Diff for /imach/src/imach.c between versions 1.51 and 1.102

version 1.51, 2002/07/19 12:22:25 version 1.102, 2004/09/15 17:31:30
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.102  2004/09/15 17:31:30  brouard
      Add the possibility to read data file including tab characters.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.101  2004/09/15 10:38:38  brouard
   first survey ("cross") where individuals from different ages are    Fix on curr_time
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.100  2004/07/12 18:29:06  brouard
   second wave of interviews ("longitudinal") which measure each change    Add version for Mac OS X. Just define UNIX in Makefile
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.99  2004/06/05 08:57:40  brouard
   model. More health states you consider, more time is necessary to reach the    *** empty log message ***
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.98  2004/05/16 15:05:56  brouard
   probability to be observed in state j at the second wave    New version 0.97 . First attempt to estimate force of mortality
   conditional to be observed in state i at the first wave. Therefore    directly from the data i.e. without the need of knowing the health
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    state at each age, but using a Gompertz model: log u =a + b*age .
   'age' is age and 'sex' is a covariate. If you want to have a more    This is the basic analysis of mortality and should be done before any
   complex model than "constant and age", you should modify the program    other analysis, in order to test if the mortality estimated from the
   where the markup *Covariates have to be included here again* invites    cross-longitudinal survey is different from the mortality estimated
   you to do it.  More covariates you add, slower the    from other sources like vital statistic data.
   convergence.  
     The same imach parameter file can be used but the option for mle should be -3.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Agnès, who wrote this part of the code, tried to keep most of the
   identical for each individual. Also, if a individual missed an    former routines in order to include the new code within the former code.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Current limitations:
   split into an exact number (nh*stepm) of unobserved intermediate    A) Even if you enter covariates, i.e. with the
   states. This elementary transition (by month or quarter trimester,    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   semester or year) is model as a multinomial logistic.  The hPx    B) There is no computation of Life Expectancy nor Life Table.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.97  2004/02/20 13:25:42  lievre
   hPijx.    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    rewritten within the same printf. Workaround: many printfs.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.95  2003/07/08 07:54:34  brouard
   from the European Union.    * imach.c (Repository):
   It is copyrighted identically to a GNU software product, ie programme and    (Repository): Using imachwizard code to output a more meaningful covariance
   software can be distributed freely for non commercial use. Latest version    matrix (cov(a12,c31) instead of numbers.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
 #include <math.h>  
 #include <stdio.h>    Revision 1.93  2003/06/25 16:33:55  brouard
 #include <stdlib.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <unistd.h>    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.92  2003/06/25 16:30:45  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): On windows (cygwin) function asctime_r doesn't
 #define FILENAMELENGTH 80    exist so I changed back to asctime which exists.
 /*#define DEBUG*/  
 #define windows    Revision 1.91  2003/06/25 15:30:29  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Repository): Duplicated warning errors corrected.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    is stamped in powell.  We created a new html file for the graphs
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    concerning matrix of covariance. It has extension -cov.htm.
   
 #define NINTERVMAX 8    Revision 1.90  2003/06/24 12:34:15  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Some bugs corrected for windows. Also, when
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NCOVMAX 8 /* Maximum number of covariates */    of the covariance matrix to be input.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.89  2003/06/24 12:30:52  brouard
 #define AGESUP 130    (Module): Some bugs corrected for windows. Also, when
 #define AGEBASE 40    mle=-1 a template is output in file "or"mypar.txt with the design
 #ifdef windows    of the covariance matrix to be input.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.88  2003/06/23 17:54:56  brouard
 #else    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.87  2003/06/18 12:26:01  brouard
 #endif    Version 0.96
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.86  2003/06/17 20:04:08  brouard
 int erreur; /* Error number */    (Module): Change position of html and gnuplot routines and added
 int nvar;    routine fileappend.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.85  2003/06/17 13:12:43  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Repository): Check when date of death was earlier that
 int ndeath=1; /* Number of dead states */    current date of interview. It may happen when the death was just
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    prior to the death. In this case, dh was negative and likelihood
 int popbased=0;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 int *wav; /* Number of waves for this individuual 0 is possible */    interview.
 int maxwav; /* Maxim number of waves */    (Repository): Because some people have very long ID (first column)
 int jmin, jmax; /* min, max spacing between 2 waves */    we changed int to long in num[] and we added a new lvector for
 int mle, weightopt;    memory allocation. But we also truncated to 8 characters (left
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    truncation)
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Repository): No more line truncation errors.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.84  2003/06/13 21:44:43  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Repository): Replace "freqsummary" at a correct
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    place. It differs from routine "prevalence" which may be called
 FILE *ficlog;    many times. Probs is memory consuming and must be used with
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    parcimony.
 FILE *ficresprobmorprev;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.83  2003/06/10 13:39:11  lievre
 char filerese[FILENAMELENGTH];    *** empty log message ***
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.82  2003/06/05 15:57:20  brouard
 FILE  *ficresvpl;    Add log in  imach.c and  fullversion number is now printed.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];  */
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  /*
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];     Interpolated Markov Chain
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Short summary of the programme:
 char filelog[FILENAMELENGTH]; /* Log file */    
 char filerest[FILENAMELENGTH];    This program computes Healthy Life Expectancies from
 char fileregp[FILENAMELENGTH];    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 char popfile[FILENAMELENGTH];    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 #define NR_END 1    (if any) in individual health status.  Health expectancies are
 #define FREE_ARG char*    computed from the time spent in each health state according to a
 #define FTOL 1.0e-10    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 #define NRANSI    simplest model is the multinomial logistic model where pij is the
 #define ITMAX 200    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 #define TOL 2.0e-4    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define CGOLD 0.3819660    complex model than "constant and age", you should modify the program
 #define ZEPS 1.0e-10    where the markup *Covariates have to be included here again* invites
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    you to do it.  More covariates you add, slower the
     convergence.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    The advantage of this computer programme, compared to a simple
 #define TINY 1.0e-20    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 static double maxarg1,maxarg2;    intermediate interview, the information is lost, but taken into
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    account using an interpolation or extrapolation.  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      hPijx is the probability to be observed in state i at age x+h
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    conditional to the observed state i at age x. The delay 'h' can be
 #define rint(a) floor(a+0.5)    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 static double sqrarg;    semester or year) is modelled as a multinomial logistic.  The hPx
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    matrix is simply the matrix product of nh*stepm elementary matrices
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    and the contribution of each individual to the likelihood is simply
     hPijx.
 int imx;  
 int stepm;    Also this programme outputs the covariance matrix of the parameters but also
 /* Stepm, step in month: minimum step interpolation*/    of the life expectancies. It also computes the stable prevalence. 
     
 int estepm;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 int m,nb;    from the European Union.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    It is copyrighted identically to a GNU software product, ie programme and
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    software can be distributed freely for non commercial use. Latest version
 double **pmmij, ***probs, ***mobaverage;    can be accessed at http://euroreves.ined.fr/imach .
 double dateintmean=0;  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double *weight;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int **s; /* Status */    
 double *agedc, **covar, idx;    **********************************************************************/
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  /*
     main
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    read parameterfile
 double ftolhess; /* Tolerance for computing hessian */    read datafile
     concatwav
 /**************** split *************************/    freqsummary
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    if (mle >= 1)
 {      mlikeli
    char *s;                             /* pointer */    print results files
    int  l1, l2;                         /* length counters */    if mle==1 
        computes hessian
    l1 = strlen( path );                 /* length of path */    read end of parameter file: agemin, agemax, bage, fage, estepm
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );        begin-prev-date,...
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    open gnuplot file
    if ( s == NULL ) {                   /* no directory, so use current */    open html file
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    stable prevalence
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/     for age prevalim()
 #if     defined(__bsd__)                /* get current working directory */    h Pij x
       extern char       *getwd( );    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
       if ( getwd( dirc ) == NULL ) {    health expectancies
 #else    Variance-covariance of DFLE
       extern char       *getcwd( );    prevalence()
      movingaverage()
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    varevsij() 
 #endif    if popbased==1 varevsij(,popbased)
          return( GLOCK_ERROR_GETCWD );    total life expectancies
       }    Variance of stable prevalence
       strcpy( name, path );             /* we've got it */   end
    } else {                             /* strip direcotry from path */  */
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */   
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #include <math.h>
       dirc[l1-l2] = 0;                  /* add zero */  #include <stdio.h>
    }  #include <stdlib.h>
    l1 = strlen( dirc );                 /* length of directory */  #include <unistd.h>
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /* #include <sys/time.h> */
 #else  #include <time.h>
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #include "timeval.h"
 #endif  
    s = strrchr( name, '.' );            /* find last / */  /* #include <libintl.h> */
    s++;  /* #define _(String) gettext (String) */
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  #define MAXLINE 256
    l2= strlen( s)+1;  #define GNUPLOTPROGRAM "gnuplot"
    strncpy( finame, name, l1-l2);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    finame[l1-l2]= 0;  #define FILENAMELENGTH 132
    return( 0 );                         /* we're done */  /*#define DEBUG*/
 }  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /******************************************/  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 void replace(char *s, char*t)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   int i;  #define NINTERVMAX 8
   int lg=20;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   i=0;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   lg=strlen(t);  #define NCOVMAX 8 /* Maximum number of covariates */
   for(i=0; i<= lg; i++) {  #define MAXN 20000
     (s[i] = t[i]);  #define YEARM 12. /* Number of months per year */
     if (t[i]== '\\') s[i]='/';  #define AGESUP 130
   }  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 int nbocc(char *s, char occ)  #define DIRSEPARATOR '/'
 {  #define ODIRSEPARATOR '\\'
   int i,j=0;  #else
   int lg=20;  #define DIRSEPARATOR '\\'
   i=0;  #define ODIRSEPARATOR '/'
   lg=strlen(s);  #endif
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  /* $Id$ */
   }  /* $State$ */
   return j;  
 }  char version[]="Imach version 0.97c, September 2004, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 void cutv(char *u,char *v, char*t, char occ)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   /* cuts string t into u and v where u is ended by char occ excluding it  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  int npar=NPARMAX;
      gives u="abcedf" and v="ghi2j" */  int nlstate=2; /* Number of live states */
   int i,lg,j,p=0;  int ndeath=1; /* Number of dead states */
   i=0;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   for(j=0; j<=strlen(t)-1; j++) {  int popbased=0;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   lg=strlen(t);  int jmin, jmax; /* min, max spacing between 2 waves */
   for(j=0; j<p; j++) {  int gipmx, gsw; /* Global variables on the number of contributions 
     (u[j] = t[j]);                     to the likelihood and the sum of weights (done by funcone)*/
   }  int mle, weightopt;
      u[p]='\0';  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    for(j=0; j<= lg; j++) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     if (j>=(p+1))(v[j-p-1] = t[j]);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   }  double jmean; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /********************** nrerror ********************/  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 void nrerror(char error_text[])  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   fprintf(stderr,"ERREUR ...\n");  long ipmx; /* Number of contributions */
   fprintf(stderr,"%s\n",error_text);  double sw; /* Sum of weights */
   exit(1);  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /*********************** vector *******************/  FILE *ficresilk;
 double *vector(int nl, int nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   double *v;  FILE *fichtm, *fichtmcov; /* Html File */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  FILE *ficreseij;
   if (!v) nrerror("allocation failure in vector");  char filerese[FILENAMELENGTH];
   return v-nl+NR_END;  FILE  *ficresvij;
 }  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /************************ free vector ******************/  char fileresvpl[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /************************ivector *******************************/  int  outcmd=0;
 int *ivector(long nl,long nh)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!v) nrerror("allocation failure in ivector");  char filerest[FILENAMELENGTH];
   return v-nl+NR_END;  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /******************free ivector **************************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 void free_ivector(int *v, long nl, long nh)  
 {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   free((FREE_ARG)(v+nl-NR_END));  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /******************* imatrix *******************************/  long time_value;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  extern long time();
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char strcurr[80], strfor[80];
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define NR_END 1
   int **m;  #define FREE_ARG char*
    #define FTOL 1.0e-10
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define NRANSI 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ITMAX 200 
   m += NR_END;  
   m -= nrl;  #define TOL 2.0e-4 
    
    #define CGOLD 0.3819660 
   /* allocate rows and set pointers to them */  #define ZEPS 1.0e-10 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define GOLD 1.618034 
   m[nrl] -= ncl;  #define GLIMIT 100.0 
    #define TINY 1.0e-20 
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    static double maxarg1,maxarg2;
   /* return pointer to array of pointers to rows */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   return m;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /****************** free_imatrix *************************/  #define rint(a) floor(a+0.5)
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  static double sqrarg;
       long nch,ncl,nrh,nrl;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
      /* free an int matrix allocated by imatrix() */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  int agegomp= AGEGOMP;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  int imx; 
 }  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  int m,nb;
   long *num;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   if (!m) nrerror("allocation failure 1 in matrix()");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m += NR_END;  double **pmmij, ***probs;
   m -= nrl;  double *ageexmed,*agecens;
   double dateintmean=0;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double *weight;
   m[nrl] += NR_END;  int **s; /* Status */
   m[nrl] -= ncl;  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /*************************free matrix ************************/  /**************** split *************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   free((FREE_ARG)(m+nrl-NR_END));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /******************* ma3x *******************************/    int   l1, l2;                         /* length counters */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    l1 = strlen(path );                   /* length of path */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double ***m;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   if (!m) nrerror("allocation failure 1 in matrix()");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m += NR_END;      /* get current working directory */
   m -= nrl;      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));        return( GLOCK_ERROR_GETCWD );
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      }
   m[nrl] += NR_END;      strcpy( name, path );               /* we've got it */
   m[nrl] -= ncl;    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      strcpy( name, ss );         /* save file name */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl][ncl] += NR_END;      dirc[l1-l2] = 0;                    /* add zero */
   m[nrl][ncl] -= nll;    }
   for (j=ncl+1; j<=nch; j++)    l1 = strlen( dirc );                  /* length of directory */
     m[nrl][j]=m[nrl][j-1]+nlay;    /*#ifdef windows
      if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   for (i=nrl+1; i<=nrh; i++) {  #else
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
     for (j=ncl+1; j<=nch; j++)  #endif
       m[i][j]=m[i][j-1]+nlay;    */
   }    ss = strrchr( name, '.' );            /* find last / */
   return m;    if (ss >0){
 }      ss++;
       strcpy(ext,ss);                     /* save extension */
 /*************************free ma3x ************************/      l1= strlen( name);
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      l2= strlen(ss)+1;
 {      strncpy( finame, name, l1-l2);
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      finame[l1-l2]= 0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));    return( 0 );                          /* we're done */
 }  }
   
 /***************** f1dim *************************/  
 extern int ncom;  /******************************************/
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  void replace_back_to_slash(char *s, char*t)
    {
 double f1dim(double x)    int i;
 {    int lg=0;
   int j;    i=0;
   double f;    lg=strlen(t);
   double *xt;    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
   xt=vector(1,ncom);      if (t[i]== '\\') s[i]='/';
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    }
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /*****************brent *************************/    int lg=20;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    i=0;
 {    lg=strlen(s);
   int iter;    for(i=0; i<= lg; i++) {
   double a,b,d,etemp;    if  (s[i] == occ ) j++;
   double fu,fv,fw,fx;    }
   double ftemp;    return j;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  
    void cutv(char *u,char *v, char*t, char occ)
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   x=w=v=bx;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   fw=fv=fx=(*f)(x);       gives u="abcedf" and v="ghi2j" */
   for (iter=1;iter<=ITMAX;iter++) {    int i,lg,j,p=0;
     xm=0.5*(a+b);    i=0;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    for(j=0; j<=strlen(t)-1; j++) {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     printf(".");fflush(stdout);    }
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG    lg=strlen(t);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    for(j=0; j<p; j++) {
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      (u[j] = t[j]);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    }
 #endif       u[p]='\0';
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;     for(j=0; j<= lg; j++) {
       return fx;      if (j>=(p+1))(v[j-p-1] = t[j]);
     }    }
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /********************** nrerror ********************/
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  void nrerror(char error_text[])
       q=2.0*(q-r);  {
       if (q > 0.0) p = -p;    fprintf(stderr,"ERREUR ...\n");
       q=fabs(q);    fprintf(stderr,"%s\n",error_text);
       etemp=e;    exit(EXIT_FAILURE);
       e=d;  }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /*********************** vector *******************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double *vector(int nl, int nh)
       else {  {
         d=p/q;    double *v;
         u=x+d;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         if (u-a < tol2 || b-u < tol2)    if (!v) nrerror("allocation failure in vector");
           d=SIGN(tol1,xm-x);    return v-nl+NR_END;
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  {
     fu=(*f)(u);    free((FREE_ARG)(v+nl-NR_END));
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /************************ivector *******************************/
         SHFT(fv,fw,fx,fu)  int *ivector(long nl,long nh)
         } else {  {
           if (u < x) a=u; else b=u;    int *v;
           if (fu <= fw || w == x) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
             v=w;    if (!v) nrerror("allocation failure in ivector");
             w=u;    return v-nl+NR_END;
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /******************free ivector **************************/
             v=u;  void free_ivector(int *v, long nl, long nh)
             fv=fu;  {
           }    free((FREE_ARG)(v+nl-NR_END));
         }  }
   }  
   nrerror("Too many iterations in brent");  /************************lvector *******************************/
   *xmin=x;  long *lvector(long nl,long nh)
   return fx;  {
 }    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /****************** mnbrak ***********************/    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  /******************free lvector **************************/
   double ulim,u,r,q, dum;  void free_lvector(long *v, long nl, long nh)
   double fu;  {
      free((FREE_ARG)(v+nl-NR_END));
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /******************* imatrix *******************************/
     SHFT(dum,*ax,*bx,dum)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       SHFT(dum,*fb,*fa,dum)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       }  { 
   *cx=(*bx)+GOLD*(*bx-*ax);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   *fc=(*func)(*cx);    int **m; 
   while (*fb > *fc) {    
     r=(*bx-*ax)*(*fb-*fc);    /* allocate pointers to rows */ 
     q=(*bx-*cx)*(*fb-*fa);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!m) nrerror("allocation failure 1 in matrix()"); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m += NR_END; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m -= nrl; 
     if ((*bx-u)*(u-*cx) > 0.0) {    
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {    /* allocate rows and set pointers to them */ 
       fu=(*func)(u);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       if (fu < *fc) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m[nrl] += NR_END; 
           SHFT(*fb,*fc,fu,(*func)(u))    m[nrl] -= ncl; 
           }    
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       u=ulim;    
       fu=(*func)(u);    /* return pointer to array of pointers to rows */ 
     } else {    return m; 
       u=(*cx)+GOLD*(*cx-*bx);  } 
       fu=(*func)(u);  
     }  /****************** free_imatrix *************************/
     SHFT(*ax,*bx,*cx,u)  void free_imatrix(m,nrl,nrh,ncl,nch)
       SHFT(*fa,*fb,*fc,fu)        int **m;
       }        long nch,ncl,nrh,nrl; 
 }       /* free an int matrix allocated by imatrix() */ 
   { 
 /*************** linmin ************************/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
 int ncom;  } 
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  /******************* matrix *******************************/
    double **matrix(long nrl, long nrh, long ncl, long nch)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  {
 {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double brent(double ax, double bx, double cx,    double **m;
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if (!m) nrerror("allocation failure 1 in matrix()");
               double *fc, double (*func)(double));    m += NR_END;
   int j;    m -= nrl;
   double xx,xmin,bx,ax;  
   double fx,fb,fa;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   ncom=n;    m[nrl] += NR_END;
   pcom=vector(1,n);    m[nrl] -= ncl;
   xicom=vector(1,n);  
   nrfunc=func;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=1;j<=n;j++) {    return m;
     pcom[j]=p[j];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     xicom[j]=xi[j];     */
   }  }
   ax=0.0;  
   xx=1.0;  /*************************free matrix ************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    free((FREE_ARG)(m+nrl-NR_END));
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  /******************* ma3x *******************************/
     xi[j] *= xmin;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     p[j] += xi[j];  {
   }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   free_vector(xicom,1,n);    double ***m;
   free_vector(pcom,1,n);  
 }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** powell ************************/    m += NR_END;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m -= nrl;
             double (*func)(double []))  
 {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   void linmin(double p[], double xi[], int n, double *fret,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
               double (*func)(double []));    m[nrl] += NR_END;
   int i,ibig,j;    m[nrl] -= ncl;
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double *xits;  
   pt=vector(1,n);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   ptt=vector(1,n);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   xit=vector(1,n);    m[nrl][ncl] += NR_END;
   xits=vector(1,n);    m[nrl][ncl] -= nll;
   *fret=(*func)(p);    for (j=ncl+1; j<=nch; j++) 
   for (j=1;j<=n;j++) pt[j]=p[j];      m[nrl][j]=m[nrl][j-1]+nlay;
   for (*iter=1;;++(*iter)) {    
     fp=(*fret);    for (i=nrl+1; i<=nrh; i++) {
     ibig=0;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     del=0.0;      for (j=ncl+1; j<=nch; j++) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        m[i][j]=m[i][j-1]+nlay;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    }
     for (i=1;i<=n;i++)    return m; 
       printf(" %d %.12f",i, p[i]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     fprintf(ficlog," %d %.12f",i, p[i]);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     printf("\n");    */
     fprintf(ficlog,"\n");  }
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /*************************free ma3x ************************/
       fptt=(*fret);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #ifdef DEBUG  {
       printf("fret=%lf \n",*fret);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       fprintf(ficlog,"fret=%lf \n",*fret);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
       printf("%d",i);fflush(stdout);  }
       fprintf(ficlog,"%d",i);fflush(ficlog);  
       linmin(p,xit,n,fret,func);  /*************** function subdirf ***********/
       if (fabs(fptt-(*fret)) > del) {  char *subdirf(char fileres[])
         del=fabs(fptt-(*fret));  {
         ibig=i;    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
 #ifdef DEBUG    strcat(tmpout,"/"); /* Add to the right */
       printf("%d %.12e",i,(*fret));    strcat(tmpout,fileres);
       fprintf(ficlog,"%d %.12e",i,(*fret));    return tmpout;
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /*************** function subdirf2 ***********/
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  char *subdirf2(char fileres[], char *preop)
       }  {
       for(j=1;j<=n;j++) {    
         printf(" p=%.12e",p[j]);    /* Caution optionfilefiname is hidden */
         fprintf(ficlog," p=%.12e",p[j]);    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
       printf("\n");    strcat(tmpout,preop);
       fprintf(ficlog,"\n");    strcat(tmpout,fileres);
 #endif    return tmpout;
     }  }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /*************** function subdirf3 ***********/
       int k[2],l;  char *subdirf3(char fileres[], char *preop, char *preop2)
       k[0]=1;  {
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));    /* Caution optionfilefiname is hidden */
       fprintf(ficlog,"Max: %.12e",(*func)(p));    strcpy(tmpout,optionfilefiname);
       for (j=1;j<=n;j++) {    strcat(tmpout,"/");
         printf(" %.12e",p[j]);    strcat(tmpout,preop);
         fprintf(ficlog," %.12e",p[j]);    strcat(tmpout,preop2);
       }    strcat(tmpout,fileres);
       printf("\n");    return tmpout;
       fprintf(ficlog,"\n");  }
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /***************** f1dim *************************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  extern int ncom; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  extern double *pcom,*xicom;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  extern double (*nrfunc)(double []); 
         }   
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double f1dim(double x) 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  { 
       }    int j; 
 #endif    double f;
     double *xt; 
    
       free_vector(xit,1,n);    xt=vector(1,ncom); 
       free_vector(xits,1,n);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       free_vector(ptt,1,n);    f=(*nrfunc)(xt); 
       free_vector(pt,1,n);    free_vector(xt,1,ncom); 
       return;    return f; 
     }  } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /*****************brent *************************/
       ptt[j]=2.0*p[j]-pt[j];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       xit[j]=p[j]-pt[j];  { 
       pt[j]=p[j];    int iter; 
     }    double a,b,d,etemp;
     fptt=(*func)(ptt);    double fu,fv,fw,fx;
     if (fptt < fp) {    double ftemp;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       if (t < 0.0) {    double e=0.0; 
         linmin(p,xit,n,fret,func);   
         for (j=1;j<=n;j++) {    a=(ax < cx ? ax : cx); 
           xi[j][ibig]=xi[j][n];    b=(ax > cx ? ax : cx); 
           xi[j][n]=xit[j];    x=w=v=bx; 
         }    fw=fv=fx=(*f)(x); 
 #ifdef DEBUG    for (iter=1;iter<=ITMAX;iter++) { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      xm=0.5*(a+b); 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         for(j=1;j<=n;j++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           printf(" %.12e",xit[j]);      printf(".");fflush(stdout);
           fprintf(ficlog," %.12e",xit[j]);      fprintf(ficlog,".");fflush(ficlog);
         }  #ifdef DEBUG
         printf("\n");      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         fprintf(ficlog,"\n");      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #endif      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   }        *xmin=x; 
 }        return fx; 
       } 
 /**** Prevalence limit ****************/      ftemp=fu;
       if (fabs(e) > tol1) { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        r=(x-w)*(fx-fv); 
 {        q=(x-v)*(fx-fw); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        p=(x-v)*q-(x-w)*r; 
      matrix by transitions matrix until convergence is reached */        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
   int i, ii,j,k;        q=fabs(q); 
   double min, max, maxmin, maxmax,sumnew=0.;        etemp=e; 
   double **matprod2();        e=d; 
   double **out, cov[NCOVMAX], **pmij();        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double **newm;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double agefin, delaymax=50 ; /* Max number of years to converge */        else { 
           d=p/q; 
   for (ii=1;ii<=nlstate+ndeath;ii++)          u=x+d; 
     for (j=1;j<=nlstate+ndeath;j++){          if (u-a < tol2 || b-u < tol2) 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);            d=SIGN(tol1,xm-x); 
     }        } 
       } else { 
    cov[1]=1.;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
        } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fu=(*f)(u); 
     newm=savm;      if (fu <= fx) { 
     /* Covariates have to be included here again */        if (u >= x) a=x; else b=x; 
      cov[2]=agefin;        SHFT(v,w,x,u) 
            SHFT(fv,fw,fx,fu) 
       for (k=1; k<=cptcovn;k++) {          } else { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            if (u < x) a=u; else b=u; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/            if (fu <= fw || w == x) { 
       }              v=w; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              w=u; 
       for (k=1; k<=cptcovprod;k++)              fv=fw; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/              v=u; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/              fv=fu; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/            } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          } 
     } 
     savm=oldm;    nrerror("Too many iterations in brent"); 
     oldm=newm;    *xmin=x; 
     maxmax=0.;    return fx; 
     for(j=1;j<=nlstate;j++){  } 
       min=1.;  
       max=0.;  /****************** mnbrak ***********************/
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];              double (*func)(double)) 
         prlim[i][j]= newm[i][j]/(1-sumnew);  { 
         max=FMAX(max,prlim[i][j]);    double ulim,u,r,q, dum;
         min=FMIN(min,prlim[i][j]);    double fu; 
       }   
       maxmin=max-min;    *fa=(*func)(*ax); 
       maxmax=FMAX(maxmax,maxmin);    *fb=(*func)(*bx); 
     }    if (*fb > *fa) { 
     if(maxmax < ftolpl){      SHFT(dum,*ax,*bx,dum) 
       return prlim;        SHFT(dum,*fb,*fa,dum) 
     }        } 
   }    *cx=(*bx)+GOLD*(*bx-*ax); 
 }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
 /*************** transition probabilities ***************/      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double s1, s2;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /*double t34;*/      if ((*bx-u)*(u-*cx) > 0.0) { 
   int i,j,j1, nc, ii, jj;        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(i=1; i<= nlstate; i++){        fu=(*func)(u); 
     for(j=1; j<i;j++){        if (fu < *fc) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         /*s2 += param[i][j][nc]*cov[nc];*/            SHFT(*fb,*fc,fu,(*func)(u)) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       }        u=ulim; 
       ps[i][j]=s2;        fu=(*func)(u); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      } else { 
     }        u=(*cx)+GOLD*(*cx-*bx); 
     for(j=i+1; j<=nlstate+ndeath;j++){        fu=(*func)(u); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      SHFT(*ax,*bx,*cx,u) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        SHFT(*fa,*fb,*fc,fu) 
       }        } 
       ps[i][j]=s2;  } 
     }  
   }  /*************** linmin ************************/
     /*ps[3][2]=1;*/  
   int ncom; 
   for(i=1; i<= nlstate; i++){  double *pcom,*xicom;
      s1=0;  double (*nrfunc)(double []); 
     for(j=1; j<i; j++)   
       s1+=exp(ps[i][j]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(j=i+1; j<=nlstate+ndeath; j++)  { 
       s1+=exp(ps[i][j]);    double brent(double ax, double bx, double cx, 
     ps[i][i]=1./(s1+1.);                 double (*f)(double), double tol, double *xmin); 
     for(j=1; j<i; j++)    double f1dim(double x); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for(j=i+1; j<=nlstate+ndeath; j++)                double *fc, double (*func)(double)); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    int j; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    double xx,xmin,bx,ax; 
   } /* end i */    double fx,fb,fa;
    
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    ncom=n; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    pcom=vector(1,n); 
       ps[ii][jj]=0;    xicom=vector(1,n); 
       ps[ii][ii]=1;    nrfunc=func; 
     }    for (j=1;j<=n;j++) { 
   }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
     } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    ax=0.0; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    xx=1.0; 
      printf("%lf ",ps[ii][jj]);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
    }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     printf("\n ");  #ifdef DEBUG
     }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     printf("\n ");printf("%lf ",cov[2]);*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*  #endif
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    for (j=1;j<=n;j++) { 
   goto end;*/      xi[j] *= xmin; 
     return ps;      p[j] += xi[j]; 
 }    } 
     free_vector(xicom,1,n); 
 /**************** Product of 2 matrices ******************/    free_vector(pcom,1,n); 
   } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  char *asc_diff_time(long time_sec, char ascdiff[])
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    long sec_left, days, hours, minutes;
   /* in, b, out are matrice of pointers which should have been initialized    days = (time_sec) / (60*60*24);
      before: only the contents of out is modified. The function returns    sec_left = (time_sec) % (60*60*24);
      a pointer to pointers identical to out */    hours = (sec_left) / (60*60) ;
   long i, j, k;    sec_left = (sec_left) %(60*60);
   for(i=nrl; i<= nrh; i++)    minutes = (sec_left) /60;
     for(k=ncolol; k<=ncoloh; k++)    sec_left = (sec_left) % (60);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         out[i][k] +=in[i][j]*b[j][k];    return ascdiff;
   }
   return out;  
 }  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
 /************* Higher Matrix Product ***************/  { 
     void linmin(double p[], double xi[], int n, double *fret, 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )                double (*func)(double [])); 
 {    int i,ibig,j; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double del,t,*pt,*ptt,*xit;
      duration (i.e. until    double fp,fptt;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double *xits;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    int niterf, itmp;
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be    pt=vector(1,n); 
      included manually here.    ptt=vector(1,n); 
     xit=vector(1,n); 
      */    xits=vector(1,n); 
     *fret=(*func)(p); 
   int i, j, d, h, k;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double **out, cov[NCOVMAX];    for (*iter=1;;++(*iter)) { 
   double **newm;      fp=(*fret); 
       ibig=0; 
   /* Hstepm could be zero and should return the unit matrix */      del=0.0; 
   for (i=1;i<=nlstate+ndeath;i++)      last_time=curr_time;
     for (j=1;j<=nlstate+ndeath;j++){      (void) gettimeofday(&curr_time,&tzp);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       po[i][j][0]=(i==j ? 1.0 : 0.0);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      */
   for(h=1; h <=nhstepm; h++){     for (i=1;i<=n;i++) {
     for(d=1; d <=hstepm; d++){        printf(" %d %.12f",i, p[i]);
       newm=savm;        fprintf(ficlog," %d %.12lf",i, p[i]);
       /* Covariates have to be included here again */        fprintf(ficrespow," %.12lf", p[i]);
       cov[1]=1.;      }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      printf("\n");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fprintf(ficlog,"\n");
       for (k=1; k<=cptcovage;k++)      fprintf(ficrespow,"\n");fflush(ficrespow);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if(*iter <=3){
       for (k=1; k<=cptcovprod;k++)        tm = *localtime(&curr_time.tv_sec);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        itmp = strlen(strcurr);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          strcurr[itmp-1]='\0';
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       savm=oldm;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       oldm=newm;        for(niterf=10;niterf<=30;niterf+=10){
     }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for(i=1; i<=nlstate+ndeath; i++)          tmf = *localtime(&forecast_time.tv_sec);
       for(j=1;j<=nlstate+ndeath;j++) {  /*      asctime_r(&tmf,strfor); */
         po[i][j][h]=newm[i][j];          strcpy(strfor,asctime(&tmf));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          itmp = strlen(strfor);
          */          if(strfor[itmp-1]=='\n')
       }          strfor[itmp-1]='\0';
   } /* end h */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   return po;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 }        }
       }
       for (i=1;i<=n;i++) { 
 /*************** log-likelihood *************/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 double func( double *x)        fptt=(*fret); 
 {  #ifdef DEBUG
   int i, ii, j, k, mi, d, kk;        printf("fret=%lf \n",*fret);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        fprintf(ficlog,"fret=%lf \n",*fret);
   double **out;  #endif
   double sw; /* Sum of weights */        printf("%d",i);fflush(stdout);
   double lli; /* Individual log likelihood */        fprintf(ficlog,"%d",i);fflush(ficlog);
   long ipmx;        linmin(p,xit,n,fret,func); 
   /*extern weight */        if (fabs(fptt-(*fret)) > del) { 
   /* We are differentiating ll according to initial status */          del=fabs(fptt-(*fret)); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          ibig=i; 
   /*for(i=1;i<imx;i++)        } 
     printf(" %d\n",s[4][i]);  #ifdef DEBUG
   */        printf("%d %.12e",i,(*fret));
   cov[1]=1.;        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   for(k=1; k<=nlstate; k++) ll[k]=0.;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          printf(" x(%d)=%.12e",j,xit[j]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for(mi=1; mi<= wav[i]-1; mi++){        }
       for (ii=1;ii<=nlstate+ndeath;ii++)        for(j=1;j<=n;j++) {
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf(" p=%.12e",p[j]);
       for(d=0; d<dh[mi][i]; d++){          fprintf(ficlog," p=%.12e",p[j]);
         newm=savm;        }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        printf("\n");
         for (kk=1; kk<=cptcovage;kk++) {        fprintf(ficlog,"\n");
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #endif
         }      } 
              if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        int k[2],l;
         savm=oldm;        k[0]=1;
         oldm=newm;        k[1]=-1;
                printf("Max: %.12e",(*func)(p));
                fprintf(ficlog,"Max: %.12e",(*func)(p));
       } /* end mult */        for (j=1;j<=n;j++) {
                printf(" %.12e",p[j]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          fprintf(ficlog," %.12e",p[j]);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        }
       ipmx +=1;        printf("\n");
       sw += weight[i];        fprintf(ficlog,"\n");
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for(l=0;l<=1;l++) {
     } /* end of wave */          for (j=1;j<=n;j++) {
   } /* end of individual */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   return -l;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }        }
   #endif
   
 /*********** Maximum Likelihood Estimation ***************/  
         free_vector(xit,1,n); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   int i,j, iter;        free_vector(pt,1,n); 
   double **xi,*delti;        return; 
   double fret;      } 
   xi=matrix(1,npar,1,npar);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (i=1;i<=npar;i++)      for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++)        ptt[j]=2.0*p[j]-pt[j]; 
       xi[i][j]=(i==j ? 1.0 : 0.0);        xit[j]=p[j]-pt[j]; 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        pt[j]=p[j]; 
   powell(p,xi,npar,ftol,&iter,&fret,func);      } 
       fptt=(*func)(ptt); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      if (fptt < fp) { 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
 }          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
 /**** Computes Hessian and covariance matrix ***/            xi[j][n]=xit[j]; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          }
 {  #ifdef DEBUG
   double  **a,**y,*x,pd;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double **hess;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i, j,jk;          for(j=1;j<=n;j++){
   int *indx;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   double hessii(double p[], double delta, int theta, double delti[]);          }
   double hessij(double p[], double delti[], int i, int j);          printf("\n");
   void lubksb(double **a, int npar, int *indx, double b[]) ;          fprintf(ficlog,"\n");
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #endif
         }
   hess=matrix(1,npar,1,npar);      } 
     } 
   printf("\nCalculation of the hessian matrix. Wait...\n");  } 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  /**** Prevalence limit (stable prevalence)  ****************/
     printf("%d",i);fflush(stdout);  
     fprintf(ficlog,"%d",i);fflush(ficlog);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     hess[i][i]=hessii(p,ftolhess,i,delti);  {
     /*printf(" %f ",p[i]);*/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     /*printf(" %lf ",hess[i][i]);*/       matrix by transitions matrix until convergence is reached */
   }  
      int i, ii,j,k;
   for (i=1;i<=npar;i++) {    double min, max, maxmin, maxmax,sumnew=0.;
     for (j=1;j<=npar;j++)  {    double **matprod2();
       if (j>i) {    double **out, cov[NCOVMAX], **pmij();
         printf(".%d%d",i,j);fflush(stdout);    double **newm;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    double agefin, delaymax=50 ; /* Max number of years to converge */
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];        for (ii=1;ii<=nlstate+ndeath;ii++)
         /*printf(" %lf ",hess[i][j]);*/      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
   }  
   printf("\n");     cov[1]=1.;
   fprintf(ficlog,"\n");   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      newm=savm;
        /* Covariates have to be included here again */
   a=matrix(1,npar,1,npar);       cov[2]=agefin;
   y=matrix(1,npar,1,npar);    
   x=vector(1,npar);        for (k=1; k<=cptcovn;k++) {
   indx=ivector(1,npar);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=1;i<=npar;i++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        }
   ludcmp(a,npar,indx,&pd);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   for (j=1;j<=npar;j++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     lubksb(a,npar,indx,x);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for (i=1;i<=npar;i++){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       matcov[i][j]=x[i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     }  
   }      savm=oldm;
       oldm=newm;
   printf("\n#Hessian matrix#\n");      maxmax=0.;
   fprintf(ficlog,"\n#Hessian matrix#\n");      for(j=1;j<=nlstate;j++){
   for (i=1;i<=npar;i++) {        min=1.;
     for (j=1;j<=npar;j++) {        max=0.;
       printf("%.3e ",hess[i][j]);        for(i=1; i<=nlstate; i++) {
       fprintf(ficlog,"%.3e ",hess[i][j]);          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     printf("\n");          prlim[i][j]= newm[i][j]/(1-sumnew);
     fprintf(ficlog,"\n");          max=FMAX(max,prlim[i][j]);
   }          min=FMIN(min,prlim[i][j]);
         }
   /* Recompute Inverse */        maxmin=max-min;
   for (i=1;i<=npar;i++)        maxmax=FMAX(maxmax,maxmin);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      }
   ludcmp(a,npar,indx,&pd);      if(maxmax < ftolpl){
         return prlim;
   /*  printf("\n#Hessian matrix recomputed#\n");      }
     }
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** transition probabilities ***************/ 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       y[i][j]=x[i];  {
       printf("%.3e ",y[i][j]);    double s1, s2;
       fprintf(ficlog,"%.3e ",y[i][j]);    /*double t34;*/
     }    int i,j,j1, nc, ii, jj;
     printf("\n");  
     fprintf(ficlog,"\n");      for(i=1; i<= nlstate; i++){
   }        for(j=1; j<i;j++){
   */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             /*s2 += param[i][j][nc]*cov[nc];*/
   free_matrix(a,1,npar,1,npar);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   free_matrix(y,1,npar,1,npar);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   free_vector(x,1,npar);          }
   free_ivector(indx,1,npar);          ps[i][j]=s2;
   free_matrix(hess,1,npar,1,npar);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         }
         for(j=i+1; j<=nlstate+ndeath;j++){
 }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /*************** hessian matrix ****************/  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 double hessii( double x[], double delta, int theta, double delti[])          }
 {          ps[i][j]=s2;
   int i;        }
   int l=1, lmax=20;      }
   double k1,k2;      /*ps[3][2]=1;*/
   double p2[NPARMAX+1];      
   double res;      for(i=1; i<= nlstate; i++){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        s1=0;
   double fx;        for(j=1; j<i; j++)
   int k=0,kmax=10;          s1+=exp(ps[i][j]);
   double l1;        for(j=i+1; j<=nlstate+ndeath; j++)
           s1+=exp(ps[i][j]);
   fx=func(x);        ps[i][i]=1./(s1+1.);
   for (i=1;i<=npar;i++) p2[i]=x[i];        for(j=1; j<i; j++)
   for(l=0 ; l <=lmax; l++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
     l1=pow(10,l);        for(j=i+1; j<=nlstate+ndeath; j++)
     delts=delt;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(k=1 ; k <kmax; k=k+1){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       delt = delta*(l1*k);      } /* end i */
       p2[theta]=x[theta] +delt;      
       k1=func(p2)-fx;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       p2[theta]=x[theta]-delt;        for(jj=1; jj<= nlstate+ndeath; jj++){
       k2=func(p2)-fx;          ps[ii][jj]=0;
       /*res= (k1-2.0*fx+k2)/delt/delt; */          ps[ii][ii]=1;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        }
            }
 #ifdef DEBUG      
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 #endif  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  /*         printf("ddd %lf ",ps[ii][jj]); */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /*       } */
         k=kmax;  /*       printf("\n "); */
       }  /*        } */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /*        printf("\n ");printf("%lf ",cov[2]); */
         k=kmax; l=lmax*10.;         /*
       }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        goto end;*/
         delts=delt;      return ps;
       }  }
     }  
   }  /**************** Product of 2 matrices ******************/
   delti[theta]=delts;  
   return res;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
    {
 }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 double hessij( double x[], double delti[], int thetai,int thetaj)    /* in, b, out are matrice of pointers which should have been initialized 
 {       before: only the contents of out is modified. The function returns
   int i;       a pointer to pointers identical to out */
   int l=1, l1, lmax=20;    long i, j, k;
   double k1,k2,k3,k4,res,fx;    for(i=nrl; i<= nrh; i++)
   double p2[NPARMAX+1];      for(k=ncolol; k<=ncoloh; k++)
   int k;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   fx=func(x);  
   for (k=1; k<=2; k++) {    return out;
     for (i=1;i<=npar;i++) p2[i]=x[i];  }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;  /************* Higher Matrix Product ***************/
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  {
     k2=func(p2)-fx;    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
     p2[thetai]=x[thetai]-delti[thetai]/k;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       nhstepm*hstepm matrices. 
     k3=func(p2)-fx;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
     p2[thetai]=x[thetai]-delti[thetai]/k;       for the memory).
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       Model is determined by parameters x and covariates have to be 
     k4=func(p2)-fx;       included manually here. 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG       */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int i, j, d, h, k;
 #endif    double **out, cov[NCOVMAX];
   }    double **newm;
   return res;  
 }    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
 /************** Inverse of matrix **************/      for (j=1;j<=nlstate+ndeath;j++){
 void ludcmp(double **a, int n, int *indx, double *d)        oldm[i][j]=(i==j ? 1.0 : 0.0);
 {        po[i][j][0]=(i==j ? 1.0 : 0.0);
   int i,imax,j,k;      }
   double big,dum,sum,temp;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double *vv;    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
   vv=vector(1,n);        newm=savm;
   *d=1.0;        /* Covariates have to be included here again */
   for (i=1;i<=n;i++) {        cov[1]=1.;
     big=0.0;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (j=1;j<=n;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       if ((temp=fabs(a[i][j])) > big) big=temp;        for (k=1; k<=cptcovage;k++)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     vv[i]=1.0/big;        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  
       sum=a[i][j];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       a[i][j]=sum;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     big=0.0;        savm=oldm;
     for (i=j;i<=n;i++) {        oldm=newm;
       sum=a[i][j];      }
       for (k=1;k<j;k++)      for(i=1; i<=nlstate+ndeath; i++)
         sum -= a[i][k]*a[k][j];        for(j=1;j<=nlstate+ndeath;j++) {
       a[i][j]=sum;          po[i][j][h]=newm[i][j];
       if ( (dum=vv[i]*fabs(sum)) >= big) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         big=dum;           */
         imax=i;        }
       }    } /* end h */
     }    return po;
     if (j != imax) {  }
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /*************** log-likelihood *************/
         a[j][k]=dum;  double func( double *x)
       }  {
       *d = -(*d);    int i, ii, j, k, mi, d, kk;
       vv[imax]=vv[j];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
     indx[j]=imax;    double sw; /* Sum of weights */
     if (a[j][j] == 0.0) a[j][j]=TINY;    double lli; /* Individual log likelihood */
     if (j != n) {    int s1, s2;
       dum=1.0/(a[j][j]);    double bbh, survp;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    long ipmx;
     }    /*extern weight */
   }    /* We are differentiating ll according to initial status */
   free_vector(vv,1,n);  /* Doesn't work */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 ;    /*for(i=1;i<imx;i++) 
 }      printf(" %d\n",s[4][i]);
     */
 void lubksb(double **a, int n, int *indx, double b[])    cov[1]=1.;
 {  
   int i,ii=0,ip,j;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double sum;  
      if(mle==1){
   for (i=1;i<=n;i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     ip=indx[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     sum=b[ip];        for(mi=1; mi<= wav[i]-1; mi++){
     b[ip]=b[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (ii)            for (j=1;j<=nlstate+ndeath;j++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     else if (sum) ii=i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum;            }
   }          for(d=0; d<dh[mi][i]; d++){
   for (i=n;i>=1;i--) {            newm=savm;
     sum=b[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            for (kk=1; kk<=cptcovage;kk++) {
     b[i]=sum/a[i][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************ Frequencies ********************/            savm=oldm;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            oldm=newm;
 {  /* Some frequencies */          } /* end mult */
          
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   int first;          /* But now since version 0.9 we anticipate for bias at large stepm.
   double ***freq; /* Frequencies */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double *pp;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double pos, k2, dateintsum=0,k2cpt=0;           * the nearest (and in case of equal distance, to the lowest) interval but now
   FILE *ficresp;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   char fileresp[FILENAMELENGTH];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
   pp=vector(1,nlstate);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * -stepm/2 to stepm/2 .
   strcpy(fileresp,"p");           * For stepm=1 the results are the same as for previous versions of Imach.
   strcat(fileresp,fileres);           * For stepm > 1 the results are less biased than in previous versions. 
   if((ficresp=fopen(fileresp,"w"))==NULL) {           */
     printf("Problem with prevalence resultfile: %s\n", fileresp);          s1=s[mw[mi][i]][i];
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          s2=s[mw[mi+1][i]][i];
     exit(0);          bbh=(double)bh[mi][i]/(double)stepm; 
   }          /* bias bh is positive if real duration
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * is higher than the multiple of stepm and negative otherwise.
   j1=0;           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   j=cptcoveff;          if( s2 > nlstate){ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                to the likelihood is the probability to die between last step unit time and current 
   first=1;               step unit time, which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
   for(k1=1; k1<=j;k1++){               In version up to 0.92 likelihood was computed
     for(i1=1; i1<=ncodemax[k1];i1++){          as if date of death was unknown. Death was treated as any other
       j1++;          health state: the date of the interview describes the actual state
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          and not the date of a change in health state. The former idea was
         scanf("%d", i);*/          to consider that at each interview the state was recorded
       for (i=-1; i<=nlstate+ndeath; i++)            (healthy, disable or death) and IMaCh was corrected; but when we
         for (jk=-1; jk<=nlstate+ndeath; jk++)            introduced the exact date of death then we should have modified
           for(m=agemin; m <= agemax+3; m++)          the contribution of an exact death to the likelihood. This new
             freq[i][jk][m]=0;          contribution is smaller and very dependent of the step unit
                stepm. It is no more the probability to die between last interview
       dateintsum=0;          and month of death but the probability to survive from last
       k2cpt=0;          interview up to one month before death multiplied by the
       for (i=1; i<=imx; i++) {          probability to die within a month. Thanks to Chris
         bool=1;          Jackson for correcting this bug.  Former versions increased
         if  (cptcovn>0) {          mortality artificially. The bad side is that we add another loop
           for (z1=1; z1<=cptcoveff; z1++)          which slows down the processing. The difference can be up to 10%
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          lower mortality.
               bool=0;            */
         }            lli=log(out[s1][s2] - savm[s1][s2]);
         if (bool==1) {          }else{
           for(m=firstpass; m<=lastpass; m++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             k2=anint[m][i]+(mint[m][i]/12.);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          } 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;          /*if(lli ==000.0)*/
               if (m<lastpass) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ipmx +=1;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          sw += weight[i];
               }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                      } /* end of wave */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      } /* end of individual */
                 dateintsum=dateintsum+k2;    }  else if(mle==2){
                 k2cpt++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }
           for(d=0; d<=dh[mi][i]; d++){
       if  (cptcovn>0) {            newm=savm;
         fprintf(ficresp, "\n#********** Variable ");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficresp, "**********\n#");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresp, "\n");            savm=oldm;
                  oldm=newm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){          } /* end mult */
         if(i==(int)agemax+3){        
           fprintf(ficlog,"Total");          s1=s[mw[mi][i]][i];
         }else{          s2=s[mw[mi+1][i]][i];
           if(first==1){          bbh=(double)bh[mi][i]/(double)stepm; 
             first=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             printf("See log file for details...\n");          ipmx +=1;
           }          sw += weight[i];
           fprintf(ficlog,"Age %d", i);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    }  else if(mle==3){  /* exponential inter-extrapolation */
             pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1, pos=0; m <=0 ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             pos += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
           if(pp[jk]>=1.e-10){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(first==1){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            }
             }          for(d=0; d<dh[mi][i]; d++){
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            newm=savm;
           }else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if(first==1)            for (kk=1; kk<=cptcovage;kk++) {
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            }
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          } /* end mult */
             pp[jk] += freq[jk][m][i];        
         }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
         for(jk=1,pos=0; jk <=nlstate ; jk++)          bbh=(double)bh[mi][i]/(double)stepm; 
           pos += pp[jk];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           if(pos>=1.e-5){          sw += weight[i];
             if(first==1)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        } /* end of wave */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } /* end of individual */
           }else{    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             if(first==1)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
           if( i <= (int) agemax){            for (j=1;j<=nlstate+ndeath;j++){
             if(pos>=1.e-5){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               probs[i][jk][j1]= pp[jk]/pos;            }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          for(d=0; d<dh[mi][i]; d++){
             }            newm=savm;
             else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
                  
         for(jk=-1; jk <=nlstate+ndeath; jk++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(m=-1; m <=nlstate+ndeath; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if(freq[jk][m][i] !=0 ) {            savm=oldm;
             if(first==1)            oldm=newm;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          } /* end mult */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        
             }          s1=s[mw[mi][i]][i];
         if(i <= (int) agemax)          s2=s[mw[mi+1][i]][i];
           fprintf(ficresp,"\n");          if( s2 > nlstate){ 
         if(first==1)            lli=log(out[s1][s2] - savm[s1][s2]);
           printf("Others in log...\n");          }else{
         fprintf(ficlog,"\n");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          }
     }          ipmx +=1;
   }          sw += weight[i];
   dateintmean=dateintsum/k2cpt;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fclose(ficresp);        } /* end of wave */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } /* end of individual */
   free_vector(pp,1,nlstate);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* End of Freq */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /************ Prevalence ********************/            for (j=1;j<=nlstate+ndeath;j++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {  /* Some frequencies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          for(d=0; d<dh[mi][i]; d++){
   double ***freq; /* Frequencies */            newm=savm;
   double *pp;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double pos, k2;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   pp=vector(1,nlstate);            }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;            savm=oldm;
              oldm=newm;
   j=cptcoveff;          } /* end mult */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        
            s1=s[mw[mi][i]][i];
   for(k1=1; k1<=j;k1++){          s2=s[mw[mi+1][i]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       j1++;          ipmx +=1;
                sw += weight[i];
       for (i=-1; i<=nlstate+ndeath; i++)            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           for(m=agemin; m <= agemax+3; m++)        } /* end of wave */
             freq[i][jk][m]=0;      } /* end of individual */
          } /* End of if */
       for (i=1; i<=imx; i++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         bool=1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         if  (cptcovn>0) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for (z1=1; z1<=cptcoveff; z1++)    return -l;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  }
               bool=0;  
         }  /*************** log-likelihood *************/
         if (bool==1) {  double funcone( double *x)
           for(m=firstpass; m<=lastpass; m++){  {
             k2=anint[m][i]+(mint[m][i]/12.);    /* Same as likeli but slower because of a lot of printf and if */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    int i, ii, j, k, mi, d, kk;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double **out;
               if (m<lastpass) {    double lli; /* Individual log likelihood */
                 if (calagedate>0)    double llt;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    int s1, s2;
                 else    double bbh, survp;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /*extern weight */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    /* We are differentiating ll according to initial status */
               }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             }    /*for(i=1;i<imx;i++) 
           }      printf(" %d\n",s[4][i]);
         }    */
       }    cov[1]=1.;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         for(jk=1; jk <=nlstate ; jk++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){      for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1, pos=0; m <=0 ; m++)        for (ii=1;ii<=nlstate+ndeath;ii++)
             pos += freq[jk][m][i];          for (j=1;j<=nlstate+ndeath;j++){
         }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(d=0; d<dh[mi][i]; d++){
             pp[jk] += freq[jk][m][i];          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
         for(jk=1; jk <=nlstate ; jk++){              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if( i <= (int) agemax){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if(pos>=1.e-5){          savm=oldm;
               probs[i][jk][j1]= pp[jk]/pos;          oldm=newm;
             }        } /* end mult */
           }        
         }/* end jk */        s1=s[mw[mi][i]][i];
       }/* end i */        s2=s[mw[mi+1][i]][i];
     } /* end i1 */        bbh=(double)bh[mi][i]/(double)stepm; 
   } /* end k1 */        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
           */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   free_vector(pp,1,nlstate);          lli=log(out[s1][s2] - savm[s1][s2]);
          } else if (mle==1){
 }  /* End of Freq */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
 /************* Waves Concatenation ***************/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          lli=log(out[s1][s2]); /* Original formula */
      Death is a valid wave (if date is known).        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          lli=log(out[s1][s2]); /* Original formula */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        } /* End of if */
      and mw[mi+1][i]. dh depends on stepm.        ipmx +=1;
      */        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, mi, m;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        if(globpr){
      double sum=0., jmean=0.;*/          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   int first;   %10.6f %10.6f %10.6f ", \
   int j, k=0,jk, ju, jl;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double sum=0.;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   first=0;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   jmin=1e+5;            llt +=ll[k]*gipmx/gsw;
   jmax=-1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   jmean=0.;          }
   for(i=1; i<=imx; i++){          fprintf(ficresilk," %10.6f\n", -llt);
     mi=0;        }
     m=firstpass;      } /* end of wave */
     while(s[m][i] <= nlstate){    } /* end of individual */
       if(s[m][i]>=1)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         mw[++mi][i]=m;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       if(m >=lastpass)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         break;    if(globpr==0){ /* First time we count the contributions and weights */
       else      gipmx=ipmx;
         m++;      gsw=sw;
     }/* end while */    }
     if (s[m][i] > nlstate){    return -l;
       mi++;     /* Death is another wave */  }
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */  
       mw[mi][i]=m;  /*************** function likelione ***********/
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     wav[i]=mi;    /* This routine should help understanding what is done with 
     if(mi==0){       the selection of individuals/waves and
       if(first==0){       to check the exact contribution to the likelihood.
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);       Plotting could be done.
         first=1;     */
       }    int k;
       if(first==1){  
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    if(*globpri !=0){ /* Just counts and sums, no printings */
       }      strcpy(fileresilk,"ilk"); 
     } /* end mi==0 */      strcat(fileresilk,fileres);
   }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   for(i=1; i<=imx; i++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(mi=1; mi<wav[i];mi++){      }
       if (stepm <=0)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         dh[mi][i]=1;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       else{      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         if (s[mw[mi+1][i]][i] > nlstate) {      for(k=1; k<=nlstate; k++) 
           if (agedc[i] < 2*AGESUP) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           if(j==0) j=1;  /* Survives at least one month after exam */    }
           k=k+1;  
           if (j >= jmax) jmax=j;    *fretone=(*funcone)(p);
           if (j <= jmin) jmin=j;    if(*globpri !=0){
           sum=sum+j;      fclose(ficresilk);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           }      fflush(fichtm); 
         }    } 
         else{    return;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  }
           k=k+1;  
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;  /*********** Maximum Likelihood Estimation ***************/
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         }  {
         jk= j/stepm;    int i,j, iter;
         jl= j -jk*stepm;    double **xi;
         ju= j -(jk+1)*stepm;    double fret;
         if(jl <= -ju)    double fretone; /* Only one call to likelihood */
           dh[mi][i]=jk;    /*  char filerespow[FILENAMELENGTH];*/
         else    xi=matrix(1,npar,1,npar);
           dh[mi][i]=jk+1;    for (i=1;i<=npar;i++)
         if(dh[mi][i]==0)      for (j=1;j<=npar;j++)
           dh[mi][i]=1; /* At least one step */        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     }    strcpy(filerespow,"pow"); 
   }    strcat(filerespow,fileres);
   jmean=sum/k;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      printf("Problem with resultfile: %s\n", filerespow);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
  }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 /*********** Tricode ****************************/    for (i=1;i<=nlstate;i++)
 void tricode(int *Tvar, int **nbcode, int imx)      for(j=1;j<=nlstate+ndeath;j++)
 {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   int Ndum[20],ij=1, k, j, i;    fprintf(ficrespow,"\n");
   int cptcode=0;  
   cptcoveff=0;    powell(p,xi,npar,ftol,&iter,&fret,func);
    
   for (k=0; k<19; k++) Ndum[k]=0;    fclose(ficrespow);
   for (k=1; k<=7; k++) ncodemax[k]=0;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);  }
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  /**** Computes Hessian and covariance matrix ***/
       if (ij > cptcode) cptcode=ij;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     }  {
     double  **a,**y,*x,pd;
     for (i=0; i<=cptcode; i++) {    double **hess;
       if(Ndum[i]!=0) ncodemax[j]++;    int i, j,jk;
     }    int *indx;
     ij=1;  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for (i=1; i<=ncodemax[j]; i++) {    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for (k=0; k<=19; k++) {    void ludcmp(double **a, int npar, int *indx, double *d) ;
         if (Ndum[k] != 0) {    double gompertz(double p[]);
           nbcode[Tvar[j]][ij]=k;    hess=matrix(1,npar,1,npar);
            
           ij++;    printf("\nCalculation of the hessian matrix. Wait...\n");
         }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         if (ij > ncodemax[j]) break;    for (i=1;i<=npar;i++){
       }        printf("%d",i);fflush(stdout);
     }      fprintf(ficlog,"%d",i);fflush(ficlog);
   }       
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
  for (k=0; k<19; k++) Ndum[k]=0;      
       /*  printf(" %f ",p[i]);
  for (i=1; i<=ncovmodel-2; i++) {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
    ij=Tvar[i];    }
    Ndum[ij]++;    
  }    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
  ij=1;        if (j>i) { 
  for (i=1; i<=10; i++) {          printf(".%d%d",i,j);fflush(stdout);
    if((Ndum[i]!=0) && (i<=ncovcol)){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      Tvaraff[ij]=i;          hess[i][j]=hessij(p,delti,i,j,func,npar);
      ij++;          
    }          hess[j][i]=hess[i][j];    
  }          /*printf(" %lf ",hess[i][j]);*/
          }
  cptcoveff=ij-1;      }
 }    }
     printf("\n");
 /*********** Health Expectancies ****************/    fprintf(ficlog,"\n");
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    
   /* Health expectancies */    a=matrix(1,npar,1,npar);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    y=matrix(1,npar,1,npar);
   double age, agelim, hf;    x=vector(1,npar);
   double ***p3mat,***varhe;    indx=ivector(1,npar);
   double **dnewm,**doldm;    for (i=1;i<=npar;i++)
   double *xp;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double **gp, **gm;    ludcmp(a,npar,indx,&pd);
   double ***gradg, ***trgradg;  
   int theta;    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      x[j]=1;
   xp=vector(1,npar);      lubksb(a,npar,indx,x);
   dnewm=matrix(1,nlstate*2,1,npar);      for (i=1;i<=npar;i++){ 
   doldm=matrix(1,nlstate*2,1,nlstate*2);        matcov[i][j]=x[i];
        }
   fprintf(ficreseij,"# Health expectancies\n");    }
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
     for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\n#Hessian matrix#\n");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    for (i=1;i<=npar;i++) { 
   fprintf(ficreseij,"\n");      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
   if(estepm < stepm){        fprintf(ficlog,"%.3e ",hess[i][j]);
     printf ("Problem %d lower than %d\n",estepm, stepm);      }
   }      printf("\n");
   else  hstepm=estepm;        fprintf(ficlog,"\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months    }
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    /* Recompute Inverse */
    * we are calculating an estimate of the Life Expectancy assuming a linear    for (i=1;i<=npar;i++)
    * progression inbetween and thus overestimating or underestimating according      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
    * to the curvature of the survival function. If, for the same date, we    ludcmp(a,npar,indx,&pd);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear    /*  printf("\n#Hessian matrix recomputed#\n");
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   /* For example we decided to compute the life expectancy with the smallest unit */      x[j]=1;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      lubksb(a,npar,indx,x);
      nhstepm is the number of hstepm from age to agelim      for (i=1;i<=npar;i++){ 
      nstepm is the number of stepm from age to agelin.        y[i][j]=x[i];
      Look at hpijx to understand the reason of that which relies in memory size        printf("%.3e ",y[i][j]);
      and note for a fixed period like estepm months */        fprintf(ficlog,"%.3e ",y[i][j]);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      }
      survival function given by stepm (the optimization length). Unfortunately it      printf("\n");
      means that if the survival funtion is printed only each two years of age and if      fprintf(ficlog,"\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    }
      results. So we changed our mind and took the option of the best precision.    */
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   agelim=AGESUP;    free_vector(x,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    free_ivector(indx,1,npar);
     /* nhstepm age range expressed in number of stepm */    free_matrix(hess,1,npar,1,npar);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/  }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*************** hessian matrix ****************/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     gp=matrix(0,nhstepm,1,nlstate*2);  {
     gm=matrix(0,nhstepm,1,nlstate*2);    int i;
     int l=1, lmax=20;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double k1,k2;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double p2[NPARMAX+1];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double res;
      double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    int k=0,kmax=10;
     double l1;
     /* Computing Variances of health expectancies */  
     fx=func(x);
      for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1; i<=npar; i++){    for(l=0 ; l <=lmax; l++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      l1=pow(10,l);
       }      delts=delt;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(k=1 ; k <kmax; k=k+1){
          delt = delta*(l1*k);
       cptj=0;        p2[theta]=x[theta] +delt;
       for(j=1; j<= nlstate; j++){        k1=func(p2)-fx;
         for(i=1; i<=nlstate; i++){        p2[theta]=x[theta]-delt;
           cptj=cptj+1;        k2=func(p2)-fx;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           }        
         }  #ifdef DEBUG
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
              fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        #endif
       for(i=1; i<=npar; i++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            k=kmax;
              }
       cptj=0;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for(j=1; j<= nlstate; j++){          k=kmax; l=lmax*10.;
         for(i=1;i<=nlstate;i++){        }
           cptj=cptj+1;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          delts=delt;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        }
           }      }
         }    }
       }    delti[theta]=delts;
       for(j=1; j<= nlstate*2; j++)    return res; 
         for(h=0; h<=nhstepm-1; h++){    
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  }
         }  
      }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      {
 /* End theta */    int i;
     int l=1, l1, lmax=20;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
      for(h=0; h<=nhstepm-1; h++)    int k;
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)    fx=func(x);
           trgradg[h][j][theta]=gradg[h][theta][j];    for (k=1; k<=2; k++) {
            for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
      for(i=1;i<=nlstate*2;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(j=1;j<=nlstate*2;j++)      k1=func(p2)-fx;
         varhe[i][j][(int)age] =0.;    
       p2[thetai]=x[thetai]+delti[thetai]/k;
      printf("%d|",(int)age);fflush(stdout);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      k2=func(p2)-fx;
      for(h=0;h<=nhstepm-1;h++){    
       for(k=0;k<=nhstepm-1;k++){      p2[thetai]=x[thetai]-delti[thetai]/k;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      k3=func(p2)-fx;
         for(i=1;i<=nlstate*2;i++)    
           for(j=1;j<=nlstate*2;j++)      p2[thetai]=x[thetai]-delti[thetai]/k;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k4=func(p2)-fx;
     }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     /* Computing expectancies */  #ifdef DEBUG
     for(i=1; i<=nlstate;i++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=1; j<=nlstate;j++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  #endif
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    }
              return res;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  }
   
         }  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
     fprintf(ficreseij,"%3.0f",age );  { 
     cptj=0;    int i,imax,j,k; 
     for(i=1; i<=nlstate;i++)    double big,dum,sum,temp; 
       for(j=1; j<=nlstate;j++){    double *vv; 
         cptj++;   
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    vv=vector(1,n); 
       }    *d=1.0; 
     fprintf(ficreseij,"\n");    for (i=1;i<=n;i++) { 
          big=0.0; 
     free_matrix(gm,0,nhstepm,1,nlstate*2);      for (j=1;j<=n;j++) 
     free_matrix(gp,0,nhstepm,1,nlstate*2);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      vv[i]=1.0/big; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
   }    for (j=1;j<=n;j++) { 
   printf("\n");      for (i=1;i<j;i++) { 
   fprintf(ficlog,"\n");        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   free_vector(xp,1,npar);        a[i][j]=sum; 
   free_matrix(dnewm,1,nlstate*2,1,npar);      } 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      big=0.0; 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      for (i=j;i<=n;i++) { 
 }        sum=a[i][j]; 
         for (k=1;k<j;k++) 
 /************ Variance ******************/          sum -= a[i][k]*a[k][j]; 
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        a[i][j]=sum; 
 {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /* Variance of health expectancies */          big=dum; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          imax=i; 
   /* double **newm;*/        } 
   double **dnewm,**doldm;      } 
   double **dnewmp,**doldmp;      if (j != imax) { 
   int i, j, nhstepm, hstepm, h, nstepm ;        for (k=1;k<=n;k++) { 
   int k, cptcode;          dum=a[imax][k]; 
   double *xp;          a[imax][k]=a[j][k]; 
   double **gp, **gm;  /* for var eij */          a[j][k]=dum; 
   double ***gradg, ***trgradg; /*for var eij */        } 
   double **gradgp, **trgradgp; /* for var p point j */        *d = -(*d); 
   double *gpp, *gmp; /* for var p point j */        vv[imax]=vv[j]; 
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      } 
   double ***p3mat;      indx[j]=imax; 
   double age,agelim, hf;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int theta;      if (j != n) { 
   char digit[4];        dum=1.0/(a[j][j]); 
   char digitp[16];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   char fileresprobmorprev[FILENAMELENGTH];    } 
     free_vector(vv,1,n);  /* Doesn't work */
   if(popbased==1)  ;
     strcpy(digitp,"-populbased-");  } 
   else  
     strcpy(digitp,"-stablbased-");  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   strcpy(fileresprobmorprev,"prmorprev");    int i,ii=0,ip,j; 
   sprintf(digit,"%-d",ij);    double sum; 
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/   
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    for (i=1;i<=n;i++) { 
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      ip=indx[i]; 
   strcat(fileresprobmorprev,fileres);      sum=b[ip]; 
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      b[ip]=b[i]; 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      if (ii) 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   }      else if (sum) ii=i; 
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      b[i]=sum; 
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    } 
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    for (i=n;i>=1;i--) { 
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      sum=b[i]; 
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     fprintf(ficresprobmorprev," p.%-d SE",j);      b[i]=sum/a[i][i]; 
     for(i=1; i<=nlstate;i++)    } 
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  } 
   }    
   fprintf(ficresprobmorprev,"\n");  /************ Frequencies ********************/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  {  /* Some frequencies */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    
     exit(0);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   }    int first;
   else{    double ***freq; /* Frequencies */
     fprintf(ficgp,"\n# Routine varevsij");    double *pp, **prop;
   }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    FILE *ficresp;
     printf("Problem with html file: %s\n", optionfilehtm);    char fileresp[FILENAMELENGTH];
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    
     exit(0);    pp=vector(1,nlstate);
   }    prop=matrix(1,nlstate,iagemin,iagemax+3);
   else{    strcpy(fileresp,"p");
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    strcat(fileresp,fileres);
   }    if((ficresp=fopen(fileresp,"w"))==NULL) {
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      exit(0);
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     for(j=1; j<=nlstate;j++)    j1=0;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    
   fprintf(ficresvij,"\n");    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    first=1;
   doldm=matrix(1,nlstate,1,nlstate);  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    for(k1=1; k1<=j;k1++){
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   gpp=vector(nlstate+1,nlstate+ndeath);          scanf("%d", i);*/
   gmp=vector(nlstate+1,nlstate+ndeath);        for (i=-1; i<=nlstate+ndeath; i++)  
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          for (jk=-1; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
   if(estepm < stepm){              freq[i][jk][m]=0;
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }      for (i=1; i<=nlstate; i++)  
   else  hstepm=estepm;          for(m=iagemin; m <= iagemax+3; m++)
   /* For example we decided to compute the life expectancy with the smallest unit */          prop[i][m]=0;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        
      nhstepm is the number of hstepm from age to agelim        dateintsum=0;
      nstepm is the number of stepm from age to agelin.        k2cpt=0;
      Look at hpijx to understand the reason of that which relies in memory size        for (i=1; i<=imx; i++) {
      and note for a fixed period like k years */          bool=1;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          if  (cptcovn>0) {
      survival function given by stepm (the optimization length). Unfortunately it            for (z1=1; z1<=cptcoveff; z1++) 
      means that if the survival funtion is printed only each two years of age and if              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                bool=0;
      results. So we changed our mind and took the option of the best precision.          }
   */          if (bool==1){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            for(m=firstpass; m<=lastpass; m++){
   agelim = AGESUP;              k2=anint[m][i]+(mint[m][i]/12.);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                if (m<lastpass) {
     gp=matrix(0,nhstepm,1,nlstate);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     gm=matrix(0,nhstepm,1,nlstate);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
                 
     for(theta=1; theta <=npar; theta++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       for(i=1; i<=npar; i++){ /* Computes gradient */                  dateintsum=dateintsum+k2;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  k2cpt++;
       }                }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  /*}*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
           }
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)         
           prlim[i][i]=probs[(int)age][i][ij];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }  
          if  (cptcovn>0) {
       for(j=1; j<= nlstate; j++){          fprintf(ficresp, "\n#********** Variable "); 
         for(h=0; h<=nhstepm; h++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        }
         }        for(i=1; i<=nlstate;i++) 
       }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       /* This for computing forces of mortality (h=1)as a weighted average */        fprintf(ficresp, "\n");
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){        
         for(i=1; i<= nlstate; i++)        for(i=iagemin; i <= iagemax+3; i++){
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          if(i==iagemax+3){
       }                fprintf(ficlog,"Total");
       /* end force of mortality */          }else{
             if(first==1){
       for(i=1; i<=npar; i++) /* Computes gradient */              first=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              printf("See log file for details...\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            fprintf(ficlog,"Age %d", i);
            }
       if (popbased==1) {          for(jk=1; jk <=nlstate ; jk++){
         for(i=1; i<=nlstate;i++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           prlim[i][i]=probs[(int)age][i][ij];              pp[jk] += freq[jk][m][i]; 
       }          }
           for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<= nlstate; j++){            for(m=-1, pos=0; m <=0 ; m++)
         for(h=0; h<=nhstepm; h++){              pos += freq[jk][m][i];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            if(pp[jk]>=1.e-10){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              if(first==1){
         }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }              }
       /* This for computing force of mortality (h=1)as a weighted average */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){            }else{
         for(i=1; i<= nlstate; i++)              if(first==1)
           gmp[j] += prlim[i][i]*p3mat[i][j][1];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }                  fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       /* end force of mortality */            }
           }
       for(j=1; j<= nlstate; j++) /* vareij */  
         for(h=0; h<=nhstepm; h++){          for(jk=1; jk <=nlstate ; jk++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         }              pp[jk] += freq[jk][m][i];
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          }       
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       }            pos += pp[jk];
             posprop += prop[jk][i];
     } /* End theta */          }
           for(jk=1; jk <=nlstate ; jk++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */            if(pos>=1.e-5){
               if(first==1)
     for(h=0; h<=nhstepm; h++) /* veij */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(j=1; j<=nlstate;j++)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         for(theta=1; theta <=npar; theta++)            }else{
           trgradg[h][j][theta]=gradg[h][theta][j];              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(theta=1; theta <=npar; theta++)            }
         trgradgp[j][theta]=gradgp[theta][j];            if( i <= iagemax){
               if(pos>=1.e-5){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for(i=1;i<=nlstate;i++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
       for(j=1;j<=nlstate;j++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         vareij[i][j][(int)age] =0.;              }
               else
     for(h=0;h<=nhstepm;h++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for(k=0;k<=nhstepm;k++){            }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          
         for(i=1;i<=nlstate;i++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
           for(j=1;j<=nlstate;j++)            for(m=-1; m <=nlstate+ndeath; m++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              if(freq[jk][m][i] !=0 ) {
       }              if(first==1)
     }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     /* pptj */              }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          if(i <= iagemax)
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);            fprintf(ficresp,"\n");
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          if(first==1)
       for(i=nlstate+1;i<=nlstate+ndeath;i++)            printf("Others in log...\n");
         varppt[j][i]=doldmp[j][i];          fprintf(ficlog,"\n");
     /* end ppptj */        }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    }
      dateintmean=dateintsum/k2cpt; 
     if (popbased==1) {   
       for(i=1; i<=nlstate;i++)    fclose(ficresp);
         prlim[i][i]=probs[(int)age][i][ij];    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     }    free_vector(pp,1,nlstate);
        free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* This for computing force of mortality (h=1)as a weighted average */    /* End of Freq */
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  }
       for(i=1; i<= nlstate; i++)  
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  /************ Prevalence ********************/
     }      void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     /* end force of mortality */  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){       We still use firstpass and lastpass as another selection.
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    */
       for(i=1; i<=nlstate;i++){   
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       }    double ***freq; /* Frequencies */
     }    double *pp, **prop;
     fprintf(ficresprobmorprev,"\n");    double pos,posprop; 
     double  y2; /* in fractional years */
     fprintf(ficresvij,"%.0f ",age );    int iagemin, iagemax;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    iagemin= (int) agemin;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    iagemax= (int) agemax;
       }    /*pp=vector(1,nlstate);*/
     fprintf(ficresvij,"\n");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     free_matrix(gp,0,nhstepm,1,nlstate);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     free_matrix(gm,0,nhstepm,1,nlstate);    j1=0;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    j=cptcoveff;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   } /* End age */    
   free_vector(gpp,nlstate+1,nlstate+ndeath);    for(k1=1; k1<=j;k1++){
   free_vector(gmp,nlstate+1,nlstate+ndeath);      for(i1=1; i1<=ncodemax[k1];i1++){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        j1++;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        for (i=1; i<=nlstate; i++)  
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            prop[i][m]=0.0;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);       
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);        for (i=1; i<=imx; i++) { /* Each individual */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);          bool=1;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);          if  (cptcovn>0) {
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            for (z1=1; z1<=cptcoveff; z1++) 
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
   free_vector(xp,1,npar);          } 
   free_matrix(doldm,1,nlstate,1,nlstate);          if (bool==1) { 
   free_matrix(dnewm,1,nlstate,1,npar);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fclose(ficresprobmorprev);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fclose(ficgp);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   fclose(fichtm);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
 /************ Variance of prevlim ******************/                } 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              }
 {            } /* end selection of waves */
   /* Variance of prevalence limit */          }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   double **newm;        for(i=iagemin; i <= iagemax+3; i++){  
   double **dnewm,**doldm;          
   int i, j, nhstepm, hstepm;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   int k, cptcode;            posprop += prop[jk][i]; 
   double *xp;          } 
   double *gp, *gm;  
   double **gradg, **trgradg;          for(jk=1; jk <=nlstate ; jk++){     
   double age,agelim;            if( i <=  iagemax){ 
   int theta;              if(posprop>=1.e-5){ 
                    probs[i][jk][j1]= prop[jk][i]/posprop;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");              } 
   fprintf(ficresvpl,"# Age");            } 
   for(i=1; i<=nlstate;i++)          }/* end jk */ 
       fprintf(ficresvpl," %1d-%1d",i,i);        }/* end i */ 
   fprintf(ficresvpl,"\n");      } /* end i1 */
     } /* end k1 */
   xp=vector(1,npar);    
   dnewm=matrix(1,nlstate,1,npar);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   doldm=matrix(1,nlstate,1,nlstate);    /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   hstepm=1*YEARM; /* Every year of age */  }  /* End of prevalence */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  /************* Waves Concatenation ***************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     if (stepm >= YEARM) hstepm=1;  {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     gradg=matrix(1,npar,1,nlstate);       Death is a valid wave (if date is known).
     gp=vector(1,nlstate);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     gm=vector(1,nlstate);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     for(theta=1; theta <=npar; theta++){       */
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i, mi, m;
       }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       double sum=0., jmean=0.;*/
       for(i=1;i<=nlstate;i++)    int first;
         gp[i] = prlim[i][i];    int j, k=0,jk, ju, jl;
        double sum=0.;
       for(i=1; i<=npar; i++) /* Computes gradient */    first=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    jmin=1e+5;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    jmax=-1;
       for(i=1;i<=nlstate;i++)    jmean=0.;
         gm[i] = prlim[i][i];    for(i=1; i<=imx; i++){
       mi=0;
       for(i=1;i<=nlstate;i++)      m=firstpass;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      while(s[m][i] <= nlstate){
     } /* End theta */        if(s[m][i]>=1)
           mw[++mi][i]=m;
     trgradg =matrix(1,nlstate,1,npar);        if(m >=lastpass)
           break;
     for(j=1; j<=nlstate;j++)        else
       for(theta=1; theta <=npar; theta++)          m++;
         trgradg[j][theta]=gradg[theta][j];      }/* end while */
       if (s[m][i] > nlstate){
     for(i=1;i<=nlstate;i++)        mi++;     /* Death is another wave */
       varpl[i][(int)age] =0.;        /* if(mi==0)  never been interviewed correctly before death */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);           /* Only death is a correct wave */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        mw[mi][i]=m;
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
       wav[i]=mi;
     fprintf(ficresvpl,"%.0f ",age );      if(mi==0){
     for(i=1; i<=nlstate;i++)        nbwarn++;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        if(first==0){
     fprintf(ficresvpl,"\n");          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     free_vector(gp,1,nlstate);          first=1;
     free_vector(gm,1,nlstate);        }
     free_matrix(gradg,1,npar,1,nlstate);        if(first==1){
     free_matrix(trgradg,1,nlstate,1,npar);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   } /* End age */        }
       } /* end mi==0 */
   free_vector(xp,1,npar);    } /* End individuals */
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
 }        if (stepm <=0)
           dh[mi][i]=1;
 /************ Variance of one-step probabilities  ******************/        else{
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 {            if (agedc[i] < 2*AGESUP) {
   int i, j=0,  i1, k1, l1, t, tj;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   int k2, l2, j1,  z1;              if(j==0) j=1;  /* Survives at least one month after exam */
   int k=0,l, cptcode;              else if(j<0){
   int first=1, first1;                nberr++;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double **dnewm,**doldm;                j=1; /* Temporary Dangerous patch */
   double *xp;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   double *gp, *gm;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double **gradg, **trgradg;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   double **mu;              }
   double age,agelim, cov[NCOVMAX];              k=k+1;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              if (j >= jmax) jmax=j;
   int theta;              if (j <= jmin) jmin=j;
   char fileresprob[FILENAMELENGTH];              sum=sum+j;
   char fileresprobcov[FILENAMELENGTH];              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   char fileresprobcor[FILENAMELENGTH];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   double ***varpij;          }
           else{
   strcpy(fileresprob,"prob");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   strcat(fileresprob,fileres);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            k=k+1;
     printf("Problem with resultfile: %s\n", fileresprob);            if (j >= jmax) jmax=j;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);            else if (j <= jmin)jmin=j;
   }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   strcpy(fileresprobcov,"probcov");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   strcat(fileresprobcov,fileres);            if(j<0){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {              nberr++;
     printf("Problem with resultfile: %s\n", fileresprobcov);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }            }
   strcpy(fileresprobcor,"probcor");            sum=sum+j;
   strcat(fileresprobcor,fileres);          }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          jk= j/stepm;
     printf("Problem with resultfile: %s\n", fileresprobcor);          jl= j -jk*stepm;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          ju= j -(jk+1)*stepm;
   }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            if(jl==0){
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              dh[mi][i]=jk;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              bh[mi][i]=0;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            }else{ /* We want a negative bias in order to only have interpolation ie
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                    * at the price of an extra matrix product in likelihood */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            }
   fprintf(ficresprob,"# Age");          }else{
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            if(jl <= -ju){
   fprintf(ficresprobcov,"# Age");              dh[mi][i]=jk;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");              bh[mi][i]=jl;       /* bias is positive if real duration
   fprintf(ficresprobcov,"# Age");                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
             }
   for(i=1; i<=nlstate;i++)            else{
     for(j=1; j<=(nlstate+ndeath);j++){              dh[mi][i]=jk+1;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              bh[mi][i]=ju;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);            }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            if(dh[mi][i]==0){
     }                dh[mi][i]=1; /* At least one step */
   fprintf(ficresprob,"\n");              bh[mi][i]=ju; /* At least one step */
   fprintf(ficresprobcov,"\n");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   fprintf(ficresprobcor,"\n");            }
   xp=vector(1,npar);          } /* end if mle */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      } /* end wave */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    jmean=sum/k;
   first=1;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);   }
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  
     exit(0);  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx)
   else{  {
     fprintf(ficgp,"\n# Routine varprob");    
   }    int Ndum[20],ij=1, k, j, i, maxncov=19;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    int cptcode=0;
     printf("Problem with html file: %s\n", optionfilehtm);    cptcoveff=0; 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);   
     exit(0);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   }    for (k=1; k<=7; k++) ncodemax[k]=0;
   else{  
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     fprintf(fichtm,"\n");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        Ndum[ij]++; /*store the modality */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   }                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
        }
   cov[1]=1;  
   tj=cptcoveff;      for (i=0; i<=cptcode; i++) {
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   j1=0;      }
   for(t=1; t<=tj;t++){  
     for(i1=1; i1<=ncodemax[t];i1++){      ij=1; 
       j1++;      for (i=1; i<=ncodemax[j]; i++) {
              for (k=0; k<= maxncov; k++) {
       if  (cptcovn>0) {          if (Ndum[k] != 0) {
         fprintf(ficresprob, "\n#********** Variable ");            nbcode[Tvar[j]][ij]=k; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         fprintf(ficresprob, "**********\n#");            
         fprintf(ficresprobcov, "\n#********** Variable ");            ij++;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficresprobcov, "**********\n#");          if (ij > ncodemax[j]) break; 
                }  
         fprintf(ficgp, "\n#********** Variable ");      } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }  
         fprintf(ficgp, "**********\n#");  
           for (k=0; k< maxncov; k++) Ndum[k]=0;
          
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");   for (i=1; i<=ncovmodel-2; i++) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");     ij=Tvar[i];
             Ndum[ij]++;
         fprintf(ficresprobcor, "\n#********** Variable ");       }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficgp, "**********\n#");       ij=1;
       }   for (i=1; i<= maxncov; i++) {
           if((Ndum[i]!=0) && (i<=ncovcol)){
       for (age=bage; age<=fage; age ++){       Tvaraff[ij]=i; /*For printing */
         cov[2]=age;       ij++;
         for (k=1; k<=cptcovn;k++) {     }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];   }
         }   
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];   cptcoveff=ij-1; /*Number of simple covariates*/
         for (k=1; k<=cptcovprod;k++)  }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
          /*********** Health Expectancies ****************/
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));  {
        /* Health expectancies */
         for(theta=1; theta <=npar; theta++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
           for(i=1; i<=npar; i++)    double age, agelim, hf;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double ***p3mat,***varhe;
              double **dnewm,**doldm;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double *xp;
              double **gp, **gm;
           k=0;    double ***gradg, ***trgradg;
           for(i=1; i<= (nlstate); i++){    int theta;
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
               gp[k]=pmmij[i][j];    xp=vector(1,npar);
             }    dnewm=matrix(1,nlstate*nlstate,1,npar);
           }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
              
           for(i=1; i<=npar; i++)    fprintf(ficreseij,"# Health expectancies\n");
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficreseij,"# Age");
        for(i=1; i<=nlstate;i++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(j=1; j<=nlstate;j++)
           k=0;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
           for(i=1; i<=(nlstate); i++){    fprintf(ficreseij,"\n");
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    if(estepm < stepm){
               gm[k]=pmmij[i][j];      printf ("Problem %d lower than %d\n",estepm, stepm);
             }    }
           }    else  hstepm=estepm;   
          /* We compute the life expectancy from trapezoids spaced every estepm months
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     * This is mainly to measure the difference between two models: for example
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];       * if stepm=24 months pijx are given only every 2 years and by summing them
         }     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)     * to the curvature of the survival function. If, for the same date, we 
           for(theta=1; theta <=npar; theta++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             trgradg[j][theta]=gradg[theta][j];     * to compare the new estimate of Life expectancy with the same linear 
             * hypothesis. A more precise result, taking into account a more precise
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);     * curvature will be obtained if estepm is as small as stepm. */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
            /* For example we decided to compute the life expectancy with the smallest unit */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               nhstepm is the number of hstepm from age to agelim 
         k=0;       nstepm is the number of stepm from age to agelin. 
         for(i=1; i<=(nlstate); i++){       Look at hpijx to understand the reason of that which relies in memory size
           for(j=1; j<=(nlstate+ndeath);j++){       and note for a fixed period like estepm months */
             k=k+1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             mu[k][(int) age]=pmmij[i][j];       survival function given by stepm (the optimization length). Unfortunately it
           }       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)       results. So we changed our mind and took the option of the best precision.
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    */
             varpij[i][j][(int)age] = doldm[i][j];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
         /*printf("\n%d ",(int)age);    agelim=AGESUP;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      /* nhstepm age range expressed in number of stepm */
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      }*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficresprob,"\n%d ",(int)age);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficresprobcov,"\n%d ",(int)age);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficresprobcor,"\n%d ",(int)age);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         }   
         i=0;  
         for (k=1; k<=(nlstate);k++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           for (l=1; l<=(nlstate+ndeath);l++){  
             i=i++;      /* Computing  Variances of health expectancies */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);       for(theta=1; theta <=npar; theta++){
             for (j=1; j<=i;j++){        for(i=1; i<=npar; i++){ 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        }
             }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           }    
         }/* end of loop for state */        cptj=0;
       } /* end of loop for age */        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
       /* Confidence intervalle of pij  */            cptj=cptj+1;
       /*            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficgp,"\nset noparametric;unset label");              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");            }
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          }
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        }
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);       
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);       
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        for(i=1; i<=npar; i++) 
       */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        
       first1=1;        cptj=0;
       for (k2=1; k2<=(nlstate);k2++){        for(j=1; j<= nlstate; j++){
         for (l2=1; l2<=(nlstate+ndeath);l2++){          for(i=1;i<=nlstate;i++){
           if(l2==k2) continue;            cptj=cptj+1;
           j=(k2-1)*(nlstate+ndeath)+l2;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
           for (k1=1; k1<=(nlstate);k1++){  
             for (l1=1; l1<=(nlstate+ndeath);l1++){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
               if(l1==k1) continue;            }
               i=(k1-1)*(nlstate+ndeath)+l1;          }
               if(i<=j) continue;        }
               for (age=bage; age<=fage; age ++){        for(j=1; j<= nlstate*nlstate; j++)
                 if ((int)age %5==0){          for(h=0; h<=nhstepm-1; h++){
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;       } 
                   mu1=mu[i][(int) age]/stepm*YEARM ;     
                   mu2=mu[j][(int) age]/stepm*YEARM;  /* End theta */
                   c12=cv12/sqrt(v1*v2);  
                   /* Computing eigen value of matrix of covariance */       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;       for(h=0; h<=nhstepm-1; h++)
                   /* Eigen vectors */        for(j=1; j<=nlstate*nlstate;j++)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          for(theta=1; theta <=npar; theta++)
                   /*v21=sqrt(1.-v11*v11); *//* error */            trgradg[h][j][theta]=gradg[h][theta][j];
                   v21=(lc1-v1)/cv12*v11;       
                   v12=-v21;  
                   v22=v11;       for(i=1;i<=nlstate*nlstate;i++)
                   tnalp=v21/v11;        for(j=1;j<=nlstate*nlstate;j++)
                   if(first1==1){          varhe[i][j][(int)age] =0.;
                     first1=0;  
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);       printf("%d|",(int)age);fflush(stdout);
                   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);       for(h=0;h<=nhstepm-1;h++){
                   /*printf(fignu*/        for(k=0;k<=nhstepm-1;k++){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   if(first==1){          for(i=1;i<=nlstate*nlstate;i++)
                     first=0;            for(j=1;j<=nlstate*nlstate;j++)
                     fprintf(ficgp,"\nset parametric;unset label");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);        }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);      /* Computing expectancies */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);      for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);        for(j=1; j<=nlstate;j++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  
                   }else{          }
                     first=0;  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      fprintf(ficreseij,"%3.0f",age );
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      cptj=0;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      for(i=1; i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        for(j=1; j<=nlstate;j++){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          cptj++;
                   }/* if first */          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                 } /* age mod 5 */        }
               } /* end loop age */      fprintf(ficreseij,"\n");
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);     
               first=1;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
             } /*l12 */      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           } /* k12 */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         } /*l1 */      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       }/* k1 */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* loop covariates */    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    printf("\n");
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficlog,"\n");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    free_vector(xp,1,npar);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   free_vector(xp,1,npar);  }
   fclose(ficresprob);  
   fclose(ficresprobcov);  /************ Variance ******************/
   fclose(ficresprobcor);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   fclose(ficgp);  {
   fclose(fichtm);    /* Variance of health expectancies */
 }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
 /******************* Printing html file ***********/    double **dnewmp,**doldmp;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    int i, j, nhstepm, hstepm, h, nstepm ;
                   int lastpass, int stepm, int weightopt, char model[],\    int k, cptcode;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    double *xp;
                   int popforecast, int estepm ,\    double **gp, **gm;  /* for var eij */
                   double jprev1, double mprev1,double anprev1, \    double ***gradg, ***trgradg; /*for var eij */
                   double jprev2, double mprev2,double anprev2){    double **gradgp, **trgradgp; /* for var p point j */
   int jj1, k1, i1, cpt;    double *gpp, *gmp; /* for var p point j */
   /*char optionfilehtm[FILENAMELENGTH];*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    double ***p3mat;
     printf("Problem with %s \n",optionfilehtm), exit(0);    double age,agelim, hf;
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    double ***mobaverage;
   }    int theta;
     char digit[4];
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    char digitp[25];
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    char fileresprobmorprev[FILENAMELENGTH];
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months):    if(popbased==1){
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      if(mobilav!=0)
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    }
     else 
  m=cptcoveff;      strcpy(digitp,"-stablbased-");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     if (mobilav!=0) {
  jj1=0;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  for(k1=1; k1<=m;k1++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
    for(i1=1; i1<=ncodemax[k1];i1++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      jj1++;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
      if (cptcovn > 0) {      }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
        for (cpt=1; cpt<=cptcoveff;cpt++)  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    strcpy(fileresprobmorprev,"prmorprev"); 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    sprintf(digit,"%-d",ij);
      }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      /* Pij */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        strcat(fileresprobmorprev,fileres);
      /* Quasi-incidences */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
        /* Stable prevalence in each health state */    }
        for(cpt=1; cpt<nlstate;cpt++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
        }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(cpt=1; cpt<=nlstate;cpt++) {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      fprintf(ficresprobmorprev," p.%-d SE",j);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for(i=1; i<=nlstate;i++)
      }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    }  
 health expectancies in states (1) and (2): e%s%d.png<br>    fprintf(ficresprobmorprev,"\n");
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    fprintf(ficgp,"\n# Routine varevsij");
    } /* end i1 */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
  }/* End k1 */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
  fprintf(fichtm,"</ul>");  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    fprintf(ficresvij,"# Age");
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    for(i=1; i<=nlstate;i++)
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      for(j=1; j<=nlstate;j++)
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    fprintf(ficresvij,"\n");
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
  if(popforecast==1) fprintf(fichtm,"\n    doldm=matrix(1,nlstate,1,nlstate);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         <br>",fileres,fileres,fileres,fileres);  
  else    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    gpp=vector(nlstate+1,nlstate+ndeath);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  m=cptcoveff;    
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
  jj1=0;    }
  for(k1=1; k1<=m;k1++){    else  hstepm=estepm;   
    for(i1=1; i1<=ncodemax[k1];i1++){    /* For example we decided to compute the life expectancy with the smallest unit */
      jj1++;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      if (cptcovn > 0) {       nhstepm is the number of hstepm from age to agelim 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       nstepm is the number of stepm from age to agelin. 
        for (cpt=1; cpt<=cptcoveff;cpt++)       Look at hpijx to understand the reason of that which relies in memory size
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       and note for a fixed period like k years */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      }       survival function given by stepm (the optimization length). Unfortunately it
      for(cpt=1; cpt<=nlstate;cpt++) {       means that if the survival funtion is printed every two years of age and if
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 interval) in state (%d): v%s%d%d.png <br>       results. So we changed our mind and took the option of the best precision.
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      */
      }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    } /* end i1 */    agelim = AGESUP;
  }/* End k1 */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  fprintf(fichtm,"</ul>");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 fclose(fichtm);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 /******************* Gnuplot file **************/      gp=matrix(0,nhstepm,1,nlstate);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      gm=matrix(0,nhstepm,1,nlstate);
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;      for(theta=1; theta <=npar; theta++){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     printf("Problem with file %s",optionfilegnuplot);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);        if (popbased==1) {
 #endif          if(mobilav ==0){
 m=pow(2,cptcoveff);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
  /* 1eme*/          }else{ /* mobilav */ 
   for (cpt=1; cpt<= nlstate ; cpt ++) {            for(i=1; i<=nlstate;i++)
    for (k1=1; k1<= m ; k1 ++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
 #ifdef windows        }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++){
 #endif          for(h=0; h<=nhstepm; h++){
 #ifdef unix            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          }
 #endif        }
         /* This for computing probability of death (h=1 means
 for (i=1; i<= nlstate ; i ++) {           computed over hstepm matrices product = hstepm*stepm months) 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           as a weighted average of prlim.
   else fprintf(ficgp," \%%*lf (\%%*lf)");        */
 }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     for (i=1; i<= nlstate ; i ++) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }    
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /* end probability of death */
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
      for (i=1; i<= nlstate ; i ++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }     
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        if (popbased==1) {
 #ifdef unix          if(mobilav ==0){
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");            for(i=1; i<=nlstate;i++)
 #endif              prlim[i][i]=probs[(int)age][i][ij];
    }          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   /*2 eme*/              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   for (k1=1; k1<= m ; k1 ++) {        }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        for(j=1; j<= nlstate; j++){
              for(h=0; h<=nhstepm; h++){
     for (i=1; i<= nlstate+1 ; i ++) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       k=2*i;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /* This for computing probability of death (h=1 means
   else fprintf(ficgp," \%%*lf (\%%*lf)");           computed over hstepm matrices product = hstepm*stepm months) 
 }             as a weighted average of prlim.
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       for (j=1; j<= nlstate+1 ; j ++) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }    
         else fprintf(ficgp," \%%*lf (\%%*lf)");        /* end probability of death */
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");        for(j=1; j<= nlstate; j++) /* vareij */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(h=0; h<=nhstepm; h++){
       for (j=1; j<= nlstate+1 ; j ++) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       else fprintf(ficgp,"\" t\"\" w l 0,");        }
     }  
   }      } /* End theta */
    
   /*3eme*/      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   for (k1=1; k1<= m ; k1 ++) {      for(h=0; h<=nhstepm; h++) /* veij */
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(j=1; j<=nlstate;j++)
       k=2+nlstate*(2*cpt-2);          for(theta=1; theta <=npar; theta++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(theta=1; theta <=npar; theta++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          trgradgp[j][theta]=gradgp[theta][j];
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
 */        for(j=1;j<=nlstate;j++)
       for (i=1; i< nlstate ; i ++) {          vareij[i][j][(int)age] =0.;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
       for(h=0;h<=nhstepm;h++){
       }        for(k=0;k<=nhstepm;k++){
     }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
   /* CV preval stat */            for(j=1;j<=nlstate;j++)
     for (k1=1; k1<= m ; k1 ++) {              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     for (cpt=1; cpt<nlstate ; cpt ++) {        }
       k=3;      }
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       for (i=1; i< nlstate ; i ++)      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         fprintf(ficgp,"+$%d",k+i+1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                varppt[j][i]=doldmp[j][i];
       l=3+(nlstate+ndeath)*cpt;      /* end ppptj */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      /*  x centered again */
       for (i=1; i< nlstate ; i ++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         l=3+(nlstate+ndeath)*cpt;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         fprintf(ficgp,"+$%d",l+i+1);   
       }      if (popbased==1) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          if(mobilav ==0){
     }          for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
   /* proba elementaires */          for(i=1; i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){            prlim[i][i]=mobaverage[(int)age][i][ij];
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {      }
         for(j=1; j <=ncovmodel; j++){               
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      /* This for computing probability of death (h=1 means
           jk++;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           fprintf(ficgp,"\n");         as a weighted average of prlim.
         }      */
       }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
    }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      /* end probability of death */
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        if (ng==2)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
        else        for(i=1; i<=nlstate;i++){
          fprintf(ficgp,"\nset title \"Probability\"\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        }
        i=1;      } 
        for(k2=1; k2<=nlstate; k2++) {      fprintf(ficresprobmorprev,"\n");
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {      fprintf(ficresvij,"%.0f ",age );
            if (k != k2){      for(i=1; i<=nlstate;i++)
              if(ng==2)        for(j=1; j<=nlstate;j++){
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
              else        }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      fprintf(ficresvij,"\n");
              ij=1;      free_matrix(gp,0,nhstepm,1,nlstate);
              for(j=3; j <=ncovmodel; j++) {      free_matrix(gm,0,nhstepm,1,nlstate);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                  ij++;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                }    } /* End age */
                else    free_vector(gpp,nlstate+1,nlstate+ndeath);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_vector(gmp,nlstate+1,nlstate+ndeath);
              }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
              fprintf(ficgp,")/(1");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                  fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
              for(k1=1; k1 <=nlstate; k1++){      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                ij=1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                for(j=3; j <=ncovmodel; j++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                    ij++;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                  }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                  else    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                fprintf(ficgp,")");  */
              }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;    free_vector(xp,1,npar);
            }    free_matrix(doldm,1,nlstate,1,nlstate);
          } /* end k */    free_matrix(dnewm,1,nlstate,1,npar);
        } /* end k2 */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      } /* end jk */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
    } /* end ng */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fclose(ficgp);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 }  /* end gnuplot */    fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
 /*************** Moving average **************/  }  /* end varevsij */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
   /************ Variance of prevlim ******************/
   int i, cpt, cptcod;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  {
       for (i=1; i<=nlstate;i++)    /* Variance of prevalence limit */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           mobaverage[(int)agedeb][i][cptcod]=0.;    double **newm;
        double **dnewm,**doldm;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    int i, j, nhstepm, hstepm;
       for (i=1; i<=nlstate;i++){    int k, cptcode;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double *xp;
           for (cpt=0;cpt<=4;cpt++){    double *gp, *gm;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double **gradg, **trgradg;
           }    double age,agelim;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    int theta;
         }     
       }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     }    fprintf(ficresvpl,"# Age");
        for(i=1; i<=nlstate;i++)
 }        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
 /************** Forecasting ******************/    xp=vector(1,npar);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    
   int *popage;    hstepm=1*YEARM; /* Every year of age */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   double *popeffectif,*popcount;    agelim = AGESUP;
   double ***p3mat;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   char fileresf[FILENAMELENGTH];      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
  agelim=AGESUP;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      gm=vector(1,nlstate);
    
        for(theta=1; theta <=npar; theta++){
   strcpy(fileresf,"f");        for(i=1; i<=npar; i++){ /* Computes gradient */
   strcat(fileresf,fileres);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);        for(i=1;i<=nlstate;i++)
   }          gp[i] = prlim[i][i];
   printf("Computing forecasting: result on file '%s' \n", fileresf);      
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   if (mobilav==1) {          gm[i] = prlim[i][i];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for(i=1;i<=nlstate;i++)
   }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;      trgradg =matrix(1,nlstate,1,npar);
    
   agelim=AGESUP;      for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
   hstepm=1;          trgradg[j][theta]=gradg[theta][j];
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);      for(i=1;i<=nlstate;i++)
   anprojmean=yp;        varpl[i][(int)age] =0.;
   yp2=modf((yp1*12),&yp);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   mprojmean=yp;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   yp1=modf((yp2*30.5),&yp);      for(i=1;i<=nlstate;i++)
   jprojmean=yp;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;      fprintf(ficresvpl,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   for(cptcov=1;cptcov<=i2;cptcov++){      free_vector(gp,1,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      free_vector(gm,1,nlstate);
       k=k+1;      free_matrix(gradg,1,npar,1,nlstate);
       fprintf(ficresf,"\n#******");      free_matrix(trgradg,1,nlstate,1,npar);
       for(j=1;j<=cptcoveff;j++) {    } /* End age */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    free_vector(xp,1,npar);
       fprintf(ficresf,"******\n");    free_matrix(doldm,1,nlstate,1,npar);
       fprintf(ficresf,"# StartingAge FinalAge");    free_matrix(dnewm,1,nlstate,1,nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
        }
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  /************ Variance of one-step probabilities  ******************/
         fprintf(ficresf,"\n");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    {
     int i, j=0,  i1, k1, l1, t, tj;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int k2, l2, j1,  z1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int k=0,l, cptcode;
           nhstepm = nhstepm/hstepm;    int first=1, first1;
              double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **dnewm,**doldm;
           oldm=oldms;savm=savms;    double *xp;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double *gp, *gm;
            double **gradg, **trgradg;
           for (h=0; h<=nhstepm; h++){    double **mu;
             if (h==(int) (calagedate+YEARM*cpt)) {    double age,agelim, cov[NCOVMAX];
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
             }    int theta;
             for(j=1; j<=nlstate+ndeath;j++) {    char fileresprob[FILENAMELENGTH];
               kk1=0.;kk2=0;    char fileresprobcov[FILENAMELENGTH];
               for(i=1; i<=nlstate;i++) {                  char fileresprobcor[FILENAMELENGTH];
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double ***varpij;
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    strcpy(fileresprob,"prob"); 
                 }    strcat(fileresprob,fileres);
                    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
               }      printf("Problem with resultfile: %s\n", fileresprob);
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                 fprintf(ficresf," %.3f", kk1);    }
                            strcpy(fileresprobcov,"probcov"); 
               }    strcat(fileresprobcov,fileres);
             }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobcov);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         }    }
       }    strcpy(fileresprobcor,"probcor"); 
     }    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", fileresprobcor);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   fclose(ficresf);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 /************** Forecasting ******************/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   double *popeffectif,*popcount;    fprintf(ficresprob,"# Age");
   double ***p3mat,***tabpop,***tabpopprev;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   char filerespop[FILENAMELENGTH];    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobcov,"# Age");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   strcpy(filerespop,"pop");      }  
   strcat(filerespop,fileres);   /* fprintf(ficresprob,"\n");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fprintf(ficresprobcov,"\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(ficresprobcor,"\n");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);   */
   }   xp=vector(1,npar);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   if (mobilav==1) {    fprintf(ficgp,"\n# Routine varprob");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    fprintf(fichtm,"\n");
   }  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   if (stepm<=12) stepsize=1;    file %s<br>\n",optionfilehtmcov);
      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   agelim=AGESUP;  and drawn. It helps understanding how is the covariance between two incidences.\
     They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   hstepm=1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   hstepm=hstepm/stepm;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   if (popforecast==1) {  standard deviations wide on each axis. <br>\
     if((ficpop=fopen(popfile,"r"))==NULL) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       printf("Problem with population file : %s\n",popfile);exit(0);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     }  
     popage=ivector(0,AGESUP);    cov[1]=1;
     popeffectif=vector(0,AGESUP);    tj=cptcoveff;
     popcount=vector(0,AGESUP);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        j1=0;
     i=1;      for(t=1; t<=tj;t++){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      for(i1=1; i1<=ncodemax[t];i1++){ 
            j1++;
     imx=i;        if  (cptcovn>0) {
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          fprintf(ficresprob, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
   for(cptcov=1;cptcov<=i2;cptcov++){          fprintf(ficresprobcov, "\n#********** Variable "); 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       k=k+1;          fprintf(ficresprobcov, "**********\n#\n");
       fprintf(ficrespop,"\n#******");          
       for(j=1;j<=cptcoveff;j++) {          fprintf(ficgp, "\n#********** Variable "); 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficgp, "**********\n#\n");
       fprintf(ficrespop,"******\n");          
       fprintf(ficrespop,"# Age");          
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       if (popforecast==1)  fprintf(ficrespop," [Population]");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       for (cpt=0; cpt<=0;cpt++) {          
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficresprobcor, "\n#********** Variable ");    
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          fprintf(ficresprobcor, "**********\n#");    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }
           nhstepm = nhstepm/hstepm;        
                  for (age=bage; age<=fage; age ++){ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          cov[2]=age;
           oldm=oldms;savm=savms;          for (k=1; k<=cptcovn;k++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
                  }
           for (h=0; h<=nhstepm; h++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             if (h==(int) (calagedate+YEARM*cpt)) {          for (k=1; k<=cptcovprod;k++)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             }          
             for(j=1; j<=nlstate+ndeath;j++) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
               kk1=0.;kk2=0;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               for(i=1; i<=nlstate;i++) {                        gp=vector(1,(nlstate)*(nlstate+ndeath));
                 if (mobilav==1)          gm=vector(1,(nlstate)*(nlstate+ndeath));
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      
                 else {          for(theta=1; theta <=npar; theta++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for(i=1; i<=npar; i++)
                 }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
               }            
               if (h==(int)(calagedate+12*cpt)){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            
                   /*fprintf(ficrespop," %.3f", kk1);            k=0;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            for(i=1; i<= (nlstate); i++){
               }              for(j=1; j<=(nlstate+ndeath);j++){
             }                k=k+1;
             for(i=1; i<=nlstate;i++){                gp[k]=pmmij[i][j];
               kk1=0.;              }
                 for(j=1; j<=nlstate;j++){            }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            
                 }            for(i=1; i<=npar; i++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
             }      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            k=0;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            for(i=1; i<=(nlstate); i++){
           }              for(j=1; j<=(nlstate+ndeath);j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                k=k+1;
         }                gm[k]=pmmij[i][j];
       }              }
              }
   /******/       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           nhstepm = nhstepm/hstepm;            for(theta=1; theta <=npar; theta++)
                        trgradg[j][theta]=gradg[theta][j];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
           oldm=oldms;savm=savms;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           for (h=0; h<=nhstepm; h++){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
             if (h==(int) (calagedate+YEARM*cpt)) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;          pmij(pmmij,cov,ncovmodel,x,nlstate);
               for(i=1; i<=nlstate;i++) {                        
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              k=0;
               }          for(i=1; i<=(nlstate); i++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            for(j=1; j<=(nlstate+ndeath);j++){
             }              k=k+1;
           }              mu[k][(int) age]=pmmij[i][j];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
         }          }
       }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   }              varpij[i][j][(int)age] = doldm[i][j];
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if (popforecast==1) {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     free_ivector(popage,0,AGESUP);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     free_vector(popeffectif,0,AGESUP);            }*/
     free_vector(popcount,0,AGESUP);  
   }          fprintf(ficresprob,"\n%d ",(int)age);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresprobcov,"\n%d ",(int)age);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresprobcor,"\n%d ",(int)age);
   fclose(ficrespop);  
 }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 /***********************************************/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 /**************** Main Program *****************/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 /***********************************************/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
 int main(int argc, char *argv[])          i=0;
 {          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;              i=i++;
   double agedeb, agefin,hf;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
   double fret;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   double **xi,tmp,delta;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
   double dum; /* Dummy variable */            }
   double ***p3mat;          }/* end of loop for state */
   int *indx;        } /* end of loop for age */
   char line[MAXLINE], linepar[MAXLINE];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];        /* Confidence intervalle of pij  */
   int firstobs=1, lastobs=10;        /*
   int sdeb, sfin; /* Status at beginning and end */          fprintf(ficgp,"\nset noparametric;unset label");
   int c,  h , cpt,l;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   int ju,jl, mi;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   int mobilav=0,popforecast=0;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   int hstepm, nhstepm;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        */
   
   double bage, fage, age, agelim, agebase;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   double ftolpl=FTOL;        first1=1;
   double **prlim;        for (k2=1; k2<=(nlstate);k2++){
   double *severity;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   double ***param; /* Matrix of parameters */            if(l2==k2) continue;
   double  *p;            j=(k2-1)*(nlstate+ndeath)+l2;
   double **matcov; /* Matrix of covariance */            for (k1=1; k1<=(nlstate);k1++){
   double ***delti3; /* Scale */              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   double *delti; /* Scale */                if(l1==k1) continue;
   double ***eij, ***vareij;                i=(k1-1)*(nlstate+ndeath)+l1;
   double **varpl; /* Variances of prevalence limits by age */                if(i<=j) continue;
   double *epj, vepp;                for (age=bage; age<=fage; age ++){ 
   double kk1, kk2;                  if ((int)age %5==0){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   char *alph[]={"a","a","b","c","d","e"}, str[4];                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   char z[1]="c", occ;                    /* Computing eigen value of matrix of covariance */
 #include <sys/time.h>                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 #include <time.h>                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                    /* Eigen vectors */
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   /* long total_usecs;                    /*v21=sqrt(1.-v11*v11); *//* error */
   struct timeval start_time, end_time;                    v21=(lc1-v1)/cv12*v11;
                      v12=-v21;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                    v22=v11;
   getcwd(pathcd, size);                    tnalp=v21/v11;
                     if(first1==1){
   printf("\n%s",version);                      first1=0;
   if(argc <=1){                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     printf("\nEnter the parameter file name: ");                    }
     scanf("%s",pathtot);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    /*printf(fignu*/
   else{                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     strcpy(pathtot,argv[1]);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   }                    if(first==1){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                      first=0;
   /*cygwin_split_path(pathtot,path,optionfile);                      fprintf(ficgp,"\nset parametric;unset label");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   /* cutv(path,optionfile,pathtot,'\\');*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   chdir(path);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   replace(pathc,path);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 /*-------- arguments in the command line --------*/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /* Log file */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   strcat(filelog, optionfilefiname);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   strcat(filelog,".log");    /* */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   if((ficlog=fopen(filelog,"w"))==NULL)    {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     printf("Problem with logfile %s\n",filelog);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     goto end;                    }else{
   }                      first=0;
   fprintf(ficlog,"Log filename:%s\n",filelog);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   fprintf(ficlog,"\n%s",version);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   fprintf(ficlog,"\nEnter the parameter file name: ");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fflush(ficlog);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /* */                    }/* if first */
   strcpy(fileres,"r");                  } /* age mod 5 */
   strcat(fileres, optionfilefiname);                } /* end loop age */
   strcat(fileres,".txt");    /* Other files have txt extension */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
   /*---------arguments file --------*/              } /*l12 */
             } /* k12 */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          } /*l1 */
     printf("Problem with optionfile %s\n",optionfile);        }/* k1 */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      } /* loop covariates */
     goto end;    }
   }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   strcpy(filereso,"o");    free_vector(xp,1,npar);
   strcat(filereso,fileres);    fclose(ficresprob);
   if((ficparo=fopen(filereso,"w"))==NULL) {    fclose(ficresprobcov);
     printf("Problem with Output resultfile: %s\n", filereso);    fclose(ficresprobcor);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    fflush(ficgp);
     goto end;    fflush(fichtmcov);
   }  }
   
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /******************* Printing html file ***********/
     ungetc(c,ficpar);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     fgets(line, MAXLINE, ficpar);                    int lastpass, int stepm, int weightopt, char model[],\
     puts(line);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     fputs(line,ficparo);                    int popforecast, int estepm ,\
   }                    double jprev1, double mprev1,double anprev1, \
   ungetc(c,ficpar);                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 while((c=getc(ficpar))=='#' && c!= EOF){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     ungetc(c,ficpar);     fprintf(fichtm,"\
     fgets(line, MAXLINE, ficpar);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     puts(line);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     fputs(line,ficparo);     fprintf(fichtm,"\
   }   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   ungetc(c,ficpar);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fprintf(fichtm,"\
       - Life expectancies by age and initial health status (estepm=%2d months): \
   covar=matrix(0,NCOVMAX,1,n);     <a href=\"%s\">%s</a> <br>\n</li>",
   cptcovn=0;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */   jj1=0;
   while((c=getc(ficpar))=='#' && c!= EOF){   for(k1=1; k1<=m;k1++){
     ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     fgets(line, MAXLINE, ficpar);       jj1++;
     puts(line);       if (cptcovn > 0) {
     fputs(line,ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       }
     for(i=1; i <=nlstate; i++)       /* Pij */
     for(j=1; j <=nlstate+ndeath-1; j++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       fscanf(ficpar,"%1d%1d",&i1,&j1);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       fprintf(ficparo,"%1d%1d",i1,j1);       /* Quasi-incidences */
       if(mle==1)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         printf("%1d%1d",i,j);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
       fprintf(ficlog,"%1d%1d",i,j);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       for(k=1; k<=ncovmodel;k++){         /* Stable prevalence in each health state */
         fscanf(ficpar," %lf",&param[i][j][k]);         for(cpt=1; cpt<nlstate;cpt++){
         if(mle==1){           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
           printf(" %lf",param[i][j][k]);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           fprintf(ficlog," %lf",param[i][j][k]);         }
         }       for(cpt=1; cpt<=nlstate;cpt++) {
         else          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
           fprintf(ficlog," %lf",param[i][j][k]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         fprintf(ficparo," %lf",param[i][j][k]);       }
       }     } /* end i1 */
       fscanf(ficpar,"\n");   }/* End k1 */
       if(mle==1)   fprintf(fichtm,"</ul>");
         printf("\n");  
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");   fprintf(fichtm,"\
     }  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   p=param[1][1];           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     fprintf(fichtm,"\
   /* Reads comments: lines beginning with '#' */   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   while((c=getc(ficpar))=='#' && c!= EOF){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"\
     puts(line);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fputs(line,ficparo);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   }   fprintf(fichtm,"\
   ungetc(c,ficpar);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   fprintf(fichtm,"\
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
   for(i=1; i <=nlstate; i++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     for(j=1; j <=nlstate+ndeath-1; j++){   fprintf(fichtm,"\
       fscanf(ficpar,"%1d%1d",&i1,&j1);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
       printf("%1d%1d",i,j);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){  /*  if(popforecast==1) fprintf(fichtm,"\n */
         fscanf(ficpar,"%le",&delti3[i][j][k]);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         printf(" %le",delti3[i][j][k]);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         fprintf(ficparo," %le",delti3[i][j][k]);  /*      <br>",fileres,fileres,fileres,fileres); */
       }  /*  else  */
       fscanf(ficpar,"\n");  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       printf("\n");   fflush(fichtm);
       fprintf(ficparo,"\n");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     }  
   }   m=cptcoveff;
   delti=delti3[1][1];   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
   /* Reads comments: lines beginning with '#' */   jj1=0;
   while((c=getc(ficpar))=='#' && c!= EOF){   for(k1=1; k1<=m;k1++){
     ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     fgets(line, MAXLINE, ficpar);       jj1++;
     puts(line);       if (cptcovn > 0) {
     fputs(line,ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   matcov=matrix(1,npar,1,npar);       }
   for(i=1; i <=npar; i++){       for(cpt=1; cpt<=nlstate;cpt++) {
     fscanf(ficpar,"%s",&str);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     if(mle==1)  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       printf("%s",str);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     fprintf(ficlog,"%s",str);       }
     fprintf(ficparo,"%s",str);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     for(j=1; j <=i; j++){  health expectancies in states (1) and (2): %s%d.png<br>\
       fscanf(ficpar," %le",&matcov[i][j]);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       if(mle==1){     } /* end i1 */
         printf(" %.5le",matcov[i][j]);   }/* End k1 */
         fprintf(ficlog," %.5le",matcov[i][j]);   fprintf(fichtm,"</ul>");
       }   fflush(fichtm);
       else  }
         fprintf(ficlog," %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);  /******************* Gnuplot file **************/
     }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     fscanf(ficpar,"\n");  
     if(mle==1)    char dirfileres[132],optfileres[132];
       printf("\n");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     fprintf(ficlog,"\n");    int ng;
     fprintf(ficparo,"\n");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   }  /*     printf("Problem with file %s",optionfilegnuplot); */
   for(i=1; i <=npar; i++)  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     for(j=i+1;j<=npar;j++)  /*   } */
       matcov[i][j]=matcov[j][i];  
        /*#ifdef windows */
   if(mle==1)    fprintf(ficgp,"cd \"%s\" \n",pathc);
     printf("\n");      /*#endif */
   fprintf(ficlog,"\n");    m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     /*-------- Rewriting paramater file ----------*/    strcpy(optfileres,"vpl");
      strcpy(rfileres,"r");    /* "Rparameterfile */   /* 1eme*/
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    for (cpt=1; cpt<= nlstate ; cpt ++) {
      strcat(rfileres,".");    /* */     for (k1=1; k1<= m ; k1 ++) {
      strcat(rfileres,optionfilext);    /* Other files have txt extension */       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     if((ficres =fopen(rfileres,"w"))==NULL) {       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;       fprintf(ficgp,"set xlabel \"Age\" \n\
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  set ylabel \"Probability\" \n\
     }  set ter png small\n\
     fprintf(ficres,"#%s\n",version);  set size 0.65,0.65\n\
      plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {       for (i=1; i<= nlstate ; i ++) {
       printf("Problem with datafile: %s\n", datafile);goto end;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     n= lastobs;       for (i=1; i<= nlstate ; i ++) {
     severity = vector(1,maxwav);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     outcome=imatrix(1,maxwav+1,1,n);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     num=ivector(1,n);       } 
     moisnais=vector(1,n);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     annais=vector(1,n);       for (i=1; i<= nlstate ; i ++) {
     moisdc=vector(1,n);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     andc=vector(1,n);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     agedc=vector(1,n);       }  
     cod=ivector(1,n);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     weight=vector(1,n);     }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    }
     mint=matrix(1,maxwav,1,n);    /*2 eme*/
     anint=matrix(1,maxwav,1,n);    
     s=imatrix(1,maxwav+1,1,n);    for (k1=1; k1<= m ; k1 ++) { 
     adl=imatrix(1,maxwav+1,1,n);          fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     tab=ivector(1,NCOVMAX);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     ncodemax=ivector(1,8);      
       for (i=1; i<= nlstate+1 ; i ++) {
     i=1;        k=2*i;
     while (fgets(line, MAXLINE, fic) != NULL)    {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       if ((i >= firstobs) && (i <=lastobs)) {        for (j=1; j<= nlstate+1 ; j ++) {
                  if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         for (j=maxwav;j>=1;j--){          else fprintf(ficgp," \%%*lf (\%%*lf)");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        }   
           strcpy(line,stra);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         }        for (j=1; j<= nlstate+1 ; j ++) {
                  if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         for (j=ncovcol;j>=1;j--){        }   
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         }        else fprintf(ficgp,"\" t\"\" w l 0,");
         num[i]=atol(stra);      }
            }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    /*3eme*/
     
         i=i+1;    for (k1=1; k1<= m ; k1 ++) { 
       }      for (cpt=1; cpt<= nlstate ; cpt ++) {
     }        k=2+nlstate*(2*cpt-2);
     /* printf("ii=%d", ij);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
        scanf("%d",i);*/        fprintf(ficgp,"set ter png small\n\
   imx=i-1; /* Number of individuals */  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   /* for (i=1; i<=imx; i++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
    /*  for (i=1; i<=imx; i++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
      if (s[4][i]==9)  s[4][i]=-1;          
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        */
          for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   /* Calculation of the number of parameter from char model*/          
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        } 
   Tprod=ivector(1,15);      }
   Tvaraff=ivector(1,15);    }
   Tvard=imatrix(1,15,1,2);    
   Tage=ivector(1,15);          /* CV preval stable (period) */
        for (k1=1; k1<= m ; k1 ++) { 
   if (strlen(model) >1){      for (cpt=1; cpt<=nlstate ; cpt ++) {
     j=0, j1=0, k1=1, k2=1;        k=3;
     j=nbocc(model,'+');        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     j1=nbocc(model,'*');        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     cptcovn=j+1;  set ter png small\nset size 0.65,0.65\n\
     cptcovprod=j1;  unset log y\n\
      plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     strcpy(modelsav,model);        
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        for (i=1; i< nlstate ; i ++)
       printf("Error. Non available option model=%s ",model);          fprintf(ficgp,"+$%d",k+i+1);
       fprintf(ficlog,"Error. Non available option model=%s ",model);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       goto end;        
     }        l=3+(nlstate+ndeath)*cpt;
            fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     for(i=(j+1); i>=1;i--){        for (i=1; i< nlstate ; i ++) {
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */          l=3+(nlstate+ndeath)*cpt;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */          fprintf(ficgp,"+$%d",l+i+1);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        }
       /*scanf("%d",i);*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       if (strchr(strb,'*')) {  /* Model includes a product */      } 
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    }  
         if (strcmp(strc,"age")==0) { /* Vn*age */    
           cptcovprod--;    /* proba elementaires */
           cutv(strb,stre,strd,'V');    for(i=1,jk=1; i <=nlstate; i++){
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      for(k=1; k <=(nlstate+ndeath); k++){
           cptcovage++;        if (k != i) {
             Tage[cptcovage]=i;          for(j=1; j <=ncovmodel; j++){
             /*printf("stre=%s ", stre);*/            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         }            jk++; 
         else if (strcmp(strd,"age")==0) { /* or age*Vn */            fprintf(ficgp,"\n");
           cptcovprod--;          }
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=atoi(stre);      }
           cptcovage++;     }
           Tage[cptcovage]=i;  
         }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         else {  /* Age is not in the model */       for(jk=1; jk <=m; jk++) {
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           Tvar[i]=ncovcol+k1;         if (ng==2)
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           Tprod[k1]=i;         else
           Tvard[k1][1]=atoi(strc); /* m*/           fprintf(ficgp,"\nset title \"Probability\"\n");
           Tvard[k1][2]=atoi(stre); /* n */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           Tvar[cptcovn+k2]=Tvard[k1][1];         i=1;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         for(k2=1; k2<=nlstate; k2++) {
           for (k=1; k<=lastobs;k++)           k3=i;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];           for(k=1; k<=(nlstate+ndeath); k++) {
           k1++;             if (k != k2){
           k2=k2+2;               if(ng==2)
         }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       }               else
       else { /* no more sum */                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/               ij=1;
        /*  scanf("%d",i);*/               for(j=3; j <=ncovmodel; j++) {
       cutv(strd,strc,strb,'V');                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       Tvar[i]=atoi(strc);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       }                   ij++;
       strcpy(modelsav,stra);                   }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                 else
         scanf("%d",i);*/                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     } /* end of loop + */               }
   } /* end model */               fprintf(ficgp,")/(1");
                 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);               for(k1=1; k1 <=nlstate; k1++){   
   printf("cptcovprod=%d ", cptcovprod);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                 ij=1;
   scanf("%d ",i);*/                 for(j=3; j <=ncovmodel; j++){
     fclose(fic);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     /*  if(mle==1){*/                     ij++;
     if (weightopt != 1) { /* Maximisation without weights*/                   }
       for(i=1;i<=n;i++) weight[i]=1.0;                   else
     }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     /*-calculation of age at interview from date of interview and age at death -*/                 }
     agev=matrix(1,maxwav,1,imx);                 fprintf(ficgp,")");
                }
     for (i=1; i<=imx; i++) {               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       for(m=2; (m<= maxwav); m++) {               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){               i=i+ncovmodel;
          anint[m][i]=9999;             }
          s[m][i]=-1;           } /* end k */
        }         } /* end k2 */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;       } /* end jk */
       }     } /* end ng */
     }     fflush(ficgp); 
   }  /* end gnuplot */
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){  /*************** Moving average **************/
         if(s[m][i] >0){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)    int i, cpt, cptcod;
               if(moisdc[i]!=99 && andc[i]!=9999)    int modcovmax =1;
                 agev[m][i]=agedc[i];    int mobilavrange, mob;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double age;
            else {  
               if (andc[i]!=9999){    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                             a covariate has 2 modalities */
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
               agev[m][i]=-1;  
               }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             }      if(mobilav==1) mobilavrange=5; /* default */
           }      else mobilavrange=mobilav;
           else if(s[m][i] !=9){ /* Should no more exist */      for (age=bage; age<=fage; age++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        for (i=1; i<=nlstate;i++)
             if(mint[m][i]==99 || anint[m][i]==9999)          for (cptcod=1;cptcod<=modcovmax;cptcod++)
               agev[m][i]=1;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
             else if(agev[m][i] <agemin){      /* We keep the original values on the extreme ages bage, fage and for 
               agemin=agev[m][i];         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/         we use a 5 terms etc. until the borders are no more concerned. 
             }      */ 
             else if(agev[m][i] >agemax){      for (mob=3;mob <=mobilavrange;mob=mob+2){
               agemax=agev[m][i];        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          for (i=1; i<=nlstate;i++){
             }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
             /*agev[m][i]=anint[m][i]-annais[i];*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
             /*   agev[m][i] = age[i]+2*m;*/                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           else { /* =9 */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
             agev[m][i]=1;                }
             s[m][i]=-1;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           }            }
         }          }
         else /*= 0 Unknown */        }/* end age */
           agev[m][i]=1;      }/* end mob */
       }    }else return -1;
        return 0;
     }  }/* End movingaverage */
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {  /************** Forecasting ******************/
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      /* proj1, year, month, day of starting projection 
           goto end;       agemin, agemax range of age
         }       dateprev1 dateprev2 range of dates during which prevalence is computed
       }       anproj2 year of en of projection (same day and month as proj1).
     }    */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int *popage;
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     free_vector(severity,1,maxwav);    double *popeffectif,*popcount;
     free_imatrix(outcome,1,maxwav+1,1,n);    double ***p3mat;
     free_vector(moisnais,1,n);    double ***mobaverage;
     free_vector(annais,1,n);    char fileresf[FILENAMELENGTH];
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/    agelim=AGESUP;
     free_vector(moisdc,1,n);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     free_vector(andc,1,n);   
     strcpy(fileresf,"f"); 
        strcat(fileresf,fileres);
     wav=ivector(1,imx);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      printf("Problem with forecast resultfile: %s\n", fileresf);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
        }
     /* Concatenates waves */    printf("Computing forecasting: result on file '%s' \n", fileresf);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    if (mobilav!=0) {
       ncodemax[1]=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
              fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
    codtab=imatrix(1,100,1,10);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    h=0;      }
    m=pow(2,cptcoveff);    }
    
    for(k=1;k<=cptcoveff; k++){    stepsize=(int) (stepm+YEARM-1)/YEARM;
      for(i=1; i <=(m/pow(2,k));i++){    if (stepm<=12) stepsize=1;
        for(j=1; j <= ncodemax[k]; j++){    if(estepm < stepm){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      printf ("Problem %d lower than %d\n",estepm, stepm);
            h++;    }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    else  hstepm=estepm;   
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }    hstepm=hstepm/stepm; 
        }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
      }                                 fractional in yp1 */
    }    anprojmean=yp;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    yp2=modf((yp1*12),&yp);
       codtab[1][2]=1;codtab[2][2]=2; */    mprojmean=yp;
    /* for(i=1; i <=m ;i++){    yp1=modf((yp2*30.5),&yp);
       for(k=1; k <=cptcovn; k++){    jprojmean=yp;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    if(jprojmean==0) jprojmean=1;
       }    if(mprojmean==0) jprojmean=1;
       printf("\n");  
       }    i1=cptcoveff;
       scanf("%d",i);*/    if (cptcovn < 1){i1=1;}
        
    /* Calculates basic frequencies. Computes observed prevalence at single age    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
        and prints on file fileres'p'. */    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
      
      /*            if (h==(int)(YEARM*yearp)){ */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        k=k+1;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresf,"\n#******");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1;j<=cptcoveff;j++) {
                fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     /* For Powell, parameters are in a vector p[] starting at p[1]        }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        fprintf(ficresf,"******\n");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
     if(mle==1){          for(i=1; i<=nlstate;i++)              
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            fprintf(ficresf," p%d%d",i,j);
     }          fprintf(ficresf," p.%d",j);
            }
     /*--------- results files --------------*/        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          fprintf(ficresf,"\n");
            fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
    jk=1;          for (agec=fage; agec>=(ageminpar-1); agec--){ 
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            nhstepm = nhstepm/hstepm; 
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(i=1,jk=1; i <=nlstate; i++){            oldm=oldms;savm=savms;
      for(k=1; k <=(nlstate+ndeath); k++){            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
        if (k != i)          
          {            for (h=0; h<=nhstepm; h++){
            printf("%d%d ",i,k);              if (h*hstepm/YEARM*stepm ==yearp) {
            fprintf(ficlog,"%d%d ",i,k);                fprintf(ficresf,"\n");
            fprintf(ficres,"%1d%1d ",i,k);                for(j=1;j<=cptcoveff;j++) 
            for(j=1; j <=ncovmodel; j++){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
              printf("%f ",p[jk]);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
              fprintf(ficlog,"%f ",p[jk]);              } 
              fprintf(ficres,"%f ",p[jk]);              for(j=1; j<=nlstate+ndeath;j++) {
              jk++;                ppij=0.;
            }                for(i=1; i<=nlstate;i++) {
            printf("\n");                  if (mobilav==1) 
            fprintf(ficlog,"\n");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
            fprintf(ficres,"\n");                  else {
          }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
      }                  }
    }                  if (h*hstepm/YEARM*stepm== yearp) {
    if(mle==1){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
      /* Computing hessian and covariance matrix */                  }
      ftolhess=ftol; /* Usually correct */                } /* end i */
      hesscov(matcov, p, npar, delti, ftolhess, func);                if (h*hstepm/YEARM*stepm==yearp) {
    }                  fprintf(ficresf," %.3f", ppij);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                }
    printf("# Scales (for hessian or gradient estimation)\n");              }/* end j */
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");            } /* end h */
    for(i=1,jk=1; i <=nlstate; i++){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for(j=1; j <=nlstate+ndeath; j++){          } /* end agec */
        if (j!=i) {        } /* end yearp */
          fprintf(ficres,"%1d%1d",i,j);      } /* end cptcod */
          printf("%1d%1d",i,j);    } /* end  cptcov */
          fprintf(ficlog,"%1d%1d",i,j);         
          for(k=1; k<=ncovmodel;k++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            printf(" %.5e",delti[jk]);  
            fprintf(ficlog," %.5e",delti[jk]);    fclose(ficresf);
            fprintf(ficres," %.5e",delti[jk]);  }
            jk++;  
          }  /************** Forecasting *****not tested NB*************/
          printf("\n");  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
          fprintf(ficlog,"\n");    
          fprintf(ficres,"\n");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
        }    int *popage;
      }    double calagedatem, agelim, kk1, kk2;
    }    double *popeffectif,*popcount;
        double ***p3mat,***tabpop,***tabpopprev;
    k=1;    double ***mobaverage;
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    char filerespop[FILENAMELENGTH];
    if(mle==1)  
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    for(i=1;i<=npar;i++){    agelim=AGESUP;
      /*  if (k>nlstate) k=1;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
          i1=(i-1)/(ncovmodel*nlstate)+1;    
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
          printf("%s%d%d",alph[k],i1,tab[i]);*/    
      fprintf(ficres,"%3d",i);    
      if(mle==1)    strcpy(filerespop,"pop"); 
        printf("%3d",i);    strcat(filerespop,fileres);
      fprintf(ficlog,"%3d",i);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
      for(j=1; j<=i;j++){      printf("Problem with forecast resultfile: %s\n", filerespop);
        fprintf(ficres," %.5e",matcov[i][j]);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
        if(mle==1)    }
          printf(" %.5e",matcov[i][j]);    printf("Computing forecasting: result on file '%s' \n", filerespop);
        fprintf(ficlog," %.5e",matcov[i][j]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
      }  
      fprintf(ficres,"\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
      if(mle==1)  
        printf("\n");    if (mobilav!=0) {
      fprintf(ficlog,"\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      k++;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
    }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            printf(" Error in movingaverage mobilav=%d\n",mobilav);
    while((c=getc(ficpar))=='#' && c!= EOF){      }
      ungetc(c,ficpar);    }
      fgets(line, MAXLINE, ficpar);  
      puts(line);    stepsize=(int) (stepm+YEARM-1)/YEARM;
      fputs(line,ficparo);    if (stepm<=12) stepsize=1;
    }    
    ungetc(c,ficpar);    agelim=AGESUP;
    estepm=0;    
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    hstepm=1;
    if (estepm==0 || estepm < stepm) estepm=stepm;    hstepm=hstepm/stepm; 
    if (fage <= 2) {    
      bage = ageminpar;    if (popforecast==1) {
      fage = agemaxpar;      if((ficpop=fopen(popfile,"r"))==NULL) {
    }        printf("Problem with population file : %s\n",popfile);exit(0);
            fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      } 
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      popage=ivector(0,AGESUP);
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      popeffectif=vector(0,AGESUP);
          popcount=vector(0,AGESUP);
    while((c=getc(ficpar))=='#' && c!= EOF){      
      ungetc(c,ficpar);      i=1;   
      fgets(line, MAXLINE, ficpar);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      puts(line);     
      fputs(line,ficparo);      imx=i;
    }      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
    ungetc(c,ficpar);    }
    
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        k=k+1;
            fprintf(ficrespop,"\n#******");
    while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1;j<=cptcoveff;j++) {
      ungetc(c,ficpar);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      fgets(line, MAXLINE, ficpar);        }
      puts(line);        fprintf(ficrespop,"******\n");
      fputs(line,ficparo);        fprintf(ficrespop,"# Age");
    }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
    ungetc(c,ficpar);        if (popforecast==1)  fprintf(ficrespop," [Population]");
          
         for (cpt=0; cpt<=0;cpt++) { 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   fscanf(ficpar,"pop_based=%d\n",&popbased);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   fprintf(ficparo,"pop_based=%d\n",popbased);              nhstepm = nhstepm/hstepm; 
   fprintf(ficres,"pop_based=%d\n",popbased);              
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while((c=getc(ficpar))=='#' && c!= EOF){            oldm=oldms;savm=savms;
     ungetc(c,ficpar);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fgets(line, MAXLINE, ficpar);          
     puts(line);            for (h=0; h<=nhstepm; h++){
     fputs(line,ficparo);              if (h==(int) (calagedatem+YEARM*cpt)) {
   }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   ungetc(c,ficpar);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                kk1=0.;kk2=0;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                for(i=1; i<=nlstate;i++) {              
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                  if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
 while((c=getc(ficpar))=='#' && c!= EOF){                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     ungetc(c,ficpar);                  }
     fgets(line, MAXLINE, ficpar);                }
     puts(line);                if (h==(int)(calagedatem+12*cpt)){
     fputs(line,ficparo);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   }                    /*fprintf(ficrespop," %.3f", kk1);
   ungetc(c,ficpar);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);              }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              for(i=1; i<=nlstate;i++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                kk1=0.;
                   for(j=1; j<=nlstate;j++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
 /*------------ gnuplot -------------*/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   strcpy(optionfilegnuplot,optionfilefiname);              }
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
     printf("Problem with file %s",optionfilegnuplot);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   }            }
   fclose(ficgp);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          }
 /*--------- index.htm --------*/        }
    
   strcpy(optionfilehtm,optionfile);    /******/
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
     printf("Problem with %s \n",optionfilehtm), exit(0);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n            nhstepm = nhstepm/hstepm; 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            
 \n            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 Total number of observations=%d <br>\n            oldm=oldms;savm=savms;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 <hr  size=\"2\" color=\"#EC5E5E\">            for (h=0; h<=nhstepm; h++){
  <ul><li><h4>Parameter files</h4>\n              if (h==(int) (calagedatem+YEARM*cpt)) {
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n              } 
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);              for(j=1; j<=nlstate+ndeath;j++) {
   fclose(fichtm);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                  }
 /*------------ free_vector  -------------*/                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
  chdir(path);              }
              }
  free_ivector(wav,1,imx);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          }
  free_ivector(num,1,n);     } 
  free_vector(agedc,1,n);    }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/   
  fclose(ficparo);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  fclose(ficres);  
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
   /*--------------- Prevalence limit --------------*/      free_vector(popeffectif,0,AGESUP);
        free_vector(popcount,0,AGESUP);
   strcpy(filerespl,"pl");    }
   strcat(filerespl,fileres);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fclose(ficrespop);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;  } /* End of popforecast */
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  int fileappend(FILE *fichier, char *optionfich)
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  {
   fprintf(ficrespl,"#Prevalence limit\n");    if((fichier=fopen(optionfich,"a"))==NULL) {
   fprintf(ficrespl,"#Age ");      printf("Problem with file: %s\n", optionfich);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   fprintf(ficrespl,"\n");      return (0);
      }
   prlim=matrix(1,nlstate,1,nlstate);    fflush(fichier);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    return (1);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /**************** function prwizard **********************/
   k=0;  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   agebase=ageminpar;  {
   agelim=agemaxpar;  
   ftolpl=1.e-10;    /* Wizard to print covariance matrix template */
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}    char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   for(cptcov=1;cptcov<=i1;cptcov++){    int numlinepar;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         fprintf(ficrespl,"\n#******");    for(i=1; i <=nlstate; i++){
         printf("\n#******");      jj=0;
         fprintf(ficlog,"\n#******");      for(j=1; j <=nlstate+ndeath; j++){
         for(j=1;j<=cptcoveff;j++) {        if(j==i) continue;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        jj++;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("%1d%1d",i,j);
         }        fprintf(ficparo,"%1d%1d",i,j);
         fprintf(ficrespl,"******\n");        for(k=1; k<=ncovmodel;k++){
         printf("******\n");          /*        printf(" %lf",param[i][j][k]); */
         fprintf(ficlog,"******\n");          /*        fprintf(ficparo," %lf",param[i][j][k]); */
                  printf(" 0.");
         for (age=agebase; age<=agelim; age++){          fprintf(ficparo," 0.");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }
           fprintf(ficrespl,"%.0f",age );        printf("\n");
           for(i=1; i<=nlstate;i++)        fprintf(ficparo,"\n");
           fprintf(ficrespl," %.5f", prlim[i][i]);      }
           fprintf(ficrespl,"\n");    }
         }    printf("# Scales (for hessian or gradient estimation)\n");
       }    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   fclose(ficrespl);    for(i=1; i <=nlstate; i++){
       jj=0;
   /*------------- h Pij x at various ages ------------*/      for(j=1; j <=nlstate+ndeath; j++){
          if(j==i) continue;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        jj++;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        fprintf(ficparo,"%1d%1d",i,j);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        printf("%1d%1d",i,j);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;        fflush(stdout);
   }        for(k=1; k<=ncovmodel;k++){
   printf("Computing pij: result on file '%s' \n", filerespij);          /*      printf(" %le",delti3[i][j][k]); */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
            printf(" 0.");
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficparo," 0.");
   /*if (stepm<=24) stepsize=2;*/        }
         numlinepar++;
   agelim=AGESUP;        printf("\n");
   hstepm=stepsize*YEARM; /* Every year of age */        fprintf(ficparo,"\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      }
     }
   /* hstepm=1;   aff par mois*/    printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   k=0;  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   for(cptcov=1;cptcov<=i1;cptcov++){  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       k=k+1;  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
         fprintf(ficrespij,"\n#****** ");  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
         for(j=1;j<=cptcoveff;j++)  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
         fprintf(ficrespij,"******\n");    fflush(stdout);
            fprintf(ficparo,"# Covariance matrix\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /* # 121 Var(a12)\n\ */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* # 122 Cov(b12,a12) Var(b12)\n\ */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    
     for(itimes=1;itimes<=2;itimes++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      jj=0;
           oldm=oldms;savm=savms;      for(i=1; i <=nlstate; i++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1; j <=nlstate+ndeath; j++){
           fprintf(ficrespij,"# Age");          if(j==i) continue;
           for(i=1; i<=nlstate;i++)          for(k=1; k<=ncovmodel;k++){
             for(j=1; j<=nlstate+ndeath;j++)            jj++;
               fprintf(ficrespij," %1d-%1d",i,j);            ca[0]= k+'a'-1;ca[1]='\0';
           fprintf(ficrespij,"\n");            if(itimes==1){
            for (h=0; h<=nhstepm; h++){              printf("#%1d%1d%d",i,j,k);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );              fprintf(ficparo,"#%1d%1d%d",i,j,k);
             for(i=1; i<=nlstate;i++)            }else{
               for(j=1; j<=nlstate+ndeath;j++)              printf("%1d%1d%d",i,j,k);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              fprintf(ficparo,"%1d%1d%d",i,j,k);
             fprintf(ficrespij,"\n");              /*  printf(" %.5le",matcov[i][j]); */
              }            }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            ll=0;
           fprintf(ficrespij,"\n");            for(li=1;li <=nlstate; li++){
         }              for(lj=1;lj <=nlstate+ndeath; lj++){
     }                if(lj==li) continue;
   }                for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                  if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
   fclose(ficrespij);                    if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   /*---------- Forecasting ------------------*/                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   if((stepm == 1) && (strcmp(model,".")==0)){                      }else{
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                        printf(" 0.");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                        fprintf(ficparo," 0.");
   }                      }
   else{                    }else{
     erreur=108;                      if(itimes==1){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                        printf(" Var(%s%1d%1d)",ca,i,j);
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   }                      }else{
                          printf(" 0.");
                         fprintf(ficparo," 0.");
   /*---------- Health expectancies and variances ------------*/                      }
                     }
   strcpy(filerest,"t");                  }
   strcat(filerest,fileres);                } /* end lk */
   if((ficrest=fopen(filerest,"w"))==NULL) {              } /* end lj */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            } /* end li */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;            printf("\n");
   }            fprintf(ficparo,"\n");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            numlinepar++;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);          } /* end k*/
         } /*end j */
       } /* end i */
   strcpy(filerese,"e");    } /* end itimes */
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {  } /* end of prwizard */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /******************* Gompertz Likelihood ******************************/
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  double gompertz(double x[])
   }  { 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double A,B,L=0.0,sump=0.,num=0.;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
   strcpy(fileresv,"v");      sump=sump+weight[i];
   strcat(fileresv,fileres);      sump=sump+1;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      num=num+1;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    }
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);   
   }   
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /* for (i=1; i<=imx; i++) 
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   calagedate=-1;  
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    for (i=0;i<=imx-1 ; i++)
       {
   k=0;        if (cens[i]==1 & wav[i]>1)
   for(cptcov=1;cptcov<=i1;cptcov++){          A=-x[1]/(x[2])*
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
       k=k+1;        
       fprintf(ficrest,"\n#****** ");        if (cens[i]==0 & wav[i]>1)
       for(j=1;j<=cptcoveff;j++)          A=-x[1]/(x[2])*
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
       fprintf(ficrest,"******\n");            +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
       fprintf(ficreseij,"\n#****** ");        if (wav[i]>1 & agecens[i]>15) {
       for(j=1;j<=cptcoveff;j++)          L=L+A*weight[i];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       fprintf(ficreseij,"******\n");        }
       }
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
       fprintf(ficresvij,"******\n");    return -2*L*num/sump;
   }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  /******************* Printing html file ***********/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                      int lastpass, int stepm, int weightopt, char model[],\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    int imx,  double p[],double **matcov){
       oldm=oldms;savm=savms;    int i;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);  
       if(popbased==1){    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
        }    for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
      fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(fichtm,"</ul>");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fflush(fichtm);
       fprintf(ficrest,"\n");  }
   
       epj=vector(1,nlstate+1);  /******************* Gnuplot file **************/
       for(age=bage; age <=fage ;age++){  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    char dirfileres[132],optfileres[132];
           for(i=1; i<=nlstate;i++)    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
             prlim[i][i]=probs[(int)age][i][k];    int ng;
         }  
          
         fprintf(ficrest," %4.0f",age);    /*#ifdef windows */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(ficgp,"cd \"%s\" \n",pathc);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      /*#endif */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }    strcpy(dirfileres,optionfilefiname);
           epj[nlstate+1] +=epj[j];    strcpy(optfileres,"vpl");
         }    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
         for(i=1, vepp=0.;i <=nlstate;i++)    fprintf(ficgp, "set ter png small\n set log y\n"); 
           for(j=1;j <=nlstate;j++)    fprintf(ficgp, "set size 0.65,0.65\n");
             vepp += vareij[i][j][(int)age];    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){  } 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }  
         fprintf(ficrest,"\n");  
       }  
     }  /***********************************************/
   }  /**************** Main Program *****************/
 free_matrix(mint,1,maxwav,1,n);  /***********************************************/
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);  int main(int argc, char *argv[])
   fclose(ficreseij);  {
   fclose(ficresvij);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   fclose(ficrest);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   fclose(ficpar);    int jj, ll, li, lj, lk, imk;
   free_vector(epj,1,nlstate+1);    int numlinepar=0; /* Current linenumber of parameter file */
      int itimes;
   /*------- Variance limit prevalence------*/      int NDIM=2;
   
   strcpy(fileresvpl,"vpl");    char ca[32], cb[32], cc[32];
   strcat(fileresvpl,fileres);    /*  FILE *fichtm; *//* Html File */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    /* FILE *ficgp;*/ /*Gnuplot File */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double agedeb, agefin,hf;
     exit(0);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    double fret;
     double **xi,tmp,delta;
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    double dum; /* Dummy variable */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***p3mat;
       k=k+1;    double ***mobaverage;
       fprintf(ficresvpl,"\n#****** ");    int *indx;
       for(j=1;j<=cptcoveff;j++)    char line[MAXLINE], linepar[MAXLINE];
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       fprintf(ficresvpl,"******\n");    char pathr[MAXLINE], pathimach[MAXLINE]; 
          int firstobs=1, lastobs=10;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    int sdeb, sfin; /* Status at beginning and end */
       oldm=oldms;savm=savms;    int c,  h , cpt,l;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    int ju,jl, mi;
     }    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
  }    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   fclose(ficresvpl);    int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
   /*---------- End : free ----------------*/    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double bage, fage, age, agelim, agebase;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double ftolpl=FTOL;
      double **prlim;
      double *severity;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    double ***param; /* Matrix of parameters */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    double  *p;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double **matcov; /* Matrix of covariance */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    double ***delti3; /* Scale */
      double *delti; /* Scale */
   free_matrix(matcov,1,npar,1,npar);    double ***eij, ***vareij;
   free_vector(delti,1,npar);    double **varpl; /* Variances of prevalence limits by age */
   free_matrix(agev,1,maxwav,1,imx);    double *epj, vepp;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   fprintf(fichtm,"\n</body>");    double **ximort;
   fclose(fichtm);    char *alph[]={"a","a","b","c","d","e"}, str[4];
   fclose(ficgp);    int *dcwave;
    
     char z[1]="c", occ;
   if(erreur >0){  
     printf("End of Imach with error or warning %d\n",erreur);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    char strstart[80], *strt, strtend[80];
   }else{    char *stratrunc;
    printf("End of Imach\n");    int lstra;
    fprintf(ficlog,"End of Imach\n");  
   }    long total_usecs;
   printf("See log file on %s\n",filelog);   
   fclose(ficlog);  /*   setlocale (LC_ALL, ""); */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
    /*   textdomain (PACKAGE); */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  /*   setlocale (LC_CTYPE, ""); */
   /*printf("Total time was %d uSec.\n", total_usecs);*/  /*   setlocale (LC_MESSAGES, ""); */
   /*------ End -----------*/  
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
  end:    curr_time=start_time;
 #ifdef windows    tm = *localtime(&start_time.tv_sec);
   /* chdir(pathcd);*/    tmg = *gmtime(&start_time.tv_sec);
 #endif    strcpy(strstart,asctime(&tm));
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/  /*  printf("Localtime (at start)=%s",strstart); */
  /*system("cd ../gp37mgw");*/  /*  tp.tv_sec = tp.tv_sec +86400; */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  /*  tm = *localtime(&start_time.tv_sec); */
  strcpy(plotcmd,GNUPLOTPROGRAM);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
  strcat(plotcmd," ");  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
  strcat(plotcmd,optionfilegnuplot);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
  system(plotcmd);  /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
 #ifdef windows  /*   printf("Time(after) =%s",strstart);  */
   while (z[0] != 'q') {  /*  (void) time (&time_value);
     /* chdir(path); */  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  *  tm = *localtime(&time_value);
     scanf("%s",z);  *  strstart=asctime(&tm);
     if (z[0] == 'c') system("./imach");  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
     else if (z[0] == 'e') system(optionfilehtm);  */
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);    nberr=0; /* Number of errors and warnings */
   }    nbwarn=0;
 #endif    getcwd(pathcd, size);
 }  
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.102


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>