Diff for /imach/src/imach.c between versions 1.51 and 1.112

version 1.51, 2002/07/19 12:22:25 version 1.112, 2006/01/30 09:55:26
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.112  2006/01/30 09:55:26  brouard
      (Module): Back to gnuplot.exe instead of wgnuplot.exe
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.111  2006/01/25 20:38:18  brouard
   first survey ("cross") where individuals from different ages are    (Module): Lots of cleaning and bugs added (Gompertz)
   interviewed on their health status or degree of disability (in the    (Module): Comments can be added in data file. Missing date values
   case of a health survey which is our main interest) -2- at least a    can be a simple dot '.'.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.110  2006/01/25 00:51:50  brouard
   computed from the time spent in each health state according to a    (Module): Lots of cleaning and bugs added (Gompertz)
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.109  2006/01/24 19:37:15  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Comments (lines starting with a #) are allowed in data.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.108  2006/01/19 18:05:42  lievre
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Gnuplot problem appeared...
   'age' is age and 'sex' is a covariate. If you want to have a more    To be fixed
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.107  2006/01/19 16:20:37  brouard
   you to do it.  More covariates you add, slower the    Test existence of gnuplot in imach path
   convergence.  
     Revision 1.106  2006/01/19 13:24:36  brouard
   The advantage of this computer programme, compared to a simple    Some cleaning and links added in html output
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.105  2006/01/05 20:23:19  lievre
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.104  2005/09/30 16:11:43  lievre
   hPijx is the probability to be observed in state i at age x+h    (Module): sump fixed, loop imx fixed, and simplifications.
   conditional to the observed state i at age x. The delay 'h' can be    (Module): If the status is missing at the last wave but we know
   split into an exact number (nh*stepm) of unobserved intermediate    that the person is alive, then we can code his/her status as -2
   states. This elementary transition (by month or quarter trimester,    (instead of missing=-1 in earlier versions) and his/her
   semester or year) is model as a multinomial logistic.  The hPx    contributions to the likelihood is 1 - Prob of dying from last
   matrix is simply the matrix product of nh*stepm elementary matrices    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   and the contribution of each individual to the likelihood is simply    the healthy state at last known wave). Version is 0.98
   hPijx.  
     Revision 1.103  2005/09/30 15:54:49  lievre
   Also this programme outputs the covariance matrix of the parameters but also    (Module): sump fixed, loop imx fixed, and simplifications.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.102  2004/09/15 17:31:30  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Add the possibility to read data file including tab characters.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.101  2004/09/15 10:38:38  brouard
   from the European Union.    Fix on curr_time
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.100  2004/07/12 18:29:06  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Add version for Mac OS X. Just define UNIX in Makefile
   **********************************************************************/  
      Revision 1.99  2004/06/05 08:57:40  brouard
 #include <math.h>    *** empty log message ***
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.98  2004/05/16 15:05:56  brouard
 #include <unistd.h>    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 #define MAXLINE 256    state at each age, but using a Gompertz model: log u =a + b*age .
 #define GNUPLOTPROGRAM "gnuplot"    This is the basic analysis of mortality and should be done before any
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    other analysis, in order to test if the mortality estimated from the
 #define FILENAMELENGTH 80    cross-longitudinal survey is different from the mortality estimated
 /*#define DEBUG*/    from other sources like vital statistic data.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    The same imach parameter file can be used but the option for mle should be -3.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Agnès, who wrote this part of the code, tried to keep most of the
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    former routines in order to include the new code within the former code.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     The output is very simple: only an estimate of the intercept and of
 #define NINTERVMAX 8    the slope with 95% confident intervals.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Current limitations:
 #define NCOVMAX 8 /* Maximum number of covariates */    A) Even if you enter covariates, i.e. with the
 #define MAXN 20000    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define YEARM 12. /* Number of months per year */    B) There is no computation of Life Expectancy nor Life Table.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.97  2004/02/20 13:25:42  lievre
 #ifdef windows    Version 0.96d. Population forecasting command line is (temporarily)
 #define DIRSEPARATOR '\\'    suppressed.
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.96  2003/07/15 15:38:55  brouard
 #define DIRSEPARATOR '/'    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define ODIRSEPARATOR '\\'    rewritten within the same printf. Workaround: many printfs.
 #endif  
     Revision 1.95  2003/07/08 07:54:34  brouard
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    * imach.c (Repository):
 int erreur; /* Error number */    (Repository): Using imachwizard code to output a more meaningful covariance
 int nvar;    matrix (cov(a12,c31) instead of numbers.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.94  2003/06/27 13:00:02  brouard
 int nlstate=2; /* Number of live states */    Just cleaning
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.93  2003/06/25 16:33:55  brouard
 int popbased=0;    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Version 0.96b
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.92  2003/06/25 16:30:45  brouard
 int mle, weightopt;    (Module): On windows (cygwin) function asctime_r doesn't
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    exist so I changed back to asctime which exists.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.91  2003/06/25 15:30:29  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    * imach.c (Repository): Duplicated warning errors corrected.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Repository): Elapsed time after each iteration is now output. It
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    helps to forecast when convergence will be reached. Elapsed time
 FILE *ficlog;    is stamped in powell.  We created a new html file for the graphs
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    concerning matrix of covariance. It has extension -cov.htm.
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.90  2003/06/24 12:34:15  brouard
 FILE *ficreseij;    (Module): Some bugs corrected for windows. Also, when
 char filerese[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE  *ficresvij;    of the covariance matrix to be input.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.89  2003/06/24 12:30:52  brouard
 char fileresvpl[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
 char title[MAXLINE];    mle=-1 a template is output in file "or"mypar.txt with the design
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    of the covariance matrix to be input.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.88  2003/06/23 17:54:56  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.87  2003/06/18 12:26:01  brouard
 char fileregp[FILENAMELENGTH];    Version 0.96
 char popfile[FILENAMELENGTH];  
     Revision 1.86  2003/06/17 20:04:08  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.85  2003/06/17 13:12:43  brouard
 #define FTOL 1.0e-10    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 #define NRANSI    prior to the death. In this case, dh was negative and likelihood
 #define ITMAX 200    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 #define TOL 2.0e-4    interview.
     (Repository): Because some people have very long ID (first column)
 #define CGOLD 0.3819660    we changed int to long in num[] and we added a new lvector for
 #define ZEPS 1.0e-10    memory allocation. But we also truncated to 8 characters (left
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    truncation)
     (Repository): No more line truncation errors.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.84  2003/06/13 21:44:43  brouard
 #define TINY 1.0e-20    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 static double maxarg1,maxarg2;    many times. Probs is memory consuming and must be used with
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    parcimony.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.83  2003/06/10 13:39:11  lievre
 #define rint(a) floor(a+0.5)    *** empty log message ***
   
 static double sqrarg;    Revision 1.82  2003/06/05 15:57:20  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Add log in  imach.c and  fullversion number is now printed.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
   */
 int imx;  /*
 int stepm;     Interpolated Markov Chain
 /* Stepm, step in month: minimum step interpolation*/  
     Short summary of the programme:
 int estepm;    
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int m,nb;    first survey ("cross") where individuals from different ages are
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    interviewed on their health status or degree of disability (in the
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    case of a health survey which is our main interest) -2- at least a
 double **pmmij, ***probs, ***mobaverage;    second wave of interviews ("longitudinal") which measure each change
 double dateintmean=0;    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 double *weight;    model. More health states you consider, more time is necessary to reach the
 int **s; /* Status */    Maximum Likelihood of the parameters involved in the model.  The
 double *agedc, **covar, idx;    simplest model is the multinomial logistic model where pij is the
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double ftolhess; /* Tolerance for computing hessian */    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /**************** split *************************/    where the markup *Covariates have to be included here again* invites
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    you to do it.  More covariates you add, slower the
 {    convergence.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
    l1 = strlen( path );                 /* length of path */    identical for each individual. Also, if a individual missed an
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    intermediate interview, the information is lost, but taken into
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    account using an interpolation or extrapolation.  
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    hPijx is the probability to be observed in state i at age x+h
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    conditional to the observed state i at age x. The delay 'h' can be
 #if     defined(__bsd__)                /* get current working directory */    split into an exact number (nh*stepm) of unobserved intermediate
       extern char       *getwd( );    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
       if ( getwd( dirc ) == NULL ) {    matrix is simply the matrix product of nh*stepm elementary matrices
 #else    and the contribution of each individual to the likelihood is simply
       extern char       *getcwd( );    hPijx.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Also this programme outputs the covariance matrix of the parameters but also
 #endif    of the life expectancies. It also computes the stable prevalence. 
          return( GLOCK_ERROR_GETCWD );    
       }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       strcpy( name, path );             /* we've got it */             Institut national d'études démographiques, Paris.
    } else {                             /* strip direcotry from path */    This software have been partly granted by Euro-REVES, a concerted action
       s++;                              /* after this, the filename */    from the European Union.
       l2 = strlen( s );                 /* length of filename */    It is copyrighted identically to a GNU software product, ie programme and
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    software can be distributed freely for non commercial use. Latest version
       strcpy( name, s );                /* save file name */    can be accessed at http://euroreves.ined.fr/imach .
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    l1 = strlen( dirc );                 /* length of directory */    
 #ifdef windows    **********************************************************************/
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /*
 #else    main
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    read parameterfile
 #endif    read datafile
    s = strrchr( name, '.' );            /* find last / */    concatwav
    s++;    freqsummary
    strcpy(ext,s);                       /* save extension */    if (mle >= 1)
    l1= strlen( name);      mlikeli
    l2= strlen( s)+1;    print results files
    strncpy( finame, name, l1-l2);    if mle==1 
    finame[l1-l2]= 0;       computes hessian
    return( 0 );                         /* we're done */    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
     open html file
 /******************************************/    stable prevalence
      for age prevalim()
 void replace(char *s, char*t)    h Pij x
 {    variance of p varprob
   int i;    forecasting if prevfcast==1 prevforecast call prevalence()
   int lg=20;    health expectancies
   i=0;    Variance-covariance of DFLE
   lg=strlen(t);    prevalence()
   for(i=0; i<= lg; i++) {     movingaverage()
     (s[i] = t[i]);    varevsij() 
     if (t[i]== '\\') s[i]='/';    if popbased==1 varevsij(,popbased)
   }    total life expectancies
 }    Variance of stable prevalence
    end
 int nbocc(char *s, char occ)  */
 {  
   int i,j=0;  
   int lg=20;  
   i=0;   
   lg=strlen(s);  #include <math.h>
   for(i=0; i<= lg; i++) {  #include <stdio.h>
   if  (s[i] == occ ) j++;  #include <stdlib.h>
   }  #include <string.h>
   return j;  #include <unistd.h>
 }  
   #include <limits.h>
 void cutv(char *u,char *v, char*t, char occ)  #include <sys/types.h>
 {  #include <sys/stat.h>
   /* cuts string t into u and v where u is ended by char occ excluding it  #include <errno.h>
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  extern int errno;
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  /* #include <sys/time.h> */
   i=0;  #include <time.h>
   for(j=0; j<=strlen(t)-1; j++) {  #include "timeval.h"
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
   lg=strlen(t);  
   for(j=0; j<p; j++) {  #define MAXLINE 256
     (u[j] = t[j]);  
   }  #define GNUPLOTPROGRAM "gnuplot"
      u[p]='\0';  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /********************** nrerror ********************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 void nrerror(char error_text[])  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   fprintf(stderr,"ERREUR ...\n");  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   fprintf(stderr,"%s\n",error_text);  #define NCOVMAX 8 /* Maximum number of covariates */
   exit(1);  #define MAXN 20000
 }  #define YEARM 12. /* Number of months per year */
 /*********************** vector *******************/  #define AGESUP 130
 double *vector(int nl, int nh)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double *v;  #ifdef UNIX
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define DIRSEPARATOR '/'
   if (!v) nrerror("allocation failure in vector");  #define CHARSEPARATOR "/"
   return v-nl+NR_END;  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
 /************************ free vector ******************/  #define CHARSEPARATOR "\\"
 void free_vector(double*v, int nl, int nh)  #define ODIRSEPARATOR '/'
 {  #endif
   free((FREE_ARG)(v+nl-NR_END));  
 }  /* $Id$ */
   /* $State$ */
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
 {  char fullversion[]="$Revision$ $Date$"; 
   int *v;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int nvar;
   if (!v) nrerror("allocation failure in ivector");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   return v-nl+NR_END;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************free ivector **************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 void free_ivector(int *v, long nl, long nh)  int popbased=0;
 {  
   free((FREE_ARG)(v+nl-NR_END));  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /******************* imatrix *******************************/  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int gipmx, gsw; /* Global variables on the number of contributions 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle, weightopt;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **m;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   /* allocate pointers to rows */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double jmean; /* Mean space between 2 waves */
   if (!m) nrerror("allocation failure 1 in matrix()");  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m += NR_END;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m -= nrl;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
    int globpr; /* Global variable for printing or not */
   /* allocate rows and set pointers to them */  double fretone; /* Only one call to likelihood */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  long ipmx; /* Number of contributions */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double sw; /* Sum of weights */
   m[nrl] += NR_END;  char filerespow[FILENAMELENGTH];
   m[nrl] -= ncl;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    FILE *ficresilk;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    FILE *ficresprobmorprev;
   /* return pointer to array of pointers to rows */  FILE *fichtm, *fichtmcov; /* Html File */
   return m;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 /****************** free_imatrix *************************/  char fileresv[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  FILE  *ficresvpl;
       int **m;  char fileresvpl[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  char title[MAXLINE];
      /* free an int matrix allocated by imatrix() */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   free((FREE_ARG) (m+nrl-NR_END));  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /******************* matrix *******************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char filerest[FILENAMELENGTH];
   double **m;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m += NR_END;  
   m -= nrl;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  extern int gettimeofday();
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m[nrl] += NR_END;  long time_value;
   m[nrl] -= ncl;  extern long time();
   char strcurr[80], strfor[80];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  char *endptr;
 }  long lval;
   
 /*************************free matrix ************************/  #define NR_END 1
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #define NRANSI 
 }  #define ITMAX 200 
   
 /******************* ma3x *******************************/  #define TOL 2.0e-4 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #define CGOLD 0.3819660 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define ZEPS 1.0e-10 
   double ***m;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define GOLD 1.618034 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define GLIMIT 100.0 
   m += NR_END;  #define TINY 1.0e-20 
   m -= nrl;  
   static double maxarg1,maxarg2;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m[nrl] += NR_END;    
   m[nrl] -= ncl;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   static double sqrarg;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m[nrl][ncl] += NR_END;  int agegomp= AGEGOMP;
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  int imx; 
     m[nrl][j]=m[nrl][j-1]+nlay;  int stepm=1;
    /* Stepm, step in month: minimum step interpolation*/
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int estepm;
     for (j=ncl+1; j<=nch; j++)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       m[i][j]=m[i][j-1]+nlay;  
   }  int m,nb;
   return m;  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /*************************free ma3x ************************/  double **pmmij, ***probs;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double *ageexmed,*agecens;
 {  double dateintmean=0;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double *weight;
   free((FREE_ARG)(m+nrl-NR_END));  int **s; /* Status */
 }  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 /***************** f1dim *************************/  double *lsurv, *lpop, *tpop;
 extern int ncom;  
 extern double *pcom,*xicom;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 extern double (*nrfunc)(double []);  double ftolhess; /* Tolerance for computing hessian */
    
 double f1dim(double x)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int j;  {
   double f;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double *xt;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
      */ 
   xt=vector(1,ncom);    char  *ss;                            /* pointer */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    int   l1, l2;                         /* length counters */
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);    l1 = strlen(path );                   /* length of path */
   return f;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
 /*****************brent *************************/      strcpy( name, path );               /* we got the fullname name because no directory */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int iter;      /* get current working directory */
   double a,b,d,etemp;      /*    extern  char* getcwd ( char *buf , int len);*/
   double fu,fv,fw,fx;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double ftemp;        return( GLOCK_ERROR_GETCWD );
   double p,q,r,tol1,tol2,u,v,w,x,xm;      }
   double e=0.0;      /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
   a=(ax < cx ? ax : cx);    } else {                              /* strip direcotry from path */
   b=(ax > cx ? ax : cx);      ss++;                               /* after this, the filename */
   x=w=v=bx;      l2 = strlen( ss );                  /* length of filename */
   fw=fv=fx=(*f)(x);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (iter=1;iter<=ITMAX;iter++) {      strcpy( name, ss );         /* save file name */
     xm=0.5*(a+b);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      dirc[l1-l2] = 0;                    /* add zero */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      printf(" DIRC2 = %s \n",dirc);
     printf(".");fflush(stdout);    }
     fprintf(ficlog,".");fflush(ficlog);    /* We add a separator at the end of dirc if not exists */
 #ifdef DEBUG    l1 = strlen( dirc );                  /* length of directory */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if( dirc[l1-1] != DIRSEPARATOR ){
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      dirc[l1] =  DIRSEPARATOR;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      dirc[l1+1] = 0; 
 #endif      printf(" DIRC3 = %s \n",dirc);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    }
       *xmin=x;    ss = strrchr( name, '.' );            /* find last / */
       return fx;    if (ss >0){
     }      ss++;
     ftemp=fu;      strcpy(ext,ss);                     /* save extension */
     if (fabs(e) > tol1) {      l1= strlen( name);
       r=(x-w)*(fx-fv);      l2= strlen(ss)+1;
       q=(x-v)*(fx-fw);      strncpy( finame, name, l1-l2);
       p=(x-v)*q-(x-w)*r;      finame[l1-l2]= 0;
       q=2.0*(q-r);    }
       if (q > 0.0) p = -p;  
       q=fabs(q);    return( 0 );                          /* we're done */
       etemp=e;  }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /******************************************/
       else {  
         d=p/q;  void replace_back_to_slash(char *s, char*t)
         u=x+d;  {
         if (u-a < tol2 || b-u < tol2)    int i;
           d=SIGN(tol1,xm-x);    int lg=0;
       }    i=0;
     } else {    lg=strlen(t);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(i=0; i<= lg; i++) {
     }      (s[i] = t[i]);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      if (t[i]== '\\') s[i]='/';
     fu=(*f)(u);    }
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  int nbocc(char *s, char occ)
         SHFT(fv,fw,fx,fu)  {
         } else {    int i,j=0;
           if (u < x) a=u; else b=u;    int lg=20;
           if (fu <= fw || w == x) {    i=0;
             v=w;    lg=strlen(s);
             w=u;    for(i=0; i<= lg; i++) {
             fv=fw;    if  (s[i] == occ ) j++;
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {    return j;
             v=u;  }
             fv=fu;  
           }  void cutv(char *u,char *v, char*t, char occ)
         }  {
   }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   nrerror("Too many iterations in brent");       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   *xmin=x;       gives u="abcedf" and v="ghi2j" */
   return fx;    int i,lg,j,p=0;
 }    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /****************** mnbrak ***********************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))    lg=strlen(t);
 {    for(j=0; j<p; j++) {
   double ulim,u,r,q, dum;      (u[j] = t[j]);
   double fu;    }
         u[p]='\0';
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);     for(j=0; j<= lg; j++) {
   if (*fb > *fa) {      if (j>=(p+1))(v[j-p-1] = t[j]);
     SHFT(dum,*ax,*bx,dum)    }
       SHFT(dum,*fb,*fa,dum)  }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  /********************** nrerror ********************/
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  void nrerror(char error_text[])
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    fprintf(stderr,"ERREUR ...\n");
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    fprintf(stderr,"%s\n",error_text);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    exit(EXIT_FAILURE);
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  /*********************** vector *******************/
       fu=(*func)(u);  double *vector(int nl, int nh)
     } else if ((*cx-u)*(u-ulim) > 0.0) {  {
       fu=(*func)(u);    double *v;
       if (fu < *fc) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if (!v) nrerror("allocation failure in vector");
           SHFT(*fb,*fc,fu,(*func)(u))    return v-nl+NR_END;
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  /************************ free vector ******************/
       fu=(*func)(u);  void free_vector(double*v, int nl, int nh)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
     }  
     SHFT(*ax,*bx,*cx,u)  /************************ivector *******************************/
       SHFT(*fa,*fb,*fc,fu)  int *ivector(long nl,long nh)
       }  {
 }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 /*************** linmin ************************/    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 int ncom;  }
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  /******************free ivector **************************/
    void free_ivector(int *v, long nl, long nh)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  {
 {    free((FREE_ARG)(v+nl-NR_END));
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /************************lvector *******************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  long *lvector(long nl,long nh)
               double *fc, double (*func)(double));  {
   int j;    long *v;
   double xx,xmin,bx,ax;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double fx,fb,fa;    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   ncom=n;  }
   pcom=vector(1,n);  
   xicom=vector(1,n);  /******************free lvector **************************/
   nrfunc=func;  void free_lvector(long *v, long nl, long nh)
   for (j=1;j<=n;j++) {  {
     pcom[j]=p[j];    free((FREE_ARG)(v+nl-NR_END));
     xicom[j]=xi[j];  }
   }  
   ax=0.0;  /******************* imatrix *******************************/
   xx=1.0;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  { 
 #ifdef DEBUG    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int **m; 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    
 #endif    /* allocate pointers to rows */ 
   for (j=1;j<=n;j++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     xi[j] *= xmin;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     p[j] += xi[j];    m += NR_END; 
   }    m -= nrl; 
   free_vector(xicom,1,n);    
   free_vector(pcom,1,n);    
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 /*************** powell ************************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl] += NR_END; 
             double (*func)(double []))    m[nrl] -= ncl; 
 {    
   void linmin(double p[], double xi[], int n, double *fret,    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
               double (*func)(double []));    
   int i,ibig,j;    /* return pointer to array of pointers to rows */ 
   double del,t,*pt,*ptt,*xit;    return m; 
   double fp,fptt;  } 
   double *xits;  
   pt=vector(1,n);  /****************** free_imatrix *************************/
   ptt=vector(1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
   xit=vector(1,n);        int **m;
   xits=vector(1,n);        long nch,ncl,nrh,nrl; 
   *fret=(*func)(p);       /* free an int matrix allocated by imatrix() */ 
   for (j=1;j<=n;j++) pt[j]=p[j];  { 
   for (*iter=1;;++(*iter)) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     fp=(*fret);    free((FREE_ARG) (m+nrl-NR_END)); 
     ibig=0;  } 
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************* matrix *******************************/
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double **matrix(long nrl, long nrh, long ncl, long nch)
     for (i=1;i<=n;i++)  {
       printf(" %d %.12f",i, p[i]);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     fprintf(ficlog," %d %.12f",i, p[i]);    double **m;
     printf("\n");  
     fprintf(ficlog,"\n");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (i=1;i<=n;i++) {    if (!m) nrerror("allocation failure 1 in matrix()");
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m += NR_END;
       fptt=(*fret);    m -= nrl;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       fprintf(ficlog,"fret=%lf \n",*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
       printf("%d",i);fflush(stdout);    m[nrl] -= ncl;
       fprintf(ficlog,"%d",i);fflush(ficlog);  
       linmin(p,xit,n,fret,func);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       if (fabs(fptt-(*fret)) > del) {    return m;
         del=fabs(fptt-(*fret));    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         ibig=i;     */
       }  }
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /*************************free matrix ************************/
       fprintf(ficlog,"%d %.12e",i,(*fret));  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         printf(" x(%d)=%.12e",j,xit[j]);    free((FREE_ARG)(m+nrl-NR_END));
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++) {  /******************* ma3x *******************************/
         printf(" p=%.12e",p[j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         fprintf(ficlog," p=%.12e",p[j]);  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       printf("\n");    double ***m;
       fprintf(ficlog,"\n");  
 #endif    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m += NR_END;
 #ifdef DEBUG    m -= nrl;
       int k[2],l;  
       k[0]=1;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       k[1]=-1;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf("Max: %.12e",(*func)(p));    m[nrl] += NR_END;
       fprintf(ficlog,"Max: %.12e",(*func)(p));    m[nrl] -= ncl;
       for (j=1;j<=n;j++) {  
         printf(" %.12e",p[j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         fprintf(ficlog," %.12e",p[j]);  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       printf("\n");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       fprintf(ficlog,"\n");    m[nrl][ncl] += NR_END;
       for(l=0;l<=1;l++) {    m[nrl][ncl] -= nll;
         for (j=1;j<=n;j++) {    for (j=ncl+1; j<=nch; j++) 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      m[nrl][j]=m[nrl][j-1]+nlay;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for (i=nrl+1; i<=nrh; i++) {
         }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      for (j=ncl+1; j<=nch; j++) 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        m[i][j]=m[i][j-1]+nlay;
       }    }
 #endif    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       free_vector(xit,1,n);    */
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /*************************free ma3x ************************/
       return;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     }  {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       ptt[j]=2.0*p[j]-pt[j];    free((FREE_ARG)(m+nrl-NR_END));
       xit[j]=p[j]-pt[j];  }
       pt[j]=p[j];  
     }  /*************** function subdirf ***********/
     fptt=(*func)(ptt);  char *subdirf(char fileres[])
     if (fptt < fp) {  {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    /* Caution optionfilefiname is hidden */
       if (t < 0.0) {    strcpy(tmpout,optionfilefiname);
         linmin(p,xit,n,fret,func);    strcat(tmpout,"/"); /* Add to the right */
         for (j=1;j<=n;j++) {    strcat(tmpout,fileres);
           xi[j][ibig]=xi[j][n];    return tmpout;
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /*************** function subdirf2 ***********/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char *subdirf2(char fileres[], char *preop)
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++){    
           printf(" %.12e",xit[j]);    /* Caution optionfilefiname is hidden */
           fprintf(ficlog," %.12e",xit[j]);    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
         printf("\n");    strcat(tmpout,preop);
         fprintf(ficlog,"\n");    strcat(tmpout,fileres);
 #endif    return tmpout;
       }  }
     }  
   }  /*************** function subdirf3 ***********/
 }  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
 /**** Prevalence limit ****************/    
     /* Caution optionfilefiname is hidden */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/");
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    strcat(tmpout,preop);
      matrix by transitions matrix until convergence is reached */    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
   int i, ii,j,k;    return tmpout;
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /***************** f1dim *************************/
   double **newm;  extern int ncom; 
   double agefin, delaymax=50 ; /* Max number of years to converge */  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
   for (ii=1;ii<=nlstate+ndeath;ii++)   
     for (j=1;j<=nlstate+ndeath;j++){  double f1dim(double x) 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  { 
     }    int j; 
     double f;
    cov[1]=1.;    double *xt; 
     
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    xt=vector(1,ncom); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     newm=savm;    f=(*nrfunc)(xt); 
     /* Covariates have to be included here again */    free_vector(xt,1,ncom); 
      cov[2]=agefin;    return f; 
    } 
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*****************brent *************************/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       }  { 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int iter; 
       for (k=1; k<=cptcovprod;k++)    double a,b,d,etemp;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double fu,fv,fw,fx;
     double ftemp;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double e=0.0; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/   
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
     savm=oldm;    x=w=v=bx; 
     oldm=newm;    fw=fv=fx=(*f)(x); 
     maxmax=0.;    for (iter=1;iter<=ITMAX;iter++) { 
     for(j=1;j<=nlstate;j++){      xm=0.5*(a+b); 
       min=1.;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       max=0.;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for(i=1; i<=nlstate; i++) {      printf(".");fflush(stdout);
         sumnew=0;      fprintf(ficlog,".");fflush(ficlog);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #ifdef DEBUG
         prlim[i][j]= newm[i][j]/(1-sumnew);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         max=FMAX(max,prlim[i][j]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         min=FMIN(min,prlim[i][j]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
       maxmin=max-min;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       maxmax=FMAX(maxmax,maxmin);        *xmin=x; 
     }        return fx; 
     if(maxmax < ftolpl){      } 
       return prlim;      ftemp=fu;
     }      if (fabs(e) > tol1) { 
   }        r=(x-w)*(fx-fv); 
 }        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
 /*************** transition probabilities ***************/        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        q=fabs(q); 
 {        etemp=e; 
   double s1, s2;        e=d; 
   /*double t34;*/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int i,j,j1, nc, ii, jj;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
     for(i=1; i<= nlstate; i++){          d=p/q; 
     for(j=1; j<i;j++){          u=x+d; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          if (u-a < tol2 || b-u < tol2) 
         /*s2 += param[i][j][nc]*cov[nc];*/            d=SIGN(tol1,xm-x); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[i][j]=s2;      } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
     for(j=i+1; j<=nlstate+ndeath;j++){      if (fu <= fx) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        if (u >= x) a=x; else b=x; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        SHFT(v,w,x,u) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          SHFT(fv,fw,fx,fu) 
       }          } else { 
       ps[i][j]=s2;            if (u < x) a=u; else b=u; 
     }            if (fu <= fw || w == x) { 
   }              v=w; 
     /*ps[3][2]=1;*/              w=u; 
               fv=fw; 
   for(i=1; i<= nlstate; i++){              fw=fu; 
      s1=0;            } else if (fu <= fv || v == x || v == w) { 
     for(j=1; j<i; j++)              v=u; 
       s1+=exp(ps[i][j]);              fv=fu; 
     for(j=i+1; j<=nlstate+ndeath; j++)            } 
       s1+=exp(ps[i][j]);          } 
     ps[i][i]=1./(s1+1.);    } 
     for(j=1; j<i; j++)    nrerror("Too many iterations in brent"); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *xmin=x; 
     for(j=i+1; j<=nlstate+ndeath; j++)    return fx; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /****************** mnbrak ***********************/
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(jj=1; jj<= nlstate+ndeath; jj++){              double (*func)(double)) 
       ps[ii][jj]=0;  { 
       ps[ii][ii]=1;    double ulim,u,r,q, dum;
     }    double fu; 
   }   
     *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    if (*fb > *fa) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){      SHFT(dum,*ax,*bx,dum) 
      printf("%lf ",ps[ii][jj]);        SHFT(dum,*fb,*fa,dum) 
    }        } 
     printf("\n ");    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
     printf("\n ");printf("%lf ",cov[2]);*/    while (*fb > *fc) { 
 /*      r=(*bx-*ax)*(*fb-*fc); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      q=(*bx-*cx)*(*fb-*fa); 
   goto end;*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     return ps;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
 /**************** Product of 2 matrices ******************/        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fu=(*func)(u); 
 {        if (fu < *fc) { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */            SHFT(*fb,*fc,fu,(*func)(u)) 
   /* in, b, out are matrice of pointers which should have been initialized            } 
      before: only the contents of out is modified. The function returns      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      a pointer to pointers identical to out */        u=ulim; 
   long i, j, k;        fu=(*func)(u); 
   for(i=nrl; i<= nrh; i++)      } else { 
     for(k=ncolol; k<=ncoloh; k++)        u=(*cx)+GOLD*(*cx-*bx); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        fu=(*func)(u); 
         out[i][k] +=in[i][j]*b[j][k];      } 
       SHFT(*ax,*bx,*cx,u) 
   return out;        SHFT(*fa,*fb,*fc,fu) 
 }        } 
   } 
   
 /************* Higher Matrix Product ***************/  /*************** linmin ************************/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  int ncom; 
 {  double *pcom,*xicom;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  double (*nrfunc)(double []); 
      duration (i.e. until   
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  { 
      (typically every 2 years instead of every month which is too big).    double brent(double ax, double bx, double cx, 
      Model is determined by parameters x and covariates have to be                 double (*f)(double), double tol, double *xmin); 
      included manually here.    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
      */                double *fc, double (*func)(double)); 
     int j; 
   int i, j, d, h, k;    double xx,xmin,bx,ax; 
   double **out, cov[NCOVMAX];    double fx,fb,fa;
   double **newm;   
     ncom=n; 
   /* Hstepm could be zero and should return the unit matrix */    pcom=vector(1,n); 
   for (i=1;i<=nlstate+ndeath;i++)    xicom=vector(1,n); 
     for (j=1;j<=nlstate+ndeath;j++){    nrfunc=func; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      pcom[j]=p[j]; 
     }      xicom[j]=xi[j]; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } 
   for(h=1; h <=nhstepm; h++){    ax=0.0; 
     for(d=1; d <=hstepm; d++){    xx=1.0; 
       newm=savm;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       /* Covariates have to be included here again */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       cov[1]=1.;  #ifdef DEBUG
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (k=1; k<=cptcovage;k++)  #endif
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovprod;k++)      xi[j] *= xmin; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      p[j] += xi[j]; 
     } 
     free_vector(xicom,1,n); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    free_vector(pcom,1,n); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  char *asc_diff_time(long time_sec, char ascdiff[])
       savm=oldm;  {
       oldm=newm;    long sec_left, days, hours, minutes;
     }    days = (time_sec) / (60*60*24);
     for(i=1; i<=nlstate+ndeath; i++)    sec_left = (time_sec) % (60*60*24);
       for(j=1;j<=nlstate+ndeath;j++) {    hours = (sec_left) / (60*60) ;
         po[i][j][h]=newm[i][j];    sec_left = (sec_left) %(60*60);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    minutes = (sec_left) /60;
          */    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   } /* end h */    return ascdiff;
   return po;  }
 }  
   /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 /*************** log-likelihood *************/              double (*func)(double [])) 
 double func( double *x)  { 
 {    void linmin(double p[], double xi[], int n, double *fret, 
   int i, ii, j, k, mi, d, kk;                double (*func)(double [])); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    int i,ibig,j; 
   double **out;    double del,t,*pt,*ptt,*xit;
   double sw; /* Sum of weights */    double fp,fptt;
   double lli; /* Individual log likelihood */    double *xits;
   long ipmx;    int niterf, itmp;
   /*extern weight */  
   /* We are differentiating ll according to initial status */    pt=vector(1,n); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    ptt=vector(1,n); 
   /*for(i=1;i<imx;i++)    xit=vector(1,n); 
     printf(" %d\n",s[4][i]);    xits=vector(1,n); 
   */    *fret=(*func)(p); 
   cov[1]=1.;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      fp=(*fret); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      ibig=0; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      del=0.0; 
     for(mi=1; mi<= wav[i]-1; mi++){      last_time=curr_time;
       for (ii=1;ii<=nlstate+ndeath;ii++)      (void) gettimeofday(&curr_time,&tzp);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       for(d=0; d<dh[mi][i]; d++){      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
         newm=savm;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      */
         for (kk=1; kk<=cptcovage;kk++) {     for (i=1;i<=n;i++) {
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        printf(" %d %.12f",i, p[i]);
         }        fprintf(ficlog," %d %.12lf",i, p[i]);
                fprintf(ficrespow," %.12lf", p[i]);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      printf("\n");
         savm=oldm;      fprintf(ficlog,"\n");
         oldm=newm;      fprintf(ficrespow,"\n");fflush(ficrespow);
              if(*iter <=3){
                tm = *localtime(&curr_time.tv_sec);
       } /* end mult */        strcpy(strcurr,asctime(&tm));
        /*       asctime_r(&tm,strcurr); */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        forecast_time=curr_time; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        itmp = strlen(strcurr);
       ipmx +=1;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       sw += weight[i];          strcurr[itmp-1]='\0';
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     } /* end of wave */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   } /* end of individual */        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          tmf = *localtime(&forecast_time.tv_sec);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /*      asctime_r(&tmf,strfor); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          strcpy(strfor,asctime(&tmf));
   return -l;          itmp = strlen(strfor);
 }          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /*********** Maximum Likelihood Estimation ***************/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      }
 {      for (i=1;i<=n;i++) { 
   int i,j, iter;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double **xi,*delti;        fptt=(*fret); 
   double fret;  #ifdef DEBUG
   xi=matrix(1,npar,1,npar);        printf("fret=%lf \n",*fret);
   for (i=1;i<=npar;i++)        fprintf(ficlog,"fret=%lf \n",*fret);
     for (j=1;j<=npar;j++)  #endif
       xi[i][j]=(i==j ? 1.0 : 0.0);        printf("%d",i);fflush(stdout);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
   powell(p,xi,npar,ftol,&iter,&fret,func);        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          del=fabs(fptt-(*fret)); 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          ibig=i; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        } 
   #ifdef DEBUG
 }        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
 /**** Computes Hessian and covariance matrix ***/        for (j=1;j<=n;j++) {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 {          printf(" x(%d)=%.12e",j,xit[j]);
   double  **a,**y,*x,pd;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double **hess;        }
   int i, j,jk;        for(j=1;j<=n;j++) {
   int *indx;          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   double hessii(double p[], double delta, int theta, double delti[]);        }
   double hessij(double p[], double delti[], int i, int j);        printf("\n");
   void lubksb(double **a, int npar, int *indx, double b[]) ;        fprintf(ficlog,"\n");
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #endif
       } 
   hess=matrix(1,npar,1,npar);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   printf("\nCalculation of the hessian matrix. Wait...\n");        int k[2],l;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        k[0]=1;
   for (i=1;i<=npar;i++){        k[1]=-1;
     printf("%d",i);fflush(stdout);        printf("Max: %.12e",(*func)(p));
     fprintf(ficlog,"%d",i);fflush(ficlog);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     hess[i][i]=hessii(p,ftolhess,i,delti);        for (j=1;j<=n;j++) {
     /*printf(" %f ",p[i]);*/          printf(" %.12e",p[j]);
     /*printf(" %lf ",hess[i][i]);*/          fprintf(ficlog," %.12e",p[j]);
   }        }
          printf("\n");
   for (i=1;i<=npar;i++) {        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++)  {        for(l=0;l<=1;l++) {
       if (j>i) {          for (j=1;j<=n;j++) {
         printf(".%d%d",i,j);fflush(stdout);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         hess[i][j]=hessij(p,delti,i,j);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         hess[j][i]=hess[i][j];              }
         /*printf(" %lf ",hess[i][j]);*/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }        }
   }  #endif
   printf("\n");  
   fprintf(ficlog,"\n");  
         free_vector(xit,1,n); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        free_vector(xits,1,n); 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        free_vector(ptt,1,n); 
          free_vector(pt,1,n); 
   a=matrix(1,npar,1,npar);        return; 
   y=matrix(1,npar,1,npar);      } 
   x=vector(1,npar);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   indx=ivector(1,npar);      for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++)        ptt[j]=2.0*p[j]-pt[j]; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        xit[j]=p[j]-pt[j]; 
   ludcmp(a,npar,indx,&pd);        pt[j]=p[j]; 
       } 
   for (j=1;j<=npar;j++) {      fptt=(*func)(ptt); 
     for (i=1;i<=npar;i++) x[i]=0;      if (fptt < fp) { 
     x[j]=1;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     lubksb(a,npar,indx,x);        if (t < 0.0) { 
     for (i=1;i<=npar;i++){          linmin(p,xit,n,fret,func); 
       matcov[i][j]=x[i];          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; 
   }            xi[j][n]=xit[j]; 
           }
   printf("\n#Hessian matrix#\n");  #ifdef DEBUG
   fprintf(ficlog,"\n#Hessian matrix#\n");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (j=1;j<=npar;j++) {          for(j=1;j<=n;j++){
       printf("%.3e ",hess[i][j]);            printf(" %.12e",xit[j]);
       fprintf(ficlog,"%.3e ",hess[i][j]);            fprintf(ficlog," %.12e",xit[j]);
     }          }
     printf("\n");          printf("\n");
     fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
   }  #endif
         }
   /* Recompute Inverse */      } 
   for (i=1;i<=npar;i++)    } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  } 
   ludcmp(a,npar,indx,&pd);  
   /**** Prevalence limit (stable prevalence)  ****************/
   /*  printf("\n#Hessian matrix recomputed#\n");  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     x[j]=1;       matrix by transitions matrix until convergence is reached */
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    int i, ii,j,k;
       y[i][j]=x[i];    double min, max, maxmin, maxmax,sumnew=0.;
       printf("%.3e ",y[i][j]);    double **matprod2();
       fprintf(ficlog,"%.3e ",y[i][j]);    double **out, cov[NCOVMAX], **pmij();
     }    double **newm;
     printf("\n");    double agefin, delaymax=50 ; /* Max number of years to converge */
     fprintf(ficlog,"\n");  
   }    for (ii=1;ii<=nlstate+ndeath;ii++)
   */      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(a,1,npar,1,npar);      }
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);     cov[1]=1.;
   free_ivector(indx,1,npar);   
   free_matrix(hess,1,npar,1,npar);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
 }      /* Covariates have to be included here again */
        cov[2]=agefin;
 /*************** hessian matrix ****************/    
 double hessii( double x[], double delta, int theta, double delti[])        for (k=1; k<=cptcovn;k++) {
 {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int i;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   int l=1, lmax=20;        }
   double k1,k2;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double p2[NPARMAX+1];        for (k=1; k<=cptcovprod;k++)
   double res;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int k=0,kmax=10;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double l1;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];      savm=oldm;
   for(l=0 ; l <=lmax; l++){      oldm=newm;
     l1=pow(10,l);      maxmax=0.;
     delts=delt;      for(j=1;j<=nlstate;j++){
     for(k=1 ; k <kmax; k=k+1){        min=1.;
       delt = delta*(l1*k);        max=0.;
       p2[theta]=x[theta] +delt;        for(i=1; i<=nlstate; i++) {
       k1=func(p2)-fx;          sumnew=0;
       p2[theta]=x[theta]-delt;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       k2=func(p2)-fx;          prlim[i][j]= newm[i][j]/(1-sumnew);
       /*res= (k1-2.0*fx+k2)/delt/delt; */          max=FMAX(max,prlim[i][j]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          min=FMIN(min,prlim[i][j]);
              }
 #ifdef DEBUG        maxmin=max-min;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        maxmax=FMAX(maxmax,maxmin);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
 #endif      if(maxmax < ftolpl){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        return prlim;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;    }
       }  }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /*************** transition probabilities ***************/ 
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         delts=delt;  {
       }    double s1, s2;
     }    /*double t34;*/
   }    int i,j,j1, nc, ii, jj;
   delti[theta]=delts;  
   return res;      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
 }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             /*s2 += param[i][j][nc]*cov[nc];*/
 double hessij( double x[], double delti[], int thetai,int thetaj)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   int i;          }
   int l=1, l1, lmax=20;          ps[i][j]=s2;
   double k1,k2,k3,k4,res,fx;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   double p2[NPARMAX+1];        }
   int k;        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   fx=func(x);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (k=1; k<=2; k++) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     for (i=1;i<=npar;i++) p2[i]=x[i];          }
     p2[thetai]=x[thetai]+delti[thetai]/k;          ps[i][j]=s2;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;      }
        /*ps[3][2]=1;*/
     p2[thetai]=x[thetai]+delti[thetai]/k;      
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for(i=1; i<= nlstate; i++){
     k2=func(p2)-fx;        s1=0;
          for(j=1; j<i; j++)
     p2[thetai]=x[thetai]-delti[thetai]/k;          s1+=exp(ps[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=i+1; j<=nlstate+ndeath; j++)
     k3=func(p2)-fx;          s1+=exp(ps[i][j]);
          ps[i][i]=1./(s1+1.);
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(j=1; j<i; j++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     k4=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath; j++)
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          ps[i][j]= exp(ps[i][j])*ps[i][i];
 #ifdef DEBUG        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      } /* end i */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      
 #endif      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
   return res;          ps[ii][jj]=0;
 }          ps[ii][ii]=1;
         }
 /************** Inverse of matrix **************/      }
 void ludcmp(double **a, int n, int *indx, double *d)      
 {  
   int i,imax,j,k;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double big,dum,sum,temp;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double *vv;  /*         printf("ddd %lf ",ps[ii][jj]); */
    /*       } */
   vv=vector(1,n);  /*       printf("\n "); */
   *d=1.0;  /*        } */
   for (i=1;i<=n;i++) {  /*        printf("\n ");printf("%lf ",cov[2]); */
     big=0.0;         /*
     for (j=1;j<=n;j++)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       if ((temp=fabs(a[i][j])) > big) big=temp;        goto end;*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      return ps;
     vv[i]=1.0/big;  }
   }  
   for (j=1;j<=n;j++) {  /**************** Product of 2 matrices ******************/
     for (i=1;i<j;i++) {  
       sum=a[i][j];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     big=0.0;    /* in, b, out are matrice of pointers which should have been initialized 
     for (i=j;i<=n;i++) {       before: only the contents of out is modified. The function returns
       sum=a[i][j];       a pointer to pointers identical to out */
       for (k=1;k<j;k++)    long i, j, k;
         sum -= a[i][k]*a[k][j];    for(i=nrl; i<= nrh; i++)
       a[i][j]=sum;      for(k=ncolol; k<=ncoloh; k++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         big=dum;          out[i][k] +=in[i][j]*b[j][k];
         imax=i;  
       }    return out;
     }  }
     if (j != imax) {  
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  /************* Higher Matrix Product ***************/
         a[imax][k]=a[j][k];  
         a[j][k]=dum;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       }  {
       *d = -(*d);    /* Computes the transition matrix starting at age 'age' over 
       vv[imax]=vv[j];       'nhstepm*hstepm*stepm' months (i.e. until
     }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     indx[j]=imax;       nhstepm*hstepm matrices. 
     if (a[j][j] == 0.0) a[j][j]=TINY;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     if (j != n) {       (typically every 2 years instead of every month which is too big 
       dum=1.0/(a[j][j]);       for the memory).
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       Model is determined by parameters x and covariates have to be 
     }       included manually here. 
   }  
   free_vector(vv,1,n);  /* Doesn't work */       */
 ;  
 }    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
 void lubksb(double **a, int n, int *indx, double b[])    double **newm;
 {  
   int i,ii=0,ip,j;    /* Hstepm could be zero and should return the unit matrix */
   double sum;    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=n;i++) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
     ip=indx[i];        po[i][j][0]=(i==j ? 1.0 : 0.0);
     sum=b[ip];      }
     b[ip]=b[i];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if (ii)    for(h=1; h <=nhstepm; h++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for(d=1; d <=hstepm; d++){
     else if (sum) ii=i;        newm=savm;
     b[i]=sum;        /* Covariates have to be included here again */
   }        cov[1]=1.;
   for (i=n;i>=1;i--) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     sum=b[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovage;k++)
     b[i]=sum/a[i][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
 }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 {  /* Some frequencies */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   int first;        savm=oldm;
   double ***freq; /* Frequencies */        oldm=newm;
   double *pp;      }
   double pos, k2, dateintsum=0,k2cpt=0;      for(i=1; i<=nlstate+ndeath; i++)
   FILE *ficresp;        for(j=1;j<=nlstate+ndeath;j++) {
   char fileresp[FILENAMELENGTH];          po[i][j][h]=newm[i][j];
            /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   pp=vector(1,nlstate);           */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   strcpy(fileresp,"p");    } /* end h */
   strcat(fileresp,fileres);    return po;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  }
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  /*************** log-likelihood *************/
   }  double func( double *x)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  {
   j1=0;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   j=cptcoveff;    double **out;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
   first=1;    int s1, s2;
     double bbh, survp;
   for(k1=1; k1<=j;k1++){    long ipmx;
     for(i1=1; i1<=ncodemax[k1];i1++){    /*extern weight */
       j1++;    /* We are differentiating ll according to initial status */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         scanf("%d", i);*/    /*for(i=1;i<imx;i++) 
       for (i=-1; i<=nlstate+ndeath; i++)        printf(" %d\n",s[4][i]);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      */
           for(m=agemin; m <= agemax+3; m++)    cov[1]=1.;
             freq[i][jk][m]=0;  
          for(k=1; k<=nlstate; k++) ll[k]=0.;
       dateintsum=0;  
       k2cpt=0;    if(mle==1){
       for (i=1; i<=imx; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         bool=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if  (cptcovn>0) {        for(mi=1; mi<= wav[i]-1; mi++){
           for (z1=1; z1<=cptcoveff; z1++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (j=1;j<=nlstate+ndeath;j++){
               bool=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {            }
           for(m=firstpass; m<=lastpass; m++){          for(d=0; d<dh[mi][i]; d++){
             k2=anint[m][i]+(mint[m][i]/12.);            newm=savm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if (m<lastpass) {            }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               }            savm=oldm;
                          oldm=newm;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          } /* end mult */
                 dateintsum=dateintsum+k2;        
                 k2cpt++;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               }          /* But now since version 0.9 we anticipate for bias at large stepm.
             }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           }           * (in months) between two waves is not a multiple of stepm, we rounded to 
         }           * the nearest (and in case of equal distance, to the lowest) interval but now
       }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       if  (cptcovn>0) {           * -stepm/2 to stepm/2 .
         fprintf(ficresp, "\n#********** Variable ");           * For stepm=1 the results are the same as for previous versions of Imach.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * For stepm > 1 the results are less biased than in previous versions. 
         fprintf(ficresp, "**********\n#");           */
       }          s1=s[mw[mi][i]][i];
       for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresp, "\n");          /* bias bh is positive if real duration
                 * is higher than the multiple of stepm and negative otherwise.
       for(i=(int)agemin; i <= (int)agemax+3; i++){           */
         if(i==(int)agemax+3){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           fprintf(ficlog,"Total");          if( s2 > nlstate){ 
         }else{            /* i.e. if s2 is a death state and if the date of death is known 
           if(first==1){               then the contribution to the likelihood is the probability to 
             first=0;               die between last step unit time and current  step unit time, 
             printf("See log file for details...\n");               which is also equal to probability to die before dh 
           }               minus probability to die before dh-stepm . 
           fprintf(ficlog,"Age %d", i);               In version up to 0.92 likelihood was computed
         }          as if date of death was unknown. Death was treated as any other
         for(jk=1; jk <=nlstate ; jk++){          health state: the date of the interview describes the actual state
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          and not the date of a change in health state. The former idea was
             pp[jk] += freq[jk][m][i];          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
         for(jk=1; jk <=nlstate ; jk++){          introduced the exact date of death then we should have modified
           for(m=-1, pos=0; m <=0 ; m++)          the contribution of an exact death to the likelihood. This new
             pos += freq[jk][m][i];          contribution is smaller and very dependent of the step unit
           if(pp[jk]>=1.e-10){          stepm. It is no more the probability to die between last interview
             if(first==1){          and month of death but the probability to survive from last
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          interview up to one month before death multiplied by the
             }          probability to die within a month. Thanks to Chris
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          Jackson for correcting this bug.  Former versions increased
           }else{          mortality artificially. The bad side is that we add another loop
             if(first==1)          which slows down the processing. The difference can be up to 10%
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          lower mortality.
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            */
           }            lli=log(out[s1][s2] - savm[s1][s2]);
         }  
   
         for(jk=1; jk <=nlstate ; jk++){          } else if  (s2==-2) {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (j=1,survp=0. ; j<=nlstate; j++) 
             pp[jk] += freq[jk][m][i];              survp += out[s1][j];
         }            lli= survp;
           }
         for(jk=1,pos=0; jk <=nlstate ; jk++)          
           pos += pp[jk];          else if  (s2==-4) {
         for(jk=1; jk <=nlstate ; jk++){            for (j=3,survp=0. ; j<=nlstate; j++) 
           if(pos>=1.e-5){              survp += out[s1][j];
             if(first==1)            lli= survp;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          
           }else{          else if  (s2==-5) {
             if(first==1)            for (j=1,survp=0. ; j<=2; j++) 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              survp += out[s1][j];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            lli= survp;
           }          }
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          else{
               probs[i][jk][j1]= pp[jk]/pos;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             }          } 
             else          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /*if(lli ==000.0)*/
           }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
                  sw += weight[i];
         for(jk=-1; jk <=nlstate+ndeath; jk++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=-1; m <=nlstate+ndeath; m++)        } /* end of wave */
             if(freq[jk][m][i] !=0 ) {      } /* end of individual */
             if(first==1)    }  else if(mle==2){
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
         if(i <= (int) agemax)          for (ii=1;ii<=nlstate+ndeath;ii++)
           fprintf(ficresp,"\n");            for (j=1;j<=nlstate+ndeath;j++){
         if(first==1)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           printf("Others in log...\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficlog,"\n");            }
       }          for(d=0; d<=dh[mi][i]; d++){
     }            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   dateintmean=dateintsum/k2cpt;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fclose(ficresp);            }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(pp,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   /* End of Freq */            oldm=newm;
 }          } /* end mult */
         
 /************ Prevalence ********************/          s1=s[mw[mi][i]][i];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          s2=s[mw[mi+1][i]][i];
 {  /* Some frequencies */          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          ipmx +=1;
   double ***freq; /* Frequencies */          sw += weight[i];
   double *pp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double pos, k2;        } /* end of wave */
       } /* end of individual */
   pp=vector(1,nlstate);    }  else if(mle==3){  /* exponential inter-extrapolation */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(mi=1; mi<= wav[i]-1; mi++){
   j1=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   j=cptcoveff;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   for(k1=1; k1<=j;k1++){          for(d=0; d<dh[mi][i]; d++){
     for(i1=1; i1<=ncodemax[k1];i1++){            newm=savm;
       j1++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for (i=-1; i<=nlstate+ndeath; i++)                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (jk=-1; jk<=nlstate+ndeath; jk++)              }
           for(m=agemin; m <= agemax+3; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             freq[i][jk][m]=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
       for (i=1; i<=imx; i++) {            oldm=newm;
         bool=1;          } /* end mult */
         if  (cptcovn>0) {        
           for (z1=1; z1<=cptcoveff; z1++)          s1=s[mw[mi][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s2=s[mw[mi+1][i]][i];
               bool=0;          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if (bool==1) {          ipmx +=1;
           for(m=firstpass; m<=lastpass; m++){          sw += weight[i];
             k2=anint[m][i]+(mint[m][i]/12.);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        } /* end of wave */
               if(agev[m][i]==0) agev[m][i]=agemax+1;      } /* end of individual */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               if (m<lastpass) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 if (calagedate>0)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
                 else          for (ii=1;ii<=nlstate+ndeath;ii++)
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }            }
           }          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=(int)agemin; i <= (int)agemax+3; i++){            for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            }
             pp[jk] += freq[jk][m][i];          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=-1, pos=0; m <=0 ; m++)            savm=oldm;
             pos += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
                
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s2=s[mw[mi+1][i]][i];
             pp[jk] += freq[jk][m][i];          if( s2 > nlstate){ 
         }            lli=log(out[s1][s2] - savm[s1][s2]);
                  }else{
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                  }
         for(jk=1; jk <=nlstate ; jk++){              ipmx +=1;
           if( i <= (int) agemax){          sw += weight[i];
             if(pos>=1.e-5){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               probs[i][jk][j1]= pp[jk]/pos;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             }        } /* end of wave */
           }      } /* end of individual */
         }/* end jk */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }/* end i */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     } /* end i1 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   } /* end k1 */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
 }  /* End of Freq */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /************* Waves Concatenation ***************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          
      Death is a valid wave (if date is known).            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            savm=oldm;
      and mw[mi+1][i]. dh depends on stepm.            oldm=newm;
      */          } /* end mult */
         
   int i, mi, m;          s1=s[mw[mi][i]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          s2=s[mw[mi+1][i]][i];
      double sum=0., jmean=0.;*/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int first;          ipmx +=1;
   int j, k=0,jk, ju, jl;          sw += weight[i];
   double sum=0.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   first=0;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   jmin=1e+5;        } /* end of wave */
   jmax=-1;      } /* end of individual */
   jmean=0.;    } /* End of if */
   for(i=1; i<=imx; i++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     mi=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     m=firstpass;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     while(s[m][i] <= nlstate){    return -l;
       if(s[m][i]>=1)  }
         mw[++mi][i]=m;  
       if(m >=lastpass)  /*************** log-likelihood *************/
         break;  double funcone( double *x)
       else  {
         m++;    /* Same as likeli but slower because of a lot of printf and if */
     }/* end while */    int i, ii, j, k, mi, d, kk;
     if (s[m][i] > nlstate){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       mi++;     /* Death is another wave */    double **out;
       /* if(mi==0)  never been interviewed correctly before death */    double lli; /* Individual log likelihood */
          /* Only death is a correct wave */    double llt;
       mw[mi][i]=m;    int s1, s2;
     }    double bbh, survp;
     /*extern weight */
     wav[i]=mi;    /* We are differentiating ll according to initial status */
     if(mi==0){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if(first==0){    /*for(i=1;i<imx;i++) 
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);      printf(" %d\n",s[4][i]);
         first=1;    */
       }    cov[1]=1.;
       if(first==1){  
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
     } /* end mi==0 */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=imx; i++){        for (ii=1;ii<=nlstate+ndeath;ii++)
     for(mi=1; mi<wav[i];mi++){          for (j=1;j<=nlstate+ndeath;j++){
       if (stepm <=0)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         dh[mi][i]=1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else{          }
         if (s[mw[mi+1][i]][i] > nlstate) {        for(d=0; d<dh[mi][i]; d++){
           if (agedc[i] < 2*AGESUP) {          newm=savm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if(j==0) j=1;  /* Survives at least one month after exam */          for (kk=1; kk<=cptcovage;kk++) {
           k=k+1;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (j >= jmax) jmax=j;          }
           if (j <= jmin) jmin=j;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           sum=sum+j;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          savm=oldm;
           }          oldm=newm;
         }        } /* end mult */
         else{        
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        s1=s[mw[mi][i]][i];
           k=k+1;        s2=s[mw[mi+1][i]][i];
           if (j >= jmax) jmax=j;        bbh=(double)bh[mi][i]/(double)stepm; 
           else if (j <= jmin)jmin=j;        /* bias is positive if real duration
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */         * is higher than the multiple of stepm and negative otherwise.
           sum=sum+j;         */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         jk= j/stepm;          lli=log(out[s1][s2] - savm[s1][s2]);
         jl= j -jk*stepm;        } else if (mle==1){
         ju= j -(jk+1)*stepm;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         if(jl <= -ju)        } else if(mle==2){
           dh[mi][i]=jk;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         else        } else if(mle==3){  /* exponential inter-extrapolation */
           dh[mi][i]=jk+1;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if(dh[mi][i]==0)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           dh[mi][i]=1; /* At least one step */          lli=log(out[s1][s2]); /* Original formula */
       }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     }          lli=log(out[s1][s2]); /* Original formula */
   }        } /* End of if */
   jmean=sum/k;        ipmx +=1;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        sw += weight[i];
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
 /*********** Tricode ****************************/          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 void tricode(int *Tvar, int **nbcode, int imx)   %10.6f %10.6f %10.6f ", \
 {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   int Ndum[20],ij=1, k, j, i;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   int cptcode=0;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   cptcoveff=0;            llt +=ll[k]*gipmx/gsw;
              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   for (k=0; k<19; k++) Ndum[k]=0;          }
   for (k=1; k<=7; k++) ncodemax[k]=0;          fprintf(ficresilk," %10.6f\n", -llt);
         }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      } /* end of wave */
     for (i=1; i<=imx; i++) {    } /* end of individual */
       ij=(int)(covar[Tvar[j]][i]);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       Ndum[ij]++;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if (ij > cptcode) cptcode=ij;    if(globpr==0){ /* First time we count the contributions and weights */
     }      gipmx=ipmx;
       gsw=sw;
     for (i=0; i<=cptcode; i++) {    }
       if(Ndum[i]!=0) ncodemax[j]++;    return -l;
     }  }
     ij=1;  
   
   /*************** function likelione ***********/
     for (i=1; i<=ncodemax[j]; i++) {  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       for (k=0; k<=19; k++) {  {
         if (Ndum[k] != 0) {    /* This routine should help understanding what is done with 
           nbcode[Tvar[j]][ij]=k;       the selection of individuals/waves and
                 to check the exact contribution to the likelihood.
           ij++;       Plotting could be done.
         }     */
         if (ij > ncodemax[j]) break;    int k;
       }    
     }    if(*globpri !=0){ /* Just counts and sums, no printings */
   }        strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
  for (k=0; k<19; k++) Ndum[k]=0;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
  for (i=1; i<=ncovmodel-2; i++) {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
    ij=Tvar[i];      }
    Ndum[ij]++;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
  }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
  ij=1;      for(k=1; k<=nlstate; k++) 
  for (i=1; i<=10; i++) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
    if((Ndum[i]!=0) && (i<=ncovcol)){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      Tvaraff[ij]=i;    }
      ij++;  
    }    *fretone=(*funcone)(p);
  }    if(*globpri !=0){
        fclose(ficresilk);
  cptcoveff=ij-1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 }      fflush(fichtm); 
     } 
 /*********** Health Expectancies ****************/    return;
   }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
   
 {  /*********** Maximum Likelihood Estimation ***************/
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double age, agelim, hf;  {
   double ***p3mat,***varhe;    int i,j, iter;
   double **dnewm,**doldm;    double **xi;
   double *xp;    double fret;
   double **gp, **gm;    double fretone; /* Only one call to likelihood */
   double ***gradg, ***trgradg;    /*  char filerespow[FILENAMELENGTH];*/
   int theta;    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      for (j=1;j<=npar;j++)
   xp=vector(1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate*2,1,npar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   doldm=matrix(1,nlstate*2,1,nlstate*2);    strcpy(filerespow,"pow"); 
      strcat(filerespow,fileres);
   fprintf(ficreseij,"# Health expectancies\n");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   fprintf(ficreseij,"# Age");      printf("Problem with resultfile: %s\n", filerespow);
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   fprintf(ficreseij,"\n");    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
   if(estepm < stepm){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     printf ("Problem %d lower than %d\n",estepm, stepm);    fprintf(ficrespow,"\n");
   }  
   else  hstepm=estepm;      powell(p,xi,npar,ftol,&iter,&fret,func);
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example    fclose(ficrespow);
    * if stepm=24 months pijx are given only every 2 years and by summing them    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
    * we are calculating an estimate of the Life Expectancy assuming a linear    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * progression inbetween and thus overestimating or underestimating according    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * to the curvature of the survival function. If, for the same date, we  
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  }
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise  /**** Computes Hessian and covariance matrix ***/
    * curvature will be obtained if estepm is as small as stepm. */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
   /* For example we decided to compute the life expectancy with the smallest unit */    double  **a,**y,*x,pd;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double **hess;
      nhstepm is the number of hstepm from age to agelim    int i, j,jk;
      nstepm is the number of stepm from age to agelin.    int *indx;
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      survival function given by stepm (the optimization length). Unfortunately it    void lubksb(double **a, int npar, int *indx, double b[]) ;
      means that if the survival funtion is printed only each two years of age and if    void ludcmp(double **a, int npar, int *indx, double *d) ;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double gompertz(double p[]);
      results. So we changed our mind and took the option of the best precision.    hess=matrix(1,npar,1,npar);
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   agelim=AGESUP;    for (i=1;i<=npar;i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("%d",i);fflush(stdout);
     /* nhstepm age range expressed in number of stepm */      fprintf(ficlog,"%d",i);fflush(ficlog);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);     
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     /* if (stepm >= YEARM) hstepm=1;*/      
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      /*  printf(" %f ",p[i]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    }
     gp=matrix(0,nhstepm,1,nlstate*2);    
     gm=matrix(0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        if (j>i) { 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          printf(".%d%d",i,j);fflush(stdout);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j,func,npar);
           
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
     /* Computing Variances of health expectancies */        }
       }
      for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){    printf("\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n");
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       cptj=0;    
       for(j=1; j<= nlstate; j++){    a=matrix(1,npar,1,npar);
         for(i=1; i<=nlstate; i++){    y=matrix(1,npar,1,npar);
           cptj=cptj+1;    x=vector(1,npar);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    indx=ivector(1,npar);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         }    ludcmp(a,npar,indx,&pd);
       }  
          for (j=1;j<=npar;j++) {
            for (i=1;i<=npar;i++) x[i]=0;
       for(i=1; i<=npar; i++)      x[j]=1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      lubksb(a,npar,indx,x);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1;i<=npar;i++){ 
              matcov[i][j]=x[i];
       cptj=0;      }
       for(j=1; j<= nlstate; j++){    }
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    printf("\n#Hessian matrix#\n");
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    fprintf(ficlog,"\n#Hessian matrix#\n");
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (i=1;i<=npar;i++) { 
           }      for (j=1;j<=npar;j++) { 
         }        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(j=1; j<= nlstate*2; j++)      }
         for(h=0; h<=nhstepm-1; h++){      printf("\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      fprintf(ficlog,"\n");
         }    }
      }  
        /* Recompute Inverse */
 /* End theta */    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    ludcmp(a,npar,indx,&pd);
   
      for(h=0; h<=nhstepm-1; h++)    /*  printf("\n#Hessian matrix recomputed#\n");
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)    for (j=1;j<=npar;j++) {
           trgradg[h][j][theta]=gradg[h][theta][j];      for (i=1;i<=npar;i++) x[i]=0;
            x[j]=1;
       lubksb(a,npar,indx,x);
      for(i=1;i<=nlstate*2;i++)      for (i=1;i<=npar;i++){ 
       for(j=1;j<=nlstate*2;j++)        y[i][j]=x[i];
         varhe[i][j][(int)age] =0.;        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
      printf("%d|",(int)age);fflush(stdout);      }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      printf("\n");
      for(h=0;h<=nhstepm-1;h++){      fprintf(ficlog,"\n");
       for(k=0;k<=nhstepm-1;k++){    }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  
         for(i=1;i<=nlstate*2;i++)    free_matrix(a,1,npar,1,npar);
           for(j=1;j<=nlstate*2;j++)    free_matrix(y,1,npar,1,npar);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    free_vector(x,1,npar);
       }    free_ivector(indx,1,npar);
     }    free_matrix(hess,1,npar,1,npar);
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)  }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  /*************** hessian matrix ****************/
            double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  {
     int i;
         }    int l=1, lmax=20;
     double k1,k2;
     fprintf(ficreseij,"%3.0f",age );    double p2[NPARMAX+1];
     cptj=0;    double res;
     for(i=1; i<=nlstate;i++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(j=1; j<=nlstate;j++){    double fx;
         cptj++;    int k=0,kmax=10;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double l1;
       }  
     fprintf(ficreseij,"\n");    fx=func(x);
        for (i=1;i<=npar;i++) p2[i]=x[i];
     free_matrix(gm,0,nhstepm,1,nlstate*2);    for(l=0 ; l <=lmax; l++){
     free_matrix(gp,0,nhstepm,1,nlstate*2);      l1=pow(10,l);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      delts=delt;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for(k=1 ; k <kmax; k=k+1){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        delt = delta*(l1*k);
   }        p2[theta]=x[theta] +delt;
   printf("\n");        k1=func(p2)-fx;
   fprintf(ficlog,"\n");        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
   free_vector(xp,1,npar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   free_matrix(dnewm,1,nlstate*2,1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  #ifdef DEBUG
 }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /************ Variance ******************/  #endif
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 {        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   /* Variance of health expectancies */          k=kmax;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   /* double **newm;*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **dnewm,**doldm;          k=kmax; l=lmax*10.;
   double **dnewmp,**doldmp;        }
   int i, j, nhstepm, hstepm, h, nstepm ;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   int k, cptcode;          delts=delt;
   double *xp;        }
   double **gp, **gm;  /* for var eij */      }
   double ***gradg, ***trgradg; /*for var eij */    }
   double **gradgp, **trgradgp; /* for var p point j */    delti[theta]=delts;
   double *gpp, *gmp; /* for var p point j */    return res; 
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    
   double ***p3mat;  }
   double age,agelim, hf;  
   int theta;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   char digit[4];  {
   char digitp[16];    int i;
     int l=1, l1, lmax=20;
   char fileresprobmorprev[FILENAMELENGTH];    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
   if(popbased==1)    int k;
     strcpy(digitp,"-populbased-");  
   else    fx=func(x);
     strcpy(digitp,"-stablbased-");    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   strcpy(fileresprobmorprev,"prmorprev");      p2[thetai]=x[thetai]+delti[thetai]/k;
   sprintf(digit,"%-d",ij);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      k1=func(p2)-fx;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      p2[thetai]=x[thetai]+delti[thetai]/k;
   strcat(fileresprobmorprev,fileres);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      k2=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      k3=func(p2)-fx;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      k4=func(p2)-fx;
     fprintf(ficresprobmorprev," p.%-d SE",j);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(i=1; i<=nlstate;i++)  #ifdef DEBUG
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresprobmorprev,"\n");  #endif
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    return res;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  }
     exit(0);  
   }  /************** Inverse of matrix **************/
   else{  void ludcmp(double **a, int n, int *indx, double *d) 
     fprintf(ficgp,"\n# Routine varevsij");  { 
   }    int i,imax,j,k; 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    double big,dum,sum,temp; 
     printf("Problem with html file: %s\n", optionfilehtm);    double *vv; 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);   
     exit(0);    vv=vector(1,n); 
   }    *d=1.0; 
   else{    for (i=1;i<=n;i++) { 
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      big=0.0; 
   }      for (j=1;j<=n;j++) 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      vv[i]=1.0/big; 
   fprintf(ficresvij,"# Age");    } 
   for(i=1; i<=nlstate;i++)    for (j=1;j<=n;j++) { 
     for(j=1; j<=nlstate;j++)      for (i=1;i<j;i++) { 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        sum=a[i][j]; 
   fprintf(ficresvij,"\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   xp=vector(1,npar);      } 
   dnewm=matrix(1,nlstate,1,npar);      big=0.0; 
   doldm=matrix(1,nlstate,1,nlstate);      for (i=j;i<=n;i++) { 
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        sum=a[i][j]; 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        a[i][j]=sum; 
   gpp=vector(nlstate+1,nlstate+ndeath);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   gmp=vector(nlstate+1,nlstate+ndeath);          big=dum; 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          imax=i; 
          } 
   if(estepm < stepm){      } 
     printf ("Problem %d lower than %d\n",estepm, stepm);      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
   else  hstepm=estepm;            dum=a[imax][k]; 
   /* For example we decided to compute the life expectancy with the smallest unit */          a[imax][k]=a[j][k]; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          a[j][k]=dum; 
      nhstepm is the number of hstepm from age to agelim        } 
      nstepm is the number of stepm from age to agelin.        *d = -(*d); 
      Look at hpijx to understand the reason of that which relies in memory size        vv[imax]=vv[j]; 
      and note for a fixed period like k years */      } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      indx[j]=imax; 
      survival function given by stepm (the optimization length). Unfortunately it      if (a[j][j] == 0.0) a[j][j]=TINY; 
      means that if the survival funtion is printed only each two years of age and if      if (j != n) { 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        dum=1.0/(a[j][j]); 
      results. So we changed our mind and took the option of the best precision.        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   */      } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    } 
   agelim = AGESUP;    free_vector(vv,1,n);  /* Doesn't work */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  ;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  } 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void lubksb(double **a, int n, int *indx, double b[]) 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  { 
     gp=matrix(0,nhstepm,1,nlstate);    int i,ii=0,ip,j; 
     gm=matrix(0,nhstepm,1,nlstate);    double sum; 
    
     for (i=1;i<=n;i++) { 
     for(theta=1; theta <=npar; theta++){      ip=indx[i]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      sum=b[ip]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      b[ip]=b[i]; 
       }      if (ii) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      else if (sum) ii=i; 
       b[i]=sum; 
       if (popbased==1) {    } 
         for(i=1; i<=nlstate;i++)    for (i=n;i>=1;i--) { 
           prlim[i][i]=probs[(int)age][i][ij];      sum=b[i]; 
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        b[i]=sum/a[i][i]; 
       for(j=1; j<= nlstate; j++){    } 
         for(h=0; h<=nhstepm; h++){  } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  /************ Frequencies ********************/
         }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       }  {  /* Some frequencies */
       /* This for computing forces of mortality (h=1)as a weighted average */    
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for(i=1; i<= nlstate; i++)    int first;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    double ***freq; /* Frequencies */
       }        double *pp, **prop;
       /* end force of mortality */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
       for(i=1; i<=npar; i++) /* Computes gradient */    char fileresp[FILENAMELENGTH];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      pp=vector(1,nlstate);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    prop=matrix(1,nlstate,iagemin,iagemax+3);
      strcpy(fileresp,"p");
       if (popbased==1) {    strcat(fileresp,fileres);
         for(i=1; i<=nlstate;i++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
           prlim[i][i]=probs[(int)age][i][ij];      printf("Problem with prevalence resultfile: %s\n", fileresp);
       }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    j1=0;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    
         }    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       /* This for computing force of mortality (h=1)as a weighted average */  
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    first=1;
         for(i=1; i<= nlstate; i++)  
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    for(k1=1; k1<=j;k1++){
       }          for(i1=1; i1<=ncodemax[k1];i1++){
       /* end force of mortality */        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(j=1; j<= nlstate; j++) /* vareij */          scanf("%d", i);*/
         for(h=0; h<=nhstepm; h++){        for (i=-5; i<=nlstate+ndeath; i++)  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         }            for(m=iagemin; m <= iagemax+3; m++)
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */              freq[i][jk][m]=0;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  
       }      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
     } /* End theta */          prop[i][m]=0;
         
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        dateintsum=0;
         k2cpt=0;
     for(h=0; h<=nhstepm; h++) /* veij */        for (i=1; i<=imx; i++) {
       for(j=1; j<=nlstate;j++)          bool=1;
         for(theta=1; theta <=npar; theta++)          if  (cptcovn>0) {
           trgradg[h][j][theta]=gradg[h][theta][j];            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */                bool=0;
       for(theta=1; theta <=npar; theta++)          }
         trgradgp[j][theta]=gradgp[theta][j];          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              k2=anint[m][i]+(mint[m][i]/12.);
     for(i=1;i<=nlstate;i++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for(j=1;j<=nlstate;j++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         vareij[i][j][(int)age] =0.;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(h=0;h<=nhstepm;h++){                if (m<lastpass) {
       for(k=0;k<=nhstepm;k++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);                }
         for(i=1;i<=nlstate;i++)                
           for(j=1;j<=nlstate;j++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;                  dateintsum=dateintsum+k2;
       }                  k2cpt++;
     }                }
                 /*}*/
     /* pptj */            }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          }
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        }
     for(j=nlstate+1;j<=nlstate+ndeath;j++)         
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         varppt[j][i]=doldmp[j][i];  fprintf(ficresp, "#Local time at start: %s", strstart);
     /* end ppptj */        if  (cptcovn>0) {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            fprintf(ficresp, "\n#********** Variable "); 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
     if (popbased==1) {        }
       for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
         prlim[i][i]=probs[(int)age][i][ij];          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     }        fprintf(ficresp, "\n");
            
     /* This for computing force of mortality (h=1)as a weighted average */        for(i=iagemin; i <= iagemax+3; i++){
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          if(i==iagemax+3){
       for(i=1; i<= nlstate; i++)            fprintf(ficlog,"Total");
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          }else{
     }                if(first==1){
     /* end force of mortality */              first=0;
               printf("See log file for details...\n");
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            }
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){            fprintf(ficlog,"Age %d", i);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          }
       for(i=1; i<=nlstate;i++){          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       }              pp[jk] += freq[jk][m][i]; 
     }          }
     fprintf(ficresprobmorprev,"\n");          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
     fprintf(ficresvij,"%.0f ",age );              pos += freq[jk][m][i];
     for(i=1; i<=nlstate;i++)            if(pp[jk]>=1.e-10){
       for(j=1; j<=nlstate;j++){              if(first==1){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }              }
     fprintf(ficresvij,"\n");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     free_matrix(gp,0,nhstepm,1,nlstate);            }else{
     free_matrix(gm,0,nhstepm,1,nlstate);              if(first==1)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   } /* End age */          }
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);          for(jk=1; jk <=nlstate ; jk++){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              pp[jk] += freq[jk][m][i];
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          }       
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            pos += pp[jk];
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);            posprop += prop[jk][i];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);          }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);          for(jk=1; jk <=nlstate ; jk++){
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);            if(pos>=1.e-5){
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);              if(first==1)
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_vector(xp,1,npar);            }else{
   free_matrix(doldm,1,nlstate,1,nlstate);              if(first==1)
   free_matrix(dnewm,1,nlstate,1,npar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);            }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            if( i <= iagemax){
   fclose(ficresprobmorprev);              if(pos>=1.e-5){
   fclose(ficgp);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fclose(fichtm);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 }              }
               else
 /************ Variance of prevlim ******************/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            }
 {          }
   /* Variance of prevalence limit */          
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for(jk=-1; jk <=nlstate+ndeath; jk++)
   double **newm;            for(m=-1; m <=nlstate+ndeath; m++)
   double **dnewm,**doldm;              if(freq[jk][m][i] !=0 ) {
   int i, j, nhstepm, hstepm;              if(first==1)
   int k, cptcode;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   double *xp;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   double *gp, *gm;              }
   double **gradg, **trgradg;          if(i <= iagemax)
   double age,agelim;            fprintf(ficresp,"\n");
   int theta;          if(first==1)
                printf("Others in log...\n");
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          fprintf(ficlog,"\n");
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");    dateintmean=dateintsum/k2cpt; 
    
   xp=vector(1,npar);    fclose(ficresp);
   dnewm=matrix(1,nlstate,1,npar);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   doldm=matrix(1,nlstate,1,nlstate);    free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   hstepm=1*YEARM; /* Every year of age */    /* End of Freq */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  }
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /************ Prevalence ********************/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     if (stepm >= YEARM) hstepm=1;  {  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     gradg=matrix(1,npar,1,nlstate);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     gp=vector(1,nlstate);       We still use firstpass and lastpass as another selection.
     gm=vector(1,nlstate);    */
    
     for(theta=1; theta <=npar; theta++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double ***freq; /* Frequencies */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double *pp, **prop;
       }    double pos,posprop; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double  y2; /* in fractional years */
       for(i=1;i<=nlstate;i++)    int iagemin, iagemax;
         gp[i] = prlim[i][i];  
        iagemin= (int) agemin;
       for(i=1; i<=npar; i++) /* Computes gradient */    iagemax= (int) agemax;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*pp=vector(1,nlstate);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       for(i=1;i<=nlstate;i++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         gm[i] = prlim[i][i];    j1=0;
     
       for(i=1;i<=nlstate;i++)    j=cptcoveff;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     } /* End theta */    
     for(k1=1; k1<=j;k1++){
     trgradg =matrix(1,nlstate,1,npar);      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
     for(j=1; j<=nlstate;j++)        
       for(theta=1; theta <=npar; theta++)        for (i=1; i<=nlstate; i++)  
         trgradg[j][theta]=gradg[theta][j];          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
     for(i=1;i<=nlstate;i++)       
       varpl[i][(int)age] =0.;        for (i=1; i<=imx; i++) { /* Each individual */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          bool=1;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          if  (cptcovn>0) {
     for(i=1;i<=nlstate;i++)            for (z1=1; z1<=cptcoveff; z1++) 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
     fprintf(ficresvpl,"%.0f ",age );          } 
     for(i=1; i<=nlstate;i++)          if (bool==1) { 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fprintf(ficresvpl,"\n");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     free_vector(gp,1,nlstate);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     free_vector(gm,1,nlstate);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_matrix(gradg,1,npar,1,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     free_matrix(trgradg,1,nlstate,1,npar);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   } /* End age */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   free_vector(xp,1,npar);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   free_matrix(doldm,1,nlstate,1,npar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);                } 
               }
 }            } /* end selection of waves */
           }
 /************ Variance of one-step probabilities  ******************/        }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for(i=iagemin; i <= iagemax+3; i++){  
 {          
   int i, j=0,  i1, k1, l1, t, tj;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   int k2, l2, j1,  z1;            posprop += prop[jk][i]; 
   int k=0,l, cptcode;          } 
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;          for(jk=1; jk <=nlstate ; jk++){     
   double **dnewm,**doldm;            if( i <=  iagemax){ 
   double *xp;              if(posprop>=1.e-5){ 
   double *gp, *gm;                probs[i][jk][j1]= prop[jk][i]/posprop;
   double **gradg, **trgradg;              } 
   double **mu;            } 
   double age,agelim, cov[NCOVMAX];          }/* end jk */ 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        }/* end i */ 
   int theta;      } /* end i1 */
   char fileresprob[FILENAMELENGTH];    } /* end k1 */
   char fileresprobcov[FILENAMELENGTH];    
   char fileresprobcor[FILENAMELENGTH];    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
   double ***varpij;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);  /************* Waves Concatenation ***************/
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  {
   }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   strcpy(fileresprobcov,"probcov");       Death is a valid wave (if date is known).
   strcat(fileresprobcov,fileres);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     printf("Problem with resultfile: %s\n", fileresprobcov);       and mw[mi+1][i]. dh depends on stepm.
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);       */
   }  
   strcpy(fileresprobcor,"probcor");    int i, mi, m;
   strcat(fileresprobcor,fileres);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {       double sum=0., jmean=0.;*/
     printf("Problem with resultfile: %s\n", fileresprobcor);    int first;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    int j, k=0,jk, ju, jl;
   }    double sum=0.;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    first=0;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    jmin=1e+5;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    jmax=-1;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    jmean=0.;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    for(i=1; i<=imx; i++){
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      mi=0;
        m=firstpass;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      while(s[m][i] <= nlstate){
   fprintf(ficresprob,"# Age");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          mw[++mi][i]=m;
   fprintf(ficresprobcov,"# Age");        if(m >=lastpass)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          break;
   fprintf(ficresprobcov,"# Age");        else
           m++;
       }/* end while */
   for(i=1; i<=nlstate;i++)      if (s[m][i] > nlstate){
     for(j=1; j<=(nlstate+ndeath);j++){        mi++;     /* Death is another wave */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        /* if(mi==0)  never been interviewed correctly before death */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);           /* Only death is a correct wave */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        mw[mi][i]=m;
     }        }
   fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");      wav[i]=mi;
   fprintf(ficresprobcor,"\n");      if(mi==0){
   xp=vector(1,npar);        nbwarn++;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        if(first==0){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          first=1;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        }
   first=1;        if(first==1){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        }
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      } /* end mi==0 */
     exit(0);    } /* End individuals */
   }  
   else{    for(i=1; i<=imx; i++){
     fprintf(ficgp,"\n# Routine varprob");      for(mi=1; mi<wav[i];mi++){
   }        if (stepm <=0)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          dh[mi][i]=1;
     printf("Problem with html file: %s\n", optionfilehtm);        else{
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     exit(0);            if (agedc[i] < 2*AGESUP) {
   }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   else{              if(j==0) j=1;  /* Survives at least one month after exam */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");              else if(j<0){
     fprintf(fichtm,"\n");                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");                j=1; /* Temporary Dangerous patch */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   }              }
               k=k+1;
                if (j >= jmax){
   cov[1]=1;                jmax=j;
   tj=cptcoveff;                ijmax=i;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}              }
   j1=0;              if (j <= jmin){
   for(t=1; t<=tj;t++){                jmin=j;
     for(i1=1; i1<=ncodemax[t];i1++){                ijmin=i;
       j1++;              }
                    sum=sum+j;
       if  (cptcovn>0) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         fprintf(ficresprob, "\n#********** Variable ");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(ficresprob, "**********\n#");          }
         fprintf(ficresprobcov, "\n#********** Variable ");          else{
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         fprintf(ficresprobcov, "**********\n#");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
          
         fprintf(ficgp, "\n#********** Variable ");            k=k+1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            if (j >= jmax) {
         fprintf(ficgp, "**********\n#");              jmax=j;
                      ijmax=i;
                    }
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            else if (j <= jmin){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              jmin=j;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");              ijmin=i;
                    }
         fprintf(ficresprobcor, "\n#********** Variable ");                /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficgp, "**********\n#");                if(j<0){
       }              nberr++;
                    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (age=bage; age<=fage; age ++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         cov[2]=age;            }
         for (k=1; k<=cptcovn;k++) {            sum=sum+j;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          }
         }          jk= j/stepm;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          jl= j -jk*stepm;
         for (k=1; k<=cptcovprod;k++)          ju= j -(jk+1)*stepm;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                    if(jl==0){
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));              dh[mi][i]=jk;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              bh[mi][i]=0;
         gp=vector(1,(nlstate)*(nlstate+ndeath));            }else{ /* We want a negative bias in order to only have interpolation ie
         gm=vector(1,(nlstate)*(nlstate+ndeath));                    * at the price of an extra matrix product in likelihood */
                  dh[mi][i]=jk+1;
         for(theta=1; theta <=npar; theta++){              bh[mi][i]=ju;
           for(i=1; i<=npar; i++)            }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          }else{
                      if(jl <= -ju){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              dh[mi][i]=jk;
                        bh[mi][i]=jl;       /* bias is positive if real duration
           k=0;                                   * is higher than the multiple of stepm and negative otherwise.
           for(i=1; i<= (nlstate); i++){                                   */
             for(j=1; j<=(nlstate+ndeath);j++){            }
               k=k+1;            else{
               gp[k]=pmmij[i][j];              dh[mi][i]=jk+1;
             }              bh[mi][i]=ju;
           }            }
                      if(dh[mi][i]==0){
           for(i=1; i<=npar; i++)              dh[mi][i]=1; /* At least one step */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);              bh[mi][i]=ju; /* At least one step */
                  /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }
           k=0;          } /* end if mle */
           for(i=1; i<=(nlstate); i++){        }
             for(j=1; j<=(nlstate+ndeath);j++){      } /* end wave */
               k=k+1;    }
               gm[k]=pmmij[i][j];    jmean=sum/k;
             }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    /*********** Tricode ****************************/
         }  void tricode(int *Tvar, int **nbcode, int imx)
   {
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    
           for(theta=1; theta <=npar; theta++)    int Ndum[20],ij=1, k, j, i, maxncov=19;
             trgradg[j][theta]=gradg[theta][j];    int cptcode=0;
            cptcoveff=0; 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    for (k=0; k<maxncov; k++) Ndum[k]=0;
            for (k=1; k<=7; k++) ncodemax[k]=0;
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
            for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         k=0;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         for(i=1; i<=(nlstate); i++){                                 modality*/ 
           for(j=1; j<=(nlstate+ndeath);j++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             k=k+1;        Ndum[ij]++; /*store the modality */
             mu[k][(int) age]=pmmij[i][j];        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         }                                         Tvar[j]. If V=sex and male is 0 and 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                                         female is 1, then  cptcode=1.*/
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      }
             varpij[i][j][(int)age] = doldm[i][j];  
       for (i=0; i<=cptcode; i++) {
         /*printf("\n%d ",(int)age);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      ij=1; 
      }*/      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
         fprintf(ficresprob,"\n%d ",(int)age);          if (Ndum[k] != 0) {
         fprintf(ficresprobcov,"\n%d ",(int)age);            nbcode[Tvar[j]][ij]=k; 
         fprintf(ficresprobcor,"\n%d ",(int)age);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            ij++;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          if (ij > ncodemax[j]) break; 
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        }  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      } 
         }    }  
         i=0;  
         for (k=1; k<=(nlstate);k++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
           for (l=1; l<=(nlstate+ndeath);l++){  
             i=i++;   for (i=1; i<=ncovmodel-2; i++) { 
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);     ij=Tvar[i];
             for (j=1; j<=i;j++){     Ndum[ij]++;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);   }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  
             }   ij=1;
           }   for (i=1; i<= maxncov; i++) {
         }/* end of loop for state */     if((Ndum[i]!=0) && (i<=ncovcol)){
       } /* end of loop for age */       Tvaraff[ij]=i; /*For printing */
        ij++;
       /* Confidence intervalle of pij  */     }
       /*   }
       fprintf(ficgp,"\nset noparametric;unset label");   
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");   cptcoveff=ij-1; /*Number of simple covariates*/
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  }
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  /*********** Health Expectancies ****************/
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
       */  
   {
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    /* Health expectancies */
       first1=1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       for (k2=1; k2<=(nlstate);k2++){    double age, agelim, hf;
         for (l2=1; l2<=(nlstate+ndeath);l2++){    double ***p3mat,***varhe;
           if(l2==k2) continue;    double **dnewm,**doldm;
           j=(k2-1)*(nlstate+ndeath)+l2;    double *xp;
           for (k1=1; k1<=(nlstate);k1++){    double **gp, **gm;
             for (l1=1; l1<=(nlstate+ndeath);l1++){    double ***gradg, ***trgradg;
               if(l1==k1) continue;    int theta;
               i=(k1-1)*(nlstate+ndeath)+l1;  
               if(i<=j) continue;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
               for (age=bage; age<=fage; age ++){    xp=vector(1,npar);
                 if ((int)age %5==0){    dnewm=matrix(1,nlstate*nlstate,1,npar);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficreseij,"# Local time at start: %s", strstart);
                   mu1=mu[i][(int) age]/stepm*YEARM ;    fprintf(ficreseij,"# Health expectancies\n");
                   mu2=mu[j][(int) age]/stepm*YEARM;    fprintf(ficreseij,"# Age");
                   c12=cv12/sqrt(v1*v2);    for(i=1; i<=nlstate;i++)
                   /* Computing eigen value of matrix of covariance */      for(j=1; j<=nlstate;j++)
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    fprintf(ficreseij,"\n");
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    if(estepm < stepm){
                   /*v21=sqrt(1.-v11*v11); *//* error */      printf ("Problem %d lower than %d\n",estepm, stepm);
                   v21=(lc1-v1)/cv12*v11;    }
                   v12=-v21;    else  hstepm=estepm;   
                   v22=v11;    /* We compute the life expectancy from trapezoids spaced every estepm months
                   tnalp=v21/v11;     * This is mainly to measure the difference between two models: for example
                   if(first1==1){     * if stepm=24 months pijx are given only every 2 years and by summing them
                     first1=0;     * we are calculating an estimate of the Life Expectancy assuming a linear 
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);     * progression in between and thus overestimating or underestimating according
                   }     * to the curvature of the survival function. If, for the same date, we 
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   /*printf(fignu*/     * to compare the new estimate of Life expectancy with the same linear 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */     * hypothesis. A more precise result, taking into account a more precise
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */     * curvature will be obtained if estepm is as small as stepm. */
                   if(first==1){  
                     first=0;    /* For example we decided to compute the life expectancy with the smallest unit */
                     fprintf(ficgp,"\nset parametric;unset label");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);       nhstepm is the number of hstepm from age to agelim 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");       nstepm is the number of stepm from age to agelin. 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);       Look at hpijx to understand the reason of that which relies in memory size
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);       and note for a fixed period like estepm months */
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);       survival function given by stepm (the optimization length). Unfortunately it
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);       means that if the survival funtion is printed only each two years of age and if
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\       results. So we changed our mind and took the option of the best precision.
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    */
                   }else{    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                     first=0;  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    agelim=AGESUP;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      /* nhstepm age range expressed in number of stepm */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   }/* if first */      /* if (stepm >= YEARM) hstepm=1;*/
                 } /* age mod 5 */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               } /* end loop age */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
               first=1;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
             } /*l12 */      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           } /* k12 */  
         } /*l1 */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       }/* k1 */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     } /* loop covariates */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);   
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      /* Computing  Variances of health expectancies */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }       for(theta=1; theta <=npar; theta++){
   free_vector(xp,1,npar);        for(i=1; i<=npar; i++){ 
   fclose(ficresprob);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fclose(ficresprobcov);        }
   fclose(ficresprobcor);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fclose(ficgp);    
   fclose(fichtm);        cptj=0;
 }        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
 /******************* Printing html file ***********/            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                   int lastpass, int stepm, int weightopt, char model[],\            }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          }
                   int popforecast, int estepm ,\        }
                   double jprev1, double mprev1,double anprev1, \       
                   double jprev2, double mprev2,double anprev2){       
   int jj1, k1, i1, cpt;        for(i=1; i<=npar; i++) 
   /*char optionfilehtm[FILENAMELENGTH];*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with %s \n",optionfilehtm), exit(0);        
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);        cptj=0;
   }        for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n            cptj=cptj+1;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
  - Life expectancies by age and initial health status (estepm=%2d months):            }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        }
         for(j=1; j<= nlstate*nlstate; j++)
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  m=cptcoveff;          }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       } 
      
  jj1=0;  /* End theta */
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      jj1++;  
      if (cptcovn > 0) {       for(h=0; h<=nhstepm-1; h++)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for(j=1; j<=nlstate*nlstate;j++)
        for (cpt=1; cpt<=cptcoveff;cpt++)          for(theta=1; theta <=npar; theta++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            trgradg[h][j][theta]=gradg[h][theta][j];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       
      }  
      /* Pij */       for(i=1;i<=nlstate*nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        for(j=1;j<=nlstate*nlstate;j++)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              varhe[i][j][(int)age] =0.;
      /* Quasi-incidences */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>       printf("%d|",(int)age);fflush(stdout);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        /* Stable prevalence in each health state */       for(h=0;h<=nhstepm-1;h++){
        for(cpt=1; cpt<nlstate;cpt++){        for(k=0;k<=nhstepm-1;k++){
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
        }          for(i=1;i<=nlstate*nlstate;i++)
      for(cpt=1; cpt<=nlstate;cpt++) {            for(j=1;j<=nlstate*nlstate;j++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        }
      }      }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      /* Computing expectancies */
 health expectancies in states (1) and (2): e%s%d.png<br>      for(i=1; i<=nlstate;i++)
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(j=1; j<=nlstate;j++)
    } /* end i1 */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  }/* End k1 */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  fprintf(fichtm,"</ul>");            
   /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n          }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      fprintf(ficreseij,"%3.0f",age );
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      cptj=0;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      for(i=1; i<=nlstate;i++)
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        for(j=1; j<=nlstate;j++){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          cptj++;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
  if(popforecast==1) fprintf(fichtm,"\n      fprintf(ficreseij,"\n");
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n     
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         <br>",fileres,fileres,fileres,fileres);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  else      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
  m=cptcoveff;    printf("\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(ficlog,"\n");
   
  jj1=0;    free_vector(xp,1,npar);
  for(k1=1; k1<=m;k1++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
    for(i1=1; i1<=ncodemax[k1];i1++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      jj1++;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      if (cptcovn > 0) {  }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)  /************ Variance ******************/
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  {
      }    /* Variance of health expectancies */
      for(cpt=1; cpt<=nlstate;cpt++) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    /* double **newm;*/
 interval) in state (%d): v%s%d%d.png <br>    double **dnewm,**doldm;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      double **dnewmp,**doldmp;
      }    int i, j, nhstepm, hstepm, h, nstepm ;
    } /* end i1 */    int k, cptcode;
  }/* End k1 */    double *xp;
  fprintf(fichtm,"</ul>");    double **gp, **gm;  /* for var eij */
 fclose(fichtm);    double ***gradg, ***trgradg; /*for var eij */
 }    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
 /******************* Gnuplot file **************/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double ***p3mat;
     double age,agelim, hf;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double ***mobaverage;
   int ng;    int theta;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    char digit[4];
     printf("Problem with file %s",optionfilegnuplot);    char digitp[25];
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);  
   }    char fileresprobmorprev[FILENAMELENGTH];
   
 #ifdef windows    if(popbased==1){
     fprintf(ficgp,"cd \"%s\" \n",pathc);      if(mobilav!=0)
 #endif        strcpy(digitp,"-populbased-mobilav-");
 m=pow(2,cptcoveff);      else strcpy(digitp,"-populbased-nomobil-");
      }
  /* 1eme*/    else 
   for (cpt=1; cpt<= nlstate ; cpt ++) {      strcpy(digitp,"-stablbased-");
    for (k1=1; k1<= m ; k1 ++) {  
     if (mobilav!=0) {
 #ifdef windows      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 #endif        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 #ifdef unix      }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  
 #endif    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
 for (i=1; i<= nlstate ; i ++) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 }    strcat(fileresprobmorprev,fileres);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     for (i=1; i<= nlstate ; i ++) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);   
      for (i=1; i<= nlstate ; i ++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 }      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 #ifdef unix      fprintf(ficresprobmorprev," p.%-d SE",j);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      for(i=1; i<=nlstate;i++)
 #endif        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    }    }  
   }    fprintf(ficresprobmorprev,"\n");
   /*2 eme*/    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   for (k1=1; k1<= m ; k1 ++) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  /*   } */
        varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for (i=1; i<= nlstate+1 ; i ++) {   fprintf(ficresvij, "#Local time at start: %s", strstart);
       k=2*i;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresvij,"# Age");
       for (j=1; j<= nlstate+1 ; j ++) {    for(i=1; i<=nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(j=1; j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 }      fprintf(ficresvij,"\n");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    xp=vector(1,npar);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    dnewm=matrix(1,nlstate,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    doldm=matrix(1,nlstate,1,nlstate);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    gpp=vector(nlstate+1,nlstate+ndeath);
       for (j=1; j<= nlstate+1 ; j ++) {    gmp=vector(nlstate+1,nlstate+ndeath);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      if(estepm < stepm){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      printf ("Problem %d lower than %d\n",estepm, stepm);
       else fprintf(ficgp,"\" t\"\" w l 0,");    }
     }    else  hstepm=estepm;   
   }    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /*3eme*/       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   for (k1=1; k1<= m ; k1 ++) {       Look at hpijx to understand the reason of that which relies in memory size
     for (cpt=1; cpt<= nlstate ; cpt ++) {       and note for a fixed period like k years */
       k=2+nlstate*(2*cpt-2);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);       means that if the survival funtion is printed every two years of age and if
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       results. So we changed our mind and took the option of the best precision.
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    agelim = AGESUP;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for (i=1; i< nlstate ; i ++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       }      gm=matrix(0,nhstepm,1,nlstate);
     }  
   }  
        for(theta=1; theta <=npar; theta++){
   /* CV preval stat */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     for (k1=1; k1<= m ; k1 ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (cpt=1; cpt<nlstate ; cpt ++) {        }
       k=3;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
         if (popbased==1) {
       for (i=1; i< nlstate ; i ++)          if(mobilav ==0){
         fprintf(ficgp,"+$%d",k+i+1);            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              prlim[i][i]=probs[(int)age][i][ij];
                }else{ /* mobilav */ 
       l=3+(nlstate+ndeath)*cpt;            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       for (i=1; i< nlstate ; i ++) {          }
         l=3+(nlstate+ndeath)*cpt;        }
         fprintf(ficgp,"+$%d",l+i+1);    
       }        for(j=1; j<= nlstate; j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            for(h=0; h<=nhstepm; h++){
     }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   }                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   /* proba elementaires */        }
    for(i=1,jk=1; i <=nlstate; i++){        /* This for computing probability of death (h=1 means
     for(k=1; k <=(nlstate+ndeath); k++){           computed over hstepm matrices product = hstepm*stepm months) 
       if (k != i) {           as a weighted average of prlim.
         for(j=1; j <=ncovmodel; j++){        */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           jk++;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           fprintf(ficgp,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }        }    
       }        /* end probability of death */
     }  
    }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      for(jk=1; jk <=m; jk++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);   
        if (ng==2)        if (popbased==1) {
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          if(mobilav ==0){
        else            for(i=1; i<=nlstate;i++)
          fprintf(ficgp,"\nset title \"Probability\"\n");              prlim[i][i]=probs[(int)age][i][ij];
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          }else{ /* mobilav */ 
        i=1;            for(i=1; i<=nlstate;i++)
        for(k2=1; k2<=nlstate; k2++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
          k3=i;          }
          for(k=1; k<=(nlstate+ndeath); k++) {        }
            if (k != k2){  
              if(ng==2)        for(j=1; j<= nlstate; j++){
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          for(h=0; h<=nhstepm; h++){
              else            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
              ij=1;          }
              for(j=3; j <=ncovmodel; j++) {        }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        /* This for computing probability of death (h=1 means
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);           computed over hstepm matrices product = hstepm*stepm months) 
                  ij++;           as a weighted average of prlim.
                }        */
                else        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
              }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
              fprintf(ficgp,")/(1");        }    
                      /* end probability of death */
              for(k1=1; k1 <=nlstate; k1++){    
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        for(j=1; j<= nlstate; j++) /* vareij */
                ij=1;          for(h=0; h<=nhstepm; h++){
                for(j=3; j <=ncovmodel; j++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                  }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                  else        }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }      } /* End theta */
                fprintf(ficgp,")");  
              }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      for(h=0; h<=nhstepm; h++) /* veij */
              i=i+ncovmodel;        for(j=1; j<=nlstate;j++)
            }          for(theta=1; theta <=npar; theta++)
          } /* end k */            trgradg[h][j][theta]=gradg[h][theta][j];
        } /* end k2 */  
      } /* end jk */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
    } /* end ng */        for(theta=1; theta <=npar; theta++)
    fclose(ficgp);          trgradgp[j][theta]=gradgp[theta][j];
 }  /* end gnuplot */    
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 /*************** Moving average **************/      for(i=1;i<=nlstate;i++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for(h=0;h<=nhstepm;h++){
       for (i=1; i<=nlstate;i++)        for(k=0;k<=nhstepm;k++){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           mobaverage[(int)agedeb][i][cptcod]=0.;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
              for(i=1;i<=nlstate;i++)
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            for(j=1;j<=nlstate;j++)
       for (i=1; i<=nlstate;i++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
           for (cpt=0;cpt<=4;cpt++){      }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    
           }      /* pptj */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
              varppt[j][i]=doldmp[j][i];
 }      /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 /************** Forecasting ******************/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){   
        if (popbased==1) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        if(mobilav ==0){
   int *popage;          for(i=1; i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            prlim[i][i]=probs[(int)age][i][ij];
   double *popeffectif,*popcount;        }else{ /* mobilav */ 
   double ***p3mat;          for(i=1; i<=nlstate;i++)
   char fileresf[FILENAMELENGTH];            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
  agelim=AGESUP;      }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;               
       /* This for computing probability of death (h=1 means
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
        */
   strcpy(fileresf,"f");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   strcat(fileresf,fileres);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   if((ficresf=fopen(fileresf,"w"))==NULL) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     printf("Problem with forecast resultfile: %s\n", fileresf);      }    
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      /* end probability of death */
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if (mobilav==1) {        }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } 
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficresprobmorprev,"\n");
   }  
       fprintf(ficresvij,"%.0f ",age );
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;        for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   agelim=AGESUP;        }
        fprintf(ficresvij,"\n");
   hstepm=1;      free_matrix(gp,0,nhstepm,1,nlstate);
   hstepm=hstepm/stepm;      free_matrix(gm,0,nhstepm,1,nlstate);
   yp1=modf(dateintmean,&yp);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   anprojmean=yp;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   yp2=modf((yp1*12),&yp);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   mprojmean=yp;    } /* End age */
   yp1=modf((yp2*30.5),&yp);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   jprojmean=yp;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   if(jprojmean==0) jprojmean=1;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   if(mprojmean==0) jprojmean=1;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   for(cptcov=1;cptcov<=i2;cptcov++){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       k=k+1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficresf,"\n#******");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       fprintf(ficresf,"******\n");    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficresf,"# StartingAge FinalAge");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  */
        /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
          fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");    free_vector(xp,1,npar);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           nhstepm = nhstepm/hstepm;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
              if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fclose(ficresprobmorprev);
           oldm=oldms;savm=savms;    fflush(ficgp);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fflush(fichtm); 
          }  /* end varevsij */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  /************ Variance of prevlim ******************/
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             }  {
             for(j=1; j<=nlstate+ndeath;j++) {    /* Variance of prevalence limit */
               kk1=0.;kk2=0;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
               for(i=1; i<=nlstate;i++) {                  double **newm;
                 if (mobilav==1)    double **dnewm,**doldm;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    int i, j, nhstepm, hstepm;
                 else {    int k, cptcode;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double *xp;
                 }    double *gp, *gm;
                    double **gradg, **trgradg;
               }    double age,agelim;
               if (h==(int)(calagedate+12*cpt)){    int theta;
                 fprintf(ficresf," %.3f", kk1);    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
                            fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
               }    fprintf(ficresvpl,"# Age");
             }    for(i=1; i<=nlstate;i++)
           }        fprintf(ficresvpl," %1d-%1d",i,i);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresvpl,"\n");
         }  
       }    xp=vector(1,npar);
     }    dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
            
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   fclose(ficresf);    agelim = AGESUP;
 }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 /************** Forecasting ******************/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      gradg=matrix(1,npar,1,nlstate);
   int *popage;      gp=vector(1,nlstate);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      gm=vector(1,nlstate);
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;      for(theta=1; theta <=npar; theta++){
   char filerespop[FILENAMELENGTH];        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   agelim=AGESUP;        for(i=1;i<=nlstate;i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          gp[i] = prlim[i][i];
        
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(i=1; i<=npar; i++) /* Computes gradient */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcpy(filerespop,"pop");        for(i=1;i<=nlstate;i++)
   strcat(filerespop,fileres);          gm[i] = prlim[i][i];
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);        for(i=1;i<=nlstate;i++)
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);      trgradg =matrix(1,nlstate,1,npar);
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   if (mobilav==1) {          trgradg[j][theta]=gradg[theta][j];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   if (stepm<=12) stepsize=1;      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   agelim=AGESUP;  
        fprintf(ficresvpl,"%.0f ",age );
   hstepm=1;      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   if (popforecast==1) {      free_vector(gp,1,nlstate);
     if((ficpop=fopen(popfile,"r"))==NULL) {      free_vector(gm,1,nlstate);
       printf("Problem with population file : %s\n",popfile);exit(0);      free_matrix(gradg,1,npar,1,nlstate);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);      free_matrix(trgradg,1,nlstate,1,npar);
     }    } /* End age */
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    free_vector(xp,1,npar);
     popcount=vector(0,AGESUP);    free_matrix(doldm,1,nlstate,1,npar);
        free_matrix(dnewm,1,nlstate,1,nlstate);
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  }
      
     imx=i;  /************ Variance of one-step probabilities  ******************/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   }  {
     int i, j=0,  i1, k1, l1, t, tj;
   for(cptcov=1;cptcov<=i2;cptcov++){    int k2, l2, j1,  z1;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int k=0,l, cptcode;
       k=k+1;    int first=1, first1;
       fprintf(ficrespop,"\n#******");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       for(j=1;j<=cptcoveff;j++) {    double **dnewm,**doldm;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *xp;
       }    double *gp, *gm;
       fprintf(ficrespop,"******\n");    double **gradg, **trgradg;
       fprintf(ficrespop,"# Age");    double **mu;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    double age,agelim, cov[NCOVMAX];
       if (popforecast==1)  fprintf(ficrespop," [Population]");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
          int theta;
       for (cpt=0; cpt<=0;cpt++) {    char fileresprob[FILENAMELENGTH];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      char fileresprobcov[FILENAMELENGTH];
            char fileresprobcor[FILENAMELENGTH];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double ***varpij;
           nhstepm = nhstepm/hstepm;  
              strcpy(fileresprob,"prob"); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprob,fileres);
           oldm=oldms;savm=savms;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf("Problem with resultfile: %s\n", fileresprob);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    strcpy(fileresprobcov,"probcov"); 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    strcat(fileresprobcov,fileres);
             }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
             for(j=1; j<=nlstate+ndeath;j++) {      printf("Problem with resultfile: %s\n", fileresprobcov);
               kk1=0.;kk2=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    strcpy(fileresprobcor,"probcor"); 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    strcat(fileresprobcor,fileres);
                 else {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      printf("Problem with resultfile: %s\n", fileresprobcor);
                 }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
               }    }
               if (h==(int)(calagedate+12*cpt)){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   /*fprintf(ficrespop," %.3f", kk1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             for(i=1; i<=nlstate;i++){    fprintf(ficresprob, "#Local time at start: %s", strstart);
               kk1=0.;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                 for(j=1; j<=nlstate;j++){    fprintf(ficresprob,"# Age");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
                 }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    fprintf(ficresprobcov,"# Age");
             }    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficresprobcov,"# Age");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=(nlstate+ndeath);j++){
       }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
   /******/        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   /* fprintf(ficresprob,"\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficresprobcov,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresprobcor,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   */
           nhstepm = nhstepm/hstepm;   xp=vector(1,npar);
              dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           oldm=oldms;savm=savms;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           for (h=0; h<=nhstepm; h++){    first=1;
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficgp,"\n# Routine varprob");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
             }    fprintf(fichtm,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
               for(i=1; i<=nlstate;i++) {                  fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        file %s<br>\n",optionfilehtmcov);
               }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  and drawn. It helps understanding how is the covariance between two incidences.\
             }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       }  standard deviations wide on each axis. <br>\
    }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
    To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     cov[1]=1;
   if (popforecast==1) {    tj=cptcoveff;
     free_ivector(popage,0,AGESUP);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     free_vector(popeffectif,0,AGESUP);    j1=0;
     free_vector(popcount,0,AGESUP);    for(t=1; t<=tj;t++){
   }      for(i1=1; i1<=ncodemax[t];i1++){ 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        j1++;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if  (cptcovn>0) {
   fclose(ficrespop);          fprintf(ficresprob, "\n#********** Variable "); 
 }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
 /***********************************************/          fprintf(ficresprobcov, "\n#********** Variable "); 
 /**************** Main Program *****************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /***********************************************/          fprintf(ficresprobcov, "**********\n#\n");
           
 int main(int argc, char *argv[])          fprintf(ficgp, "\n#********** Variable "); 
 {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          
   double agedeb, agefin,hf;          
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double fret;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   double **xi,tmp,delta;          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   double dum; /* Dummy variable */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***p3mat;          fprintf(ficresprobcor, "**********\n#");    
   int *indx;        }
   char line[MAXLINE], linepar[MAXLINE];        
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];        for (age=bage; age<=fage; age ++){ 
   int firstobs=1, lastobs=10;          cov[2]=age;
   int sdeb, sfin; /* Status at beginning and end */          for (k=1; k<=cptcovn;k++) {
   int c,  h , cpt,l;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   int ju,jl, mi;          }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          for (k=1; k<=cptcovprod;k++)
   int mobilav=0,popforecast=0;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int hstepm, nhstepm;          
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   double bage, fage, age, agelim, agebase;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   double ftolpl=FTOL;          gm=vector(1,(nlstate)*(nlstate+ndeath));
   double **prlim;      
   double *severity;          for(theta=1; theta <=npar; theta++){
   double ***param; /* Matrix of parameters */            for(i=1; i<=npar; i++)
   double  *p;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   double **matcov; /* Matrix of covariance */            
   double ***delti3; /* Scale */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   double *delti; /* Scale */            
   double ***eij, ***vareij;            k=0;
   double **varpl; /* Variances of prevalence limits by age */            for(i=1; i<= (nlstate); i++){
   double *epj, vepp;              for(j=1; j<=(nlstate+ndeath);j++){
   double kk1, kk2;                k=k+1;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                gp[k]=pmmij[i][j];
                }
             }
   char *alph[]={"a","a","b","c","d","e"}, str[4];            
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   char z[1]="c", occ;      
 #include <sys/time.h>            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 #include <time.h>            k=0;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            for(i=1; i<=(nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
   /* long total_usecs;                k=k+1;
   struct timeval start_time, end_time;                gm[k]=pmmij[i][j];
                }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            }
   getcwd(pathcd, size);       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   printf("\n%s",version);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   if(argc <=1){          }
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   }            for(theta=1; theta <=npar; theta++)
   else{              trgradg[j][theta]=gradg[theta][j];
     strcpy(pathtot,argv[1]);          
   }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   /*cygwin_split_path(pathtot,path,optionfile);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   /* cutv(path,optionfile,pathtot,'\\');*/          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   chdir(path);          
   replace(pathc,path);          k=0;
           for(i=1; i<=(nlstate); i++){
 /*-------- arguments in the command line --------*/            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   /* Log file */              mu[k][(int) age]=pmmij[i][j];
   strcat(filelog, optionfilefiname);            }
   strcat(filelog,".log");    /* */          }
   if((ficlog=fopen(filelog,"w"))==NULL)    {          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     printf("Problem with logfile %s\n",filelog);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     goto end;              varpij[i][j][(int)age] = doldm[i][j];
   }  
   fprintf(ficlog,"Log filename:%s\n",filelog);          /*printf("\n%d ",(int)age);
   fprintf(ficlog,"\n%s",version);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fprintf(ficlog,"\nEnter the parameter file name: ");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   fflush(ficlog);            }*/
   
   /* */          fprintf(ficresprob,"\n%d ",(int)age);
   strcpy(fileres,"r");          fprintf(ficresprobcov,"\n%d ",(int)age);
   strcat(fileres, optionfilefiname);          fprintf(ficresprobcor,"\n%d ",(int)age);
   strcat(fileres,".txt");    /* Other files have txt extension */  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   /*---------arguments file --------*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     printf("Problem with optionfile %s\n",optionfile);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          }
     goto end;          i=0;
   }          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   strcpy(filereso,"o");              i=i++;
   strcat(filereso,fileres);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   if((ficparo=fopen(filereso,"w"))==NULL) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with Output resultfile: %s\n", filereso);              for (j=1; j<=i;j++){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     goto end;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   }              }
             }
   /* Reads comments: lines beginning with '#' */          }/* end of loop for state */
   while((c=getc(ficpar))=='#' && c!= EOF){        } /* end of loop for age */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        /* Confidence intervalle of pij  */
     puts(line);        /*
     fputs(line,ficparo);          fprintf(ficgp,"\nset noparametric;unset label");
   }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   ungetc(c,ficpar);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 while((c=getc(ficpar))=='#' && c!= EOF){        */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     puts(line);        first1=1;
     fputs(line,ficparo);        for (k2=1; k2<=(nlstate);k2++){
   }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   ungetc(c,ficpar);            if(l2==k2) continue;
              j=(k2-1)*(nlstate+ndeath)+l2;
                for (k1=1; k1<=(nlstate);k1++){
   covar=matrix(0,NCOVMAX,1,n);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   cptcovn=0;                if(l1==k1) continue;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
   ncovmodel=2+cptcovn;                for (age=bage; age<=fage; age ++){ 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   /* Read guess parameters */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /* Reads comments: lines beginning with '#' */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   while((c=getc(ficpar))=='#' && c!= EOF){                    mu1=mu[i][(int) age]/stepm*YEARM ;
     ungetc(c,ficpar);                    mu2=mu[j][(int) age]/stepm*YEARM;
     fgets(line, MAXLINE, ficpar);                    c12=cv12/sqrt(v1*v2);
     puts(line);                    /* Computing eigen value of matrix of covariance */
     fputs(line,ficparo);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   ungetc(c,ficpar);                    /* Eigen vectors */
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    /*v21=sqrt(1.-v11*v11); *//* error */
     for(i=1; i <=nlstate; i++)                    v21=(lc1-v1)/cv12*v11;
     for(j=1; j <=nlstate+ndeath-1; j++){                    v12=-v21;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    v22=v11;
       fprintf(ficparo,"%1d%1d",i1,j1);                    tnalp=v21/v11;
       if(mle==1)                    if(first1==1){
         printf("%1d%1d",i,j);                      first1=0;
       fprintf(ficlog,"%1d%1d",i,j);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       for(k=1; k<=ncovmodel;k++){                    }
         fscanf(ficpar," %lf",&param[i][j][k]);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         if(mle==1){                    /*printf(fignu*/
           printf(" %lf",param[i][j][k]);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           fprintf(ficlog," %lf",param[i][j][k]);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         }                    if(first==1){
         else                      first=0;
           fprintf(ficlog," %lf",param[i][j][k]);                      fprintf(ficgp,"\nset parametric;unset label");
         fprintf(ficparo," %lf",param[i][j][k]);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       fscanf(ficpar,"\n");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       if(mle==1)   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         printf("\n");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       fprintf(ficlog,"\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       fprintf(ficparo,"\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   p=param[1][1];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /* Reads comments: lines beginning with '#' */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   while((c=getc(ficpar))=='#' && c!= EOF){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     ungetc(c,ficpar);                    }else{
     fgets(line, MAXLINE, ficpar);                      first=0;
     puts(line);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     fputs(line,ficparo);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   ungetc(c,ficpar);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                    }/* if first */
   for(i=1; i <=nlstate; i++){                  } /* age mod 5 */
     for(j=1; j <=nlstate+ndeath-1; j++){                } /* end loop age */
       fscanf(ficpar,"%1d%1d",&i1,&j1);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       printf("%1d%1d",i,j);                first=1;
       fprintf(ficparo,"%1d%1d",i1,j1);              } /*l12 */
       for(k=1; k<=ncovmodel;k++){            } /* k12 */
         fscanf(ficpar,"%le",&delti3[i][j][k]);          } /*l1 */
         printf(" %le",delti3[i][j][k]);        }/* k1 */
         fprintf(ficparo," %le",delti3[i][j][k]);      } /* loop covariates */
       }    }
       fscanf(ficpar,"\n");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       printf("\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       fprintf(ficparo,"\n");    free_vector(xp,1,npar);
     }    fclose(ficresprob);
   }    fclose(ficresprobcov);
   delti=delti3[1][1];    fclose(ficresprobcor);
      fflush(ficgp);
   /* Reads comments: lines beginning with '#' */    fflush(fichtmcov);
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /******************* Printing html file ***********/
     fputs(line,ficparo);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   }                    int lastpass, int stepm, int weightopt, char model[],\
   ungetc(c,ficpar);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                      int popforecast, int estepm ,\
   matcov=matrix(1,npar,1,npar);                    double jprev1, double mprev1,double anprev1, \
   for(i=1; i <=npar; i++){                    double jprev2, double mprev2,double anprev2){
     fscanf(ficpar,"%s",&str);    int jj1, k1, i1, cpt;
     if(mle==1)  
       printf("%s",str);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     fprintf(ficlog,"%s",str);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     fprintf(ficparo,"%s",str);  </ul>");
     for(j=1; j <=i; j++){     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       fscanf(ficpar," %le",&matcov[i][j]);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       if(mle==1){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
         printf(" %.5le",matcov[i][j]);     fprintf(fichtm,"\
         fprintf(ficlog," %.5le",matcov[i][j]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       else     fprintf(fichtm,"\
         fprintf(ficlog," %.5le",matcov[i][j]);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficparo," %.5le",matcov[i][j]);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     }     fprintf(fichtm,"\
     fscanf(ficpar,"\n");   - Life expectancies by age and initial health status (estepm=%2d months): \
     if(mle==1)     <a href=\"%s\">%s</a> <br>\n</li>",
       printf("\n");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     fprintf(ficlog,"\n");  
     fprintf(ficparo,"\n");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   }  
   for(i=1; i <=npar; i++)   m=cptcoveff;
     for(j=i+1;j<=npar;j++)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       matcov[i][j]=matcov[j][i];  
       jj1=0;
   if(mle==1)   for(k1=1; k1<=m;k1++){
     printf("\n");     for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficlog,"\n");       jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     /*-------- Rewriting paramater file ----------*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
      strcpy(rfileres,"r");    /* "Rparameterfile */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      strcat(rfileres,".");    /* */       }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */       /* Pij */
     if((ficres =fopen(rfileres,"w"))==NULL) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;       /* Quasi-incidences */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     fprintf(ficres,"#%s\n",version);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
      <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     /*-------- data file ----------*/         /* Stable prevalence in each health state */
     if((fic=fopen(datafile,"r"))==NULL)    {         for(cpt=1; cpt<nlstate;cpt++){
       printf("Problem with datafile: %s\n", datafile);goto end;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     }         }
        for(cpt=1; cpt<=nlstate;cpt++) {
     n= lastobs;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     severity = vector(1,maxwav);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     outcome=imatrix(1,maxwav+1,1,n);       }
     num=ivector(1,n);     } /* end i1 */
     moisnais=vector(1,n);   }/* End k1 */
     annais=vector(1,n);   fprintf(fichtm,"</ul>");
     moisdc=vector(1,n);  
     andc=vector(1,n);  
     agedc=vector(1,n);   fprintf(fichtm,"\
     cod=ivector(1,n);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     weight=vector(1,n);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     anint=matrix(1,maxwav,1,n);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     s=imatrix(1,maxwav+1,1,n);   fprintf(fichtm,"\
     adl=imatrix(1,maxwav+1,1,n);       - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     tab=ivector(1,NCOVMAX);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     ncodemax=ivector(1,8);  
    fprintf(fichtm,"\
     i=1;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     while (fgets(line, MAXLINE, fic) != NULL)    {           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       if ((i >= firstobs) && (i <=lastobs)) {   fprintf(fichtm,"\
           - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         for (j=maxwav;j>=1;j--){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);   fprintf(fichtm,"\
           strcpy(line,stra);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   fprintf(fichtm,"\
         }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
                   subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         for (j=ncovcol;j>=1;j--){   fflush(fichtm);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         }  
         num[i]=atol(stra);   m=cptcoveff;
           if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   jj1=0;
    for(k1=1; k1<=m;k1++){
         i=i+1;     for(i1=1; i1<=ncodemax[k1];i1++){
       }       jj1++;
     }       if (cptcovn > 0) {
     /* printf("ii=%d", ij);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        scanf("%d",i);*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
   imx=i-1; /* Number of individuals */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   /* for (i=1; i<=imx; i++){       }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;       for(cpt=1; cpt<=nlstate;cpt++) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     }*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
    /*  for (i=1; i<=imx; i++){       }
      if (s[4][i]==9)  s[4][i]=-1;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  health expectancies in states (1) and (2): %s%d.png<br>\
    <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       } /* end i1 */
   /* Calculation of the number of parameter from char model*/   }/* End k1 */
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */   fprintf(fichtm,"</ul>");
   Tprod=ivector(1,15);   fflush(fichtm);
   Tvaraff=ivector(1,15);  }
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);        /******************* Gnuplot file **************/
      void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;    char dirfileres[132],optfileres[132];
     j=nbocc(model,'+');    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     j1=nbocc(model,'*');    int ng;
     cptcovn=j+1;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     cptcovprod=j1;  /*     printf("Problem with file %s",optionfilegnuplot); */
      /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     strcpy(modelsav,model);  /*   } */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);    /*#ifdef windows */
       fprintf(ficlog,"Error. Non available option model=%s ",model);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       goto end;      /*#endif */
     }    m=pow(2,cptcoveff);
      
     for(i=(j+1); i>=1;i--){    strcpy(dirfileres,optionfilefiname);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    strcpy(optfileres,"vpl");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */   /* 1eme*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    for (cpt=1; cpt<= nlstate ; cpt ++) {
       /*scanf("%d",i);*/     for (k1=1; k1<= m ; k1 ++) {
       if (strchr(strb,'*')) {  /* Model includes a product */       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
         if (strcmp(strc,"age")==0) { /* Vn*age */       fprintf(ficgp,"set xlabel \"Age\" \n\
           cptcovprod--;  set ylabel \"Probability\" \n\
           cutv(strb,stre,strd,'V');  set ter png small\n\
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  set size 0.65,0.65\n\
           cptcovage++;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/       for (i=1; i<= nlstate ; i ++) {
         }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         else if (strcmp(strd,"age")==0) { /* or age*Vn */         else fprintf(ficgp," \%%*lf (\%%*lf)");
           cptcovprod--;       }
           cutv(strb,stre,strc,'V');       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           Tvar[i]=atoi(stre);       for (i=1; i<= nlstate ; i ++) {
           cptcovage++;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           Tage[cptcovage]=i;         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }       } 
         else {  /* Age is not in the model */       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/       for (i=1; i<= nlstate ; i ++) {
           Tvar[i]=ncovcol+k1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */         else fprintf(ficgp," \%%*lf (\%%*lf)");
           Tprod[k1]=i;       }  
           Tvard[k1][1]=atoi(strc); /* m*/       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
           Tvard[k1][2]=atoi(stre); /* n */     }
           Tvar[cptcovn+k2]=Tvard[k1][1];    }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    /*2 eme*/
           for (k=1; k<=lastobs;k++)    
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    for (k1=1; k1<= m ; k1 ++) { 
           k1++;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           k2=k2+2;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         }      
       }      for (i=1; i<= nlstate+1 ; i ++) {
       else { /* no more sum */        k=2*i;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
        /*  scanf("%d",i);*/        for (j=1; j<= nlstate+1 ; j ++) {
       cutv(strd,strc,strb,'V');          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       Tvar[i]=atoi(strc);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       }        }   
       strcpy(modelsav,stra);          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         scanf("%d",i);*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     } /* end of loop + */        for (j=1; j<= nlstate+1 ; j ++) {
   } /* end model */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        }   
   printf("cptcovprod=%d ", cptcovprod);        fprintf(ficgp,"\" t\"\" w l 0,");
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   scanf("%d ",i);*/        for (j=1; j<= nlstate+1 ; j ++) {
     fclose(fic);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
     /*  if(mle==1){*/        }   
     if (weightopt != 1) { /* Maximisation without weights*/        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       for(i=1;i<=n;i++) weight[i]=1.0;        else fprintf(ficgp,"\" t\"\" w l 0,");
     }      }
     /*-calculation of age at interview from date of interview and age at death -*/    }
     agev=matrix(1,maxwav,1,imx);    
     /*3eme*/
     for (i=1; i<=imx; i++) {    
       for(m=2; (m<= maxwav); m++) {    for (k1=1; k1<= m ; k1 ++) { 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      for (cpt=1; cpt<= nlstate ; cpt ++) {
          anint[m][i]=9999;        k=2+nlstate*(2*cpt-2);
          s[m][i]=-1;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
        }        fprintf(ficgp,"set ter png small\n\
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  set size 0.65,0.65\n\
       }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     for (i=1; i<=imx; i++)  {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       for(m=1; (m<= maxwav); m++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         if(s[m][i] >0){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           if (s[m][i] >= nlstate+1) {          
             if(agedc[i]>0)        */
               if(moisdc[i]!=99 && andc[i]!=9999)        for (i=1; i< nlstate ; i ++) {
                 agev[m][i]=agedc[i];          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          
            else {        } 
               if (andc[i]!=9999){      }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    }
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    
               agev[m][i]=-1;    /* CV preval stable (period) */
               }    for (k1=1; k1<= m ; k1 ++) { 
             }      for (cpt=1; cpt<=nlstate ; cpt ++) {
           }        k=3;
           else if(s[m][i] !=9){ /* Should no more exist */        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
             if(mint[m][i]==99 || anint[m][i]==9999)  set ter png small\nset size 0.65,0.65\n\
               agev[m][i]=1;  unset log y\n\
             else if(agev[m][i] <agemin){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
               agemin=agev[m][i];        
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        for (i=1; i< nlstate ; i ++)
             }          fprintf(ficgp,"+$%d",k+i+1);
             else if(agev[m][i] >agemax){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
               agemax=agev[m][i];        
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        l=3+(nlstate+ndeath)*cpt;
             }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
             /*agev[m][i]=anint[m][i]-annais[i];*/        for (i=1; i< nlstate ; i ++) {
             /*   agev[m][i] = age[i]+2*m;*/          l=3+(nlstate+ndeath)*cpt;
           }          fprintf(ficgp,"+$%d",l+i+1);
           else { /* =9 */        }
             agev[m][i]=1;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
             s[m][i]=-1;      } 
           }    }  
         }    
         else /*= 0 Unknown */    /* proba elementaires */
           agev[m][i]=1;    for(i=1,jk=1; i <=nlstate; i++){
       }      for(k=1; k <=(nlstate+ndeath); k++){
            if (k != i) {
     }          for(j=1; j <=ncovmodel; j++){
     for (i=1; i<=imx; i++)  {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       for(m=1; (m<= maxwav); m++){            jk++; 
         if (s[m][i] > (nlstate+ndeath)) {            fprintf(ficgp,"\n");
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            }
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          }
           goto end;      }
         }     }
       }  
     }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     free_vector(severity,1,maxwav);         else
     free_imatrix(outcome,1,maxwav+1,1,n);           fprintf(ficgp,"\nset title \"Probability\"\n");
     free_vector(moisnais,1,n);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     free_vector(annais,1,n);         i=1;
     /* free_matrix(mint,1,maxwav,1,n);         for(k2=1; k2<=nlstate; k2++) {
        free_matrix(anint,1,maxwav,1,n);*/           k3=i;
     free_vector(moisdc,1,n);           for(k=1; k<=(nlstate+ndeath); k++) {
     free_vector(andc,1,n);             if (k != k2){
                if(ng==2)
                     fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     wav=ivector(1,imx);               else
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);               ij=1;
                   for(j=3; j <=ncovmodel; j++) {
     /* Concatenates waves */                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
       Tcode=ivector(1,100);                 else
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       ncodemax[1]=1;               }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);               fprintf(ficgp,")/(1");
                     
    codtab=imatrix(1,100,1,10);               for(k1=1; k1 <=nlstate; k1++){   
    h=0;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
    m=pow(2,cptcoveff);                 ij=1;
                   for(j=3; j <=ncovmodel; j++){
    for(k=1;k<=cptcoveff; k++){                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
      for(i=1; i <=(m/pow(2,k));i++){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
        for(j=1; j <= ncodemax[k]; j++){                     ij++;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                   }
            h++;                   else
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                 }
          }                 fprintf(ficgp,")");
        }               }
      }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
    }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);               i=i+ncovmodel;
       codtab[1][2]=1;codtab[2][2]=2; */             }
    /* for(i=1; i <=m ;i++){           } /* end k */
       for(k=1; k <=cptcovn; k++){         } /* end k2 */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       } /* end jk */
       }     } /* end ng */
       printf("\n");     fflush(ficgp); 
       }  }  /* end gnuplot */
       scanf("%d",i);*/  
      
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*************** Moving average **************/
        and prints on file fileres'p'. */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
        int i, cpt, cptcod;
        int modcovmax =1;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int mobilavrange, mob;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double age;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                             a covariate has 2 modalities */
          if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
     if(mle==1){      for (age=bage; age<=fage; age++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for (i=1; i<=nlstate;i++)
     }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
                mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     /*--------- results files --------------*/      /* We keep the original values on the extreme ages bage, fage and for 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
       */ 
    jk=1;      for (mob=3;mob <=mobilavrange;mob=mob+2){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for (i=1; i<=nlstate;i++){
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
    for(i=1,jk=1; i <=nlstate; i++){              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
      for(k=1; k <=(nlstate+ndeath); k++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
        if (k != i)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
          {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
            printf("%d%d ",i,k);                }
            fprintf(ficlog,"%d%d ",i,k);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
            fprintf(ficres,"%1d%1d ",i,k);            }
            for(j=1; j <=ncovmodel; j++){          }
              printf("%f ",p[jk]);        }/* end age */
              fprintf(ficlog,"%f ",p[jk]);      }/* end mob */
              fprintf(ficres,"%f ",p[jk]);    }else return -1;
              jk++;    return 0;
            }  }/* End movingaverage */
            printf("\n");  
            fprintf(ficlog,"\n");  
            fprintf(ficres,"\n");  /************** Forecasting ******************/
          }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
      }    /* proj1, year, month, day of starting projection 
    }       agemin, agemax range of age
    if(mle==1){       dateprev1 dateprev2 range of dates during which prevalence is computed
      /* Computing hessian and covariance matrix */       anproj2 year of en of projection (same day and month as proj1).
      ftolhess=ftol; /* Usually correct */    */
      hesscov(matcov, p, npar, delti, ftolhess, func);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
    }    int *popage;
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    double agec; /* generic age */
    printf("# Scales (for hessian or gradient estimation)\n");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    double *popeffectif,*popcount;
    for(i=1,jk=1; i <=nlstate; i++){    double ***p3mat;
      for(j=1; j <=nlstate+ndeath; j++){    double ***mobaverage;
        if (j!=i) {    char fileresf[FILENAMELENGTH];
          fprintf(ficres,"%1d%1d",i,j);  
          printf("%1d%1d",i,j);    agelim=AGESUP;
          fprintf(ficlog,"%1d%1d",i,j);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
          for(k=1; k<=ncovmodel;k++){   
            printf(" %.5e",delti[jk]);    strcpy(fileresf,"f"); 
            fprintf(ficlog," %.5e",delti[jk]);    strcat(fileresf,fileres);
            fprintf(ficres," %.5e",delti[jk]);    if((ficresf=fopen(fileresf,"w"))==NULL) {
            jk++;      printf("Problem with forecast resultfile: %s\n", fileresf);
          }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
          printf("\n");    }
          fprintf(ficlog,"\n");    printf("Computing forecasting: result on file '%s' \n", fileresf);
          fprintf(ficres,"\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
        }  
      }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    }  
        if (mobilav!=0) {
    k=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
    if(mle==1)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }
    for(i=1;i<=npar;i++){    }
      /*  if (k>nlstate) k=1;  
          i1=(i-1)/(ncovmodel*nlstate)+1;    stepsize=(int) (stepm+YEARM-1)/YEARM;
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    if (stepm<=12) stepsize=1;
          printf("%s%d%d",alph[k],i1,tab[i]);*/    if(estepm < stepm){
      fprintf(ficres,"%3d",i);      printf ("Problem %d lower than %d\n",estepm, stepm);
      if(mle==1)    }
        printf("%3d",i);    else  hstepm=estepm;   
      fprintf(ficlog,"%3d",i);  
      for(j=1; j<=i;j++){    hstepm=hstepm/stepm; 
        fprintf(ficres," %.5e",matcov[i][j]);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
        if(mle==1)                                 fractional in yp1 */
          printf(" %.5e",matcov[i][j]);    anprojmean=yp;
        fprintf(ficlog," %.5e",matcov[i][j]);    yp2=modf((yp1*12),&yp);
      }    mprojmean=yp;
      fprintf(ficres,"\n");    yp1=modf((yp2*30.5),&yp);
      if(mle==1)    jprojmean=yp;
        printf("\n");    if(jprojmean==0) jprojmean=1;
      fprintf(ficlog,"\n");    if(mprojmean==0) jprojmean=1;
      k++;  
    }    i1=cptcoveff;
        if (cptcovn < 1){i1=1;}
    while((c=getc(ficpar))=='#' && c!= EOF){    
      ungetc(c,ficpar);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
      fgets(line, MAXLINE, ficpar);    
      puts(line);    fprintf(ficresf,"#****** Routine prevforecast **\n");
      fputs(line,ficparo);  
    }  /*            if (h==(int)(YEARM*yearp)){ */
    ungetc(c,ficpar);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
    estepm=0;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        k=k+1;
    if (estepm==0 || estepm < stepm) estepm=stepm;        fprintf(ficresf,"\n#******");
    if (fage <= 2) {        for(j=1;j<=cptcoveff;j++) {
      bage = ageminpar;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      fage = agemaxpar;        }
    }        fprintf(ficresf,"******\n");
            fprintf(ficresf,"# Covariate valuofcovar yearproj age");
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        for(j=1; j<=nlstate+ndeath;j++){ 
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for(i=1; i<=nlstate;i++)              
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            fprintf(ficresf," p%d%d",i,j);
              fprintf(ficresf," p.%d",j);
    while((c=getc(ficpar))=='#' && c!= EOF){        }
      ungetc(c,ficpar);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
      fgets(line, MAXLINE, ficpar);          fprintf(ficresf,"\n");
      puts(line);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
      fputs(line,ficparo);  
    }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
    ungetc(c,ficpar);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
              nhstepm = nhstepm/hstepm; 
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            oldm=oldms;savm=savms;
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
              
    while((c=getc(ficpar))=='#' && c!= EOF){            for (h=0; h<=nhstepm; h++){
      ungetc(c,ficpar);              if (h*hstepm/YEARM*stepm ==yearp) {
      fgets(line, MAXLINE, ficpar);                fprintf(ficresf,"\n");
      puts(line);                for(j=1;j<=cptcoveff;j++) 
      fputs(line,ficparo);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
    ungetc(c,ficpar);              } 
                for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                for(i=1; i<=nlstate;i++) {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                  if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   fscanf(ficpar,"pop_based=%d\n",&popbased);                  else {
   fprintf(ficparo,"pop_based=%d\n",popbased);                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   fprintf(ficres,"pop_based=%d\n",popbased);                    }
                    if (h*hstepm/YEARM*stepm== yearp) {
   while((c=getc(ficpar))=='#' && c!= EOF){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     ungetc(c,ficpar);                  }
     fgets(line, MAXLINE, ficpar);                } /* end i */
     puts(line);                if (h*hstepm/YEARM*stepm==yearp) {
     fputs(line,ficparo);                  fprintf(ficresf," %.3f", ppij);
   }                }
   ungetc(c,ficpar);              }/* end j */
             } /* end h */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          } /* end agec */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
 while((c=getc(ficpar))=='#' && c!= EOF){         
     ungetc(c,ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fgets(line, MAXLINE, ficpar);  
     puts(line);    fclose(ficresf);
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    int *popage;
     double calagedatem, agelim, kk1, kk2;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
 /*------------ gnuplot -------------*/    double ***mobaverage;
   strcpy(optionfilegnuplot,optionfilefiname);    char filerespop[FILENAMELENGTH];
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with file %s",optionfilegnuplot);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    agelim=AGESUP;
   fclose(ficgp);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    
 /*--------- index.htm --------*/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
   strcpy(optionfilehtm,optionfile);    
   strcat(optionfilehtm,".htm");    strcpy(filerespop,"pop"); 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    strcat(filerespop,fileres);
     printf("Problem with %s \n",optionfilehtm), exit(0);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   }      printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    printf("Computing forecasting: result on file '%s' \n", filerespop);
 \n    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 Total number of observations=%d <br>\n  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 <hr  size=\"2\" color=\"#EC5E5E\">  
  <ul><li><h4>Parameter files</h4>\n    if (mobilav!=0) {
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fclose(fichtm);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    }
    
 /*------------ free_vector  -------------*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
  chdir(path);    if (stepm<=12) stepsize=1;
      
  free_ivector(wav,1,imx);    agelim=AGESUP;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      hstepm=1;
  free_ivector(num,1,n);    hstepm=hstepm/stepm; 
  free_vector(agedc,1,n);    
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    if (popforecast==1) {
  fclose(ficparo);      if((ficpop=fopen(popfile,"r"))==NULL) {
  fclose(ficres);        printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
   /*--------------- Prevalence limit --------------*/      popage=ivector(0,AGESUP);
        popeffectif=vector(0,AGESUP);
   strcpy(filerespl,"pl");      popcount=vector(0,AGESUP);
   strcat(filerespl,fileres);      
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      i=1;   
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;     
   }      imx=i;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    }
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   fprintf(ficrespl,"\n");        k=k+1;
          fprintf(ficrespop,"\n#******");
   prlim=matrix(1,nlstate,1,nlstate);        for(j=1;j<=cptcoveff;j++) {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficrespop,"******\n");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficrespop,"# Age");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   k=0;        if (popforecast==1)  fprintf(ficrespop," [Population]");
   agebase=ageminpar;        
   agelim=agemaxpar;        for (cpt=0; cpt<=0;cpt++) { 
   ftolpl=1.e-10;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   i1=cptcoveff;          
   if (cptcovn < 1){i1=1;}          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   for(cptcov=1;cptcov<=i1;cptcov++){            nhstepm = nhstepm/hstepm; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            
         k=k+1;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            oldm=oldms;savm=savms;
         fprintf(ficrespl,"\n#******");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         printf("\n#******");          
         fprintf(ficlog,"\n#******");            for (h=0; h<=nhstepm; h++){
         for(j=1;j<=cptcoveff;j++) {              if (h==(int) (calagedatem+YEARM*cpt)) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              } 
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              for(j=1; j<=nlstate+ndeath;j++) {
         }                kk1=0.;kk2=0;
         fprintf(ficrespl,"******\n");                for(i=1; i<=nlstate;i++) {              
         printf("******\n");                  if (mobilav==1) 
         fprintf(ficlog,"******\n");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                          else {
         for (age=agebase; age<=agelim; age++){                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                  }
           fprintf(ficrespl,"%.0f",age );                }
           for(i=1; i<=nlstate;i++)                if (h==(int)(calagedatem+12*cpt)){
           fprintf(ficrespl," %.5f", prlim[i][i]);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
           fprintf(ficrespl,"\n");                    /*fprintf(ficrespop," %.3f", kk1);
         }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
       }                }
     }              }
   fclose(ficrespl);              for(i=1; i<=nlstate;i++){
                 kk1=0.;
   /*------------- h Pij x at various ages ------------*/                  for(j=1; j<=nlstate;j++){
                      kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                  }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              }
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   printf("Computing pij: result on file '%s' \n", filerespij);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);            }
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/        }
    
   agelim=AGESUP;    /******/
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   /* hstepm=1;   aff par mois*/          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   k=0;            nhstepm = nhstepm/hstepm; 
   for(cptcov=1;cptcov<=i1;cptcov++){            
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=k+1;            oldm=oldms;savm=savms;
         fprintf(ficrespij,"\n#****** ");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         for(j=1;j<=cptcoveff;j++)            for (h=0; h<=nhstepm; h++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if (h==(int) (calagedatem+YEARM*cpt)) {
         fprintf(ficrespij,"******\n");                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                      } 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              for(j=1; j<=nlstate+ndeath;j++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                kk1=0.;kk2=0;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
           /*      nhstepm=nhstepm*YEARM; aff par mois*/                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"# Age");          }
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)     } 
               fprintf(ficrespij," %1d-%1d",i,j);    }
           fprintf(ficrespij,"\n");   
            for (h=0; h<=nhstepm; h++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)    if (popforecast==1) {
               for(j=1; j<=nlstate+ndeath;j++)      free_ivector(popage,0,AGESUP);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      free_vector(popeffectif,0,AGESUP);
             fprintf(ficrespij,"\n");      free_vector(popcount,0,AGESUP);
              }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespij,"\n");    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }    fclose(ficrespop);
     }  } /* End of popforecast */
   }  
   int fileappend(FILE *fichier, char *optionfich)
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  {
     if((fichier=fopen(optionfich,"a"))==NULL) {
   fclose(ficrespij);      printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
   /*---------- Forecasting ------------------*/    }
   if((stepm == 1) && (strcmp(model,".")==0)){    fflush(fichier);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    return (1);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  }
   }  
   else{  
     erreur=108;  /**************** function prwizard **********************/
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  {
   }  
      /* Wizard to print covariance matrix template */
   
   /*---------- Health expectancies and variances ------------*/    char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   strcpy(filerest,"t");    int numlinepar;
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    for(i=1; i <=nlstate; i++){
   }      jj=0;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      for(j=1; j <=nlstate+ndeath; j++){
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);        if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
   strcpy(filerese,"e");        printf("%1d%1d",i,j);
   strcat(filerese,fileres);        fprintf(ficparo,"%1d%1d",i,j);
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for(k=1; k<=ncovmodel;k++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          /*        printf(" %lf",param[i][j][k]); */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   }          printf(" 0.");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficparo," 0.");
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        }
         printf("\n");
   strcpy(fileresv,"v");        fprintf(ficparo,"\n");
   strcat(fileresv,fileres);      }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    for(i=1; i <=nlstate; i++){
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      jj=0;
   calagedate=-1;      for(j=1; j <=nlstate+ndeath; j++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        if(j==i) continue;
         jj++;
   k=0;        fprintf(ficparo,"%1d%1d",i,j);
   for(cptcov=1;cptcov<=i1;cptcov++){        printf("%1d%1d",i,j);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fflush(stdout);
       k=k+1;        for(k=1; k<=ncovmodel;k++){
       fprintf(ficrest,"\n#****** ");          /*      printf(" %le",delti3[i][j][k]); */
       for(j=1;j<=cptcoveff;j++)          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          printf(" 0.");
       fprintf(ficrest,"******\n");          fprintf(ficparo," 0.");
         }
       fprintf(ficreseij,"\n#****** ");        numlinepar++;
       for(j=1;j<=cptcoveff;j++)        printf("\n");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficparo,"\n");
       fprintf(ficreseij,"******\n");      }
     }
       fprintf(ficresvij,"\n#****** ");    printf("# Covariance matrix\n");
       for(j=1;j<=cptcoveff;j++)  /* # 121 Var(a12)\n\ */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
       fprintf(ficresvij,"******\n");  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       oldm=oldms;savm=savms;  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
    /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fflush(stdout);
       oldm=oldms;savm=savms;    fprintf(ficparo,"# Covariance matrix\n");
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    /* # 121 Var(a12)\n\ */
       if(popbased==1){    /* # 122 Cov(b12,a12) Var(b12)\n\ */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    /* #   ...\n\ */
        }    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
      for(itimes=1;itimes<=2;itimes++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      jj=0;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for(i=1; i <=nlstate; i++){
       fprintf(ficrest,"\n");        for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
       epj=vector(1,nlstate+1);          for(k=1; k<=ncovmodel;k++){
       for(age=bage; age <=fage ;age++){            jj++;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            ca[0]= k+'a'-1;ca[1]='\0';
         if (popbased==1) {            if(itimes==1){
           for(i=1; i<=nlstate;i++)              printf("#%1d%1d%d",i,j,k);
             prlim[i][i]=probs[(int)age][i][k];              fprintf(ficparo,"#%1d%1d%d",i,j,k);
         }            }else{
                      printf("%1d%1d%d",i,j,k);
         fprintf(ficrest," %4.0f",age);              fprintf(ficparo,"%1d%1d%d",i,j,k);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){              /*  printf(" %.5le",matcov[i][j]); */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            ll=0;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            for(li=1;li <=nlstate; li++){
           }              for(lj=1;lj <=nlstate+ndeath; lj++){
           epj[nlstate+1] +=epj[j];                if(lj==li) continue;
         }                for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
         for(i=1, vepp=0.;i <=nlstate;i++)                  if(ll<=jj){
           for(j=1;j <=nlstate;j++)                    cb[0]= lk +'a'-1;cb[1]='\0';
             vepp += vareij[i][j][(int)age];                    if(ll<jj){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                      if(itimes==1){
         for(j=1;j <=nlstate;j++){                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         }                      }else{
         fprintf(ficrest,"\n");                        printf(" 0.");
       }                        fprintf(ficparo," 0.");
     }                      }
   }                    }else{
 free_matrix(mint,1,maxwav,1,n);                      if(itimes==1){
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                        printf(" Var(%s%1d%1d)",ca,i,j);
     free_vector(weight,1,n);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   fclose(ficreseij);                      }else{
   fclose(ficresvij);                        printf(" 0.");
   fclose(ficrest);                        fprintf(ficparo," 0.");
   fclose(ficpar);                      }
   free_vector(epj,1,nlstate+1);                    }
                    }
   /*------- Variance limit prevalence------*/                  } /* end lk */
               } /* end lj */
   strcpy(fileresvpl,"vpl");            } /* end li */
   strcat(fileresvpl,fileres);            printf("\n");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            fprintf(ficparo,"\n");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            numlinepar++;
     exit(0);          } /* end k*/
   }        } /*end j */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      } /* end i */
     } /* end itimes */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  } /* end of prwizard */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /******************* Gompertz Likelihood ******************************/
       k=k+1;  double gompertz(double x[])
       fprintf(ficresvpl,"\n#****** ");  { 
       for(j=1;j<=cptcoveff;j++)    double A,B,L=0.0,sump=0.,num=0.;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i,n=0; /* n is the size of the sample */
       fprintf(ficresvpl,"******\n");  
          for (i=0;i<=imx-1 ; i++) {
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      sump=sump+weight[i];
       oldm=oldms;savm=savms;      /*    sump=sump+1;*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      num=num+1;
     }    }
  }   
    
   fclose(ficresvpl);    /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    for (i=1;i<=imx ; i++)
        {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        if (cens[i] == 1 && wav[i]>1)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
          
          if (cens[i] == 0 && wav[i]>1)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
          if (wav[i] > 1 ) { /* ??? */
   free_matrix(matcov,1,npar,1,npar);          L=L+A*weight[i];
   free_vector(delti,1,npar);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   free_matrix(agev,1,maxwav,1,imx);        }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      }
   
   fprintf(fichtm,"\n</body>");   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   fclose(fichtm);   
   fclose(ficgp);    return -2*L*num/sump;
    }
   
   if(erreur >0){  /******************* Printing html file ***********/
     printf("End of Imach with error or warning %d\n",erreur);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);                    int lastpass, int stepm, int weightopt, char model[],\
   }else{                    int imx,  double p[],double **matcov,double agemortsup){
    printf("End of Imach\n");    int i,k;
    fprintf(ficlog,"End of Imach\n");  
   }    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   printf("See log file on %s\n",filelog);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   fclose(ficlog);    for (i=1;i<=2;i++) 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
      fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    fprintf(fichtm,"</ul>");
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
  end:  
 #ifdef windows   for (k=agegomp;k<(agemortsup-2);k++) 
   /* chdir(pathcd);*/     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 #endif  
  /*system("wgnuplot graph.plt");*/   
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fflush(fichtm);
  /*system("cd ../gp37mgw");*/  }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);  /******************* Gnuplot file **************/
  strcat(plotcmd," ");  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 #ifdef windows    int ng;
   while (z[0] != 'q') {  
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    /*#ifdef windows */
     scanf("%s",z);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     if (z[0] == 'c') system("./imach");      /*#endif */
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);    strcpy(dirfileres,optionfilefiname);
   }    strcpy(optfileres,"vpl");
 #endif    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 }    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.112


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>