-fx;
   strcat(fileresprobcor,fileres);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  #ifdef DEBUG
     printf("Problem with resultfile: %s\n", fileresprobcor);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }  #endif
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    return res;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  }
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  /************** Inverse of matrix **************/
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  void ludcmp(double **a, int n, int *indx, double *d) 
    { 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    int i,imax,j,k; 
   fprintf(ficresprob,"# Age");    double big,dum,sum,temp; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    double *vv; 
   fprintf(ficresprobcov,"# Age");   
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    vv=vector(1,n); 
   fprintf(ficresprobcov,"# Age");    *d=1.0; 
     for (i=1;i<=n;i++) { 
       big=0.0; 
   for(i=1; i<=nlstate;i++)      for (j=1;j<=n;j++) 
     for(j=1; j<=(nlstate+ndeath);j++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      vv[i]=1.0/big; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    } 
     }      for (j=1;j<=n;j++) { 
   fprintf(ficresprob,"\n");      for (i=1;i<j;i++) { 
   fprintf(ficresprobcov,"\n");        sum=a[i][j]; 
   fprintf(ficresprobcor,"\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   xp=vector(1,npar);        a[i][j]=sum; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      } 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      big=0.0; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      for (i=j;i<=n;i++) { 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        sum=a[i][j]; 
   first=1;        for (k=1;k<j;k++) 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          sum -= a[i][k]*a[k][j]; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        a[i][j]=sum; 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     exit(0);          big=dum; 
   }          imax=i; 
   else{        } 
     fprintf(ficgp,"\n# Routine varprob");      } 
   }      if (j != imax) { 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        for (k=1;k<=n;k++) { 
     printf("Problem with html file: %s\n", optionfilehtm);          dum=a[imax][k]; 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          a[imax][k]=a[j][k]; 
     exit(0);          a[j][k]=dum; 
   }        } 
   else{        *d = -(*d); 
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        vv[imax]=vv[j]; 
     fprintf(fichtm,"\n");      } 
       indx[j]=imax; 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      if (j != n) { 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   }      } 
     } 
      free_vector(vv,1,n);  /* Doesn't work */
   cov[1]=1;  ;
   tj=cptcoveff;  } 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  
   j1=0;  void lubksb(double **a, int n, int *indx, double b[]) 
   for(t=1; t<=tj;t++){  { 
     for(i1=1; i1<=ncodemax[t];i1++){    int i,ii=0,ip,j; 
       j1++;    double sum; 
         
       if  (cptcovn>0) {    for (i=1;i<=n;i++) { 
         fprintf(ficresprob, "\n#********** Variable ");      ip=indx[i]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      sum=b[ip]; 
         fprintf(ficresprob, "**********\n#");      b[ip]=b[i]; 
         fprintf(ficresprobcov, "\n#********** Variable ");      if (ii) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficresprobcov, "**********\n#");      else if (sum) ii=i; 
              b[i]=sum; 
         fprintf(ficgp, "\n#********** Variable ");    } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=n;i>=1;i--) { 
         fprintf(ficgp, "**********\n#");      sum=b[i]; 
              for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
              b[i]=sum/a[i][i]; 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  } 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  
          void pstamp(FILE *fichier)
         fprintf(ficresprobcor, "\n#********** Variable ");      {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         fprintf(ficgp, "**********\n#");      }
       }  
        /************ Frequencies ********************/
       for (age=bage; age<=fage; age ++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         cov[2]=age;  {  /* Some frequencies */
         for (k=1; k<=cptcovn;k++) {    
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    int i, m, jk, k1,i1, j1, bool, z1,j;
         }    int first;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double ***freq; /* Frequencies */
         for (k=1; k<=cptcovprod;k++)    double *pp, **prop;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
            char fileresp[FILENAMELENGTH];
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    pp=vector(1,nlstate);
         gp=vector(1,(nlstate)*(nlstate+ndeath));    prop=matrix(1,nlstate,iagemin,iagemax+3);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    strcpy(fileresp,"p");
        strcat(fileresp,fileres);
         for(theta=1; theta <=npar; theta++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
           for(i=1; i<=npar; i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                exit(0);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
              freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           k=0;    j1=0;
           for(i=1; i<= (nlstate); i++){    
             for(j=1; j<=(nlstate+ndeath);j++){    j=cptcoveff;
               k=k+1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
               gp[k]=pmmij[i][j];  
             }    first=1;
           }  
              /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
           for(i=1; i<=npar; i++)    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*    j1++;
      */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
           k=0;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           for(i=1; i<=(nlstate); i++){          scanf("%d", i);*/
             for(j=1; j<=(nlstate+ndeath);j++){        for (i=-5; i<=nlstate+ndeath; i++)  
               k=k+1;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
               gm[k]=pmmij[i][j];            for(m=iagemin; m <= iagemax+3; m++)
             }              freq[i][jk][m]=0;
           }        
              for (i=1; i<=nlstate; i++)  
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          for(m=iagemin; m <= iagemax+3; m++)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              prop[i][m]=0;
         }        
         dateintsum=0;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        k2cpt=0;
           for(theta=1; theta <=npar; theta++)        for (i=1; i<=imx; i++) {
             trgradg[j][theta]=gradg[theta][j];          bool=1;
                  if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            for (z1=1; z1<=cptcoveff; z1++)       
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                          /* Tests if the value of each of the covariates of i is equal to filter j1 */
         pmij(pmmij,cov,ncovmodel,x,nlstate);                bool=0;
                        /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
         k=0;                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
         for(i=1; i<=(nlstate); i++){                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
           for(j=1; j<=(nlstate+ndeath);j++){                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
             k=k+1;              } 
             mu[k][(int) age]=pmmij[i][j];          }
           }   
         }          if (bool==1){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            for(m=firstpass; m<=lastpass; m++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              k2=anint[m][i]+(mint[m][i]/12.);
             varpij[i][j][(int)age] = doldm[i][j];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
         /*printf("\n%d ",(int)age);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                if (m<lastpass) {
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      }*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
         fprintf(ficresprob,"\n%d ",(int)age);                
         fprintf(ficresprobcov,"\n%d ",(int)age);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         fprintf(ficresprobcor,"\n%d ",(int)age);                  dateintsum=dateintsum+k2;
                   k2cpt++;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)                }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                /*}*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        } /* end i */
         }         
         i=0;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (k=1; k<=(nlstate);k++){        pstamp(ficresp);
           for (l=1; l<=(nlstate+ndeath);l++){        if  (cptcovn>0) {
             i=i++;          fprintf(ficresp, "\n#********** Variable "); 
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          fprintf(ficresp, "**********\n#");
             for (j=1; j<=i;j++){          fprintf(ficlog, "\n#********** Variable "); 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          fprintf(ficlog, "**********\n#");
             }        }
           }        for(i=1; i<=nlstate;i++) 
         }/* end of loop for state */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       } /* end of loop for age */        fprintf(ficresp, "\n");
         
       /* Confidence intervalle of pij  */        for(i=iagemin; i <= iagemax+3; i++){
       /*          if(i==iagemax+3){
       fprintf(ficgp,"\nset noparametric;unset label");            fprintf(ficlog,"Total");
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          }else{
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            if(first==1){
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              first=0;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);              printf("See log file for details...\n");
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);            }
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);            fprintf(ficlog,"Age %d", i);
       */          }
           for(jk=1; jk <=nlstate ; jk++){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       first1=1;              pp[jk] += freq[jk][m][i]; 
       for (k1=1; k1<=(nlstate);k1++){          }
         for (l1=1; l1<=(nlstate+ndeath);l1++){          for(jk=1; jk <=nlstate ; jk++){
           if(l1==k1) continue;            for(m=-1, pos=0; m <=0 ; m++)
           i=(k1-1)*(nlstate+ndeath)+l1;              pos += freq[jk][m][i];
           for (k2=1; k2<=(nlstate);k2++){            if(pp[jk]>=1.e-10){
             for (l2=1; l2<=(nlstate+ndeath);l2++){              if(first==1){
               if(l2==k2) continue;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               j=(k2-1)*(nlstate+ndeath)+l2;              }
               if(j<=i) continue;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               for (age=bage; age<=fage; age ++){            }else{
                 if ((int)age %5==0){              if(first==1)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            }
                   mu1=mu[i][(int) age]/stepm*YEARM ;          }
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   /* Computing eigen value of matrix of covariance */          for(jk=1; jk <=nlstate ; jk++){
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              pp[jk] += freq[jk][m][i];
                   if(first1==1){          }       
                     first1=0;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);            pos += pp[jk];
                   }            posprop += prop[jk][i];
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          }
                   /* Eigen vectors */          for(jk=1; jk <=nlstate ; jk++){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            if(pos>=1.e-5){
                   v21=sqrt(1.-v11*v11);              if(first==1)
                   v12=-v21;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   v22=v11;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   /*printf(fignu*/            }else{
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              if(first==1)
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   if(first==1){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     first=0;            }
                     fprintf(ficgp,"\nset parametric;set nolabel");            if( i <= iagemax){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);              if(pos>=1.e-5){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);              }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              else
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          
                     */          for(jk=-1; jk <=nlstate+ndeath; jk++)
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            for(m=-1; m <=nlstate+ndeath; m++)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              if(freq[jk][m][i] !=0 ) {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));              if(first==1)
                   }else{                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                     first=0;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);              }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          if(i <= iagemax)
                     /*            fprintf(ficresp,"\n");
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          if(first==1)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            printf("Others in log...\n");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          fprintf(ficlog,"\n");
                     */        }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        /*}*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    dateintmean=dateintsum/k2cpt; 
                   }/* if first */   
                 } /* age mod 5 */    fclose(ficresp);
               } /* end loop age */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);    free_vector(pp,1,nlstate);
               first=1;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             } /*l12 */    /* End of Freq */
           } /* k12 */  }
         } /*l1 */  
       }/* k1 */  /************ Prevalence ********************/
     } /* loop covariates */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  {  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));       in each health status at the date of interview (if between dateprev1 and dateprev2).
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);       We still use firstpass and lastpass as another selection.
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);   
   }    int i, m, jk, k1, i1, j1, bool, z1,j;
   free_vector(xp,1,npar);    double ***freq; /* Frequencies */
   fclose(ficresprob);    double *pp, **prop;
   fclose(ficresprobcov);    double pos,posprop; 
   fclose(ficresprobcor);    double  y2; /* in fractional years */
   fclose(ficgp);    int iagemin, iagemax;
   fclose(fichtm);    int first; /** to stop verbosity which is redirected to log file */
 }  
     iagemin= (int) agemin;
     iagemax= (int) agemax;
 /******************* Printing html file ***********/    /*pp=vector(1,nlstate);*/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    prop=matrix(1,nlstate,iagemin,iagemax+3); 
                   int lastpass, int stepm, int weightopt, char model[],\    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    j1=0;
                   int popforecast, int estepm ,\    
                   double jprev1, double mprev1,double anprev1, \    /*j=cptcoveff;*/
                   double jprev2, double mprev2,double anprev2){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   int jj1, k1, i1, cpt;    
   /*char optionfilehtm[FILENAMELENGTH];*/    first=1;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     printf("Problem with %s \n",optionfilehtm), exit(0);      /*for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);        j1++;*/
   }        
         for (i=1; i<=nlstate; i++)  
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          for(m=iagemin; m <= iagemax+3; m++)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n            prop[i][m]=0.0;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n       
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Life expectancies by age and initial health status (estepm=%2d months):          bool=1;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          if  (cptcovn>0) {
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");                bool=0;
           } 
  m=cptcoveff;          if (bool==1) { 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  jj1=0;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  for(k1=1; k1<=m;k1++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    for(i1=1; i1<=ncodemax[k1];i1++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      jj1++;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      if (cptcovn > 0) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
        for (cpt=1; cpt<=cptcoveff;cpt++)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                  prop[s[m][i]][iagemax+3] += weight[i]; 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                } 
      }              }
      /* Pij */            } /* end selection of waves */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
      /* Quasi-incidences */        for(i=iagemin; i <= iagemax+3; i++){  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            posprop += prop[jk][i]; 
        /* Stable prevalence in each health state */          } 
        for(cpt=1; cpt<nlstate;cpt++){          
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          for(jk=1; jk <=nlstate ; jk++){     
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if( i <=  iagemax){ 
        }              if(posprop>=1.e-5){ 
      for(cpt=1; cpt<=nlstate;cpt++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              } else{
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                if(first==1){
      }                  first=0;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 health expectancies in states (1) and (2): e%s%d.png<br>                }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }
    } /* end i1 */            } 
  }/* End k1 */          }/* end jk */ 
  fprintf(fichtm,"</ul>");        }/* end i */ 
       /*} *//* end i1 */
     } /* end j1 */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    /*free_vector(pp,1,nlstate);*/
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  }  /* End of prevalence */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  /************* Waves Concatenation ***************/
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  if(popforecast==1) fprintf(fichtm,"\n  {
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       Death is a valid wave (if date is known).
         <br>",fileres,fileres,fileres,fileres);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  else       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);       and mw[mi+1][i]. dh depends on stepm.
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");       */
   
  m=cptcoveff;    int i, mi, m;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
  jj1=0;    int first;
  for(k1=1; k1<=m;k1++){    int j, k=0,jk, ju, jl;
    for(i1=1; i1<=ncodemax[k1];i1++){    double sum=0.;
      jj1++;    first=0;
      if (cptcovn > 0) {    jmin=1e+5;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    jmax=-1;
        for (cpt=1; cpt<=cptcoveff;cpt++)    jmean=0.;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    for(i=1; i<=imx; i++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      mi=0;
      }      m=firstpass;
      for(cpt=1; cpt<=nlstate;cpt++) {      while(s[m][i] <= nlstate){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 interval) in state (%d): v%s%d%d.png <br>          mw[++mi][i]=m;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if(m >=lastpass)
      }          break;
    } /* end i1 */        else
  }/* End k1 */          m++;
  fprintf(fichtm,"</ul>");      }/* end while */
 fclose(fichtm);      if (s[m][i] > nlstate){
 }        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
 /******************* Gnuplot file **************/           /* Only death is a correct wave */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        mw[mi][i]=m;
       }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;      wav[i]=mi;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      if(mi==0){
     printf("Problem with file %s",optionfilegnuplot);        nbwarn++;
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        if(first==0){
   }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
 #ifdef windows        }
     fprintf(ficgp,"cd \"%s\" \n",pathc);        if(first==1){
 #endif          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 m=pow(2,cptcoveff);        }
        } /* end mi==0 */
  /* 1eme*/    } /* End individuals */
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
 #ifdef windows        if (stepm <=0)
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          dh[mi][i]=1;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        else{
 #endif          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 #ifdef unix            if (agedc[i] < 2*AGESUP) {
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              if(j==0) j=1;  /* Survives at least one month after exam */
 #endif              else if(j<0){
                 nberr++;
 for (i=1; i<= nlstate ; i ++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                j=1; /* Temporary Dangerous patch */
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              k=k+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if (j >= jmax){
 }                jmax=j;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                ijmax=i;
      for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if (j <= jmin){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                jmin=j;
 }                  ijmin=i;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              }
 #ifdef unix              sum=sum+j;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 #endif              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    }            }
   }          }
   /*2 eme*/          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   for (k1=1; k1<= m ; k1 ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            k=k+1;
                if (j >= jmax) {
     for (i=1; i<= nlstate+1 ; i ++) {              jmax=j;
       k=2*i;              ijmax=i;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            else if (j <= jmin){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              jmin=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              ijmin=i;
 }              }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(j<0){
       for (j=1; j<= nlstate+1 ; j ++) {              nberr++;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }              }
       fprintf(ficgp,"\" t\"\" w l 0,");            sum=sum+j;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {          jk= j/stepm;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          jl= j -jk*stepm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          ju= j -(jk+1)*stepm;
 }            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if(jl==0){
       else fprintf(ficgp,"\" t\"\" w l 0,");              dh[mi][i]=jk;
     }              bh[mi][i]=0;
   }            }else{ /* We want a negative bias in order to only have interpolation ie
                      * to avoid the price of an extra matrix product in likelihood */
   /*3eme*/              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }else{
       k=2+nlstate*(2*cpt-2);            if(jl <= -ju){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              dh[mi][i]=jk;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              bh[mi][i]=jl;       /* bias is positive if real duration
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                                   * is higher than the multiple of stepm and negative otherwise.
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                                   */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            else{
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              dh[mi][i]=jk+1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              bh[mi][i]=ju;
             }
 */            if(dh[mi][i]==0){
       for (i=1; i< nlstate ; i ++) {              dh[mi][i]=1; /* At least one step */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
     }          } /* end if mle */
   }        }
        } /* end wave */
   /* CV preval stat */    }
     for (k1=1; k1<= m ; k1 ++) {    jmean=sum/k;
     for (cpt=1; cpt<nlstate ; cpt ++) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       k=3;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);   }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
   /*********** Tricode ****************************/
       for (i=1; i< nlstate ; i ++)  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
         fprintf(ficgp,"+$%d",k+i+1);  {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
          /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       l=3+(nlstate+ndeath)*cpt;    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
       for (i=1; i< nlstate ; i ++) {    /* nbcode[Tvar[j]][1]= 
         l=3+(nlstate+ndeath)*cpt;    */
         fprintf(ficgp,"+$%d",l+i+1);  
       }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      int modmaxcovj=0; /* Modality max of covariates j */
     }    int cptcode=0; /* Modality max of covariates j */
   }      int modmincovj=0; /* Modality min of covariates j */
    
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){    cptcoveff=0; 
     for(k=1; k <=(nlstate+ndeath); k++){   
       if (k != i) {    for (k=-1; k < maxncov; k++) Ndum[k]=0;
         for(j=1; j <=ncovmodel; j++){    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;    /* Loop on covariates without age and products */
           fprintf(ficgp,"\n");    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
         }      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
       }                                 modality of this covariate Vj*/ 
     }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
    }                                      * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
      for(jk=1; jk <=m; jk++) {        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);                                        modality of the nth covariate of individual i. */
        if (ng==2)        if (ij > modmaxcovj)
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          modmaxcovj=ij; 
        else        else if (ij < modmincovj) 
          fprintf(ficgp,"\nset title \"Probability\"\n");          modmincovj=ij; 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        if ((ij < -1) && (ij > NCOVMAX)){
        i=1;          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
        for(k2=1; k2<=nlstate; k2++) {          exit(1);
          k3=i;        }else
          for(k=1; k<=(nlstate+ndeath); k++) {        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
            if (k != k2){        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
              if(ng==2)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        /* getting the maximum value of the modality of the covariate
              else           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);           female is 1, then modmaxcovj=1.*/
              ij=1;      }
              for(j=3; j <=ncovmodel; j++) {      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      cptcode=modmaxcovj;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                  ij++;     /*for (i=0; i<=cptcode; i++) {*/
                }      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
                else        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
              }          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
              fprintf(ficgp,")/(1");        }
                      /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
              for(k1=1; k1 <=nlstate; k1++){             historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      } /* Ndum[-1] number of undefined modalities */
                ij=1;  
                for(j=3; j <=ncovmodel; j++){      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
                    ij++;         modmincovj=3; modmaxcovj = 7;
                  }         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
                  else         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);         variables V1_1 and V1_2.
                }         nbcode[Tvar[j]][ij]=k;
                fprintf(ficgp,")");         nbcode[Tvar[j]][1]=0;
              }         nbcode[Tvar[j]][2]=1;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);         nbcode[Tvar[j]][3]=2;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      */
              i=i+ncovmodel;      ij=1; /* ij is similar to i but can jumps over null modalities */
            }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
          } /* end k */        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
        } /* end k2 */          /*recode from 0 */
      } /* end jk */          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
    } /* end ng */            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
    fclose(ficgp);                                       k is a modality. If we have model=V1+V1*sex 
 }  /* end gnuplot */                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
           }
 /*************** Moving average **************/          if (ij > ncodemax[j]) break; 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        }  /* end of loop on */
       } /* end of loop on modality */ 
   int i, cpt, cptcod;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    
       for (i=1; i<=nlstate;i++)   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    
           mobaverage[(int)agedeb][i][cptcod]=0.;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
         /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       for (i=1; i<=nlstate;i++){     Ndum[ij]++; 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   } 
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];   ij=1;
           }   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         }     if((Ndum[i]!=0) && (i<=ncovcol)){
       }       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     }       Tvaraff[ij]=i; /*For printing (unclear) */
           ij++;
 }     }else
          Tvaraff[ij]=0;
    }
 /************** Forecasting ******************/   ij--;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){   cptcoveff=ij; /*Number of total covariates*/
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  }
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;  /*********** Health Expectancies ****************/
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
  agelim=AGESUP;  {
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int nhstepma, nstepma; /* Decreasing with age */
      double age, agelim, hf;
      double ***p3mat;
   strcpy(fileresf,"f");    double eip;
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {    pstamp(ficreseij);
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficreseij,"# Age");
   }    for(i=1; i<=nlstate;i++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);      for(j=1; j<=nlstate;j++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        fprintf(ficreseij," e%1d%1d ",i,j);
       }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(ficreseij," e%1d. ",i);
     }
   if (mobilav==1) {    fprintf(ficreseij,"\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    
   }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
   agelim=AGESUP;     * This is mainly to measure the difference between two models: for example
       * if stepm=24 months pijx are given only every 2 years and by summing them
   hstepm=1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   hstepm=hstepm/stepm;     * progression in between and thus overestimating or underestimating according
   yp1=modf(dateintmean,&yp);     * to the curvature of the survival function. If, for the same date, we 
   anprojmean=yp;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   yp2=modf((yp1*12),&yp);     * to compare the new estimate of Life expectancy with the same linear 
   mprojmean=yp;     * hypothesis. A more precise result, taking into account a more precise
   yp1=modf((yp2*30.5),&yp);     * curvature will be obtained if estepm is as small as stepm. */
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    /* For example we decided to compute the life expectancy with the smallest unit */
   if(mprojmean==0) jprojmean=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   for(cptcov=1;cptcov<=i2;cptcov++){       and note for a fixed period like estepm months */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       k=k+1;       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficresf,"\n#******");       means that if the survival funtion is printed only each two years of age and if
       for(j=1;j<=cptcoveff;j++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       results. So we changed our mind and took the option of the best precision.
       }    */
       fprintf(ficresf,"******\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    agelim=AGESUP;
          /* If stepm=6 months */
            /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficresf,"\n");      
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* if (stepm >= YEARM) hstepm=1;*/
           nhstepm = nhstepm/hstepm;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    for (age=bage; age<=fage; age ++){ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
              /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           for (h=0; h<=nhstepm; h++){      /* if (stepm >= YEARM) hstepm=1;*/
             if (h==(int) (calagedate+YEARM*cpt)) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }      /* If stepm=6 months */
             for(j=1; j<=nlstate+ndeath;j++) {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
               kk1=0.;kk2=0;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               for(i=1; i<=nlstate;i++) {                    
                 if (mobilav==1)      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      
                 else {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      
                 }      printf("%d|",(int)age);fflush(stdout);
                      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               }      
               if (h==(int)(calagedate+12*cpt)){      /* Computing expectancies */
                 fprintf(ficresf," %.3f", kk1);      for(i=1; i<=nlstate;i++)
                                for(j=1; j<=nlstate;j++)
               }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           }            
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         }  
       }          }
     }  
   }      fprintf(ficreseij,"%3.0f",age );
              for(i=1; i<=nlstate;i++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        eip=0;
         for(j=1; j<=nlstate;j++){
   fclose(ficresf);          eip +=eij[i][j][(int)age];
 }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 /************** Forecasting ******************/        }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        fprintf(ficreseij,"%9.4f", eip );
        }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      fprintf(ficreseij,"\n");
   int *popage;      
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***p3mat,***tabpop,***tabpopprev;    printf("\n");
   char filerespop[FILENAMELENGTH];    fprintf(ficlog,"\n");
     
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
    {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* Covariances of health expectancies eij and of total life expectancies according
       to initial status i, ei. .
      */
   strcpy(filerespop,"pop");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   strcat(filerespop,fileres);    int nhstepma, nstepma; /* Decreasing with age */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    double age, agelim, hf;
     printf("Problem with forecast resultfile: %s\n", filerespop);    double ***p3matp, ***p3matm, ***varhe;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    double **dnewm,**doldm;
   }    double *xp, *xm;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    double **gp, **gm;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    double ***gradg, ***trgradg;
     int theta;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     double eip, vip;
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    xp=vector(1,npar);
   }    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if (stepm<=12) stepsize=1;    
      pstamp(ficresstdeij);
   agelim=AGESUP;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
      fprintf(ficresstdeij,"# Age");
   hstepm=1;    for(i=1; i<=nlstate;i++){
   hstepm=hstepm/stepm;      for(j=1; j<=nlstate;j++)
          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   if (popforecast==1) {      fprintf(ficresstdeij," e%1d. ",i);
     if((ficpop=fopen(popfile,"r"))==NULL) {    }
       printf("Problem with population file : %s\n",popfile);exit(0);    fprintf(ficresstdeij,"\n");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }    pstamp(ficrescveij);
     popage=ivector(0,AGESUP);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     popeffectif=vector(0,AGESUP);    fprintf(ficrescveij,"# Age");
     popcount=vector(0,AGESUP);    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
     i=1;          cptj= (j-1)*nlstate+i;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        for(i2=1; i2<=nlstate;i2++)
              for(j2=1; j2<=nlstate;j2++){
     imx=i;            cptj2= (j2-1)*nlstate+i2;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            if(cptj2 <= cptj)
   }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
   for(cptcov=1;cptcov<=i2;cptcov++){      }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficrescveij,"\n");
       k=k+1;    
       fprintf(ficrespop,"\n#******");    if(estepm < stepm){
       for(j=1;j<=cptcoveff;j++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    else  hstepm=estepm;   
       fprintf(ficrespop,"******\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficrespop,"# Age");     * This is mainly to measure the difference between two models: for example
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);     * if stepm=24 months pijx are given only every 2 years and by summing them
       if (popforecast==1)  fprintf(ficrespop," [Population]");     * we are calculating an estimate of the Life Expectancy assuming a linear 
           * progression in between and thus overestimating or underestimating according
       for (cpt=0; cpt<=0;cpt++) {     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
             * to compare the new estimate of Life expectancy with the same linear 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * hypothesis. A more precise result, taking into account a more precise
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * curvature will be obtained if estepm is as small as stepm. */
           nhstepm = nhstepm/hstepm;  
              /* For example we decided to compute the life expectancy with the smallest unit */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           oldm=oldms;savm=savms;       nhstepm is the number of hstepm from age to agelim 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
           for (h=0; h<=nhstepm; h++){       and note for a fixed period like estepm months */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       survival function given by stepm (the optimization length). Unfortunately it
             }       means that if the survival funtion is printed only each two years of age and if
             for(j=1; j<=nlstate+ndeath;j++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               kk1=0.;kk2=0;       results. So we changed our mind and took the option of the best precision.
               for(i=1; i<=nlstate;i++) {                  */
                 if (mobilav==1)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    /* If stepm=6 months */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* nhstepm age range expressed in number of stepm */
                 }    agelim=AGESUP;
               }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
               if (h==(int)(calagedate+12*cpt)){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    /* if (stepm >= YEARM) hstepm=1;*/
                   /*fprintf(ficrespop," %.3f", kk1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    
               }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(i=1; i<=nlstate;i++){    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
               kk1=0.;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                 for(j=1; j<=nlstate;j++){    gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    gm=matrix(0,nhstepm,1,nlstate*nlstate);
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    for (age=bage; age<=fage; age ++){ 
             }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      /* if (stepm >= YEARM) hstepm=1;*/
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* If stepm=6 months */
         }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
   /******/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      /* Computing  Variances of health expectancies */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){         decrease memory allocation */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(theta=1; theta <=npar; theta++){
           nhstepm = nhstepm/hstepm;        for(i=1; i<=npar; i++){ 
                    xp[i] = x[i] + (i==theta ?delti[theta]:0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           for (h=0; h<=nhstepm; h++){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
             if (h==(int) (calagedate+YEARM*cpt)) {    
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(j=1; j<= nlstate; j++){
             }          for(i=1; i<=nlstate; i++){
             for(j=1; j<=nlstate+ndeath;j++) {            for(h=0; h<=nhstepm-1; h++){
               kk1=0.;kk2=0;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               for(i=1; i<=nlstate;i++) {                            gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }
               }          }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }       
           }        for(ij=1; ij<= nlstate*nlstate; ij++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(h=0; h<=nhstepm-1; h++){
         }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       }          }
    }      }/* End theta */
   }      
        
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   if (popforecast==1) {          for(theta=1; theta <=npar; theta++)
     free_ivector(popage,0,AGESUP);            trgradg[h][j][theta]=gradg[h][theta][j];
     free_vector(popeffectif,0,AGESUP);      
     free_vector(popcount,0,AGESUP);  
   }       for(ij=1;ij<=nlstate*nlstate;ij++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(ji=1;ji<=nlstate*nlstate;ji++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          varhe[ij][ji][(int)age] =0.;
   fclose(ficrespop);  
 }       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /***********************************************/       for(h=0;h<=nhstepm-1;h++){
 /**************** Main Program *****************/        for(k=0;k<=nhstepm-1;k++){
 /***********************************************/          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 int main(int argc, char *argv[])          for(ij=1;ij<=nlstate*nlstate;ij++)
 {            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        }
   double agedeb, agefin,hf;      }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
       /* Computing expectancies */
   double fret;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double **xi,tmp,delta;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   double dum; /* Dummy variable */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double ***p3mat;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   int *indx;            
   char line[MAXLINE], linepar[MAXLINE];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];  
   int firstobs=1, lastobs=10;          }
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;      fprintf(ficresstdeij,"%3.0f",age );
   int ju,jl, mi;      for(i=1; i<=nlstate;i++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        eip=0.;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        vip=0.;
   int mobilav=0,popforecast=0;        for(j=1; j<=nlstate;j++){
   int hstepm, nhstepm;          eip += eij[i][j][(int)age];
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   double bage, fage, age, agelim, agebase;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   double ftolpl=FTOL;        }
   double **prlim;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   double *severity;      }
   double ***param; /* Matrix of parameters */      fprintf(ficresstdeij,"\n");
   double  *p;  
   double **matcov; /* Matrix of covariance */      fprintf(ficrescveij,"%3.0f",age );
   double ***delti3; /* Scale */      for(i=1; i<=nlstate;i++)
   double *delti; /* Scale */        for(j=1; j<=nlstate;j++){
   double ***eij, ***vareij;          cptj= (j-1)*nlstate+i;
   double **varpl; /* Variances of prevalence limits by age */          for(i2=1; i2<=nlstate;i2++)
   double *epj, vepp;            for(j2=1; j2<=nlstate;j2++){
   double kk1, kk2;              cptj2= (j2-1)*nlstate+i2;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;              if(cptj2 <= cptj)
                  fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
       fprintf(ficrescveij,"\n");
      
   char z[1]="c", occ;    }
 #include <sys/time.h>    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 #include <time.h>    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /* long total_usecs;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   struct timeval start_time, end_time;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(ficlog,"\n");
   getcwd(pathcd, size);  
     free_vector(xm,1,npar);
   printf("\n%s",version);    free_vector(xp,1,npar);
   if(argc <=1){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     printf("\nEnter the parameter file name: ");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     scanf("%s",pathtot);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }  }
   else{  
     strcpy(pathtot,argv[1]);  /************ Variance ******************/
   }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  {
   /*cygwin_split_path(pathtot,path,optionfile);    /* Variance of health expectancies */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /* cutv(path,optionfile,pathtot,'\\');*/    /* double **newm;*/
     double **dnewm,**doldm;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double **dnewmp,**doldmp;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int i, j, nhstepm, hstepm, h, nstepm ;
   chdir(path);    int k, cptcode;
   replace(pathc,path);    double *xp;
     double **gp, **gm;  /* for var eij */
 /*-------- arguments in the command line --------*/    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   /* Log file */    double *gpp, *gmp; /* for var p point j */
   strcat(filelog, optionfilefiname);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   strcat(filelog,".log");    /* */    double ***p3mat;
   if((ficlog=fopen(filelog,"w"))==NULL)    {    double age,agelim, hf;
     printf("Problem with logfile %s\n",filelog);    double ***mobaverage;
     goto end;    int theta;
   }    char digit[4];
   fprintf(ficlog,"Log filename:%s\n",filelog);    char digitp[25];
   fprintf(ficlog,"\n%s",version);  
   fprintf(ficlog,"\nEnter the parameter file name: ");    char fileresprobmorprev[FILENAMELENGTH];
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   fflush(ficlog);    if(popbased==1){
       if(mobilav!=0)
   /* */        strcpy(digitp,"-populbased-mobilav-");
   strcpy(fileres,"r");      else strcpy(digitp,"-populbased-nomobil-");
   strcat(fileres, optionfilefiname);    }
   strcat(fileres,".txt");    /* Other files have txt extension */    else 
       strcpy(digitp,"-stablbased-");
   /*---------arguments file --------*/  
     if (mobilav!=0) {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with optionfile %s\n",optionfile);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     goto end;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
     }
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    strcpy(fileresprobmorprev,"prmorprev"); 
   if((ficparo=fopen(filereso,"w"))==NULL) {    sprintf(digit,"%-d",ij);
     printf("Problem with Output resultfile: %s\n", filereso);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     goto end;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   }    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     puts(line);   
     fputs(line,ficparo);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    pstamp(ficresprobmorprev);
   ungetc(c,ficpar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      fprintf(ficresprobmorprev," p.%-d SE",j);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      for(i=1; i<=nlstate;i++)
 while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     ungetc(c,ficpar);    }  
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobmorprev,"\n");
     puts(line);    fprintf(ficgp,"\n# Routine varevsij");
     fputs(line,ficparo);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   ungetc(c,ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
        varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   covar=matrix(0,NCOVMAX,1,n);    pstamp(ficresvij);
   cptcovn=0;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   ncovmodel=2+cptcovn;    else
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(ficresvij,"# Age");
   /* Read guess parameters */    for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */      for(j=1; j<=nlstate;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     ungetc(c,ficpar);    fprintf(ficresvij,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    xp=vector(1,npar);
     fputs(line,ficparo);    dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
   ungetc(c,ficpar);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     for(j=1; j <=nlstate+ndeath-1; j++){    gpp=vector(nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    gmp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"%1d%1d",i1,j1);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       if(mle==1)    
         printf("%1d%1d",i,j);    if(estepm < stepm){
       fprintf(ficlog,"%1d%1d",i,j);      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar," %lf",&param[i][j][k]);    else  hstepm=estepm;   
         if(mle==1){    /* For example we decided to compute the life expectancy with the smallest unit */
           printf(" %lf",param[i][j][k]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           fprintf(ficlog," %lf",param[i][j][k]);       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
         else       Look at function hpijx to understand why (it is linked to memory size questions) */
           fprintf(ficlog," %lf",param[i][j][k]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficparo," %lf",param[i][j][k]);       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed every two years of age and if
       fscanf(ficpar,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       if(mle==1)       results. So we changed our mind and took the option of the best precision.
         printf("\n");    */
       fprintf(ficlog,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficparo,"\n");    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   p=param[1][1];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        gp=matrix(0,nhstepm,1,nlstate);
   /* Reads comments: lines beginning with '#' */      gm=matrix(0,nhstepm,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for(theta=1; theta <=npar; theta++){
     puts(line);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     fputs(line,ficparo);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        if (popbased==1) {
   for(i=1; i <=nlstate; i++){          if(mobilav ==0){
     for(j=1; j <=nlstate+ndeath-1; j++){            for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);              prlim[i][i]=probs[(int)age][i][ij];
       printf("%1d%1d",i,j);          }else{ /* mobilav */ 
       fprintf(ficparo,"%1d%1d",i1,j1);            for(i=1; i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){              prlim[i][i]=mobaverage[(int)age][i][ij];
         fscanf(ficpar,"%le",&delti3[i][j][k]);          }
         printf(" %le",delti3[i][j][k]);        }
         fprintf(ficparo," %le",delti3[i][j][k]);    
       }        for(j=1; j<= nlstate; j++){
       fscanf(ficpar,"\n");          for(h=0; h<=nhstepm; h++){
       printf("\n");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficparo,"\n");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
   }        }
   delti=delti3[1][1];        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   /* Reads comments: lines beginning with '#' */           as a weighted average of prlim.
   while((c=getc(ficpar))=='#' && c!= EOF){        */
     ungetc(c,ficpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fgets(line, MAXLINE, ficpar);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     puts(line);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fputs(line,ficparo);        }    
   }        /* end probability of death */
   ungetc(c,ficpar);  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   matcov=matrix(1,npar,1,npar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   for(i=1; i <=npar; i++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fscanf(ficpar,"%s",&str);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if(mle==1)   
       printf("%s",str);        if (popbased==1) {
     fprintf(ficlog,"%s",str);          if(mobilav ==0){
     fprintf(ficparo,"%s",str);            for(i=1; i<=nlstate;i++)
     for(j=1; j <=i; j++){              prlim[i][i]=probs[(int)age][i][ij];
       fscanf(ficpar," %le",&matcov[i][j]);          }else{ /* mobilav */ 
       if(mle==1){            for(i=1; i<=nlstate;i++)
         printf(" %.5le",matcov[i][j]);              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficlog," %.5le",matcov[i][j]);          }
       }        }
       else  
         fprintf(ficlog," %.5le",matcov[i][j]);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       fprintf(ficparo," %.5le",matcov[i][j]);          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     fscanf(ficpar,"\n");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     if(mle==1)          }
       printf("\n");        }
     fprintf(ficlog,"\n");        /* This for computing probability of death (h=1 means
     fprintf(ficparo,"\n");           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   for(i=1; i <=npar; i++)        */
     for(j=i+1;j<=npar;j++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       matcov[i][j]=matcov[j][i];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
               gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if(mle==1)        }    
     printf("\n");        /* end probability of death */
   fprintf(ficlog,"\n");  
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
     /*-------- Rewriting paramater file ----------*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
      strcpy(rfileres,"r");    /* "Rparameterfile */          }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     if((ficres =fopen(rfileres,"w"))==NULL) {        }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      } /* End theta */
     }  
     fprintf(ficres,"#%s\n",version);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      
     /*-------- data file ----------*/      for(h=0; h<=nhstepm; h++) /* veij */
     if((fic=fopen(datafile,"r"))==NULL)    {        for(j=1; j<=nlstate;j++)
       printf("Problem with datafile: %s\n", datafile);goto end;          for(theta=1; theta <=npar; theta++)
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            trgradg[h][j][theta]=gradg[h][theta][j];
     }  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     n= lastobs;        for(theta=1; theta <=npar; theta++)
     severity = vector(1,maxwav);          trgradgp[j][theta]=gradgp[theta][j];
     outcome=imatrix(1,maxwav+1,1,n);    
     num=ivector(1,n);  
     moisnais=vector(1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     annais=vector(1,n);      for(i=1;i<=nlstate;i++)
     moisdc=vector(1,n);        for(j=1;j<=nlstate;j++)
     andc=vector(1,n);          vareij[i][j][(int)age] =0.;
     agedc=vector(1,n);  
     cod=ivector(1,n);      for(h=0;h<=nhstepm;h++){
     weight=vector(1,n);        for(k=0;k<=nhstepm;k++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     mint=matrix(1,maxwav,1,n);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     anint=matrix(1,maxwav,1,n);          for(i=1;i<=nlstate;i++)
     s=imatrix(1,maxwav+1,1,n);            for(j=1;j<=nlstate;j++)
     adl=imatrix(1,maxwav+1,1,n);                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     tab=ivector(1,NCOVMAX);        }
     ncodemax=ivector(1,8);      }
     
     i=1;      /* pptj */
     while (fgets(line, MAXLINE, fic) != NULL)    {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       if ((i >= firstobs) && (i <=lastobs)) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
              for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for (j=maxwav;j>=1;j--){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          varppt[j][i]=doldmp[j][i];
           strcpy(line,stra);      /* end ppptj */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /*  x centered again */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      if (popbased==1) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            prlim[i][i]=probs[(int)age][i][ij];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            prlim[i][i]=mobaverage[(int)age][i][ij];
         for (j=ncovcol;j>=1;j--){        }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
         }               
         num[i]=atol(stra);      /* This for computing probability of death (h=1 means
                 computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){         as a weighted average of prlim.
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         i=i+1;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
     /* printf("ii=%d", ij);      /* end probability of death */
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   /* for (i=1; i<=imx; i++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(i=1; i<=nlstate;i++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        }
     }*/      } 
    /*  for (i=1; i<=imx; i++){      fprintf(ficresprobmorprev,"\n");
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   /* Calculation of the number of parameter from char model*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        }
   Tprod=ivector(1,15);      fprintf(ficresvij,"\n");
   Tvaraff=ivector(1,15);      free_matrix(gp,0,nhstepm,1,nlstate);
   Tvard=imatrix(1,15,1,2);      free_matrix(gm,0,nhstepm,1,nlstate);
   Tage=ivector(1,15);            free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   if (strlen(model) >1){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     j=0, j1=0, k1=1, k2=1;    } /* End age */
     j=nbocc(model,'+');    free_vector(gpp,nlstate+1,nlstate+ndeath);
     j1=nbocc(model,'*');    free_vector(gmp,nlstate+1,nlstate+ndeath);
     cptcovn=j+1;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     cptcovprod=j1;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     strcpy(modelsav,model);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       printf("Error. Non available option model=%s ",model);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficlog,"Error. Non available option model=%s ",model);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       goto end;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     for(i=(j+1); i>=1;i--){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       /*scanf("%d",i);*/  */
       if (strchr(strb,'*')) {  /* Model includes a product */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;    free_vector(xp,1,npar);
           cutv(strb,stre,strd,'V');    free_matrix(doldm,1,nlstate,1,nlstate);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    free_matrix(dnewm,1,nlstate,1,npar);
           cptcovage++;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             Tage[cptcovage]=i;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             /*printf("stre=%s ", stre);*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    fclose(ficresprobmorprev);
           cptcovprod--;    fflush(ficgp);
           cutv(strb,stre,strc,'V');    fflush(fichtm); 
           Tvar[i]=atoi(stre);  }  /* end varevsij */
           cptcovage++;  
           Tage[cptcovage]=i;  /************ Variance of prevlim ******************/
         }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         else {  /* Age is not in the model */  {
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    /* Variance of prevalence limit */
           Tvar[i]=ncovcol+k1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    double **newm;
           Tprod[k1]=i;    double **dnewm,**doldm;
           Tvard[k1][1]=atoi(strc); /* m*/    int i, j, nhstepm, hstepm;
           Tvard[k1][2]=atoi(stre); /* n */    int k, cptcode;
           Tvar[cptcovn+k2]=Tvard[k1][1];    double *xp;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double *gp, *gm;
           for (k=1; k<=lastobs;k++)    double **gradg, **trgradg;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double age,agelim;
           k1++;    int theta;
           k2=k2+2;    
         }    pstamp(ficresvpl);
       }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       else { /* no more sum */    fprintf(ficresvpl,"# Age");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    for(i=1; i<=nlstate;i++)
        /*  scanf("%d",i);*/        fprintf(ficresvpl," %1d-%1d",i,i);
       cutv(strd,strc,strb,'V');    fprintf(ficresvpl,"\n");
       Tvar[i]=atoi(strc);  
       }    xp=vector(1,npar);
       strcpy(modelsav,stra);      dnewm=matrix(1,nlstate,1,npar);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    doldm=matrix(1,nlstate,1,nlstate);
         scanf("%d",i);*/    
     } /* end of loop + */    hstepm=1*YEARM; /* Every year of age */
   } /* end model */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      agelim = AGESUP;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   printf("cptcovprod=%d ", cptcovprod);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      if (stepm >= YEARM) hstepm=1;
   scanf("%d ",i);*/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     fclose(fic);      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
     /*  if(mle==1){*/      gm=vector(1,nlstate);
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ /* Computes gradient */
     /*-calculation of age at interview from date of interview and age at death -*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     agev=matrix(1,maxwav,1,imx);        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for (i=1; i<=imx; i++) {        for(i=1;i<=nlstate;i++)
       for(m=2; (m<= maxwav); m++) {          gp[i] = prlim[i][i];
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      
          anint[m][i]=9999;        for(i=1; i<=npar; i++) /* Computes gradient */
          s[m][i]=-1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        for(i=1;i<=nlstate;i++)
       }          gm[i] = prlim[i][i];
     }  
         for(i=1;i<=nlstate;i++)
     for (i=1; i<=imx; i++)  {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      } /* End theta */
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){      trgradg =matrix(1,nlstate,1,npar);
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)      for(j=1; j<=nlstate;j++)
               if(moisdc[i]!=99 && andc[i]!=9999)        for(theta=1; theta <=npar; theta++)
                 agev[m][i]=agedc[i];          trgradg[j][theta]=gradg[theta][j];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {      for(i=1;i<=nlstate;i++)
               if (andc[i]!=9999){        varpl[i][(int)age] =0.;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
               agev[m][i]=-1;      for(i=1;i<=nlstate;i++)
               }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             }  
           }      fprintf(ficresvpl,"%.0f ",age );
           else if(s[m][i] !=9){ /* Should no more exist */      for(i=1; i<=nlstate;i++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
             if(mint[m][i]==99 || anint[m][i]==9999)      fprintf(ficresvpl,"\n");
               agev[m][i]=1;      free_vector(gp,1,nlstate);
             else if(agev[m][i] <agemin){      free_vector(gm,1,nlstate);
               agemin=agev[m][i];      free_matrix(gradg,1,npar,1,nlstate);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      free_matrix(trgradg,1,nlstate,1,npar);
             }    } /* End age */
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];    free_vector(xp,1,npar);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    free_matrix(doldm,1,nlstate,1,npar);
             }    free_matrix(dnewm,1,nlstate,1,nlstate);
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/  }
           }  
           else { /* =9 */  /************ Variance of one-step probabilities  ******************/
             agev[m][i]=1;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
             s[m][i]=-1;  {
           }    int i, j=0,  i1, k1, l1, t, tj;
         }    int k2, l2, j1,  z1;
         else /*= 0 Unknown */    int k=0,l, cptcode;
           agev[m][i]=1;    int first=1, first1, first2;
       }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
        double **dnewm,**doldm;
     }    double *xp;
     for (i=1; i<=imx; i++)  {    double *gp, *gm;
       for(m=1; (m<= maxwav); m++){    double **gradg, **trgradg;
         if (s[m][i] > (nlstate+ndeath)) {    double **mu;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      double age,agelim, cov[NCOVMAX+1];
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           goto end;    int theta;
         }    char fileresprob[FILENAMELENGTH];
       }    char fileresprobcov[FILENAMELENGTH];
     }    char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     free_vector(severity,1,maxwav);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     free_imatrix(outcome,1,maxwav+1,1,n);      printf("Problem with resultfile: %s\n", fileresprob);
     free_vector(moisnais,1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     free_vector(annais,1,n);    }
     /* free_matrix(mint,1,maxwav,1,n);    strcpy(fileresprobcov,"probcov"); 
        free_matrix(anint,1,maxwav,1,n);*/    strcat(fileresprobcov,fileres);
     free_vector(moisdc,1,n);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     free_vector(andc,1,n);      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
     wav=ivector(1,imx);    strcpy(fileresprobcor,"probcor"); 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    strcat(fileresprobcor,fileres);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcor);
     /* Concatenates waves */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       Tcode=ivector(1,100);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       ncodemax[1]=1;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
          pstamp(ficresprob);
    codtab=imatrix(1,100,1,10);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
    h=0;    fprintf(ficresprob,"# Age");
    m=pow(2,cptcoveff);    pstamp(ficresprobcov);
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
    for(k=1;k<=cptcoveff; k++){    fprintf(ficresprobcov,"# Age");
      for(i=1; i <=(m/pow(2,k));i++){    pstamp(ficresprobcor);
        for(j=1; j <= ncodemax[k]; j++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fprintf(ficresprobcor,"# Age");
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    for(i=1; i<=nlstate;i++)
          }      for(j=1; j<=(nlstate+ndeath);j++){
        }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
      }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
    }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      }  
       codtab[1][2]=1;codtab[2][2]=2; */   /* fprintf(ficresprob,"\n");
    /* for(i=1; i <=m ;i++){    fprintf(ficresprobcov,"\n");
       for(k=1; k <=cptcovn; k++){    fprintf(ficresprobcor,"\n");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   */
       }    xp=vector(1,npar);
       printf("\n");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       scanf("%d",i);*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    /* Calculates basic frequencies. Computes observed prevalence at single age    first=1;
        and prints on file fileres'p'. */    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
        fprintf(fichtm,"\n");
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    file %s<br>\n",optionfilehtmcov);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  and drawn. It helps understanding how is the covariance between two incidences.\
         They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
     if(mle==1){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      
     /*--------- results files --------------*/    cov[1]=1;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    /* tj=cptcoveff; */
      tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
    jk=1;    j1=0;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for(j1=1; j1<=tj;j1++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /*for(i1=1; i1<=ncodemax[t];i1++){ */
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /*j1++;*/
    for(i=1,jk=1; i <=nlstate; i++){        if  (cptcovn>0) {
      for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficresprob, "\n#********** Variable "); 
        if (k != i)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          {          fprintf(ficresprob, "**********\n#\n");
            printf("%d%d ",i,k);          fprintf(ficresprobcov, "\n#********** Variable "); 
            fprintf(ficlog,"%d%d ",i,k);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficres,"%1d%1d ",i,k);          fprintf(ficresprobcov, "**********\n#\n");
            for(j=1; j <=ncovmodel; j++){          
              printf("%f ",p[jk]);          fprintf(ficgp, "\n#********** Variable "); 
              fprintf(ficlog,"%f ",p[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficres,"%f ",p[jk]);          fprintf(ficgp, "**********\n#\n");
              jk++;          
            }          
            printf("\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            fprintf(ficlog,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficres,"\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
          }          
      }          fprintf(ficresprobcor, "\n#********** Variable ");    
    }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    if(mle==1){          fprintf(ficresprobcor, "**********\n#");    
      /* Computing hessian and covariance matrix */        }
      ftolhess=ftol; /* Usually correct */        
      hesscov(matcov, p, npar, delti, ftolhess, func);        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
    }        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        gp=vector(1,(nlstate)*(nlstate+ndeath));
    printf("# Scales (for hessian or gradient estimation)\n");        gm=vector(1,(nlstate)*(nlstate+ndeath));
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        for (age=bage; age<=fage; age ++){ 
    for(i=1,jk=1; i <=nlstate; i++){          cov[2]=age;
      for(j=1; j <=nlstate+ndeath; j++){          for (k=1; k<=cptcovn;k++) {
        if (j!=i) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
          fprintf(ficres,"%1d%1d",i,j);                                                           * 1  1 1 1 1
          printf("%1d%1d",i,j);                                                           * 2  2 1 1 1
          fprintf(ficlog,"%1d%1d",i,j);                                                           * 3  1 2 1 1
          for(k=1; k<=ncovmodel;k++){                                                           */
            printf(" %.5e",delti[jk]);            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
            fprintf(ficlog," %.5e",delti[jk]);          }
            fprintf(ficres," %.5e",delti[jk]);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            jk++;          for (k=1; k<=cptcovprod;k++)
          }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          printf("\n");          
          fprintf(ficlog,"\n");      
          fprintf(ficres,"\n");          for(theta=1; theta <=npar; theta++){
        }            for(i=1; i<=npar; i++)
      }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    }            
                pmij(pmmij,cov,ncovmodel,xp,nlstate);
    k=1;            
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            k=0;
    if(mle==1)            for(i=1; i<= (nlstate); i++){
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              for(j=1; j<=(nlstate+ndeath);j++){
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                k=k+1;
    for(i=1;i<=npar;i++){                gp[k]=pmmij[i][j];
      /*  if (k>nlstate) k=1;              }
          i1=(i-1)/(ncovmodel*nlstate)+1;            }
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            
          printf("%s%d%d",alph[k],i1,tab[i]);*/            for(i=1; i<=npar; i++)
      fprintf(ficres,"%3d",i);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      if(mle==1)      
        printf("%3d",i);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      fprintf(ficlog,"%3d",i);            k=0;
      for(j=1; j<=i;j++){            for(i=1; i<=(nlstate); i++){
        fprintf(ficres," %.5e",matcov[i][j]);              for(j=1; j<=(nlstate+ndeath);j++){
        if(mle==1)                k=k+1;
          printf(" %.5e",matcov[i][j]);                gm[k]=pmmij[i][j];
        fprintf(ficlog," %.5e",matcov[i][j]);              }
      }            }
      fprintf(ficres,"\n");       
      if(mle==1)            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
        printf("\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
      fprintf(ficlog,"\n");          }
      k++;  
    }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                for(theta=1; theta <=npar; theta++)
    while((c=getc(ficpar))=='#' && c!= EOF){              trgradg[j][theta]=gradg[theta][j];
      ungetc(c,ficpar);          
      fgets(line, MAXLINE, ficpar);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
      puts(line);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      fputs(line,ficparo);  
    }          pmij(pmmij,cov,ncovmodel,x,nlstate);
    ungetc(c,ficpar);          
    estepm=0;          k=0;
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          for(i=1; i<=(nlstate); i++){
    if (estepm==0 || estepm < stepm) estepm=stepm;            for(j=1; j<=(nlstate+ndeath);j++){
    if (fage <= 2) {              k=k+1;
      bage = ageminpar;              mu[k][(int) age]=pmmij[i][j];
      fage = agemaxpar;            }
    }          }
              for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              varpij[i][j][(int)age] = doldm[i][j];
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
              /*printf("\n%d ",(int)age);
    while((c=getc(ficpar))=='#' && c!= EOF){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      ungetc(c,ficpar);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      fgets(line, MAXLINE, ficpar);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      puts(line);            }*/
      fputs(line,ficparo);  
    }          fprintf(ficresprob,"\n%d ",(int)age);
    ungetc(c,ficpar);          fprintf(ficresprobcov,"\n%d ",(int)age);
            fprintf(ficresprobcor,"\n%d ",(int)age);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
    while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
      ungetc(c,ficpar);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
      fgets(line, MAXLINE, ficpar);          }
      puts(line);          i=0;
      fputs(line,ficparo);          for (k=1; k<=(nlstate);k++){
    }            for (l=1; l<=(nlstate+ndeath);l++){ 
    ungetc(c,ficpar);              i++;
                fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              for (j=1; j<=i;j++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   fscanf(ficpar,"pop_based=%d\n",&popbased);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   fprintf(ficparo,"pop_based=%d\n",popbased);                }
   fprintf(ficres,"pop_based=%d\n",popbased);              }
            }/* end of loop for state */
   while((c=getc(ficpar))=='#' && c!= EOF){        } /* end of loop for age */
     ungetc(c,ficpar);        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     puts(line);        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fputs(line,ficparo);        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }        
   ungetc(c,ficpar);        /* Confidence intervalle of pij  */
         /*
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          fprintf(ficgp,"\nunset parametric;unset label");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     ungetc(c,ficpar);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     fgets(line, MAXLINE, ficpar);        */
     puts(line);  
     fputs(line,ficparo);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   }        first1=1;first2=2;
   ungetc(c,ficpar);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            if(l2==k2) continue;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            j=(k2-1)*(nlstate+ndeath)+l2;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
 /*------------ gnuplot -------------*/                if(i<=j) continue;
   strcpy(optionfilegnuplot,optionfilefiname);                for (age=bage; age<=fage; age ++){ 
   strcat(optionfilegnuplot,".gp");                  if ((int)age %5==0){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     printf("Problem with file %s",optionfilegnuplot);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fclose(ficgp);                    mu1=mu[i][(int) age]/stepm*YEARM ;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                    mu2=mu[j][(int) age]/stepm*YEARM;
 /*--------- index.htm --------*/                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   strcpy(optionfilehtm,optionfile);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   strcat(optionfilehtm,".htm");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                    if ((lc2 <0) || (lc1 <0) ){
     printf("Problem with %s \n",optionfilehtm), exit(0);                      if(first2==1){
   }                        first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                      }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 \n                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
 Total number of observations=%d <br>\n                      /* lc2=fabs(lc2); */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                    }
 <hr  size=\"2\" color=\"#EC5E5E\">  
  <ul><li><h4>Parameter files</h4>\n                    /* Eigen vectors */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                    /*v21=sqrt(1.-v11*v11); *//* error */
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);                    v21=(lc1-v1)/cv12*v11;
   fclose(fichtm);                    v12=-v21;
                     v22=v11;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                    tnalp=v21/v11;
                      if(first1==1){
 /*------------ free_vector  -------------*/                      first1=0;
  chdir(path);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      }
  free_ivector(wav,1,imx);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                    /*printf(fignu*/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
  free_ivector(num,1,n);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  free_vector(agedc,1,n);                    if(first==1){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                      first=0;
  fclose(ficparo);                      fprintf(ficgp,"\nset parametric;unset label");
  fclose(ficres);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   /*--------------- Prevalence limit --------------*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   strcpy(filerespl,"pl");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   strcat(filerespl,fileres);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fprintf(ficrespl,"#Prevalence limit\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fprintf(ficrespl,"#Age ");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    }else{
   fprintf(ficrespl,"\n");                      first=0;
                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   prlim=matrix(1,nlstate,1,nlstate);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    }/* if first */
   k=0;                  } /* age mod 5 */
   agebase=ageminpar;                } /* end loop age */
   agelim=agemaxpar;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   ftolpl=1.e-10;                first=1;
   i1=cptcoveff;              } /*l12 */
   if (cptcovn < 1){i1=1;}            } /* k12 */
           } /*l1 */
   for(cptcov=1;cptcov<=i1;cptcov++){        }/* k1 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* } /* loop covariates */
         k=k+1;    }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         fprintf(ficrespl,"\n#******");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         printf("\n#******");    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         fprintf(ficlog,"\n#******");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
         for(j=1;j<=cptcoveff;j++) {    free_vector(xp,1,npar);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprob);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprobcov);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprobcor);
         }    fflush(ficgp);
         fprintf(ficrespl,"******\n");    fflush(fichtmcov);
         printf("******\n");  }
         fprintf(ficlog,"******\n");  
          
         for (age=agebase; age<=agelim; age++){  /******************* Printing html file ***********/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           fprintf(ficrespl,"%.0f",age );                    int lastpass, int stepm, int weightopt, char model[],\
           for(i=1; i<=nlstate;i++)                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           fprintf(ficrespl," %.5f", prlim[i][i]);                    int popforecast, int estepm ,\
           fprintf(ficrespl,"\n");                    double jprev1, double mprev1,double anprev1, \
         }                    double jprev2, double mprev2,double anprev2){
       }    int jj1, k1, i1, cpt;
     }  
   fclose(ficrespl);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   /*------------- h Pij x at various ages ------------*/  </ul>");
       fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   if((ficrespij=fopen(filerespij,"w"))==NULL) {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     fprintf(fichtm,"\
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   printf("Computing pij: result on file '%s' \n", filerespij);     fprintf(fichtm,"\
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   stepsize=(int) (stepm+YEARM-1)/YEARM;     fprintf(fichtm,"\
   /*if (stepm<=24) stepsize=2;*/   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
   agelim=AGESUP;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   hstepm=stepsize*YEARM; /* Every year of age */     fprintf(fichtm,"\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   /* hstepm=1;   aff par mois*/  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){   m=pow(2,cptcoveff);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");   jj1=0;
         for(j=1;j<=cptcoveff;j++)   for(k1=1; k1<=m;k1++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficrespij,"******\n");       jj1++;
               if (cptcovn > 0) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         for (cpt=1; cpt<=cptcoveff;cpt++) 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           /*      nhstepm=nhstepm*YEARM; aff par mois*/       }
        /* Pij */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
           oldm=oldms;savm=savms;  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         /* Quasi-incidences */
           fprintf(ficrespij,"# Age");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           for(i=1; i<=nlstate;i++)   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
             for(j=1; j<=nlstate+ndeath;j++)  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
               fprintf(ficrespij," %1d-%1d",i,j);         /* Period (stable) prevalence in each health state */
           fprintf(ficrespij,"\n");         for(cpt=1; cpt<nlstate;cpt++){
            for (h=0; h<=nhstepm; h++){           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             for(i=1; i<=nlstate;i++)         }
               for(j=1; j<=nlstate+ndeath;j++)       for(cpt=1; cpt<=nlstate;cpt++) {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
             fprintf(ficrespij,"\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
              }       }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     } /* end i1 */
           fprintf(ficrespij,"\n");   }/* End k1 */
         }   fprintf(fichtm,"</ul>");
     }  
   }  
    fprintf(fichtm,"\
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   fclose(ficrespij);  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   /*---------- Forecasting ------------------*/   fprintf(fichtm,"\
   if((stepm == 1) && (strcmp(model,".")==0)){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }   fprintf(fichtm,"\
   else{   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     erreur=108;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   fprintf(fichtm,"\
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
   /*---------- Health expectancies and variances ------------*/   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   strcpy(filerest,"t");             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   strcat(filerest,fileres);   fprintf(fichtm,"\
   if((ficrest=fopen(filerest,"w"))==NULL) {   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;   fprintf(fichtm,"\
   }   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
   printf("Computing Total LEs with variances: file '%s' \n", filerest);           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);   fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   strcpy(filerese,"e");  
   strcat(filerese,fileres);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*      <br>",fileres,fileres,fileres,fileres); */
   }  /*  else  */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);   m=pow(2,cptcoveff);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       jj1++;
   calagedate=-1;       if (cptcovn > 0) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   k=0;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   for(cptcov=1;cptcov<=i1;cptcov++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       }
       k=k+1;       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficrest,"\n#****** ");         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       for(j=1;j<=cptcoveff;j++)  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       fprintf(ficrest,"******\n");       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       fprintf(ficreseij,"\n#****** ");  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
       for(j=1;j<=cptcoveff;j++)  true period expectancies (those weighted with period prevalences are also\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   drawn in addition to the population based expectancies computed using\
       fprintf(ficreseij,"******\n");   observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       fprintf(ficresvij,"\n#****** ");     } /* end i1 */
       for(j=1;j<=cptcoveff;j++)   }/* End k1 */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"</ul>");
       fprintf(ficresvij,"******\n");   fflush(fichtm);
   }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  /******************* Gnuplot file **************/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    char dirfileres[132],optfileres[132];
       oldm=oldms;savm=savms;    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    int ng=0;
       if(popbased==1){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  /*     printf("Problem with file %s",optionfilegnuplot); */
        }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /*#ifdef windows */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fprintf(ficrest,"\n");      /*#endif */
     m=pow(2,cptcoveff);
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    strcpy(dirfileres,optionfilefiname);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcpy(optfileres,"vpl");
         if (popbased==1) {   /* 1eme*/
           for(i=1; i<=nlstate;i++)    for (cpt=1; cpt<= nlstate ; cpt ++) {
             prlim[i][i]=probs[(int)age][i][k];      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         }       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
               fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
         fprintf(ficrest," %4.0f",age);       fprintf(ficgp,"set xlabel \"Age\" \n\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  set ylabel \"Probability\" \n\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  set ter png small size 320, 240\n\
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }       for (i=1; i<= nlstate ; i ++) {
           epj[nlstate+1] +=epj[j];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         }         else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
         for(i=1, vepp=0.;i <=nlstate;i++)       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           for(j=1;j <=nlstate;j++)       for (i=1; i<= nlstate ; i ++) {
             vepp += vareij[i][j][(int)age];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));         else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(j=1;j <=nlstate;j++){       } 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         }       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficrest,"\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       }  
   }       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 free_matrix(mint,1,maxwav,1,n);     }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    }
     free_vector(weight,1,n);    /*2 eme*/
   fclose(ficreseij);    
   fclose(ficresvij);    for (k1=1; k1<= m ; k1 ++) { 
   fclose(ficrest);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   fclose(ficpar);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
   free_vector(epj,1,nlstate+1);      
        for (i=1; i<= nlstate+1 ; i ++) {
   /*------- Variance limit prevalence------*/          k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   strcpy(fileresvpl,"vpl");        for (j=1; j<= nlstate+1 ; j ++) {
   strcat(fileresvpl,fileres);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        }   
     exit(0);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   k=0;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }   
       k=k+1;        fprintf(ficgp,"\" t\"\" w l lt 0,");
       fprintf(ficresvpl,"\n#****** ");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++)        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresvpl,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
              }   
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
       oldm=oldms;savm=savms;        else fprintf(ficgp,"\" t\"\" w l lt 0,");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }
     }    }
  }    
     /*3eme*/
   fclose(ficresvpl);    
     for (k1=1; k1<= m ; k1 ++) { 
   /*---------- End : free ----------------*/      for (cpt=1; cpt<= nlstate ; cpt ++) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        /*       k=2+nlstate*(2*cpt-2); */
          k=2+(nlstate+1)*(cpt-1);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,"set ter png small size 320, 240\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   free_matrix(matcov,1,npar,1,npar);          
   free_vector(delti,1,npar);        */
   free_matrix(agev,1,maxwav,1,imx);        for (i=1; i< nlstate ; i ++) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   fprintf(fichtm,"\n</body>");          
   fclose(fichtm);        } 
   fclose(ficgp);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
        }
     }
   if(erreur >0){    
     printf("End of Imach with error or warning %d\n",erreur);    /* CV preval stable (period) */
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    for (k1=1; k1<= m ; k1 ++) { 
   }else{      for (cpt=1; cpt<=nlstate ; cpt ++) {
    printf("End of Imach\n");        k=3;
    fprintf(ficlog,"End of Imach\n");        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   printf("See log file on %s\n",filelog);  set ter png small size 320, 240\n\
   fclose(ficlog);  unset log y\n\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
          
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for (i=1; i< nlstate ; i ++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/          fprintf(ficgp,"+$%d",k+i+1);
   /*------ End -----------*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
  end:        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 #ifdef windows        for (i=1; i< nlstate ; i ++) {
   /* chdir(pathcd);*/          l=3+(nlstate+ndeath)*cpt;
 #endif          fprintf(ficgp,"+$%d",l+i+1);
  /*system("wgnuplot graph.plt");*/        }
  /*system("../gp37mgw/wgnuplot graph.plt");*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
  /*system("cd ../gp37mgw");*/      } 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    }  
  strcpy(plotcmd,GNUPLOTPROGRAM);    
  strcat(plotcmd," ");    /* proba elementaires */
  strcat(plotcmd,optionfilegnuplot);    for(i=1,jk=1; i <=nlstate; i++){
  system(plotcmd);      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
 #ifdef windows          for(j=1; j <=ncovmodel; j++){
   while (z[0] != 'q') {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     /* chdir(path); */            jk++; 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            fprintf(ficgp,"\n");
     scanf("%s",z);          }
     if (z[0] == 'c') system("./imach");        }
     else if (z[0] == 'e') system(optionfilehtm);      }
     else if (z[0] == 'g') system(plotcmd);     }
     else if (z[0] == 'q') exit(0);    /*goto avoid;*/
   }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 #endif       for(jk=1; jk <=m; jk++) {
 }         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.146


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>