Diff for /imach/src/imach.c between versions 1.51 and 1.118

version 1.51, 2002/07/19 12:22:25 version 1.118, 2006/03/14 18:20:07
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.118  2006/03/14 18:20:07  brouard
      (Module): varevsij Comments added explaining the second
   This program computes Healthy Life Expectancies from    table of variances if popbased=1 .
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   first survey ("cross") where individuals from different ages are    (Module): Function pstamp added
   interviewed on their health status or degree of disability (in the    (Module): Version 0.98d
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.117  2006/03/14 17:16:22  brouard
   (if any) in individual health status.  Health expectancies are    (Module): varevsij Comments added explaining the second
   computed from the time spent in each health state according to a    table of variances if popbased=1 .
   model. More health states you consider, more time is necessary to reach the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Function pstamp added
   simplest model is the multinomial logistic model where pij is the    (Module): Version 0.98d
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.116  2006/03/06 10:29:27  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Variance-covariance wrong links and
   'age' is age and 'sex' is a covariate. If you want to have a more    varian-covariance of ej. is needed (Saito).
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.115  2006/02/27 12:17:45  brouard
   you to do it.  More covariates you add, slower the    (Module): One freematrix added in mlikeli! 0.98c
   convergence.  
     Revision 1.114  2006/02/26 12:57:58  brouard
   The advantage of this computer programme, compared to a simple    (Module): Some improvements in processing parameter
   multinomial logistic model, is clear when the delay between waves is not    filename with strsep.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.113  2006/02/24 14:20:24  brouard
   account using an interpolation or extrapolation.      (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   hPijx is the probability to be observed in state i at age x+h    allocation too.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.112  2006/01/30 09:55:26  brouard
   states. This elementary transition (by month or quarter trimester,    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.111  2006/01/25 20:38:18  brouard
   and the contribution of each individual to the likelihood is simply    (Module): Lots of cleaning and bugs added (Gompertz)
   hPijx.    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.109  2006/01/24 19:37:15  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Comments (lines starting with a #) are allowed in data.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.108  2006/01/19 18:05:42  lievre
   software can be distributed freely for non commercial use. Latest version    Gnuplot problem appeared...
   can be accessed at http://euroreves.ined.fr/imach .    To be fixed
   **********************************************************************/  
      Revision 1.107  2006/01/19 16:20:37  brouard
 #include <math.h>    Test existence of gnuplot in imach path
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.106  2006/01/19 13:24:36  brouard
 #include <unistd.h>    Some cleaning and links added in html output
   
 #define MAXLINE 256    Revision 1.105  2006/01/05 20:23:19  lievre
 #define GNUPLOTPROGRAM "gnuplot"    *** empty log message ***
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.104  2005/09/30 16:11:43  lievre
 /*#define DEBUG*/    (Module): sump fixed, loop imx fixed, and simplifications.
 #define windows    (Module): If the status is missing at the last wave but we know
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    that the person is alive, then we can code his/her status as -2
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    the healthy state at last known wave). Version is 0.98
   
 #define NINTERVMAX 8    Revision 1.103  2005/09/30 15:54:49  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): sump fixed, loop imx fixed, and simplifications.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.102  2004/09/15 17:31:30  brouard
 #define MAXN 20000    Add the possibility to read data file including tab characters.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.101  2004/09/15 10:38:38  brouard
 #define AGEBASE 40    Fix on curr_time
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.100  2004/07/12 18:29:06  brouard
 #define ODIRSEPARATOR '/'    Add version for Mac OS X. Just define UNIX in Makefile
 #else  
 #define DIRSEPARATOR '/'    Revision 1.99  2004/06/05 08:57:40  brouard
 #define ODIRSEPARATOR '\\'    *** empty log message ***
 #endif  
     Revision 1.98  2004/05/16 15:05:56  brouard
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    New version 0.97 . First attempt to estimate force of mortality
 int erreur; /* Error number */    directly from the data i.e. without the need of knowing the health
 int nvar;    state at each age, but using a Gompertz model: log u =a + b*age .
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    This is the basic analysis of mortality and should be done before any
 int npar=NPARMAX;    other analysis, in order to test if the mortality estimated from the
 int nlstate=2; /* Number of live states */    cross-longitudinal survey is different from the mortality estimated
 int ndeath=1; /* Number of dead states */    from other sources like vital statistic data.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    The same imach parameter file can be used but the option for mle should be -3.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Agnès, who wrote this part of the code, tried to keep most of the
 int maxwav; /* Maxim number of waves */    former routines in order to include the new code within the former code.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    The output is very simple: only an estimate of the intercept and of
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    the slope with 95% confident intervals.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Current limitations:
 double **oldm, **newm, **savm; /* Working pointers to matrices */    A) Even if you enter covariates, i.e. with the
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    B) There is no computation of Life Expectancy nor Life Table.
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.97  2004/02/20 13:25:42  lievre
 FILE *ficresprobmorprev;    Version 0.96d. Population forecasting command line is (temporarily)
 FILE *fichtm; /* Html File */    suppressed.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.96  2003/07/15 15:38:55  brouard
 FILE  *ficresvij;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 char fileresv[FILENAMELENGTH];    rewritten within the same printf. Workaround: many printfs.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.95  2003/07/08 07:54:34  brouard
 char title[MAXLINE];    * imach.c (Repository):
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    (Repository): Using imachwizard code to output a more meaningful covariance
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    matrix (cov(a12,c31) instead of numbers.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.94  2003/06/27 13:00:02  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    Just cleaning
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.93  2003/06/25 16:33:55  brouard
 char popfile[FILENAMELENGTH];    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Module): Version 0.96b
   
 #define NR_END 1    Revision 1.92  2003/06/25 16:30:45  brouard
 #define FREE_ARG char*    (Module): On windows (cygwin) function asctime_r doesn't
 #define FTOL 1.0e-10    exist so I changed back to asctime which exists.
   
 #define NRANSI    Revision 1.91  2003/06/25 15:30:29  brouard
 #define ITMAX 200    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 #define TOL 2.0e-4    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define CGOLD 0.3819660    concerning matrix of covariance. It has extension -cov.htm.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define GOLD 1.618034    mle=-1 a template is output in file "or"mypar.txt with the design
 #define GLIMIT 100.0    of the covariance matrix to be input.
 #define TINY 1.0e-20  
     Revision 1.89  2003/06/24 12:30:52  brouard
 static double maxarg1,maxarg2;    (Module): Some bugs corrected for windows. Also, when
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    of the covariance matrix to be input.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.88  2003/06/23 17:54:56  brouard
 #define rint(a) floor(a+0.5)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 static double sqrarg;    Revision 1.87  2003/06/18 12:26:01  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Version 0.96
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.86  2003/06/17 20:04:08  brouard
 int imx;    (Module): Change position of html and gnuplot routines and added
 int stepm;    routine fileappend.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.85  2003/06/17 13:12:43  brouard
 int estepm;    * imach.c (Repository): Check when date of death was earlier that
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 int m,nb;    was wrong (infinity). We still send an "Error" but patch by
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    assuming that the date of death was just one stepm after the
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    interview.
 double **pmmij, ***probs, ***mobaverage;    (Repository): Because some people have very long ID (first column)
 double dateintmean=0;    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 double *weight;    truncation)
 int **s; /* Status */    (Repository): No more line truncation errors.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    place. It differs from routine "prevalence" which may be called
 double ftolhess; /* Tolerance for computing hessian */    many times. Probs is memory consuming and must be used with
     parcimony.
 /**************** split *************************/    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.83  2003/06/10 13:39:11  lievre
    char *s;                             /* pointer */    *** empty log message ***
    int  l1, l2;                         /* length counters */  
     Revision 1.82  2003/06/05 15:57:20  brouard
    l1 = strlen( path );                 /* length of path */    Add log in  imach.c and  fullversion number is now printed.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  */
    if ( s == NULL ) {                   /* no directory, so use current */  /*
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)     Interpolated Markov Chain
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */    Short summary of the programme:
       extern char       *getwd( );    
     This program computes Healthy Life Expectancies from
       if ( getwd( dirc ) == NULL ) {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #else    first survey ("cross") where individuals from different ages are
       extern char       *getcwd( );    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    second wave of interviews ("longitudinal") which measure each change
 #endif    (if any) in individual health status.  Health expectancies are
          return( GLOCK_ERROR_GETCWD );    computed from the time spent in each health state according to a
       }    model. More health states you consider, more time is necessary to reach the
       strcpy( name, path );             /* we've got it */    Maximum Likelihood of the parameters involved in the model.  The
    } else {                             /* strip direcotry from path */    simplest model is the multinomial logistic model where pij is the
       s++;                              /* after this, the filename */    probability to be observed in state j at the second wave
       l2 = strlen( s );                 /* length of filename */    conditional to be observed in state i at the first wave. Therefore
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       strcpy( name, s );                /* save file name */    'age' is age and 'sex' is a covariate. If you want to have a more
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    complex model than "constant and age", you should modify the program
       dirc[l1-l2] = 0;                  /* add zero */    where the markup *Covariates have to be included here again* invites
    }    you to do it.  More covariates you add, slower the
    l1 = strlen( dirc );                 /* length of directory */    convergence.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    The advantage of this computer programme, compared to a simple
 #else    multinomial logistic model, is clear when the delay between waves is not
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    identical for each individual. Also, if a individual missed an
 #endif    intermediate interview, the information is lost, but taken into
    s = strrchr( name, '.' );            /* find last / */    account using an interpolation or extrapolation.  
    s++;  
    strcpy(ext,s);                       /* save extension */    hPijx is the probability to be observed in state i at age x+h
    l1= strlen( name);    conditional to the observed state i at age x. The delay 'h' can be
    l2= strlen( s)+1;    split into an exact number (nh*stepm) of unobserved intermediate
    strncpy( finame, name, l1-l2);    states. This elementary transition (by month, quarter,
    finame[l1-l2]= 0;    semester or year) is modelled as a multinomial logistic.  The hPx
    return( 0 );                         /* we're done */    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
   
 /******************************************/    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
 void replace(char *s, char*t)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   int i;             Institut national d'études démographiques, Paris.
   int lg=20;    This software have been partly granted by Euro-REVES, a concerted action
   i=0;    from the European Union.
   lg=strlen(t);    It is copyrighted identically to a GNU software product, ie programme and
   for(i=0; i<= lg; i++) {    software can be distributed freely for non commercial use. Latest version
     (s[i] = t[i]);    can be accessed at http://euroreves.ined.fr/imach .
     if (t[i]== '\\') s[i]='/';  
   }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 int nbocc(char *s, char occ)    **********************************************************************/
 {  /*
   int i,j=0;    main
   int lg=20;    read parameterfile
   i=0;    read datafile
   lg=strlen(s);    concatwav
   for(i=0; i<= lg; i++) {    freqsummary
   if  (s[i] == occ ) j++;    if (mle >= 1)
   }      mlikeli
   return j;    print results files
 }    if mle==1 
        computes hessian
 void cutv(char *u,char *v, char*t, char occ)    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   /* cuts string t into u and v where u is ended by char occ excluding it    open gnuplot file
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    open html file
      gives u="abcedf" and v="ghi2j" */    period (stable) prevalence
   int i,lg,j,p=0;     for age prevalim()
   i=0;    h Pij x
   for(j=0; j<=strlen(t)-1; j++) {    variance of p varprob
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    forecasting if prevfcast==1 prevforecast call prevalence()
   }    health expectancies
     Variance-covariance of DFLE
   lg=strlen(t);    prevalence()
   for(j=0; j<p; j++) {     movingaverage()
     (u[j] = t[j]);    varevsij() 
   }    if popbased==1 varevsij(,popbased)
      u[p]='\0';    total life expectancies
     Variance of period (stable) prevalence
    for(j=0; j<= lg; j++) {   end
     if (j>=(p+1))(v[j-p-1] = t[j]);  */
   }  
 }  
   
 /********************** nrerror ********************/   
   #include <math.h>
 void nrerror(char error_text[])  #include <stdio.h>
 {  #include <stdlib.h>
   fprintf(stderr,"ERREUR ...\n");  #include <string.h>
   fprintf(stderr,"%s\n",error_text);  #include <unistd.h>
   exit(1);  
 }  #include <limits.h>
 /*********************** vector *******************/  #include <sys/types.h>
 double *vector(int nl, int nh)  #include <sys/stat.h>
 {  #include <errno.h>
   double *v;  extern int errno;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  /* #include <sys/time.h> */
   return v-nl+NR_END;  #include <time.h>
 }  #include "timeval.h"
   
 /************************ free vector ******************/  /* #include <libintl.h> */
 void free_vector(double*v, int nl, int nh)  /* #define _(String) gettext (String) */
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /************************ivector *******************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int *ivector(long nl,long nh)  #define FILENAMELENGTH 132
 {  
   int *v;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /******************free ivector **************************/  #define NINTERVMAX 8
 void free_ivector(int *v, long nl, long nh)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   free((FREE_ARG)(v+nl-NR_END));  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /******************* imatrix *******************************/  #define AGESUP 130
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define AGEBASE 40
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define DIRSEPARATOR '/'
   int **m;  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
   /* allocate pointers to rows */  #else
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define DIRSEPARATOR '\\'
   if (!m) nrerror("allocation failure 1 in matrix()");  #define CHARSEPARATOR "\\"
   m += NR_END;  #define ODIRSEPARATOR '/'
   m -= nrl;  #endif
    
    /* $Id$ */
   /* allocate rows and set pointers to them */  /* $State$ */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char version[]="Imach version 0.98d, March 2006, INED-EUROREVES-Institut de longevite ";
   m[nrl] += NR_END;  char fullversion[]="$Revision$ $Date$"; 
   m[nrl] -= ncl;  char strstart[80];
    char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar;
   /* return pointer to array of pointers to rows */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   return m;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /****************** free_imatrix *************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 void free_imatrix(m,nrl,nrh,ncl,nch)  int popbased=0;
       int **m;  
       long nch,ncl,nrh,nrl;  int *wav; /* Number of waves for this individuual 0 is possible */
      /* free an int matrix allocated by imatrix() */  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   free((FREE_ARG) (m+nrl-NR_END));  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /******************* matrix *******************************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double **m;  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m += NR_END;  FILE *ficlog, *ficrespow;
   m -= nrl;  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  long ipmx; /* Number of contributions */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double sw; /* Sum of weights */
   m[nrl] += NR_END;  char filerespow[FILENAMELENGTH];
   m[nrl] -= ncl;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   return m;  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /*************************free matrix ************************/  char filerese[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  FILE *ficresstdeij;
 {  char fileresstde[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *ficrescveij;
   free((FREE_ARG)(m+nrl-NR_END));  char filerescve[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /******************* ma3x *******************************/  FILE  *ficresvpl;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double ***m;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char command[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  int  outcmd=0;
   m += NR_END;  
   m -= nrl;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filerest[FILENAMELENGTH];
   m[nrl] += NR_END;  char fileregp[FILENAMELENGTH];
   m[nrl] -= ncl;  char popfile[FILENAMELENGTH];
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  struct timezone tzp;
   m[nrl][ncl] += NR_END;  extern int gettimeofday();
   m[nrl][ncl] -= nll;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   for (j=ncl+1; j<=nch; j++)  long time_value;
     m[nrl][j]=m[nrl][j-1]+nlay;  extern long time();
    char strcurr[80], strfor[80];
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char *endptr;
     for (j=ncl+1; j<=nch; j++)  long lval;
       m[i][j]=m[i][j-1]+nlay;  
   }  #define NR_END 1
   return m;  #define FREE_ARG char*
 }  #define FTOL 1.0e-10
   
 /*************************free ma3x ************************/  #define NRANSI 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define ITMAX 200 
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define TOL 2.0e-4 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /***************** f1dim *************************/  
 extern int ncom;  #define GOLD 1.618034 
 extern double *pcom,*xicom;  #define GLIMIT 100.0 
 extern double (*nrfunc)(double []);  #define TINY 1.0e-20 
    
 double f1dim(double x)  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   int j;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double f;    
   double *xt;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  static double sqrarg;
   f=(*nrfunc)(xt);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   free_vector(xt,1,ncom);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   return f;  int agegomp= AGEGOMP;
 }  
   int imx; 
 /*****************brent *************************/  int stepm=1;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /* Stepm, step in month: minimum step interpolation*/
 {  
   int iter;  int estepm;
   double a,b,d,etemp;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double fu,fv,fw,fx;  
   double ftemp;  int m,nb;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  long *num;
   double e=0.0;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
    double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   a=(ax < cx ? ax : cx);  double **pmmij, ***probs;
   b=(ax > cx ? ax : cx);  double *ageexmed,*agecens;
   x=w=v=bx;  double dateintmean=0;
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  double *weight;
     xm=0.5*(a+b);  int **s; /* Status */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  double *agedc, **covar, idx;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     printf(".");fflush(stdout);  double *lsurv, *lpop, *tpop;
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double ftolhess; /* Tolerance for computing hessian */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /**************** split *************************/
 #endif  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       return fx;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     }    */ 
     ftemp=fu;    char  *ss;                            /* pointer */
     if (fabs(e) > tol1) {    int   l1, l2;                         /* length counters */
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);    l1 = strlen(path );                   /* length of path */
       p=(x-v)*q-(x-w)*r;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       q=2.0*(q-r);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       if (q > 0.0) p = -p;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       q=fabs(q);      strcpy( name, path );               /* we got the fullname name because no directory */
       etemp=e;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       e=d;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      /* get current working directory */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      /*    extern  char* getcwd ( char *buf , int len);*/
       else {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         d=p/q;        return( GLOCK_ERROR_GETCWD );
         u=x+d;      }
         if (u-a < tol2 || b-u < tol2)      /* got dirc from getcwd*/
           d=SIGN(tol1,xm-x);      printf(" DIRC = %s \n",dirc);
       }    } else {                              /* strip direcotry from path */
     } else {      ss++;                               /* after this, the filename */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      l2 = strlen( ss );                  /* length of filename */
     }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      strcpy( name, ss );         /* save file name */
     fu=(*f)(u);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if (fu <= fx) {      dirc[l1-l2] = 0;                    /* add zero */
       if (u >= x) a=x; else b=x;      printf(" DIRC2 = %s \n",dirc);
       SHFT(v,w,x,u)    }
         SHFT(fv,fw,fx,fu)    /* We add a separator at the end of dirc if not exists */
         } else {    l1 = strlen( dirc );                  /* length of directory */
           if (u < x) a=u; else b=u;    if( dirc[l1-1] != DIRSEPARATOR ){
           if (fu <= fw || w == x) {      dirc[l1] =  DIRSEPARATOR;
             v=w;      dirc[l1+1] = 0; 
             w=u;      printf(" DIRC3 = %s \n",dirc);
             fv=fw;    }
             fw=fu;    ss = strrchr( name, '.' );            /* find last / */
           } else if (fu <= fv || v == x || v == w) {    if (ss >0){
             v=u;      ss++;
             fv=fu;      strcpy(ext,ss);                     /* save extension */
           }      l1= strlen( name);
         }      l2= strlen(ss)+1;
   }      strncpy( finame, name, l1-l2);
   nrerror("Too many iterations in brent");      finame[l1-l2]= 0;
   *xmin=x;    }
   return fx;  
 }    return( 0 );                          /* we're done */
   }
 /****************** mnbrak ***********************/  
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /******************************************/
             double (*func)(double))  
 {  void replace_back_to_slash(char *s, char*t)
   double ulim,u,r,q, dum;  {
   double fu;    int i;
      int lg=0;
   *fa=(*func)(*ax);    i=0;
   *fb=(*func)(*bx);    lg=strlen(t);
   if (*fb > *fa) {    for(i=0; i<= lg; i++) {
     SHFT(dum,*ax,*bx,dum)      (s[i] = t[i]);
       SHFT(dum,*fb,*fa,dum)      if (t[i]== '\\') s[i]='/';
       }    }
   *cx=(*bx)+GOLD*(*bx-*ax);  }
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  int nbocc(char *s, char occ)
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    int i,j=0;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    int lg=20;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    i=0;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    lg=strlen(s);
     if ((*bx-u)*(u-*cx) > 0.0) {    for(i=0; i<= lg; i++) {
       fu=(*func)(u);    if  (s[i] == occ ) j++;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    }
       fu=(*func)(u);    return j;
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  void cutv(char *u,char *v, char*t, char occ)
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       u=ulim;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       fu=(*func)(u);       gives u="abcedf" and v="ghi2j" */
     } else {    int i,lg,j,p=0;
       u=(*cx)+GOLD*(*cx-*bx);    i=0;
       fu=(*func)(u);    for(j=0; j<=strlen(t)-1; j++) {
     }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     SHFT(*ax,*bx,*cx,u)    }
       SHFT(*fa,*fb,*fc,fu)  
       }    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /*************** linmin ************************/    }
        u[p]='\0';
 int ncom;  
 double *pcom,*xicom;     for(j=0; j<= lg; j++) {
 double (*nrfunc)(double []);      if (j>=(p+1))(v[j-p-1] = t[j]);
      }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  }
 {  
   double brent(double ax, double bx, double cx,  /********************** nrerror ********************/
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  void nrerror(char error_text[])
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    fprintf(stderr,"ERREUR ...\n");
   int j;    fprintf(stderr,"%s\n",error_text);
   double xx,xmin,bx,ax;    exit(EXIT_FAILURE);
   double fx,fb,fa;  }
    /*********************** vector *******************/
   ncom=n;  double *vector(int nl, int nh)
   pcom=vector(1,n);  {
   xicom=vector(1,n);    double *v;
   nrfunc=func;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in vector");
     pcom[j]=p[j];    return v-nl+NR_END;
     xicom[j]=xi[j];  }
   }  
   ax=0.0;  /************************ free vector ******************/
   xx=1.0;  void free_vector(double*v, int nl, int nh)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /************************ivector *******************************/
 #endif  int *ivector(long nl,long nh)
   for (j=1;j<=n;j++) {  {
     xi[j] *= xmin;    int *v;
     p[j] += xi[j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   }    if (!v) nrerror("allocation failure in ivector");
   free_vector(xicom,1,n);    return v-nl+NR_END;
   free_vector(pcom,1,n);  }
 }  
   /******************free ivector **************************/
 /*************** powell ************************/  void free_ivector(int *v, long nl, long nh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    free((FREE_ARG)(v+nl-NR_END));
 {  }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  /************************lvector *******************************/
   int i,ibig,j;  long *lvector(long nl,long nh)
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    long *v;
   double *xits;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   pt=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   ptt=vector(1,n);    return v-nl+NR_END;
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  /******************free lvector **************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  void free_lvector(long *v, long nl, long nh)
   for (*iter=1;;++(*iter)) {  {
     fp=(*fret);    free((FREE_ARG)(v+nl-NR_END));
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************* imatrix *******************************/
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for (i=1;i<=n;i++)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       printf(" %d %.12f",i, p[i]);  { 
     fprintf(ficlog," %d %.12f",i, p[i]);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     printf("\n");    int **m; 
     fprintf(ficlog,"\n");    
     for (i=1;i<=n;i++) {    /* allocate pointers to rows */ 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       fptt=(*fret);    if (!m) nrerror("allocation failure 1 in matrix()"); 
 #ifdef DEBUG    m += NR_END; 
       printf("fret=%lf \n",*fret);    m -= nrl; 
       fprintf(ficlog,"fret=%lf \n",*fret);    
 #endif    
       printf("%d",i);fflush(stdout);    /* allocate rows and set pointers to them */ 
       fprintf(ficlog,"%d",i);fflush(ficlog);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       linmin(p,xit,n,fret,func);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       if (fabs(fptt-(*fret)) > del) {    m[nrl] += NR_END; 
         del=fabs(fptt-(*fret));    m[nrl] -= ncl; 
         ibig=i;    
       }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 #ifdef DEBUG    
       printf("%d %.12e",i,(*fret));    /* return pointer to array of pointers to rows */ 
       fprintf(ficlog,"%d %.12e",i,(*fret));    return m; 
       for (j=1;j<=n;j++) {  } 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /****************** free_imatrix *************************/
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  void free_imatrix(m,nrl,nrh,ncl,nch)
       }        int **m;
       for(j=1;j<=n;j++) {        long nch,ncl,nrh,nrl; 
         printf(" p=%.12e",p[j]);       /* free an int matrix allocated by imatrix() */ 
         fprintf(ficlog," p=%.12e",p[j]);  { 
       }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       printf("\n");    free((FREE_ARG) (m+nrl-NR_END)); 
       fprintf(ficlog,"\n");  } 
 #endif  
     }  /******************* matrix *******************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  double **matrix(long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG  {
       int k[2],l;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       k[0]=1;    double **m;
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fprintf(ficlog,"Max: %.12e",(*func)(p));    if (!m) nrerror("allocation failure 1 in matrix()");
       for (j=1;j<=n;j++) {    m += NR_END;
         printf(" %.12e",p[j]);    m -= nrl;
         fprintf(ficlog," %.12e",p[j]);  
       }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fprintf(ficlog,"\n");    m[nrl] += NR_END;
       for(l=0;l<=1;l++) {    m[nrl] -= ncl;
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return m;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         }     */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /*************************free matrix ************************/
 #endif  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       free_vector(xit,1,n);    free((FREE_ARG)(m+nrl-NR_END));
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /******************* ma3x *******************************/
       return;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for (j=1;j<=n;j++) {    double ***m;
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       pt[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     fptt=(*func)(ptt);    m -= nrl;
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (t < 0.0) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         linmin(p,xit,n,fret,func);    m[nrl] += NR_END;
         for (j=1;j<=n;j++) {    m[nrl] -= ncl;
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         }  
 #ifdef DEBUG    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl][ncl] += NR_END;
         for(j=1;j<=n;j++){    m[nrl][ncl] -= nll;
           printf(" %.12e",xit[j]);    for (j=ncl+1; j<=nch; j++) 
           fprintf(ficlog," %.12e",xit[j]);      m[nrl][j]=m[nrl][j-1]+nlay;
         }    
         printf("\n");    for (i=nrl+1; i<=nrh; i++) {
         fprintf(ficlog,"\n");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 #endif      for (j=ncl+1; j<=nch; j++) 
       }        m[i][j]=m[i][j-1]+nlay;
     }    }
   }    return m; 
 }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 /**** Prevalence limit ****************/    */
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /*************************free ma3x ************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      matrix by transitions matrix until convergence is reached */  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   int i, ii,j,k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG)(m+nrl-NR_END));
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /*************** function subdirf ***********/
   double agefin, delaymax=50 ; /* Max number of years to converge */  char *subdirf(char fileres[])
   {
   for (ii=1;ii<=nlstate+ndeath;ii++)    /* Caution optionfilefiname is hidden */
     for (j=1;j<=nlstate+ndeath;j++){    strcpy(tmpout,optionfilefiname);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
     return tmpout;
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** function subdirf2 ***********/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char *subdirf2(char fileres[], char *preop)
     newm=savm;  {
     /* Covariates have to be included here again */    
      cov[2]=agefin;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovn;k++) {    strcat(tmpout,"/");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,preop);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    strcat(tmpout,fileres);
       }    return tmpout;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    /* Caution optionfilefiname is hidden */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     savm=oldm;    strcat(tmpout,preop);
     oldm=newm;    strcat(tmpout,preop2);
     maxmax=0.;    strcat(tmpout,fileres);
     for(j=1;j<=nlstate;j++){    return tmpout;
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /***************** f1dim *************************/
         sumnew=0;  extern int ncom; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  extern double *pcom,*xicom;
         prlim[i][j]= newm[i][j]/(1-sumnew);  extern double (*nrfunc)(double []); 
         max=FMAX(max,prlim[i][j]);   
         min=FMIN(min,prlim[i][j]);  double f1dim(double x) 
       }  { 
       maxmin=max-min;    int j; 
       maxmax=FMAX(maxmax,maxmin);    double f;
     }    double *xt; 
     if(maxmax < ftolpl){   
       return prlim;    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   }    f=(*nrfunc)(xt); 
 }    free_vector(xt,1,ncom); 
     return f; 
 /*************** transition probabilities ***************/  } 
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*****************brent *************************/
 {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double s1, s2;  { 
   /*double t34;*/    int iter; 
   int i,j,j1, nc, ii, jj;    double a,b,d,etemp;
     double fu,fv,fw,fx;
     for(i=1; i<= nlstate; i++){    double ftemp;
     for(j=1; j<i;j++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double e=0.0; 
         /*s2 += param[i][j][nc]*cov[nc];*/   
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    a=(ax < cx ? ax : cx); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
       ps[i][j]=s2;    fw=fv=fx=(*f)(x); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
     for(j=i+1; j<=nlstate+ndeath;j++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      printf(".");fflush(stdout);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      fprintf(ficlog,".");fflush(ficlog);
       }  #ifdef DEBUG
       ps[i][j]=s2;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     /*ps[3][2]=1;*/  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for(i=1; i<= nlstate; i++){        *xmin=x; 
      s1=0;        return fx; 
     for(j=1; j<i; j++)      } 
       s1+=exp(ps[i][j]);      ftemp=fu;
     for(j=i+1; j<=nlstate+ndeath; j++)      if (fabs(e) > tol1) { 
       s1+=exp(ps[i][j]);        r=(x-w)*(fx-fv); 
     ps[i][i]=1./(s1+1.);        q=(x-v)*(fx-fw); 
     for(j=1; j<i; j++)        p=(x-v)*q-(x-w)*r; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        q=2.0*(q-r); 
     for(j=i+1; j<=nlstate+ndeath; j++)        if (q > 0.0) p = -p; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        q=fabs(q); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        etemp=e; 
   } /* end i */        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        else { 
       ps[ii][jj]=0;          d=p/q; 
       ps[ii][ii]=1;          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
   }            d=SIGN(tol1,xm-x); 
         } 
       } else { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } 
      printf("%lf ",ps[ii][jj]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
    }      fu=(*f)(u); 
     printf("\n ");      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
     printf("\n ");printf("%lf ",cov[2]);*/        SHFT(v,w,x,u) 
 /*          SHFT(fv,fw,fx,fu) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          } else { 
   goto end;*/            if (u < x) a=u; else b=u; 
     return ps;            if (fu <= fw || w == x) { 
 }              v=w; 
               w=u; 
 /**************** Product of 2 matrices ******************/              fv=fw; 
               fw=fu; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)            } else if (fu <= fv || v == x || v == w) { 
 {              v=u; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times              fv=fu; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */            } 
   /* in, b, out are matrice of pointers which should have been initialized          } 
      before: only the contents of out is modified. The function returns    } 
      a pointer to pointers identical to out */    nrerror("Too many iterations in brent"); 
   long i, j, k;    *xmin=x; 
   for(i=nrl; i<= nrh; i++)    return fx; 
     for(k=ncolol; k<=ncoloh; k++)  } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  /****************** mnbrak ***********************/
   
   return out;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 }              double (*func)(double)) 
   { 
     double ulim,u,r,q, dum;
 /************* Higher Matrix Product ***************/    double fu; 
    
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    *fa=(*func)(*ax); 
 {    *fb=(*func)(*bx); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    if (*fb > *fa) { 
      duration (i.e. until      SHFT(dum,*ax,*bx,dum) 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        SHFT(dum,*fb,*fa,dum) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        } 
      (typically every 2 years instead of every month which is too big).    *cx=(*bx)+GOLD*(*bx-*ax); 
      Model is determined by parameters x and covariates have to be    *fc=(*func)(*cx); 
      included manually here.    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
      */      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   int i, j, d, h, k;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double **out, cov[NCOVMAX];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double **newm;      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   /* Hstepm could be zero and should return the unit matrix */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for (i=1;i<=nlstate+ndeath;i++)        fu=(*func)(u); 
     for (j=1;j<=nlstate+ndeath;j++){        if (fu < *fc) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for(h=1; h <=nhstepm; h++){        u=ulim; 
     for(d=1; d <=hstepm; d++){        fu=(*func)(u); 
       newm=savm;      } else { 
       /* Covariates have to be included here again */        u=(*cx)+GOLD*(*cx-*bx); 
       cov[1]=1.;        fu=(*func)(u); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      SHFT(*ax,*bx,*cx,u) 
       for (k=1; k<=cptcovage;k++)        SHFT(*fa,*fb,*fc,fu) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } 
       for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** linmin ************************/
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  int ncom; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  double *pcom,*xicom;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  double (*nrfunc)(double []); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));   
       savm=oldm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       oldm=newm;  { 
     }    double brent(double ax, double bx, double cx, 
     for(i=1; i<=nlstate+ndeath; i++)                 double (*f)(double), double tol, double *xmin); 
       for(j=1;j<=nlstate+ndeath;j++) {    double f1dim(double x); 
         po[i][j][h]=newm[i][j];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);                double *fc, double (*func)(double)); 
          */    int j; 
       }    double xx,xmin,bx,ax; 
   } /* end h */    double fx,fb,fa;
   return po;   
 }    ncom=n; 
     pcom=vector(1,n); 
     xicom=vector(1,n); 
 /*************** log-likelihood *************/    nrfunc=func; 
 double func( double *x)    for (j=1;j<=n;j++) { 
 {      pcom[j]=p[j]; 
   int i, ii, j, k, mi, d, kk;      xicom[j]=xi[j]; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    } 
   double **out;    ax=0.0; 
   double sw; /* Sum of weights */    xx=1.0; 
   double lli; /* Individual log likelihood */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   long ipmx;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   /*extern weight */  #ifdef DEBUG
   /* We are differentiating ll according to initial status */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /*for(i=1;i<imx;i++)  #endif
     printf(" %d\n",s[4][i]);    for (j=1;j<=n;j++) { 
   */      xi[j] *= xmin; 
   cov[1]=1.;      p[j] += xi[j]; 
     } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    free_vector(xicom,1,n); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    free_vector(pcom,1,n); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  } 
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  char *asc_diff_time(long time_sec, char ascdiff[])
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
       for(d=0; d<dh[mi][i]; d++){    long sec_left, days, hours, minutes;
         newm=savm;    days = (time_sec) / (60*60*24);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    sec_left = (time_sec) % (60*60*24);
         for (kk=1; kk<=cptcovage;kk++) {    hours = (sec_left) / (60*60) ;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    sec_left = (sec_left) %(60*60);
         }    minutes = (sec_left) /60;
            sec_left = (sec_left) % (60);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    return ascdiff;
         savm=oldm;  }
         oldm=newm;  
          /*************** powell ************************/
          void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       } /* end mult */              double (*func)(double [])) 
        { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    void linmin(double p[], double xi[], int n, double *fret, 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/                double (*func)(double [])); 
       ipmx +=1;    int i,ibig,j; 
       sw += weight[i];    double del,t,*pt,*ptt,*xit;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double fp,fptt;
     } /* end of wave */    double *xits;
   } /* end of individual */    int niterf, itmp;
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    pt=vector(1,n); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    ptt=vector(1,n); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    xit=vector(1,n); 
   return -l;    xits=vector(1,n); 
 }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 /*********** Maximum Likelihood Estimation ***************/      fp=(*fret); 
       ibig=0; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      del=0.0; 
 {      last_time=curr_time;
   int i,j, iter;      (void) gettimeofday(&curr_time,&tzp);
   double **xi,*delti;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double fret;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   xi=matrix(1,npar,1,npar);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   for (i=1;i<=npar;i++)      */
     for (j=1;j<=npar;j++)     for (i=1;i<=n;i++) {
       xi[i][j]=(i==j ? 1.0 : 0.0);        printf(" %d %.12f",i, p[i]);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        fprintf(ficlog," %d %.12lf",i, p[i]);
   powell(p,xi,npar,ftol,&iter,&fret,func);        fprintf(ficrespow," %.12lf", p[i]);
       }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      printf("\n");
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      fprintf(ficlog,"\n");
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
 }        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
 /**** Computes Hessian and covariance matrix ***/  /*       asctime_r(&tm,strcurr); */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        forecast_time=curr_time; 
 {        itmp = strlen(strcurr);
   double  **a,**y,*x,pd;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double **hess;          strcurr[itmp-1]='\0';
   int i, j,jk;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   int *indx;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
   double hessii(double p[], double delta, int theta, double delti[]);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double hessij(double p[], double delti[], int i, int j);          tmf = *localtime(&forecast_time.tv_sec);
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*      asctime_r(&tmf,strfor); */
   void ludcmp(double **a, int npar, int *indx, double *d) ;          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
   hess=matrix(1,npar,1,npar);          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   printf("\nCalculation of the hessian matrix. Wait...\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++){        }
     printf("%d",i);fflush(stdout);      }
     fprintf(ficlog,"%d",i);fflush(ficlog);      for (i=1;i<=n;i++) { 
     hess[i][i]=hessii(p,ftolhess,i,delti);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     /*printf(" %f ",p[i]);*/        fptt=(*fret); 
     /*printf(" %lf ",hess[i][i]);*/  #ifdef DEBUG
   }        printf("fret=%lf \n",*fret);
          fprintf(ficlog,"fret=%lf \n",*fret);
   for (i=1;i<=npar;i++) {  #endif
     for (j=1;j<=npar;j++)  {        printf("%d",i);fflush(stdout);
       if (j>i) {        fprintf(ficlog,"%d",i);fflush(ficlog);
         printf(".%d%d",i,j);fflush(stdout);        linmin(p,xit,n,fret,func); 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        if (fabs(fptt-(*fret)) > del) { 
         hess[i][j]=hessij(p,delti,i,j);          del=fabs(fptt-(*fret)); 
         hess[j][i]=hess[i][j];              ibig=i; 
         /*printf(" %lf ",hess[i][j]);*/        } 
       }  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
   }        fprintf(ficlog,"%d %.12e",i,(*fret));
   printf("\n");        for (j=1;j<=n;j++) {
   fprintf(ficlog,"\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        }
          for(j=1;j<=n;j++) {
   a=matrix(1,npar,1,npar);          printf(" p=%.12e",p[j]);
   y=matrix(1,npar,1,npar);          fprintf(ficlog," p=%.12e",p[j]);
   x=vector(1,npar);        }
   indx=ivector(1,npar);        printf("\n");
   for (i=1;i<=npar;i++)        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  #endif
   ludcmp(a,npar,indx,&pd);      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for (j=1;j<=npar;j++) {  #ifdef DEBUG
     for (i=1;i<=npar;i++) x[i]=0;        int k[2],l;
     x[j]=1;        k[0]=1;
     lubksb(a,npar,indx,x);        k[1]=-1;
     for (i=1;i<=npar;i++){        printf("Max: %.12e",(*func)(p));
       matcov[i][j]=x[i];        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
   }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   printf("\n#Hessian matrix#\n");        }
   fprintf(ficlog,"\n#Hessian matrix#\n");        printf("\n");
   for (i=1;i<=npar;i++) {        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) {        for(l=0;l<=1;l++) {
       printf("%.3e ",hess[i][j]);          for (j=1;j<=n;j++) {
       fprintf(ficlog,"%.3e ",hess[i][j]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("\n");            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     fprintf(ficlog,"\n");          }
   }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   /* Recompute Inverse */        }
   for (i=1;i<=npar;i++)  #endif
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  
         free_vector(xit,1,n); 
   /*  printf("\n#Hessian matrix recomputed#\n");        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   for (j=1;j<=npar;j++) {        free_vector(pt,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;        return; 
     x[j]=1;      } 
     lubksb(a,npar,indx,x);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (i=1;i<=npar;i++){      for (j=1;j<=n;j++) { 
       y[i][j]=x[i];        ptt[j]=2.0*p[j]-pt[j]; 
       printf("%.3e ",y[i][j]);        xit[j]=p[j]-pt[j]; 
       fprintf(ficlog,"%.3e ",y[i][j]);        pt[j]=p[j]; 
     }      } 
     printf("\n");      fptt=(*func)(ptt); 
     fprintf(ficlog,"\n");      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   */        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   free_matrix(a,1,npar,1,npar);          for (j=1;j<=n;j++) { 
   free_matrix(y,1,npar,1,npar);            xi[j][ibig]=xi[j][n]; 
   free_vector(x,1,npar);            xi[j][n]=xit[j]; 
   free_ivector(indx,1,npar);          }
   free_matrix(hess,1,npar,1,npar);  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
 /*************** hessian matrix ****************/            fprintf(ficlog," %.12e",xit[j]);
 double hessii( double x[], double delta, int theta, double delti[])          }
 {          printf("\n");
   int i;          fprintf(ficlog,"\n");
   int l=1, lmax=20;  #endif
   double k1,k2;        }
   double p2[NPARMAX+1];      } 
   double res;    } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  } 
   double fx;  
   int k=0,kmax=10;  /**** Prevalence limit (stable or period prevalence)  ****************/
   double l1;  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   fx=func(x);  {
   for (i=1;i<=npar;i++) p2[i]=x[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for(l=0 ; l <=lmax; l++){       matrix by transitions matrix until convergence is reached */
     l1=pow(10,l);  
     delts=delt;    int i, ii,j,k;
     for(k=1 ; k <kmax; k=k+1){    double min, max, maxmin, maxmax,sumnew=0.;
       delt = delta*(l1*k);    double **matprod2();
       p2[theta]=x[theta] +delt;    double **out, cov[NCOVMAX], **pmij();
       k1=func(p2)-fx;    double **newm;
       p2[theta]=x[theta]-delt;    double agefin, delaymax=50 ; /* Max number of years to converge */
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */    for (ii=1;ii<=nlstate+ndeath;ii++)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef DEBUG      }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);     cov[1]=1.;
 #endif   
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         k=kmax;      newm=savm;
       }      /* Covariates have to be included here again */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */       cov[2]=agefin;
         k=kmax; l=lmax*10.;    
       }        for (k=1; k<=cptcovn;k++) {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         delts=delt;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
     }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
   delti[theta]=delts;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   return res;  
          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 double hessij( double x[], double delti[], int thetai,int thetaj)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 {  
   int i;      savm=oldm;
   int l=1, l1, lmax=20;      oldm=newm;
   double k1,k2,k3,k4,res,fx;      maxmax=0.;
   double p2[NPARMAX+1];      for(j=1;j<=nlstate;j++){
   int k;        min=1.;
         max=0.;
   fx=func(x);        for(i=1; i<=nlstate; i++) {
   for (k=1; k<=2; k++) {          sumnew=0;
     for (i=1;i<=npar;i++) p2[i]=x[i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetai]=x[thetai]+delti[thetai]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          max=FMAX(max,prlim[i][j]);
     k1=func(p2)-fx;          min=FMIN(min,prlim[i][j]);
          }
     p2[thetai]=x[thetai]+delti[thetai]/k;        maxmin=max-min;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        maxmax=FMAX(maxmax,maxmin);
     k2=func(p2)-fx;      }
        if(maxmax < ftolpl){
     p2[thetai]=x[thetai]-delti[thetai]/k;        return prlim;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k3=func(p2)-fx;    }
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*************** transition probabilities ***************/ 
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 #ifdef DEBUG  {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double s1, s2;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    /*double t34;*/
 #endif    int i,j,j1, nc, ii, jj;
   }  
   return res;      for(i=1; i<= nlstate; i++){
 }        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 /************** Inverse of matrix **************/            /*s2 += param[i][j][nc]*cov[nc];*/
 void ludcmp(double **a, int n, int *indx, double *d)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   int i,imax,j,k;          }
   double big,dum,sum,temp;          ps[i][j]=s2;
   double *vv;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
          }
   vv=vector(1,n);        for(j=i+1; j<=nlstate+ndeath;j++){
   *d=1.0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=n;i++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     big=0.0;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     for (j=1;j<=n;j++)          }
       if ((temp=fabs(a[i][j])) > big) big=temp;          ps[i][j]=s2;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        }
     vv[i]=1.0/big;      }
   }      /*ps[3][2]=1;*/
   for (j=1;j<=n;j++) {      
     for (i=1;i<j;i++) {      for(i=1; i<= nlstate; i++){
       sum=a[i][j];        s1=0;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for(j=1; j<i; j++)
       a[i][j]=sum;          s1+=exp(ps[i][j]);
     }        for(j=i+1; j<=nlstate+ndeath; j++)
     big=0.0;          s1+=exp(ps[i][j]);
     for (i=j;i<=n;i++) {        ps[i][i]=1./(s1+1.);
       sum=a[i][j];        for(j=1; j<i; j++)
       for (k=1;k<j;k++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
         sum -= a[i][k]*a[k][j];        for(j=i+1; j<=nlstate+ndeath; j++)
       a[i][j]=sum;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if ( (dum=vv[i]*fabs(sum)) >= big) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         big=dum;      } /* end i */
         imax=i;      
       }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     }        for(jj=1; jj<= nlstate+ndeath; jj++){
     if (j != imax) {          ps[ii][jj]=0;
       for (k=1;k<=n;k++) {          ps[ii][ii]=1;
         dum=a[imax][k];        }
         a[imax][k]=a[j][k];      }
         a[j][k]=dum;      
       }  
       *d = -(*d);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       vv[imax]=vv[j];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     }  /*         printf("ddd %lf ",ps[ii][jj]); */
     indx[j]=imax;  /*       } */
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*       printf("\n "); */
     if (j != n) {  /*        } */
       dum=1.0/(a[j][j]);  /*        printf("\n ");printf("%lf ",cov[2]); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;         /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }        goto end;*/
   free_vector(vv,1,n);  /* Doesn't work */      return ps;
 ;  }
 }  
   /**************** Product of 2 matrices ******************/
 void lubksb(double **a, int n, int *indx, double b[])  
 {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   int i,ii=0,ip,j;  {
   double sum;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (i=1;i<=n;i++) {    /* in, b, out are matrice of pointers which should have been initialized 
     ip=indx[i];       before: only the contents of out is modified. The function returns
     sum=b[ip];       a pointer to pointers identical to out */
     b[ip]=b[i];    long i, j, k;
     if (ii)    for(i=nrl; i<= nrh; i++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for(k=ncolol; k<=ncoloh; k++)
     else if (sum) ii=i;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     b[i]=sum;          out[i][k] +=in[i][j]*b[j][k];
   }  
   for (i=n;i>=1;i--) {    return out;
     sum=b[i];  }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  
   }  /************* Higher Matrix Product ***************/
 }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 /************ Frequencies ********************/  {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    /* Computes the transition matrix starting at age 'age' over 
 {  /* Some frequencies */       'nhstepm*hstepm*stepm' months (i.e. until
         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       nhstepm*hstepm matrices. 
   int first;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double ***freq; /* Frequencies */       (typically every 2 years instead of every month which is too big 
   double *pp;       for the memory).
   double pos, k2, dateintsum=0,k2cpt=0;       Model is determined by parameters x and covariates have to be 
   FILE *ficresp;       included manually here. 
   char fileresp[FILENAMELENGTH];  
         */
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, j, d, h, k;
   strcpy(fileresp,"p");    double **out, cov[NCOVMAX];
   strcat(fileresp,fileres);    double **newm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* Hstepm could be zero and should return the unit matrix */
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    for (i=1;i<=nlstate+ndeath;i++)
     exit(0);      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[i][j]=(i==j ? 1.0 : 0.0);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   j1=0;      }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   j=cptcoveff;    for(h=1; h <=nhstepm; h++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for(d=1; d <=hstepm; d++){
         newm=savm;
   first=1;        /* Covariates have to be included here again */
         cov[1]=1.;
   for(k1=1; k1<=j;k1++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       j1++;        for (k=1; k<=cptcovage;k++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         scanf("%d", i);*/        for (k=1; k<=cptcovprod;k++)
       for (i=-1; i<=nlstate+ndeath; i++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
              /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       dateintsum=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       k2cpt=0;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=1; i<=imx; i++) {        savm=oldm;
         bool=1;        oldm=newm;
         if  (cptcovn>0) {      }
           for (z1=1; z1<=cptcoveff; z1++)      for(i=1; i<=nlstate+ndeath; i++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(j=1;j<=nlstate+ndeath;j++) {
               bool=0;          po[i][j][h]=newm[i][j];
         }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         if (bool==1) {           */
           for(m=firstpass; m<=lastpass; m++){        }
             k2=anint[m][i]+(mint[m][i]/12.);    } /* end h */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    return po;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*************** log-likelihood *************/
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  double func( double *x)
               }  {
                  int i, ii, j, k, mi, d, kk;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
                 dateintsum=dateintsum+k2;    double **out;
                 k2cpt++;    double sw; /* Sum of weights */
               }    double lli; /* Individual log likelihood */
             }    int s1, s2;
           }    double bbh, survp;
         }    long ipmx;
       }    /*extern weight */
            /* We are differentiating ll according to initial status */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
       if  (cptcovn>0) {      printf(" %d\n",s[4][i]);
         fprintf(ficresp, "\n#********** Variable ");    */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    cov[1]=1.;
         fprintf(ficresp, "**********\n#");  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    if(mle==1){
       fprintf(ficresp, "\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(mi=1; mi<= wav[i]-1; mi++){
         if(i==(int)agemax+3){          for (ii=1;ii<=nlstate+ndeath;ii++)
           fprintf(ficlog,"Total");            for (j=1;j<=nlstate+ndeath;j++){
         }else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(first==1){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             first=0;            }
             printf("See log file for details...\n");          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
           fprintf(ficlog,"Age %d", i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            }
             pp[jk] += freq[jk][m][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
           for(m=-1, pos=0; m <=0 ; m++)            oldm=newm;
             pos += freq[jk][m][i];          } /* end mult */
           if(pp[jk]>=1.e-10){        
             if(first==1){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          /* But now since version 0.9 we anticipate for bias at large stepm.
             }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * (in months) between two waves is not a multiple of stepm, we rounded to 
           }else{           * the nearest (and in case of equal distance, to the lowest) interval but now
             if(first==1)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * probability in order to take into account the bias as a fraction of the way
           }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
         for(jk=1; jk <=nlstate ; jk++){           * For stepm > 1 the results are less biased than in previous versions. 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           */
             pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
         for(jk=1,pos=0; jk <=nlstate ; jk++)          /* bias bh is positive if real duration
           pos += pp[jk];           * is higher than the multiple of stepm and negative otherwise.
         for(jk=1; jk <=nlstate ; jk++){           */
           if(pos>=1.e-5){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if(first==1)          if( s2 > nlstate){ 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            /* i.e. if s2 is a death state and if the date of death is known 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);               then the contribution to the likelihood is the probability to 
           }else{               die between last step unit time and current  step unit time, 
             if(first==1)               which is also equal to probability to die before dh 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);               minus probability to die before dh-stepm . 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);               In version up to 0.92 likelihood was computed
           }          as if date of death was unknown. Death was treated as any other
           if( i <= (int) agemax){          health state: the date of the interview describes the actual state
             if(pos>=1.e-5){          and not the date of a change in health state. The former idea was
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          to consider that at each interview the state was recorded
               probs[i][jk][j1]= pp[jk]/pos;          (healthy, disable or death) and IMaCh was corrected; but when we
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          introduced the exact date of death then we should have modified
             }          the contribution of an exact death to the likelihood. This new
             else          contribution is smaller and very dependent of the step unit
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          stepm. It is no more the probability to die between last interview
           }          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
                  probability to die within a month. Thanks to Chris
         for(jk=-1; jk <=nlstate+ndeath; jk++)          Jackson for correcting this bug.  Former versions increased
           for(m=-1; m <=nlstate+ndeath; m++)          mortality artificially. The bad side is that we add another loop
             if(freq[jk][m][i] !=0 ) {          which slows down the processing. The difference can be up to 10%
             if(first==1)          lower mortality.
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);            lli=log(out[s1][s2] - savm[s1][s2]);
             }  
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");          } else if  (s2==-2) {
         if(first==1)            for (j=1,survp=0. ; j<=nlstate; j++) 
           printf("Others in log...\n");              survp += out[s1][j];
         fprintf(ficlog,"\n");            lli= survp;
       }          }
     }          
   }          else if  (s2==-4) {
   dateintmean=dateintsum/k2cpt;            for (j=3,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   fclose(ficresp);            lli= survp;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          }
   free_vector(pp,1,nlstate);          
            else if  (s2==-5) {
   /* End of Freq */            for (j=1,survp=0. ; j<=2; j++) 
 }              survp += out[s1][j];
             lli= survp;
 /************ Prevalence ********************/          }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */  
            else{
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double ***freq; /* Frequencies */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double *pp;          } 
   double pos, k2;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   pp=vector(1,nlstate);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          ipmx +=1;
            sw += weight[i];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   j1=0;        } /* end of wave */
        } /* end of individual */
   j=cptcoveff;    }  else if(mle==2){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(k1=1; k1<=j;k1++){        for(mi=1; mi<= wav[i]-1; mi++){
     for(i1=1; i1<=ncodemax[k1];i1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       j1++;            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (jk=-1; jk<=nlstate+ndeath; jk++)              }
           for(m=agemin; m <= agemax+3; m++)          for(d=0; d<=dh[mi][i]; d++){
             freq[i][jk][m]=0;            newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (i=1; i<=imx; i++) {            for (kk=1; kk<=cptcovage;kk++) {
         bool=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               bool=0;            savm=oldm;
         }            oldm=newm;
         if (bool==1) {          } /* end mult */
           for(m=firstpass; m<=lastpass; m++){        
             k2=anint[m][i]+(mint[m][i]/12.);          s1=s[mw[mi][i]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          s2=s[mw[mi+1][i]][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          bbh=(double)bh[mi][i]/(double)stepm; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
               if (m<lastpass) {          ipmx +=1;
                 if (calagedate>0)          sw += weight[i];
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 else        } /* end of wave */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      } /* end of individual */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    }  else if(mle==3){  /* exponential inter-extrapolation */
               }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            }
             pp[jk] += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         for(jk=1; jk <=nlstate ; jk++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=-1, pos=0; m <=0 ; m++)            for (kk=1; kk<=cptcovage;kk++) {
             pos += freq[jk][m][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
                
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          s1=s[mw[mi][i]][i];
                  s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){              bbh=(double)bh[mi][i]/(double)stepm; 
           if( i <= (int) agemax){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             if(pos>=1.e-5){          ipmx +=1;
               probs[i][jk][j1]= pp[jk]/pos;          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }        } /* end of wave */
         }/* end jk */      } /* end of individual */
       }/* end i */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     } /* end i1 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   } /* end k1 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (j=1;j<=nlstate+ndeath;j++){
   free_vector(pp,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }  /* End of Freq */            }
           for(d=0; d<dh[mi][i]; d++){
 /************* Waves Concatenation ***************/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            }
      Death is a valid wave (if date is known).          
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      and mw[mi+1][i]. dh depends on stepm.            savm=oldm;
      */            oldm=newm;
           } /* end mult */
   int i, mi, m;        
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          s1=s[mw[mi][i]][i];
      double sum=0., jmean=0.;*/          s2=s[mw[mi+1][i]][i];
   int first;          if( s2 > nlstate){ 
   int j, k=0,jk, ju, jl;            lli=log(out[s1][s2] - savm[s1][s2]);
   double sum=0.;          }else{
   first=0;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   jmin=1e+5;          }
   jmax=-1;          ipmx +=1;
   jmean=0.;          sw += weight[i];
   for(i=1; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     mi=0;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     m=firstpass;        } /* end of wave */
     while(s[m][i] <= nlstate){      } /* end of individual */
       if(s[m][i]>=1)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         mw[++mi][i]=m;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(m >=lastpass)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         break;        for(mi=1; mi<= wav[i]-1; mi++){
       else          for (ii=1;ii<=nlstate+ndeath;ii++)
         m++;            for (j=1;j<=nlstate+ndeath;j++){
     }/* end while */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (s[m][i] > nlstate){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       mi++;     /* Death is another wave */            }
       /* if(mi==0)  never been interviewed correctly before death */          for(d=0; d<dh[mi][i]; d++){
          /* Only death is a correct wave */            newm=savm;
       mw[mi][i]=m;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     wav[i]=mi;            }
     if(mi==0){          
       if(first==0){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         first=1;            savm=oldm;
       }            oldm=newm;
       if(first==1){          } /* end mult */
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        
       }          s1=s[mw[mi][i]][i];
     } /* end mi==0 */          s2=s[mw[mi+1][i]][i];
   }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
   for(i=1; i<=imx; i++){          sw += weight[i];
     for(mi=1; mi<wav[i];mi++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if (stepm <=0)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         dh[mi][i]=1;        } /* end of wave */
       else{      } /* end of individual */
         if (s[mw[mi+1][i]][i] > nlstate) {    } /* End of if */
           if (agedc[i] < 2*AGESUP) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           if(j==0) j=1;  /* Survives at least one month after exam */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           k=k+1;    return -l;
           if (j >= jmax) jmax=j;  }
           if (j <= jmin) jmin=j;  
           sum=sum+j;  /*************** log-likelihood *************/
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  double funcone( double *x)
           }  {
         }    /* Same as likeli but slower because of a lot of printf and if */
         else{    int i, ii, j, k, mi, d, kk;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           k=k+1;    double **out;
           if (j >= jmax) jmax=j;    double lli; /* Individual log likelihood */
           else if (j <= jmin)jmin=j;    double llt;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    int s1, s2;
           sum=sum+j;    double bbh, survp;
         }    /*extern weight */
         jk= j/stepm;    /* We are differentiating ll according to initial status */
         jl= j -jk*stepm;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         ju= j -(jk+1)*stepm;    /*for(i=1;i<imx;i++) 
         if(jl <= -ju)      printf(" %d\n",s[4][i]);
           dh[mi][i]=jk;    */
         else    cov[1]=1.;
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)    for(k=1; k<=nlstate; k++) ll[k]=0.;
           dh[mi][i]=1; /* At least one step */  
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }      for(mi=1; mi<= wav[i]-1; mi++){
   jmean=sum/k;        for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 /*********** Tricode ****************************/        for(d=0; d<dh[mi][i]; d++){
 void tricode(int *Tvar, int **nbcode, int imx)          newm=savm;
 {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int Ndum[20],ij=1, k, j, i;          for (kk=1; kk<=cptcovage;kk++) {
   int cptcode=0;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   cptcoveff=0;          }
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (k=0; k<19; k++) Ndum[k]=0;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (k=1; k<=7; k++) ncodemax[k]=0;          savm=oldm;
           oldm=newm;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        } /* end mult */
     for (i=1; i<=imx; i++) {        
       ij=(int)(covar[Tvar[j]][i]);        s1=s[mw[mi][i]][i];
       Ndum[ij]++;        s2=s[mw[mi+1][i]][i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        bbh=(double)bh[mi][i]/(double)stepm; 
       if (ij > cptcode) cptcode=ij;        /* bias is positive if real duration
     }         * is higher than the multiple of stepm and negative otherwise.
          */
     for (i=0; i<=cptcode; i++) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       if(Ndum[i]!=0) ncodemax[j]++;          lli=log(out[s1][s2] - savm[s1][s2]);
     }        } else if (mle==1){
     ij=1;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (i=1; i<=ncodemax[j]; i++) {        } else if(mle==3){  /* exponential inter-extrapolation */
       for (k=0; k<=19; k++) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if (Ndum[k] != 0) {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           nbcode[Tvar[j]][ij]=k;          lli=log(out[s1][s2]); /* Original formula */
                  } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           ij++;          lli=log(out[s1][s2]); /* Original formula */
         }        } /* End of if */
         if (ij > ncodemax[j]) break;        ipmx +=1;
       }          sw += weight[i];
     }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
  for (k=0; k<19; k++) Ndum[k]=0;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    %10.6f %10.6f %10.6f ", \
  for (i=1; i<=ncovmodel-2; i++) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
    ij=Tvar[i];                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
    Ndum[ij]++;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
  }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
  ij=1;          }
  for (i=1; i<=10; i++) {          fprintf(ficresilk," %10.6f\n", -llt);
    if((Ndum[i]!=0) && (i<=ncovcol)){        }
      Tvaraff[ij]=i;      } /* end of wave */
      ij++;    } /* end of individual */
    }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  cptcoveff=ij-1;    if(globpr==0){ /* First time we count the contributions and weights */
 }      gipmx=ipmx;
       gsw=sw;
 /*********** Health Expectancies ****************/    }
     return -l;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  }
   
 {  
   /* Health expectancies */  /*************** function likelione ***********/
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double age, agelim, hf;  {
   double ***p3mat,***varhe;    /* This routine should help understanding what is done with 
   double **dnewm,**doldm;       the selection of individuals/waves and
   double *xp;       to check the exact contribution to the likelihood.
   double **gp, **gm;       Plotting could be done.
   double ***gradg, ***trgradg;     */
   int theta;    int k;
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    if(*globpri !=0){ /* Just counts and sums, no printings */
   xp=vector(1,npar);      strcpy(fileresilk,"ilk"); 
   dnewm=matrix(1,nlstate*2,1,npar);      strcat(fileresilk,fileres);
   doldm=matrix(1,nlstate*2,1,nlstate*2);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresilk);
   fprintf(ficreseij,"# Health expectancies\n");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   fprintf(ficreseij,"# Age");      }
   for(i=1; i<=nlstate;i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     for(j=1; j<=nlstate;j++)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   fprintf(ficreseij,"\n");      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   if(estepm < stepm){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }  
   else  hstepm=estepm;      *fretone=(*funcone)(p);
   /* We compute the life expectancy from trapezoids spaced every estepm months    if(*globpri !=0){
    * This is mainly to measure the difference between two models: for example      fclose(ficresilk);
    * if stepm=24 months pijx are given only every 2 years and by summing them      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
    * we are calculating an estimate of the Life Expectancy assuming a linear      fflush(fichtm); 
    * progression inbetween and thus overestimating or underestimating according    } 
    * to the curvature of the survival function. If, for the same date, we    return;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  }
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */  /*********** Maximum Likelihood Estimation ***************/
   
   /* For example we decided to compute the life expectancy with the smallest unit */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  {
      nhstepm is the number of hstepm from age to agelim    int i,j, iter;
      nstepm is the number of stepm from age to agelin.    double **xi;
      Look at hpijx to understand the reason of that which relies in memory size    double fret;
      and note for a fixed period like estepm months */    double fretone; /* Only one call to likelihood */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /*  char filerespow[FILENAMELENGTH];*/
      survival function given by stepm (the optimization length). Unfortunately it    xi=matrix(1,npar,1,npar);
      means that if the survival funtion is printed only each two years of age and if    for (i=1;i<=npar;i++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (j=1;j<=npar;j++)
      results. So we changed our mind and took the option of the best precision.        xi[i][j]=(i==j ? 1.0 : 0.0);
   */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
   agelim=AGESUP;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("Problem with resultfile: %s\n", filerespow);
     /* nhstepm age range expressed in number of stepm */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /* if (stepm >= YEARM) hstepm=1;*/    for (i=1;i<=nlstate;i++)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for(j=1;j<=nlstate+ndeath;j++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    fprintf(ficrespow,"\n");
     gp=matrix(0,nhstepm,1,nlstate*2);  
     gm=matrix(0,nhstepm,1,nlstate*2);    powell(p,xi,npar,ftol,&iter,&fret,func);
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    free_matrix(xi,1,npar,1,npar);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    fclose(ficrespow);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   }
     /* Computing Variances of health expectancies */  
   /**** Computes Hessian and covariance matrix ***/
      for(theta=1; theta <=npar; theta++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(i=1; i<=npar; i++){  {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double  **a,**y,*x,pd;
       }    double **hess;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, j,jk;
      int *indx;
       cptj=0;  
       for(j=1; j<= nlstate; j++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for(i=1; i<=nlstate; i++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           cptj=cptj+1;    void lubksb(double **a, int npar, int *indx, double b[]) ;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double gompertz(double p[]);
           }    hess=matrix(1,npar,1,npar);
         }  
       }    printf("\nCalculation of the hessian matrix. Wait...\n");
          fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
          for (i=1;i<=npar;i++){
       for(i=1; i<=npar; i++)      printf("%d",i);fflush(stdout);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficlog,"%d",i);fflush(ficlog);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       
             hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       cptj=0;      
       for(j=1; j<= nlstate; j++){      /*  printf(" %f ",p[i]);
         for(i=1;i<=nlstate;i++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           cptj=cptj+1;    }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (i=1;i<=npar;i++) {
           }      for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
       }          printf(".%d%d",i,j);fflush(stdout);
       for(j=1; j<= nlstate*2; j++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(h=0; h<=nhstepm-1; h++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          
         }          hess[j][i]=hess[i][j];    
      }          /*printf(" %lf ",hess[i][j]);*/
            }
 /* End theta */      }
     }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    printf("\n");
     fprintf(ficlog,"\n");
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           trgradg[h][j][theta]=gradg[h][theta][j];    
          a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
      for(i=1;i<=nlstate*2;i++)    x=vector(1,npar);
       for(j=1;j<=nlstate*2;j++)    indx=ivector(1,npar);
         varhe[i][j][(int)age] =0.;    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      printf("%d|",(int)age);fflush(stdout);    ludcmp(a,npar,indx,&pd);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  
      for(h=0;h<=nhstepm-1;h++){    for (j=1;j<=npar;j++) {
       for(k=0;k<=nhstepm-1;k++){      for (i=1;i<=npar;i++) x[i]=0;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      x[j]=1;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      lubksb(a,npar,indx,x);
         for(i=1;i<=nlstate*2;i++)      for (i=1;i<=npar;i++){ 
           for(j=1;j<=nlstate*2;j++)        matcov[i][j]=x[i];
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      }
       }    }
     }  
     /* Computing expectancies */    printf("\n#Hessian matrix#\n");
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
       for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++) { 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      for (j=1;j<=npar;j++) { 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        printf("%.3e ",hess[i][j]);
                  fprintf(ficlog,"%.3e ",hess[i][j]);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      }
       printf("\n");
         }      fprintf(ficlog,"\n");
     }
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;    /* Recompute Inverse */
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         cptj++;    ludcmp(a,npar,indx,&pd);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }    /*  printf("\n#Hessian matrix recomputed#\n");
     fprintf(ficreseij,"\n");  
        for (j=1;j<=npar;j++) {
     free_matrix(gm,0,nhstepm,1,nlstate*2);      for (i=1;i<=npar;i++) x[i]=0;
     free_matrix(gp,0,nhstepm,1,nlstate*2);      x[j]=1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      lubksb(a,npar,indx,x);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for (i=1;i<=npar;i++){ 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        y[i][j]=x[i];
   }        printf("%.3e ",y[i][j]);
   printf("\n");        fprintf(ficlog,"%.3e ",y[i][j]);
   fprintf(ficlog,"\n");      }
       printf("\n");
   free_vector(xp,1,npar);      fprintf(ficlog,"\n");
   free_matrix(dnewm,1,nlstate*2,1,npar);    }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  
 }    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
 /************ Variance ******************/    free_vector(x,1,npar);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    free_ivector(indx,1,npar);
 {    free_matrix(hess,1,npar,1,npar);
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   /* double **newm;*/  }
   double **dnewm,**doldm;  
   double **dnewmp,**doldmp;  /*************** hessian matrix ****************/
   int i, j, nhstepm, hstepm, h, nstepm ;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   int k, cptcode;  {
   double *xp;    int i;
   double **gp, **gm;  /* for var eij */    int l=1, lmax=20;
   double ***gradg, ***trgradg; /*for var eij */    double k1,k2;
   double **gradgp, **trgradgp; /* for var p point j */    double p2[NPARMAX+1];
   double *gpp, *gmp; /* for var p point j */    double res;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double ***p3mat;    double fx;
   double age,agelim, hf;    int k=0,kmax=10;
   int theta;    double l1;
   char digit[4];  
   char digitp[16];    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   char fileresprobmorprev[FILENAMELENGTH];    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   if(popbased==1)      delts=delt;
     strcpy(digitp,"-populbased-");      for(k=1 ; k <kmax; k=k+1){
   else        delt = delta*(l1*k);
     strcpy(digitp,"-stablbased-");        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
   strcpy(fileresprobmorprev,"prmorprev");        p2[theta]=x[theta]-delt;
   sprintf(digit,"%-d",ij);        k2=func(p2)-fx;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   strcat(fileresprobmorprev,digitp); /* Popbased or not */        
   strcat(fileresprobmorprev,fileres);  #ifdef DEBUG
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  #endif
   }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          k=kmax;
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          k=kmax; l=lmax*10.;
     fprintf(ficresprobmorprev," p.%-d SE",j);        }
     for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          delts=delt;
   }          }
   fprintf(ficresprobmorprev,"\n");      }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    delti[theta]=delts;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    return res; 
     exit(0);    
   }  }
   else{  
     fprintf(ficgp,"\n# Routine varevsij");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   }  {
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    int i;
     printf("Problem with html file: %s\n", optionfilehtm);    int l=1, l1, lmax=20;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    double k1,k2,k3,k4,res,fx;
     exit(0);    double p2[NPARMAX+1];
   }    int k;
   else{  
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    fx=func(x);
   }    for (k=1; k<=2; k++) {
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresvij,"# Age");      k1=func(p2)-fx;
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=nlstate;j++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresvij,"\n");      k2=func(p2)-fx;
     
   xp=vector(1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   dnewm=matrix(1,nlstate,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   doldm=matrix(1,nlstate,1,nlstate);      k3=func(p2)-fx;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      k4=func(p2)-fx;
   gpp=vector(nlstate+1,nlstate+ndeath);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   gmp=vector(nlstate+1,nlstate+ndeath);  #ifdef DEBUG
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if(estepm < stepm){  #endif
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }    return res;
   else  hstepm=estepm;    }
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  /************** Inverse of matrix **************/
      nhstepm is the number of hstepm from age to agelim  void ludcmp(double **a, int n, int *indx, double *d) 
      nstepm is the number of stepm from age to agelin.  { 
      Look at hpijx to understand the reason of that which relies in memory size    int i,imax,j,k; 
      and note for a fixed period like k years */    double big,dum,sum,temp; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double *vv; 
      survival function given by stepm (the optimization length). Unfortunately it   
      means that if the survival funtion is printed only each two years of age and if    vv=vector(1,n); 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    *d=1.0; 
      results. So we changed our mind and took the option of the best precision.    for (i=1;i<=n;i++) { 
   */      big=0.0; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for (j=1;j<=n;j++) 
   agelim = AGESUP;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      vv[i]=1.0/big; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j=1;j<=n;j++) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for (i=1;i<j;i++) { 
     gp=matrix(0,nhstepm,1,nlstate);        sum=a[i][j]; 
     gm=matrix(0,nhstepm,1,nlstate);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       } 
     for(theta=1; theta <=npar; theta++){      big=0.0; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (i=j;i<=n;i++) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        sum=a[i][j]; 
       }        for (k=1;k<j;k++) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            sum -= a[i][k]*a[k][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
       if (popbased==1) {          big=dum; 
         for(i=1; i<=nlstate;i++)          imax=i; 
           prlim[i][i]=probs[(int)age][i][ij];        } 
       }      } 
        if (j != imax) { 
       for(j=1; j<= nlstate; j++){        for (k=1;k<=n;k++) { 
         for(h=0; h<=nhstepm; h++){          dum=a[imax][k]; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          a[imax][k]=a[j][k]; 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          a[j][k]=dum; 
         }        } 
       }        *d = -(*d); 
       /* This for computing forces of mortality (h=1)as a weighted average */        vv[imax]=vv[j]; 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){      } 
         for(i=1; i<= nlstate; i++)      indx[j]=imax; 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      if (a[j][j] == 0.0) a[j][j]=TINY; 
       }          if (j != n) { 
       /* end force of mortality */        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(i=1; i<=npar; i++) /* Computes gradient */      } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_vector(vv,1,n);  /* Doesn't work */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  ;
    } 
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  void lubksb(double **a, int n, int *indx, double b[]) 
           prlim[i][i]=probs[(int)age][i][ij];  { 
       }    int i,ii=0,ip,j; 
     double sum; 
       for(j=1; j<= nlstate; j++){   
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=n;i++) { 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      ip=indx[i]; 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      sum=b[ip]; 
         }      b[ip]=b[i]; 
       }      if (ii) 
       /* This for computing force of mortality (h=1)as a weighted average */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      else if (sum) ii=i; 
         for(i=1; i<= nlstate; i++)      b[i]=sum; 
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    } 
       }        for (i=n;i>=1;i--) { 
       /* end force of mortality */      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(j=1; j<= nlstate; j++) /* vareij */      b[i]=sum/a[i][i]; 
         for(h=0; h<=nhstepm; h++){    } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  } 
         }  
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  void pstamp(FILE *fichier)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  {
       }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
     } /* End theta */  
   /************ Frequencies ********************/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
     for(h=0; h<=nhstepm; h++) /* veij */    
       for(j=1; j<=nlstate;j++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for(theta=1; theta <=npar; theta++)    int first;
           trgradg[h][j][theta]=gradg[h][theta][j];    double ***freq; /* Frequencies */
     double *pp, **prop;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(theta=1; theta <=npar; theta++)    char fileresp[FILENAMELENGTH];
         trgradgp[j][theta]=gradgp[theta][j];    
     pp=vector(1,nlstate);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    prop=matrix(1,nlstate,iagemin,iagemax+3);
     for(i=1;i<=nlstate;i++)    strcpy(fileresp,"p");
       for(j=1;j<=nlstate;j++)    strcat(fileresp,fileres);
         vareij[i][j][(int)age] =0.;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(h=0;h<=nhstepm;h++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for(k=0;k<=nhstepm;k++){      exit(0);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         for(i=1;i<=nlstate;i++)    j1=0;
           for(j=1;j<=nlstate;j++)    
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     }  
     first=1;
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    for(k1=1; k1<=j;k1++){
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      for(i1=1; i1<=ncodemax[k1];i1++){
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        j1++;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         varppt[j][i]=doldmp[j][i];          scanf("%d", i);*/
     /* end ppptj */        for (i=-5; i<=nlstate+ndeath; i++)  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            for (jk=-5; jk<=nlstate+ndeath; jk++)  
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);            for(m=iagemin; m <= iagemax+3; m++)
                freq[i][jk][m]=0;
     if (popbased==1) {  
       for(i=1; i<=nlstate;i++)      for (i=1; i<=nlstate; i++)  
         prlim[i][i]=probs[(int)age][i][ij];        for(m=iagemin; m <= iagemax+3; m++)
     }          prop[i][m]=0;
            
     /* This for computing force of mortality (h=1)as a weighted average */        dateintsum=0;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        k2cpt=0;
       for(i=1; i<= nlstate; i++)        for (i=1; i<=imx; i++) {
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          bool=1;
     }              if  (cptcovn>0) {
     /* end force of mortality */            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);                bool=0;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          if (bool==1){
       for(i=1; i<=nlstate;i++){            for(m=firstpass; m<=lastpass; m++){
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);              k2=anint[m][i]+(mint[m][i]/12.);
       }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fprintf(ficresprobmorprev,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficresvij,"%.0f ",age );                if (m<lastpass) {
     for(i=1; i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       for(j=1; j<=nlstate;j++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);                }
       }                
     fprintf(ficresvij,"\n");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     free_matrix(gp,0,nhstepm,1,nlstate);                  dateintsum=dateintsum+k2;
     free_matrix(gm,0,nhstepm,1,nlstate);                  k2cpt++;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                /*}*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   } /* End age */          }
   free_vector(gpp,nlstate+1,nlstate+ndeath);        }
   free_vector(gmp,nlstate+1,nlstate+ndeath);         
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        pstamp(ficresp);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        if  (cptcovn>0) {
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          fprintf(ficresp, "\n#********** Variable "); 
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);          fprintf(ficresp, "**********\n#");
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);        }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);        for(i=1; i<=nlstate;i++) 
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);        fprintf(ficresp, "\n");
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);        
         for(i=iagemin; i <= iagemax+3; i++){
   free_vector(xp,1,npar);          if(i==iagemax+3){
   free_matrix(doldm,1,nlstate,1,nlstate);            fprintf(ficlog,"Total");
   free_matrix(dnewm,1,nlstate,1,npar);          }else{
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            if(first==1){
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);              first=0;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              printf("See log file for details...\n");
   fclose(ficresprobmorprev);            }
   fclose(ficgp);            fprintf(ficlog,"Age %d", i);
   fclose(fichtm);          }
           for(jk=1; jk <=nlstate ; jk++){
 }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
 /************ Variance of prevlim ******************/          }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          for(jk=1; jk <=nlstate ; jk++){
 {            for(m=-1, pos=0; m <=0 ; m++)
   /* Variance of prevalence limit */              pos += freq[jk][m][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            if(pp[jk]>=1.e-10){
   double **newm;              if(first==1){
   double **dnewm,**doldm;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int i, j, nhstepm, hstepm;              }
   int k, cptcode;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double *xp;            }else{
   double *gp, *gm;              if(first==1)
   double **gradg, **trgradg;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double age,agelim;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int theta;            }
              }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  
   fprintf(ficresvpl,"# Age");          for(jk=1; jk <=nlstate ; jk++){
   for(i=1; i<=nlstate;i++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fprintf(ficresvpl," %1d-%1d",i,i);              pp[jk] += freq[jk][m][i];
   fprintf(ficresvpl,"\n");          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   xp=vector(1,npar);            pos += pp[jk];
   dnewm=matrix(1,nlstate,1,npar);            posprop += prop[jk][i];
   doldm=matrix(1,nlstate,1,nlstate);          }
            for(jk=1; jk <=nlstate ; jk++){
   hstepm=1*YEARM; /* Every year of age */            if(pos>=1.e-5){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              if(first==1)
   agelim = AGESUP;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            }else{
     if (stepm >= YEARM) hstepm=1;              if(first==1)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     gradg=matrix(1,npar,1,nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     gp=vector(1,nlstate);            }
     gm=vector(1,nlstate);            if( i <= iagemax){
               if(pos>=1.e-5){
     for(theta=1; theta <=npar; theta++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(i=1; i<=npar; i++){ /* Computes gradient */                /*probs[i][jk][j1]= pp[jk]/pos;*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              else
       for(i=1;i<=nlstate;i++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         gp[i] = prlim[i][i];            }
              }
       for(i=1; i<=npar; i++) /* Computes gradient */          
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=-1; jk <=nlstate+ndeath; jk++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(m=-1; m <=nlstate+ndeath; m++)
       for(i=1;i<=nlstate;i++)              if(freq[jk][m][i] !=0 ) {
         gm[i] = prlim[i][i];              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(i=1;i<=nlstate;i++)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              }
     } /* End theta */          if(i <= iagemax)
             fprintf(ficresp,"\n");
     trgradg =matrix(1,nlstate,1,npar);          if(first==1)
             printf("Others in log...\n");
     for(j=1; j<=nlstate;j++)          fprintf(ficlog,"\n");
       for(theta=1; theta <=npar; theta++)        }
         trgradg[j][theta]=gradg[theta][j];      }
     }
     for(i=1;i<=nlstate;i++)    dateintmean=dateintsum/k2cpt; 
       varpl[i][(int)age] =0.;   
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    fclose(ficresp);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     for(i=1;i<=nlstate;i++)    free_vector(pp,1,nlstate);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
     fprintf(ficresvpl,"%.0f ",age );  }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  /************ Prevalence ********************/
     fprintf(ficresvpl,"\n");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     free_vector(gp,1,nlstate);  {  
     free_vector(gm,1,nlstate);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     free_matrix(gradg,1,npar,1,nlstate);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     free_matrix(trgradg,1,nlstate,1,npar);       We still use firstpass and lastpass as another selection.
   } /* End age */    */
    
   free_vector(xp,1,npar);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   free_matrix(doldm,1,nlstate,1,npar);    double ***freq; /* Frequencies */
   free_matrix(dnewm,1,nlstate,1,nlstate);    double *pp, **prop;
     double pos,posprop; 
 }    double  y2; /* in fractional years */
     int iagemin, iagemax;
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    iagemin= (int) agemin;
 {    iagemax= (int) agemax;
   int i, j=0,  i1, k1, l1, t, tj;    /*pp=vector(1,nlstate);*/
   int k2, l2, j1,  z1;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   int k=0,l, cptcode;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   int first=1, first1;    j1=0;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    
   double **dnewm,**doldm;    j=cptcoveff;
   double *xp;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double *gp, *gm;    
   double **gradg, **trgradg;    for(k1=1; k1<=j;k1++){
   double **mu;      for(i1=1; i1<=ncodemax[k1];i1++){
   double age,agelim, cov[NCOVMAX];        j1++;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        
   int theta;        for (i=1; i<=nlstate; i++)  
   char fileresprob[FILENAMELENGTH];          for(m=iagemin; m <= iagemax+3; m++)
   char fileresprobcov[FILENAMELENGTH];            prop[i][m]=0.0;
   char fileresprobcor[FILENAMELENGTH];       
         for (i=1; i<=imx; i++) { /* Each individual */
   double ***varpij;          bool=1;
           if  (cptcovn>0) {
   strcpy(fileresprob,"prob");            for (z1=1; z1<=cptcoveff; z1++) 
   strcat(fileresprob,fileres);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                bool=0;
     printf("Problem with resultfile: %s\n", fileresprob);          } 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          if (bool==1) { 
   }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   strcpy(fileresprobcov,"probcov");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   strcat(fileresprobcov,fileres);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("Problem with resultfile: %s\n", fileresprobcov);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   strcpy(fileresprobcor,"probcor");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   strcat(fileresprobcor,fileres);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
     printf("Problem with resultfile: %s\n", fileresprobcor);                } 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);              }
   }            } /* end selection of waves */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        for(i=iagemin; i <= iagemax+3; i++){  
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            posprop += prop[jk][i]; 
            } 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  
   fprintf(ficresprob,"# Age");          for(jk=1; jk <=nlstate ; jk++){     
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            if( i <=  iagemax){ 
   fprintf(ficresprobcov,"# Age");              if(posprop>=1.e-5){ 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                probs[i][jk][j1]= prop[jk][i]/posprop;
   fprintf(ficresprobcov,"# Age");              } 
             } 
           }/* end jk */ 
   for(i=1; i<=nlstate;i++)        }/* end i */ 
     for(j=1; j<=(nlstate+ndeath);j++){      } /* end i1 */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    } /* end k1 */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     }      /*free_vector(pp,1,nlstate);*/
   fprintf(ficresprob,"\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   fprintf(ficresprobcov,"\n");  }  /* End of prevalence */
   fprintf(ficresprobcor,"\n");  
   xp=vector(1,npar);  /************* Waves Concatenation ***************/
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  {
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   first=1;       Death is a valid wave (if date is known).
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);       and mw[mi+1][i]. dh depends on stepm.
     exit(0);       */
   }  
   else{    int i, mi, m;
     fprintf(ficgp,"\n# Routine varprob");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    int first;
     printf("Problem with html file: %s\n", optionfilehtm);    int j, k=0,jk, ju, jl;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    double sum=0.;
     exit(0);    first=0;
   }    jmin=1e+5;
   else{    jmax=-1;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    jmean=0.;
     fprintf(fichtm,"\n");    for(i=1; i<=imx; i++){
       mi=0;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      m=firstpass;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      while(s[m][i] <= nlstate){
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
   }        if(m >=lastpass)
           break;
          else
   cov[1]=1;          m++;
   tj=cptcoveff;      }/* end while */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      if (s[m][i] > nlstate){
   j1=0;        mi++;     /* Death is another wave */
   for(t=1; t<=tj;t++){        /* if(mi==0)  never been interviewed correctly before death */
     for(i1=1; i1<=ncodemax[t];i1++){           /* Only death is a correct wave */
       j1++;        mw[mi][i]=m;
            }
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");      wav[i]=mi;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if(mi==0){
         fprintf(ficresprob, "**********\n#");        nbwarn++;
         fprintf(ficresprobcov, "\n#********** Variable ");        if(first==0){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         fprintf(ficresprobcov, "**********\n#");          first=1;
                }
         fprintf(ficgp, "\n#********** Variable ");        if(first==1){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         fprintf(ficgp, "**********\n#");        }
              } /* end mi==0 */
            } /* End individuals */
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(i=1; i<=imx; i++){
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      for(mi=1; mi<wav[i];mi++){
                if (stepm <=0)
         fprintf(ficresprobcor, "\n#********** Variable ");              dh[mi][i]=1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        else{
         fprintf(ficgp, "**********\n#");              if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       }            if (agedc[i] < 2*AGESUP) {
                    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for (age=bage; age<=fage; age ++){              if(j==0) j=1;  /* Survives at least one month after exam */
         cov[2]=age;              else if(j<0){
         for (k=1; k<=cptcovn;k++) {                nberr++;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                j=1; /* Temporary Dangerous patch */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         for (k=1; k<=cptcovprod;k++)                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                      }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));              k=k+1;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              if (j >= jmax){
         gp=vector(1,(nlstate)*(nlstate+ndeath));                jmax=j;
         gm=vector(1,(nlstate)*(nlstate+ndeath));                ijmax=i;
                  }
         for(theta=1; theta <=npar; theta++){              if (j <= jmin){
           for(i=1; i<=npar; i++)                jmin=j;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                ijmin=i;
                        }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              sum=sum+j;
                        /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           k=0;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           for(i=1; i<= (nlstate); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){          }
               k=k+1;          else{
               gp[k]=pmmij[i][j];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           }  
                      k=k+1;
           for(i=1; i<=npar; i++)            if (j >= jmax) {
             xp[i] = x[i] - (i==theta ?delti[theta]:0);              jmax=j;
                  ijmax=i;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }
           k=0;            else if (j <= jmin){
           for(i=1; i<=(nlstate); i++){              jmin=j;
             for(j=1; j<=(nlstate+ndeath);j++){              ijmin=i;
               k=k+1;            }
               gm[k]=pmmij[i][j];            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           }            if(j<0){
                    nberr++;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
             sum=sum+j;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          }
           for(theta=1; theta <=npar; theta++)          jk= j/stepm;
             trgradg[j][theta]=gradg[theta][j];          jl= j -jk*stepm;
                  ju= j -(jk+1)*stepm;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            if(jl==0){
                      dh[mi][i]=jk;
         pmij(pmmij,cov,ncovmodel,x,nlstate);              bh[mi][i]=0;
                    }else{ /* We want a negative bias in order to only have interpolation ie
         k=0;                    * at the price of an extra matrix product in likelihood */
         for(i=1; i<=(nlstate); i++){              dh[mi][i]=jk+1;
           for(j=1; j<=(nlstate+ndeath);j++){              bh[mi][i]=ju;
             k=k+1;            }
             mu[k][(int) age]=pmmij[i][j];          }else{
           }            if(jl <= -ju){
         }              dh[mi][i]=jk;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              bh[mi][i]=jl;       /* bias is positive if real duration
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                                   * is higher than the multiple of stepm and negative otherwise.
             varpij[i][j][(int)age] = doldm[i][j];                                   */
             }
         /*printf("\n%d ",(int)age);            else{
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              dh[mi][i]=jk+1;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              bh[mi][i]=ju;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            }
      }*/            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
         fprintf(ficresprob,"\n%d ",(int)age);              bh[mi][i]=ju; /* At least one step */
         fprintf(ficresprobcov,"\n%d ",(int)age);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         fprintf(ficresprobcor,"\n%d ",(int)age);            }
           } /* end if mle */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      } /* end wave */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    jmean=sum/k;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         i=0;   }
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){  /*********** Tricode ****************************/
             i=i++;  void tricode(int *Tvar, int **nbcode, int imx)
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  {
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    
             for (j=1; j<=i;j++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    int cptcode=0;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    cptcoveff=0; 
             }   
           }    for (k=0; k<maxncov; k++) Ndum[k]=0;
         }/* end of loop for state */    for (k=1; k<=7; k++) ncodemax[k]=0;
       } /* end of loop for age */  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       /* Confidence intervalle of pij  */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       /*                                 modality*/ 
       fprintf(ficgp,"\nset noparametric;unset label");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        Ndum[ij]++; /*store the modality */
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);                                         Tvar[j]. If V=sex and male is 0 and 
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);                                         female is 1, then  cptcode=1.*/
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      }
       */  
       for (i=0; i<=cptcode; i++) {
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       first1=1;      }
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){      ij=1; 
           if(l2==k2) continue;      for (i=1; i<=ncodemax[j]; i++) {
           j=(k2-1)*(nlstate+ndeath)+l2;        for (k=0; k<= maxncov; k++) {
           for (k1=1; k1<=(nlstate);k1++){          if (Ndum[k] != 0) {
             for (l1=1; l1<=(nlstate+ndeath);l1++){            nbcode[Tvar[j]][ij]=k; 
               if(l1==k1) continue;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
               i=(k1-1)*(nlstate+ndeath)+l1;            
               if(i<=j) continue;            ij++;
               for (age=bage; age<=fage; age ++){          }
                 if ((int)age %5==0){          if (ij > ncodemax[j]) break; 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        }  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      } 
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    }  
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;   for (k=0; k< maxncov; k++) Ndum[k]=0;
                   c12=cv12/sqrt(v1*v2);  
                   /* Computing eigen value of matrix of covariance */   for (i=1; i<=ncovmodel-2; i++) { 
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;     ij=Tvar[i];
                   /* Eigen vectors */     Ndum[ij]++;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));   }
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;   ij=1;
                   v12=-v21;   for (i=1; i<= maxncov; i++) {
                   v22=v11;     if((Ndum[i]!=0) && (i<=ncovcol)){
                   tnalp=v21/v11;       Tvaraff[ij]=i; /*For printing */
                   if(first1==1){       ij++;
                     first1=0;     }
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);   }
                   }   
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);   cptcoveff=ij-1; /*Number of simple covariates*/
                   /*printf(fignu*/  }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */  /*********** Health Expectancies ****************/
                   if(first==1){  
                     first=0;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
                     fprintf(ficgp,"\nset parametric;unset label");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);  {
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    /* Health expectancies, no variances */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    double age, agelim, hf;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    double ***p3mat;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    double eip;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    pstamp(ficreseij);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fprintf(ficreseij,"# Age");
                   }else{    for(i=1; i<=nlstate;i++){
                     first=0;      for(j=1; j<=nlstate;j++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        fprintf(ficreseij," e%1d%1d ",i,j);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      fprintf(ficreseij," e%1d. ",i);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fprintf(ficreseij,"\n");
                   }/* if first */  
                 } /* age mod 5 */    
               } /* end loop age */    if(estepm < stepm){
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);      printf ("Problem %d lower than %d\n",estepm, stepm);
               first=1;    }
             } /*l12 */    else  hstepm=estepm;   
           } /* k12 */    /* We compute the life expectancy from trapezoids spaced every estepm months
         } /*l1 */     * This is mainly to measure the difference between two models: for example
       }/* k1 */     * if stepm=24 months pijx are given only every 2 years and by summing them
     } /* loop covariates */     * we are calculating an estimate of the Life Expectancy assuming a linear 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);     * progression in between and thus overestimating or underestimating according
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));     * to the curvature of the survival function. If, for the same date, we 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);     * to compare the new estimate of Life expectancy with the same linear 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     * hypothesis. A more precise result, taking into account a more precise
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   free_vector(xp,1,npar);    /* For example we decided to compute the life expectancy with the smallest unit */
   fclose(ficresprob);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fclose(ficresprobcov);       nhstepm is the number of hstepm from age to agelim 
   fclose(ficresprobcor);       nstepm is the number of stepm from age to agelin. 
   fclose(ficgp);       Look at hpijx to understand the reason of that which relies in memory size
   fclose(fichtm);       and note for a fixed period like estepm months */
 }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
 /******************* Printing html file ***********/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \       results. So we changed our mind and took the option of the best precision.
                   int lastpass, int stepm, int weightopt, char model[],\    */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   int popforecast, int estepm ,\  
                   double jprev1, double mprev1,double anprev1, \    agelim=AGESUP;
                   double jprev2, double mprev2,double anprev2){    /* nhstepm age range expressed in number of stepm */
   int jj1, k1, i1, cpt;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   /*char optionfilehtm[FILENAMELENGTH];*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    /* if (stepm >= YEARM) hstepm=1;*/
     printf("Problem with %s \n",optionfilehtm), exit(0);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }  
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      /* Computed by stepm unit matrices, product of hstepm matrices, stored
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
  - Life expectancies by age and initial health status (estepm=%2d months):   
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
       /* Computing  Variances of health expectancies */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
  m=cptcoveff;       printf("%d|",(int)age);fflush(stdout);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       /* Computing expectancies */
  jj1=0;      for(i=1; i<=nlstate;i++)
  for(k1=1; k1<=m;k1++){        for(j=1; j<=nlstate;j++)
    for(i1=1; i1<=ncodemax[k1];i1++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      jj1++;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
      if (cptcovn > 0) {            
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        for (cpt=1; cpt<=cptcoveff;cpt++)  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }      fprintf(ficreseij,"%3.0f",age );
      /* Pij */      for(i=1; i<=nlstate;i++){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        eip=0;
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for(j=1; j<=nlstate;j++){
      /* Quasi-incidences */          eip +=eij[i][j][(int)age];
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }
        /* Stable prevalence in each health state */        fprintf(ficreseij,"%9.4f", eip );
        for(cpt=1; cpt<nlstate;cpt++){      }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      fprintf(ficreseij,"\n");
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }    }
      for(cpt=1; cpt<=nlstate;cpt++) {    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    printf("\n");
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    fprintf(ficlog,"\n");
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  }
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
    } /* end i1 */  
  }/* End k1 */  {
  fprintf(fichtm,"</ul>");    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    double age, agelim, hf;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    double ***p3matp, ***p3matm, ***varhe;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    double **dnewm,**doldm;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    double *xp, *xm;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    double **gp, **gm;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    double ***gradg, ***trgradg;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    int theta;
   
  if(popforecast==1) fprintf(fichtm,"\n    double eip, vip;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         <br>",fileres,fileres,fileres,fileres);    xp=vector(1,npar);
  else    xm=vector(1,npar);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    dnewm=matrix(1,nlstate*nlstate,1,npar);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
  m=cptcoveff;    pstamp(ficresstdeij);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
  jj1=0;    for(i=1; i<=nlstate;i++){
  for(k1=1; k1<=m;k1++){      for(j=1; j<=nlstate;j++)
    for(i1=1; i1<=ncodemax[k1];i1++){        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
      jj1++;      fprintf(ficresstdeij," e%1d. ",i);
      if (cptcovn > 0) {    }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(ficresstdeij,"\n");
        for (cpt=1; cpt<=cptcoveff;cpt++)  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    pstamp(ficrescveij);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      }    fprintf(ficrescveij,"# Age");
      for(cpt=1; cpt<=nlstate;cpt++) {    for(i=1; i<=nlstate;i++)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      for(j=1; j<=nlstate;j++){
 interval) in state (%d): v%s%d%d.png <br>        cptj= (j-1)*nlstate+i;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(i2=1; i2<=nlstate;i2++)
      }          for(j2=1; j2<=nlstate;j2++){
    } /* end i1 */            cptj2= (j2-1)*nlstate+i2;
  }/* End k1 */            if(cptj2 <= cptj)
  fprintf(fichtm,"</ul>");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 fclose(fichtm);          }
 }      }
     fprintf(ficrescveij,"\n");
 /******************* Gnuplot file **************/    
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    }
   int ng;    else  hstepm=estepm;   
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    /* We compute the life expectancy from trapezoids spaced every estepm months
     printf("Problem with file %s",optionfilegnuplot);     * This is mainly to measure the difference between two models: for example
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
 #ifdef windows     * to the curvature of the survival function. If, for the same date, we 
     fprintf(ficgp,"cd \"%s\" \n",pathc);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 #endif     * to compare the new estimate of Life expectancy with the same linear 
 m=pow(2,cptcoveff);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
    for (k1=1; k1<= m ; k1 ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
 #ifdef windows       nstepm is the number of stepm from age to agelin. 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       Look at hpijx to understand the reason of that which relies in memory size
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);       and note for a fixed period like estepm months */
 #endif    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 #ifdef unix       survival function given by stepm (the optimization length). Unfortunately it
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       means that if the survival funtion is printed only each two years of age and if
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 #endif       results. So we changed our mind and took the option of the best precision.
     */
 for (i=1; i<= nlstate ; i ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* If stepm=6 months */
 }    /* nhstepm age range expressed in number of stepm */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    agelim=AGESUP;
     for (i=1; i<= nlstate ; i ++) {    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* if (stepm >= YEARM) hstepm=1;*/
 }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    
      for (i=1; i<= nlstate ; i ++) {    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 }      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    gp=matrix(0,nhstepm,1,nlstate*nlstate);
 #ifdef unix    gm=matrix(0,nhstepm,1,nlstate*nlstate);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  
 #endif    for (age=bage; age<=fage; age ++){ 
    }  
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /*2 eme*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
   for (k1=1; k1<= m ; k1 ++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      /* Computing  Variances of health expectancies */
          /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     for (i=1; i<= nlstate+1 ; i ++) {         decrease memory allocation */
       k=2*i;      for(theta=1; theta <=npar; theta++){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for(i=1; i<=npar; i++){ 
       for (j=1; j<= nlstate+1 ; j ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++){
       for (j=1; j<= nlstate+1 ; j ++) {          for(i=1; i<=nlstate; i++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(h=0; h<=nhstepm-1; h++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 }                gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(ij=1; ij<= nlstate*nlstate; ij++)
 }            for(h=0; h<=nhstepm-1; h++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       else fprintf(ficgp,"\" t\"\" w l 0,");          }
     }      }/* End theta */
   }      
        
   /*3eme*/      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   for (k1=1; k1<= m ; k1 ++) {          for(theta=1; theta <=npar; theta++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {            trgradg[h][j][theta]=gradg[h][theta][j];
       k=2+nlstate*(2*cpt-2);      
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);       for(ij=1;ij<=nlstate*nlstate;ij++)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(ji=1;ji<=nlstate*nlstate;ji++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          varhe[ij][ji][(int)age] =0.;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       printf("%d|",(int)age);fflush(stdout);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
 */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       for (i=1; i< nlstate ; i ++) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
       }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     }        }
   }      }
        /* Computing expectancies */
   /* CV preval stat */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     for (k1=1; k1<= m ; k1 ++) {      for(i=1; i<=nlstate;i++)
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(j=1; j<=nlstate;j++)
       k=3;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);          }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
            fprintf(ficresstdeij,"%3.0f",age );
       l=3+(nlstate+ndeath)*cpt;      for(i=1; i<=nlstate;i++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        eip=0.;
       for (i=1; i< nlstate ; i ++) {        vip=0.;
         l=3+(nlstate+ndeath)*cpt;        for(j=1; j<=nlstate;j++){
         fprintf(ficgp,"+$%d",l+i+1);          eip += eij[i][j][(int)age];
       }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   }          }
          fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   /* proba elementaires */      }
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficresstdeij,"\n");
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {      fprintf(ficrescveij,"%3.0f",age );
         for(j=1; j <=ncovmodel; j++){      for(i=1; i<=nlstate;i++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for(j=1; j<=nlstate;j++){
           jk++;          cptj= (j-1)*nlstate+i;
           fprintf(ficgp,"\n");          for(i2=1; i2<=nlstate;i2++)
         }            for(j2=1; j2<=nlstate;j2++){
       }              cptj2= (j2-1)*nlstate+i2;
     }              if(cptj2 <= cptj)
    }                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        }
      for(jk=1; jk <=m; jk++) {      fprintf(ficrescveij,"\n");
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);     
        if (ng==2)    }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        else    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
          fprintf(ficgp,"\nset title \"Probability\"\n");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        i=1;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        for(k2=1; k2<=nlstate; k2++) {    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          k3=i;    printf("\n");
          for(k=1; k<=(nlstate+ndeath); k++) {    fprintf(ficlog,"\n");
            if (k != k2){  
              if(ng==2)    free_vector(xm,1,npar);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    free_vector(xp,1,npar);
              else    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
              ij=1;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
              for(j=3; j <=ncovmodel; j++) {  }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  /************ Variance ******************/
                  ij++;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                }  {
                else    /* Variance of health expectancies */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
              }    /* double **newm;*/
              fprintf(ficgp,")/(1");    double **dnewm,**doldm;
                  double **dnewmp,**doldmp;
              for(k1=1; k1 <=nlstate; k1++){      int i, j, nhstepm, hstepm, h, nstepm ;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    int k, cptcode;
                ij=1;    double *xp;
                for(j=3; j <=ncovmodel; j++){    double **gp, **gm;  /* for var eij */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double ***gradg, ***trgradg; /*for var eij */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double **gradgp, **trgradgp; /* for var p point j */
                    ij++;    double *gpp, *gmp; /* for var p point j */
                  }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                  else    double ***p3mat;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double age,agelim, hf;
                }    double ***mobaverage;
                fprintf(ficgp,")");    int theta;
              }    char digit[4];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    char digitp[25];
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;    char fileresprobmorprev[FILENAMELENGTH];
            }  
          } /* end k */    if(popbased==1){
        } /* end k2 */      if(mobilav!=0)
      } /* end jk */        strcpy(digitp,"-populbased-mobilav-");
    } /* end ng */      else strcpy(digitp,"-populbased-nomobil-");
    fclose(ficgp);    }
 }  /* end gnuplot */    else 
       strcpy(digitp,"-stablbased-");
   
 /*************** Moving average **************/    if (mobilav!=0) {
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   int i, cpt, cptcod;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for (i=1; i<=nlstate;i++)      }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    }
           mobaverage[(int)agedeb][i][cptcod]=0.;  
        strcpy(fileresprobmorprev,"prmorprev"); 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    sprintf(digit,"%-d",ij);
       for (i=1; i<=nlstate;i++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           for (cpt=0;cpt<=4;cpt++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    strcat(fileresprobmorprev,fileres);
           }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       }    }
     }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       
 }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 /************** Forecasting ******************/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(i=1; i<=nlstate;i++)
   int *popage;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }  
   double *popeffectif,*popcount;    fprintf(ficresprobmorprev,"\n");
   double ***p3mat;    fprintf(ficgp,"\n# Routine varevsij");
   char fileresf[FILENAMELENGTH];    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
  agelim=AGESUP;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    pstamp(ficresvij);
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      if(popbased==1)
   strcpy(fileresf,"f");      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   strcat(fileresf,fileres);    else
   if((ficresf=fopen(fileresf,"w"))==NULL) {      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficresvij,"# Age");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficresvij,"\n");
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   if (mobilav==1) {    doldm=matrix(1,nlstate,1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    gpp=vector(nlstate+1,nlstate+ndeath);
   if (stepm<=12) stepsize=1;    gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   agelim=AGESUP;    
      if(estepm < stepm){
   hstepm=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
   hstepm=hstepm/stepm;    }
   yp1=modf(dateintmean,&yp);    else  hstepm=estepm;   
   anprojmean=yp;    /* For example we decided to compute the life expectancy with the smallest unit */
   yp2=modf((yp1*12),&yp);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   mprojmean=yp;       nhstepm is the number of hstepm from age to agelim 
   yp1=modf((yp2*30.5),&yp);       nstepm is the number of stepm from age to agelin. 
   jprojmean=yp;       Look at hpijx to understand the reason of that which relies in memory size
   if(jprojmean==0) jprojmean=1;       and note for a fixed period like k years */
   if(mprojmean==0) jprojmean=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   for(cptcov=1;cptcov<=i2;cptcov++){       results. So we changed our mind and took the option of the best precision.
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    */
       k=k+1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficresf,"\n#******");    agelim = AGESUP;
       for(j=1;j<=cptcoveff;j++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficresf,"******\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresf,"# StartingAge FinalAge");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      gp=matrix(0,nhstepm,1,nlstate);
            gm=matrix(0,nhstepm,1,nlstate);
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");      for(theta=1; theta <=npar; theta++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           nhstepm = nhstepm/hstepm;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (popbased==1) {
           oldm=oldms;savm=savms;          if(mobilav ==0){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(i=1; i<=nlstate;i++)
                      prlim[i][i]=probs[(int)age][i][ij];
           for (h=0; h<=nhstepm; h++){          }else{ /* mobilav */ 
             if (h==(int) (calagedate+YEARM*cpt)) {            for(i=1; i<=nlstate;i++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              prlim[i][i]=mobaverage[(int)age][i][ij];
             }          }
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                      for(j=1; j<= nlstate; j++){
                 if (mobilav==1)          for(h=0; h<=nhstepm; h++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                 else {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          }
                 }        }
                        /* This for computing probability of death (h=1 means
               }           computed over hstepm matrices product = hstepm*stepm months) 
               if (h==(int)(calagedate+12*cpt)){           as a weighted average of prlim.
                 fprintf(ficresf," %.3f", kk1);        */
                                for(j=nlstate+1;j<=nlstate+ndeath;j++){
               }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           }        }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* end probability of death */
         }  
       }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
         if (popbased==1) {
   fclose(ficresf);          if(mobilav ==0){
 }            for(i=1; i<=nlstate;i++)
 /************** Forecasting ******************/              prlim[i][i]=probs[(int)age][i][ij];
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              prlim[i][i]=mobaverage[(int)age][i][ij];
   int *popage;          }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;        for(j=1; j<= nlstate; j++){
   char filerespop[FILENAMELENGTH];          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   agelim=AGESUP;        }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);           as a weighted average of prlim.
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   strcpy(filerespop,"pop");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   strcat(filerespop,fileres);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        }    
     printf("Problem with forecast resultfile: %s\n", filerespop);        /* end probability of death */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }        for(j=1; j<= nlstate; j++) /* vareij */
   printf("Computing forecasting: result on file '%s' \n", filerespop);          for(h=0; h<=nhstepm; h++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   if (mobilav==1) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }      } /* End theta */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   if (stepm<=12) stepsize=1;  
        for(h=0; h<=nhstepm; h++) /* veij */
   agelim=AGESUP;        for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   hstepm=1;            trgradg[h][j][theta]=gradg[h][theta][j];
   hstepm=hstepm/stepm;  
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   if (popforecast==1) {        for(theta=1; theta <=npar; theta++)
     if((ficpop=fopen(popfile,"r"))==NULL) {          trgradgp[j][theta]=gradgp[theta][j];
       printf("Problem with population file : %s\n",popfile);exit(0);    
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     popage=ivector(0,AGESUP);      for(i=1;i<=nlstate;i++)
     popeffectif=vector(0,AGESUP);        for(j=1;j<=nlstate;j++)
     popcount=vector(0,AGESUP);          vareij[i][j][(int)age] =0.;
      
     i=1;        for(h=0;h<=nhstepm;h++){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        for(k=0;k<=nhstepm;k++){
              matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     imx=i;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          for(i=1;i<=nlstate;i++)
   }            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   for(cptcov=1;cptcov<=i2;cptcov++){        }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      }
       k=k+1;    
       fprintf(ficrespop,"\n#******");      /* pptj */
       for(j=1;j<=cptcoveff;j++) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fprintf(ficrespop,"******\n");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fprintf(ficrespop,"# Age");          varppt[j][i]=doldmp[j][i];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      /* end ppptj */
       if (popforecast==1)  fprintf(ficrespop," [Population]");      /*  x centered again */
            hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       for (cpt=0; cpt<=0;cpt++) {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
              if (popbased==1) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        if(mobilav ==0){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;            prlim[i][i]=probs[(int)age][i][ij];
                  }else{ /* mobilav */ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;            prlim[i][i]=mobaverage[(int)age][i][ij];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
              }
           for (h=0; h<=nhstepm; h++){               
             if (h==(int) (calagedate+YEARM*cpt)) {      /* This for computing probability of death (h=1 means
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             }         as a weighted average of prlim.
             for(j=1; j<=nlstate+ndeath;j++) {      */
               kk1=0.;kk2=0;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
               for(i=1; i<=nlstate;i++) {                      for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                 if (mobilav==1)          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      }    
                 else {      /* end probability of death */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
               }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               if (h==(int)(calagedate+12*cpt)){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for(i=1; i<=nlstate;i++){
                   /*fprintf(ficrespop," %.3f", kk1);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        }
               }      } 
             }      fprintf(ficresprobmorprev,"\n");
             for(i=1; i<=nlstate;i++){  
               kk1=0.;      fprintf(ficresvij,"%.0f ",age );
                 for(j=1; j<=nlstate;j++){      for(i=1; i<=nlstate;i++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        for(j=1; j<=nlstate;j++){
                 }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        }
             }      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      free_matrix(gm,0,nhstepm,1,nlstate);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    } /* End age */
       }    free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
   /******/    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           nhstepm = nhstepm/hstepm;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
            /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           oldm=oldms;savm=savms;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           for (h=0; h<=nhstepm; h++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             }  */
             for(j=1; j<=nlstate+ndeath;j++) {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
               kk1=0.;kk2=0;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        free_vector(xp,1,npar);
               }    free_matrix(doldm,1,nlstate,1,nlstate);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    free_matrix(dnewm,1,nlstate,1,npar);
             }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    fclose(ficresprobmorprev);
    }    fflush(ficgp);
   }    fflush(fichtm); 
    }  /* end varevsij */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   /************ Variance of prevlim ******************/
   if (popforecast==1) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     free_ivector(popage,0,AGESUP);  {
     free_vector(popeffectif,0,AGESUP);    /* Variance of prevalence limit */
     free_vector(popcount,0,AGESUP);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   }    double **newm;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **dnewm,**doldm;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, j, nhstepm, hstepm;
   fclose(ficrespop);    int k, cptcode;
 }    double *xp;
     double *gp, *gm;
 /***********************************************/    double **gradg, **trgradg;
 /**************** Main Program *****************/    double age,agelim;
 /***********************************************/    int theta;
     
 int main(int argc, char *argv[])    pstamp(ficresvpl);
 {    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    for(i=1; i<=nlstate;i++)
   double agedeb, agefin,hf;        fprintf(ficresvpl," %1d-%1d",i,i);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    fprintf(ficresvpl,"\n");
   
   double fret;    xp=vector(1,npar);
   double **xi,tmp,delta;    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   double dum; /* Dummy variable */    
   double ***p3mat;    hstepm=1*YEARM; /* Every year of age */
   int *indx;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   char line[MAXLINE], linepar[MAXLINE];    agelim = AGESUP;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int firstobs=1, lastobs=10;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   int sdeb, sfin; /* Status at beginning and end */      if (stepm >= YEARM) hstepm=1;
   int c,  h , cpt,l;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   int ju,jl, mi;      gradg=matrix(1,npar,1,nlstate);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      gp=vector(1,nlstate);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      gm=vector(1,nlstate);
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;      for(theta=1; theta <=npar; theta++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double **prlim;        for(i=1;i<=nlstate;i++)
   double *severity;          gp[i] = prlim[i][i];
   double ***param; /* Matrix of parameters */      
   double  *p;        for(i=1; i<=npar; i++) /* Computes gradient */
   double **matcov; /* Matrix of covariance */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double ***delti3; /* Scale */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double *delti; /* Scale */        for(i=1;i<=nlstate;i++)
   double ***eij, ***vareij;          gm[i] = prlim[i][i];
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;        for(i=1;i<=nlstate;i++)
   double kk1, kk2;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      } /* End theta */
    
       trgradg =matrix(1,nlstate,1,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   char z[1]="c", occ;          trgradg[j][theta]=gradg[theta][j];
 #include <sys/time.h>  
 #include <time.h>      for(i=1;i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        varpl[i][(int)age] =0.;
        matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   /* long total_usecs;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   struct timeval start_time, end_time;      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   printf("\n%s",version);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   if(argc <=1){      fprintf(ficresvpl,"\n");
     printf("\nEnter the parameter file name: ");      free_vector(gp,1,nlstate);
     scanf("%s",pathtot);      free_vector(gm,1,nlstate);
   }      free_matrix(gradg,1,npar,1,nlstate);
   else{      free_matrix(trgradg,1,nlstate,1,npar);
     strcpy(pathtot,argv[1]);    } /* End age */
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_vector(xp,1,npar);
   /*cygwin_split_path(pathtot,path,optionfile);    free_matrix(doldm,1,nlstate,1,npar);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_matrix(dnewm,1,nlstate,1,nlstate);
   /* cutv(path,optionfile,pathtot,'\\');*/  
   }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /************ Variance of one-step probabilities  ******************/
   chdir(path);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   replace(pathc,path);  {
     int i, j=0,  i1, k1, l1, t, tj;
 /*-------- arguments in the command line --------*/    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   /* Log file */    int first=1, first1;
   strcat(filelog, optionfilefiname);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   strcat(filelog,".log");    /* */    double **dnewm,**doldm;
   if((ficlog=fopen(filelog,"w"))==NULL)    {    double *xp;
     printf("Problem with logfile %s\n",filelog);    double *gp, *gm;
     goto end;    double **gradg, **trgradg;
   }    double **mu;
   fprintf(ficlog,"Log filename:%s\n",filelog);    double age,agelim, cov[NCOVMAX];
   fprintf(ficlog,"\n%s",version);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   fprintf(ficlog,"\nEnter the parameter file name: ");    int theta;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    char fileresprob[FILENAMELENGTH];
   fflush(ficlog);    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   /* */  
   strcpy(fileres,"r");    double ***varpij;
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   /*---------arguments file --------*/    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     printf("Problem with optionfile %s\n",optionfile);    }
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    strcpy(fileresprobcov,"probcov"); 
     goto end;    strcat(fileresprobcov,fileres);
   }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
   strcpy(filereso,"o");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   strcat(filereso,fileres);    }
   if((ficparo=fopen(filereso,"w"))==NULL) {    strcpy(fileresprobcor,"probcor"); 
     printf("Problem with Output resultfile: %s\n", filereso);    strcat(fileresprobcor,fileres);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     goto end;      printf("Problem with resultfile: %s\n", fileresprobcor);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   /* Reads comments: lines beginning with '#' */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     ungetc(c,ficpar);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     puts(line);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fputs(line,ficparo);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   }    pstamp(ficresprob);
   ungetc(c,ficpar);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    pstamp(ficresprobcov);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficresprobcov,"# Age");
 while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficresprobcor);
     ungetc(c,ficpar);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcor,"# Age");
     puts(line);  
     fputs(line,ficparo);  
   }    for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);      for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
            fprintf(ficresprobcov," p%1d-%1d ",i,j);
   covar=matrix(0,NCOVMAX,1,n);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   cptcovn=0;      }  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
   ncovmodel=2+cptcovn;    fprintf(ficresprobcor,"\n");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   */
     xp=vector(1,npar);
   /* Read guess parameters */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /* Reads comments: lines beginning with '#' */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   while((c=getc(ficpar))=='#' && c!= EOF){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     ungetc(c,ficpar);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     fgets(line, MAXLINE, ficpar);    first=1;
     puts(line);    fprintf(ficgp,"\n# Routine varprob");
     fputs(line,ficparo);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   }    fprintf(fichtm,"\n");
   ungetc(c,ficpar);  
      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     for(i=1; i <=nlstate; i++)    file %s<br>\n",optionfilehtmcov);
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       fscanf(ficpar,"%1d%1d",&i1,&j1);  and drawn. It helps understanding how is the covariance between two incidences.\
       fprintf(ficparo,"%1d%1d",i1,j1);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       if(mle==1)    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         printf("%1d%1d",i,j);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       fprintf(ficlog,"%1d%1d",i,j);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       for(k=1; k<=ncovmodel;k++){  standard deviations wide on each axis. <br>\
         fscanf(ficpar," %lf",&param[i][j][k]);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         if(mle==1){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           printf(" %lf",param[i][j][k]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           fprintf(ficlog," %lf",param[i][j][k]);  
         }    cov[1]=1;
         else    tj=cptcoveff;
           fprintf(ficlog," %lf",param[i][j][k]);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(ficparo," %lf",param[i][j][k]);    j1=0;
       }    for(t=1; t<=tj;t++){
       fscanf(ficpar,"\n");      for(i1=1; i1<=ncodemax[t];i1++){ 
       if(mle==1)        j1++;
         printf("\n");        if  (cptcovn>0) {
       fprintf(ficlog,"\n");          fprintf(ficresprob, "\n#********** Variable "); 
       fprintf(ficparo,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
   p=param[1][1];          
            fprintf(ficgp, "\n#********** Variable "); 
   /* Reads comments: lines beginning with '#' */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp, "**********\n#\n");
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          
     puts(line);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   ungetc(c,ficpar);          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          fprintf(ficresprobcor, "**********\n#");    
   for(i=1; i <=nlstate; i++){        }
     for(j=1; j <=nlstate+ndeath-1; j++){        
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for (age=bage; age<=fage; age ++){ 
       printf("%1d%1d",i,j);          cov[2]=age;
       fprintf(ficparo,"%1d%1d",i1,j1);          for (k=1; k<=cptcovn;k++) {
       for(k=1; k<=ncovmodel;k++){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         fscanf(ficpar,"%le",&delti3[i][j][k]);          }
         printf(" %le",delti3[i][j][k]);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         fprintf(ficparo," %le",delti3[i][j][k]);          for (k=1; k<=cptcovprod;k++)
       }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fscanf(ficpar,"\n");          
       printf("\n");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       fprintf(ficparo,"\n");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }          gp=vector(1,(nlstate)*(nlstate+ndeath));
   }          gm=vector(1,(nlstate)*(nlstate+ndeath));
   delti=delti3[1][1];      
            for(theta=1; theta <=npar; theta++){
   /* Reads comments: lines beginning with '#' */            for(i=1; i<=npar; i++)
   while((c=getc(ficpar))=='#' && c!= EOF){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     ungetc(c,ficpar);            
     fgets(line, MAXLINE, ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     puts(line);            
     fputs(line,ficparo);            k=0;
   }            for(i=1; i<= (nlstate); i++){
   ungetc(c,ficpar);              for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
   matcov=matrix(1,npar,1,npar);                gp[k]=pmmij[i][j];
   for(i=1; i <=npar; i++){              }
     fscanf(ficpar,"%s",&str);            }
     if(mle==1)            
       printf("%s",str);            for(i=1; i<=npar; i++)
     fprintf(ficlog,"%s",str);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     fprintf(ficparo,"%s",str);      
     for(j=1; j <=i; j++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fscanf(ficpar," %le",&matcov[i][j]);            k=0;
       if(mle==1){            for(i=1; i<=(nlstate); i++){
         printf(" %.5le",matcov[i][j]);              for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficlog," %.5le",matcov[i][j]);                k=k+1;
       }                gm[k]=pmmij[i][j];
       else              }
         fprintf(ficlog," %.5le",matcov[i][j]);            }
       fprintf(ficparo," %.5le",matcov[i][j]);       
     }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     fscanf(ficpar,"\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     if(mle==1)          }
       printf("\n");  
     fprintf(ficlog,"\n");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     fprintf(ficparo,"\n");            for(theta=1; theta <=npar; theta++)
   }              trgradg[j][theta]=gradg[theta][j];
   for(i=1; i <=npar; i++)          
     for(j=i+1;j<=npar;j++)          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       matcov[i][j]=matcov[j][i];          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
              free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   if(mle==1)          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     printf("\n");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fprintf(ficlog,"\n");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
     /*-------- Rewriting paramater file ----------*/          
      strcpy(rfileres,"r");    /* "Rparameterfile */          k=0;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          for(i=1; i<=(nlstate); i++){
      strcat(rfileres,".");    /* */            for(j=1; j<=(nlstate+ndeath);j++){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              k=k+1;
     if((ficres =fopen(rfileres,"w"))==NULL) {              mu[k][(int) age]=pmmij[i][j];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            }
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          }
     }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     fprintf(ficres,"#%s\n",version);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                  varpij[i][j][(int)age] = doldm[i][j];
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {          /*printf("\n%d ",(int)age);
       printf("Problem with datafile: %s\n", datafile);goto end;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
     n= lastobs;  
     severity = vector(1,maxwav);          fprintf(ficresprob,"\n%d ",(int)age);
     outcome=imatrix(1,maxwav+1,1,n);          fprintf(ficresprobcov,"\n%d ",(int)age);
     num=ivector(1,n);          fprintf(ficresprobcor,"\n%d ",(int)age);
     moisnais=vector(1,n);  
     annais=vector(1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     moisdc=vector(1,n);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     andc=vector(1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     agedc=vector(1,n);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     cod=ivector(1,n);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     weight=vector(1,n);          }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          i=0;
     mint=matrix(1,maxwav,1,n);          for (k=1; k<=(nlstate);k++){
     anint=matrix(1,maxwav,1,n);            for (l=1; l<=(nlstate+ndeath);l++){ 
     s=imatrix(1,maxwav+1,1,n);              i=i++;
     adl=imatrix(1,maxwav+1,1,n);                  fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     tab=ivector(1,NCOVMAX);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     ncodemax=ivector(1,8);              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     i=1;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     while (fgets(line, MAXLINE, fic) != NULL)    {              }
       if ((i >= firstobs) && (i <=lastobs)) {            }
                  }/* end of loop for state */
         for (j=maxwav;j>=1;j--){        } /* end of loop for age */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);        /* Confidence intervalle of pij  */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        /*
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset noparametric;unset label");
         }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                  fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        */
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         for (j=ncovcol;j>=1;j--){        first1=1;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for (k2=1; k2<=(nlstate);k2++){
         }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         num[i]=atol(stra);            if(l2==k2) continue;
                    j=(k2-1)*(nlstate+ndeath)+l2;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            for (k1=1; k1<=(nlstate);k1++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
         i=i+1;                i=(k1-1)*(nlstate+ndeath)+l1;
       }                if(i<=j) continue;
     }                for (age=bage; age<=fage; age ++){ 
     /* printf("ii=%d", ij);                  if ((int)age %5==0){
        scanf("%d",i);*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   imx=i-1; /* Number of individuals */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /* for (i=1; i<=imx; i++){                    mu1=mu[i][(int) age]/stepm*YEARM ;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                    mu2=mu[j][(int) age]/stepm*YEARM;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                    c12=cv12/sqrt(v1*v2);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                    /* Computing eigen value of matrix of covariance */
     }*/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    /*  for (i=1; i<=imx; i++){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      if (s[4][i]==9)  s[4][i]=-1;                    /* Eigen vectors */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                      /*v21=sqrt(1.-v11*v11); *//* error */
                      v21=(lc1-v1)/cv12*v11;
   /* Calculation of the number of parameter from char model*/                    v12=-v21;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                    v22=v11;
   Tprod=ivector(1,15);                    tnalp=v21/v11;
   Tvaraff=ivector(1,15);                    if(first1==1){
   Tvard=imatrix(1,15,1,2);                      first1=0;
   Tage=ivector(1,15);                            printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                        }
   if (strlen(model) >1){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     j=0, j1=0, k1=1, k2=1;                    /*printf(fignu*/
     j=nbocc(model,'+');                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     j1=nbocc(model,'*');                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     cptcovn=j+1;                    if(first==1){
     cptcovprod=j1;                      first=0;
                          fprintf(ficgp,"\nset parametric;unset label");
     strcpy(modelsav,model);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       printf("Error. Non available option model=%s ",model);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       fprintf(ficlog,"Error. Non available option model=%s ",model);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       goto end;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                  subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     for(i=(j+1); i>=1;i--){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       /*scanf("%d",i);*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       if (strchr(strb,'*')) {  /* Model includes a product */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         if (strcmp(strc,"age")==0) { /* Vn*age */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           cptcovprod--;                    }else{
           cutv(strb,stre,strd,'V');                      first=0;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           cptcovage++;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             Tage[cptcovage]=i;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
             /*printf("stre=%s ", stre);*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           cptcovprod--;                    }/* if first */
           cutv(strb,stre,strc,'V');                  } /* age mod 5 */
           Tvar[i]=atoi(stre);                } /* end loop age */
           cptcovage++;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           Tage[cptcovage]=i;                first=1;
         }              } /*l12 */
         else {  /* Age is not in the model */            } /* k12 */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          } /*l1 */
           Tvar[i]=ncovcol+k1;        }/* k1 */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      } /* loop covariates */
           Tprod[k1]=i;    }
           Tvard[k1][1]=atoi(strc); /* m*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           Tvard[k1][2]=atoi(stre); /* n */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           Tvar[cptcovn+k2]=Tvard[k1][1];    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           for (k=1; k<=lastobs;k++)    free_vector(xp,1,npar);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fclose(ficresprob);
           k1++;    fclose(ficresprobcov);
           k2=k2+2;    fclose(ficresprobcor);
         }    fflush(ficgp);
       }    fflush(fichtmcov);
       else { /* no more sum */  }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');  /******************* Printing html file ***********/
       Tvar[i]=atoi(strc);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       }                    int lastpass, int stepm, int weightopt, char model[],\
       strcpy(modelsav,stra);                      int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                    int popforecast, int estepm ,\
         scanf("%d",i);*/                    double jprev1, double mprev1,double anprev1, \
     } /* end of loop + */                    double jprev2, double mprev2,double anprev2){
   } /* end model */    int jj1, k1, i1, cpt;
    
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   printf("cptcovprod=%d ", cptcovprod);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  </ul>");
   scanf("%d ",i);*/     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     fclose(fic);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     /*  if(mle==1){*/     fprintf(fichtm,"\
     if (weightopt != 1) { /* Maximisation without weights*/   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       for(i=1;i<=n;i++) weight[i]=1.0;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     }     fprintf(fichtm,"\
     /*-calculation of age at interview from date of interview and age at death -*/   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     agev=matrix(1,maxwav,1,imx);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
     for (i=1; i<=imx; i++) {   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
       for(m=2; (m<= maxwav); m++) {     <a href=\"%s\">%s</a> <br>\n</li>",
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
          anint[m][i]=9999;  
          s[m][i]=-1;  
        }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }   m=cptcoveff;
     }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
     for (i=1; i<=imx; i++)  {   jj1=0;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);   for(k1=1; k1<=m;k1++){
       for(m=1; (m<= maxwav); m++){     for(i1=1; i1<=ncodemax[k1];i1++){
         if(s[m][i] >0){       jj1++;
           if (s[m][i] >= nlstate+1) {       if (cptcovn > 0) {
             if(agedc[i]>0)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
               if(moisdc[i]!=99 && andc[i]!=9999)         for (cpt=1; cpt<=cptcoveff;cpt++) 
                 agev[m][i]=agedc[i];           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
            else {       }
               if (andc[i]!=9999){       /* Pij */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
               agev[m][i]=-1;       /* Quasi-incidences */
               }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
             }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
           }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           else if(s[m][i] !=9){ /* Should no more exist */         /* Period (stable) prevalence in each health state */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);         for(cpt=1; cpt<nlstate;cpt++){
             if(mint[m][i]==99 || anint[m][i]==9999)           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
               agev[m][i]=1;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             else if(agev[m][i] <agemin){         }
               agemin=agev[m][i];       for(cpt=1; cpt<=nlstate;cpt++) {
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
             }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
             else if(agev[m][i] >agemax){       }
               agemax=agev[m][i];     } /* end i1 */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   }/* End k1 */
             }   fprintf(fichtm,"</ul>");
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/  
           }   fprintf(fichtm,"\
           else { /* =9 */  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
             agev[m][i]=1;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
             s[m][i]=-1;  
           }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         else /*= 0 Unknown */   fprintf(fichtm,"\
           agev[m][i]=1;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
      
     }   fprintf(fichtm,"\
     for (i=1; i<=imx; i++)  {   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       for(m=1; (m<= maxwav); m++){           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
         if (s[m][i] > (nlstate+ndeath)) {   fprintf(fichtm,"\
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);       <a href=\"%s\">%s</a> <br>\n</li>",
           goto end;             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
         }   fprintf(fichtm,"\
       }   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     }     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   fprintf(fichtm,"\
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     free_vector(severity,1,maxwav);   fprintf(fichtm,"\
     free_imatrix(outcome,1,maxwav+1,1,n);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
     free_vector(moisnais,1,n);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     free_vector(annais,1,n);   fprintf(fichtm,"\
     /* free_matrix(mint,1,maxwav,1,n);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
        free_matrix(anint,1,maxwav,1,n);*/           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     wav=ivector(1,imx);  /*      <br>",fileres,fileres,fileres,fileres); */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  /*  else  */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       fflush(fichtm);
     /* Concatenates waves */   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   jj1=0;
       ncodemax[1]=1;   for(k1=1; k1<=m;k1++){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);     for(i1=1; i1<=ncodemax[k1];i1++){
             jj1++;
    codtab=imatrix(1,100,1,10);       if (cptcovn > 0) {
    h=0;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    m=pow(2,cptcoveff);         for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    for(k=1;k<=cptcoveff; k++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      for(i=1; i <=(m/pow(2,k));i++){       }
        for(j=1; j <= ncodemax[k]; j++){       for(cpt=1; cpt<=nlstate;cpt++) {
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
            h++;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       }
          }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
        }  health expectancies in states (1) and (2): %s%d.png<br>\
      }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
    }     } /* end i1 */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   }/* End k1 */
       codtab[1][2]=1;codtab[2][2]=2; */   fprintf(fichtm,"</ul>");
    /* for(i=1; i <=m ;i++){   fflush(fichtm);
       for(k=1; k <=cptcovn; k++){  }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }  /******************* Gnuplot file **************/
       printf("\n");  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       }  
       scanf("%d",i);*/    char dirfileres[132],optfileres[132];
        int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
    /* Calculates basic frequencies. Computes observed prevalence at single age    int ng;
        and prints on file fileres'p'. */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
      /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
      /*   } */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*#ifdef windows */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"cd \"%s\" \n",pathc);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /*#endif */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    m=pow(2,cptcoveff);
        
     /* For Powell, parameters are in a vector p[] starting at p[1]    strcpy(dirfileres,optionfilefiname);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    strcpy(optfileres,"vpl");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
     if(mle==1){     for (k1=1; k1<= m ; k1 ++) {
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \n\
     /*--------- results files --------------*/  set ylabel \"Probability\" \n\
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  set ter png small\n\
    set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       for (i=1; i<= nlstate ; i ++) {
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
    for(i=1,jk=1; i <=nlstate; i++){       }
      for(k=1; k <=(nlstate+ndeath); k++){       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        if (k != i)       for (i=1; i<= nlstate ; i ++) {
          {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            printf("%d%d ",i,k);         else fprintf(ficgp," \%%*lf (\%%*lf)");
            fprintf(ficlog,"%d%d ",i,k);       } 
            fprintf(ficres,"%1d%1d ",i,k);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
            for(j=1; j <=ncovmodel; j++){       for (i=1; i<= nlstate ; i ++) {
              printf("%f ",p[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
              fprintf(ficlog,"%f ",p[jk]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
              fprintf(ficres,"%f ",p[jk]);       }  
              jk++;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
            }     }
            printf("\n");    }
            fprintf(ficlog,"\n");    /*2 eme*/
            fprintf(ficres,"\n");    
          }    for (k1=1; k1<= m ; k1 ++) { 
      }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
    }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
    if(mle==1){      
      /* Computing hessian and covariance matrix */      for (i=1; i<= nlstate+1 ; i ++) {
      ftolhess=ftol; /* Usually correct */        k=2*i;
      hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
    }        for (j=1; j<= nlstate+1 ; j ++) {
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    printf("# Scales (for hessian or gradient estimation)\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        }   
    for(i=1,jk=1; i <=nlstate; i++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
      for(j=1; j <=nlstate+ndeath; j++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
        if (j!=i) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          fprintf(ficres,"%1d%1d",i,j);        for (j=1; j<= nlstate+1 ; j ++) {
          printf("%1d%1d",i,j);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
          fprintf(ficlog,"%1d%1d",i,j);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          for(k=1; k<=ncovmodel;k++){        }   
            printf(" %.5e",delti[jk]);        fprintf(ficgp,"\" t\"\" w l 0,");
            fprintf(ficlog," %.5e",delti[jk]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
            fprintf(ficres," %.5e",delti[jk]);        for (j=1; j<= nlstate+1 ; j ++) {
            jk++;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
          }          else fprintf(ficgp," \%%*lf (\%%*lf)");
          printf("\n");        }   
          fprintf(ficlog,"\n");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
          fprintf(ficres,"\n");        else fprintf(ficgp,"\" t\"\" w l 0,");
        }      }
      }    }
    }    
        /*3eme*/
    k=1;    
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    for (k1=1; k1<= m ; k1 ++) { 
    if(mle==1)      for (cpt=1; cpt<= nlstate ; cpt ++) {
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        /*       k=2+nlstate*(2*cpt-2); */
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        k=2+(nlstate+1)*(cpt-1);
    for(i=1;i<=npar;i++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
      /*  if (k>nlstate) k=1;        fprintf(ficgp,"set ter png small\n\
          i1=(i-1)/(ncovmodel*nlstate)+1;  set size 0.65,0.65\n\
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          printf("%s%d%d",alph[k],i1,tab[i]);*/        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
      fprintf(ficres,"%3d",i);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      if(mle==1)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
        printf("%3d",i);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
      fprintf(ficlog,"%3d",i);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      for(j=1; j<=i;j++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
        fprintf(ficres," %.5e",matcov[i][j]);          
        if(mle==1)        */
          printf(" %.5e",matcov[i][j]);        for (i=1; i< nlstate ; i ++) {
        fprintf(ficlog," %.5e",matcov[i][j]);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
      }          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
      fprintf(ficres,"\n");          
      if(mle==1)        } 
        printf("\n");        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
      fprintf(ficlog,"\n");      }
      k++;    }
    }    
        /* CV preval stable (period) */
    while((c=getc(ficpar))=='#' && c!= EOF){    for (k1=1; k1<= m ; k1 ++) { 
      ungetc(c,ficpar);      for (cpt=1; cpt<=nlstate ; cpt ++) {
      fgets(line, MAXLINE, ficpar);        k=3;
      puts(line);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
      fputs(line,ficparo);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    }  set ter png small\nset size 0.65,0.65\n\
    ungetc(c,ficpar);  unset log y\n\
    estepm=0;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        
    if (estepm==0 || estepm < stepm) estepm=stepm;        for (i=1; i< nlstate ; i ++)
    if (fage <= 2) {          fprintf(ficgp,"+$%d",k+i+1);
      bage = ageminpar;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
      fage = agemaxpar;        
    }        l=3+(nlstate+ndeath)*cpt;
            fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        for (i=1; i< nlstate ; i ++) {
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          l=3+(nlstate+ndeath)*cpt;
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficgp,"+$%d",l+i+1);
            }
    while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
      ungetc(c,ficpar);      } 
      fgets(line, MAXLINE, ficpar);    }  
      puts(line);    
      fputs(line,ficparo);    /* proba elementaires */
    }    for(i=1,jk=1; i <=nlstate; i++){
    ungetc(c,ficpar);      for(k=1; k <=(nlstate+ndeath); k++){
          if (k != i) {
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          for(j=1; j <=ncovmodel; j++){
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            jk++; 
                fprintf(ficgp,"\n");
    while((c=getc(ficpar))=='#' && c!= EOF){          }
      ungetc(c,ficpar);        }
      fgets(line, MAXLINE, ficpar);      }
      puts(line);     }
      fputs(line,ficparo);  
    }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
    ungetc(c,ficpar);       for(jk=1; jk <=m; jk++) {
           fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
    dateprev1=anprev1+mprev1/12.+jprev1/365.;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
   fscanf(ficpar,"pop_based=%d\n",&popbased);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   fprintf(ficparo,"pop_based=%d\n",popbased);           i=1;
   fprintf(ficres,"pop_based=%d\n",popbased);           for(k2=1; k2<=nlstate; k2++) {
             k3=i;
   while((c=getc(ficpar))=='#' && c!= EOF){           for(k=1; k<=(nlstate+ndeath); k++) {
     ungetc(c,ficpar);             if (k != k2){
     fgets(line, MAXLINE, ficpar);               if(ng==2)
     puts(line);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     fputs(line,ficparo);               else
   }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   ungetc(c,ficpar);               ij=1;
                for(j=3; j <=ncovmodel; j++) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                   ij++;
                  }
                  else
 while((c=getc(ficpar))=='#' && c!= EOF){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     ungetc(c,ficpar);               }
     fgets(line, MAXLINE, ficpar);               fprintf(ficgp,")/(1");
     puts(line);               
     fputs(line,ficparo);               for(k1=1; k1 <=nlstate; k1++){   
   }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   ungetc(c,ficpar);                 ij=1;
                  for(j=3; j <=ncovmodel; j++){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                     ij++;
                    }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                   else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 /*------------ gnuplot -------------*/                 }
   strcpy(optionfilegnuplot,optionfilefiname);                 fprintf(ficgp,")");
   strcat(optionfilegnuplot,".gp");               }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     printf("Problem with file %s",optionfilegnuplot);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   }               i=i+ncovmodel;
   fclose(ficgp);             }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);           } /* end k */
 /*--------- index.htm --------*/         } /* end k2 */
        } /* end jk */
   strcpy(optionfilehtm,optionfile);     } /* end ng */
   strcat(optionfilehtm,".htm");     fflush(ficgp); 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  }  /* end gnuplot */
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }  
   /*************** Moving average **************/
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n    int i, cpt, cptcod;
 Total number of observations=%d <br>\n    int modcovmax =1;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    int mobilavrange, mob;
 <hr  size=\"2\" color=\"#EC5E5E\">    double age;
  <ul><li><h4>Parameter files</h4>\n  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                             a covariate has 2 modalities */
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   fclose(fichtm);  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      if(mobilav==1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
 /*------------ free_vector  -------------*/      for (age=bage; age<=fage; age++)
  chdir(path);        for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=modcovmax;cptcod++)
  free_ivector(wav,1,imx);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      /* We keep the original values on the extreme ages bage, fage and for 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
  free_ivector(num,1,n);         we use a 5 terms etc. until the borders are no more concerned. 
  free_vector(agedc,1,n);      */ 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
  fclose(ficparo);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
  fclose(ficres);          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   /*--------------- Prevalence limit --------------*/                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   strcpy(filerespl,"pl");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   strcat(filerespl,fileres);                }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            }
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;          }
   }        }/* end age */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      }/* end mob */
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    }else return -1;
   fprintf(ficrespl,"#Prevalence limit\n");    return 0;
   fprintf(ficrespl,"#Age ");  }/* End movingaverage */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");  
    /************** Forecasting ******************/
   prlim=matrix(1,nlstate,1,nlstate);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* proj1, year, month, day of starting projection 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       agemin, agemax range of age
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       dateprev1 dateprev2 range of dates during which prevalence is computed
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       anproj2 year of en of projection (same day and month as proj1).
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    */
   k=0;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   agebase=ageminpar;    int *popage;
   agelim=agemaxpar;    double agec; /* generic age */
   ftolpl=1.e-10;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   i1=cptcoveff;    double *popeffectif,*popcount;
   if (cptcovn < 1){i1=1;}    double ***p3mat;
     double ***mobaverage;
   for(cptcov=1;cptcov<=i1;cptcov++){    char fileresf[FILENAMELENGTH];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    agelim=AGESUP;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficrespl,"\n#******");   
         printf("\n#******");    strcpy(fileresf,"f"); 
         fprintf(ficlog,"\n#******");    strcat(fileresf,fileres);
         for(j=1;j<=cptcoveff;j++) {    if((ficresf=fopen(fileresf,"w"))==NULL) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with forecast resultfile: %s\n", fileresf);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         }    printf("Computing forecasting: result on file '%s' \n", fileresf);
         fprintf(ficrespl,"******\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         printf("******\n");  
         fprintf(ficlog,"******\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
          
         for (age=agebase; age<=agelim; age++){    if (mobilav!=0) {
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespl,"%.0f",age );      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           for(i=1; i<=nlstate;i++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficrespl," %.5f", prlim[i][i]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficrespl,"\n");      }
         }    }
       }  
     }    stepsize=(int) (stepm+YEARM-1)/YEARM;
   fclose(ficrespl);    if (stepm<=12) stepsize=1;
     if(estepm < stepm){
   /*------------- h Pij x at various ages ------------*/      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    else  hstepm=estepm;   
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    hstepm=hstepm/stepm; 
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   }                                 fractional in yp1 */
   printf("Computing pij: result on file '%s' \n", filerespij);    anprojmean=yp;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    yp2=modf((yp1*12),&yp);
      mprojmean=yp;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    yp1=modf((yp2*30.5),&yp);
   /*if (stepm<=24) stepsize=2;*/    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
   agelim=AGESUP;    if(mprojmean==0) jprojmean=1;
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   /* hstepm=1;   aff par mois*/    
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   k=0;    
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresf,"#****** Routine prevforecast **\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  /*            if (h==(int)(YEARM*yearp)){ */
         fprintf(ficrespij,"\n#****** ");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         for(j=1;j<=cptcoveff;j++)      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        k=k+1;
         fprintf(ficrespij,"******\n");        fprintf(ficresf,"\n#******");
                for(j=1;j<=cptcoveff;j++) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresf," p%d%d",i,j);
           oldm=oldms;savm=savms;          fprintf(ficresf," p.%d",j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
           fprintf(ficrespij,"# Age");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           for(i=1; i<=nlstate;i++)          fprintf(ficresf,"\n");
             for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");          for (agec=fage; agec>=(ageminpar-1); agec--){ 
            for (h=0; h<=nhstepm; h++){            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            nhstepm = nhstepm/hstepm; 
             for(i=1; i<=nlstate;i++)            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               for(j=1; j<=nlstate+ndeath;j++)            oldm=oldms;savm=savms;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"\n");          
              }            for (h=0; h<=nhstepm; h++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if (h*hstepm/YEARM*stepm ==yearp) {
           fprintf(ficrespij,"\n");                fprintf(ficresf,"\n");
         }                for(j=1;j<=cptcoveff;j++) 
     }                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);              for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
   fclose(ficrespij);                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   /*---------- Forecasting ------------------*/                  else {
   if((stepm == 1) && (strcmp(model,".")==0)){                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                  }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                  if (h*hstepm/YEARM*stepm== yearp) {
   }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   else{                  }
     erreur=108;                } /* end i */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                if (h*hstepm/YEARM*stepm==yearp) {
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                  fprintf(ficresf," %.3f", ppij);
   }                }
                }/* end j */
             } /* end h */
   /*---------- Health expectancies and variances ------------*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
   strcpy(filerest,"t");        } /* end yearp */
   strcat(filerest,fileres);      } /* end cptcod */
   if((ficrest=fopen(filerest,"w"))==NULL) {    } /* end  cptcov */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;         
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fclose(ficresf);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);  }
   
   /************** Forecasting *****not tested NB*************/
   strcpy(filerese,"e");  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    int *popage;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double calagedatem, agelim, kk1, kk2;
   }    double *popeffectif,*popcount;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double ***p3mat,***tabpop,***tabpopprev;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    agelim=AGESUP;
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   }    
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    
   calagedate=-1;    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
   k=0;    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   for(cptcov=1;cptcov<=i1;cptcov++){      printf("Problem with forecast resultfile: %s\n", filerespop);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       k=k+1;    }
       fprintf(ficrest,"\n#****** ");    printf("Computing forecasting: result on file '%s' \n", filerespop);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
       fprintf(ficreseij,"\n#****** ");    if (mobilav!=0) {
       for(j=1;j<=cptcoveff;j++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       fprintf(ficreseij,"******\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficresvij,"\n#****** ");      }
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;    agelim=AGESUP;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      
      hstepm=1;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    hstepm=hstepm/stepm; 
       oldm=oldms;savm=savms;    
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    if (popforecast==1) {
       if(popbased==1){      if((ficpop=fopen(popfile,"r"))==NULL) {
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);        printf("Problem with population file : %s\n",popfile);exit(0);
        }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
        popage=ivector(0,AGESUP);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      popeffectif=vector(0,AGESUP);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      popcount=vector(0,AGESUP);
       fprintf(ficrest,"\n");      
       i=1;   
       epj=vector(1,nlstate+1);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       for(age=bage; age <=fage ;age++){     
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      imx=i;
         if (popbased==1) {      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
           for(i=1; i<=nlstate;i++)    }
             prlim[i][i]=probs[(int)age][i][k];  
         }    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
             for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficrest," %4.0f",age);        k=k+1;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        fprintf(ficrespop,"\n#******");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        for(j=1;j<=cptcoveff;j++) {
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        }
           }        fprintf(ficrespop,"******\n");
           epj[nlstate+1] +=epj[j];        fprintf(ficrespop,"# Age");
         }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         for(i=1, vepp=0.;i <=nlstate;i++)        
           for(j=1;j <=nlstate;j++)        for (cpt=0; cpt<=0;cpt++) { 
             vepp += vareij[i][j][(int)age];          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          
         for(j=1;j <=nlstate;j++){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         }            nhstepm = nhstepm/hstepm; 
         fprintf(ficrest,"\n");            
       }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }            oldm=oldms;savm=savms;
   }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 free_matrix(mint,1,maxwav,1,n);          
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);            for (h=0; h<=nhstepm; h++){
     free_vector(weight,1,n);              if (h==(int) (calagedatem+YEARM*cpt)) {
   fclose(ficreseij);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fclose(ficresvij);              } 
   fclose(ficrest);              for(j=1; j<=nlstate+ndeath;j++) {
   fclose(ficpar);                kk1=0.;kk2=0;
   free_vector(epj,1,nlstate+1);                for(i=1; i<=nlstate;i++) {              
                    if (mobilav==1) 
   /*------- Variance limit prevalence------*/                      kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
   strcpy(fileresvpl,"vpl");                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   strcat(fileresvpl,fileres);                  }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                if (h==(int)(calagedatem+12*cpt)){
     exit(0);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   }                    /*fprintf(ficrespop," %.3f", kk1);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
   k=0;              }
   for(cptcov=1;cptcov<=i1;cptcov++){              for(i=1; i<=nlstate;i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                kk1=0.;
       k=k+1;                  for(j=1; j<=nlstate;j++){
       fprintf(ficresvpl,"\n#****** ");                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
       for(j=1;j<=cptcoveff;j++)                  }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
       fprintf(ficresvpl,"******\n");              }
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
       oldm=oldms;savm=savms;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            }
     }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  }          }
         }
   fclose(ficresvpl);   
     /******/
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
            fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
              nhstepm = nhstepm/hstepm; 
              
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            oldm=oldms;savm=savms;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            for (h=0; h<=nhstepm; h++){
                if (h==(int) (calagedatem+YEARM*cpt)) {
   free_matrix(matcov,1,npar,1,npar);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   free_vector(delti,1,npar);              } 
   free_matrix(agev,1,maxwav,1,imx);              for(j=1; j<=nlstate+ndeath;j++) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   fprintf(fichtm,"\n</body>");                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   fclose(fichtm);                }
   fclose(ficgp);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
                }
             }
   if(erreur >0){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("End of Imach with error or warning %d\n",erreur);          }
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);        }
   }else{     } 
    printf("End of Imach\n");    }
    fprintf(ficlog,"End of Imach\n");   
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("See log file on %s\n",filelog);  
   fclose(ficlog);    if (popforecast==1) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      free_ivector(popage,0,AGESUP);
        free_vector(popeffectif,0,AGESUP);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      free_vector(popcount,0,AGESUP);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    }
   /*------ End -----------*/    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
  end:  } /* End of popforecast */
 #ifdef windows  
   /* chdir(pathcd);*/  int fileappend(FILE *fichier, char *optionfich)
 #endif  {
  /*system("wgnuplot graph.plt");*/    if((fichier=fopen(optionfich,"a"))==NULL) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/      printf("Problem with file: %s\n", optionfich);
  /*system("cd ../gp37mgw");*/      fprintf(ficlog,"Problem with file: %s\n", optionfich);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      return (0);
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");    fflush(fichier);
  strcat(plotcmd,optionfilegnuplot);    return (1);
  system(plotcmd);  }
   
 #ifdef windows  
   while (z[0] != 'q') {  /**************** function prwizard **********************/
     /* chdir(path); */  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  {
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    /* Wizard to print covariance matrix template */
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    char ca[32], cb[32], cc[32];
     else if (z[0] == 'q') exit(0);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   }    int numlinepar;
 #endif  
 }    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.118


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>