Diff for /imach/src/imach.c between versions 1.52 and 1.95

version 1.52, 2002/07/19 18:49:30 version 1.95, 2003/07/08 07:54:34
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.95  2003/07/08 07:54:34  brouard
      * imach.c (Repository):
   This program computes Healthy Life Expectancies from    (Repository): Using imachwizard code to output a more meaningful covariance
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    matrix (cov(a12,c31) instead of numbers.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.94  2003/06/27 13:00:02  brouard
   case of a health survey which is our main interest) -2- at least a    Just cleaning
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.93  2003/06/25 16:33:55  brouard
   computed from the time spent in each health state according to a    (Module): On windows (cygwin) function asctime_r doesn't
   model. More health states you consider, more time is necessary to reach the    exist so I changed back to asctime which exists.
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Version 0.96b
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.92  2003/06/25 16:30:45  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): On windows (cygwin) function asctime_r doesn't
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    exist so I changed back to asctime which exists.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.91  2003/06/25 15:30:29  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Duplicated warning errors corrected.
   you to do it.  More covariates you add, slower the    (Repository): Elapsed time after each iteration is now output. It
   convergence.    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
   The advantage of this computer programme, compared to a simple    concerning matrix of covariance. It has extension -cov.htm.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.90  2003/06/24 12:34:15  brouard
   intermediate interview, the information is lost, but taken into    (Module): Some bugs corrected for windows. Also, when
   account using an interpolation or extrapolation.      mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.89  2003/06/24 12:30:52  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Some bugs corrected for windows. Also, when
   states. This elementary transition (by month or quarter trimester,    mle=-1 a template is output in file "or"mypar.txt with the design
   semester or year) is model as a multinomial logistic.  The hPx    of the covariance matrix to be input.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.88  2003/06/23 17:54:56  brouard
   hPijx.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.87  2003/06/18 12:26:01  brouard
   of the life expectancies. It also computes the prevalence limits.    Version 0.96
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.86  2003/06/17 20:04:08  brouard
            Institut national d'études démographiques, Paris.    (Module): Change position of html and gnuplot routines and added
   This software have been partly granted by Euro-REVES, a concerted action    routine fileappend.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.85  2003/06/17 13:12:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Check when date of death was earlier that
   can be accessed at http://euroreves.ined.fr/imach .    current date of interview. It may happen when the death was just
   **********************************************************************/    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
 #include <math.h>    assuming that the date of death was just one stepm after the
 #include <stdio.h>    interview.
 #include <stdlib.h>    (Repository): Because some people have very long ID (first column)
 #include <unistd.h>    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define MAXLINE 256    truncation)
 #define GNUPLOTPROGRAM "gnuplot"    (Repository): No more line truncation errors.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.84  2003/06/13 21:44:43  brouard
 /*#define DEBUG*/    * imach.c (Repository): Replace "freqsummary" at a correct
 #define windows    place. It differs from routine "prevalence" which may be called
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    many times. Probs is memory consuming and must be used with
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add log in  imach.c and  fullversion number is now printed.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000  */
 #define YEARM 12. /* Number of months per year */  /*
 #define AGESUP 130     Interpolated Markov Chain
 #define AGEBASE 40  
 #ifdef windows    Short summary of the programme:
 #define DIRSEPARATOR '\\'    
 #define ODIRSEPARATOR '/'    This program computes Healthy Life Expectancies from
 #else    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define DIRSEPARATOR '/'    first survey ("cross") where individuals from different ages are
 #define ODIRSEPARATOR '\\'    interviewed on their health status or degree of disability (in the
 #endif    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    (if any) in individual health status.  Health expectancies are
 int erreur; /* Error number */    computed from the time spent in each health state according to a
 int nvar;    model. More health states you consider, more time is necessary to reach the
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Maximum Likelihood of the parameters involved in the model.  The
 int npar=NPARMAX;    simplest model is the multinomial logistic model where pij is the
 int nlstate=2; /* Number of live states */    probability to be observed in state j at the second wave
 int ndeath=1; /* Number of dead states */    conditional to be observed in state i at the first wave. Therefore
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int popbased=0;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 int *wav; /* Number of waves for this individuual 0 is possible */    where the markup *Covariates have to be included here again* invites
 int maxwav; /* Maxim number of waves */    you to do it.  More covariates you add, slower the
 int jmin, jmax; /* min, max spacing between 2 waves */    convergence.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    The advantage of this computer programme, compared to a simple
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    multinomial logistic model, is clear when the delay between waves is not
 double jmean; /* Mean space between 2 waves */    identical for each individual. Also, if a individual missed an
 double **oldm, **newm, **savm; /* Working pointers to matrices */    intermediate interview, the information is lost, but taken into
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    account using an interpolation or extrapolation.  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    hPijx is the probability to be observed in state i at age x+h
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    conditional to the observed state i at age x. The delay 'h' can be
 FILE *ficresprobmorprev;    split into an exact number (nh*stepm) of unobserved intermediate
 FILE *fichtm; /* Html File */    states. This elementary transition (by month, quarter,
 FILE *ficreseij;    semester or year) is modelled as a multinomial logistic.  The hPx
 char filerese[FILENAMELENGTH];    matrix is simply the matrix product of nh*stepm elementary matrices
 FILE  *ficresvij;    and the contribution of each individual to the likelihood is simply
 char fileresv[FILENAMELENGTH];    hPijx.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Also this programme outputs the covariance matrix of the parameters but also
 char title[MAXLINE];    of the life expectancies. It also computes the stable prevalence. 
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    This software have been partly granted by Euro-REVES, a concerted action
 char filelog[FILENAMELENGTH]; /* Log file */    from the European Union.
 char filerest[FILENAMELENGTH];    It is copyrighted identically to a GNU software product, ie programme and
 char fileregp[FILENAMELENGTH];    software can be distributed freely for non commercial use. Latest version
 char popfile[FILENAMELENGTH];    can be accessed at http://euroreves.ined.fr/imach .
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define NR_END 1    
 #define FREE_ARG char*    **********************************************************************/
 #define FTOL 1.0e-10  /*
     main
 #define NRANSI    read parameterfile
 #define ITMAX 200    read datafile
     concatwav
 #define TOL 2.0e-4    freqsummary
     if (mle >= 1)
 #define CGOLD 0.3819660      mlikeli
 #define ZEPS 1.0e-10    print results files
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    if mle==1 
        computes hessian
 #define GOLD 1.618034    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define GLIMIT 100.0        begin-prev-date,...
 #define TINY 1.0e-20    open gnuplot file
     open html file
 static double maxarg1,maxarg2;    stable prevalence
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))     for age prevalim()
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    h Pij x
      variance of p varprob
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    forecasting if prevfcast==1 prevforecast call prevalence()
 #define rint(a) floor(a+0.5)    health expectancies
     Variance-covariance of DFLE
 static double sqrarg;    prevalence()
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)     movingaverage()
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    varevsij() 
     if popbased==1 varevsij(,popbased)
 int imx;    total life expectancies
 int stepm;    Variance of stable prevalence
 /* Stepm, step in month: minimum step interpolation*/   end
   */
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
   
 int m,nb;   
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #include <math.h>
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #include <stdio.h>
 double **pmmij, ***probs, ***mobaverage;  #include <stdlib.h>
 double dateintmean=0;  #include <unistd.h>
   
 double *weight;  #include <sys/time.h>
 int **s; /* Status */  #include <time.h>
 double *agedc, **covar, idx;  #include "timeval.h"
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   /* #include <libintl.h> */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  /* #define _(String) gettext (String) */
 double ftolhess; /* Tolerance for computing hessian */  
   #define MAXLINE 256
 /**************** split *************************/  #define GNUPLOTPROGRAM "gnuplot"
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 {  #define FILENAMELENGTH 132
    char *s;                             /* pointer */  /*#define DEBUG*/
    int  l1, l2;                         /* length counters */  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    l1 = strlen( path );                 /* length of path */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    if ( s == NULL ) {                   /* no directory, so use current */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #define NINTERVMAX 8
 #if     defined(__bsd__)                /* get current working directory */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       extern char       *getwd( );  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
       if ( getwd( dirc ) == NULL ) {  #define MAXN 20000
 #else  #define YEARM 12. /* Number of months per year */
       extern char       *getcwd( );  #define AGESUP 130
   #define AGEBASE 40
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #ifdef unix
 #endif  #define DIRSEPARATOR '/'
          return( GLOCK_ERROR_GETCWD );  #define ODIRSEPARATOR '\\'
       }  #else
       strcpy( name, path );             /* we've got it */  #define DIRSEPARATOR '\\'
    } else {                             /* strip direcotry from path */  #define ODIRSEPARATOR '/'
       s++;                              /* after this, the filename */  #endif
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /* $Id$ */
       strcpy( name, s );                /* save file name */  /* $State$ */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
    }  char fullversion[]="$Revision$ $Date$"; 
    l1 = strlen( dirc );                 /* length of directory */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 #ifdef windows  int nvar;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #else  int npar=NPARMAX;
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int nlstate=2; /* Number of live states */
 #endif  int ndeath=1; /* Number of dead states */
    s = strrchr( name, '.' );            /* find last / */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    s++;  int popbased=0;
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  int *wav; /* Number of waves for this individuual 0 is possible */
    l2= strlen( s)+1;  int maxwav; /* Maxim number of waves */
    strncpy( finame, name, l1-l2);  int jmin, jmax; /* min, max spacing between 2 waves */
    finame[l1-l2]= 0;  int gipmx, gsw; /* Global variables on the number of contributions 
    return( 0 );                         /* we're done */                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /******************************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 void replace(char *s, char*t)  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   int i;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   int lg=20;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   i=0;  FILE *ficlog, *ficrespow;
   lg=strlen(t);  int globpr; /* Global variable for printing or not */
   for(i=0; i<= lg; i++) {  double fretone; /* Only one call to likelihood */
     (s[i] = t[i]);  long ipmx; /* Number of contributions */
     if (t[i]== '\\') s[i]='/';  double sw; /* Sum of weights */
   }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 int nbocc(char *s, char occ)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   int i,j=0;  FILE *ficreseij;
   int lg=20;  char filerese[FILENAMELENGTH];
   i=0;  FILE  *ficresvij;
   lg=strlen(s);  char fileresv[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  FILE  *ficresvpl;
   if  (s[i] == occ ) j++;  char fileresvpl[FILENAMELENGTH];
   }  char title[MAXLINE];
   return j;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH]; 
 void cutv(char *u,char *v, char*t, char occ)  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  char filelog[FILENAMELENGTH]; /* Log file */
   i=0;  char filerest[FILENAMELENGTH];
   for(j=0; j<=strlen(t)-1; j++) {  char fileregp[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char popfile[FILENAMELENGTH];
   }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   lg=strlen(t);  
   for(j=0; j<p; j++) {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     (u[j] = t[j]);  struct timezone tzp;
   }  extern int gettimeofday();
      u[p]='\0';  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
    for(j=0; j<= lg; j++) {  extern long time();
     if (j>=(p+1))(v[j-p-1] = t[j]);  char strcurr[80], strfor[80];
   }  
 }  #define NR_END 1
   #define FREE_ARG char*
 /********************** nrerror ********************/  #define FTOL 1.0e-10
   
 void nrerror(char error_text[])  #define NRANSI 
 {  #define ITMAX 200 
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  #define TOL 2.0e-4 
   exit(1);  
 }  #define CGOLD 0.3819660 
 /*********************** vector *******************/  #define ZEPS 1.0e-10 
 double *vector(int nl, int nh)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   double *v;  #define GOLD 1.618034 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define GLIMIT 100.0 
   if (!v) nrerror("allocation failure in vector");  #define TINY 1.0e-20 
   return v-nl+NR_END;  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /************************ free vector ******************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 void free_vector(double*v, int nl, int nh)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   free((FREE_ARG)(v+nl-NR_END));  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /************************ivector *******************************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 int *ivector(long nl,long nh)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  
   int *v;  int imx; 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int stepm;
   if (!v) nrerror("allocation failure in ivector");  /* Stepm, step in month: minimum step interpolation*/
   return v-nl+NR_END;  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  int m,nb;
 {  long *num;
   free((FREE_ARG)(v+nl-NR_END));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 /******************* imatrix *******************************/  double dateintmean=0;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double *weight;
 {  int **s; /* Status */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double *agedc, **covar, idx;
   int **m;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    
   /* allocate pointers to rows */  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double ftolhess; /* Tolerance for computing hessian */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /**************** split *************************/
   m -= nrl;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    {
      char  *ss;                            /* pointer */
   /* allocate rows and set pointers to them */    int   l1, l2;                         /* length counters */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    l1 = strlen(path );                   /* length of path */
   m[nrl] += NR_END;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl] -= ncl;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      if ( ss == NULL ) {                   /* no directory, so use current */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
          printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   /* return pointer to array of pointers to rows */      /* get current working directory */
   return m;      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /****************** free_imatrix *************************/      }
 void free_imatrix(m,nrl,nrh,ncl,nch)      strcpy( name, path );               /* we've got it */
       int **m;    } else {                              /* strip direcotry from path */
       long nch,ncl,nrh,nrl;      ss++;                               /* after this, the filename */
      /* free an int matrix allocated by imatrix() */      l2 = strlen( ss );                  /* length of filename */
 {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      strcpy( name, ss );         /* save file name */
   free((FREE_ARG) (m+nrl-NR_END));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
     }
 /******************* matrix *******************************/    l1 = strlen( dirc );                  /* length of directory */
 double **matrix(long nrl, long nrh, long ncl, long nch)    /*#ifdef windows
 {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #else
   double **m;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    */
   if (!m) nrerror("allocation failure 1 in matrix()");    ss = strrchr( name, '.' );            /* find last / */
   m += NR_END;    ss++;
   m -= nrl;    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    l2= strlen(ss)+1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    strncpy( finame, name, l1-l2);
   m[nrl] += NR_END;    finame[l1-l2]= 0;
   m[nrl] -= ncl;    return( 0 );                          /* we're done */
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  
 }  /******************************************/
   
 /*************************free matrix ************************/  void replace_back_to_slash(char *s, char*t)
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  {
 {    int i;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int lg=0;
   free((FREE_ARG)(m+nrl-NR_END));    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /******************* ma3x *******************************/      (s[i] = t[i]);
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      if (t[i]== '\\') s[i]='/';
 {    }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  }
   double ***m;  
   int nbocc(char *s, char occ)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    int i,j=0;
   m += NR_END;    int lg=20;
   m -= nrl;    i=0;
     lg=strlen(s);
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    for(i=0; i<= lg; i++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if  (s[i] == occ ) j++;
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;    return j;
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   void cutv(char *u,char *v, char*t, char occ)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    /* cuts string t into u and v where u is ended by char occ excluding it
   m[nrl][ncl] += NR_END;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m[nrl][ncl] -= nll;       gives u="abcedf" and v="ghi2j" */
   for (j=ncl+1; j<=nch; j++)    int i,lg,j,p=0;
     m[nrl][j]=m[nrl][j-1]+nlay;    i=0;
      for(j=0; j<=strlen(t)-1; j++) {
   for (i=nrl+1; i<=nrh; i++) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    }
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    lg=strlen(t);
   }    for(j=0; j<p; j++) {
   return m;      (u[j] = t[j]);
 }    }
        u[p]='\0';
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)     for(j=0; j<= lg; j++) {
 {      if (j>=(p+1))(v[j-p-1] = t[j]);
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /********************** nrerror ********************/
   
 /***************** f1dim *************************/  void nrerror(char error_text[])
 extern int ncom;  {
 extern double *pcom,*xicom;    fprintf(stderr,"ERREUR ...\n");
 extern double (*nrfunc)(double []);    fprintf(stderr,"%s\n",error_text);
      exit(EXIT_FAILURE);
 double f1dim(double x)  }
 {  /*********************** vector *******************/
   int j;  double *vector(int nl, int nh)
   double f;  {
   double *xt;    double *v;
      v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   xt=vector(1,ncom);    if (!v) nrerror("allocation failure in vector");
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    return v-nl+NR_END;
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 /*****************brent *************************/    free((FREE_ARG)(v+nl-NR_END));
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  }
 {  
   int iter;  /************************ivector *******************************/
   double a,b,d,etemp;  int *ivector(long nl,long nh)
   double fu,fv,fw,fx;  {
   double ftemp;    int *v;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double e=0.0;    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   a=(ax < cx ? ax : cx);  }
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  /******************free ivector **************************/
   fw=fv=fx=(*f)(x);  void free_ivector(int *v, long nl, long nh)
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    free((FREE_ARG)(v+nl-NR_END));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /************************lvector *******************************/
     fprintf(ficlog,".");fflush(ficlog);  long *lvector(long nl,long nh)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    long *v;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    free((FREE_ARG)(v+nl-NR_END));
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /******************* imatrix *******************************/
       q=2.0*(q-r);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       if (q > 0.0) p = -p;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       q=fabs(q);  { 
       etemp=e;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       e=d;    int **m; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    /* allocate pointers to rows */ 
       else {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         d=p/q;    if (!m) nrerror("allocation failure 1 in matrix()"); 
         u=x+d;    m += NR_END; 
         if (u-a < tol2 || b-u < tol2)    m -= nrl; 
           d=SIGN(tol1,xm-x);    
       }    
     } else {    /* allocate rows and set pointers to them */ 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m[nrl] += NR_END; 
     fu=(*f)(u);    m[nrl] -= ncl; 
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       SHFT(v,w,x,u)    
         SHFT(fv,fw,fx,fu)    /* return pointer to array of pointers to rows */ 
         } else {    return m; 
           if (u < x) a=u; else b=u;  } 
           if (fu <= fw || w == x) {  
             v=w;  /****************** free_imatrix *************************/
             w=u;  void free_imatrix(m,nrl,nrh,ncl,nch)
             fv=fw;        int **m;
             fw=fu;        long nch,ncl,nrh,nrl; 
           } else if (fu <= fv || v == x || v == w) {       /* free an int matrix allocated by imatrix() */ 
             v=u;  { 
             fv=fu;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           }    free((FREE_ARG) (m+nrl-NR_END)); 
         }  } 
   }  
   nrerror("Too many iterations in brent");  /******************* matrix *******************************/
   *xmin=x;  double **matrix(long nrl, long nrh, long ncl, long nch)
   return fx;  {
 }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
 /****************** mnbrak ***********************/  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!m) nrerror("allocation failure 1 in matrix()");
             double (*func)(double))    m += NR_END;
 {    m -= nrl;
   double ulim,u,r,q, dum;  
   double fu;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fa=(*func)(*ax);    m[nrl] += NR_END;
   *fb=(*func)(*bx);    m[nrl] -= ncl;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       SHFT(dum,*fb,*fa,dum)    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   *cx=(*bx)+GOLD*(*bx-*ax);     */
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /*************************free matrix ************************/
     q=(*bx-*cx)*(*fb-*fa);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     ulim=(*bx)+GLIMIT*(*cx-*bx);    free((FREE_ARG)(m+nrl-NR_END));
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /******************* ma3x *******************************/
       fu=(*func)(u);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
           SHFT(*fb,*fc,fu,(*func)(u))    double ***m;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       u=ulim;    if (!m) nrerror("allocation failure 1 in matrix()");
       fu=(*func)(u);    m += NR_END;
     } else {    m -= nrl;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     SHFT(*ax,*bx,*cx,u)    m[nrl] += NR_END;
       SHFT(*fa,*fb,*fc,fu)    m[nrl] -= ncl;
       }  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 /*************** linmin ************************/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 int ncom;    m[nrl][ncl] += NR_END;
 double *pcom,*xicom;    m[nrl][ncl] -= nll;
 double (*nrfunc)(double []);    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    
 {    for (i=nrl+1; i<=nrh; i++) {
   double brent(double ax, double bx, double cx,      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                double (*f)(double), double tol, double *xmin);      for (j=ncl+1; j<=nch; j++) 
   double f1dim(double x);        m[i][j]=m[i][j-1]+nlay;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));    return m; 
   int j;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double xx,xmin,bx,ax;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double fx,fb,fa;    */
    }
   ncom=n;  
   pcom=vector(1,n);  /*************************free ma3x ************************/
   xicom=vector(1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     pcom[j]=p[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     xicom[j]=xi[j];    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   ax=0.0;  
   xx=1.0;  /*************** function subdirf ***********/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  char *subdirf(char fileres[])
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    /* Caution optionfilefiname is hidden */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    strcpy(tmpout,optionfilefiname);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    strcat(tmpout,"/"); /* Add to the right */
 #endif    strcat(tmpout,fileres);
   for (j=1;j<=n;j++) {    return tmpout;
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  /*************** function subdirf2 ***********/
   free_vector(xicom,1,n);  char *subdirf2(char fileres[], char *preop)
   free_vector(pcom,1,n);  {
 }    
     /* Caution optionfilefiname is hidden */
 /*************** powell ************************/    strcpy(tmpout,optionfilefiname);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    strcat(tmpout,"/");
             double (*func)(double []))    strcat(tmpout,preop);
 {    strcat(tmpout,fileres);
   void linmin(double p[], double xi[], int n, double *fret,    return tmpout;
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /*************** function subdirf3 ***********/
   double fp,fptt;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double *xits;  {
   pt=vector(1,n);    
   ptt=vector(1,n);    /* Caution optionfilefiname is hidden */
   xit=vector(1,n);    strcpy(tmpout,optionfilefiname);
   xits=vector(1,n);    strcat(tmpout,"/");
   *fret=(*func)(p);    strcat(tmpout,preop);
   for (j=1;j<=n;j++) pt[j]=p[j];    strcat(tmpout,preop2);
   for (*iter=1;;++(*iter)) {    strcat(tmpout,fileres);
     fp=(*fret);    return tmpout;
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /***************** f1dim *************************/
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  extern int ncom; 
     for (i=1;i<=n;i++)  extern double *pcom,*xicom;
       printf(" %d %.12f",i, p[i]);  extern double (*nrfunc)(double []); 
     fprintf(ficlog," %d %.12f",i, p[i]);   
     printf("\n");  double f1dim(double x) 
     fprintf(ficlog,"\n");  { 
     for (i=1;i<=n;i++) {    int j; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    double f;
       fptt=(*fret);    double *xt; 
 #ifdef DEBUG   
       printf("fret=%lf \n",*fret);    xt=vector(1,ncom); 
       fprintf(ficlog,"fret=%lf \n",*fret);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 #endif    f=(*nrfunc)(xt); 
       printf("%d",i);fflush(stdout);    free_vector(xt,1,ncom); 
       fprintf(ficlog,"%d",i);fflush(ficlog);    return f; 
       linmin(p,xit,n,fret,func);  } 
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /*****************brent *************************/
         ibig=i;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       }  { 
 #ifdef DEBUG    int iter; 
       printf("%d %.12e",i,(*fret));    double a,b,d,etemp;
       fprintf(ficlog,"%d %.12e",i,(*fret));    double fu,fv,fw,fx;
       for (j=1;j<=n;j++) {    double ftemp;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         printf(" x(%d)=%.12e",j,xit[j]);    double e=0.0; 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);   
       }    a=(ax < cx ? ax : cx); 
       for(j=1;j<=n;j++) {    b=(ax > cx ? ax : cx); 
         printf(" p=%.12e",p[j]);    x=w=v=bx; 
         fprintf(ficlog," p=%.12e",p[j]);    fw=fv=fx=(*f)(x); 
       }    for (iter=1;iter<=ITMAX;iter++) { 
       printf("\n");      xm=0.5*(a+b); 
       fprintf(ficlog,"\n");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 #endif      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
       int k[2],l;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       k[0]=1;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       k[1]=-1;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       printf("Max: %.12e",(*func)(p));  #endif
       fprintf(ficlog,"Max: %.12e",(*func)(p));      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (j=1;j<=n;j++) {        *xmin=x; 
         printf(" %.12e",p[j]);        return fx; 
         fprintf(ficlog," %.12e",p[j]);      } 
       }      ftemp=fu;
       printf("\n");      if (fabs(e) > tol1) { 
       fprintf(ficlog,"\n");        r=(x-w)*(fx-fv); 
       for(l=0;l<=1;l++) {        q=(x-v)*(fx-fw); 
         for (j=1;j<=n;j++) {        p=(x-v)*q-(x-w)*r; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        q=2.0*(q-r); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        if (q > 0.0) p = -p; 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        q=fabs(q); 
         }        etemp=e; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        e=d; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif        else { 
           d=p/q; 
           u=x+d; 
       free_vector(xit,1,n);          if (u-a < tol2 || b-u < tol2) 
       free_vector(xits,1,n);            d=SIGN(tol1,xm-x); 
       free_vector(ptt,1,n);        } 
       free_vector(pt,1,n);      } else { 
       return;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for (j=1;j<=n;j++) {      fu=(*f)(u); 
       ptt[j]=2.0*p[j]-pt[j];      if (fu <= fx) { 
       xit[j]=p[j]-pt[j];        if (u >= x) a=x; else b=x; 
       pt[j]=p[j];        SHFT(v,w,x,u) 
     }          SHFT(fv,fw,fx,fu) 
     fptt=(*func)(ptt);          } else { 
     if (fptt < fp) {            if (u < x) a=u; else b=u; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);            if (fu <= fw || w == x) { 
       if (t < 0.0) {              v=w; 
         linmin(p,xit,n,fret,func);              w=u; 
         for (j=1;j<=n;j++) {              fv=fw; 
           xi[j][ibig]=xi[j][n];              fw=fu; 
           xi[j][n]=xit[j];            } else if (fu <= fv || v == x || v == w) { 
         }              v=u; 
 #ifdef DEBUG              fv=fu; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);            } 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          } 
         for(j=1;j<=n;j++){    } 
           printf(" %.12e",xit[j]);    nrerror("Too many iterations in brent"); 
           fprintf(ficlog," %.12e",xit[j]);    *xmin=x; 
         }    return fx; 
         printf("\n");  } 
         fprintf(ficlog,"\n");  
 #endif  /****************** mnbrak ***********************/
       }  
     }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   }              double (*func)(double)) 
 }  { 
     double ulim,u,r,q, dum;
 /**** Prevalence limit ****************/    double fu; 
    
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    *fa=(*func)(*ax); 
 {    *fb=(*func)(*bx); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    if (*fb > *fa) { 
      matrix by transitions matrix until convergence is reached */      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
   int i, ii,j,k;        } 
   double min, max, maxmin, maxmax,sumnew=0.;    *cx=(*bx)+GOLD*(*bx-*ax); 
   double **matprod2();    *fc=(*func)(*cx); 
   double **out, cov[NCOVMAX], **pmij();    while (*fb > *fc) { 
   double **newm;      r=(*bx-*ax)*(*fb-*fc); 
   double agefin, delaymax=50 ; /* Max number of years to converge */      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for (ii=1;ii<=nlstate+ndeath;ii++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for (j=1;j<=nlstate+ndeath;j++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if ((*bx-u)*(u-*cx) > 0.0) { 
     }        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
    cov[1]=1.;        fu=(*func)(u); 
          if (fu < *fc) { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){            SHFT(*fb,*fc,fu,(*func)(u)) 
     newm=savm;            } 
     /* Covariates have to be included here again */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      cov[2]=agefin;        u=ulim; 
          fu=(*func)(u); 
       for (k=1; k<=cptcovn;k++) {      } else { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        u=(*cx)+GOLD*(*cx-*bx); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        fu=(*func)(u); 
       }      } 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      SHFT(*ax,*bx,*cx,u) 
       for (k=1; k<=cptcovprod;k++)        SHFT(*fa,*fb,*fc,fu) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        } 
   } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /*************** linmin ************************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  int ncom; 
   double *pcom,*xicom;
     savm=oldm;  double (*nrfunc)(double []); 
     oldm=newm;   
     maxmax=0.;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(j=1;j<=nlstate;j++){  { 
       min=1.;    double brent(double ax, double bx, double cx, 
       max=0.;                 double (*f)(double), double tol, double *xmin); 
       for(i=1; i<=nlstate; i++) {    double f1dim(double x); 
         sumnew=0;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];                double *fc, double (*func)(double)); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    int j; 
         max=FMAX(max,prlim[i][j]);    double xx,xmin,bx,ax; 
         min=FMIN(min,prlim[i][j]);    double fx,fb,fa;
       }   
       maxmin=max-min;    ncom=n; 
       maxmax=FMAX(maxmax,maxmin);    pcom=vector(1,n); 
     }    xicom=vector(1,n); 
     if(maxmax < ftolpl){    nrfunc=func; 
       return prlim;    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
   }      xicom[j]=xi[j]; 
 }    } 
     ax=0.0; 
 /*************** transition probabilities ***************/    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 {  #ifdef DEBUG
   double s1, s2;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /*double t34;*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int i,j,j1, nc, ii, jj;  #endif
     for (j=1;j<=n;j++) { 
     for(i=1; i<= nlstate; i++){      xi[j] *= xmin; 
     for(j=1; j<i;j++){      p[j] += xi[j]; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    } 
         /*s2 += param[i][j][nc]*cov[nc];*/    free_vector(xicom,1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free_vector(pcom,1,n); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
       }  
       ps[i][j]=s2;  char *asc_diff_time(long time_sec, char ascdiff[])
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    long sec_left, days, hours, minutes;
     for(j=i+1; j<=nlstate+ndeath;j++){    days = (time_sec) / (60*60*24);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    sec_left = (time_sec) % (60*60*24);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    hours = (sec_left) / (60*60) ;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    sec_left = (sec_left) %(60*60);
       }    minutes = (sec_left) /60;
       ps[i][j]=s2;    sec_left = (sec_left) % (60);
     }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   }    return ascdiff;
     /*ps[3][2]=1;*/  }
   
   for(i=1; i<= nlstate; i++){  /*************** powell ************************/
      s1=0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for(j=1; j<i; j++)              double (*func)(double [])) 
       s1+=exp(ps[i][j]);  { 
     for(j=i+1; j<=nlstate+ndeath; j++)    void linmin(double p[], double xi[], int n, double *fret, 
       s1+=exp(ps[i][j]);                double (*func)(double [])); 
     ps[i][i]=1./(s1+1.);    int i,ibig,j; 
     for(j=1; j<i; j++)    double del,t,*pt,*ptt,*xit;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double fp,fptt;
     for(j=i+1; j<=nlstate+ndeath; j++)    double *xits;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    int niterf, itmp;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */    pt=vector(1,n); 
     ptt=vector(1,n); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    xit=vector(1,n); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    xits=vector(1,n); 
       ps[ii][jj]=0;    *fret=(*func)(p); 
       ps[ii][ii]=1;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
   }      fp=(*fret); 
       ibig=0; 
       del=0.0; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      last_time=curr_time;
     for(jj=1; jj<= nlstate+ndeath; jj++){      (void) gettimeofday(&curr_time,&tzp);
      printf("%lf ",ps[ii][jj]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
    }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     printf("\n ");      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     }      for (i=1;i<=n;i++) {
     printf("\n ");printf("%lf ",cov[2]);*/        printf(" %d %.12f",i, p[i]);
 /*        fprintf(ficlog," %d %.12lf",i, p[i]);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        fprintf(ficrespow," %.12lf", p[i]);
   goto end;*/      }
     return ps;      printf("\n");
 }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
 /**************** Product of 2 matrices ******************/      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        strcpy(strcurr,asctime(&tmf));
 {  /*       asctime_r(&tm,strcurr); */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        forecast_time=curr_time;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        itmp = strlen(strcurr);
   /* in, b, out are matrice of pointers which should have been initialized        if(strcurr[itmp-1]=='\n')
      before: only the contents of out is modified. The function returns          strcurr[itmp-1]='\0';
      a pointer to pointers identical to out */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   long i, j, k;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for(i=nrl; i<= nrh; i++)        for(niterf=10;niterf<=30;niterf+=10){
     for(k=ncolol; k<=ncoloh; k++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          tmf = *localtime(&forecast_time.tv_sec);
         out[i][k] +=in[i][j]*b[j][k];  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
   return out;          itmp = strlen(strfor);
 }          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /************* Higher Matrix Product ***************/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      }
 {      for (i=1;i<=n;i++) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
      duration (i.e. until        fptt=(*fret); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  #ifdef DEBUG
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        printf("fret=%lf \n",*fret);
      (typically every 2 years instead of every month which is too big).        fprintf(ficlog,"fret=%lf \n",*fret);
      Model is determined by parameters x and covariates have to be  #endif
      included manually here.        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
      */        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   int i, j, d, h, k;          del=fabs(fptt-(*fret)); 
   double **out, cov[NCOVMAX];          ibig=i; 
   double **newm;        } 
   #ifdef DEBUG
   /* Hstepm could be zero and should return the unit matrix */        printf("%d %.12e",i,(*fret));
   for (i=1;i<=nlstate+ndeath;i++)        fprintf(ficlog,"%d %.12e",i,(*fret));
     for (j=1;j<=nlstate+ndeath;j++){        for (j=1;j<=n;j++) {
       oldm[i][j]=(i==j ? 1.0 : 0.0);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       po[i][j][0]=(i==j ? 1.0 : 0.0);          printf(" x(%d)=%.12e",j,xit[j]);
     }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        }
   for(h=1; h <=nhstepm; h++){        for(j=1;j<=n;j++) {
     for(d=1; d <=hstepm; d++){          printf(" p=%.12e",p[j]);
       newm=savm;          fprintf(ficlog," p=%.12e",p[j]);
       /* Covariates have to be included here again */        }
       cov[1]=1.;        printf("\n");
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        fprintf(ficlog,"\n");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #endif
       for (k=1; k<=cptcovage;k++)      } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       for (k=1; k<=cptcovprod;k++)  #ifdef DEBUG
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        int k[2],l;
         k[0]=1;
         k[1]=-1;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        printf("Max: %.12e",(*func)(p));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        for (j=1;j<=n;j++) {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          printf(" %.12e",p[j]);
       savm=oldm;          fprintf(ficlog," %.12e",p[j]);
       oldm=newm;        }
     }        printf("\n");
     for(i=1; i<=nlstate+ndeath; i++)        fprintf(ficlog,"\n");
       for(j=1;j<=nlstate+ndeath;j++) {        for(l=0;l<=1;l++) {
         po[i][j][h]=newm[i][j];          for (j=1;j<=n;j++) {
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
          */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   } /* end h */          }
   return po;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   #endif
 /*************** log-likelihood *************/  
 double func( double *x)  
 {        free_vector(xit,1,n); 
   int i, ii, j, k, mi, d, kk;        free_vector(xits,1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        free_vector(ptt,1,n); 
   double **out;        free_vector(pt,1,n); 
   double sw; /* Sum of weights */        return; 
   double lli; /* Individual log likelihood */      } 
   long ipmx;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   /*extern weight */      for (j=1;j<=n;j++) { 
   /* We are differentiating ll according to initial status */        ptt[j]=2.0*p[j]-pt[j]; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        xit[j]=p[j]-pt[j]; 
   /*for(i=1;i<imx;i++)        pt[j]=p[j]; 
     printf(" %d\n",s[4][i]);      } 
   */      fptt=(*func)(ptt); 
   cov[1]=1.;      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        if (t < 0.0) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          linmin(p,xit,n,fret,func); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          for (j=1;j<=n;j++) { 
     for(mi=1; mi<= wav[i]-1; mi++){            xi[j][ibig]=xi[j][n]; 
       for (ii=1;ii<=nlstate+ndeath;ii++)            xi[j][n]=xit[j]; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          }
       for(d=0; d<dh[mi][i]; d++){  #ifdef DEBUG
         newm=savm;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for (kk=1; kk<=cptcovage;kk++) {          for(j=1;j<=n;j++){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            printf(" %.12e",xit[j]);
         }            fprintf(ficlog," %.12e",xit[j]);
                  }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          printf("\n");
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          fprintf(ficlog,"\n");
         savm=oldm;  #endif
         oldm=newm;        }
              } 
            } 
       } /* end mult */  } 
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /**** Prevalence limit (stable prevalence)  ****************/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       sw += weight[i];  {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     } /* end of wave */       matrix by transitions matrix until convergence is reached */
   } /* end of individual */  
     int i, ii,j,k;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double min, max, maxmin, maxmax,sumnew=0.;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double **matprod2();
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double **out, cov[NCOVMAX], **pmij();
   return -l;    double **newm;
 }    double agefin, delaymax=50 ; /* Max number of years to converge */
   
     for (ii=1;ii<=nlstate+ndeath;ii++)
 /*********** Maximum Likelihood Estimation ***************/      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      }
 {  
   int i,j, iter;     cov[1]=1.;
   double **xi,*delti;   
   double fret;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   xi=matrix(1,npar,1,npar);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for (i=1;i<=npar;i++)      newm=savm;
     for (j=1;j<=npar;j++)      /* Covariates have to be included here again */
       xi[i][j]=(i==j ? 1.0 : 0.0);       cov[2]=agefin;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    
   powell(p,xi,npar,ftol,&iter,&fret,func);        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 /**** Computes Hessian and covariance matrix ***/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double  **a,**y,*x,pd;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double **hess;  
   int i, j,jk;      savm=oldm;
   int *indx;      oldm=newm;
       maxmax=0.;
   double hessii(double p[], double delta, int theta, double delti[]);      for(j=1;j<=nlstate;j++){
   double hessij(double p[], double delti[], int i, int j);        min=1.;
   void lubksb(double **a, int npar, int *indx, double b[]) ;        max=0.;
   void ludcmp(double **a, int npar, int *indx, double *d) ;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   hess=matrix(1,npar,1,npar);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   printf("\nCalculation of the hessian matrix. Wait...\n");          max=FMAX(max,prlim[i][j]);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=npar;i++){        }
     printf("%d",i);fflush(stdout);        maxmin=max-min;
     fprintf(ficlog,"%d",i);fflush(ficlog);        maxmax=FMAX(maxmax,maxmin);
     hess[i][i]=hessii(p,ftolhess,i,delti);      }
     /*printf(" %f ",p[i]);*/      if(maxmax < ftolpl){
     /*printf(" %lf ",hess[i][i]);*/        return prlim;
   }      }
      }
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  /*************** transition probabilities ***************/ 
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         hess[i][j]=hessij(p,delti,i,j);  {
         hess[j][i]=hess[i][j];        double s1, s2;
         /*printf(" %lf ",hess[i][j]);*/    /*double t34;*/
       }    int i,j,j1, nc, ii, jj;
     }  
   }      for(i=1; i<= nlstate; i++){
   printf("\n");      for(j=1; j<i;j++){
   fprintf(ficlog,"\n");        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
          }
   a=matrix(1,npar,1,npar);        ps[i][j]=s2;
   y=matrix(1,npar,1,npar);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   x=vector(1,npar);      }
   indx=ivector(1,npar);      for(j=i+1; j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++)        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   ludcmp(a,npar,indx,&pd);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
   for (j=1;j<=npar;j++) {        ps[i][j]=s2;
     for (i=1;i<=npar;i++) x[i]=0;      }
     x[j]=1;    }
     lubksb(a,npar,indx,x);      /*ps[3][2]=1;*/
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];    for(i=1; i<= nlstate; i++){
     }       s1=0;
   }      for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);
   printf("\n#Hessian matrix#\n");      for(j=i+1; j<=nlstate+ndeath; j++)
   fprintf(ficlog,"\n#Hessian matrix#\n");        s1+=exp(ps[i][j]);
   for (i=1;i<=npar;i++) {      ps[i][i]=1./(s1+1.);
     for (j=1;j<=npar;j++) {      for(j=1; j<i; j++)
       printf("%.3e ",hess[i][j]);        ps[i][j]= exp(ps[i][j])*ps[i][i];
       fprintf(ficlog,"%.3e ",hess[i][j]);      for(j=i+1; j<=nlstate+ndeath; j++)
     }        ps[i][j]= exp(ps[i][j])*ps[i][i];
     printf("\n");      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     fprintf(ficlog,"\n");    } /* end i */
   }  
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   /* Recompute Inverse */      for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=npar;i++)        ps[ii][jj]=0;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        ps[ii][ii]=1;
   ludcmp(a,npar,indx,&pd);      }
     }
   /*  printf("\n#Hessian matrix recomputed#\n");  
   
   for (j=1;j<=npar;j++) {    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     for (i=1;i<=npar;i++) x[i]=0;      for(jj=1; jj<= nlstate+ndeath; jj++){
     x[j]=1;       printf("%lf ",ps[ii][jj]);
     lubksb(a,npar,indx,x);     }
     for (i=1;i<=npar;i++){      printf("\n ");
       y[i][j]=x[i];      }
       printf("%.3e ",y[i][j]);      printf("\n ");printf("%lf ",cov[2]);*/
       fprintf(ficlog,"%.3e ",y[i][j]);  /*
     }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     printf("\n");    goto end;*/
     fprintf(ficlog,"\n");      return ps;
   }  }
   */  
   /**************** Product of 2 matrices ******************/
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   free_vector(x,1,npar);  {
   free_ivector(indx,1,npar);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   free_matrix(hess,1,npar,1,npar);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
 }       a pointer to pointers identical to out */
     long i, j, k;
 /*************** hessian matrix ****************/    for(i=nrl; i<= nrh; i++)
 double hessii( double x[], double delta, int theta, double delti[])      for(k=ncolol; k<=ncoloh; k++)
 {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   int i;          out[i][k] +=in[i][j]*b[j][k];
   int l=1, lmax=20;  
   double k1,k2;    return out;
   double p2[NPARMAX+1];  }
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  /************* Higher Matrix Product ***************/
   int k=0,kmax=10;  
   double l1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   fx=func(x);    /* Computes the transition matrix starting at age 'age' over 
   for (i=1;i<=npar;i++) p2[i]=x[i];       'nhstepm*hstepm*stepm' months (i.e. until
   for(l=0 ; l <=lmax; l++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     l1=pow(10,l);       nhstepm*hstepm matrices. 
     delts=delt;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(k=1 ; k <kmax; k=k+1){       (typically every 2 years instead of every month which is too big 
       delt = delta*(l1*k);       for the memory).
       p2[theta]=x[theta] +delt;       Model is determined by parameters x and covariates have to be 
       k1=func(p2)-fx;       included manually here. 
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;       */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    int i, j, d, h, k;
          double **out, cov[NCOVMAX];
 #ifdef DEBUG    double **newm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /* Hstepm could be zero and should return the unit matrix */
 #endif    for (i=1;i<=nlstate+ndeath;i++)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      for (j=1;j<=nlstate+ndeath;j++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        oldm[i][j]=(i==j ? 1.0 : 0.0);
         k=kmax;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }      }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         k=kmax; l=lmax*10.;    for(h=1; h <=nhstepm; h++){
       }      for(d=1; d <=hstepm; d++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        newm=savm;
         delts=delt;        /* Covariates have to be included here again */
       }        cov[1]=1.;
     }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   delti[theta]=delts;        for (k=1; k<=cptcovage;k++)
   return res;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
 }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   int i;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   int l=1, l1, lmax=20;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double k1,k2,k3,k4,res,fx;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double p2[NPARMAX+1];        savm=oldm;
   int k;        oldm=newm;
       }
   fx=func(x);      for(i=1; i<=nlstate+ndeath; i++)
   for (k=1; k<=2; k++) {        for(j=1;j<=nlstate+ndeath;j++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];          po[i][j][h]=newm[i][j];
     p2[thetai]=x[thetai]+delti[thetai]/k;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           */
     k1=func(p2)-fx;        }
      } /* end h */
     p2[thetai]=x[thetai]+delti[thetai]/k;    return po;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  }
     k2=func(p2)-fx;  
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*************** log-likelihood *************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double func( double *x)
     k3=func(p2)-fx;  {
      int i, ii, j, k, mi, d, kk;
     p2[thetai]=x[thetai]-delti[thetai]/k;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **out;
     k4=func(p2)-fx;    double sw; /* Sum of weights */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double lli; /* Individual log likelihood */
 #ifdef DEBUG    int s1, s2;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double bbh, survp;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    long ipmx;
 #endif    /*extern weight */
   }    /* We are differentiating ll according to initial status */
   return res;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 /************** Inverse of matrix **************/    */
 void ludcmp(double **a, int n, int *indx, double *d)    cov[1]=1.;
 {  
   int i,imax,j,k;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double big,dum,sum,temp;  
   double *vv;    if(mle==1){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   vv=vector(1,n);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   *d=1.0;        for(mi=1; mi<= wav[i]-1; mi++){
   for (i=1;i<=n;i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     big=0.0;            for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=n;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if ((temp=fabs(a[i][j])) > big) big=temp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            }
     vv[i]=1.0/big;          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   for (j=1;j<=n;j++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1;i<j;i++) {            for (kk=1; kk<=cptcovage;kk++) {
       sum=a[i][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            }
       a[i][j]=sum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     big=0.0;            savm=oldm;
     for (i=j;i<=n;i++) {            oldm=newm;
       sum=a[i][j];          } /* end mult */
       for (k=1;k<j;k++)        
         sum -= a[i][k]*a[k][j];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       a[i][j]=sum;          /* But now since version 0.9 we anticipate for bias and large stepm.
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         big=dum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
         imax=i;           * the nearest (and in case of equal distance, to the lowest) interval but now
       }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     if (j != imax) {           * probability in order to take into account the bias as a fraction of the way
       for (k=1;k<=n;k++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         dum=a[imax][k];           * -stepm/2 to stepm/2 .
         a[imax][k]=a[j][k];           * For stepm=1 the results are the same as for previous versions of Imach.
         a[j][k]=dum;           * For stepm > 1 the results are less biased than in previous versions. 
       }           */
       *d = -(*d);          s1=s[mw[mi][i]][i];
       vv[imax]=vv[j];          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     indx[j]=imax;          /* bias is positive if real duration
     if (a[j][j] == 0.0) a[j][j]=TINY;           * is higher than the multiple of stepm and negative otherwise.
     if (j != n) {           */
       dum=1.0/(a[j][j]);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          if( s2 > nlstate){ 
     }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   }               to the likelihood is the probability to die between last step unit time and current 
   free_vector(vv,1,n);  /* Doesn't work */               step unit time, which is also the differences between probability to die before dh 
 ;               and probability to die before dh-stepm . 
 }               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
 void lubksb(double **a, int n, int *indx, double b[])          health state: the date of the interview describes the actual state
 {          and not the date of a change in health state. The former idea was
   int i,ii=0,ip,j;          to consider that at each interview the state was recorded
   double sum;          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
   for (i=1;i<=n;i++) {          the contribution of an exact death to the likelihood. This new
     ip=indx[i];          contribution is smaller and very dependent of the step unit
     sum=b[ip];          stepm. It is no more the probability to die between last interview
     b[ip]=b[i];          and month of death but the probability to survive from last
     if (ii)          interview up to one month before death multiplied by the
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          probability to die within a month. Thanks to Chris
     else if (sum) ii=i;          Jackson for correcting this bug.  Former versions increased
     b[i]=sum;          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
   for (i=n;i>=1;i--) {          lower mortality.
     sum=b[i];            */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            lli=log(out[s1][s2] - savm[s1][s2]);
     b[i]=sum/a[i][i];          }else{
   }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
 /************ Frequencies ********************/          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          /*if(lli ==000.0)*/
 {  /* Some frequencies */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          sw += weight[i];
   int first;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***freq; /* Frequencies */        } /* end of wave */
   double *pp;      } /* end of individual */
   double pos, k2, dateintsum=0,k2cpt=0;    }  else if(mle==2){
   FILE *ficresp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char fileresp[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   pp=vector(1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresp,"p");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresp=fopen(fileresp,"w"))==NULL) {            }
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for(d=0; d<=dh[mi][i]; d++){
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            newm=savm;
     exit(0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j1=0;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   j=cptcoveff;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            savm=oldm;
             oldm=newm;
   first=1;          } /* end mult */
         
   for(k1=1; k1<=j;k1++){          s1=s[mw[mi][i]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){          s2=s[mw[mi+1][i]][i];
       j1++;          bbh=(double)bh[mi][i]/(double)stepm; 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         scanf("%d", i);*/          ipmx +=1;
       for (i=-1; i<=nlstate+ndeath; i++)            sw += weight[i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=agemin; m <= agemax+3; m++)        } /* end of wave */
             freq[i][jk][m]=0;      } /* end of individual */
          }  else if(mle==3){  /* exponential inter-extrapolation */
       dateintsum=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       k2cpt=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (i=1; i<=imx; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
         bool=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
         if  (cptcovn>0) {            for (j=1;j<=nlstate+ndeath;j++){
           for (z1=1; z1<=cptcoveff; z1++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               bool=0;            }
         }          for(d=0; d<dh[mi][i]; d++){
         if (bool==1) {            newm=savm;
           for(m=firstpass; m<=lastpass; m++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             k2=anint[m][i]+(mint[m][i]/12.);            for (kk=1; kk<=cptcovage;kk++) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if(agev[m][i]==0) agev[m][i]=agemax+1;            }
               if(agev[m][i]==1) agev[m][i]=agemax+2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if (m<lastpass) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            savm=oldm;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            oldm=newm;
               }          } /* end mult */
                      
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          s1=s[mw[mi][i]][i];
                 dateintsum=dateintsum+k2;          s2=s[mw[mi+1][i]][i];
                 k2cpt++;          bbh=(double)bh[mi][i]/(double)stepm; 
               }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             }          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
              } /* end of individual */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficresp, "\n#********** Variable ");        for(mi=1; mi<= wav[i]-1; mi++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficresp, "**********\n#");            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            }
       fprintf(ficresp, "\n");          for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(i==(int)agemax+3){            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficlog,"Total");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }else{            }
           if(first==1){          
             first=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             printf("See log file for details...\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
           fprintf(ficlog,"Age %d", i);            oldm=newm;
         }          } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          s1=s[mw[mi][i]][i];
             pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
         }          if( s2 > nlstate){ 
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1, pos=0; m <=0 ; m++)          }else{
             pos += freq[jk][m][i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           if(pp[jk]>=1.e-10){          }
             if(first==1){          ipmx +=1;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           }else{        } /* end of wave */
             if(first==1)      } /* end of individual */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<dh[mi][i]; d++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)            newm=savm;
           pos += pp[jk];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           if(pos>=1.e-5){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if(first==1)            }
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }else{                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if(first==1)            savm=oldm;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            oldm=newm;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          } /* end mult */
           }        
           if( i <= (int) agemax){          s1=s[mw[mi][i]][i];
             if(pos>=1.e-5){          s2=s[mw[mi+1][i]][i];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               probs[i][jk][j1]= pp[jk]/pos;          ipmx +=1;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             else          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        } /* end of wave */
           }      } /* end of individual */
         }    } /* End of if */
            for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(jk=-1; jk <=nlstate+ndeath; jk++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(m=-1; m <=nlstate+ndeath; m++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             if(freq[jk][m][i] !=0 ) {    return -l;
             if(first==1)  }
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  /*************** log-likelihood *************/
             }  double funcone( double *x)
         if(i <= (int) agemax)  {
           fprintf(ficresp,"\n");    /* Same as likeli but slower because of a lot of printf and if */
         if(first==1)    int i, ii, j, k, mi, d, kk;
           printf("Others in log...\n");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         fprintf(ficlog,"\n");    double **out;
       }    double lli; /* Individual log likelihood */
     }    double llt;
   }    int s1, s2;
   dateintmean=dateintsum/k2cpt;    double bbh, survp;
      /*extern weight */
   fclose(ficresp);    /* We are differentiating ll according to initial status */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_vector(pp,1,nlstate);    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   /* End of Freq */    */
 }    cov[1]=1.;
   
 /************ Prevalence ********************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for(mi=1; mi<= wav[i]-1; mi++){
   double ***freq; /* Frequencies */        for (ii=1;ii<=nlstate+ndeath;ii++)
   double *pp;          for (j=1;j<=nlstate+ndeath;j++){
   double pos, k2;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);          }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(d=0; d<dh[mi][i]; d++){
            newm=savm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j1=0;          for (kk=1; kk<=cptcovage;kk++) {
              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){          savm=oldm;
     for(i1=1; i1<=ncodemax[k1];i1++){          oldm=newm;
       j1++;        } /* end mult */
              
       for (i=-1; i<=nlstate+ndeath; i++)          s1=s[mw[mi][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)          s2=s[mw[mi+1][i]][i];
           for(m=agemin; m <= agemax+3; m++)        bbh=(double)bh[mi][i]/(double)stepm; 
             freq[i][jk][m]=0;        /* bias is positive if real duration
               * is higher than the multiple of stepm and negative otherwise.
       for (i=1; i<=imx; i++) {         */
         bool=1;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         if  (cptcovn>0) {          lli=log(out[s1][s2] - savm[s1][s2]);
           for (z1=1; z1<=cptcoveff; z1++)        } else if (mle==1){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               bool=0;        } else if(mle==2){
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         if (bool==1) {        } else if(mle==3){  /* exponential inter-extrapolation */
           for(m=firstpass; m<=lastpass; m++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             k2=anint[m][i]+(mint[m][i]/12.);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          lli=log(out[s1][s2]); /* Original formula */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          lli=log(out[s1][s2]); /* Original formula */
               if (m<lastpass) {        } /* End of if */
                 if (calagedate>0)        ipmx +=1;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        sw += weight[i];
                 else        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        if(globpr){
               }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
             }   %10.6f %10.6f %10.6f ", \
           }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){            llt +=ll[k]*gipmx/gsw;
         for(jk=1; jk <=nlstate ; jk++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          }
             pp[jk] += freq[jk][m][i];          fprintf(ficresilk," %10.6f\n", -llt);
         }        }
         for(jk=1; jk <=nlstate ; jk++){      } /* end of wave */
           for(m=-1, pos=0; m <=0 ; m++)    } /* end of individual */
             pos += freq[jk][m][i];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
            l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(jk=1; jk <=nlstate ; jk++){    if(globpr==0){ /* First time we count the contributions and weights */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      gipmx=ipmx;
             pp[jk] += freq[jk][m][i];      gsw=sw;
         }    }
            return -l;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  }
          
         for(jk=1; jk <=nlstate ; jk++){      
           if( i <= (int) agemax){  /*************** function likelione ***********/
             if(pos>=1.e-5){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
               probs[i][jk][j1]= pp[jk]/pos;  {
             }    /* This routine should help understanding what is done with 
           }       the selection of individuals/waves and
         }/* end jk */       to check the exact contribution to the likelihood.
       }/* end i */       Plotting could be done.
     } /* end i1 */     */
   } /* end k1 */    int k;
   
      if(*globpri !=0){ /* Just counts and sums, no printings */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      strcpy(fileresilk,"ilk"); 
   free_vector(pp,1,nlstate);      strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 }  /* End of Freq */        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 /************* Waves Concatenation ***************/      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for(k=1; k<=nlstate; k++) 
      Death is a valid wave (if date is known).        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    }
      and mw[mi+1][i]. dh depends on stepm.  
      */    *fretone=(*funcone)(p);
     if(*globpri !=0){
   int i, mi, m;      fclose(ficresilk);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      double sum=0., jmean=0.;*/      fflush(fichtm); 
   int first;    } 
   int j, k=0,jk, ju, jl;    return;
   double sum=0.;  }
   first=0;  
   jmin=1e+5;  
   jmax=-1;  /*********** Maximum Likelihood Estimation ***************/
   jmean=0.;  
   for(i=1; i<=imx; i++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     mi=0;  {
     m=firstpass;    int i,j, iter;
     while(s[m][i] <= nlstate){    double **xi;
       if(s[m][i]>=1)    double fret;
         mw[++mi][i]=m;    double fretone; /* Only one call to likelihood */
       if(m >=lastpass)    char filerespow[FILENAMELENGTH];
         break;    xi=matrix(1,npar,1,npar);
       else    for (i=1;i<=npar;i++)
         m++;      for (j=1;j<=npar;j++)
     }/* end while */        xi[i][j]=(i==j ? 1.0 : 0.0);
     if (s[m][i] > nlstate){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       mi++;     /* Death is another wave */    strcpy(filerespow,"pow"); 
       /* if(mi==0)  never been interviewed correctly before death */    strcat(filerespow,fileres);
          /* Only death is a correct wave */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       mw[mi][i]=m;      printf("Problem with resultfile: %s\n", filerespow);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     wav[i]=mi;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     if(mi==0){    for (i=1;i<=nlstate;i++)
       if(first==0){      for(j=1;j<=nlstate+ndeath;j++)
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         first=1;    fprintf(ficrespow,"\n");
       }  
       if(first==1){    powell(p,xi,npar,ftol,&iter,&fret,func);
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);  
       }    fclose(ficrespow);
     } /* end mi==0 */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  }
       if (stepm <=0)  
         dh[mi][i]=1;  /**** Computes Hessian and covariance matrix ***/
       else{  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         if (s[mw[mi+1][i]][i] > nlstate) {  {
           if (agedc[i] < 2*AGESUP) {    double  **a,**y,*x,pd;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    double **hess;
           if(j==0) j=1;  /* Survives at least one month after exam */    int i, j,jk;
           k=k+1;    int *indx;
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;    double hessii(double p[], double delta, int theta, double delti[]);
           sum=sum+j;    double hessij(double p[], double delti[], int i, int j);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    void lubksb(double **a, int npar, int *indx, double b[]) ;
           }    void ludcmp(double **a, int npar, int *indx, double *d) ;
         }  
         else{    hess=matrix(1,npar,1,npar);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;    printf("\nCalculation of the hessian matrix. Wait...\n");
           if (j >= jmax) jmax=j;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           else if (j <= jmin)jmin=j;    for (i=1;i<=npar;i++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      printf("%d",i);fflush(stdout);
           sum=sum+j;      fprintf(ficlog,"%d",i);fflush(ficlog);
         }      hess[i][i]=hessii(p,ftolhess,i,delti);
         jk= j/stepm;      /*printf(" %f ",p[i]);*/
         jl= j -jk*stepm;      /*printf(" %lf ",hess[i][i]);*/
         ju= j -(jk+1)*stepm;    }
         if(jl <= -ju)    
           dh[mi][i]=jk;    for (i=1;i<=npar;i++) {
         else      for (j=1;j<=npar;j++)  {
           dh[mi][i]=jk+1;        if (j>i) { 
         if(dh[mi][i]==0)          printf(".%d%d",i,j);fflush(stdout);
           dh[mi][i]=1; /* At least one step */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j);
     }          hess[j][i]=hess[i][j];    
   }          /*printf(" %lf ",hess[i][j]);*/
   jmean=sum/k;        }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      }
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    }
  }    printf("\n");
     fprintf(ficlog,"\n");
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   int Ndum[20],ij=1, k, j, i;    
   int cptcode=0;    a=matrix(1,npar,1,npar);
   cptcoveff=0;    y=matrix(1,npar,1,npar);
      x=vector(1,npar);
   for (k=0; k<19; k++) Ndum[k]=0;    indx=ivector(1,npar);
   for (k=1; k<=7; k++) ncodemax[k]=0;    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    ludcmp(a,npar,indx,&pd);
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    for (j=1;j<=npar;j++) {
       Ndum[ij]++;      for (i=1;i<=npar;i++) x[i]=0;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      x[j]=1;
       if (ij > cptcode) cptcode=ij;      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     for (i=0; i<=cptcode; i++) {      }
       if(Ndum[i]!=0) ncodemax[j]++;    }
     }  
     ij=1;    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
     for (i=1; i<=ncodemax[j]; i++) {      for (j=1;j<=npar;j++) { 
       for (k=0; k<=19; k++) {        printf("%.3e ",hess[i][j]);
         if (Ndum[k] != 0) {        fprintf(ficlog,"%.3e ",hess[i][j]);
           nbcode[Tvar[j]][ij]=k;      }
                printf("\n");
           ij++;      fprintf(ficlog,"\n");
         }    }
         if (ij > ncodemax[j]) break;  
       }      /* Recompute Inverse */
     }    for (i=1;i<=npar;i++)
   }        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
  for (k=0; k<19; k++) Ndum[k]=0;  
     /*  printf("\n#Hessian matrix recomputed#\n");
  for (i=1; i<=ncovmodel-2; i++) {  
    ij=Tvar[i];    for (j=1;j<=npar;j++) {
    Ndum[ij]++;      for (i=1;i<=npar;i++) x[i]=0;
  }      x[j]=1;
       lubksb(a,npar,indx,x);
  ij=1;      for (i=1;i<=npar;i++){ 
  for (i=1; i<=10; i++) {        y[i][j]=x[i];
    if((Ndum[i]!=0) && (i<=ncovcol)){        printf("%.3e ",y[i][j]);
      Tvaraff[ij]=i;        fprintf(ficlog,"%.3e ",y[i][j]);
      ij++;      }
    }      printf("\n");
  }      fprintf(ficlog,"\n");
      }
  cptcoveff=ij-1;    */
 }  
     free_matrix(a,1,npar,1,npar);
 /*********** Health Expectancies ****************/    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
 {  
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  }
   double age, agelim, hf;  
   double ***p3mat,***varhe;  /*************** hessian matrix ****************/
   double **dnewm,**doldm;  double hessii( double x[], double delta, int theta, double delti[])
   double *xp;  {
   double **gp, **gm;    int i;
   double ***gradg, ***trgradg;    int l=1, lmax=20;
   int theta;    double k1,k2;
     double p2[NPARMAX+1];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    double res;
   xp=vector(1,npar);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   dnewm=matrix(1,nlstate*2,1,npar);    double fx;
   doldm=matrix(1,nlstate*2,1,nlstate*2);    int k=0,kmax=10;
      double l1;
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");    fx=func(x);
   for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(j=1; j<=nlstate;j++)    for(l=0 ; l <=lmax; l++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      l1=pow(10,l);
   fprintf(ficreseij,"\n");      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
   if(estepm < stepm){        delt = delta*(l1*k);
     printf ("Problem %d lower than %d\n",estepm, stepm);        p2[theta]=x[theta] +delt;
   }        k1=func(p2)-fx;
   else  hstepm=estepm;          p2[theta]=x[theta]-delt;
   /* We compute the life expectancy from trapezoids spaced every estepm months        k2=func(p2)-fx;
    * This is mainly to measure the difference between two models: for example        /*res= (k1-2.0*fx+k2)/delt/delt; */
    * if stepm=24 months pijx are given only every 2 years and by summing them        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
    * we are calculating an estimate of the Life Expectancy assuming a linear        
    * progression inbetween and thus overestimating or underestimating according  #ifdef DEBUG
    * to the curvature of the survival function. If, for the same date, we        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    * to compare the new estimate of Life expectancy with the same linear  #endif
    * hypothesis. A more precise result, taking into account a more precise        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
    * curvature will be obtained if estepm is as small as stepm. */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   /* For example we decided to compute the life expectancy with the smallest unit */        }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
      nhstepm is the number of hstepm from age to agelim          k=kmax; l=lmax*10.;
      nstepm is the number of stepm from age to agelin.        }
      Look at hpijx to understand the reason of that which relies in memory size        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
      and note for a fixed period like estepm months */          delts=delt;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        }
      survival function given by stepm (the optimization length). Unfortunately it      }
      means that if the survival funtion is printed only each two years of age and if    }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    delti[theta]=delts;
      results. So we changed our mind and took the option of the best precision.    return res; 
   */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  }
   
   agelim=AGESUP;  double hessij( double x[], double delti[], int thetai,int thetaj)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  {
     /* nhstepm age range expressed in number of stepm */    int i;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    int l=1, l1, lmax=20;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double k1,k2,k3,k4,res,fx;
     /* if (stepm >= YEARM) hstepm=1;*/    double p2[NPARMAX+1];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int k;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    fx=func(x);
     gp=matrix(0,nhstepm,1,nlstate*2);    for (k=1; k<=2; k++) {
     gm=matrix(0,nhstepm,1,nlstate*2);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      k1=func(p2)-fx;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      
        p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      k2=func(p2)-fx;
     
     /* Computing Variances of health expectancies */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      for(theta=1; theta <=npar; theta++){      k3=func(p2)-fx;
       for(i=1; i<=npar; i++){    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        k4=func(p2)-fx;
        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       cptj=0;  #ifdef DEBUG
       for(j=1; j<= nlstate; j++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(i=1; i<=nlstate; i++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           cptj=cptj+1;  #endif
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    return res;
           }  }
         }  
       }  /************** Inverse of matrix **************/
        void ludcmp(double **a, int n, int *indx, double *d) 
        { 
       for(i=1; i<=npar; i++)    int i,imax,j,k; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double big,dum,sum,temp; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double *vv; 
         
       cptj=0;    vv=vector(1,n); 
       for(j=1; j<= nlstate; j++){    *d=1.0; 
         for(i=1;i<=nlstate;i++){    for (i=1;i<=n;i++) { 
           cptj=cptj+1;      big=0.0; 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for (j=1;j<=n;j++) 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        if ((temp=fabs(a[i][j])) > big) big=temp; 
           }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         }      vv[i]=1.0/big; 
       }    } 
       for(j=1; j<= nlstate*2; j++)    for (j=1;j<=n;j++) { 
         for(h=0; h<=nhstepm-1; h++){      for (i=1;i<j;i++) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        sum=a[i][j]; 
         }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      }        a[i][j]=sum; 
          } 
 /* End theta */      big=0.0; 
       for (i=j;i<=n;i++) { 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
      for(h=0; h<=nhstepm-1; h++)          sum -= a[i][k]*a[k][j]; 
       for(j=1; j<=nlstate*2;j++)        a[i][j]=sum; 
         for(theta=1; theta <=npar; theta++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           trgradg[h][j][theta]=gradg[h][theta][j];          big=dum; 
                imax=i; 
         } 
      for(i=1;i<=nlstate*2;i++)      } 
       for(j=1;j<=nlstate*2;j++)      if (j != imax) { 
         varhe[i][j][(int)age] =0.;        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
      printf("%d|",(int)age);fflush(stdout);          a[imax][k]=a[j][k]; 
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          a[j][k]=dum; 
      for(h=0;h<=nhstepm-1;h++){        } 
       for(k=0;k<=nhstepm-1;k++){        *d = -(*d); 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        vv[imax]=vv[j]; 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      } 
         for(i=1;i<=nlstate*2;i++)      indx[j]=imax; 
           for(j=1;j<=nlstate*2;j++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      if (j != n) { 
       }        dum=1.0/(a[j][j]); 
     }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     /* Computing expectancies */      } 
     for(i=1; i<=nlstate;i++)    } 
       for(j=1; j<=nlstate;j++)    free_vector(vv,1,n);  /* Doesn't work */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  ;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  } 
            
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
         }    int i,ii=0,ip,j; 
     double sum; 
     fprintf(ficreseij,"%3.0f",age );   
     cptj=0;    for (i=1;i<=n;i++) { 
     for(i=1; i<=nlstate;i++)      ip=indx[i]; 
       for(j=1; j<=nlstate;j++){      sum=b[ip]; 
         cptj++;      b[ip]=b[i]; 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     fprintf(ficreseij,"\n");      else if (sum) ii=i; 
          b[i]=sum; 
     free_matrix(gm,0,nhstepm,1,nlstate*2);    } 
     free_matrix(gp,0,nhstepm,1,nlstate*2);    for (i=n;i>=1;i--) { 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      sum=b[i]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      b[i]=sum/a[i][i]; 
   }    } 
   printf("\n");  } 
   fprintf(ficlog,"\n");  
   /************ Frequencies ********************/
   free_vector(xp,1,npar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   free_matrix(dnewm,1,nlstate*2,1,npar);  {  /* Some frequencies */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 }    int first;
     double ***freq; /* Frequencies */
 /************ Variance ******************/    double *pp, **prop;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
 {    FILE *ficresp;
   /* Variance of health expectancies */    char fileresp[FILENAMELENGTH];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    
   /* double **newm;*/    pp=vector(1,nlstate);
   double **dnewm,**doldm;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double **dnewmp,**doldmp;    strcpy(fileresp,"p");
   int i, j, nhstepm, hstepm, h, nstepm ;    strcat(fileresp,fileres);
   int k, cptcode;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   double *xp;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   double **gp, **gm;  /* for var eij */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   double ***gradg, ***trgradg; /*for var eij */      exit(0);
   double **gradgp, **trgradgp; /* for var p point j */    }
   double *gpp, *gmp; /* for var p point j */    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    j1=0;
   double ***p3mat;    
   double age,agelim, hf;    j=cptcoveff;
   int theta;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   char digit[4];  
   char digitp[16];    first=1;
   
   char fileresprobmorprev[FILENAMELENGTH];    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   if(popbased==1)        j1++;
     strcpy(digitp,"-populbased-");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   else          scanf("%d", i);*/
     strcpy(digitp,"-stablbased-");        for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
   strcpy(fileresprobmorprev,"prmorprev");            for(m=iagemin; m <= iagemax+3; m++)
   sprintf(digit,"%-d",ij);              freq[i][jk][m]=0;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      for (i=1; i<=nlstate; i++)  
   strcat(fileresprobmorprev,digitp); /* Popbased or not */        for(m=iagemin; m <= iagemax+3; m++)
   strcat(fileresprobmorprev,fileres);          prop[i][m]=0;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        dateintsum=0;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        k2cpt=0;
   }        for (i=1; i<=imx; i++) {
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          bool=1;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          if  (cptcovn>0) {
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");            for (z1=1; z1<=cptcoveff; z1++) 
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){                bool=0;
     fprintf(ficresprobmorprev," p.%-d SE",j);          }
     for(i=1; i<=nlstate;i++)          if (bool==1){
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);            for(m=firstpass; m<=lastpass; m++){
   }                k2=anint[m][i]+(mint[m][i]/12.);
   fprintf(ficresprobmorprev,"\n");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     exit(0);                if (m<lastpass) {
   }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   else{                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     fprintf(ficgp,"\n# Routine varevsij");                }
   }                
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     printf("Problem with html file: %s\n", optionfilehtm);                  dateintsum=dateintsum+k2;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);                  k2cpt++;
     exit(0);                }
   }                /*}*/
   else{            }
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          }
   }        }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");        if  (cptcovn>0) {
   for(i=1; i<=nlstate;i++)          fprintf(ficresp, "\n#********** Variable "); 
     for(j=1; j<=nlstate;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          fprintf(ficresp, "**********\n#");
   fprintf(ficresvij,"\n");        }
         for(i=1; i<=nlstate;i++) 
   xp=vector(1,npar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficresp, "\n");
   doldm=matrix(1,nlstate,1,nlstate);        
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        for(i=iagemin; i <= iagemax+3; i++){
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          if(i==iagemax+3){
             fprintf(ficlog,"Total");
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          }else{
   gpp=vector(nlstate+1,nlstate+ndeath);            if(first==1){
   gmp=vector(nlstate+1,nlstate+ndeath);              first=0;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              printf("See log file for details...\n");
              }
   if(estepm < stepm){            fprintf(ficlog,"Age %d", i);
     printf ("Problem %d lower than %d\n",estepm, stepm);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   else  hstepm=estepm;              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   /* For example we decided to compute the life expectancy with the smallest unit */              pp[jk] += freq[jk][m][i]; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          }
      nhstepm is the number of hstepm from age to agelim          for(jk=1; jk <=nlstate ; jk++){
      nstepm is the number of stepm from age to agelin.            for(m=-1, pos=0; m <=0 ; m++)
      Look at hpijx to understand the reason of that which relies in memory size              pos += freq[jk][m][i];
      and note for a fixed period like k years */            if(pp[jk]>=1.e-10){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              if(first==1){
      survival function given by stepm (the optimization length). Unfortunately it              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      means that if the survival funtion is printed only each two years of age and if              }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      results. So we changed our mind and took the option of the best precision.            }else{
   */              if(first==1)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   agelim = AGESUP;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     gp=matrix(0,nhstepm,1,nlstate);              pp[jk] += freq[jk][m][i];
     gm=matrix(0,nhstepm,1,nlstate);          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
     for(theta=1; theta <=npar; theta++){            posprop += prop[jk][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){
       }            if(pos>=1.e-5){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                if(first==1)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       if (popbased==1) {            }else{
         for(i=1; i<=nlstate;i++)              if(first==1)
           prlim[i][i]=probs[(int)age][i][ij];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
              }
       for(j=1; j<= nlstate; j++){            if( i <= iagemax){
         for(h=0; h<=nhstepm; h++){              if(pos>=1.e-5){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];                /*probs[i][jk][j1]= pp[jk]/pos;*/
         }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
       /* This for computing forces of mortality (h=1)as a weighted average */              else
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         for(i=1; i<= nlstate; i++)            }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          }
       }              
       /* end force of mortality */          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
       for(i=1; i<=npar; i++) /* Computes gradient */              if(freq[jk][m][i] !=0 ) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              if(first==1)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                }
       if (popbased==1) {          if(i <= iagemax)
         for(i=1; i<=nlstate;i++)            fprintf(ficresp,"\n");
           prlim[i][i]=probs[(int)age][i][ij];          if(first==1)
       }            printf("Others in log...\n");
           fprintf(ficlog,"\n");
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){      }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    dateintmean=dateintsum/k2cpt; 
         }   
       }    fclose(ficresp);
       /* This for computing force of mortality (h=1)as a weighted average */    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    free_vector(pp,1,nlstate);
         for(i=1; i<= nlstate; i++)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    /* End of Freq */
       }      }
       /* end force of mortality */  
   /************ Prevalence ********************/
       for(j=1; j<= nlstate; j++) /* vareij */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         for(h=0; h<=nhstepm; h++){  {  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         }       in each health status at the date of interview (if between dateprev1 and dateprev2).
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */       We still use firstpass and lastpass as another selection.
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    */
       }   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     } /* End theta */    double ***freq; /* Frequencies */
     double *pp, **prop;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    double pos,posprop; 
     double  y2; /* in fractional years */
     for(h=0; h<=nhstepm; h++) /* veij */    int iagemin, iagemax;
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    iagemin= (int) agemin;
           trgradg[h][j][theta]=gradg[h][theta][j];    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       for(theta=1; theta <=npar; theta++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         trgradgp[j][theta]=gradgp[theta][j];    j1=0;
     
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    j=cptcoveff;
     for(i=1;i<=nlstate;i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(j=1;j<=nlstate;j++)    
         vareij[i][j][(int)age] =0.;    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
     for(h=0;h<=nhstepm;h++){        j1++;
       for(k=0;k<=nhstepm;k++){        
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for (i=1; i<=nlstate; i++)  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for(m=iagemin; m <= iagemax+3; m++)
         for(i=1;i<=nlstate;i++)            prop[i][m]=0.0;
           for(j=1;j<=nlstate;j++)       
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        for (i=1; i<=imx; i++) { /* Each individual */
       }          bool=1;
     }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
     /* pptj */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);                bool=0;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          } 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          if (bool==1) { 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         varppt[j][i]=doldmp[j][i];              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     /* end ppptj */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     if (popbased==1) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for(i=1; i<=nlstate;i++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         prlim[i][i]=probs[(int)age][i][ij];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                    } 
     /* This for computing force of mortality (h=1)as a weighted average */              }
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){            } /* end selection of waves */
       for(i=1; i<= nlstate; i++)          }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];        }
     }            for(i=iagemin; i <= iagemax+3; i++){  
     /* end force of mortality */          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            posprop += prop[jk][i]; 
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          } 
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  
       for(i=1; i<=nlstate;i++){          for(jk=1; jk <=nlstate ; jk++){     
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            if( i <=  iagemax){ 
       }              if(posprop>=1.e-5){ 
     }                probs[i][jk][j1]= prop[jk][i]/posprop;
     fprintf(ficresprobmorprev,"\n");              } 
             } 
     fprintf(ficresvij,"%.0f ",age );          }/* end jk */ 
     for(i=1; i<=nlstate;i++)        }/* end i */ 
       for(j=1; j<=nlstate;j++){      } /* end i1 */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    } /* end k1 */
       }    
     fprintf(ficresvij,"\n");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     free_matrix(gp,0,nhstepm,1,nlstate);    /*free_vector(pp,1,nlstate);*/
     free_matrix(gm,0,nhstepm,1,nlstate);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  }  /* End of prevalence */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /************* Waves Concatenation ***************/
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   free_vector(gmp,nlstate+1,nlstate+ndeath);  {
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/       Death is a valid wave (if date is known).
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");       and mw[mi+1][i]. dh depends on stepm.
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);       */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    int i, mi, m;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);       double sum=0., jmean=0.;*/
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    int first;
 */    int j, k=0,jk, ju, jl;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    double sum=0.;
     first=0;
   free_vector(xp,1,npar);    jmin=1e+5;
   free_matrix(doldm,1,nlstate,1,nlstate);    jmax=-1;
   free_matrix(dnewm,1,nlstate,1,npar);    jmean=0.;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    for(i=1; i<=imx; i++){
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      mi=0;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      m=firstpass;
   fclose(ficresprobmorprev);      while(s[m][i] <= nlstate){
   fclose(ficgp);        if(s[m][i]>=1)
   fclose(fichtm);          mw[++mi][i]=m;
         if(m >=lastpass)
 }          break;
         else
 /************ Variance of prevlim ******************/          m++;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }/* end while */
 {      if (s[m][i] > nlstate){
   /* Variance of prevalence limit */        mi++;     /* Death is another wave */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        /* if(mi==0)  never been interviewed correctly before death */
   double **newm;           /* Only death is a correct wave */
   double **dnewm,**doldm;        mw[mi][i]=m;
   int i, j, nhstepm, hstepm;      }
   int k, cptcode;  
   double *xp;      wav[i]=mi;
   double *gp, *gm;      if(mi==0){
   double **gradg, **trgradg;        nbwarn++;
   double age,agelim;        if(first==0){
   int theta;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
              first=1;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        }
   fprintf(ficresvpl,"# Age");        if(first==1){
   for(i=1; i<=nlstate;i++)          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       fprintf(ficresvpl," %1d-%1d",i,i);        }
   fprintf(ficresvpl,"\n");      } /* end mi==0 */
     } /* End individuals */
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    for(i=1; i<=imx; i++){
   doldm=matrix(1,nlstate,1,nlstate);      for(mi=1; mi<wav[i];mi++){
          if (stepm <=0)
   hstepm=1*YEARM; /* Every year of age */          dh[mi][i]=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        else{
   agelim = AGESUP;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            if (agedc[i] < 2*AGESUP) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     if (stepm >= YEARM) hstepm=1;              if(j==0) j=1;  /* Survives at least one month after exam */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              else if(j<0){
     gradg=matrix(1,npar,1,nlstate);                nberr++;
     gp=vector(1,nlstate);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     gm=vector(1,nlstate);                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     for(theta=1; theta <=npar; theta++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(i=1; i<=npar; i++){ /* Computes gradient */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              }
       }              k=k+1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if (j >= jmax) jmax=j;
       for(i=1;i<=nlstate;i++)              if (j <= jmin) jmin=j;
         gp[i] = prlim[i][i];              sum=sum+j;
                  /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       for(i=1; i<=npar; i++) /* Computes gradient */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(i=1;i<=nlstate;i++)          else{
         gm[i] = prlim[i][i];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for(i=1;i<=nlstate;i++)            k=k+1;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            if (j >= jmax) jmax=j;
     } /* End theta */            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     trgradg =matrix(1,nlstate,1,npar);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
     for(j=1; j<=nlstate;j++)              nberr++;
       for(theta=1; theta <=npar; theta++)              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         trgradg[j][theta]=gradg[theta][j];              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
     for(i=1;i<=nlstate;i++)            sum=sum+j;
       varpl[i][(int)age] =0.;          }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          jk= j/stepm;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          jl= j -jk*stepm;
     for(i=1;i<=nlstate;i++)          ju= j -(jk+1)*stepm;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
     fprintf(ficresvpl,"%.0f ",age );              dh[mi][i]=jk;
     for(i=1; i<=nlstate;i++)              bh[mi][i]=0;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            }else{ /* We want a negative bias in order to only have interpolation ie
     fprintf(ficresvpl,"\n");                    * at the price of an extra matrix product in likelihood */
     free_vector(gp,1,nlstate);              dh[mi][i]=jk+1;
     free_vector(gm,1,nlstate);              bh[mi][i]=ju;
     free_matrix(gradg,1,npar,1,nlstate);            }
     free_matrix(trgradg,1,nlstate,1,npar);          }else{
   } /* End age */            if(jl <= -ju){
               dh[mi][i]=jk;
   free_vector(xp,1,npar);              bh[mi][i]=jl;       /* bias is positive if real duration
   free_matrix(doldm,1,nlstate,1,npar);                                   * is higher than the multiple of stepm and negative otherwise.
   free_matrix(dnewm,1,nlstate,1,nlstate);                                   */
             }
 }            else{
               dh[mi][i]=jk+1;
 /************ Variance of one-step probabilities  ******************/              bh[mi][i]=ju;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            }
 {            if(dh[mi][i]==0){
   int i, j=0,  i1, k1, l1, t, tj;              dh[mi][i]=1; /* At least one step */
   int k2, l2, j1,  z1;              bh[mi][i]=ju; /* At least one step */
   int k=0,l, cptcode;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   int first=1, first1;            }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;          } /* end if mle */
   double **dnewm,**doldm;        }
   double *xp;      } /* end wave */
   double *gp, *gm;    }
   double **gradg, **trgradg;    jmean=sum/k;
   double **mu;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   double age,agelim, cov[NCOVMAX];    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */   }
   int theta;  
   char fileresprob[FILENAMELENGTH];  /*********** Tricode ****************************/
   char fileresprobcov[FILENAMELENGTH];  void tricode(int *Tvar, int **nbcode, int imx)
   char fileresprobcor[FILENAMELENGTH];  {
     
   double ***varpij;    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
   strcpy(fileresprob,"prob");    cptcoveff=0; 
   strcat(fileresprob,fileres);   
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
     printf("Problem with resultfile: %s\n", fileresprob);    for (k=1; k<=7; k++) ncodemax[k]=0;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   strcpy(fileresprobcov,"probcov");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   strcat(fileresprobcov,fileres);                                 modality*/ 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     printf("Problem with resultfile: %s\n", fileresprobcov);        Ndum[ij]++; /*store the modality */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   strcpy(fileresprobcor,"probcor");                                         Tvar[j]. If V=sex and male is 0 and 
   strcat(fileresprobcor,fileres);                                         female is 1, then  cptcode=1.*/
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      }
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      for (i=0; i<=cptcode; i++) {
   }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      ij=1; 
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for (i=1; i<=ncodemax[j]; i++) {
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for (k=0; k<= maxncov; k++) {
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          if (Ndum[k] != 0) {
              nbcode[Tvar[j]][ij]=k; 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fprintf(ficresprob,"# Age");            
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            ij++;
   fprintf(ficresprobcov,"# Age");          }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          if (ij > ncodemax[j]) break; 
   fprintf(ficresprobcov,"# Age");        }  
       } 
     }  
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);   for (i=1; i<=ncovmodel-2; i++) { 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     }       ij=Tvar[i];
   fprintf(ficresprob,"\n");     Ndum[ij]++;
   fprintf(ficresprobcov,"\n");   }
   fprintf(ficresprobcor,"\n");  
   xp=vector(1,npar);   ij=1;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);   for (i=1; i<= maxncov; i++) {
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));     if((Ndum[i]!=0) && (i<=ncovcol)){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);       Tvaraff[ij]=i; /*For printing */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);       ij++;
   first=1;     }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {   }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);   
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);   cptcoveff=ij-1; /*Number of simple covariates*/
     exit(0);  }
   }  
   else{  /*********** Health Expectancies ****************/
     fprintf(ficgp,"\n# Routine varprob");  
   }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);  {
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    /* Health expectancies */
     exit(0);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   }    double age, agelim, hf;
   else{    double ***p3mat,***varhe;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    double **dnewm,**doldm;
     fprintf(fichtm,"\n");    double *xp;
     double **gp, **gm;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    double ***gradg, ***trgradg;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    int theta;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   cov[1]=1;    
   tj=cptcoveff;    fprintf(ficreseij,"# Health expectancies\n");
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    fprintf(ficreseij,"# Age");
   j1=0;    for(i=1; i<=nlstate;i++)
   for(t=1; t<=tj;t++){      for(j=1; j<=nlstate;j++)
     for(i1=1; i1<=ncodemax[t];i1++){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       j1++;    fprintf(ficreseij,"\n");
        
       if  (cptcovn>0) {    if(estepm < stepm){
         fprintf(ficresprob, "\n#********** Variable ");      printf ("Problem %d lower than %d\n",estepm, stepm);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficresprob, "**********\n#");    else  hstepm=estepm;   
         fprintf(ficresprobcov, "\n#********** Variable ");    /* We compute the life expectancy from trapezoids spaced every estepm months
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     * This is mainly to measure the difference between two models: for example
         fprintf(ficresprobcov, "**********\n#");     * if stepm=24 months pijx are given only every 2 years and by summing them
             * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficgp, "\n#********** Variable ");     * progression in between and thus overestimating or underestimating according
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficgp, "**********\n#");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             * to compare the new estimate of Life expectancy with the same linear 
             * hypothesis. A more precise result, taking into account a more precise
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     * curvature will be obtained if estepm is as small as stepm. */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    /* For example we decided to compute the life expectancy with the smallest unit */
            /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficresprobcor, "\n#********** Variable ");           nhstepm is the number of hstepm from age to agelim 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       nstepm is the number of stepm from age to agelin. 
         fprintf(ficgp, "**********\n#");           Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
          /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for (age=bage; age<=fage; age ++){       survival function given by stepm (the optimization length). Unfortunately it
         cov[2]=age;       means that if the survival funtion is printed only each two years of age and if
         for (k=1; k<=cptcovn;k++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];       results. So we changed our mind and took the option of the best precision.
         }    */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    agelim=AGESUP;
            for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      /* nhstepm age range expressed in number of stepm */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         gp=vector(1,(nlstate)*(nlstate+ndeath));      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         gm=vector(1,(nlstate)*(nlstate+ndeath));      /* if (stepm >= YEARM) hstepm=1;*/
          nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for(theta=1; theta <=npar; theta++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1; i<=npar; i++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                gm=matrix(0,nhstepm,1,nlstate*nlstate);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
                /* Computed by stepm unit matrices, product of hstepm matrices, stored
           k=0;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           for(i=1; i<= (nlstate); i++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
             for(j=1; j<=(nlstate+ndeath);j++){   
               k=k+1;  
               gp[k]=pmmij[i][j];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             }  
           }      /* Computing  Variances of health expectancies */
            
           for(i=1; i<=npar; i++)       for(theta=1; theta <=npar; theta++){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(i=1; i<=npar; i++){ 
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
           k=0;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           for(i=1; i<=(nlstate); i++){    
             for(j=1; j<=(nlstate+ndeath);j++){        cptj=0;
               k=k+1;        for(j=1; j<= nlstate; j++){
               gm[k]=pmmij[i][j];          for(i=1; i<=nlstate; i++){
             }            cptj=cptj+1;
           }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                    gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            }
         }        }
        
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)       
           for(theta=1; theta <=npar; theta++)        for(i=1; i<=npar; i++) 
             trgradg[j][theta]=gradg[theta][j];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        cptj=0;
                for(j=1; j<= nlstate; j++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);          for(i=1;i<=nlstate;i++){
                    cptj=cptj+1;
         k=0;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             k=k+1;            }
             mu[k][(int) age]=pmmij[i][j];          }
           }        }
         }        for(j=1; j<= nlstate*nlstate; j++)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          for(h=0; h<=nhstepm-1; h++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             varpij[i][j][(int)age] = doldm[i][j];          }
        } 
         /*printf("\n%d ",(int)age);     
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  /* End theta */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      }*/  
        for(h=0; h<=nhstepm-1; h++)
         fprintf(ficresprob,"\n%d ",(int)age);        for(j=1; j<=nlstate*nlstate;j++)
         fprintf(ficresprobcov,"\n%d ",(int)age);          for(theta=1; theta <=npar; theta++)
         fprintf(ficresprobcor,"\n%d ",(int)age);            trgradg[h][j][theta]=gradg[h][theta][j];
        
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));       for(i=1;i<=nlstate*nlstate;i++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(j=1;j<=nlstate*nlstate;j++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          varhe[i][j][(int)age] =0.;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }       printf("%d|",(int)age);fflush(stdout);
         i=0;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for (k=1; k<=(nlstate);k++){       for(h=0;h<=nhstepm-1;h++){
           for (l=1; l<=(nlstate+ndeath);l++){        for(k=0;k<=nhstepm-1;k++){
             i=i++;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          for(i=1;i<=nlstate*nlstate;i++)
             for (j=1; j<=i;j++){            for(j=1;j<=nlstate*nlstate;j++)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        }
             }      }
           }      /* Computing expectancies */
         }/* end of loop for state */      for(i=1; i<=nlstate;i++)
       } /* end of loop for age */        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       /* Confidence intervalle of pij  */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       /*            
       fprintf(ficgp,"\nset noparametric;unset label");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          }
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      fprintf(ficreseij,"%3.0f",age );
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);      cptj=0;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      for(i=1; i<=nlstate;i++)
       */        for(j=1; j<=nlstate;j++){
           cptj++;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       first1=1;        }
       for (k2=1; k2<=(nlstate);k2++){      fprintf(ficreseij,"\n");
         for (l2=1; l2<=(nlstate+ndeath);l2++){     
           if(l2==k2) continue;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           j=(k2-1)*(nlstate+ndeath)+l2;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           for (k1=1; k1<=(nlstate);k1++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             for (l1=1; l1<=(nlstate+ndeath);l1++){      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
               if(l1==k1) continue;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               i=(k1-1)*(nlstate+ndeath)+l1;    }
               if(i<=j) continue;    printf("\n");
               for (age=bage; age<=fage; age ++){    fprintf(ficlog,"\n");
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    free_vector(xp,1,npar);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   mu1=mu[i][(int) age]/stepm*YEARM ;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   mu2=mu[j][(int) age]/stepm*YEARM;  }
                   c12=cv12/sqrt(v1*v2);  
                   /* Computing eigen value of matrix of covariance */  /************ Variance ******************/
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  {
                   /* Eigen vectors */    /* Variance of health expectancies */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   /*v21=sqrt(1.-v11*v11); *//* error */    /* double **newm;*/
                   v21=(lc1-v1)/cv12*v11;    double **dnewm,**doldm;
                   v12=-v21;    double **dnewmp,**doldmp;
                   v22=v11;    int i, j, nhstepm, hstepm, h, nstepm ;
                   tnalp=v21/v11;    int k, cptcode;
                   if(first1==1){    double *xp;
                     first1=0;    double **gp, **gm;  /* for var eij */
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    double ***gradg, ***trgradg; /*for var eij */
                   }    double **gradgp, **trgradgp; /* for var p point j */
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    double *gpp, *gmp; /* for var p point j */
                   /*printf(fignu*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    double ***p3mat;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    double age,agelim, hf;
                   if(first==1){    double ***mobaverage;
                     first=0;    int theta;
                     fprintf(ficgp,"\nset parametric;unset label");    char digit[4];
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    char digitp[25];
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    char fileresprobmorprev[FILENAMELENGTH];
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    if(popbased==1){
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);      if(mobilav!=0)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        strcpy(digitp,"-populbased-mobilav-");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      else strcpy(digitp,"-populbased-nomobil-");
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    else 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      strcpy(digitp,"-stablbased-");
                   }else{  
                     first=0;    if (mobilav!=0) {
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    }
                   }/* if first */  
                 } /* age mod 5 */    strcpy(fileresprobmorprev,"prmorprev"); 
               } /* end loop age */    sprintf(digit,"%-d",ij);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
               first=1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
             } /*l12 */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           } /* k12 */    strcat(fileresprobmorprev,fileres);
         } /*l1 */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       }/* k1 */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     } /* loop covariates */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
   free_vector(xp,1,npar);      for(i=1; i<=nlstate;i++)
   fclose(ficresprob);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fclose(ficresprobcov);    }  
   fclose(ficresprobcor);    fprintf(ficresprobmorprev,"\n");
   fclose(ficgp);    fprintf(ficgp,"\n# Routine varevsij");
   fclose(fichtm);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                   int lastpass, int stepm, int weightopt, char model[],\    fprintf(ficresvij,"# Age");
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    for(i=1; i<=nlstate;i++)
                   int popforecast, int estepm ,\      for(j=1; j<=nlstate;j++)
                   double jprev1, double mprev1,double anprev1, \        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                   double jprev2, double mprev2,double anprev2){    fprintf(ficresvij,"\n");
   int jj1, k1, i1, cpt;  
   /*char optionfilehtm[FILENAMELENGTH];*/    xp=vector(1,npar);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    dnewm=matrix(1,nlstate,1,npar);
     printf("Problem with %s \n",optionfilehtm), exit(0);    doldm=matrix(1,nlstate,1,nlstate);
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    gpp=vector(nlstate+1,nlstate+ndeath);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    gmp=vector(nlstate+1,nlstate+ndeath);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  - Life expectancies by age and initial health status (estepm=%2d months):    
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    if(estepm < stepm){
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
  m=cptcoveff;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
  jj1=0;       Look at hpijx to understand the reason of that which relies in memory size
  for(k1=1; k1<=m;k1++){       and note for a fixed period like k years */
    for(i1=1; i1<=ncodemax[k1];i1++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      jj1++;       survival function given by stepm (the optimization length). Unfortunately it
      if (cptcovn > 0) {       means that if the survival funtion is printed every two years of age and if
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        for (cpt=1; cpt<=cptcoveff;cpt++)       results. So we changed our mind and took the option of the best precision.
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      }    agelim = AGESUP;
      /* Pij */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      /* Quasi-incidences */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      gp=matrix(0,nhstepm,1,nlstate);
        /* Stable prevalence in each health state */      gm=matrix(0,nhstepm,1,nlstate);
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for(theta=1; theta <=npar; theta++){
        }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      for(cpt=1; cpt<=nlstate;cpt++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.png<br>        if (popbased==1) {
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          if(mobilav ==0){
    } /* end i1 */            for(i=1; i<=nlstate;i++)
  }/* End k1 */              prlim[i][i]=probs[(int)age][i][ij];
  fprintf(fichtm,"</ul>");          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n          }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        for(j=1; j<= nlstate; j++){
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          for(h=0; h<=nhstepm; h++){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          }
         }
  if(popforecast==1) fprintf(fichtm,"\n        /* This for computing probability of death (h=1 means
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n           computed over hstepm matrices product = hstepm*stepm months) 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n           as a weighted average of prlim.
         <br>",fileres,fileres,fileres,fileres);        */
  else        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
  m=cptcoveff;        /* end probability of death */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  jj1=0;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  for(k1=1; k1<=m;k1++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    for(i1=1; i1<=ncodemax[k1];i1++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      jj1++;   
      if (cptcovn > 0) {        if (popbased==1) {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          if(mobilav ==0){
        for (cpt=1; cpt<=cptcoveff;cpt++)            for(i=1; i<=nlstate;i++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              prlim[i][i]=probs[(int)age][i][ij];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          }else{ /* mobilav */ 
      }            for(i=1; i<=nlstate;i++)
      for(cpt=1; cpt<=nlstate;cpt++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          }
 interval) in state (%d): v%s%d%d.png <br>        }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }        for(j=1; j<= nlstate; j++){
    } /* end i1 */          for(h=0; h<=nhstepm; h++){
  }/* End k1 */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
  fprintf(fichtm,"</ul>");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 fclose(fichtm);          }
 }        }
         /* This for computing probability of death (h=1 means
 /******************* Gnuplot file **************/           computed over hstepm matrices product = hstepm*stepm months) 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){           as a weighted average of prlim.
         */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   int ng;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     printf("Problem with file %s",optionfilegnuplot);        }    
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        /* end probability of death */
   }  
         for(j=1; j<= nlstate; j++) /* vareij */
 #ifdef windows          for(h=0; h<=nhstepm; h++){
     fprintf(ficgp,"cd \"%s\" \n",pathc);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 #endif          }
 m=pow(2,cptcoveff);  
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
  /* 1eme*/          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   for (cpt=1; cpt<= nlstate ; cpt ++) {        }
    for (k1=1; k1<= m ; k1 ++) {  
       } /* End theta */
 #ifdef windows  
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif      for(h=0; h<=nhstepm; h++) /* veij */
 #ifdef unix        for(j=1; j<=nlstate;j++)
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          for(theta=1; theta <=npar; theta++)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            trgradg[h][j][theta]=gradg[h][theta][j];
 #endif  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 for (i=1; i<= nlstate ; i ++) {        for(theta=1; theta <=npar; theta++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          trgradgp[j][theta]=gradgp[theta][j];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (i=1; i<= nlstate ; i ++) {      for(i=1;i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1;j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          vareij[i][j][(int)age] =0.;
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      for(h=0;h<=nhstepm;h++){
      for (i=1; i<= nlstate ; i ++) {        for(k=0;k<=nhstepm;k++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 }            for(i=1;i<=nlstate;i++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            for(j=1;j<=nlstate;j++)
 #ifdef unix              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        }
 #endif      }
    }    
   }      /* pptj */
   /*2 eme*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   for (k1=1; k1<= m ; k1 ++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          varppt[j][i]=doldmp[j][i];
          /* end ppptj */
     for (i=1; i<= nlstate+1 ; i ++) {      /*  x centered again */
       k=2*i;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       for (j=1; j<= nlstate+1 ; j ++) {   
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      if (popbased==1) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(mobilav ==0){
 }            for(i=1; i<=nlstate;i++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            prlim[i][i]=probs[(int)age][i][ij];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        }else{ /* mobilav */ 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(i=1; i<=nlstate;i++)
       for (j=1; j<= nlstate+1 ; j ++) {            prlim[i][i]=mobaverage[(int)age][i][ij];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }                 
       fprintf(ficgp,"\" t\"\" w l 0,");      /* This for computing probability of death (h=1 means
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       for (j=1; j<= nlstate+1 ; j ++) {         as a weighted average of prlim.
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
 }          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       else fprintf(ficgp,"\" t\"\" w l 0,");      }    
     }      /* end probability of death */
   }  
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   /*3eme*/      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   for (k1=1; k1<= m ; k1 ++) {        for(i=1; i<=nlstate;i++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       k=2+nlstate*(2*cpt-2);        }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      } 
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      fprintf(ficresprobmorprev,"\n");
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      fprintf(ficresvij,"%.0f ",age );
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      for(i=1; i<=nlstate;i++)
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(j=1; j<=nlstate;j++){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        }
       fprintf(ficresvij,"\n");
 */      free_matrix(gp,0,nhstepm,1,nlstate);
       for (i=1; i< nlstate ; i ++) {      free_matrix(gm,0,nhstepm,1,nlstate);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
   /* CV preval stat */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     for (k1=1; k1<= m ; k1 ++) {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for (cpt=1; cpt<nlstate ; cpt ++) {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       k=3;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for (i=1; i< nlstate ; i ++)  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficgp,"+$%d",k+i+1);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
          fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       l=3+(nlstate+ndeath)*cpt;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for (i=1; i< nlstate ; i ++) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         l=3+(nlstate+ndeath)*cpt;  */
         fprintf(ficgp,"+$%d",l+i+1);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
     }    free_vector(xp,1,npar);
   }      free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
   /* proba elementaires */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    for(i=1,jk=1; i <=nlstate; i++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     for(k=1; k <=(nlstate+ndeath); k++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       if (k != i) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(j=1; j <=ncovmodel; j++){    fclose(ficresprobmorprev);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    fflush(ficgp);
           jk++;    fflush(fichtm); 
           fprintf(ficgp,"\n");  }  /* end varevsij */
         }  
       }  /************ Variance of prevlim ******************/
     }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
    }  {
     /* Variance of prevalence limit */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      for(jk=1; jk <=m; jk++) {    double **newm;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    double **dnewm,**doldm;
        if (ng==2)    int i, j, nhstepm, hstepm;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    int k, cptcode;
        else    double *xp;
          fprintf(ficgp,"\nset title \"Probability\"\n");    double *gp, *gm;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    double **gradg, **trgradg;
        i=1;    double age,agelim;
        for(k2=1; k2<=nlstate; k2++) {    int theta;
          k3=i;     
          for(k=1; k<=(nlstate+ndeath); k++) {    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
            if (k != k2){    fprintf(ficresvpl,"# Age");
              if(ng==2)    for(i=1; i<=nlstate;i++)
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        fprintf(ficresvpl," %1d-%1d",i,i);
              else    fprintf(ficresvpl,"\n");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;    xp=vector(1,npar);
              for(j=3; j <=ncovmodel; j++) {    dnewm=matrix(1,nlstate,1,npar);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    doldm=matrix(1,nlstate,1,nlstate);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    
                  ij++;    hstepm=1*YEARM; /* Every year of age */
                }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                else    agelim = AGESUP;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
              fprintf(ficgp,")/(1");      if (stepm >= YEARM) hstepm=1;
                    nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
              for(k1=1; k1 <=nlstate; k1++){        gradg=matrix(1,npar,1,nlstate);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      gp=vector(1,nlstate);
                ij=1;      gm=vector(1,nlstate);
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(theta=1; theta <=npar; theta++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(i=1; i<=npar; i++){ /* Computes gradient */
                    ij++;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  }        }
                  else        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(i=1;i<=nlstate;i++)
                }          gp[i] = prlim[i][i];
                fprintf(ficgp,")");      
              }        for(i=1; i<=npar; i++) /* Computes gradient */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              i=i+ncovmodel;        for(i=1;i<=nlstate;i++)
            }          gm[i] = prlim[i][i];
          } /* end k */  
        } /* end k2 */        for(i=1;i<=nlstate;i++)
      } /* end jk */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
    } /* end ng */      } /* End theta */
    fclose(ficgp);  
 }  /* end gnuplot */      trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
 /*************** Moving average **************/        for(theta=1; theta <=npar; theta++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          trgradg[j][theta]=gradg[theta][j];
   
   int i, cpt, cptcod;      for(i=1;i<=nlstate;i++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        varpl[i][(int)age] =0.;
       for (i=1; i<=nlstate;i++)      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           mobaverage[(int)agedeb][i][cptcod]=0.;      for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){      fprintf(ficresvpl,"%.0f ",age );
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(i=1; i<=nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      fprintf(ficresvpl,"\n");
           }      free_vector(gp,1,nlstate);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      free_vector(gm,1,nlstate);
         }      free_matrix(gradg,1,npar,1,nlstate);
       }      free_matrix(trgradg,1,nlstate,1,npar);
     }    } /* End age */
      
 }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  }
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  /************ Variance of one-step probabilities  ******************/
   int *popage;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  {
   double *popeffectif,*popcount;    int i, j=0,  i1, k1, l1, t, tj;
   double ***p3mat;    int k2, l2, j1,  z1;
   char fileresf[FILENAMELENGTH];    int k=0,l, cptcode;
     int first=1, first1;
  agelim=AGESUP;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    double **dnewm,**doldm;
     double *xp;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double *gp, *gm;
      double **gradg, **trgradg;
      double **mu;
   strcpy(fileresf,"f");    double age,agelim, cov[NCOVMAX];
   strcat(fileresf,fileres);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    int theta;
     printf("Problem with forecast resultfile: %s\n", fileresf);    char fileresprob[FILENAMELENGTH];
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    char fileresprobcov[FILENAMELENGTH];
   }    char fileresprobcor[FILENAMELENGTH];
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    double ***varpij;
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   if (mobilav==1) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprob);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   }    }
     strcpy(fileresprobcov,"probcov"); 
   stepsize=(int) (stepm+YEARM-1)/YEARM;    strcat(fileresprobcov,fileres);
   if (stepm<=12) stepsize=1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
   agelim=AGESUP;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
   hstepm=1;    strcpy(fileresprobcor,"probcor"); 
   hstepm=hstepm/stepm;    strcat(fileresprobcor,fileres);
   yp1=modf(dateintmean,&yp);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   anprojmean=yp;      printf("Problem with resultfile: %s\n", fileresprobcor);
   yp2=modf((yp1*12),&yp);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   mprojmean=yp;    }
   yp1=modf((yp2*30.5),&yp);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   jprojmean=yp;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if(jprojmean==0) jprojmean=1;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   if(mprojmean==0) jprojmean=1;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficresprob,"# Age");
       k=k+1;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       fprintf(ficresf,"\n#******");    fprintf(ficresprobcov,"# Age");
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobcov,"# Age");
       }  
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      for(j=1; j<=(nlstate+ndeath);j++){
              fprintf(ficresprob," p%1d-%1d (SE)",i,j);
              fprintf(ficresprobcov," p%1d-%1d ",i,j);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         fprintf(ficresf,"\n");      }  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);     /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresprobcor,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   */
           nhstepm = nhstepm/hstepm;   xp=vector(1,npar);
              dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           oldm=oldms;savm=savms;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
            first=1;
           for (h=0; h<=nhstepm; h++){    fprintf(ficgp,"\n# Routine varprob");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    fprintf(fichtm,"\n");
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
               kk1=0.;kk2=0;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
               for(i=1; i<=nlstate;i++) {                  file %s<br>\n",optionfilehtmcov);
                 if (mobilav==1)    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  and drawn. It helps understanding how is the covariance between two incidences.\
                 else {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                 }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
               }  standard deviations wide on each axis. <br>\
               if (h==(int)(calagedate+12*cpt)){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                 fprintf(ficresf," %.3f", kk1);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                          To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
               }  
             }    cov[1]=1;
           }    tj=cptcoveff;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         }    j1=0;
       }    for(t=1; t<=tj;t++){
     }      for(i1=1; i1<=ncodemax[t];i1++){ 
   }        j1++;
                if  (cptcovn>0) {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficresf);          fprintf(ficresprob, "**********\n#\n");
 }          fprintf(ficresprobcov, "\n#********** Variable "); 
 /************** Forecasting ******************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          fprintf(ficresprobcov, "**********\n#\n");
            
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficgp, "\n#********** Variable "); 
   int *popage;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          fprintf(ficgp, "**********\n#\n");
   double *popeffectif,*popcount;          
   double ***p3mat,***tabpop,***tabpopprev;          
   char filerespop[FILENAMELENGTH];          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
   agelim=AGESUP;          fprintf(ficresprobcor, "\n#********** Variable ");    
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcor, "**********\n#");    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
          
          for (age=bage; age<=fage; age ++){ 
   strcpy(filerespop,"pop");          cov[2]=age;
   strcat(filerespop,fileres);          for (k=1; k<=cptcovn;k++) {
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     printf("Problem with forecast resultfile: %s\n", filerespop);          }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }          for (k=1; k<=cptcovprod;k++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
   if (mobilav==1) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
     movingaverage(agedeb, fage, ageminpar, mobaverage);          for(theta=1; theta <=npar; theta++){
   }            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   stepsize=(int) (stepm+YEARM-1)/YEARM;            
   if (stepm<=12) stepsize=1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              
   agelim=AGESUP;            k=0;
              for(i=1; i<= (nlstate); i++){
   hstepm=1;              for(j=1; j<=(nlstate+ndeath);j++){
   hstepm=hstepm/stepm;                k=k+1;
                  gp[k]=pmmij[i][j];
   if (popforecast==1) {              }
     if((ficpop=fopen(popfile,"r"))==NULL) {            }
       printf("Problem with population file : %s\n",popfile);exit(0);            
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     popage=ivector(0,AGESUP);      
     popeffectif=vector(0,AGESUP);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     popcount=vector(0,AGESUP);            k=0;
                for(i=1; i<=(nlstate); i++){
     i=1;                for(j=1; j<=(nlstate+ndeath);j++){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                k=k+1;
                    gm[k]=pmmij[i][j];
     imx=i;              }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            }
   }       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   for(cptcov=1;cptcov<=i2;cptcov++){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
       k=k+1;  
       fprintf(ficrespop,"\n#******");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       for(j=1;j<=cptcoveff;j++) {            for(theta=1; theta <=npar; theta++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              trgradg[j][theta]=gradg[theta][j];
       }          
       fprintf(ficrespop,"******\n");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       fprintf(ficrespop,"# Age");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       if (popforecast==1)  fprintf(ficrespop," [Population]");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for (cpt=0; cpt<=0;cpt++) {          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
                  pmij(pmmij,cov,ncovmodel,x,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          k=0;
           nhstepm = nhstepm/hstepm;          for(i=1; i<=(nlstate); i++){
                      for(j=1; j<=(nlstate+ndeath);j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              k=k+1;
           oldm=oldms;savm=savms;              mu[k][(int) age]=pmmij[i][j];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              }
                  }
           for (h=0; h<=nhstepm; h++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             if (h==(int) (calagedate+YEARM*cpt)) {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              varpij[i][j][(int)age] = doldm[i][j];
             }  
             for(j=1; j<=nlstate+ndeath;j++) {          /*printf("\n%d ",(int)age);
               kk1=0.;kk2=0;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               for(i=1; i<=nlstate;i++) {                          printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                 if (mobilav==1)            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            }*/
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          fprintf(ficresprob,"\n%d ",(int)age);
                 }          fprintf(ficresprobcov,"\n%d ",(int)age);
               }          fprintf(ficresprobcor,"\n%d ",(int)age);
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   /*fprintf(ficrespop," %.3f", kk1);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             for(i=1; i<=nlstate;i++){          }
               kk1=0.;          i=0;
                 for(j=1; j<=nlstate;j++){          for (k=1; k<=(nlstate);k++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            for (l=1; l<=(nlstate+ndeath);l++){ 
                 }              i=i++;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
             }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           }              }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
         }          }/* end of loop for state */
       }        } /* end of loop for age */
    
   /******/        /* Confidence intervalle of pij  */
         /*
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          fprintf(ficgp,"\nset noparametric;unset label");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           nhstepm = nhstepm/hstepm;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                    fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           oldm=oldms;savm=savms;        */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
             if (h==(int) (calagedate+YEARM*cpt)) {        first1=1;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for (k2=1; k2<=(nlstate);k2++){
             }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             for(j=1; j<=nlstate+ndeath;j++) {            if(l2==k2) continue;
               kk1=0.;kk2=0;            j=(k2-1)*(nlstate+ndeath)+l2;
               for(i=1; i<=nlstate;i++) {                          for (k1=1; k1<=(nlstate);k1++){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  for (l1=1; l1<=(nlstate+ndeath);l1++){ 
               }                if(l1==k1) continue;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                i=(k1-1)*(nlstate+ndeath)+l1;
             }                if(i<=j) continue;
           }                for (age=bage; age<=fage; age ++){ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  if ((int)age %5==0){
         }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
    }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    mu1=mu[i][(int) age]/stepm*YEARM ;
                      mu2=mu[j][(int) age]/stepm*YEARM;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   if (popforecast==1) {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     free_ivector(popage,0,AGESUP);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     free_vector(popeffectif,0,AGESUP);                    /* Eigen vectors */
     free_vector(popcount,0,AGESUP);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   }                    /*v21=sqrt(1.-v11*v11); *//* error */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    v21=(lc1-v1)/cv12*v11;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    v12=-v21;
   fclose(ficrespop);                    v22=v11;
 }                    tnalp=v21/v11;
                     if(first1==1){
 /***********************************************/                      first1=0;
 /**************** Main Program *****************/                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 /***********************************************/                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 int main(int argc, char *argv[])                    /*printf(fignu*/
 {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                    if(first==1){
   double agedeb, agefin,hf;                      first=0;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   double fret;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   double **xi,tmp,delta;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   double dum; /* Dummy variable */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   double ***p3mat;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   int *indx;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   char line[MAXLINE], linepar[MAXLINE];                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   int firstobs=1, lastobs=10;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   int sdeb, sfin; /* Status at beginning and end */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   int c,  h , cpt,l;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   int ju,jl, mi;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   int mobilav=0,popforecast=0;                    }else{
   int hstepm, nhstepm;                      first=0;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   double bage, fage, age, agelim, agebase;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   double ftolpl=FTOL;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double **prlim;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double *severity;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double ***param; /* Matrix of parameters */                    }/* if first */
   double  *p;                  } /* age mod 5 */
   double **matcov; /* Matrix of covariance */                } /* end loop age */
   double ***delti3; /* Scale */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double *delti; /* Scale */                first=1;
   double ***eij, ***vareij;              } /*l12 */
   double **varpl; /* Variances of prevalence limits by age */            } /* k12 */
   double *epj, vepp;          } /*l1 */
   double kk1, kk2;        }/* k1 */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      } /* loop covariates */
      }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
   char z[1]="c", occ;    fclose(ficresprobcov);
 #include <sys/time.h>    fclose(ficresprobcor);
 #include <time.h>    fflush(ficgp);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fflush(fichtmcov);
    }
   /* long total_usecs;  
   struct timeval start_time, end_time;  
    /******************* Printing html file ***********/
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   getcwd(pathcd, size);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   printf("\n%s",version);                    int popforecast, int estepm ,\
   if(argc <=1){                    double jprev1, double mprev1,double anprev1, \
     printf("\nEnter the parameter file name: ");                    double jprev2, double mprev2,double anprev2){
     scanf("%s",pathtot);    int jj1, k1, i1, cpt;
   }    /*char optionfilehtm[FILENAMELENGTH];*/
   else{  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
     strcpy(pathtot,argv[1]);  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   }  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  /*   } */
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   /* cutv(path,optionfile,pathtot,'\\');*/   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);   - Life expectancies by age and initial health status (estepm=%2d months): \
   chdir(path);     <a href=\"%s\">%s</a> <br>\n</li>", \
   replace(pathc,path);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
 /*-------- arguments in the command line --------*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   /* Log file */  
   strcat(filelog, optionfilefiname);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {   m=cptcoveff;
     printf("Problem with logfile %s\n",filelog);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     goto end;  
   }   jj1=0;
   fprintf(ficlog,"Log filename:%s\n",filelog);   for(k1=1; k1<=m;k1++){
   fprintf(ficlog,"\n%s",version);     for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficlog,"\nEnter the parameter file name: ");       jj1++;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       if (cptcovn > 0) {
   fflush(ficlog);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   /* */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   strcpy(fileres,"r");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcat(fileres, optionfilefiname);       }
   strcat(fileres,".txt");    /* Other files have txt extension */       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   /*---------arguments file --------*/  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     printf("Problem with optionfile %s\n",optionfile);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     goto end;         /* Stable prevalence in each health state */
   }         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   strcpy(filereso,"o");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   strcat(filereso,fileres);         }
   if((ficparo=fopen(filereso,"w"))==NULL) {       for(cpt=1; cpt<=nlstate;cpt++) {
     printf("Problem with Output resultfile: %s\n", filereso);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     goto end;       }
   }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   /* Reads comments: lines beginning with '#' */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   while((c=getc(ficpar))=='#' && c!= EOF){     } /* end i1 */
     ungetc(c,ficpar);   }/* End k1 */
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"</ul>");
     puts(line);  
     fputs(line,ficparo);  
   }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   ungetc(c,ficpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
 while((c=getc(ficpar))=='#' && c!= EOF){   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
     ungetc(c,ficpar);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     fgets(line, MAXLINE, ficpar);           rfileres,rfileres,\
     puts(line);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
     fputs(line,ficparo);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
   }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
   ungetc(c,ficpar);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
             subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
               subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;  /*  if(popforecast==1) fprintf(fichtm,"\n */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   ncovmodel=2+cptcovn;  /*      <br>",fileres,fileres,fileres,fileres); */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  /*  else  */
    /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   /* Read guess parameters */  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){   m=cptcoveff;
     ungetc(c,ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fgets(line, MAXLINE, ficpar);  
     puts(line);   jj1=0;
     fputs(line,ficparo);   for(k1=1; k1<=m;k1++){
   }     for(i1=1; i1<=ncodemax[k1];i1++){
   ungetc(c,ficpar);       jj1++;
         if (cptcovn > 0) {
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     for(i=1; i <=nlstate; i++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
     for(j=1; j <=nlstate+ndeath-1; j++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficparo,"%1d%1d",i1,j1);       }
       if(mle==1)       for(cpt=1; cpt<=nlstate;cpt++) {
         printf("%1d%1d",i,j);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       fprintf(ficlog,"%1d%1d",i,j);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       for(k=1; k<=ncovmodel;k++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         fscanf(ficpar," %lf",&param[i][j][k]);       }
         if(mle==1){     } /* end i1 */
           printf(" %lf",param[i][j][k]);   }/* End k1 */
           fprintf(ficlog," %lf",param[i][j][k]);   fprintf(fichtm,"</ul>");
         }   fflush(fichtm);
         else  }
           fprintf(ficlog," %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);  /******************* Gnuplot file **************/
       }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       fscanf(ficpar,"\n");  
       if(mle==1)    char dirfileres[132],optfileres[132];
         printf("\n");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       fprintf(ficlog,"\n");    int ng;
       fprintf(ficparo,"\n");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     }  /*     printf("Problem with file %s",optionfilegnuplot); */
    /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  /*   } */
   
   p=param[1][1];    /*#ifdef windows */
      fprintf(ficgp,"cd \"%s\" \n",pathc);
   /* Reads comments: lines beginning with '#' */      /*#endif */
   while((c=getc(ficpar))=='#' && c!= EOF){    m=pow(2,cptcoveff);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    strcpy(dirfileres,optionfilefiname);
     puts(line);    strcpy(optfileres,"vpl");
     fputs(line,ficparo);   /* 1eme*/
   }    for (cpt=1; cpt<= nlstate ; cpt ++) {
   ungetc(c,ficpar);     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */       fprintf(ficgp,"set xlabel \"Age\" \n\
   for(i=1; i <=nlstate; i++){  set ylabel \"Probability\" \n\
     for(j=1; j <=nlstate+ndeath-1; j++){  set ter png small\n\
       fscanf(ficpar,"%1d%1d",&i1,&j1);  set size 0.65,0.65\n\
       printf("%1d%1d",i,j);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){       for (i=1; i<= nlstate ; i ++) {
         fscanf(ficpar,"%le",&delti3[i][j][k]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         printf(" %le",delti3[i][j][k]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficparo," %le",delti3[i][j][k]);       }
       }       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       fscanf(ficpar,"\n");       for (i=1; i<= nlstate ; i ++) {
       printf("\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficparo,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       } 
   }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   delti=delti3[1][1];       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /* Reads comments: lines beginning with '#' */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){       }  
     ungetc(c,ficpar);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     fgets(line, MAXLINE, ficpar);     }
     puts(line);    }
     fputs(line,ficparo);    /*2 eme*/
   }    
   ungetc(c,ficpar);    for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   matcov=matrix(1,npar,1,npar);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   for(i=1; i <=npar; i++){      
     fscanf(ficpar,"%s",&str);      for (i=1; i<= nlstate+1 ; i ++) {
     if(mle==1)        k=2*i;
       printf("%s",str);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     fprintf(ficlog,"%s",str);        for (j=1; j<= nlstate+1 ; j ++) {
     fprintf(ficparo,"%s",str);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     for(j=1; j <=i; j++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fscanf(ficpar," %le",&matcov[i][j]);        }   
       if(mle==1){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         printf(" %.5le",matcov[i][j]);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficlog," %.5le",matcov[i][j]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
       else          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficlog," %.5le",matcov[i][j]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficparo," %.5le",matcov[i][j]);        }   
     }        fprintf(ficgp,"\" t\"\" w l 0,");
     fscanf(ficpar,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     if(mle==1)        for (j=1; j<= nlstate+1 ; j ++) {
       printf("\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficlog,"\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficparo,"\n");        }   
   }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   for(i=1; i <=npar; i++)        else fprintf(ficgp,"\" t\"\" w l 0,");
     for(j=i+1;j<=npar;j++)      }
       matcov[i][j]=matcov[j][i];    }
        
   if(mle==1)    /*3eme*/
     printf("\n");    
   fprintf(ficlog,"\n");    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
     /*-------- Rewriting paramater file ----------*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
      strcpy(rfileres,"r");    /* "Rparameterfile */        fprintf(ficgp,"set ter png small\n\
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  set size 0.65,0.65\n\
      strcat(rfileres,".");    /* */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     if((ficres =fopen(rfileres,"w"))==NULL) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     fprintf(ficres,"#%s\n",version);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
              
     /*-------- data file ----------*/        */
     if((fic=fopen(datafile,"r"))==NULL)    {        for (i=1; i< nlstate ; i ++) {
       printf("Problem with datafile: %s\n", datafile);goto end;          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          
     }        } 
       }
     n= lastobs;    }
     severity = vector(1,maxwav);    
     outcome=imatrix(1,maxwav+1,1,n);    /* CV preval stable (period) */
     num=ivector(1,n);    for (k1=1; k1<= m ; k1 ++) { 
     moisnais=vector(1,n);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     annais=vector(1,n);        k=3;
     moisdc=vector(1,n);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     andc=vector(1,n);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     agedc=vector(1,n);  set ter png small\nset size 0.65,0.65\n\
     cod=ivector(1,n);  unset log y\n\
     weight=vector(1,n);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        
     mint=matrix(1,maxwav,1,n);        for (i=1; i< nlstate ; i ++)
     anint=matrix(1,maxwav,1,n);          fprintf(ficgp,"+$%d",k+i+1);
     s=imatrix(1,maxwav+1,1,n);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     adl=imatrix(1,maxwav+1,1,n);            
     tab=ivector(1,NCOVMAX);        l=3+(nlstate+ndeath)*cpt;
     ncodemax=ivector(1,8);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
     i=1;          l=3+(nlstate+ndeath)*cpt;
     while (fgets(line, MAXLINE, fic) != NULL)    {          fprintf(ficgp,"+$%d",l+i+1);
       if ((i >= firstobs) && (i <=lastobs)) {        }
                fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
         for (j=maxwav;j>=1;j--){      } 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    }  
           strcpy(line,stra);    
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* proba elementaires */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for(i=1,jk=1; i <=nlstate; i++){
         }      for(k=1; k <=(nlstate+ndeath); k++){
                if (k != i) {
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(j=1; j <=ncovmodel; j++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficgp,"\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      }
         for (j=ncovcol;j>=1;j--){     }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         num[i]=atol(stra);       for(jk=1; jk <=m; jk++) {
                 fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){         if (ng==2)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
         i=i+1;           fprintf(ficgp,"\nset title \"Probability\"\n");
       }         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     }         i=1;
     /* printf("ii=%d", ij);         for(k2=1; k2<=nlstate; k2++) {
        scanf("%d",i);*/           k3=i;
   imx=i-1; /* Number of individuals */           for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
   /* for (i=1; i<=imx; i++){               if(ng==2)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;               else
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     }*/               ij=1;
    /*  for (i=1; i<=imx; i++){               for(j=3; j <=ncovmodel; j++) {
      if (s[4][i]==9)  s[4][i]=-1;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                     ij++;
                   }
   /* Calculation of the number of parameter from char model*/                 else
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   Tprod=ivector(1,15);               }
   Tvaraff=ivector(1,15);               fprintf(ficgp,")/(1");
   Tvard=imatrix(1,15,1,2);               
   Tage=ivector(1,15);                     for(k1=1; k1 <=nlstate; k1++){   
                     fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   if (strlen(model) >1){                 ij=1;
     j=0, j1=0, k1=1, k2=1;                 for(j=3; j <=ncovmodel; j++){
     j=nbocc(model,'+');                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     j1=nbocc(model,'*');                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     cptcovn=j+1;                     ij++;
     cptcovprod=j1;                   }
                       else
     strcpy(modelsav,model);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                 }
       printf("Error. Non available option model=%s ",model);                 fprintf(ficgp,")");
       fprintf(ficlog,"Error. Non available option model=%s ",model);               }
       goto end;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                   i=i+ncovmodel;
     for(i=(j+1); i>=1;i--){             }
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */           } /* end k */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */         } /* end k2 */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       } /* end jk */
       /*scanf("%d",i);*/     } /* end ng */
       if (strchr(strb,'*')) {  /* Model includes a product */     fflush(ficgp); 
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  }  /* end gnuplot */
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;  
           cutv(strb,stre,strd,'V');  /*************** Moving average **************/
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
           cptcovage++;  
             Tage[cptcovage]=i;    int i, cpt, cptcod;
             /*printf("stre=%s ", stre);*/    int modcovmax =1;
         }    int mobilavrange, mob;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    double age;
           cptcovprod--;  
           cutv(strb,stre,strc,'V');    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           Tvar[i]=atoi(stre);                             a covariate has 2 modalities */
           cptcovage++;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           Tage[cptcovage]=i;  
         }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         else {  /* Age is not in the model */      if(mobilav==1) mobilavrange=5; /* default */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/      else mobilavrange=mobilav;
           Tvar[i]=ncovcol+k1;      for (age=bage; age<=fage; age++)
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        for (i=1; i<=nlstate;i++)
           Tprod[k1]=i;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           Tvard[k1][1]=atoi(strc); /* m*/            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           Tvard[k1][2]=atoi(stre); /* n */      /* We keep the original values on the extreme ages bage, fage and for 
           Tvar[cptcovn+k2]=Tvard[k1][1];         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         we use a 5 terms etc. until the borders are no more concerned. 
           for (k=1; k<=lastobs;k++)      */ 
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for (mob=3;mob <=mobilavrange;mob=mob+2){
           k1++;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           k2=k2+2;          for (i=1; i<=nlstate;i++){
         }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       else { /* no more sum */                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
        /*  scanf("%d",i);*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       cutv(strd,strc,strb,'V');                }
       Tvar[i]=atoi(strc);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       }            }
       strcpy(modelsav,stra);            }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        }/* end age */
         scanf("%d",i);*/      }/* end mob */
     } /* end of loop + */    }else return -1;
   } /* end model */    return 0;
    }/* End movingaverage */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);  
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  /************** Forecasting ******************/
   scanf("%d ",i);*/  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     fclose(fic);    /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
     /*  if(mle==1){*/       dateprev1 dateprev2 range of dates during which prevalence is computed
     if (weightopt != 1) { /* Maximisation without weights*/       anproj2 year of en of projection (same day and month as proj1).
       for(i=1;i<=n;i++) weight[i]=1.0;    */
     }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     /*-calculation of age at interview from date of interview and age at death -*/    int *popage;
     agev=matrix(1,maxwav,1,imx);    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     for (i=1; i<=imx; i++) {    double *popeffectif,*popcount;
       for(m=2; (m<= maxwav); m++) {    double ***p3mat;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    double ***mobaverage;
          anint[m][i]=9999;    char fileresf[FILENAMELENGTH];
          s[m][i]=-1;  
        }    agelim=AGESUP;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       }   
     }    strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     for (i=1; i<=imx; i++)  {    if((ficresf=fopen(fileresf,"w"))==NULL) {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      printf("Problem with forecast resultfile: %s\n", fileresf);
       for(m=1; (m<= maxwav); m++){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         if(s[m][i] >0){    }
           if (s[m][i] >= nlstate+1) {    printf("Computing forecasting: result on file '%s' \n", fileresf);
             if(agedc[i]>0)    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {    if (mobilav!=0) {
               if (andc[i]!=9999){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               agev[m][i]=-1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               }      }
             }    }
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    stepsize=(int) (stepm+YEARM-1)/YEARM;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    if (stepm<=12) stepsize=1;
             if(mint[m][i]==99 || anint[m][i]==9999)    if(estepm < stepm){
               agev[m][i]=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
             else if(agev[m][i] <agemin){    }
               agemin=agev[m][i];    else  hstepm=estepm;   
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }    hstepm=hstepm/stepm; 
             else if(agev[m][i] >agemax){    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
               agemax=agev[m][i];                                 fractional in yp1 */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    anprojmean=yp;
             }    yp2=modf((yp1*12),&yp);
             /*agev[m][i]=anint[m][i]-annais[i];*/    mprojmean=yp;
             /*   agev[m][i] = age[i]+2*m;*/    yp1=modf((yp2*30.5),&yp);
           }    jprojmean=yp;
           else { /* =9 */    if(jprojmean==0) jprojmean=1;
             agev[m][i]=1;    if(mprojmean==0) jprojmean=1;
             s[m][i]=-1;  
           }    i1=cptcoveff;
         }    if (cptcovn < 1){i1=1;}
         else /*= 0 Unknown */    
           agev[m][i]=1;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       }    
        fprintf(ficresf,"#****** Routine prevforecast **\n");
     }  
     for (i=1; i<=imx; i++)  {  /*            if (h==(int)(YEARM*yearp)){ */
       for(m=1; (m<= maxwav); m++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         if (s[m][i] > (nlstate+ndeath)) {      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          k=k+1;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          fprintf(ficresf,"\n#******");
           goto end;        for(j=1;j<=cptcoveff;j++) {
         }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       }        }
     }        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(j=1; j<=nlstate+ndeath;j++){ 
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
     free_vector(severity,1,maxwav);          fprintf(ficresf," p.%d",j);
     free_imatrix(outcome,1,maxwav+1,1,n);        }
     free_vector(moisnais,1,n);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     free_vector(annais,1,n);          fprintf(ficresf,"\n");
     /* free_matrix(mint,1,maxwav,1,n);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     free_vector(andc,1,n);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
                p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     wav=ivector(1,imx);            oldm=oldms;savm=savms;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          
                for (h=0; h<=nhstepm; h++){
     /* Concatenates waves */              if (h*hstepm/YEARM*stepm ==yearp) {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       Tcode=ivector(1,100);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);              } 
       ncodemax[1]=1;              for(j=1; j<=nlstate+ndeath;j++) {
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                ppij=0.;
                      for(i=1; i<=nlstate;i++) {
    codtab=imatrix(1,100,1,10);                  if (mobilav==1) 
    h=0;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
    m=pow(2,cptcoveff);                  else {
                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
    for(k=1;k<=cptcoveff; k++){                  }
      for(i=1; i <=(m/pow(2,k));i++){                  if (h*hstepm/YEARM*stepm== yearp) {
        for(j=1; j <= ncodemax[k]; j++){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                  }
            h++;                } /* end i */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                if (h*hstepm/YEARM*stepm==yearp) {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                  fprintf(ficresf," %.3f", ppij);
          }                }
        }              }/* end j */
      }            } /* end h */
    }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          } /* end agec */
       codtab[1][2]=1;codtab[2][2]=2; */        } /* end yearp */
    /* for(i=1; i <=m ;i++){      } /* end cptcod */
       for(k=1; k <=cptcovn; k++){    } /* end  cptcov */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);         
       }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("\n");  
       }    fclose(ficresf);
       scanf("%d",i);*/  }
      
    /* Calculates basic frequencies. Computes observed prevalence at single age  /************** Forecasting *****not tested NB*************/
        and prints on file fileres'p'. */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
        int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
        int *popage;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double calagedatem, agelim, kk1, kk2;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *popeffectif,*popcount;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***p3mat,***tabpop,***tabpopprev;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***mobaverage;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    char filerespop[FILENAMELENGTH];
        
     /* For Powell, parameters are in a vector p[] starting at p[1]    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     if(mle==1){    
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     }    
        
     /*--------- results files --------------*/    strcpy(filerespop,"pop"); 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    strcat(filerespop,fileres);
      if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
    jk=1;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    printf("Computing forecasting: result on file '%s' \n", filerespop);
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
        if (k != i)  
          {    if (mobilav!=0) {
            printf("%d%d ",i,k);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            fprintf(ficlog,"%d%d ",i,k);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
            fprintf(ficres,"%1d%1d ",i,k);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            for(j=1; j <=ncovmodel; j++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
              printf("%f ",p[jk]);      }
              fprintf(ficlog,"%f ",p[jk]);    }
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    stepsize=(int) (stepm+YEARM-1)/YEARM;
            }    if (stepm<=12) stepsize=1;
            printf("\n");    
            fprintf(ficlog,"\n");    agelim=AGESUP;
            fprintf(ficres,"\n");    
          }    hstepm=1;
      }    hstepm=hstepm/stepm; 
    }    
    if(mle==1){    if (popforecast==1) {
      /* Computing hessian and covariance matrix */      if((ficpop=fopen(popfile,"r"))==NULL) {
      ftolhess=ftol; /* Usually correct */        printf("Problem with population file : %s\n",popfile);exit(0);
      hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
    }      } 
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      popage=ivector(0,AGESUP);
    printf("# Scales (for hessian or gradient estimation)\n");      popeffectif=vector(0,AGESUP);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      popcount=vector(0,AGESUP);
    for(i=1,jk=1; i <=nlstate; i++){      
      for(j=1; j <=nlstate+ndeath; j++){      i=1;   
        if (j!=i) {      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
          fprintf(ficres,"%1d%1d",i,j);     
          printf("%1d%1d",i,j);      imx=i;
          fprintf(ficlog,"%1d%1d",i,j);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
          for(k=1; k<=ncovmodel;k++){    }
            printf(" %.5e",delti[jk]);  
            fprintf(ficlog," %.5e",delti[jk]);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
            fprintf(ficres," %.5e",delti[jk]);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
            jk++;        k=k+1;
          }        fprintf(ficrespop,"\n#******");
          printf("\n");        for(j=1;j<=cptcoveff;j++) {
          fprintf(ficlog,"\n");          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
          fprintf(ficres,"\n");        }
        }        fprintf(ficrespop,"******\n");
      }        fprintf(ficrespop,"# Age");
    }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
            if (popforecast==1)  fprintf(ficrespop," [Population]");
    k=1;        
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for (cpt=0; cpt<=0;cpt++) { 
    if(mle==1)          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
    for(i=1;i<=npar;i++){            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
      /*  if (k>nlstate) k=1;            nhstepm = nhstepm/hstepm; 
          i1=(i-1)/(ncovmodel*nlstate)+1;            
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          printf("%s%d%d",alph[k],i1,tab[i]);*/            oldm=oldms;savm=savms;
      fprintf(ficres,"%3d",i);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
      if(mle==1)          
        printf("%3d",i);            for (h=0; h<=nhstepm; h++){
      fprintf(ficlog,"%3d",i);              if (h==(int) (calagedatem+YEARM*cpt)) {
      for(j=1; j<=i;j++){                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
        fprintf(ficres," %.5e",matcov[i][j]);              } 
        if(mle==1)              for(j=1; j<=nlstate+ndeath;j++) {
          printf(" %.5e",matcov[i][j]);                kk1=0.;kk2=0;
        fprintf(ficlog," %.5e",matcov[i][j]);                for(i=1; i<=nlstate;i++) {              
      }                  if (mobilav==1) 
      fprintf(ficres,"\n");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
      if(mle==1)                  else {
        printf("\n");                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
      fprintf(ficlog,"\n");                  }
      k++;                }
    }                if (h==(int)(calagedatem+12*cpt)){
                      tabpop[(int)(agedeb)][j][cptcod]=kk1;
    while((c=getc(ficpar))=='#' && c!= EOF){                    /*fprintf(ficrespop," %.3f", kk1);
      ungetc(c,ficpar);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
      fgets(line, MAXLINE, ficpar);                }
      puts(line);              }
      fputs(line,ficparo);              for(i=1; i<=nlstate;i++){
    }                kk1=0.;
    ungetc(c,ficpar);                  for(j=1; j<=nlstate;j++){
    estepm=0;                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                  }
    if (estepm==0 || estepm < stepm) estepm=stepm;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
    if (fage <= 2) {              }
      bage = ageminpar;  
      fage = agemaxpar;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
    }                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
                }
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          }
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        }
       
    while((c=getc(ficpar))=='#' && c!= EOF){    /******/
      ungetc(c,ficpar);  
      fgets(line, MAXLINE, ficpar);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
      puts(line);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
      fputs(line,ficparo);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
    }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
    ungetc(c,ficpar);            nhstepm = nhstepm/hstepm; 
              
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            oldm=oldms;savm=savms;
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                for (h=0; h<=nhstepm; h++){
    while((c=getc(ficpar))=='#' && c!= EOF){              if (h==(int) (calagedatem+YEARM*cpt)) {
      ungetc(c,ficpar);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
      fgets(line, MAXLINE, ficpar);              } 
      puts(line);              for(j=1; j<=nlstate+ndeath;j++) {
      fputs(line,ficparo);                kk1=0.;kk2=0;
    }                for(i=1; i<=nlstate;i++) {              
    ungetc(c,ficpar);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                  }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          }
   fprintf(ficparo,"pop_based=%d\n",popbased);          }
   fprintf(ficres,"pop_based=%d\n",popbased);       } 
      }
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fgets(line, MAXLINE, ficpar);  
     puts(line);    if (popforecast==1) {
     fputs(line,ficparo);      free_ivector(popage,0,AGESUP);
   }      free_vector(popeffectif,0,AGESUP);
   ungetc(c,ficpar);      free_vector(popcount,0,AGESUP);
     }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fclose(ficrespop);
   } /* End of popforecast */
   
 while((c=getc(ficpar))=='#' && c!= EOF){  int fileappend(FILE *fichier, char *optionfich)
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    if((fichier=fopen(optionfich,"a"))==NULL) {
     puts(line);      printf("Problem with file: %s\n", optionfich);
     fputs(line,ficparo);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   }      return (0);
   ungetc(c,ficpar);    }
     fflush(fichier);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    return (1);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 /*------------ gnuplot -------------*/  {
   strcpy(optionfilegnuplot,optionfilefiname);  
   strcat(optionfilegnuplot,".gp");    /* Wizard to print covariance matrix template */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    char ca[32], cb[32], cc[32];
   }    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   fclose(ficgp);    int numlinepar;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  
 /*--------- index.htm --------*/    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   strcpy(optionfilehtm,optionfile);    for(i=1; i <=nlstate; i++){
   strcat(optionfilehtm,".htm");      jj=0;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      for(j=1; j <=nlstate+ndeath; j++){
     printf("Problem with %s \n",optionfilehtm), exit(0);        if(j==i) continue;
   }        jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        printf("%1d%1d",i,j);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        fprintf(ficparo,"%1d%1d",i,j);
 \n        for(k=1; k<=ncovmodel;k++){
 Total number of observations=%d <br>\n          /*        printf(" %lf",param[i][j][k]); */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          /*        fprintf(ficparo," %lf",param[i][j][k]); */
 <hr  size=\"2\" color=\"#EC5E5E\">          printf(" 0.");
  <ul><li><h4>Parameter files</h4>\n          fprintf(ficparo," 0.");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n        printf("\n");
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        fprintf(ficparo,"\n");
   fclose(fichtm);      }
     }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    printf("# Scales (for hessian or gradient estimation)\n");
      fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 /*------------ free_vector  -------------*/    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
  chdir(path);    for(i=1; i <=nlstate; i++){
        jj=0;
  free_ivector(wav,1,imx);      for(j=1; j <=nlstate+ndeath; j++){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        if(j==i) continue;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          jj++;
  free_ivector(num,1,n);        fprintf(ficparo,"%1d%1d",i,j);
  free_vector(agedc,1,n);        printf("%1d%1d",i,j);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        fflush(stdout);
  fclose(ficparo);        for(k=1; k<=ncovmodel;k++){
  fclose(ficres);          /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
   /*--------------- Prevalence limit --------------*/          fprintf(ficparo," 0.");
          }
   strcpy(filerespl,"pl");        numlinepar++;
   strcat(filerespl,fileres);        printf("\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        fprintf(ficparo,"\n");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      }
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    }
   }    printf("# Covariance matrix\n");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  /* # 121 Var(a12)\n\ */
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   fprintf(ficrespl,"#Prevalence limit\n");  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   fprintf(ficrespl,"#Age ");  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   fprintf(ficrespl,"\n");  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
    /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   prlim=matrix(1,nlstate,1,nlstate);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fflush(stdout);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficparo,"# Covariance matrix\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* # 121 Var(a12)\n\ */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* #   ...\n\ */
   k=0;    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   agebase=ageminpar;    
   agelim=agemaxpar;    for(itimes=1;itimes<=2;itimes++){
   ftolpl=1.e-10;      jj=0;
   i1=cptcoveff;      for(i=1; i <=nlstate; i++){
   if (cptcovn < 1){i1=1;}        for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
   for(cptcov=1;cptcov<=i1;cptcov++){          for(k=1; k<=ncovmodel;k++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            jj++;
         k=k+1;            ca[0]= k+'a'-1;ca[1]='\0';
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            if(itimes==1){
         fprintf(ficrespl,"\n#******");              printf("#%1d%1d%d",i,j,k);
         printf("\n#******");              fprintf(ficparo,"#%1d%1d%d",i,j,k);
         fprintf(ficlog,"\n#******");            }else{
         for(j=1;j<=cptcoveff;j++) {              printf("%1d%1d%d",i,j,k);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              fprintf(ficparo,"%1d%1d%d",i,j,k);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              /*  printf(" %.5le",matcov[i][j]); */
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
         }            ll=0;
         fprintf(ficrespl,"******\n");            for(li=1;li <=nlstate; li++){
         printf("******\n");              for(lj=1;lj <=nlstate+ndeath; lj++){
         fprintf(ficlog,"******\n");                if(lj==li) continue;
                        for(lk=1;lk<=ncovmodel;lk++){
         for (age=agebase; age<=agelim; age++){                  ll++;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                  if(ll<=jj){
           fprintf(ficrespl,"%.0f",age );                    cb[0]= lk +'a'-1;cb[1]='\0';
           for(i=1; i<=nlstate;i++)                    if(ll<jj){
           fprintf(ficrespl," %.5f", prlim[i][i]);                      if(itimes==1){
           fprintf(ficrespl,"\n");                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         }                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       }                      }else{
     }                        printf(" 0.");
   fclose(ficrespl);                        fprintf(ficparo," 0.");
                       }
   /*------------- h Pij x at various ages ------------*/                    }else{
                        if(itimes==1){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                        printf(" Var(%s%1d%1d)",ca,i,j);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                      }else{
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                        printf(" 0.");
   }                        fprintf(ficparo," 0.");
   printf("Computing pij: result on file '%s' \n", filerespij);                      }
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                    }
                    }
   stepsize=(int) (stepm+YEARM-1)/YEARM;                } /* end lk */
   /*if (stepm<=24) stepsize=2;*/              } /* end lj */
             } /* end li */
   agelim=AGESUP;            printf("\n");
   hstepm=stepsize*YEARM; /* Every year of age */            fprintf(ficparo,"\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            numlinepar++;
           } /* end k*/
   /* hstepm=1;   aff par mois*/        } /*end j */
       } /* end i */
   k=0;    } /* end itimes */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  } /* end of prwizard */
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)  /***********************************************/
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /**************** Main Program *****************/
         fprintf(ficrespij,"******\n");  /***********************************************/
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  int main(int argc, char *argv[])
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  {
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int itimes;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      char ca[32], cb[32], cc[32];
           fprintf(ficrespij,"# Age");    /*  FILE *fichtm; *//* Html File */
           for(i=1; i<=nlstate;i++)    /* FILE *ficgp;*/ /*Gnuplot File */
             for(j=1; j<=nlstate+ndeath;j++)    double agedeb, agefin,hf;
               fprintf(ficrespij," %1d-%1d",i,j);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){    double fret;
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    double **xi,tmp,delta;
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)    double dum; /* Dummy variable */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double ***p3mat;
             fprintf(ficrespij,"\n");    double ***mobaverage;
              }    int *indx;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char line[MAXLINE], linepar[MAXLINE];
           fprintf(ficrespij,"\n");    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
         }    char pathr[MAXLINE]; 
     }    int firstobs=1, lastobs=10;
   }    int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   fclose(ficrespij);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
   /*---------- Forecasting ------------------*/    int hstepm, nhstepm;
   if((stepm == 1) && (strcmp(model,".")==0)){    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }    double bage, fage, age, agelim, agebase;
   else{    double ftolpl=FTOL;
     erreur=108;    double **prlim;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double *severity;
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double ***param; /* Matrix of parameters */
   }    double  *p;
      double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
   /*---------- Health expectancies and variances ------------*/    double *delti; /* Scale */
     double ***eij, ***vareij;
   strcpy(filerest,"t");    double **varpl; /* Variances of prevalence limits by age */
   strcat(filerest,fileres);    double *epj, vepp;
   if((ficrest=fopen(filerest,"w"))==NULL) {    double kk1, kk2;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    char *alph[]={"a","a","b","c","d","e"}, str[4];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);  
     char z[1]="c", occ;
   
   strcpy(filerese,"e");    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   strcat(filerese,fileres);    char strstart[80], *strt, strtend[80];
   if((ficreseij=fopen(filerese,"w"))==NULL) {    char *stratrunc;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    int lstra;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    long total_usecs;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);   
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   strcpy(fileresv,"v");  /*   textdomain (PACKAGE); */
   strcat(fileresv,fileres);  /*   setlocale (LC_CTYPE, ""); */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  /*   setlocale (LC_MESSAGES, ""); */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   }    (void) gettimeofday(&start_time,&tzp);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    curr_time=start_time;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    tm = *localtime(&start_time.tv_sec);
   calagedate=-1;    tmg = *gmtime(&start_time.tv_sec);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    strcpy(strstart,asctime(&tm));
   
   k=0;  /*  printf("Localtime (at start)=%s",strstart); */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*  tp.tv_sec = tp.tv_sec +86400; */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*  tm = *localtime(&start_time.tv_sec); */
       k=k+1;  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
       fprintf(ficrest,"\n#****** ");  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       for(j=1;j<=cptcoveff;j++)  /*   tmg.tm_hour=tmg.tm_hour + 1; */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   tp.tv_sec = mktime(&tmg); */
       fprintf(ficrest,"******\n");  /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
       fprintf(ficreseij,"\n#****** ");  /*  (void) time (&time_value);
       for(j=1;j<=cptcoveff;j++)  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  *  tm = *localtime(&time_value);
       fprintf(ficreseij,"******\n");  *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
       fprintf(ficresvij,"\n#****** ");  */
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    nberr=0; /* Number of errors and warnings */
       fprintf(ficresvij,"******\n");    nbwarn=0;
     getcwd(pathcd, size);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    printf("\n%s\n%s",version,fullversion);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      if(argc <=1){
        printf("\nEnter the parameter file name: ");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      scanf("%s",pathtot);
       oldm=oldms;savm=savms;    }
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    else{
       if(popbased==1){      strcpy(pathtot,argv[1]);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    }
        }    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
        printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /* cutv(path,optionfile,pathtot,'\\');*/
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       epj=vector(1,nlstate+1);    chdir(path);
       for(age=bage; age <=fage ;age++){    strcpy(command,"mkdir ");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcat(command,optionfilefiname);
         if (popbased==1) {    if((outcmd=system(command)) != 0){
           for(i=1; i<=nlstate;i++)      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
             prlim[i][i]=probs[(int)age][i][k];      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
         }      /* fclose(ficlog); */
          /*     exit(1); */
         fprintf(ficrest," %4.0f",age);    }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  /*   if((imk=mkdir(optionfilefiname))<0){ */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  /*     perror("mkdir"); */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  /*   } */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }    /*-------- arguments in the command line --------*/
           epj[nlstate+1] +=epj[j];  
         }    /* Log file */
     strcat(filelog, optionfilefiname);
         for(i=1, vepp=0.;i <=nlstate;i++)    strcat(filelog,".log");    /* */
           for(j=1;j <=nlstate;j++)    if((ficlog=fopen(filelog,"w"))==NULL)    {
             vepp += vareij[i][j][(int)age];      printf("Problem with logfile %s\n",filelog);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      goto end;
         for(j=1;j <=nlstate;j++){    }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    fprintf(ficlog,"Log filename:%s\n",filelog);
         }    fprintf(ficlog,"\n%s\n%s",version,fullversion);
         fprintf(ficrest,"\n");    fprintf(ficlog,"\nEnter the parameter file name: ");
       }    fprintf(ficlog,"pathtot=%s\n\
     }   path=%s \n\
   }   optionfile=%s\n\
 free_matrix(mint,1,maxwav,1,n);   optionfilext=%s\n\
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     free_vector(weight,1,n);  
   fclose(ficreseij);    printf("Local time (at start):%s",strstart);
   fclose(ficresvij);    fprintf(ficlog,"Local time (at start): %s",strstart);
   fclose(ficrest);    fflush(ficlog);
   fclose(ficpar);  /*   (void) gettimeofday(&curr_time,&tzp); */
   free_vector(epj,1,nlstate+1);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
    
   /*------- Variance limit prevalence------*/      /* */
     strcpy(fileres,"r");
   strcpy(fileresvpl,"vpl");    strcat(fileres, optionfilefiname);
   strcat(fileresvpl,fileres);    strcat(fileres,".txt");    /* Other files have txt extension */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    /*---------arguments file --------*/
     exit(0);  
   }    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   k=0;      fflush(ficlog);
   for(cptcov=1;cptcov<=i1;cptcov++){      goto end;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(filereso,"o");
       fprintf(ficresvpl,"******\n");    strcat(filereso,fileres);
          if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      printf("Problem with Output resultfile: %s\n", filereso);
       oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      fflush(ficlog);
     }      goto end;
  }    }
   
   fclose(ficresvpl);    /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   /*---------- End : free ----------------*/    while((c=getc(ficpar))=='#' && c!= EOF){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      numlinepar++;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      puts(line);
        fputs(line,ficparo);
        fputs(line,ficlog);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    ungetc(c,ficpar);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
      numlinepar++;
   free_matrix(matcov,1,npar,1,npar);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   free_vector(delti,1,npar);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   free_matrix(agev,1,maxwav,1,imx);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
   fprintf(fichtm,"\n</body>");      ungetc(c,ficpar);
   fclose(fichtm);      fgets(line, MAXLINE, ficpar);
   fclose(ficgp);      numlinepar++;
        puts(line);
       fputs(line,ficparo);
   if(erreur >0){      fputs(line,ficlog);
     printf("End of Imach with error or warning %d\n",erreur);    }
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    ungetc(c,ficpar);
   }else{  
    printf("End of Imach\n");     
    fprintf(ficlog,"End of Imach\n");    covar=matrix(0,NCOVMAX,1,n); 
   }    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   printf("See log file on %s\n",filelog);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   fclose(ficlog);  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
      nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   
   /*printf("Total time was %d uSec.\n", total_usecs);*/    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   /*------ End -----------*/      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
  end:      fclose (ficparo);
 #ifdef windows      fclose (ficlog);
   /* chdir(pathcd);*/      exit(0);
 #endif    }
  /*system("wgnuplot graph.plt");*/    /* Read guess parameters */
  /*system("../gp37mgw/wgnuplot graph.plt");*/    /* Reads comments: lines beginning with '#' */
  /*system("cd ../gp37mgw");*/    while((c=getc(ficpar))=='#' && c!= EOF){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      ungetc(c,ficpar);
  strcpy(plotcmd,GNUPLOTPROGRAM);      fgets(line, MAXLINE, ficpar);
  strcat(plotcmd," ");      numlinepar++;
  strcat(plotcmd,optionfilegnuplot);      puts(line);
  system(plotcmd);      fputs(line,ficparo);
       fputs(line,ficlog);
 #ifdef windows    }
   while (z[0] != 'q') {    ungetc(c,ficpar);
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     scanf("%s",z);    for(i=1; i <=nlstate; i++){
     if (z[0] == 'c') system("./imach");      j=0;
     else if (z[0] == 'e') system(optionfilehtm);      for(jj=1; jj <=nlstate+ndeath; jj++){
     else if (z[0] == 'g') system(plotcmd);        if(jj==i) continue;
     else if (z[0] == 'q') exit(0);        j++;
   }        fscanf(ficpar,"%1d%1d",&i1,&j1);
 #endif        if ((i1 != i) && (j1 != j)){
 }          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){
             printf("%f ",p[jk]);
             fprintf(ficlog,"%f ",p[jk]);
             fprintf(ficres,"%f ",p[jk]);
             jk++; 
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle>=1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   
   
   /* Just to have a covariance matrix which will be more understandable
      even is we still don't want to manage dictionary of variables
   */
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               if(mle>=1)
                 printf("#%1d%1d%d",i,j,k);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficres,"#%1d%1d%d",i,j,k);
             }else{
               if(mle>=1)
                 printf("%1d%1d%d",i,j,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);
               fprintf(ficres,"%1d%1d%d",i,j,k);
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }else{
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             if(mle>=1)
               printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
     fflush(ficlog);
     fflush(ficres);
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.52  
changed lines
  Added in v.1.95


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>