Diff for /imach/src/imach.c between versions 1.50 and 1.99

version 1.50, 2002/06/26 23:25:02 version 1.99, 2004/06/05 08:57:40
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.99  2004/06/05 08:57:40  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.98  2004/05/16 15:05:56  brouard
   first survey ("cross") where individuals from different ages are    New version 0.97 . First attempt to estimate force of mortality
   interviewed on their health status or degree of disability (in the    directly from the data i.e. without the need of knowing the health
   case of a health survey which is our main interest) -2- at least a    state at each age, but using a Gompertz model: log u =a + b*age .
   second wave of interviews ("longitudinal") which measure each change    This is the basic analysis of mortality and should be done before any
   (if any) in individual health status.  Health expectancies are    other analysis, in order to test if the mortality estimated from the
   computed from the time spent in each health state according to a    cross-longitudinal survey is different from the mortality estimated
   model. More health states you consider, more time is necessary to reach the    from other sources like vital statistic data.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    The same imach parameter file can be used but the option for mle should be -3.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Agnès, who wrote this part of the code, tried to keep most of the
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    former routines in order to include the new code within the former code.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    The output is very simple: only an estimate of the intercept and of
   where the markup *Covariates have to be included here again* invites    the slope with 95% confident intervals.
   you to do it.  More covariates you add, slower the  
   convergence.    Current limitations:
     A) Even if you enter covariates, i.e. with the
   The advantage of this computer programme, compared to a simple    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   multinomial logistic model, is clear when the delay between waves is not    B) There is no computation of Life Expectancy nor Life Table.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.97  2004/02/20 13:25:42  lievre
   account using an interpolation or extrapolation.      Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.96  2003/07/15 15:38:55  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   states. This elementary transition (by month or quarter trimester,    rewritten within the same printf. Workaround: many printfs.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.95  2003/07/08 07:54:34  brouard
   and the contribution of each individual to the likelihood is simply    * imach.c (Repository):
   hPijx.    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.93  2003/06/25 16:33:55  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): On windows (cygwin) function asctime_r doesn't
   from the European Union.    exist so I changed back to asctime which exists.
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.96b
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.92  2003/06/25 16:30:45  brouard
   **********************************************************************/    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
 #include <math.h>  
 #include <stdio.h>    Revision 1.91  2003/06/25 15:30:29  brouard
 #include <stdlib.h>    * imach.c (Repository): Duplicated warning errors corrected.
 #include <unistd.h>    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define MAXLINE 256    is stamped in powell.  We created a new html file for the graphs
 #define GNUPLOTPROGRAM "gnuplot"    concerning matrix of covariance. It has extension -cov.htm.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.90  2003/06/24 12:34:15  brouard
 /*#define DEBUG*/    (Module): Some bugs corrected for windows. Also, when
 #define windows    mle=-1 a template is output in file "or"mypar.txt with the design
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    of the covariance matrix to be input.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Some bugs corrected for windows. Also, when
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.88  2003/06/23 17:54:56  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.87  2003/06/18 12:26:01  brouard
 #define YEARM 12. /* Number of months per year */    Version 0.96
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.86  2003/06/17 20:04:08  brouard
 #ifdef windows    (Module): Change position of html and gnuplot routines and added
 #define DIRSEPARATOR '\\'    routine fileappend.
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.85  2003/06/17 13:12:43  brouard
 #define DIRSEPARATOR '/'    * imach.c (Repository): Check when date of death was earlier that
 #define ODIRSEPARATOR '\\'    current date of interview. It may happen when the death was just
 #endif    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    assuming that the date of death was just one stepm after the
 int erreur; /* Error number */    interview.
 int nvar;    (Repository): Because some people have very long ID (first column)
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    we changed int to long in num[] and we added a new lvector for
 int npar=NPARMAX;    memory allocation. But we also truncated to 8 characters (left
 int nlstate=2; /* Number of live states */    truncation)
 int ndeath=1; /* Number of dead states */    (Repository): No more line truncation errors.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 int *wav; /* Number of waves for this individuual 0 is possible */    place. It differs from routine "prevalence" which may be called
 int maxwav; /* Maxim number of waves */    many times. Probs is memory consuming and must be used with
 int jmin, jmax; /* min, max spacing between 2 waves */    parcimony.
 int mle, weightopt;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.83  2003/06/10 13:39:11  lievre
 double jmean; /* Mean space between 2 waves */    *** empty log message ***
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.82  2003/06/05 15:57:20  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Add log in  imach.c and  fullversion number is now printed.
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  */
 FILE *ficresprobmorprev;  /*
 FILE *fichtm; /* Html File */     Interpolated Markov Chain
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Short summary of the programme:
 FILE  *ficresvij;    
 char fileresv[FILENAMELENGTH];    This program computes Healthy Life Expectancies from
 FILE  *ficresvpl;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 char fileresvpl[FILENAMELENGTH];    first survey ("cross") where individuals from different ages are
 char title[MAXLINE];    interviewed on their health status or degree of disability (in the
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    case of a health survey which is our main interest) -2- at least a
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    computed from the time spent in each health state according to a
 char filelog[FILENAMELENGTH]; /* Log file */    model. More health states you consider, more time is necessary to reach the
 char filerest[FILENAMELENGTH];    Maximum Likelihood of the parameters involved in the model.  The
 char fileregp[FILENAMELENGTH];    simplest model is the multinomial logistic model where pij is the
 char popfile[FILENAMELENGTH];    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define NR_END 1    complex model than "constant and age", you should modify the program
 #define FREE_ARG char*    where the markup *Covariates have to be included here again* invites
 #define FTOL 1.0e-10    you to do it.  More covariates you add, slower the
     convergence.
 #define NRANSI  
 #define ITMAX 200    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define TOL 2.0e-4    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 #define CGOLD 0.3819660    account using an interpolation or extrapolation.  
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 #define GOLD 1.618034    split into an exact number (nh*stepm) of unobserved intermediate
 #define GLIMIT 100.0    states. This elementary transition (by month, quarter,
 #define TINY 1.0e-20    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 static double maxarg1,maxarg2;    and the contribution of each individual to the likelihood is simply
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    hPijx.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Also this programme outputs the covariance matrix of the parameters but also
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    of the life expectancies. It also computes the stable prevalence. 
 #define rint(a) floor(a+0.5)    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 static double sqrarg;             Institut national d'études démographiques, Paris.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    This software have been partly granted by Euro-REVES, a concerted action
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 int imx;    software can be distributed freely for non commercial use. Latest version
 int stepm;    can be accessed at http://euroreves.ined.fr/imach .
 /* Stepm, step in month: minimum step interpolation*/  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int estepm;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    
     **********************************************************************/
 int m,nb;  /*
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    main
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    read parameterfile
 double **pmmij, ***probs, ***mobaverage;    read datafile
 double dateintmean=0;    concatwav
     freqsummary
 double *weight;    if (mle >= 1)
 int **s; /* Status */      mlikeli
 double *agedc, **covar, idx;    print results files
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    if mle==1 
        computes hessian
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    read end of parameter file: agemin, agemax, bage, fage, estepm
 double ftolhess; /* Tolerance for computing hessian */        begin-prev-date,...
     open gnuplot file
 /**************** split *************************/    open html file
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    stable prevalence
 {     for age prevalim()
    char *s;                             /* pointer */    h Pij x
    int  l1, l2;                         /* length counters */    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
    l1 = strlen( path );                 /* length of path */    health expectancies
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Variance-covariance of DFLE
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    prevalence()
    if ( s == NULL ) {                   /* no directory, so use current */     movingaverage()
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    varevsij() 
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    if popbased==1 varevsij(,popbased)
 #if     defined(__bsd__)                /* get current working directory */    total life expectancies
       extern char       *getwd( );    Variance of stable prevalence
    end
       if ( getwd( dirc ) == NULL ) {  */
 #else  
       extern char       *getcwd( );  
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {   
 #endif  #include <math.h>
          return( GLOCK_ERROR_GETCWD );  #include <stdio.h>
       }  #include <stdlib.h>
       strcpy( name, path );             /* we've got it */  #include <unistd.h>
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  /* #include <sys/time.h> */
       l2 = strlen( s );                 /* length of filename */  #include <time.h>
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #include "timeval.h"
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  /* #include <libintl.h> */
       dirc[l1-l2] = 0;                  /* add zero */  /* #define _(String) gettext (String) */
    }  
    l1 = strlen( dirc );                 /* length of directory */  #define MAXLINE 256
 #ifdef windows  #define GNUPLOTPROGRAM "gnuplot"
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #else  #define FILENAMELENGTH 132
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  /*#define DEBUG*/
 #endif  /*#define windows*/
    s = strrchr( name, '.' );            /* find last / */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    s++;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    l2= strlen( s)+1;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  #define NINTERVMAX 8
    return( 0 );                         /* we're done */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /******************************************/  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 void replace(char *s, char*t)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   int i;  #ifdef unix
   int lg=20;  #define DIRSEPARATOR '/'
   i=0;  #define ODIRSEPARATOR '\\'
   lg=strlen(t);  #else
   for(i=0; i<= lg; i++) {  #define DIRSEPARATOR '\\'
     (s[i] = t[i]);  #define ODIRSEPARATOR '/'
     if (t[i]== '\\') s[i]='/';  #endif
   }  
 }  /* $Id$ */
   /* $State$ */
 int nbocc(char *s, char occ)  
 {  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   int i,j=0;  char fullversion[]="$Revision$ $Date$"; 
   int lg=20;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   i=0;  int nvar;
   lg=strlen(s);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for(i=0; i<= lg; i++) {  int npar=NPARMAX;
   if  (s[i] == occ ) j++;  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
   return j;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 void cutv(char *u,char *v, char*t, char occ)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   /* cuts string t into u and v where u is ended by char occ excluding it  int jmin, jmax; /* min, max spacing between 2 waves */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  int gipmx, gsw; /* Global variables on the number of contributions 
      gives u="abcedf" and v="ghi2j" */                     to the likelihood and the sum of weights (done by funcone)*/
   int i,lg,j,p=0;  int mle, weightopt;
   i=0;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   for(j=0; j<=strlen(t)-1; j++) {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
   lg=strlen(t);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   for(j=0; j<p; j++) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     (u[j] = t[j]);  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   }  FILE *ficlog, *ficrespow;
      u[p]='\0';  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
    for(j=0; j<= lg; j++) {  long ipmx; /* Number of contributions */
     if (j>=(p+1))(v[j-p-1] = t[j]);  double sw; /* Sum of weights */
   }  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /********************** nrerror ********************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 void nrerror(char error_text[])  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   fprintf(stderr,"ERREUR ...\n");  char filerese[FILENAMELENGTH];
   fprintf(stderr,"%s\n",error_text);  FILE  *ficresvij;
   exit(1);  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
 /*********************** vector *******************/  char fileresvpl[FILENAMELENGTH];
 double *vector(int nl, int nh)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double *v;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   if (!v) nrerror("allocation failure in vector");  char command[FILENAMELENGTH];
   return v-nl+NR_END;  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /************************ivector *******************************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 int *ivector(long nl,long nh)  
 {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   int *v;  struct timezone tzp;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  extern int gettimeofday();
   if (!v) nrerror("allocation failure in ivector");  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   return v-nl+NR_END;  long time_value;
 }  extern long time();
   char strcurr[80], strfor[80];
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define NR_END 1
 {  #define FREE_ARG char*
   free((FREE_ARG)(v+nl-NR_END));  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /******************* imatrix *******************************/  #define ITMAX 200 
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define TOL 2.0e-4 
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define CGOLD 0.3819660 
   int **m;  #define ZEPS 1.0e-10 
    #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define GOLD 1.618034 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define GLIMIT 100.0 
   m += NR_END;  #define TINY 1.0e-20 
   m -= nrl;  
    static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   /* allocate rows and set pointers to them */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m[nrl] += NR_END;  #define rint(a) floor(a+0.5)
   m[nrl] -= ncl;  
    static double sqrarg;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
    #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   /* return pointer to array of pointers to rows */  int agegomp= AGEGOMP;
   return m;  
 }  int imx; 
   int stepm=1;
 /****************** free_imatrix *************************/  /* Stepm, step in month: minimum step interpolation*/
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  int estepm;
       long nch,ncl,nrh,nrl;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
      /* free an int matrix allocated by imatrix() */  
 {  int m,nb;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  long *num;
   free((FREE_ARG) (m+nrl-NR_END));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 /******************* matrix *******************************/  double *ageexmed,*agecens;
 double **matrix(long nrl, long nrh, long ncl, long nch)  double dateintmean=0;
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double *weight;
   double **m;  int **s; /* Status */
   double *agedc, **covar, idx;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m -= nrl;  double ftolhess; /* Tolerance for computing hessian */
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /**************** split *************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    */ 
   return m;    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 /*************************free matrix ************************/    l1 = strlen(path );                   /* length of path */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if ( ss == NULL ) {                   /* no directory, so use current */
   free((FREE_ARG)(m+nrl-NR_END));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /******************* ma3x *******************************/      /*    extern  char* getcwd ( char *buf , int len);*/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {        return( GLOCK_ERROR_GETCWD );
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      }
   double ***m;      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      ss++;                               /* after this, the filename */
   if (!m) nrerror("allocation failure 1 in matrix()");      l2 = strlen( ss );                  /* length of filename */
   m += NR_END;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m -= nrl;      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      dirc[l1-l2] = 0;                    /* add zero */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;    l1 = strlen( dirc );                  /* length of directory */
   m[nrl] -= ncl;    /*#ifdef windows
     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #endif
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    */
   m[nrl][ncl] += NR_END;    ss = strrchr( name, '.' );            /* find last / */
   m[nrl][ncl] -= nll;    if (ss >0){
   for (j=ncl+1; j<=nch; j++)      ss++;
     m[nrl][j]=m[nrl][j-1]+nlay;      strcpy(ext,ss);                     /* save extension */
        l1= strlen( name);
   for (i=nrl+1; i<=nrh; i++) {      l2= strlen(ss)+1;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      strncpy( finame, name, l1-l2);
     for (j=ncl+1; j<=nch; j++)      finame[l1-l2]= 0;
       m[i][j]=m[i][j-1]+nlay;    }
   }    return( 0 );                          /* we're done */
   return m;  }
 }  
   
 /*************************free ma3x ************************/  /******************************************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  void replace_back_to_slash(char *s, char*t)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int i;
   free((FREE_ARG)(m+nrl-NR_END));    int lg=0;
 }    i=0;
     lg=strlen(t);
 /***************** f1dim *************************/    for(i=0; i<= lg; i++) {
 extern int ncom;      (s[i] = t[i]);
 extern double *pcom,*xicom;      if (t[i]== '\\') s[i]='/';
 extern double (*nrfunc)(double []);    }
    }
 double f1dim(double x)  
 {  int nbocc(char *s, char occ)
   int j;  {
   double f;    int i,j=0;
   double *xt;    int lg=20;
      i=0;
   xt=vector(1,ncom);    lg=strlen(s);
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    for(i=0; i<= lg; i++) {
   f=(*nrfunc)(xt);    if  (s[i] == occ ) j++;
   free_vector(xt,1,ncom);    }
   return f;    return j;
 }  }
   
 /*****************brent *************************/  void cutv(char *u,char *v, char*t, char occ)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    /* cuts string t into u and v where u is ended by char occ excluding it
   int iter;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   double a,b,d,etemp;       gives u="abcedf" and v="ghi2j" */
   double fu,fv,fw,fx;    int i,lg,j,p=0;
   double ftemp;    i=0;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    for(j=0; j<=strlen(t)-1; j++) {
   double e=0.0;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      }
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    lg=strlen(t);
   x=w=v=bx;    for(j=0; j<p; j++) {
   fw=fv=fx=(*f)(x);      (u[j] = t[j]);
   for (iter=1;iter<=ITMAX;iter++) {    }
     xm=0.5*(a+b);       u[p]='\0';
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/     for(j=0; j<= lg; j++) {
     printf(".");fflush(stdout);      if (j>=(p+1))(v[j-p-1] = t[j]);
     fprintf(ficlog,".");fflush(ficlog);    }
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /********************** nrerror ********************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  void nrerror(char error_text[])
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    fprintf(stderr,"ERREUR ...\n");
       return fx;    fprintf(stderr,"%s\n",error_text);
     }    exit(EXIT_FAILURE);
     ftemp=fu;  }
     if (fabs(e) > tol1) {  /*********************** vector *******************/
       r=(x-w)*(fx-fv);  double *vector(int nl, int nh)
       q=(x-v)*(fx-fw);  {
       p=(x-v)*q-(x-w)*r;    double *v;
       q=2.0*(q-r);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       if (q > 0.0) p = -p;    if (!v) nrerror("allocation failure in vector");
       q=fabs(q);    return v-nl+NR_END;
       etemp=e;  }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /************************ free vector ******************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  void free_vector(double*v, int nl, int nh)
       else {  {
         d=p/q;    free((FREE_ARG)(v+nl-NR_END));
         u=x+d;  }
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  /************************ivector *******************************/
       }  int *ivector(long nl,long nh)
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    int *v;
     }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if (!v) nrerror("allocation failure in ivector");
     fu=(*f)(u);    return v-nl+NR_END;
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /******************free ivector **************************/
         SHFT(fv,fw,fx,fu)  void free_ivector(int *v, long nl, long nh)
         } else {  {
           if (u < x) a=u; else b=u;    free((FREE_ARG)(v+nl-NR_END));
           if (fu <= fw || w == x) {  }
             v=w;  
             w=u;  /************************lvector *******************************/
             fv=fw;  long *lvector(long nl,long nh)
             fw=fu;  {
           } else if (fu <= fv || v == x || v == w) {    long *v;
             v=u;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
             fv=fu;    if (!v) nrerror("allocation failure in ivector");
           }    return v-nl+NR_END;
         }  }
   }  
   nrerror("Too many iterations in brent");  /******************free lvector **************************/
   *xmin=x;  void free_lvector(long *v, long nl, long nh)
   return fx;  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /****************** mnbrak ***********************/  
   /******************* imatrix *******************************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int **imatrix(long nrl, long nrh, long ncl, long nch) 
             double (*func)(double))       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 {  { 
   double ulim,u,r,q, dum;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double fu;    int **m; 
      
   *fa=(*func)(*ax);    /* allocate pointers to rows */ 
   *fb=(*func)(*bx);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   if (*fb > *fa) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
     SHFT(dum,*ax,*bx,dum)    m += NR_END; 
       SHFT(dum,*fb,*fa,dum)    m -= nrl; 
       }    
   *cx=(*bx)+GOLD*(*bx-*ax);    
   *fc=(*func)(*cx);    /* allocate rows and set pointers to them */ 
   while (*fb > *fc) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     r=(*bx-*ax)*(*fb-*fc);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     q=(*bx-*cx)*(*fb-*fa);    m[nrl] += NR_END; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    m[nrl] -= ncl; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    
     ulim=(*bx)+GLIMIT*(*cx-*bx);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     if ((*bx-u)*(u-*cx) > 0.0) {    
       fu=(*func)(u);    /* return pointer to array of pointers to rows */ 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    return m; 
       fu=(*func)(u);  } 
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /****************** free_imatrix *************************/
           SHFT(*fb,*fc,fu,(*func)(u))  void free_imatrix(m,nrl,nrh,ncl,nch)
           }        int **m;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {        long nch,ncl,nrh,nrl; 
       u=ulim;       /* free an int matrix allocated by imatrix() */ 
       fu=(*func)(u);  { 
     } else {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       u=(*cx)+GOLD*(*cx-*bx);    free((FREE_ARG) (m+nrl-NR_END)); 
       fu=(*func)(u);  } 
     }  
     SHFT(*ax,*bx,*cx,u)  /******************* matrix *******************************/
       SHFT(*fa,*fb,*fc,fu)  double **matrix(long nrl, long nrh, long ncl, long nch)
       }  {
 }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
 /*************** linmin ************************/  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 int ncom;    if (!m) nrerror("allocation failure 1 in matrix()");
 double *pcom,*xicom;    m += NR_END;
 double (*nrfunc)(double []);    m -= nrl;
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double brent(double ax, double bx, double cx,    m[nrl] += NR_END;
                double (*f)(double), double tol, double *xmin);    m[nrl] -= ncl;
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
               double *fc, double (*func)(double));    return m;
   int j;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double xx,xmin,bx,ax;     */
   double fx,fb,fa;  }
    
   ncom=n;  /*************************free matrix ************************/
   pcom=vector(1,n);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   xicom=vector(1,n);  {
   nrfunc=func;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
     pcom[j]=p[j];  }
     xicom[j]=xi[j];  
   }  /******************* ma3x *******************************/
   ax=0.0;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    double ***m;
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!m) nrerror("allocation failure 1 in matrix()");
 #endif    m += NR_END;
   for (j=1;j<=n;j++) {    m -= nrl;
     xi[j] *= xmin;  
     p[j] += xi[j];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   free_vector(xicom,1,n);    m[nrl] += NR_END;
   free_vector(pcom,1,n);    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
             double (*func)(double []))    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 {    m[nrl][ncl] += NR_END;
   void linmin(double p[], double xi[], int n, double *fret,    m[nrl][ncl] -= nll;
               double (*func)(double []));    for (j=ncl+1; j<=nch; j++) 
   int i,ibig,j;      m[nrl][j]=m[nrl][j-1]+nlay;
   double del,t,*pt,*ptt,*xit;    
   double fp,fptt;    for (i=nrl+1; i<=nrh; i++) {
   double *xits;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   pt=vector(1,n);      for (j=ncl+1; j<=nch; j++) 
   ptt=vector(1,n);        m[i][j]=m[i][j-1]+nlay;
   xit=vector(1,n);    }
   xits=vector(1,n);    return m; 
   *fret=(*func)(p);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   for (j=1;j<=n;j++) pt[j]=p[j];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for (*iter=1;;++(*iter)) {    */
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  /*************************free ma3x ************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       printf(" %d %.12f",i, p[i]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     fprintf(ficlog," %d %.12f",i, p[i]);    free((FREE_ARG)(m+nrl-NR_END));
     printf("\n");  }
     fprintf(ficlog,"\n");  
     for (i=1;i<=n;i++) {  /*************** function subdirf ***********/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  char *subdirf(char fileres[])
       fptt=(*fret);  {
 #ifdef DEBUG    /* Caution optionfilefiname is hidden */
       printf("fret=%lf \n",*fret);    strcpy(tmpout,optionfilefiname);
       fprintf(ficlog,"fret=%lf \n",*fret);    strcat(tmpout,"/"); /* Add to the right */
 #endif    strcat(tmpout,fileres);
       printf("%d",i);fflush(stdout);    return tmpout;
       fprintf(ficlog,"%d",i);fflush(ficlog);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /*************** function subdirf2 ***********/
         del=fabs(fptt-(*fret));  char *subdirf2(char fileres[], char *preop)
         ibig=i;  {
       }    
 #ifdef DEBUG    /* Caution optionfilefiname is hidden */
       printf("%d %.12e",i,(*fret));    strcpy(tmpout,optionfilefiname);
       fprintf(ficlog,"%d %.12e",i,(*fret));    strcat(tmpout,"/");
       for (j=1;j<=n;j++) {    strcat(tmpout,preop);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    strcat(tmpout,fileres);
         printf(" x(%d)=%.12e",j,xit[j]);    return tmpout;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++) {  /*************** function subdirf3 ***********/
         printf(" p=%.12e",p[j]);  char *subdirf3(char fileres[], char *preop, char *preop2)
         fprintf(ficlog," p=%.12e",p[j]);  {
       }    
       printf("\n");    /* Caution optionfilefiname is hidden */
       fprintf(ficlog,"\n");    strcpy(tmpout,optionfilefiname);
 #endif    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    strcat(tmpout,preop2);
 #ifdef DEBUG    strcat(tmpout,fileres);
       int k[2],l;    return tmpout;
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /***************** f1dim *************************/
       fprintf(ficlog,"Max: %.12e",(*func)(p));  extern int ncom; 
       for (j=1;j<=n;j++) {  extern double *pcom,*xicom;
         printf(" %.12e",p[j]);  extern double (*nrfunc)(double []); 
         fprintf(ficlog," %.12e",p[j]);   
       }  double f1dim(double x) 
       printf("\n");  { 
       fprintf(ficlog,"\n");    int j; 
       for(l=0;l<=1;l++) {    double f;
         for (j=1;j<=n;j++) {    double *xt; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];   
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    xt=vector(1,ncom); 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         }    f=(*nrfunc)(xt); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free_vector(xt,1,ncom); 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return f; 
       }  } 
 #endif  
   /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       free_vector(xit,1,n);  { 
       free_vector(xits,1,n);    int iter; 
       free_vector(ptt,1,n);    double a,b,d,etemp;
       free_vector(pt,1,n);    double fu,fv,fw,fx;
       return;    double ftemp;
     }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double e=0.0; 
     for (j=1;j<=n;j++) {   
       ptt[j]=2.0*p[j]-pt[j];    a=(ax < cx ? ax : cx); 
       xit[j]=p[j]-pt[j];    b=(ax > cx ? ax : cx); 
       pt[j]=p[j];    x=w=v=bx; 
     }    fw=fv=fx=(*f)(x); 
     fptt=(*func)(ptt);    for (iter=1;iter<=ITMAX;iter++) { 
     if (fptt < fp) {      xm=0.5*(a+b); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       if (t < 0.0) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         linmin(p,xit,n,fret,func);      printf(".");fflush(stdout);
         for (j=1;j<=n;j++) {      fprintf(ficlog,".");fflush(ficlog);
           xi[j][ibig]=xi[j][n];  #ifdef DEBUG
           xi[j][n]=xit[j];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #ifdef DEBUG      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #endif
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         for(j=1;j<=n;j++){        *xmin=x; 
           printf(" %.12e",xit[j]);        return fx; 
           fprintf(ficlog," %.12e",xit[j]);      } 
         }      ftemp=fu;
         printf("\n");      if (fabs(e) > tol1) { 
         fprintf(ficlog,"\n");        r=(x-w)*(fx-fv); 
 #endif        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
   }        if (q > 0.0) p = -p; 
 }        q=fabs(q); 
         etemp=e; 
 /**** Prevalence limit ****************/        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit          d=p/q; 
      matrix by transitions matrix until convergence is reached */          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
   int i, ii,j,k;            d=SIGN(tol1,xm-x); 
   double min, max, maxmin, maxmax,sumnew=0.;        } 
   double **matprod2();      } else { 
   double **out, cov[NCOVMAX], **pmij();        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double **newm;      } 
   double agefin, delaymax=50 ; /* Max number of years to converge */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
   for (ii=1;ii<=nlstate+ndeath;ii++)      if (fu <= fx) { 
     for (j=1;j<=nlstate+ndeath;j++){        if (u >= x) a=x; else b=x; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        SHFT(v,w,x,u) 
     }          SHFT(fv,fw,fx,fu) 
           } else { 
    cov[1]=1.;            if (u < x) a=u; else b=u; 
              if (fu <= fw || w == x) { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */              v=w; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){              w=u; 
     newm=savm;              fv=fw; 
     /* Covariates have to be included here again */              fw=fu; 
      cov[2]=agefin;            } else if (fu <= fv || v == x || v == w) { 
                v=u; 
       for (k=1; k<=cptcovn;k++) {              fv=fu; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            } 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          } 
       }    } 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    nrerror("Too many iterations in brent"); 
       for (k=1; k<=cptcovprod;k++)    *xmin=x; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return fx; 
   } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /****************** mnbrak ***********************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
     savm=oldm;  { 
     oldm=newm;    double ulim,u,r,q, dum;
     maxmax=0.;    double fu; 
     for(j=1;j<=nlstate;j++){   
       min=1.;    *fa=(*func)(*ax); 
       max=0.;    *fb=(*func)(*bx); 
       for(i=1; i<=nlstate; i++) {    if (*fb > *fa) { 
         sumnew=0;      SHFT(dum,*ax,*bx,dum) 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        SHFT(dum,*fb,*fa,dum) 
         prlim[i][j]= newm[i][j]/(1-sumnew);        } 
         max=FMAX(max,prlim[i][j]);    *cx=(*bx)+GOLD*(*bx-*ax); 
         min=FMIN(min,prlim[i][j]);    *fc=(*func)(*cx); 
       }    while (*fb > *fc) { 
       maxmin=max-min;      r=(*bx-*ax)*(*fb-*fc); 
       maxmax=FMAX(maxmax,maxmin);      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     if(maxmax < ftolpl){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       return prlim;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     }      if ((*bx-u)*(u-*cx) > 0.0) { 
   }        fu=(*func)(u); 
 }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 /*************** transition probabilities ***************/        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            SHFT(*fb,*fc,fu,(*func)(u)) 
 {            } 
   double s1, s2;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /*double t34;*/        u=ulim; 
   int i,j,j1, nc, ii, jj;        fu=(*func)(u); 
       } else { 
     for(i=1; i<= nlstate; i++){        u=(*cx)+GOLD*(*cx-*bx); 
     for(j=1; j<i;j++){        fu=(*func)(u); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      } 
         /*s2 += param[i][j][nc]*cov[nc];*/      SHFT(*ax,*bx,*cx,u) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        SHFT(*fa,*fb,*fc,fu) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        } 
       }  } 
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /*************** linmin ************************/
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  int ncom; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double *pcom,*xicom;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double (*nrfunc)(double []); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/   
       }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       ps[i][j]=s2;  { 
     }    double brent(double ax, double bx, double cx, 
   }                 double (*f)(double), double tol, double *xmin); 
     /*ps[3][2]=1;*/    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for(i=1; i<= nlstate; i++){                double *fc, double (*func)(double)); 
      s1=0;    int j; 
     for(j=1; j<i; j++)    double xx,xmin,bx,ax; 
       s1+=exp(ps[i][j]);    double fx,fb,fa;
     for(j=i+1; j<=nlstate+ndeath; j++)   
       s1+=exp(ps[i][j]);    ncom=n; 
     ps[i][i]=1./(s1+1.);    pcom=vector(1,n); 
     for(j=1; j<i; j++)    xicom=vector(1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    nrfunc=func; 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=n;j++) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      pcom[j]=p[j]; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      xicom[j]=xi[j]; 
   } /* end i */    } 
     ax=0.0; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    xx=1.0; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       ps[ii][jj]=0;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       ps[ii][ii]=1;  #ifdef DEBUG
     }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
     for (j=1;j<=n;j++) { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      xi[j] *= xmin; 
     for(jj=1; jj<= nlstate+ndeath; jj++){      p[j] += xi[j]; 
      printf("%lf ",ps[ii][jj]);    } 
    }    free_vector(xicom,1,n); 
     printf("\n ");    free_vector(pcom,1,n); 
     }  } 
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  char *asc_diff_time(long time_sec, char ascdiff[])
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    long sec_left, days, hours, minutes;
     return ps;    days = (time_sec) / (60*60*24);
 }    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 /**************** Product of 2 matrices ******************/    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    sec_left = (sec_left) % (60);
 {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    return ascdiff;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  }
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /*************** powell ************************/
      a pointer to pointers identical to out */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   long i, j, k;              double (*func)(double [])) 
   for(i=nrl; i<= nrh; i++)  { 
     for(k=ncolol; k<=ncoloh; k++)    void linmin(double p[], double xi[], int n, double *fret, 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)                double (*func)(double [])); 
         out[i][k] +=in[i][j]*b[j][k];    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   return out;    double fp,fptt;
 }    double *xits;
     int niterf, itmp;
   
 /************* Higher Matrix Product ***************/    pt=vector(1,n); 
     ptt=vector(1,n); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    xit=vector(1,n); 
 {    xits=vector(1,n); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    *fret=(*func)(p); 
      duration (i.e. until    for (j=1;j<=n;j++) pt[j]=p[j]; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    for (*iter=1;;++(*iter)) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      fp=(*fret); 
      (typically every 2 years instead of every month which is too big).      ibig=0; 
      Model is determined by parameters x and covariates have to be      del=0.0; 
      included manually here.      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
      */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   int i, j, d, h, k;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double **out, cov[NCOVMAX];      */
   double **newm;     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   /* Hstepm could be zero and should return the unit matrix */        fprintf(ficlog," %d %.12lf",i, p[i]);
   for (i=1;i<=nlstate+ndeath;i++)        fprintf(ficrespow," %.12lf", p[i]);
     for (j=1;j<=nlstate+ndeath;j++){      }
       oldm[i][j]=(i==j ? 1.0 : 0.0);      printf("\n");
       po[i][j][0]=(i==j ? 1.0 : 0.0);      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");fflush(ficrespow);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      if(*iter <=3){
   for(h=1; h <=nhstepm; h++){        tm = *localtime(&curr_time.tv_sec);
     for(d=1; d <=hstepm; d++){        strcpy(strcurr,asctime(&tmf));
       newm=savm;  /*       asctime_r(&tm,strcurr); */
       /* Covariates have to be included here again */        forecast_time=curr_time;
       cov[1]=1.;        itmp = strlen(strcurr);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        if(strcurr[itmp-1]=='\n')
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          strcurr[itmp-1]='\0';
       for (k=1; k<=cptcovage;k++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for (k=1; k<=cptcovprod;k++)        for(niterf=10;niterf<=30;niterf+=10){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          strcpy(strfor,asctime(&tmf));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          itmp = strlen(strfor);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          if(strfor[itmp-1]=='\n')
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          strfor[itmp-1]='\0';
       savm=oldm;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       oldm=newm;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }        }
     for(i=1; i<=nlstate+ndeath; i++)      }
       for(j=1;j<=nlstate+ndeath;j++) {      for (i=1;i<=n;i++) { 
         po[i][j][h]=newm[i][j];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        fptt=(*fret); 
          */  #ifdef DEBUG
       }        printf("fret=%lf \n",*fret);
   } /* end h */        fprintf(ficlog,"fret=%lf \n",*fret);
   return po;  #endif
 }        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
 /*************** log-likelihood *************/        if (fabs(fptt-(*fret)) > del) { 
 double func( double *x)          del=fabs(fptt-(*fret)); 
 {          ibig=i; 
   int i, ii, j, k, mi, d, kk;        } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #ifdef DEBUG
   double **out;        printf("%d %.12e",i,(*fret));
   double sw; /* Sum of weights */        fprintf(ficlog,"%d %.12e",i,(*fret));
   double lli; /* Individual log likelihood */        for (j=1;j<=n;j++) {
   long ipmx;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /*extern weight */          printf(" x(%d)=%.12e",j,xit[j]);
   /* We are differentiating ll according to initial status */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        }
   /*for(i=1;i<imx;i++)        for(j=1;j<=n;j++) {
     printf(" %d\n",s[4][i]);          printf(" p=%.12e",p[j]);
   */          fprintf(ficlog," p=%.12e",p[j]);
   cov[1]=1.;        }
         printf("\n");
   for(k=1; k<=nlstate; k++) ll[k]=0.;        fprintf(ficlog,"\n");
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #endif
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      } 
     for(mi=1; mi<= wav[i]-1; mi++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        int k[2],l;
       for(d=0; d<dh[mi][i]; d++){        k[0]=1;
         newm=savm;        k[1]=-1;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        printf("Max: %.12e",(*func)(p));
         for (kk=1; kk<=cptcovage;kk++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (j=1;j<=n;j++) {
         }          printf(" %.12e",p[j]);
                  fprintf(ficlog," %.12e",p[j]);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        printf("\n");
         savm=oldm;        fprintf(ficlog,"\n");
         oldm=newm;        for(l=0;l<=1;l++) {
                  for (j=1;j<=n;j++) {
                    ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       } /* end mult */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       ipmx +=1;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       sw += weight[i];        }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #endif
     } /* end of wave */  
   } /* end of individual */  
         free_vector(xit,1,n); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        free_vector(xits,1,n); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        free_vector(ptt,1,n); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        free_vector(pt,1,n); 
   return -l;        return; 
 }      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
 /*********** Maximum Likelihood Estimation ***************/        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        pt[j]=p[j]; 
 {      } 
   int i,j, iter;      fptt=(*func)(ptt); 
   double **xi,*delti;      if (fptt < fp) { 
   double fret;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   xi=matrix(1,npar,1,npar);        if (t < 0.0) { 
   for (i=1;i<=npar;i++)          linmin(p,xit,n,fret,func); 
     for (j=1;j<=npar;j++)          for (j=1;j<=n;j++) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);            xi[j][ibig]=xi[j][n]; 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");            xi[j][n]=xit[j]; 
   powell(p,xi,npar,ftol,&iter,&fret,func);          }
   #ifdef DEBUG
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
 /**** Computes Hessian and covariance matrix ***/          printf("\n");
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          fprintf(ficlog,"\n");
 {  #endif
   double  **a,**y,*x,pd;        }
   double **hess;      } 
   int i, j,jk;    } 
   int *indx;  } 
   
   double hessii(double p[], double delta, int theta, double delti[]);  /**** Prevalence limit (stable prevalence)  ****************/
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   void ludcmp(double **a, int npar, int *indx, double *d) ;  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   hess=matrix(1,npar,1,npar);       matrix by transitions matrix until convergence is reached */
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    int i, ii,j,k;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    double min, max, maxmin, maxmax,sumnew=0.;
   for (i=1;i<=npar;i++){    double **matprod2();
     printf("%d",i);fflush(stdout);    double **out, cov[NCOVMAX], **pmij();
     fprintf(ficlog,"%d",i);fflush(ficlog);    double **newm;
     hess[i][i]=hessii(p,ftolhess,i,delti);    double agefin, delaymax=50 ; /* Max number of years to converge */
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++) {      }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {     cov[1]=1.;
         printf(".%d%d",i,j);fflush(stdout);   
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         hess[i][j]=hessij(p,delti,i,j);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         hess[j][i]=hess[i][j];          newm=savm;
         /*printf(" %lf ",hess[i][j]);*/      /* Covariates have to be included here again */
       }       cov[2]=agefin;
     }    
   }        for (k=1; k<=cptcovn;k++) {
   printf("\n");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   fprintf(ficlog,"\n");          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   x=vector(1,npar);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   indx=ivector(1,npar);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for (i=1;i<=npar;i++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);      savm=oldm;
       oldm=newm;
   for (j=1;j<=npar;j++) {      maxmax=0.;
     for (i=1;i<=npar;i++) x[i]=0;      for(j=1;j<=nlstate;j++){
     x[j]=1;        min=1.;
     lubksb(a,npar,indx,x);        max=0.;
     for (i=1;i<=npar;i++){        for(i=1; i<=nlstate; i++) {
       matcov[i][j]=x[i];          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   printf("\n#Hessian matrix#\n");          min=FMIN(min,prlim[i][j]);
   fprintf(ficlog,"\n#Hessian matrix#\n");        }
   for (i=1;i<=npar;i++) {        maxmin=max-min;
     for (j=1;j<=npar;j++) {        maxmax=FMAX(maxmax,maxmin);
       printf("%.3e ",hess[i][j]);      }
       fprintf(ficlog,"%.3e ",hess[i][j]);      if(maxmax < ftolpl){
     }        return prlim;
     printf("\n");      }
     fprintf(ficlog,"\n");    }
   }  }
   
   /* Recompute Inverse */  /*************** transition probabilities ***************/ 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   ludcmp(a,npar,indx,&pd);  {
     double s1, s2;
   /*  printf("\n#Hessian matrix recomputed#\n");    /*double t34;*/
     int i,j,j1, nc, ii, jj;
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;      for(i=1; i<= nlstate; i++){
     x[j]=1;        for(j=1; j<i;j++){
     lubksb(a,npar,indx,x);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (i=1;i<=npar;i++){            /*s2 += param[i][j][nc]*cov[nc];*/
       y[i][j]=x[i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       printf("%.3e ",y[i][j]);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       fprintf(ficlog,"%.3e ",y[i][j]);          }
     }          ps[i][j]=s2;
     printf("\n");  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     fprintf(ficlog,"\n");        }
   }        for(j=i+1; j<=nlstate+ndeath;j++){
   */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   free_matrix(a,1,npar,1,npar);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   free_matrix(y,1,npar,1,npar);          }
   free_vector(x,1,npar);          ps[i][j]=s2;
   free_ivector(indx,1,npar);        }
   free_matrix(hess,1,npar,1,npar);      }
       /*ps[3][2]=1;*/
       
 }      for(i=1; i<= nlstate; i++){
         s1=0;
 /*************** hessian matrix ****************/        for(j=1; j<i; j++)
 double hessii( double x[], double delta, int theta, double delti[])          s1+=exp(ps[i][j]);
 {        for(j=i+1; j<=nlstate+ndeath; j++)
   int i;          s1+=exp(ps[i][j]);
   int l=1, lmax=20;        ps[i][i]=1./(s1+1.);
   double k1,k2;        for(j=1; j<i; j++)
   double p2[NPARMAX+1];          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double res;        for(j=i+1; j<=nlstate+ndeath; j++)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double fx;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   int k=0,kmax=10;      } /* end i */
   double l1;      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   fx=func(x);        for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=npar;i++) p2[i]=x[i];          ps[ii][jj]=0;
   for(l=0 ; l <=lmax; l++){          ps[ii][ii]=1;
     l1=pow(10,l);        }
     delts=delt;      }
     for(k=1 ; k <kmax; k=k+1){      
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       k1=func(p2)-fx;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       p2[theta]=x[theta]-delt;  /*         printf("ddd %lf ",ps[ii][jj]); */
       k2=func(p2)-fx;  /*       } */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*       printf("\n "); */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*        } */
        /*        printf("\n ");printf("%lf ",cov[2]); */
 #ifdef DEBUG         /*
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        goto end;*/
 #endif      return ps;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  /**************** Product of 2 matrices ******************/
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         k=kmax; l=lmax*10.;  {
       }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         delts=delt;    /* in, b, out are matrice of pointers which should have been initialized 
       }       before: only the contents of out is modified. The function returns
     }       a pointer to pointers identical to out */
   }    long i, j, k;
   delti[theta]=delts;    for(i=nrl; i<= nrh; i++)
   return res;      for(k=ncolol; k<=ncoloh; k++)
          for(j=ncl,out[i][k]=0.; j<=nch; j++)
 }          out[i][k] +=in[i][j]*b[j][k];
   
 double hessij( double x[], double delti[], int thetai,int thetaj)    return out;
 {  }
   int i;  
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  /************* Higher Matrix Product ***************/
   double p2[NPARMAX+1];  
   int k;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   fx=func(x);    /* Computes the transition matrix starting at age 'age' over 
   for (k=1; k<=2; k++) {       'nhstepm*hstepm*stepm' months (i.e. until
     for (i=1;i<=npar;i++) p2[i]=x[i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     p2[thetai]=x[thetai]+delti[thetai]/k;       nhstepm*hstepm matrices. 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     k1=func(p2)-fx;       (typically every 2 years instead of every month which is too big 
         for the memory).
     p2[thetai]=x[thetai]+delti[thetai]/k;       Model is determined by parameters x and covariates have to be 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       included manually here. 
     k2=func(p2)-fx;  
         */
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int i, j, d, h, k;
     k3=func(p2)-fx;    double **out, cov[NCOVMAX];
      double **newm;
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* Hstepm could be zero and should return the unit matrix */
     k4=func(p2)-fx;    for (i=1;i<=nlstate+ndeath;i++)
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      for (j=1;j<=nlstate+ndeath;j++){
 #ifdef DEBUG        oldm[i][j]=(i==j ? 1.0 : 0.0);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        po[i][j][0]=(i==j ? 1.0 : 0.0);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      }
 #endif    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
   return res;      for(d=1; d <=hstepm; d++){
 }        newm=savm;
         /* Covariates have to be included here again */
 /************** Inverse of matrix **************/        cov[1]=1.;
 void ludcmp(double **a, int n, int *indx, double *d)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int i,imax,j,k;        for (k=1; k<=cptcovage;k++)
   double big,dum,sum,temp;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double *vv;        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   vv=vector(1,n);  
   *d=1.0;  
   for (i=1;i<=n;i++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     big=0.0;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for (j=1;j<=n;j++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       if ((temp=fabs(a[i][j])) > big) big=temp;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        savm=oldm;
     vv[i]=1.0/big;        oldm=newm;
   }      }
   for (j=1;j<=n;j++) {      for(i=1; i<=nlstate+ndeath; i++)
     for (i=1;i<j;i++) {        for(j=1;j<=nlstate+ndeath;j++) {
       sum=a[i][j];          po[i][j][h]=newm[i][j];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       a[i][j]=sum;           */
     }        }
     big=0.0;    } /* end h */
     for (i=j;i<=n;i++) {    return po;
       sum=a[i][j];  }
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /*************** log-likelihood *************/
       if ( (dum=vv[i]*fabs(sum)) >= big) {  double func( double *x)
         big=dum;  {
         imax=i;    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
     if (j != imax) {    double sw; /* Sum of weights */
       for (k=1;k<=n;k++) {    double lli; /* Individual log likelihood */
         dum=a[imax][k];    int s1, s2;
         a[imax][k]=a[j][k];    double bbh, survp;
         a[j][k]=dum;    long ipmx;
       }    /*extern weight */
       *d = -(*d);    /* We are differentiating ll according to initial status */
       vv[imax]=vv[j];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
     indx[j]=imax;      printf(" %d\n",s[4][i]);
     if (a[j][j] == 0.0) a[j][j]=TINY;    */
     if (j != n) {    cov[1]=1.;
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
   }    if(mle==1){
   free_vector(vv,1,n);  /* Doesn't work */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 ;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 void lubksb(double **a, int n, int *indx, double b[])            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,ii=0,ip,j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double sum;            }
            for(d=0; d<dh[mi][i]; d++){
   for (i=1;i<=n;i++) {            newm=savm;
     ip=indx[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     sum=b[ip];            for (kk=1; kk<=cptcovage;kk++) {
     b[ip]=b[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (ii)            }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     else if (sum) ii=i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     b[i]=sum;            savm=oldm;
   }            oldm=newm;
   for (i=n;i>=1;i--) {          } /* end mult */
     sum=b[i];        
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     b[i]=sum/a[i][i];          /* But now since version 0.9 we anticipate for bias and large stepm.
   }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 }           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 /************ Frequencies ********************/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 {  /* Some frequencies */           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * -stepm/2 to stepm/2 .
   int first;           * For stepm=1 the results are the same as for previous versions of Imach.
   double ***freq; /* Frequencies */           * For stepm > 1 the results are less biased than in previous versions. 
   double *pp;           */
   double pos, k2, dateintsum=0,k2cpt=0;          s1=s[mw[mi][i]][i];
   FILE *ficresp;          s2=s[mw[mi+1][i]][i];
   char fileresp[FILENAMELENGTH];          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
   pp=vector(1,nlstate);           * is higher than the multiple of stepm and negative otherwise.
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           */
   strcpy(fileresp,"p");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   strcat(fileresp,fileres);          if( s2 > nlstate){ 
   if((ficresp=fopen(fileresp,"w"))==NULL) {            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     printf("Problem with prevalence resultfile: %s\n", fileresp);               to the likelihood is the probability to die between last step unit time and current 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);               step unit time, which is also the differences between probability to die before dh 
     exit(0);               and probability to die before dh-stepm . 
   }               In version up to 0.92 likelihood was computed
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          as if date of death was unknown. Death was treated as any other
   j1=0;          health state: the date of the interview describes the actual state
            and not the date of a change in health state. The former idea was
   j=cptcoveff;          to consider that at each interview the state was recorded
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
   first=1;          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
   for(k1=1; k1<=j;k1++){          stepm. It is no more the probability to die between last interview
     for(i1=1; i1<=ncodemax[k1];i1++){          and month of death but the probability to survive from last
       j1++;          interview up to one month before death multiplied by the
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          probability to die within a month. Thanks to Chris
         scanf("%d", i);*/          Jackson for correcting this bug.  Former versions increased
       for (i=-1; i<=nlstate+ndeath; i++)            mortality artificially. The bad side is that we add another loop
         for (jk=-1; jk<=nlstate+ndeath; jk++)            which slows down the processing. The difference can be up to 10%
           for(m=agemin; m <= agemax+3; m++)          lower mortality.
             freq[i][jk][m]=0;            */
                  lli=log(out[s1][s2] - savm[s1][s2]);
       dateintsum=0;          }else{
       k2cpt=0;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for (i=1; i<=imx; i++) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         bool=1;          } 
         if  (cptcovn>0) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for (z1=1; z1<=cptcoveff; z1++)          /*if(lli ==000.0)*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               bool=0;          ipmx +=1;
         }          sw += weight[i];
         if (bool==1) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=firstpass; m<=lastpass; m++){        } /* end of wave */
             k2=anint[m][i]+(mint[m][i]/12.);      } /* end of individual */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    }  else if(mle==2){
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if (m<lastpass) {        for(mi=1; mi<= wav[i]-1; mi++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
               }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                            savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            }
                 dateintsum=dateintsum+k2;          for(d=0; d<=dh[mi][i]; d++){
                 k2cpt++;            newm=savm;
               }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             }            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            savm=oldm;
             oldm=newm;
       if  (cptcovn>0) {          } /* end mult */
         fprintf(ficresp, "\n#********** Variable ");        
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          s1=s[mw[mi][i]][i];
         fprintf(ficresp, "**********\n#");          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ipmx +=1;
       fprintf(ficresp, "\n");          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=(int)agemin; i <= (int)agemax+3; i++){        } /* end of wave */
         if(i==(int)agemax+3){      } /* end of individual */
           fprintf(ficlog,"Total");    }  else if(mle==3){  /* exponential inter-extrapolation */
         }else{      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if(first==1){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             first=0;        for(mi=1; mi<= wav[i]-1; mi++){
             printf("See log file for details...\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
           fprintf(ficlog,"Age %d", i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for(d=0; d<dh[mi][i]; d++){
             pp[jk] += freq[jk][m][i];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           for(m=-1, pos=0; m <=0 ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             pos += freq[jk][m][i];            }
           if(pp[jk]>=1.e-10){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if(first==1){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            savm=oldm;
             }            oldm=newm;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          } /* end mult */
           }else{        
             if(first==1)          s1=s[mw[mi][i]][i];
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          s2=s[mw[mi+1][i]][i];
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          bbh=(double)bh[mi][i]/(double)stepm; 
           }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }          ipmx +=1;
           sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        } /* end of wave */
             pp[jk] += freq[jk][m][i];      } /* end of individual */
         }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           pos += pp[jk];        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           if(pos>=1.e-5){            for (j=1;j<=nlstate+ndeath;j++){
             if(first==1)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            }
           }else{          for(d=0; d<dh[mi][i]; d++){
             if(first==1)            newm=savm;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if( i <= (int) agemax){            }
             if(pos>=1.e-5){          
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               probs[i][jk][j1]= pp[jk]/pos;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            savm=oldm;
             }            oldm=newm;
             else          } /* end mult */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
                  if( s2 > nlstate){ 
         for(jk=-1; jk <=nlstate+ndeath; jk++)            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1; m <=nlstate+ndeath; m++)          }else{
             if(freq[jk][m][i] !=0 ) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             if(first==1)          }
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          ipmx +=1;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if(i <= (int) agemax)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           fprintf(ficresp,"\n");        } /* end of wave */
         if(first==1)      } /* end of individual */
           printf("Others in log...\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         fprintf(ficlog,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   dateintmean=dateintsum/k2cpt;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fclose(ficresp);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            }
   free_vector(pp,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   /* End of Freq */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Prevalence ********************/            }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          
 {  /* Some frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            savm=oldm;
   double ***freq; /* Frequencies */            oldm=newm;
   double *pp;          } /* end mult */
   double pos, k2;        
           s1=s[mw[mi][i]][i];
   pp=vector(1,nlstate);          s2=s[mw[mi+1][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            ipmx +=1;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          sw += weight[i];
   j1=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   j=cptcoveff;        } /* end of wave */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      } /* end of individual */
      } /* End of if */
   for(k1=1; k1<=j;k1++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(i1=1; i1<=ncodemax[k1];i1++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       j1++;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
          return -l;
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /*************** log-likelihood *************/
             freq[i][jk][m]=0;  double funcone( double *x)
        {
       for (i=1; i<=imx; i++) {    /* Same as likeli but slower because of a lot of printf and if */
         bool=1;    int i, ii, j, k, mi, d, kk;
         if  (cptcovn>0) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           for (z1=1; z1<=cptcoveff; z1++)    double **out;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double lli; /* Individual log likelihood */
               bool=0;    double llt;
         }    int s1, s2;
         if (bool==1) {    double bbh, survp;
           for(m=firstpass; m<=lastpass; m++){    /*extern weight */
             k2=anint[m][i]+(mint[m][i]/12.);    /* We are differentiating ll according to initial status */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /*for(i=1;i<imx;i++) 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      printf(" %d\n",s[4][i]);
               if (m<lastpass) {    */
                 if (calagedate>0)    cov[1]=1.;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
                 else    for(k=1; k<=nlstate; k++) ll[k]=0.;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }      for(mi=1; mi<= wav[i]-1; mi++){
           }        for (ii=1;ii<=nlstate+ndeath;ii++)
         }          for (j=1;j<=nlstate+ndeath;j++){
       }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=(int)agemin; i <= (int)agemax+3; i++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for(d=0; d<dh[mi][i]; d++){
             pp[jk] += freq[jk][m][i];          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){          for (kk=1; kk<=cptcovage;kk++) {
           for(m=-1, pos=0; m <=0 ; m++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             pos += freq[jk][m][i];          }
         }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){          savm=oldm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          oldm=newm;
             pp[jk] += freq[jk][m][i];        } /* end mult */
         }        
                s1=s[mw[mi][i]][i];
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        s2=s[mw[mi+1][i]][i];
                bbh=(double)bh[mi][i]/(double)stepm; 
         for(jk=1; jk <=nlstate ; jk++){            /* bias is positive if real duration
           if( i <= (int) agemax){         * is higher than the multiple of stepm and negative otherwise.
             if(pos>=1.e-5){         */
               probs[i][jk][j1]= pp[jk]/pos;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             }          lli=log(out[s1][s2] - savm[s1][s2]);
           }        } else if (mle==1){
         }/* end jk */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }/* end i */        } else if(mle==2){
     } /* end i1 */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   } /* end k1 */        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          } else if (mle==4){  /* mle=4 no inter-extrapolation */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          lli=log(out[s1][s2]); /* Original formula */
   free_vector(pp,1,nlstate);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
            lli=log(out[s1][s2]); /* Original formula */
 }  /* End of Freq */        } /* End of if */
         ipmx +=1;
 /************* Waves Concatenation ***************/        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 {        if(globpr){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
      Death is a valid wave (if date is known).   %10.6f %10.6f %10.6f ", \
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
      and mw[mi+1][i]. dh depends on stepm.          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
      */            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int i, mi, m;          }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          fprintf(ficresilk," %10.6f\n", -llt);
      double sum=0., jmean=0.;*/        }
   int first;      } /* end of wave */
   int j, k=0,jk, ju, jl;    } /* end of individual */
   double sum=0.;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   first=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   jmin=1e+5;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   jmax=-1;    if(globpr==0){ /* First time we count the contributions and weights */
   jmean=0.;      gipmx=ipmx;
   for(i=1; i<=imx; i++){      gsw=sw;
     mi=0;    }
     m=firstpass;    return -l;
     while(s[m][i] <= nlstate){  }
       if(s[m][i]>=1)  
         mw[++mi][i]=m;  
       if(m >=lastpass)  /*************** function likelione ***********/
         break;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       else  {
         m++;    /* This routine should help understanding what is done with 
     }/* end while */       the selection of individuals/waves and
     if (s[m][i] > nlstate){       to check the exact contribution to the likelihood.
       mi++;     /* Death is another wave */       Plotting could be done.
       /* if(mi==0)  never been interviewed correctly before death */     */
          /* Only death is a correct wave */    int k;
       mw[mi][i]=m;  
     }    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
     wav[i]=mi;      strcat(fileresilk,fileres);
     if(mi==0){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       if(first==0){        printf("Problem with resultfile: %s\n", fileresilk);
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         first=1;      }
       }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       if(first==1){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       }      for(k=1; k<=nlstate; k++) 
     } /* end mi==0 */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){    *fretone=(*funcone)(p);
       if (stepm <=0)    if(*globpri !=0){
         dh[mi][i]=1;      fclose(ficresilk);
       else{      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         if (s[mw[mi+1][i]][i] > nlstate) {      fflush(fichtm); 
           if (agedc[i] < 2*AGESUP) {    } 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    return;
           if(j==0) j=1;  /* Survives at least one month after exam */  }
           k=k+1;  
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;  /*********** Maximum Likelihood Estimation ***************/
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           }  {
         }    int i,j, iter;
         else{    double **xi;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    double fret;
           k=k+1;    double fretone; /* Only one call to likelihood */
           if (j >= jmax) jmax=j;    /*  char filerespow[FILENAMELENGTH];*/
           else if (j <= jmin)jmin=j;    xi=matrix(1,npar,1,npar);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    for (i=1;i<=npar;i++)
           sum=sum+j;      for (j=1;j<=npar;j++)
         }        xi[i][j]=(i==j ? 1.0 : 0.0);
         jk= j/stepm;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         jl= j -jk*stepm;    strcpy(filerespow,"pow"); 
         ju= j -(jk+1)*stepm;    strcat(filerespow,fileres);
         if(jl <= -ju)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           dh[mi][i]=jk;      printf("Problem with resultfile: %s\n", filerespow);
         else      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           dh[mi][i]=jk+1;    }
         if(dh[mi][i]==0)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           dh[mi][i]=1; /* At least one step */    for (i=1;i<=nlstate;i++)
       }      for(j=1;j<=nlstate+ndeath;j++)
     }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   }    fprintf(ficrespow,"\n");
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    powell(p,xi,npar,ftol,&iter,&fret,func);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 /*********** Tricode ****************************/    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 void tricode(int *Tvar, int **nbcode, int imx)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 {  
   int Ndum[20],ij=1, k, j, i;  }
   int cptcode=0;  
   cptcoveff=0;  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   for (k=0; k<19; k++) Ndum[k]=0;  {
   for (k=1; k<=7; k++) ncodemax[k]=0;    double  **a,**y,*x,pd;
     double **hess;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int i, j,jk;
     for (i=1; i<=imx; i++) {    int *indx;
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       if (ij > cptcode) cptcode=ij;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     }    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
     for (i=0; i<=cptcode; i++) {    hess=matrix(1,npar,1,npar);
       if(Ndum[i]!=0) ncodemax[j]++;  
     }    printf("\nCalculation of the hessian matrix. Wait...\n");
     ij=1;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
     for (i=1; i<=ncodemax[j]; i++) {      fprintf(ficlog,"%d",i);fflush(ficlog);
       for (k=0; k<=19; k++) {     
         if (Ndum[k] != 0) {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           nbcode[Tvar[j]][ij]=k;      
                /*  printf(" %f ",p[i]);
           ij++;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         }    }
         if (ij > ncodemax[j]) break;    
       }      for (i=1;i<=npar;i++) {
     }      for (j=1;j<=npar;j++)  {
   }          if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
  for (k=0; k<19; k++) Ndum[k]=0;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
  for (i=1; i<=ncovmodel-2; i++) {          
    ij=Tvar[i];          hess[j][i]=hess[i][j];    
    Ndum[ij]++;          /*printf(" %lf ",hess[i][j]);*/
  }        }
       }
  ij=1;    }
  for (i=1; i<=10; i++) {    printf("\n");
    if((Ndum[i]!=0) && (i<=ncovcol)){    fprintf(ficlog,"\n");
      Tvaraff[ij]=i;  
      ij++;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
    }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
  }    
      a=matrix(1,npar,1,npar);
  cptcoveff=ij-1;    y=matrix(1,npar,1,npar);
 }    x=vector(1,npar);
     indx=ivector(1,npar);
 /*********** Health Expectancies ****************/    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    ludcmp(a,npar,indx,&pd);
   
 {    for (j=1;j<=npar;j++) {
   /* Health expectancies */      for (i=1;i<=npar;i++) x[i]=0;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      x[j]=1;
   double age, agelim, hf;      lubksb(a,npar,indx,x);
   double ***p3mat,***varhe;      for (i=1;i<=npar;i++){ 
   double **dnewm,**doldm;        matcov[i][j]=x[i];
   double *xp;      }
   double **gp, **gm;    }
   double ***gradg, ***trgradg;  
   int theta;    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    for (i=1;i<=npar;i++) { 
   xp=vector(1,npar);      for (j=1;j<=npar;j++) { 
   dnewm=matrix(1,nlstate*2,1,npar);        printf("%.3e ",hess[i][j]);
   doldm=matrix(1,nlstate*2,1,nlstate*2);        fprintf(ficlog,"%.3e ",hess[i][j]);
        }
   fprintf(ficreseij,"# Health expectancies\n");      printf("\n");
   fprintf(ficreseij,"# Age");      fprintf(ficlog,"\n");
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    /* Recompute Inverse */
   fprintf(ficreseij,"\n");    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   if(estepm < stepm){    ludcmp(a,npar,indx,&pd);
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    /*  printf("\n#Hessian matrix recomputed#\n");
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    for (j=1;j<=npar;j++) {
    * This is mainly to measure the difference between two models: for example      for (i=1;i<=npar;i++) x[i]=0;
    * if stepm=24 months pijx are given only every 2 years and by summing them      x[j]=1;
    * we are calculating an estimate of the Life Expectancy assuming a linear      lubksb(a,npar,indx,x);
    * progression inbetween and thus overestimating or underestimating according      for (i=1;i<=npar;i++){ 
    * to the curvature of the survival function. If, for the same date, we        y[i][j]=x[i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        printf("%.3e ",y[i][j]);
    * to compare the new estimate of Life expectancy with the same linear        fprintf(ficlog,"%.3e ",y[i][j]);
    * hypothesis. A more precise result, taking into account a more precise      }
    * curvature will be obtained if estepm is as small as stepm. */      printf("\n");
       fprintf(ficlog,"\n");
   /* For example we decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    */
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    free_matrix(a,1,npar,1,npar);
      Look at hpijx to understand the reason of that which relies in memory size    free_matrix(y,1,npar,1,npar);
      and note for a fixed period like estepm months */    free_vector(x,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    free_ivector(indx,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    free_matrix(hess,1,npar,1,npar);
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  }
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   agelim=AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i;
     /* nhstepm age range expressed in number of stepm */    int l=1, lmax=20;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    double k1,k2;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double p2[NPARMAX+1];
     /* if (stepm >= YEARM) hstepm=1;*/    double res;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double fx;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    int k=0,kmax=10;
     gp=matrix(0,nhstepm,1,nlstate*2);    double l1;
     gm=matrix(0,nhstepm,1,nlstate*2);  
     fx=func(x);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    for (i=1;i<=npar;i++) p2[i]=x[i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for(l=0 ; l <=lmax; l++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        l1=pow(10,l);
        delts=delt;
       for(k=1 ; k <kmax; k=k+1){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
     /* Computing Variances of health expectancies */        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
      for(theta=1; theta <=npar; theta++){        k2=func(p2)-fx;
       for(i=1; i<=npar; i++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #ifdef DEBUG
          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       cptj=0;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(j=1; j<= nlstate; j++){  #endif
         for(i=1; i<=nlstate; i++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           cptj=cptj+1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          k=kmax;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        }
           }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         }          k=kmax; l=lmax*10.;
       }        }
              else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                delts=delt;
       for(i=1; i<=npar; i++)        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
          delti[theta]=delts;
       cptj=0;    return res; 
       for(j=1; j<= nlstate; j++){    
         for(i=1;i<=nlstate;i++){  }
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  {
           }    int i;
         }    int l=1, l1, lmax=20;
       }    double k1,k2,k3,k4,res,fx;
       for(j=1; j<= nlstate*2; j++)    double p2[NPARMAX+1];
         for(h=0; h<=nhstepm-1; h++){    int k;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    fx=func(x);
      }    for (k=1; k<=2; k++) {
          for (i=1;i<=npar;i++) p2[i]=x[i];
 /* End theta */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      k1=func(p2)-fx;
     
      for(h=0; h<=nhstepm-1; h++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<=nlstate*2;j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(theta=1; theta <=npar; theta++)      k2=func(p2)-fx;
           trgradg[h][j][theta]=gradg[h][theta][j];    
            p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      for(i=1;i<=nlstate*2;i++)      k3=func(p2)-fx;
       for(j=1;j<=nlstate*2;j++)    
         varhe[i][j][(int)age] =0.;      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      printf("%d|",(int)age);fflush(stdout);      k4=func(p2)-fx;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      for(h=0;h<=nhstepm-1;h++){  #ifdef DEBUG
       for(k=0;k<=nhstepm-1;k++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  #endif
         for(i=1;i<=nlstate*2;i++)    }
           for(j=1;j<=nlstate*2;j++)    return res;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  }
       }  
     }  /************** Inverse of matrix **************/
     /* Computing expectancies */  void ludcmp(double **a, int n, int *indx, double *d) 
     for(i=1; i<=nlstate;i++)  { 
       for(j=1; j<=nlstate;j++)    int i,imax,j,k; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double big,dum,sum,temp; 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double *vv; 
             
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    vv=vector(1,n); 
     *d=1.0; 
         }    for (i=1;i<=n;i++) { 
       big=0.0; 
     fprintf(ficreseij,"%3.0f",age );      for (j=1;j<=n;j++) 
     cptj=0;        if ((temp=fabs(a[i][j])) > big) big=temp; 
     for(i=1; i<=nlstate;i++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(j=1; j<=nlstate;j++){      vv[i]=1.0/big; 
         cptj++;    } 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for (j=1;j<=n;j++) { 
       }      for (i=1;i<j;i++) { 
     fprintf(ficreseij,"\n");        sum=a[i][j]; 
            for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_matrix(gm,0,nhstepm,1,nlstate*2);        a[i][j]=sum; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);      } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      big=0.0; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for (i=j;i<=n;i++) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        sum=a[i][j]; 
   }        for (k=1;k<j;k++) 
   printf("\n");          sum -= a[i][k]*a[k][j]; 
   fprintf(ficlog,"\n");        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   free_vector(xp,1,npar);          big=dum; 
   free_matrix(dnewm,1,nlstate*2,1,npar);          imax=i; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        } 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      } 
 }      if (j != imax) { 
         for (k=1;k<=n;k++) { 
 /************ Variance ******************/          dum=a[imax][k]; 
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)          a[imax][k]=a[j][k]; 
 {          a[j][k]=dum; 
   /* Variance of health expectancies */        } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        *d = -(*d); 
   /* double **newm;*/        vv[imax]=vv[j]; 
   double **dnewm,**doldm;      } 
   double **dnewmp,**doldmp;      indx[j]=imax; 
   int i, j, nhstepm, hstepm, h, nstepm ;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int k, cptcode;      if (j != n) { 
   double *xp;        dum=1.0/(a[j][j]); 
   double **gp, **gm;  /* for var eij */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double ***gradg, ***trgradg; /*for var eij */      } 
   double **gradgp, **trgradgp; /* for var p point j */    } 
   double *gpp, *gmp; /* for var p point j */    free_vector(vv,1,n);  /* Doesn't work */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  ;
   double ***p3mat;  } 
   double age,agelim, hf;  
   int theta;  void lubksb(double **a, int n, int *indx, double b[]) 
   char digit[4];  { 
   char digitp[16];    int i,ii=0,ip,j; 
     double sum; 
   char fileresprobmorprev[FILENAMELENGTH];   
     for (i=1;i<=n;i++) { 
   if(popbased==1)      ip=indx[i]; 
     strcpy(digitp,"-populbased-");      sum=b[ip]; 
   else      b[ip]=b[i]; 
     strcpy(digitp,"-stablbased-");      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   strcpy(fileresprobmorprev,"prmorprev");      else if (sum) ii=i; 
   sprintf(digit,"%-d",ij);      b[i]=sum; 
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    } 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    for (i=n;i>=1;i--) { 
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      sum=b[i]; 
   strcat(fileresprobmorprev,fileres);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      b[i]=sum/a[i][i]; 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    } 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  } 
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  /************ Frequencies ********************/
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");  {  /* Some frequencies */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     fprintf(ficresprobmorprev," p.%-d SE",j);    int first;
     for(i=1; i<=nlstate;i++)    double ***freq; /* Frequencies */
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    double *pp, **prop;
   }      double pos,posprop, k2, dateintsum=0,k2cpt=0;
   fprintf(ficresprobmorprev,"\n");    FILE *ficresp;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    char fileresp[FILENAMELENGTH];
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    pp=vector(1,nlstate);
     exit(0);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    strcpy(fileresp,"p");
   else{    strcat(fileresp,fileres);
     fprintf(ficgp,"\n# Routine varevsij");    if((ficresp=fopen(fileresp,"w"))==NULL) {
   }      printf("Problem with prevalence resultfile: %s\n", fileresp);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     printf("Problem with html file: %s\n", optionfilehtm);      exit(0);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    }
     exit(0);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   }    j1=0;
   else{    
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    j=cptcoveff;
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
     first=1;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");    for(k1=1; k1<=j;k1++){
   for(i=1; i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
     for(j=1; j<=nlstate;j++)        j1++;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   fprintf(ficresvij,"\n");          scanf("%d", i);*/
         for (i=-1; i<=nlstate+ndeath; i++)  
   xp=vector(1,npar);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   dnewm=matrix(1,nlstate,1,npar);            for(m=iagemin; m <= iagemax+3; m++)
   doldm=matrix(1,nlstate,1,nlstate);              freq[i][jk][m]=0;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          prop[i][m]=0;
   gpp=vector(nlstate+1,nlstate+ndeath);        
   gmp=vector(nlstate+1,nlstate+ndeath);        dateintsum=0;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        k2cpt=0;
          for (i=1; i<=imx; i++) {
   if(estepm < stepm){          bool=1;
     printf ("Problem %d lower than %d\n",estepm, stepm);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
   else  hstepm=estepm;                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   /* For example we decided to compute the life expectancy with the smallest unit */                bool=0;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          }
      nhstepm is the number of hstepm from age to agelim          if (bool==1){
      nstepm is the number of stepm from age to agelin.            for(m=firstpass; m<=lastpass; m++){
      Look at hpijx to understand the reason of that which relies in memory size              k2=anint[m][i]+(mint[m][i]/12.);
      and note for a fixed period like k years */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      survival function given by stepm (the optimization length). Unfortunately it                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      means that if the survival funtion is printed only each two years of age and if                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                if (m<lastpass) {
      results. So we changed our mind and took the option of the best precision.                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                }
   agelim = AGESUP;                
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                  dateintsum=dateintsum+k2;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                  k2cpt++;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                /*}*/
     gp=matrix(0,nhstepm,1,nlstate);            }
     gm=matrix(0,nhstepm,1,nlstate);          }
         }
          
     for(theta=1; theta <=npar; theta++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if  (cptcovn>0) {
       }          fprintf(ficresp, "\n#********** Variable "); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficresp, "**********\n#");
         }
       if (popbased==1) {        for(i=1; i<=nlstate;i++) 
         for(i=1; i<=nlstate;i++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficresp, "\n");
       }        
          for(i=iagemin; i <= iagemax+3; i++){
       for(j=1; j<= nlstate; j++){          if(i==iagemax+3){
         for(h=0; h<=nhstepm; h++){            fprintf(ficlog,"Total");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          }else{
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            if(first==1){
         }              first=0;
       }              printf("See log file for details...\n");
       /* This for computing forces of mortality (h=1)as a weighted average */            }
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){            fprintf(ficlog,"Age %d", i);
         for(i=1; i<= nlstate; i++)          }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          for(jk=1; jk <=nlstate ; jk++){
       }                for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       /* end force of mortality */              pp[jk] += freq[jk][m][i]; 
           }
       for(i=1; i<=npar; i++) /* Computes gradient */          for(jk=1; jk <=nlstate ; jk++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for(m=-1, pos=0; m <=0 ; m++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                pos += freq[jk][m][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            if(pp[jk]>=1.e-10){
                if(first==1){
       if (popbased==1) {              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for(i=1; i<=nlstate;i++)              }
           prlim[i][i]=probs[(int)age][i][ij];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }            }else{
               if(first==1)
       for(j=1; j<= nlstate; j++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for(h=0; h<=nhstepm; h++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }  
       }          for(jk=1; jk <=nlstate ; jk++){
       /* This for computing force of mortality (h=1)as a weighted average */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){              pp[jk] += freq[jk][m][i];
         for(i=1; i<= nlstate; i++)          }       
           gmp[j] += prlim[i][i]*p3mat[i][j][1];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       }                pos += pp[jk];
       /* end force of mortality */            posprop += prop[jk][i];
           }
       for(j=1; j<= nlstate; j++) /* vareij */          for(jk=1; jk <=nlstate ; jk++){
         for(h=0; h<=nhstepm; h++){            if(pos>=1.e-5){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              if(first==1)
         }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];            }else{
       }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     } /* End theta */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */            if( i <= iagemax){
               if(pos>=1.e-5){
     for(h=0; h<=nhstepm; h++) /* veij */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(j=1; j<=nlstate;j++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
         for(theta=1; theta <=npar; theta++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           trgradg[h][j][theta]=gradg[h][theta][j];              }
               else
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for(theta=1; theta <=npar; theta++)            }
         trgradgp[j][theta]=gradgp[theta][j];          }
           
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for(jk=-1; jk <=nlstate+ndeath; jk++)
     for(i=1;i<=nlstate;i++)            for(m=-1; m <=nlstate+ndeath; m++)
       for(j=1;j<=nlstate;j++)              if(freq[jk][m][i] !=0 ) {
         vareij[i][j][(int)age] =0.;              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(h=0;h<=nhstepm;h++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(k=0;k<=nhstepm;k++){              }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          if(i <= iagemax)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            fprintf(ficresp,"\n");
         for(i=1;i<=nlstate;i++)          if(first==1)
           for(j=1;j<=nlstate;j++)            printf("Others in log...\n");
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          fprintf(ficlog,"\n");
       }        }
     }      }
     }
     /* pptj */    dateintmean=dateintsum/k2cpt; 
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);   
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    fclose(ficresp);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    free_vector(pp,1,nlstate);
         varppt[j][i]=doldmp[j][i];    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* end ppptj */    /* End of Freq */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  
    /************ Prevalence ********************/
     if (popbased==1) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       for(i=1; i<=nlstate;i++)  {  
         prlim[i][i]=probs[(int)age][i][ij];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     }       in each health status at the date of interview (if between dateprev1 and dateprev2).
           We still use firstpass and lastpass as another selection.
     /* This for computing force of mortality (h=1)as a weighted average */    */
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){   
       for(i=1; i<= nlstate; i++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    double ***freq; /* Frequencies */
     }        double *pp, **prop;
     /* end force of mortality */    double pos,posprop; 
     double  y2; /* in fractional years */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    int iagemin, iagemax;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    iagemin= (int) agemin;
       for(i=1; i<=nlstate;i++){    iagemax= (int) agemax;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    /*pp=vector(1,nlstate);*/
       }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     fprintf(ficresprobmorprev,"\n");    j1=0;
     
     fprintf(ficresvij,"%.0f ",age );    j=cptcoveff;
     for(i=1; i<=nlstate;i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(j=1; j<=nlstate;j++){    
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficresvij,"\n");        j1++;
     free_matrix(gp,0,nhstepm,1,nlstate);        
     free_matrix(gm,0,nhstepm,1,nlstate);        for (i=1; i<=nlstate; i++)  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for(m=iagemin; m <= iagemax+3; m++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            prop[i][m]=0.0;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
   } /* End age */        for (i=1; i<=imx; i++) { /* Each individual */
   free_vector(gpp,nlstate+1,nlstate+ndeath);          bool=1;
   free_vector(gmp,nlstate+1,nlstate+ndeath);          if  (cptcovn>0) {
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            for (z1=1; z1<=cptcoveff; z1++) 
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");                bool=0;
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          } 
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          if (bool==1) { 
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
   free_vector(xp,1,npar);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   free_matrix(doldm,1,nlstate,1,nlstate);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   free_matrix(dnewm,1,nlstate,1,npar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                } 
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);              }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            } /* end selection of waves */
   fclose(ficresprobmorprev);          }
   fclose(ficgp);        }
   fclose(fichtm);        for(i=iagemin; i <= iagemax+3; i++){  
           
 }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
 /************ Variance of prevlim ******************/          } 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {          for(jk=1; jk <=nlstate ; jk++){     
   /* Variance of prevalence limit */            if( i <=  iagemax){ 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              if(posprop>=1.e-5){ 
   double **newm;                probs[i][jk][j1]= prop[jk][i]/posprop;
   double **dnewm,**doldm;              } 
   int i, j, nhstepm, hstepm;            } 
   int k, cptcode;          }/* end jk */ 
   double *xp;        }/* end i */ 
   double *gp, *gm;      } /* end i1 */
   double **gradg, **trgradg;    } /* end k1 */
   double age,agelim;    
   int theta;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
        /*free_vector(pp,1,nlstate);*/
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   fprintf(ficresvpl,"# Age");  }  /* End of prevalence */
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);  /************* Waves Concatenation ***************/
   fprintf(ficresvpl,"\n");  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate,1,npar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   doldm=matrix(1,nlstate,1,nlstate);       Death is a valid wave (if date is known).
         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   hstepm=1*YEARM; /* Every year of age */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       and mw[mi+1][i]. dh depends on stepm.
   agelim = AGESUP;       */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int i, mi, m;
     if (stepm >= YEARM) hstepm=1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       double sum=0., jmean=0.;*/
     gradg=matrix(1,npar,1,nlstate);    int first;
     gp=vector(1,nlstate);    int j, k=0,jk, ju, jl;
     gm=vector(1,nlstate);    double sum=0.;
     first=0;
     for(theta=1; theta <=npar; theta++){    jmin=1e+5;
       for(i=1; i<=npar; i++){ /* Computes gradient */    jmax=-1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    jmean=0.;
       }    for(i=1; i<=imx; i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      mi=0;
       for(i=1;i<=nlstate;i++)      m=firstpass;
         gp[i] = prlim[i][i];      while(s[m][i] <= nlstate){
            if(s[m][i]>=1)
       for(i=1; i<=npar; i++) /* Computes gradient */          mw[++mi][i]=m;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if(m >=lastpass)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          break;
       for(i=1;i<=nlstate;i++)        else
         gm[i] = prlim[i][i];          m++;
       }/* end while */
       for(i=1;i<=nlstate;i++)      if (s[m][i] > nlstate){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        mi++;     /* Death is another wave */
     } /* End theta */        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
     trgradg =matrix(1,nlstate,1,npar);        mw[mi][i]=m;
       }
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)      wav[i]=mi;
         trgradg[j][theta]=gradg[theta][j];      if(mi==0){
         nbwarn++;
     for(i=1;i<=nlstate;i++)        if(first==0){
       varpl[i][(int)age] =0.;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          first=1;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        }
     for(i=1;i<=nlstate;i++)        if(first==1){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
     fprintf(ficresvpl,"%.0f ",age );      } /* end mi==0 */
     for(i=1; i<=nlstate;i++)    } /* End individuals */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    for(i=1; i<=imx; i++){
     free_vector(gp,1,nlstate);      for(mi=1; mi<wav[i];mi++){
     free_vector(gm,1,nlstate);        if (stepm <=0)
     free_matrix(gradg,1,npar,1,nlstate);          dh[mi][i]=1;
     free_matrix(trgradg,1,nlstate,1,npar);        else{
   } /* End age */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
   free_vector(xp,1,npar);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   free_matrix(doldm,1,nlstate,1,npar);              if(j==0) j=1;  /* Survives at least one month after exam */
   free_matrix(dnewm,1,nlstate,1,nlstate);              else if(j<0){
                 nberr++;
 }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
 /************ Variance of one-step probabilities  ******************/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   int i, j=0,  i1, k1, l1, t, tj;              }
   int k2, l2, j1,  z1;              k=k+1;
   int k=0,l, cptcode;              if (j >= jmax) jmax=j;
   int first=1, first1;              if (j <= jmin) jmin=j;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;              sum=sum+j;
   double **dnewm,**doldm;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   double *xp;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   double *gp, *gm;            }
   double **gradg, **trgradg;          }
   double **mu;          else{
   double age,agelim, cov[NCOVMAX];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   int theta;            k=k+1;
   char fileresprob[FILENAMELENGTH];            if (j >= jmax) jmax=j;
   char fileresprobcov[FILENAMELENGTH];            else if (j <= jmin)jmin=j;
   char fileresprobcor[FILENAMELENGTH];            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double ***varpij;            if(j<0){
               nberr++;
   strcpy(fileresprob,"prob");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcat(fileresprob,fileres);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprob);            sum=sum+j;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          }
   }          jk= j/stepm;
   strcpy(fileresprobcov,"probcov");          jl= j -jk*stepm;
   strcat(fileresprobcov,fileres);          ju= j -(jk+1)*stepm;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     printf("Problem with resultfile: %s\n", fileresprobcov);            if(jl==0){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);              dh[mi][i]=jk;
   }              bh[mi][i]=0;
   strcpy(fileresprobcor,"probcor");            }else{ /* We want a negative bias in order to only have interpolation ie
   strcat(fileresprobcor,fileres);                    * at the price of an extra matrix product in likelihood */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {              dh[mi][i]=jk+1;
     printf("Problem with resultfile: %s\n", fileresprobcor);              bh[mi][i]=ju;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);            }
   }          }else{
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            if(jl <= -ju){
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              dh[mi][i]=jk;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              bh[mi][i]=jl;       /* bias is positive if real duration
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                                   * is higher than the multiple of stepm and negative otherwise.
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                                   */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            }
              else{
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");              dh[mi][i]=jk+1;
   fprintf(ficresprob,"# Age");              bh[mi][i]=ju;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            }
   fprintf(ficresprobcov,"# Age");            if(dh[mi][i]==0){
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");              dh[mi][i]=1; /* At least one step */
   fprintf(ficresprobcov,"# Age");              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   for(i=1; i<=nlstate;i++)          } /* end if mle */
     for(j=1; j<=(nlstate+ndeath);j++){        }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      } /* end wave */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    jmean=sum/k;
     }      printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   fprintf(ficresprob,"\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   fprintf(ficresprobcov,"\n");   }
   fprintf(ficresprobcor,"\n");  
   xp=vector(1,npar);  /*********** Tricode ****************************/
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  void tricode(int *Tvar, int **nbcode, int imx)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  {
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   first=1;    int cptcode=0;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    cptcoveff=0; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);   
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     exit(0);    for (k=1; k<=7; k++) ncodemax[k]=0;
   }  
   else{    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     fprintf(ficgp,"\n# Routine varprob");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   }                                 modality*/ 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     printf("Problem with html file: %s\n", optionfilehtm);        Ndum[ij]++; /*store the modality */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     exit(0);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   }                                         Tvar[j]. If V=sex and male is 0 and 
   else{                                         female is 1, then  cptcode=1.*/
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      }
     fprintf(fichtm,"\n");  
       for (i=0; i<=cptcode; i++) {
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  
       ij=1; 
   }      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
   cov[1]=1;            nbcode[Tvar[j]][ij]=k; 
   tj=cptcoveff;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}            
   j1=0;            ij++;
   for(t=1; t<=tj;t++){          }
     for(i1=1; i1<=ncodemax[t];i1++){          if (ij > ncodemax[j]) break; 
       j1++;        }  
            } 
       if  (cptcovn>0) {    }  
         fprintf(ficresprob, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   for (k=0; k< maxncov; k++) Ndum[k]=0;
         fprintf(ficresprob, "**********\n#");  
         fprintf(ficresprobcov, "\n#********** Variable ");   for (i=1; i<=ncovmodel-2; i++) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         fprintf(ficresprobcov, "**********\n#");     ij=Tvar[i];
             Ndum[ij]++;
         fprintf(ficgp, "\n#********** Variable ");   }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficgp, "**********\n#");   ij=1;
           for (i=1; i<= maxncov; i++) {
             if((Ndum[i]!=0) && (i<=ncovcol)){
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       Tvaraff[ij]=i; /*For printing */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       ij++;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");     }
           }
         fprintf(ficresprobcor, "\n#********** Variable ");       
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   cptcoveff=ij-1; /*Number of simple covariates*/
         fprintf(ficgp, "**********\n#");      }
       }  
        /*********** Health Expectancies ****************/
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  {
         }    /* Health expectancies */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         for (k=1; k<=cptcovprod;k++)    double age, agelim, hf;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double ***p3mat,***varhe;
            double **dnewm,**doldm;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    double *xp;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double **gp, **gm;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    double ***gradg, ***trgradg;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    int theta;
      
         for(theta=1; theta <=npar; theta++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           for(i=1; i<=npar; i++)    xp=vector(1,npar);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    dnewm=matrix(1,nlstate*nlstate,1,npar);
              doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    
              fprintf(ficreseij,"# Health expectancies\n");
           k=0;    fprintf(ficreseij,"# Age");
           for(i=1; i<= (nlstate); i++){    for(i=1; i<=nlstate;i++)
             for(j=1; j<=(nlstate+ndeath);j++){      for(j=1; j<=nlstate;j++)
               k=k+1;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
               gp[k]=pmmij[i][j];    fprintf(ficreseij,"\n");
             }  
           }    if(estepm < stepm){
                printf ("Problem %d lower than %d\n",estepm, stepm);
           for(i=1; i<=npar; i++)    }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    else  hstepm=estepm;   
        /* We compute the life expectancy from trapezoids spaced every estepm months
           pmij(pmmij,cov,ncovmodel,xp,nlstate);     * This is mainly to measure the difference between two models: for example
           k=0;     * if stepm=24 months pijx are given only every 2 years and by summing them
           for(i=1; i<=(nlstate); i++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
             for(j=1; j<=(nlstate+ndeath);j++){     * progression in between and thus overestimating or underestimating according
               k=k+1;     * to the curvature of the survival function. If, for the same date, we 
               gm[k]=pmmij[i][j];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             }     * to compare the new estimate of Life expectancy with the same linear 
           }     * hypothesis. A more precise result, taking into account a more precise
           * curvature will be obtained if estepm is as small as stepm. */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)       nstepm is the number of stepm from age to agelin. 
           for(theta=1; theta <=npar; theta++)       Look at hpijx to understand the reason of that which relies in memory size
             trgradg[j][theta]=gradg[theta][j];       and note for a fixed period like estepm months */
            /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);       survival function given by stepm (the optimization length). Unfortunately it
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);       means that if the survival funtion is printed only each two years of age and if
               you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         pmij(pmmij,cov,ncovmodel,x,nlstate);       results. So we changed our mind and took the option of the best precision.
            */
         k=0;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){    agelim=AGESUP;
             k=k+1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             mu[k][(int) age]=pmmij[i][j];      /* nhstepm age range expressed in number of stepm */
           }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      /* if (stepm >= YEARM) hstepm=1;*/
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             varpij[i][j][(int)age] = doldm[i][j];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         /*printf("\n%d ",(int)age);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      /* Computed by stepm unit matrices, product of hstepm matrices, stored
      }*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         fprintf(ficresprob,"\n%d ",(int)age);   
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      /* Computing  Variances of health expectancies */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){       for(theta=1; theta <=npar; theta++){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        for(i=1; i<=npar; i++){ 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }        }
         i=0;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (k=1; k<=(nlstate);k++){    
           for (l=1; l<=(nlstate+ndeath);l++){        cptj=0;
             i=i++;        for(j=1; j<= nlstate; j++){
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          for(i=1; i<=nlstate; i++){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            cptj=cptj+1;
             for (j=1; j<=i;j++){            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            }
             }          }
           }        }
         }/* end of loop for state */       
       } /* end of loop for age */       
         for(i=1; i<=npar; i++) 
       /* Confidence intervalle of pij  */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       /*        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,"\nset noparametric;unset label");        
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        cptj=0;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(j=1; j<= nlstate; j++){
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          for(i=1;i<=nlstate;i++){
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);            cptj=cptj+1;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          }
       first1=1;        }
       for (k1=1; k1<=(nlstate);k1++){        for(j=1; j<= nlstate*nlstate; j++)
         for (l1=1; l1<=(nlstate+ndeath);l1++){          for(h=0; h<=nhstepm-1; h++){
           if(l1==k1) continue;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           i=(k1-1)*(nlstate+ndeath)+l1;          }
           for (k2=1; k2<=(nlstate);k2++){       } 
             for (l2=1; l2<=(nlstate+ndeath);l2++){     
               if(l2==k2) continue;  /* End theta */
               j=(k2-1)*(nlstate+ndeath)+l2;  
               if(j<=i) continue;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               for (age=bage; age<=fage; age ++){  
                 if ((int)age %5==0){       for(h=0; h<=nhstepm-1; h++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        for(j=1; j<=nlstate*nlstate;j++)
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          for(theta=1; theta <=npar; theta++)
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            trgradg[h][j][theta]=gradg[h][theta][j];
                   mu1=mu[i][(int) age]/stepm*YEARM ;       
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   /* Computing eigen value of matrix of covariance */       for(i=1;i<=nlstate*nlstate;i++)
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        for(j=1;j<=nlstate*nlstate;j++)
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          varhe[i][j][(int)age] =0.;
                   if(first1==1){  
                     first1=0;       printf("%d|",(int)age);fflush(stdout);
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   }       for(h=0;h<=nhstepm-1;h++){
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);        for(k=0;k<=nhstepm-1;k++){
                   /* Eigen vectors */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   v21=sqrt(1.-v11*v11);          for(i=1;i<=nlstate*nlstate;i++)
                   v12=-v21;            for(j=1;j<=nlstate*nlstate;j++)
                   v22=v11;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                   /*printf(fignu*/        }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      }
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      /* Computing expectancies */
                   if(first==1){      for(i=1; i<=nlstate;i++)
                     first=0;        for(j=1; j<=nlstate;j++)
                     fprintf(ficgp,"\nset parametric;set nolabel");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);          }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      fprintf(ficreseij,"%3.0f",age );
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      cptj=0;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      for(i=1; i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);        for(j=1; j<=nlstate;j++){
                     */          cptj++;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));      fprintf(ficreseij,"\n");
                   }else{     
                     first=0;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                     /*      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    printf("\n");
                     */    fprintf(ficlog,"\n");
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    free_vector(xp,1,npar);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   }/* if first */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                 } /* age mod 5 */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
               } /* end loop age */  }
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);  
               first=1;  /************ Variance ******************/
             } /*l12 */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           } /* k12 */  {
         } /*l1 */    /* Variance of health expectancies */
       }/* k1 */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     } /* loop covariates */    /* double **newm;*/
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    double **dnewm,**doldm;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    double **dnewmp,**doldmp;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    int i, j, nhstepm, hstepm, h, nstepm ;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    int k, cptcode;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double *xp;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
   free_vector(xp,1,npar);    double **gradgp, **trgradgp; /* for var p point j */
   fclose(ficresprob);    double *gpp, *gmp; /* for var p point j */
   fclose(ficresprobcov);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fclose(ficresprobcor);    double ***p3mat;
   fclose(ficgp);    double age,agelim, hf;
   fclose(fichtm);    double ***mobaverage;
 }    int theta;
     char digit[4];
     char digitp[25];
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    char fileresprobmorprev[FILENAMELENGTH];
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    if(popbased==1){
                   int popforecast, int estepm ,\      if(mobilav!=0)
                   double jprev1, double mprev1,double anprev1, \        strcpy(digitp,"-populbased-mobilav-");
                   double jprev2, double mprev2,double anprev2){      else strcpy(digitp,"-populbased-nomobil-");
   int jj1, k1, i1, cpt;    }
   /*char optionfilehtm[FILENAMELENGTH];*/    else 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      strcpy(digitp,"-stablbased-");
     printf("Problem with %s \n",optionfilehtm), exit(0);  
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n      }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    }
  - Life expectancies by age and initial health status (estepm=%2d months):  
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    strcpy(fileresprobmorprev,"prmorprev"); 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  m=cptcoveff;    strcat(fileresprobmorprev,fileres);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
  jj1=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
  for(k1=1; k1<=m;k1++){    }
    for(i1=1; i1<=ncodemax[k1];i1++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      jj1++;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      if (cptcovn > 0) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
        for (cpt=1; cpt<=cptcoveff;cpt++)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      fprintf(ficresprobmorprev," p.%-d SE",j);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for(i=1; i<=nlstate;i++)
      }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      /* Pij */    }  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    fprintf(ficresprobmorprev,"\n");
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        fprintf(ficgp,"\n# Routine varevsij");
      /* Quasi-incidences */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  /*   } */
        /* Stable prevalence in each health state */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    fprintf(ficresvij,"# Age");
        }    for(i=1; i<=nlstate;i++)
      for(cpt=1; cpt<=nlstate;cpt++) {      for(j=1; j<=nlstate;j++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    fprintf(ficresvij,"\n");
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    xp=vector(1,npar);
 health expectancies in states (1) and (2): e%s%d.png<br>    dnewm=matrix(1,nlstate,1,npar);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    doldm=matrix(1,nlstate,1,nlstate);
    } /* end i1 */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  }/* End k1 */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  fprintf(fichtm,"</ul>");  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    gmp=vector(nlstate+1,nlstate+ndeath);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    if(estepm < stepm){
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      printf ("Problem %d lower than %d\n",estepm, stepm);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    else  hstepm=estepm;   
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  if(popforecast==1) fprintf(fichtm,"\n       nhstepm is the number of hstepm from age to agelim 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n       nstepm is the number of stepm from age to agelin. 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       Look at hpijx to understand the reason of that which relies in memory size
         <br>",fileres,fileres,fileres,fileres);       and note for a fixed period like k years */
  else    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);       survival function given by stepm (the optimization length). Unfortunately it
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  m=cptcoveff;       results. So we changed our mind and took the option of the best precision.
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  jj1=0;    agelim = AGESUP;
  for(k1=1; k1<=m;k1++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    for(i1=1; i1<=ncodemax[k1];i1++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      jj1++;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      if (cptcovn > 0) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        for (cpt=1; cpt<=cptcoveff;cpt++)      gp=matrix(0,nhstepm,1,nlstate);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      gm=matrix(0,nhstepm,1,nlstate);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {      for(theta=1; theta <=npar; theta++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 interval) in state (%d): v%s%d%d.png <br>          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }
      }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    } /* end i1 */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  }/* End k1 */  
  fprintf(fichtm,"</ul>");        if (popbased==1) {
 fclose(fichtm);          if(mobilav ==0){
 }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
 /******************* Gnuplot file **************/          }else{ /* mobilav */ 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          }
   int ng;        }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    
     printf("Problem with file %s",optionfilegnuplot);        for(j=1; j<= nlstate; j++){
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 #ifdef windows          }
     fprintf(ficgp,"cd \"%s\" \n",pathc);        }
 #endif        /* This for computing probability of death (h=1 means
 m=pow(2,cptcoveff);           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
  /* 1eme*/        */
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    for (k1=1; k1<= m ; k1 ++) {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
 #ifdef windows        }    
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        /* end probability of death */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 #ifdef unix          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 #endif   
         if (popbased==1) {
 for (i=1; i<= nlstate ; i ++) {          if(mobilav ==0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1; i<=nlstate;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              prlim[i][i]=probs[(int)age][i][ij];
 }          }else{ /* mobilav */ 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            for(i=1; i<=nlstate;i++)
     for (i=1; i<= nlstate ; i ++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++){
      for (i=1; i<= nlstate ; i ++) {          for(h=0; h<=nhstepm; h++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 }            }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        }
 #ifdef unix        /* This for computing probability of death (h=1 means
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");           computed over hstepm matrices product = hstepm*stepm months) 
 #endif           as a weighted average of prlim.
    }        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /*2 eme*/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
   for (k1=1; k1<= m ; k1 ++) {        }    
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        /* end probability of death */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
            for(j=1; j<= nlstate; j++) /* vareij */
     for (i=1; i<= nlstate+1 ; i ++) {          for(h=0; h<=nhstepm; h++){
       k=2*i;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 }          }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      } /* End theta */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for(h=0; h<=nhstepm; h++) /* veij */
 }          for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\" t\"\" w l 0,");          for(theta=1; theta <=npar; theta++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            trgradg[h][j][theta]=gradg[h][theta][j];
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(theta=1; theta <=npar; theta++)
 }            trgradgp[j][theta]=gradgp[theta][j];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   /*3eme*/          vareij[i][j][(int)age] =0.;
   
   for (k1=1; k1<= m ; k1 ++) {      for(h=0;h<=nhstepm;h++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(k=0;k<=nhstepm;k++){
       k=2+nlstate*(2*cpt-2);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          for(i=1;i<=nlstate;i++)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            for(j=1;j<=nlstate;j++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for (i=1; i< nlstate ; i ++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       }      /* end ppptj */
     }      /*  x centered again */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   /* CV preval stat */   
     for (k1=1; k1<= m ; k1 ++) {      if (popbased==1) {
     for (cpt=1; cpt<nlstate ; cpt ++) {        if(mobilav ==0){
       k=3;          for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++)            prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      }
                     
       l=3+(nlstate+ndeath)*cpt;      /* This for computing probability of death (h=1 means
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       for (i=1; i< nlstate ; i ++) {         as a weighted average of prlim.
         l=3+(nlstate+ndeath)*cpt;      */
         fprintf(ficgp,"+$%d",l+i+1);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
   }        /* end probability of death */
    
   /* proba elementaires */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
    for(i=1,jk=1; i <=nlstate; i++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       if (k != i) {        for(i=1; i<=nlstate;i++){
         for(j=1; j <=ncovmodel; j++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        }
           jk++;      } 
           fprintf(ficgp,"\n");      fprintf(ficresprobmorprev,"\n");
         }  
       }      fprintf(ficresvij,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
    }        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        }
      for(jk=1; jk <=m; jk++) {      fprintf(ficresvij,"\n");
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      free_matrix(gp,0,nhstepm,1,nlstate);
        if (ng==2)      free_matrix(gm,0,nhstepm,1,nlstate);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        else      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          fprintf(ficgp,"\nset title \"Probability\"\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    } /* End age */
        i=1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
        for(k2=1; k2<=nlstate; k2++) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
          k3=i;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
          for(k=1; k<=(nlstate+ndeath); k++) {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
            if (k != k2){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
              if(ng==2)    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
              else  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
              ij=1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
              for(j=3; j <=ncovmodel; j++) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                  ij++;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                else    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  */
              }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
              fprintf(ficgp,")/(1");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                
              for(k1=1; k1 <=nlstate; k1++){      free_vector(xp,1,npar);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    free_matrix(doldm,1,nlstate,1,nlstate);
                ij=1;    free_matrix(dnewm,1,nlstate,1,npar);
                for(j=3; j <=ncovmodel; j++){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                    ij++;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                  }    fclose(ficresprobmorprev);
                  else    fflush(ficgp);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fflush(fichtm); 
                }  }  /* end varevsij */
                fprintf(ficgp,")");  
              }  /************ Variance of prevlim ******************/
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  {
              i=i+ncovmodel;    /* Variance of prevalence limit */
            }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
          } /* end k */    double **newm;
        } /* end k2 */    double **dnewm,**doldm;
      } /* end jk */    int i, j, nhstepm, hstepm;
    } /* end ng */    int k, cptcode;
    fclose(ficgp);    double *xp;
 }  /* end gnuplot */    double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
 /*************** Moving average **************/    int theta;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){     
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   int i, cpt, cptcod;    fprintf(ficresvpl,"# Age");
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    for(i=1; i<=nlstate;i++)
       for (i=1; i<=nlstate;i++)        fprintf(ficresvpl," %1d-%1d",i,i);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    fprintf(ficresvpl,"\n");
           mobaverage[(int)agedeb][i][cptcod]=0.;  
        xp=vector(1,npar);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    dnewm=matrix(1,nlstate,1,npar);
       for (i=1; i<=nlstate;i++){    doldm=matrix(1,nlstate,1,nlstate);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
           for (cpt=0;cpt<=4;cpt++){    hstepm=1*YEARM; /* Every year of age */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           }    agelim = AGESUP;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      if (stepm >= YEARM) hstepm=1;
     }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
          gradg=matrix(1,npar,1,nlstate);
 }      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
 /************** Forecasting ******************/      for(theta=1; theta <=npar; theta++){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for(i=1;i<=nlstate;i++)
   double *popeffectif,*popcount;          gp[i] = prlim[i][i];
   double ***p3mat;      
   char fileresf[FILENAMELENGTH];        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
  agelim=AGESUP;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
          for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   strcpy(fileresf,"f");      } /* End theta */
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {      trgradg =matrix(1,nlstate,1,npar);
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      for(j=1; j<=nlstate;j++)
   }        for(theta=1; theta <=npar; theta++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);          trgradg[j][theta]=gradg[theta][j];
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  
       for(i=1;i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   if (mobilav==1) {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1;i<=nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   }  
       fprintf(ficresvpl,"%.0f ",age );
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   agelim=AGESUP;      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
   hstepm=1;      free_matrix(gradg,1,npar,1,nlstate);
   hstepm=hstepm/stepm;      free_matrix(trgradg,1,nlstate,1,npar);
   yp1=modf(dateintmean,&yp);    } /* End age */
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);    free_vector(xp,1,npar);
   mprojmean=yp;    free_matrix(doldm,1,nlstate,1,npar);
   yp1=modf((yp2*30.5),&yp);    free_matrix(dnewm,1,nlstate,1,nlstate);
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;  }
   if(mprojmean==0) jprojmean=1;  
    /************ Variance of one-step probabilities  ******************/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
    {
   for(cptcov=1;cptcov<=i2;cptcov++){    int i, j=0,  i1, k1, l1, t, tj;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int k2, l2, j1,  z1;
       k=k+1;    int k=0,l, cptcode;
       fprintf(ficresf,"\n#******");    int first=1, first1;
       for(j=1;j<=cptcoveff;j++) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **dnewm,**doldm;
       }    double *xp;
       fprintf(ficresf,"******\n");    double *gp, *gm;
       fprintf(ficresf,"# StartingAge FinalAge");    double **gradg, **trgradg;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double **mu;
          double age,agelim, cov[NCOVMAX];
          double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    int theta;
         fprintf(ficresf,"\n");    char fileresprob[FILENAMELENGTH];
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double ***varpij;
           nhstepm = nhstepm/hstepm;  
              strcpy(fileresprob,"prob"); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprob,fileres);
           oldm=oldms;savm=savms;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf("Problem with resultfile: %s\n", fileresprob);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    strcpy(fileresprobcov,"probcov"); 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    strcat(fileresprobcov,fileres);
             }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
             for(j=1; j<=nlstate+ndeath;j++) {      printf("Problem with resultfile: %s\n", fileresprobcov);
               kk1=0.;kk2=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    strcpy(fileresprobcor,"probcor"); 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    strcat(fileresprobcor,fileres);
                 else {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      printf("Problem with resultfile: %s\n", fileresprobcor);
                 }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                    }
               }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                 fprintf(ficresf," %.3f", kk1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                            fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         }    fprintf(ficresprob,"# Age");
       }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     }    fprintf(ficresprobcov,"# Age");
   }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
            fprintf(ficresprobcov,"# Age");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   
   fclose(ficresf);    for(i=1; i<=nlstate;i++)
 }      for(j=1; j<=(nlstate+ndeath);j++){
 /************** Forecasting ******************/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      }  
   int *popage;   /* fprintf(ficresprob,"\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresprobcov,"\n");
   double *popeffectif,*popcount;    fprintf(ficresprobcor,"\n");
   double ***p3mat,***tabpop,***tabpopprev;   */
   char filerespop[FILENAMELENGTH];   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   agelim=AGESUP;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    first=1;
      fprintf(ficgp,"\n# Routine varprob");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
    
   strcpy(filerespop,"pop");    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   strcat(filerespop,fileres);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    file %s<br>\n",optionfilehtmcov);
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  and drawn. It helps understanding how is the covariance between two incidences.\
   }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   printf("Computing forecasting: result on file '%s' \n", filerespop);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   if (mobilav==1) {   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    cov[1]=1;
     tj=cptcoveff;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   if (stepm<=12) stepsize=1;    j1=0;
      for(t=1; t<=tj;t++){
   agelim=AGESUP;      for(i1=1; i1<=ncodemax[t];i1++){ 
          j1++;
   hstepm=1;        if  (cptcovn>0) {
   hstepm=hstepm/stepm;          fprintf(ficresprob, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (popforecast==1) {          fprintf(ficresprob, "**********\n#\n");
     if((ficpop=fopen(popfile,"r"))==NULL) {          fprintf(ficresprobcov, "\n#********** Variable "); 
       printf("Problem with population file : %s\n",popfile);exit(0);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          fprintf(ficresprobcov, "**********\n#\n");
     }          
     popage=ivector(0,AGESUP);          fprintf(ficgp, "\n#********** Variable "); 
     popeffectif=vector(0,AGESUP);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     popcount=vector(0,AGESUP);          fprintf(ficgp, "**********\n#\n");
              
     i=1;            
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     imx=i;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          
   }          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(cptcov=1;cptcov<=i2;cptcov++){          fprintf(ficresprobcor, "**********\n#");    
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;        
       fprintf(ficrespop,"\n#******");        for (age=bage; age<=fage; age ++){ 
       for(j=1;j<=cptcoveff;j++) {          cov[2]=age;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (k=1; k<=cptcovn;k++) {
       }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       fprintf(ficrespop,"******\n");          }
       fprintf(ficrespop,"# Age");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for (k=1; k<=cptcovprod;k++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                
       for (cpt=0; cpt<=0;cpt++) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                  gp=vector(1,(nlstate)*(nlstate+ndeath));
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          gm=vector(1,(nlstate)*(nlstate+ndeath));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      
           nhstepm = nhstepm/hstepm;          for(theta=1; theta <=npar; theta++){
                      for(i=1; i<=npar; i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           oldm=oldms;savm=savms;            
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              pmij(pmmij,cov,ncovmodel,xp,nlstate);
                    
           for (h=0; h<=nhstepm; h++){            k=0;
             if (h==(int) (calagedate+YEARM*cpt)) {            for(i=1; i<= (nlstate); i++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              for(j=1; j<=(nlstate+ndeath);j++){
             }                k=k+1;
             for(j=1; j<=nlstate+ndeath;j++) {                gp[k]=pmmij[i][j];
               kk1=0.;kk2=0;              }
               for(i=1; i<=nlstate;i++) {                          }
                 if (mobilav==1)            
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            for(i=1; i<=npar; i++)
                 else {              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      
                 }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
               }            k=0;
               if (h==(int)(calagedate+12*cpt)){            for(i=1; i<=(nlstate); i++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              for(j=1; j<=(nlstate+ndeath);j++){
                   /*fprintf(ficrespop," %.3f", kk1);                k=k+1;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                gm[k]=pmmij[i][j];
               }              }
             }            }
             for(i=1; i<=nlstate;i++){       
               kk1=0.;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                 for(j=1; j<=nlstate;j++){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          }
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             }            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /******/  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            k=0;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(i=1; i<=(nlstate); i++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(j=1; j<=(nlstate+ndeath);j++){
           nhstepm = nhstepm/hstepm;              k=k+1;
                        mu[k][(int) age]=pmmij[i][j];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           for (h=0; h<=nhstepm; h++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
             if (h==(int) (calagedate+YEARM*cpt)) {              varpij[i][j][(int)age] = doldm[i][j];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }          /*printf("\n%d ",(int)age);
             for(j=1; j<=nlstate+ndeath;j++) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               kk1=0.;kk2=0;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               for(i=1; i<=nlstate;i++) {                          fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }*/
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          fprintf(ficresprob,"\n%d ",(int)age);
             }          fprintf(ficresprobcov,"\n%d ",(int)age);
           }          fprintf(ficresprobcor,"\n%d ",(int)age);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
    }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
           i=0;
   if (popforecast==1) {          for (k=1; k<=(nlstate);k++){
     free_ivector(popage,0,AGESUP);            for (l=1; l<=(nlstate+ndeath);l++){ 
     free_vector(popeffectif,0,AGESUP);              i=i++;
     free_vector(popcount,0,AGESUP);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              for (j=1; j<=i;j++){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   fclose(ficrespop);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 }              }
             }
 /***********************************************/          }/* end of loop for state */
 /**************** Main Program *****************/        } /* end of loop for age */
 /***********************************************/  
         /* Confidence intervalle of pij  */
 int main(int argc, char *argv[])        /*
 {          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   double agedeb, agefin,hf;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   double fret;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   double **xi,tmp,delta;        */
   
   double dum; /* Dummy variable */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   double ***p3mat;        first1=1;
   int *indx;        for (k2=1; k2<=(nlstate);k2++){
   char line[MAXLINE], linepar[MAXLINE];          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];            if(l2==k2) continue;
   int firstobs=1, lastobs=10;            j=(k2-1)*(nlstate+ndeath)+l2;
   int sdeb, sfin; /* Status at beginning and end */            for (k1=1; k1<=(nlstate);k1++){
   int c,  h , cpt,l;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   int ju,jl, mi;                if(l1==k1) continue;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                i=(k1-1)*(nlstate+ndeath)+l1;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                if(i<=j) continue;
   int mobilav=0,popforecast=0;                for (age=bage; age<=fage; age ++){ 
   int hstepm, nhstepm;                  if ((int)age %5==0){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   double bage, fage, age, agelim, agebase;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   double ftolpl=FTOL;                    mu1=mu[i][(int) age]/stepm*YEARM ;
   double **prlim;                    mu2=mu[j][(int) age]/stepm*YEARM;
   double *severity;                    c12=cv12/sqrt(v1*v2);
   double ***param; /* Matrix of parameters */                    /* Computing eigen value of matrix of covariance */
   double  *p;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double **matcov; /* Matrix of covariance */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double ***delti3; /* Scale */                    /* Eigen vectors */
   double *delti; /* Scale */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   double ***eij, ***vareij;                    /*v21=sqrt(1.-v11*v11); *//* error */
   double **varpl; /* Variances of prevalence limits by age */                    v21=(lc1-v1)/cv12*v11;
   double *epj, vepp;                    v12=-v21;
   double kk1, kk2;                    v22=v11;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                    tnalp=v21/v11;
                      if(first1==1){
                       first1=0;
   char *alph[]={"a","a","b","c","d","e"}, str[4];                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   char z[1]="c", occ;                    /*printf(fignu*/
 #include <sys/time.h>                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 #include <time.h>                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                    if(first==1){
                        first=0;
   /* long total_usecs;                      fprintf(ficgp,"\nset parametric;unset label");
   struct timeval start_time, end_time;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   getcwd(pathcd, size);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   printf("\n%s",version);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   if(argc <=1){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("\nEnter the parameter file name: ");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     scanf("%s",pathtot);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   else{                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     strcpy(pathtot,argv[1]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /*cygwin_split_path(pathtot,path,optionfile);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                    }else{
   /* cutv(path,optionfile,pathtot,'\\');*/                      first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   chdir(path);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   replace(pathc,path);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 /*-------- arguments in the command line --------*/                    }/* if first */
                   } /* age mod 5 */
   /* Log file */                } /* end loop age */
   strcat(filelog, optionfilefiname);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcat(filelog,".log");    /* */                first=1;
   if((ficlog=fopen(filelog,"w"))==NULL)    {              } /*l12 */
     printf("Problem with logfile %s\n",filelog);            } /* k12 */
     goto end;          } /*l1 */
   }        }/* k1 */
   fprintf(ficlog,"Log filename:%s\n",filelog);      } /* loop covariates */
   fprintf(ficlog,"\n%s",version);    }
   fprintf(ficlog,"\nEnter the parameter file name: ");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   fflush(ficlog);    free_vector(xp,1,npar);
     fclose(ficresprob);
   /* */    fclose(ficresprobcov);
   strcpy(fileres,"r");    fclose(ficresprobcor);
   strcat(fileres, optionfilefiname);    fflush(ficgp);
   strcat(fileres,".txt");    /* Other files have txt extension */    fflush(fichtmcov);
   }
   /*---------arguments file --------*/  
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  /******************* Printing html file ***********/
     printf("Problem with optionfile %s\n",optionfile);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                    int lastpass, int stepm, int weightopt, char model[],\
     goto end;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   }                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
   strcpy(filereso,"o");                    double jprev2, double mprev2,double anprev2){
   strcat(filereso,fileres);    int jj1, k1, i1, cpt;
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     goto end;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   }     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   /* Reads comments: lines beginning with '#' */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   while((c=getc(ficpar))=='#' && c!= EOF){     fprintf(fichtm,"\
     ungetc(c,ficpar);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     fgets(line, MAXLINE, ficpar);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     puts(line);     fprintf(fichtm,"\
     fputs(line,ficparo);   - Life expectancies by age and initial health status (estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
   ungetc(c,ficpar);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);   m=cptcoveff;
 while((c=getc(ficpar))=='#' && c!= EOF){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);   jj1=0;
     puts(line);   for(k1=1; k1<=m;k1++){
     fputs(line,ficparo);     for(i1=1; i1<=ncodemax[k1];i1++){
   }       jj1++;
   ungetc(c,ficpar);       if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             for (cpt=1; cpt<=cptcoveff;cpt++) 
   covar=matrix(0,NCOVMAX,1,n);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   cptcovn=0;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       }
        /* Pij */
   ncovmodel=2+cptcovn;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         /* Quasi-incidences */
   /* Read guess parameters */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   /* Reads comments: lines beginning with '#' */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     ungetc(c,ficpar);         /* Stable prevalence in each health state */
     fgets(line, MAXLINE, ficpar);         for(cpt=1; cpt<nlstate;cpt++){
     puts(line);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     fputs(line,ficparo);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   }         }
   ungetc(c,ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
            fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     for(i=1; i <=nlstate; i++)       }
     for(j=1; j <=nlstate+ndeath-1; j++){     } /* end i1 */
       fscanf(ficpar,"%1d%1d",&i1,&j1);   }/* End k1 */
       fprintf(ficparo,"%1d%1d",i1,j1);   fprintf(fichtm,"</ul>");
       if(mle==1)  
         printf("%1d%1d",i,j);  
       fprintf(ficlog,"%1d%1d",i,j);   fprintf(fichtm,"\
       for(k=1; k<=ncovmodel;k++){  \n<br><li><h4> Result files (second order: variances)</h4>\n\
         fscanf(ficpar," %lf",&param[i][j][k]);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         if(mle==1){  
           printf(" %lf",param[i][j][k]);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficlog," %lf",param[i][j][k]);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         }   fprintf(fichtm,"\
         else   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficlog," %lf",param[i][j][k]);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         fprintf(ficparo," %lf",param[i][j][k]);  
       }   fprintf(fichtm,"\
       fscanf(ficpar,"\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       if(mle==1)           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
         printf("\n");   fprintf(fichtm,"\
       fprintf(ficlog,"\n");   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       fprintf(ficparo,"\n");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     }   fprintf(fichtm,"\
     - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
   p=param[1][1];   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
             subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /*  if(popforecast==1) fprintf(fichtm,"\n */
     ungetc(c,ficpar);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     fgets(line, MAXLINE, ficpar);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     puts(line);  /*      <br>",fileres,fileres,fileres,fileres); */
     fputs(line,ficparo);  /*  else  */
   }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   ungetc(c,ficpar);   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */   m=cptcoveff;
   for(i=1; i <=nlstate; i++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);   jj1=0;
       printf("%1d%1d",i,j);   for(k1=1; k1<=m;k1++){
       fprintf(ficparo,"%1d%1d",i1,j1);     for(i1=1; i1<=ncodemax[k1];i1++){
       for(k=1; k<=ncovmodel;k++){       jj1++;
         fscanf(ficpar,"%le",&delti3[i][j][k]);       if (cptcovn > 0) {
         printf(" %le",delti3[i][j][k]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         fprintf(ficparo," %le",delti3[i][j][k]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fscanf(ficpar,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       printf("\n");       }
       fprintf(ficparo,"\n");       for(cpt=1; cpt<=nlstate;cpt++) {
     }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   delti=delti3[1][1];  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         }
   /* Reads comments: lines beginning with '#' */       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   while((c=getc(ficpar))=='#' && c!= EOF){  health expectancies in states (1) and (2): %s%d.png<br>\
     ungetc(c,ficpar);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     fgets(line, MAXLINE, ficpar);     } /* end i1 */
     puts(line);   }/* End k1 */
     fputs(line,ficparo);   fprintf(fichtm,"</ul>");
   }   fflush(fichtm);
   ungetc(c,ficpar);  }
    
   matcov=matrix(1,npar,1,npar);  /******************* Gnuplot file **************/
   for(i=1; i <=npar; i++){  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     fscanf(ficpar,"%s",&str);  
     if(mle==1)    char dirfileres[132],optfileres[132];
       printf("%s",str);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     fprintf(ficlog,"%s",str);    int ng;
     fprintf(ficparo,"%s",str);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     for(j=1; j <=i; j++){  /*     printf("Problem with file %s",optionfilegnuplot); */
       fscanf(ficpar," %le",&matcov[i][j]);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       if(mle==1){  /*   } */
         printf(" %.5le",matcov[i][j]);  
         fprintf(ficlog," %.5le",matcov[i][j]);    /*#ifdef windows */
       }    fprintf(ficgp,"cd \"%s\" \n",pathc);
       else      /*#endif */
         fprintf(ficlog," %.5le",matcov[i][j]);    m=pow(2,cptcoveff);
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }    strcpy(dirfileres,optionfilefiname);
     fscanf(ficpar,"\n");    strcpy(optfileres,"vpl");
     if(mle==1)   /* 1eme*/
       printf("\n");    for (cpt=1; cpt<= nlstate ; cpt ++) {
     fprintf(ficlog,"\n");     for (k1=1; k1<= m ; k1 ++) {
     fprintf(ficparo,"\n");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   for(i=1; i <=npar; i++)       fprintf(ficgp,"set xlabel \"Age\" \n\
     for(j=i+1;j<=npar;j++)  set ylabel \"Probability\" \n\
       matcov[i][j]=matcov[j][i];  set ter png small\n\
      set size 0.65,0.65\n\
   if(mle==1)  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     printf("\n");  
   fprintf(ficlog,"\n");       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
     /*-------- Rewriting paramater file ----------*/       }
      strcpy(rfileres,"r");    /* "Rparameterfile */       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/       for (i=1; i<= nlstate ; i ++) {
      strcat(rfileres,".");    /* */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */         else fprintf(ficgp," \%%*lf (\%%*lf)");
     if((ficres =fopen(rfileres,"w"))==NULL) {       } 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;       for (i=1; i<= nlstate ; i ++) {
     }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficres,"#%s\n",version);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }  
     /*-------- data file ----------*/       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     if((fic=fopen(datafile,"r"))==NULL)    {     }
       printf("Problem with datafile: %s\n", datafile);goto end;    }
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    /*2 eme*/
     }    
     for (k1=1; k1<= m ; k1 ++) { 
     n= lastobs;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     severity = vector(1,maxwav);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     outcome=imatrix(1,maxwav+1,1,n);      
     num=ivector(1,n);      for (i=1; i<= nlstate+1 ; i ++) {
     moisnais=vector(1,n);        k=2*i;
     annais=vector(1,n);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     moisdc=vector(1,n);        for (j=1; j<= nlstate+1 ; j ++) {
     andc=vector(1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     agedc=vector(1,n);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     cod=ivector(1,n);        }   
     weight=vector(1,n);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     mint=matrix(1,maxwav,1,n);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     anint=matrix(1,maxwav,1,n);        for (j=1; j<= nlstate+1 ; j ++) {
     s=imatrix(1,maxwav+1,1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     adl=imatrix(1,maxwav+1,1,n);              else fprintf(ficgp," \%%*lf (\%%*lf)");
     tab=ivector(1,NCOVMAX);        }   
     ncodemax=ivector(1,8);        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     i=1;        for (j=1; j<= nlstate+1 ; j ++) {
     while (fgets(line, MAXLINE, fic) != NULL)    {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       if ((i >= firstobs) && (i <=lastobs)) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
                }   
         for (j=maxwav;j>=1;j--){        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        else fprintf(ficgp,"\" t\"\" w l 0,");
           strcpy(line,stra);      }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }    /*3eme*/
            
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    for (k1=1; k1<= m ; k1 ++) { 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         for (j=ncovcol;j>=1;j--){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         num[i]=atol(stra);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          
         */
         i=i+1;        for (i=1; i< nlstate ; i ++) {
       }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
     }          
     /* printf("ii=%d", ij);        } 
        scanf("%d",i);*/      }
   imx=i-1; /* Number of individuals */    }
     
   /* for (i=1; i<=imx; i++){    /* CV preval stable (period) */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    for (k1=1; k1<= m ; k1 ++) { 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      for (cpt=1; cpt<=nlstate ; cpt ++) {
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        k=3;
     }*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
    /*  for (i=1; i<=imx; i++){        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
      if (s[4][i]==9)  s[4][i]=-1;  set ter png small\nset size 0.65,0.65\n\
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  unset log y\n\
    plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
          
   /* Calculation of the number of parameter from char model*/        for (i=1; i< nlstate ; i ++)
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          fprintf(ficgp,"+$%d",k+i+1);
   Tprod=ivector(1,15);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   Tvaraff=ivector(1,15);        
   Tvard=imatrix(1,15,1,2);        l=3+(nlstate+ndeath)*cpt;
   Tage=ivector(1,15);              fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
            for (i=1; i< nlstate ; i ++) {
   if (strlen(model) >1){          l=3+(nlstate+ndeath)*cpt;
     j=0, j1=0, k1=1, k2=1;          fprintf(ficgp,"+$%d",l+i+1);
     j=nbocc(model,'+');        }
     j1=nbocc(model,'*');        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     cptcovn=j+1;      } 
     cptcovprod=j1;    }  
        
     strcpy(modelsav,model);    /* proba elementaires */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    for(i=1,jk=1; i <=nlstate; i++){
       printf("Error. Non available option model=%s ",model);      for(k=1; k <=(nlstate+ndeath); k++){
       fprintf(ficlog,"Error. Non available option model=%s ",model);        if (k != i) {
       goto end;          for(j=1; j <=ncovmodel; j++){
     }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                jk++; 
     for(i=(j+1); i>=1;i--){            fprintf(ficgp,"\n");
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */          }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */        }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      }
       /*scanf("%d",i);*/     }
       if (strchr(strb,'*')) {  /* Model includes a product */  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         if (strcmp(strc,"age")==0) { /* Vn*age */       for(jk=1; jk <=m; jk++) {
           cptcovprod--;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           cutv(strb,stre,strd,'V');         if (ng==2)
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           cptcovage++;         else
             Tage[cptcovage]=i;           fprintf(ficgp,"\nset title \"Probability\"\n");
             /*printf("stre=%s ", stre);*/         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         }         i=1;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */         for(k2=1; k2<=nlstate; k2++) {
           cptcovprod--;           k3=i;
           cutv(strb,stre,strc,'V');           for(k=1; k<=(nlstate+ndeath); k++) {
           Tvar[i]=atoi(stre);             if (k != k2){
           cptcovage++;               if(ng==2)
           Tage[cptcovage]=i;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
         }               else
         else {  /* Age is not in the model */                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/               ij=1;
           Tvar[i]=ncovcol+k1;               for(j=3; j <=ncovmodel; j++) {
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           Tprod[k1]=i;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           Tvard[k1][1]=atoi(strc); /* m*/                   ij++;
           Tvard[k1][2]=atoi(stre); /* n */                 }
           Tvar[cptcovn+k2]=Tvard[k1][1];                 else
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           for (k=1; k<=lastobs;k++)               }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];               fprintf(ficgp,")/(1");
           k1++;               
           k2=k2+2;               for(k1=1; k1 <=nlstate; k1++){   
         }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       }                 ij=1;
       else { /* no more sum */                 for(j=3; j <=ncovmodel; j++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
        /*  scanf("%d",i);*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       cutv(strd,strc,strb,'V');                     ij++;
       Tvar[i]=atoi(strc);                   }
       }                   else
       strcpy(modelsav,stra);                       fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                 }
         scanf("%d",i);*/                 fprintf(ficgp,")");
     } /* end of loop + */               }
   } /* end model */               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);               i=i+ncovmodel;
   printf("cptcovprod=%d ", cptcovprod);             }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);           } /* end k */
   scanf("%d ",i);*/         } /* end k2 */
     fclose(fic);       } /* end jk */
      } /* end ng */
     /*  if(mle==1){*/     fflush(ficgp); 
     if (weightopt != 1) { /* Maximisation without weights*/  }  /* end gnuplot */
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }  
     /*-calculation of age at interview from date of interview and age at death -*/  /*************** Moving average **************/
     agev=matrix(1,maxwav,1,imx);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     for (i=1; i<=imx; i++) {    int i, cpt, cptcod;
       for(m=2; (m<= maxwav); m++) {    int modcovmax =1;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    int mobilavrange, mob;
          anint[m][i]=9999;    double age;
          s[m][i]=-1;  
        }    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                             a covariate has 2 modalities */
       }    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     }  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     for (i=1; i<=imx; i++)  {      if(mobilav==1) mobilavrange=5; /* default */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      else mobilavrange=mobilav;
       for(m=1; (m<= maxwav); m++){      for (age=bage; age<=fage; age++)
         if(s[m][i] >0){        for (i=1; i<=nlstate;i++)
           if (s[m][i] >= nlstate+1) {          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             if(agedc[i]>0)            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
               if(moisdc[i]!=99 && andc[i]!=9999)      /* We keep the original values on the extreme ages bage, fage and for 
                 agev[m][i]=agedc[i];         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/         we use a 5 terms etc. until the borders are no more concerned. 
            else {      */ 
               if (andc[i]!=9999){      for (mob=3;mob <=mobilavrange;mob=mob+2){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);          for (i=1; i<=nlstate;i++){
               agev[m][i]=-1;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
             }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           else if(s[m][i] !=9){ /* Should no more exist */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                }
             if(mint[m][i]==99 || anint[m][i]==9999)              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
               agev[m][i]=1;            }
             else if(agev[m][i] <agemin){          }
               agemin=agev[m][i];        }/* end age */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      }/* end mob */
             }    }else return -1;
             else if(agev[m][i] >agemax){    return 0;
               agemax=agev[m][i];  }/* End movingaverage */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/  /************** Forecasting ******************/
             /*   agev[m][i] = age[i]+2*m;*/  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           }    /* proj1, year, month, day of starting projection 
           else { /* =9 */       agemin, agemax range of age
             agev[m][i]=1;       dateprev1 dateprev2 range of dates during which prevalence is computed
             s[m][i]=-1;       anproj2 year of en of projection (same day and month as proj1).
           }    */
         }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
         else /*= 0 Unknown */    int *popage;
           agev[m][i]=1;    double agec; /* generic age */
       }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
        double *popeffectif,*popcount;
     }    double ***p3mat;
     for (i=1; i<=imx; i++)  {    double ***mobaverage;
       for(m=1; (m<= maxwav); m++){    char fileresf[FILENAMELENGTH];
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      agelim=AGESUP;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           goto end;   
         }    strcpy(fileresf,"f"); 
       }    strcat(fileresf,fileres);
     }    if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     free_vector(severity,1,maxwav);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);    if (mobilav!=0) {
        free_matrix(anint,1,maxwav,1,n);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_vector(moisdc,1,n);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     free_vector(andc,1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
          }
     wav=ivector(1,imx);    }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    stepsize=(int) (stepm+YEARM-1)/YEARM;
        if (stepm<=12) stepsize=1;
     /* Concatenates waves */    if(estepm < stepm){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    hstepm=hstepm/stepm; 
       ncodemax[1]=1;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                                 fractional in yp1 */
          anprojmean=yp;
    codtab=imatrix(1,100,1,10);    yp2=modf((yp1*12),&yp);
    h=0;    mprojmean=yp;
    m=pow(2,cptcoveff);    yp1=modf((yp2*30.5),&yp);
      jprojmean=yp;
    for(k=1;k<=cptcoveff; k++){    if(jprojmean==0) jprojmean=1;
      for(i=1; i <=(m/pow(2,k));i++){    if(mprojmean==0) jprojmean=1;
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    i1=cptcoveff;
            h++;    if (cptcovn < 1){i1=1;}
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
          }    
        }    fprintf(ficresf,"#****** Routine prevforecast **\n");
      }  
    }  /*            if (h==(int)(YEARM*yearp)){ */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       codtab[1][2]=1;codtab[2][2]=2; */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    /* for(i=1; i <=m ;i++){        k=k+1;
       for(k=1; k <=cptcovn; k++){        fprintf(ficresf,"\n#******");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        for(j=1;j<=cptcoveff;j++) {
       }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       printf("\n");        }
       }        fprintf(ficresf,"******\n");
       scanf("%d",i);*/        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
            for(j=1; j<=nlstate+ndeath;j++){ 
    /* Calculates basic frequencies. Computes observed prevalence at single age          for(i=1; i<=nlstate;i++)              
        and prints on file fileres'p'. */            fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
            }
            for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresf,"\n");
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                  nhstepm = nhstepm/hstepm; 
     /* For Powell, parameters are in a vector p[] starting at p[1]            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            oldm=oldms;savm=savms;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
     if(mle==1){            for (h=0; h<=nhstepm; h++){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              if (h*hstepm/YEARM*stepm ==yearp) {
     }                fprintf(ficresf,"\n");
                    for(j=1;j<=cptcoveff;j++) 
     /*--------- results files --------------*/                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
                } 
               for(j=1; j<=nlstate+ndeath;j++) {
    jk=1;                ppij=0.;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                for(i=1; i<=nlstate;i++) {
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                  if (mobilav==1) 
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
    for(i=1,jk=1; i <=nlstate; i++){                  else {
      for(k=1; k <=(nlstate+ndeath); k++){                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
        if (k != i)                  }
          {                  if (h*hstepm/YEARM*stepm== yearp) {
            printf("%d%d ",i,k);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
            fprintf(ficlog,"%d%d ",i,k);                  }
            fprintf(ficres,"%1d%1d ",i,k);                } /* end i */
            for(j=1; j <=ncovmodel; j++){                if (h*hstepm/YEARM*stepm==yearp) {
              printf("%f ",p[jk]);                  fprintf(ficresf," %.3f", ppij);
              fprintf(ficlog,"%f ",p[jk]);                }
              fprintf(ficres,"%f ",p[jk]);              }/* end j */
              jk++;            } /* end h */
            }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            printf("\n");          } /* end agec */
            fprintf(ficlog,"\n");        } /* end yearp */
            fprintf(ficres,"\n");      } /* end cptcod */
          }    } /* end  cptcov */
      }         
    }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    if(mle==1){  
      /* Computing hessian and covariance matrix */    fclose(ficresf);
      ftolhess=ftol; /* Usually correct */  }
      hesscov(matcov, p, npar, delti, ftolhess, func);  
    }  /************** Forecasting *****not tested NB*************/
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
    printf("# Scales (for hessian or gradient estimation)\n");    
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
    for(i=1,jk=1; i <=nlstate; i++){    int *popage;
      for(j=1; j <=nlstate+ndeath; j++){    double calagedatem, agelim, kk1, kk2;
        if (j!=i) {    double *popeffectif,*popcount;
          fprintf(ficres,"%1d%1d",i,j);    double ***p3mat,***tabpop,***tabpopprev;
          printf("%1d%1d",i,j);    double ***mobaverage;
          fprintf(ficlog,"%1d%1d",i,j);    char filerespop[FILENAMELENGTH];
          for(k=1; k<=ncovmodel;k++){  
            printf(" %.5e",delti[jk]);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            fprintf(ficlog," %.5e",delti[jk]);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            fprintf(ficres," %.5e",delti[jk]);    agelim=AGESUP;
            jk++;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
          }    
          printf("\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
          fprintf(ficlog,"\n");    
          fprintf(ficres,"\n");    
        }    strcpy(filerespop,"pop"); 
      }    strcat(filerespop,fileres);
    }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
          printf("Problem with forecast resultfile: %s\n", filerespop);
    k=1;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
    if(mle==1)    printf("Computing forecasting: result on file '%s' \n", filerespop);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
    for(i=1;i<=npar;i++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
      /*  if (k>nlstate) k=1;  
          i1=(i-1)/(ncovmodel*nlstate)+1;    if (mobilav!=0) {
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          printf("%s%d%d",alph[k],i1,tab[i]);*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
      fprintf(ficres,"%3d",i);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      if(mle==1)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        printf("%3d",i);      }
      fprintf(ficlog,"%3d",i);    }
      for(j=1; j<=i;j++){  
        fprintf(ficres," %.5e",matcov[i][j]);    stepsize=(int) (stepm+YEARM-1)/YEARM;
        if(mle==1)    if (stepm<=12) stepsize=1;
          printf(" %.5e",matcov[i][j]);    
        fprintf(ficlog," %.5e",matcov[i][j]);    agelim=AGESUP;
      }    
      fprintf(ficres,"\n");    hstepm=1;
      if(mle==1)    hstepm=hstepm/stepm; 
        printf("\n");    
      fprintf(ficlog,"\n");    if (popforecast==1) {
      k++;      if((ficpop=fopen(popfile,"r"))==NULL) {
    }        printf("Problem with population file : %s\n",popfile);exit(0);
            fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
    while((c=getc(ficpar))=='#' && c!= EOF){      } 
      ungetc(c,ficpar);      popage=ivector(0,AGESUP);
      fgets(line, MAXLINE, ficpar);      popeffectif=vector(0,AGESUP);
      puts(line);      popcount=vector(0,AGESUP);
      fputs(line,ficparo);      
    }      i=1;   
    ungetc(c,ficpar);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
    estepm=0;     
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      imx=i;
    if (estepm==0 || estepm < stepm) estepm=stepm;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
    if (fage <= 2) {    }
      bage = ageminpar;  
      fage = agemaxpar;    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
    }     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
            k=k+1;
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        fprintf(ficrespop,"\n#******");
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for(j=1;j<=cptcoveff;j++) {
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
            }
    while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficrespop,"******\n");
      ungetc(c,ficpar);        fprintf(ficrespop,"# Age");
      fgets(line, MAXLINE, ficpar);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
      puts(line);        if (popforecast==1)  fprintf(ficrespop," [Population]");
      fputs(line,ficparo);        
    }        for (cpt=0; cpt<=0;cpt++) { 
    ungetc(c,ficpar);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
            
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            nhstepm = nhstepm/hstepm; 
                
    while((c=getc(ficpar))=='#' && c!= EOF){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      ungetc(c,ficpar);            oldm=oldms;savm=savms;
      fgets(line, MAXLINE, ficpar);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
      puts(line);          
      fputs(line,ficparo);            for (h=0; h<=nhstepm; h++){
    }              if (h==(int) (calagedatem+YEARM*cpt)) {
    ungetc(c,ficpar);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                } 
               for(j=1; j<=nlstate+ndeath;j++) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                kk1=0.;kk2=0;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
   fscanf(ficpar,"pop_based=%d\n",&popbased);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   fprintf(ficparo,"pop_based=%d\n",popbased);                    else {
   fprintf(ficres,"pop_based=%d\n",popbased);                      kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                    }
   while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);                if (h==(int)(calagedatem+12*cpt)){
     fgets(line, MAXLINE, ficpar);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     puts(line);                    /*fprintf(ficrespop," %.3f", kk1);
     fputs(line,ficparo);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   }                }
   ungetc(c,ficpar);              }
               for(i=1; i<=nlstate;i++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                kk1=0.;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                  for(j=1; j<=nlstate;j++){
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
     puts(line);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
     fputs(line,ficparo);            }
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   ungetc(c,ficpar);          }
         }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /******/
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 /*------------ gnuplot -------------*/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   strcpy(optionfilegnuplot,optionfilefiname);            nhstepm = nhstepm/hstepm; 
   strcat(optionfilegnuplot,".gp");            
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with file %s",optionfilegnuplot);            oldm=oldms;savm=savms;
   }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fclose(ficgp);            for (h=0; h<=nhstepm; h++){
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);              if (h==(int) (calagedatem+YEARM*cpt)) {
 /*--------- index.htm --------*/                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
   strcpy(optionfilehtm,optionfile);              for(j=1; j<=nlstate+ndeath;j++) {
   strcat(optionfilehtm,".htm");                kk1=0.;kk2=0;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                for(i=1; i<=nlstate;i++) {              
     printf("Problem with %s \n",optionfilehtm), exit(0);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   }                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            }
 \n            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 Total number of observations=%d <br>\n          }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        }
 <hr  size=\"2\" color=\"#EC5E5E\">     } 
  <ul><li><h4>Parameter files</h4>\n    }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n   
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);  
   fclose(fichtm);    if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      free_vector(popeffectif,0,AGESUP);
        free_vector(popcount,0,AGESUP);
 /*------------ free_vector  -------------*/    }
  chdir(path);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  free_ivector(wav,1,imx);    fclose(ficrespop);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  } /* End of popforecast */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);  int fileappend(FILE *fichier, char *optionfich)
  free_vector(agedc,1,n);  {
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    if((fichier=fopen(optionfich,"a"))==NULL) {
  fclose(ficparo);      printf("Problem with file: %s\n", optionfich);
  fclose(ficres);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
   /*--------------- Prevalence limit --------------*/    fflush(fichier);
      return (1);
   strcpy(filerespl,"pl");  }
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  /**************** function prwizard **********************/
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   }  {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    /* Wizard to print covariance matrix template */
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");    char ca[32], cb[32], cc[32];
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   fprintf(ficrespl,"\n");    int numlinepar;
    
   prlim=matrix(1,nlstate,1,nlstate);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(i=1; i <=nlstate; i++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      jj=0;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(j=1; j <=nlstate+ndeath; j++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        if(j==i) continue;
   k=0;        jj++;
   agebase=ageminpar;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   agelim=agemaxpar;        printf("%1d%1d",i,j);
   ftolpl=1.e-10;        fprintf(ficparo,"%1d%1d",i,j);
   i1=cptcoveff;        for(k=1; k<=ncovmodel;k++){
   if (cptcovn < 1){i1=1;}          /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
   for(cptcov=1;cptcov<=i1;cptcov++){          printf(" 0.");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficparo," 0.");
         k=k+1;        }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        printf("\n");
         fprintf(ficrespl,"\n#******");        fprintf(ficparo,"\n");
         printf("\n#******");      }
         fprintf(ficlog,"\n#******");    }
         for(j=1;j<=cptcoveff;j++) {    printf("# Scales (for hessian or gradient estimation)\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i <=nlstate; i++){
         }      jj=0;
         fprintf(ficrespl,"******\n");      for(j=1; j <=nlstate+ndeath; j++){
         printf("******\n");        if(j==i) continue;
         fprintf(ficlog,"******\n");        jj++;
                fprintf(ficparo,"%1d%1d",i,j);
         for (age=agebase; age<=agelim; age++){        printf("%1d%1d",i,j);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fflush(stdout);
           fprintf(ficrespl,"%.0f",age );        for(k=1; k<=ncovmodel;k++){
           for(i=1; i<=nlstate;i++)          /*      printf(" %le",delti3[i][j][k]); */
           fprintf(ficrespl," %.5f", prlim[i][i]);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           fprintf(ficrespl,"\n");          printf(" 0.");
         }          fprintf(ficparo," 0.");
       }        }
     }        numlinepar++;
   fclose(ficrespl);        printf("\n");
         fprintf(ficparo,"\n");
   /*------------- h Pij x at various ages ------------*/      }
      }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    printf("# Covariance matrix\n");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  /* # 121 Var(a12)\n\ */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  /* # 122 Cov(b12,a12) Var(b12)\n\ */
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   }  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   printf("Computing pij: result on file '%s' \n", filerespij);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
    /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   /*if (stepm<=24) stepsize=2;*/    fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
   agelim=AGESUP;    /* # 121 Var(a12)\n\ */
   hstepm=stepsize*YEARM; /* Every year of age */    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   /* hstepm=1;   aff par mois*/    
     for(itimes=1;itimes<=2;itimes++){
   k=0;      jj=0;
   for(cptcov=1;cptcov<=i1;cptcov++){      for(i=1; i <=nlstate; i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j <=nlstate+ndeath; j++){
       k=k+1;          if(j==i) continue;
         fprintf(ficrespij,"\n#****** ");          for(k=1; k<=ncovmodel;k++){
         for(j=1;j<=cptcoveff;j++)            jj++;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            ca[0]= k+'a'-1;ca[1]='\0';
         fprintf(ficrespij,"******\n");            if(itimes==1){
                      printf("#%1d%1d%d",i,j,k);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              fprintf(ficparo,"#%1d%1d%d",i,j,k);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            }else{
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/              /*  printf(" %.5le",matcov[i][j]); */
             }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            ll=0;
           oldm=oldms;savm=savms;            for(li=1;li <=nlstate; li++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                for(lj=1;lj <=nlstate+ndeath; lj++){
           fprintf(ficrespij,"# Age");                if(lj==li) continue;
           for(i=1; i<=nlstate;i++)                for(lk=1;lk<=ncovmodel;lk++){
             for(j=1; j<=nlstate+ndeath;j++)                  ll++;
               fprintf(ficrespij," %1d-%1d",i,j);                  if(ll<=jj){
           fprintf(ficrespij,"\n");                    cb[0]= lk +'a'-1;cb[1]='\0';
            for (h=0; h<=nhstepm; h++){                    if(ll<jj){
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                      if(itimes==1){
             for(i=1; i<=nlstate;i++)                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
               for(j=1; j<=nlstate+ndeath;j++)                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                      }else{
             fprintf(ficrespij,"\n");                        printf(" 0.");
              }                        fprintf(ficparo," 0.");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      }
           fprintf(ficrespij,"\n");                    }else{
         }                      if(itimes==1){
     }                        printf(" Var(%s%1d%1d)",ca,i,j);
   }                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                        printf(" 0.");
                         fprintf(ficparo," 0.");
   fclose(ficrespij);                      }
                     }
                   }
   /*---------- Forecasting ------------------*/                } /* end lk */
   if((stepm == 1) && (strcmp(model,".")==0)){              } /* end lj */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            } /* end li */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            printf("\n");
   }            fprintf(ficparo,"\n");
   else{            numlinepar++;
     erreur=108;          } /* end k*/
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        } /*end j */
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      } /* end i */
   }    } /* end itimes */
    
   } /* end of prwizard */
   /*---------- Health expectancies and variances ------------*/  /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   strcpy(filerest,"t");  { 
   strcat(filerest,fileres);    double A,B,L=0.0,sump=0.,num=0.;
   if((ficrest=fopen(filerest,"w"))==NULL) {    int i,n=0; /* n is the size of the sample */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    for (i=0;i<=imx-1 ; i++) {
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      sump=sump+weight[i];
   }      sump=sump+1;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      num=num+1;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    }
    
    
   strcpy(filerese,"e");    /* for (i=1; i<=imx; i++) 
   strcat(filerese,fileres);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    for (i=0;i<=imx-1 ; i++)
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      {
   }        if (cens[i]==1 & wav[i]>1)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          A=-x[1]/(x[2])*
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);            (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
   strcpy(fileresv,"v");        if (cens[i]==0 & wav[i]>1)
   strcat(fileresv,fileres);          A=-x[1]/(x[2])*
   if((ficresvij=fopen(fileresv,"w"))==NULL) {               (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        
   }        if (wav[i]>1 & agecens[i]>15) {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          L=L+A*weight[i];
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   calagedate=-1;        }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      }
   
   k=0;   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   for(cptcov=1;cptcov<=i1;cptcov++){   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    return -2*L*num/sump;
       k=k+1;  }
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /******************* Printing html file ***********/
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
       fprintf(ficrest,"******\n");                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
       fprintf(ficreseij,"\n#****** ");    int i;
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
       fprintf(ficreseij,"******\n");    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(ficresvij,"\n#****** ");      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"</ul>");
       fprintf(ficresvij,"******\n");    fflush(fichtm);
   }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  /******************* Gnuplot file **************/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    char dirfileres[132],optfileres[132];
       oldm=oldms;savm=savms;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    int ng;
       if(popbased==1){  
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  
        }    /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
        /*#endif */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
       epj=vector(1,nlstate+1);    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
       for(age=bage; age <=fage ;age++){    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficgp, "set ter png small\n set log y\n"); 
         if (popbased==1) {    fprintf(ficgp, "set size 0.65,0.65\n");
           for(i=1; i<=nlstate;i++)    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
             prlim[i][i]=probs[(int)age][i][k];  
         }  } 
          
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  /***********************************************/
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  /**************** Main Program *****************/
           }  /***********************************************/
           epj[nlstate+1] +=epj[j];  
         }  int main(int argc, char *argv[])
   {
         for(i=1, vepp=0.;i <=nlstate;i++)    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           for(j=1;j <=nlstate;j++)    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
             vepp += vareij[i][j][(int)age];    int jj, ll, li, lj, lk, imk;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    int numlinepar=0; /* Current linenumber of parameter file */
         for(j=1;j <=nlstate;j++){    int itimes;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    int NDIM=2;
         }  
         fprintf(ficrest,"\n");    char ca[32], cb[32], cc[32];
       }    /*  FILE *fichtm; *//* Html File */
     }    /* FILE *ficgp;*/ /*Gnuplot File */
   }    double agedeb, agefin,hf;
 free_matrix(mint,1,maxwav,1,n);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);    double fret;
   fclose(ficreseij);    double **xi,tmp,delta;
   fclose(ficresvij);  
   fclose(ficrest);    double dum; /* Dummy variable */
   fclose(ficpar);    double ***p3mat;
   free_vector(epj,1,nlstate+1);    double ***mobaverage;
      int *indx;
   /*------- Variance limit prevalence------*/      char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   strcpy(fileresvpl,"vpl");    char pathr[MAXLINE], pathimach[MAXLINE]; 
   strcat(fileresvpl,fileres);    int firstobs=1, lastobs=10;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    int sdeb, sfin; /* Status at beginning and end */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    int c,  h , cpt,l;
     exit(0);    int ju,jl, mi;
   }    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   k=0;    int mobilav=0,popforecast=0;
   for(cptcov=1;cptcov<=i1;cptcov++){    int hstepm, nhstepm;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
       k=k+1;    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    double bage, fage, age, agelim, agebase;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ftolpl=FTOL;
       fprintf(ficresvpl,"******\n");    double **prlim;
          double *severity;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    double ***param; /* Matrix of parameters */
       oldm=oldms;savm=savms;    double  *p;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    double **matcov; /* Matrix of covariance */
     }    double ***delti3; /* Scale */
  }    double *delti; /* Scale */
     double ***eij, ***vareij;
   fclose(ficresvpl);    double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   /*---------- End : free ----------------*/    double kk1, kk2;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
      double **ximort;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    char *alph[]={"a","a","b","c","d","e"}, str[4];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int *dcwave;
    
      char z[1]="c", occ;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    char strstart[80], *strt, strtend[80];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    char *stratrunc;
      int lstra;
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);    long total_usecs;
   free_matrix(agev,1,maxwav,1,imx);   
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   fprintf(fichtm,"\n</body>");  /*   textdomain (PACKAGE); */
   fclose(fichtm);  /*   setlocale (LC_CTYPE, ""); */
   fclose(ficgp);  /*   setlocale (LC_MESSAGES, ""); */
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   if(erreur >0){    (void) gettimeofday(&start_time,&tzp);
     printf("End of Imach with error or warning %d\n",erreur);    curr_time=start_time;
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    tm = *localtime(&start_time.tv_sec);
   }else{    tmg = *gmtime(&start_time.tv_sec);
    printf("End of Imach\n");    strcpy(strstart,asctime(&tm));
    fprintf(ficlog,"End of Imach\n");  
   }  /*  printf("Localtime (at start)=%s",strstart); */
   printf("See log file on %s\n",filelog);  /*  tp.tv_sec = tp.tv_sec +86400; */
   fclose(ficlog);  /*  tm = *localtime(&start_time.tv_sec); */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
    /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*printf("Total time was %d uSec.\n", total_usecs);*/  /*   tp.tv_sec = mktime(&tmg); */
   /*------ End -----------*/  /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
  end:  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 #ifdef windows  *  tm = *localtime(&time_value);
   /* chdir(pathcd);*/  *  strstart=asctime(&tm);
 #endif  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
  /*system("wgnuplot graph.plt");*/  */
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/    nberr=0; /* Number of errors and warnings */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    nbwarn=0;
  strcpy(plotcmd,GNUPLOTPROGRAM);    getcwd(pathcd, size);
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    printf("\n%s\n%s",version,fullversion);
  system(plotcmd);    if(argc <=1){
       printf("\nEnter the parameter file name: ");
 #ifdef windows      scanf("%s",pathtot);
   while (z[0] != 'q') {    }
     /* chdir(path); */    else{
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      strcpy(pathtot,argv[1]);
     scanf("%s",z);    }
     if (z[0] == 'c') system("./imach");    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     else if (z[0] == 'e') system(optionfilehtm);    /*cygwin_split_path(pathtot,path,optionfile);
     else if (z[0] == 'g') system(plotcmd);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     else if (z[0] == 'q') exit(0);    /* cutv(path,optionfile,pathtot,'\\');*/
   }  
 #endif    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 }   /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.99


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>