Diff for /imach/src/imach.c between versions 1.51 and 1.58

version 1.51, 2002/07/19 12:22:25 version 1.58, 2002/07/26 12:29:55
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month or quarter trimester,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is model as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.    of the life expectancies. It also computes the stable prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/    **********************************************************************/
     
 #include <math.h>  #include <math.h>
 #include <stdio.h>  #include <stdio.h>
 #include <stdlib.h>  #include <stdlib.h>
 #include <unistd.h>  #include <unistd.h>
   
 #define MAXLINE 256  #define MAXLINE 256
 #define GNUPLOTPROGRAM "gnuplot"  #define GNUPLOTPROGRAM "gnuplot"
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FILENAMELENGTH 80  #define FILENAMELENGTH 80
 /*#define DEBUG*/  /*#define DEBUG*/
 #define windows  #define windows
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define NINTERVMAX 8  #define NINTERVMAX 8
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define NCOVMAX 8 /* Maximum number of covariates */  #define NCOVMAX 8 /* Maximum number of covariates */
 #define MAXN 20000  #define MAXN 20000
 #define YEARM 12. /* Number of months per year */  #define YEARM 12. /* Number of months per year */
 #define AGESUP 130  #define AGESUP 130
 #define AGEBASE 40  #define AGEBASE 40
 #ifdef windows  #ifdef windows
 #define DIRSEPARATOR '\\'  #define DIRSEPARATOR '\\'
 #define ODIRSEPARATOR '/'  #define ODIRSEPARATOR '/'
 #else  #else
 #define DIRSEPARATOR '/'  #define DIRSEPARATOR '/'
 #define ODIRSEPARATOR '\\'  #define ODIRSEPARATOR '\\'
 #endif  #endif
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  char version[80]="Imach version 0.8k, July 2002, INED-EUROREVES ";
 int erreur; /* Error number */  int erreur; /* Error number */
 int nvar;  int nvar;
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int npar=NPARMAX;  int npar=NPARMAX;
 int nlstate=2; /* Number of live states */  int nlstate=2; /* Number of live states */
 int ndeath=1; /* Number of dead states */  int ndeath=1; /* Number of dead states */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int popbased=0;  int popbased=0;
   
 int *wav; /* Number of waves for this individuual 0 is possible */  int *wav; /* Number of waves for this individuual 0 is possible */
 int maxwav; /* Maxim number of waves */  int maxwav; /* Maxim number of waves */
 int jmin, jmax; /* min, max spacing between 2 waves */  int jmin, jmax; /* min, max spacing between 2 waves */
 int mle, weightopt;  int mle, weightopt;
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double jmean; /* Mean space between 2 waves */  double jmean; /* Mean space between 2 waves */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 FILE *ficlog;  FILE *ficlog;
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 FILE *ficresprobmorprev;  FILE *ficresprobmorprev;
 FILE *fichtm; /* Html File */  FILE *fichtm; /* Html File */
 FILE *ficreseij;  FILE *ficreseij;
 char filerese[FILENAMELENGTH];  char filerese[FILENAMELENGTH];
 FILE  *ficresvij;  FILE  *ficresvij;
 char fileresv[FILENAMELENGTH];  char fileresv[FILENAMELENGTH];
 FILE  *ficresvpl;  FILE  *ficresvpl;
 char fileresvpl[FILENAMELENGTH];  char fileresvpl[FILENAMELENGTH];
 char title[MAXLINE];  char title[MAXLINE];
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 char filelog[FILENAMELENGTH]; /* Log file */  char filelog[FILENAMELENGTH]; /* Log file */
 char filerest[FILENAMELENGTH];  char filerest[FILENAMELENGTH];
 char fileregp[FILENAMELENGTH];  char fileregp[FILENAMELENGTH];
 char popfile[FILENAMELENGTH];  char popfile[FILENAMELENGTH];
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   
 #define NR_END 1  #define NR_END 1
 #define FREE_ARG char*  #define FREE_ARG char*
 #define FTOL 1.0e-10  #define FTOL 1.0e-10
   
 #define NRANSI  #define NRANSI 
 #define ITMAX 200  #define ITMAX 200 
   
 #define TOL 2.0e-4  #define TOL 2.0e-4 
   
 #define CGOLD 0.3819660  #define CGOLD 0.3819660 
 #define ZEPS 1.0e-10  #define ZEPS 1.0e-10 
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 #define GOLD 1.618034  #define GOLD 1.618034 
 #define GLIMIT 100.0  #define GLIMIT 100.0 
 #define TINY 1.0e-20  #define TINY 1.0e-20 
   
 static double maxarg1,maxarg2;  static double maxarg1,maxarg2;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #define rint(a) floor(a+0.5)  #define rint(a) floor(a+0.5)
   
 static double sqrarg;  static double sqrarg;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   
 int imx;  int imx; 
 int stepm;  int stepm;
 /* Stepm, step in month: minimum step interpolation*/  /* Stepm, step in month: minimum step interpolation*/
   
 int estepm;  int estepm;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 int m,nb;  int m,nb;
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double **pmmij, ***probs, ***mobaverage;  double **pmmij, ***probs;
 double dateintmean=0;  double dateintmean=0;
   
 double *weight;  double *weight;
 int **s; /* Status */  int **s; /* Status */
 double *agedc, **covar, idx;  double *agedc, **covar, idx;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double ftolhess; /* Tolerance for computing hessian */  double ftolhess; /* Tolerance for computing hessian */
   
 /**************** split *************************/  /**************** split *************************/
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
    char *s;                             /* pointer */     char *s;                             /* pointer */
    int  l1, l2;                         /* length counters */     int  l1, l2;                         /* length counters */
   
    l1 = strlen( path );                 /* length of path */     l1 = strlen( path );                 /* length of path */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
    s= strrchr( path, DIRSEPARATOR );            /* find last / */     s= strrchr( path, DIRSEPARATOR );            /* find last / */
    if ( s == NULL ) {                   /* no directory, so use current */     if ( s == NULL ) {                   /* no directory, so use current */
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 #if     defined(__bsd__)                /* get current working directory */  #if     defined(__bsd__)                /* get current working directory */
       extern char       *getwd( );        extern char       *getwd( );
   
       if ( getwd( dirc ) == NULL ) {        if ( getwd( dirc ) == NULL ) {
 #else  #else
       extern char       *getcwd( );        extern char       *getcwd( );
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {        if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 #endif  #endif
          return( GLOCK_ERROR_GETCWD );           return( GLOCK_ERROR_GETCWD );
       }        }
       strcpy( name, path );             /* we've got it */        strcpy( name, path );             /* we've got it */
    } else {                             /* strip direcotry from path */     } else {                             /* strip direcotry from path */
       s++;                              /* after this, the filename */        s++;                              /* after this, the filename */
       l2 = strlen( s );                 /* length of filename */        l2 = strlen( s );                 /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, s );                /* save file name */        strcpy( name, s );                /* save file name */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */        strncpy( dirc, path, l1 - l2 );   /* now the directory */
       dirc[l1-l2] = 0;                  /* add zero */        dirc[l1-l2] = 0;                  /* add zero */
    }     }
    l1 = strlen( dirc );                 /* length of directory */     l1 = strlen( dirc );                 /* length of directory */
 #ifdef windows  #ifdef windows
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 #else  #else
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 #endif  #endif
    s = strrchr( name, '.' );            /* find last / */     s = strrchr( name, '.' );            /* find last / */
    s++;     s++;
    strcpy(ext,s);                       /* save extension */     strcpy(ext,s);                       /* save extension */
    l1= strlen( name);     l1= strlen( name);
    l2= strlen( s)+1;     l2= strlen( s)+1;
    strncpy( finame, name, l1-l2);     strncpy( finame, name, l1-l2);
    finame[l1-l2]= 0;     finame[l1-l2]= 0;
    return( 0 );                         /* we're done */     return( 0 );                         /* we're done */
 }  }
   
   
 /******************************************/  /******************************************/
   
 void replace(char *s, char*t)  void replace(char *s, char*t)
 {  {
   int i;    int i;
   int lg=20;    int lg=20;
   i=0;    i=0;
   lg=strlen(t);    lg=strlen(t);
   for(i=0; i<= lg; i++) {    for(i=0; i<= lg; i++) {
     (s[i] = t[i]);      (s[i] = t[i]);
     if (t[i]== '\\') s[i]='/';      if (t[i]== '\\') s[i]='/';
   }    }
 }  }
   
 int nbocc(char *s, char occ)  int nbocc(char *s, char occ)
 {  {
   int i,j=0;    int i,j=0;
   int lg=20;    int lg=20;
   i=0;    i=0;
   lg=strlen(s);    lg=strlen(s);
   for(i=0; i<= lg; i++) {    for(i=0; i<= lg; i++) {
   if  (s[i] == occ ) j++;    if  (s[i] == occ ) j++;
   }    }
   return j;    return j;
 }  }
   
 void cutv(char *u,char *v, char*t, char occ)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   /* cuts string t into u and v where u is ended by char occ excluding it    /* cuts string t into u and v where u is ended by char occ excluding it
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
      gives u="abcedf" and v="ghi2j" */       gives u="abcedf" and v="ghi2j" */
   int i,lg,j,p=0;    int i,lg,j,p=0;
   i=0;    i=0;
   for(j=0; j<=strlen(t)-1; j++) {    for(j=0; j<=strlen(t)-1; j++) {
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   }    }
   
   lg=strlen(t);    lg=strlen(t);
   for(j=0; j<p; j++) {    for(j=0; j<p; j++) {
     (u[j] = t[j]);      (u[j] = t[j]);
   }    }
      u[p]='\0';       u[p]='\0';
   
    for(j=0; j<= lg; j++) {     for(j=0; j<= lg; j++) {
     if (j>=(p+1))(v[j-p-1] = t[j]);      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
 }  }
   
 /********************** nrerror ********************/  /********************** nrerror ********************/
   
 void nrerror(char error_text[])  void nrerror(char error_text[])
 {  {
   fprintf(stderr,"ERREUR ...\n");    fprintf(stderr,"ERREUR ...\n");
   fprintf(stderr,"%s\n",error_text);    fprintf(stderr,"%s\n",error_text);
   exit(1);    exit(1);
 }  }
 /*********************** vector *******************/  /*********************** vector *******************/
 double *vector(int nl, int nh)  double *vector(int nl, int nh)
 {  {
   double *v;    double *v;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!v) nrerror("allocation failure in vector");    if (!v) nrerror("allocation failure in vector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /************************ free vector ******************/  /************************ free vector ******************/
 void free_vector(double*v, int nl, int nh)  void free_vector(double*v, int nl, int nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /************************ivector *******************************/  /************************ivector *******************************/
 int *ivector(long nl,long nh)  int *ivector(long nl,long nh)
 {  {
   int *v;    int *v;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   if (!v) nrerror("allocation failure in ivector");    if (!v) nrerror("allocation failure in ivector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /******************free ivector **************************/  /******************free ivector **************************/
 void free_ivector(int *v, long nl, long nh)  void free_ivector(int *v, long nl, long nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /******************* imatrix *******************************/  /******************* imatrix *******************************/
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 {  { 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int **m;    int **m; 
      
   /* allocate pointers to rows */    /* allocate pointers to rows */ 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()"); 
   m += NR_END;    m += NR_END; 
   m -= nrl;    m -= nrl; 
      
      
   /* allocate rows and set pointers to them */    /* allocate rows and set pointers to them */ 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   m[nrl] += NR_END;    m[nrl] += NR_END; 
   m[nrl] -= ncl;    m[nrl] -= ncl; 
      
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
   /* return pointer to array of pointers to rows */    /* return pointer to array of pointers to rows */ 
   return m;    return m; 
 }  } 
   
 /****************** free_imatrix *************************/  /****************** free_imatrix *************************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  void free_imatrix(m,nrl,nrh,ncl,nch)
       int **m;        int **m;
       long nch,ncl,nrh,nrl;        long nch,ncl,nrh,nrl; 
      /* free an int matrix allocated by imatrix() */       /* free an int matrix allocated by imatrix() */ 
 {  { 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   free((FREE_ARG) (m+nrl-NR_END));    free((FREE_ARG) (m+nrl-NR_END)); 
 }  } 
   
 /******************* matrix *******************************/  /******************* matrix *******************************/
 double **matrix(long nrl, long nrh, long ncl, long nch)  double **matrix(long nrl, long nrh, long ncl, long nch)
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double **m;    double **m;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()");
   m += NR_END;    m += NR_END;
   m -= nrl;    m -= nrl;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m[nrl] += NR_END;    m[nrl] += NR_END;
   m[nrl] -= ncl;    m[nrl] -= ncl;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   return m;    return m;
 }  }
   
 /*************************free matrix ************************/  /*************************free matrix ************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /******************* ma3x *******************************/  /******************* ma3x *******************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double ***m;    double ***m;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()");
   m += NR_END;    m += NR_END;
   m -= nrl;    m -= nrl;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m[nrl] += NR_END;    m[nrl] += NR_END;
   m[nrl] -= ncl;    m[nrl] -= ncl;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   m[nrl][ncl] += NR_END;    m[nrl][ncl] += NR_END;
   m[nrl][ncl] -= nll;    m[nrl][ncl] -= nll;
   for (j=ncl+1; j<=nch; j++)    for (j=ncl+1; j<=nch; j++) 
     m[nrl][j]=m[nrl][j-1]+nlay;      m[nrl][j]=m[nrl][j-1]+nlay;
      
   for (i=nrl+1; i<=nrh; i++) {    for (i=nrl+1; i<=nrh; i++) {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=ncl+1; j<=nch; j++)      for (j=ncl+1; j<=nch; j++) 
       m[i][j]=m[i][j-1]+nlay;        m[i][j]=m[i][j-1]+nlay;
   }    }
   return m;    return m;
 }  }
   
 /*************************free ma3x ************************/  /*************************free ma3x ************************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /***************** f1dim *************************/  /***************** f1dim *************************/
 extern int ncom;  extern int ncom; 
 extern double *pcom,*xicom;  extern double *pcom,*xicom;
 extern double (*nrfunc)(double []);  extern double (*nrfunc)(double []); 
     
 double f1dim(double x)  double f1dim(double x) 
 {  { 
   int j;    int j; 
   double f;    double f;
   double *xt;    double *xt; 
     
   xt=vector(1,ncom);    xt=vector(1,ncom); 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   f=(*nrfunc)(xt);    f=(*nrfunc)(xt); 
   free_vector(xt,1,ncom);    free_vector(xt,1,ncom); 
   return f;    return f; 
 }  } 
   
 /*****************brent *************************/  /*****************brent *************************/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 {  { 
   int iter;    int iter; 
   double a,b,d,etemp;    double a,b,d,etemp;
   double fu,fv,fw,fx;    double fu,fv,fw,fx;
   double ftemp;    double ftemp;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double e=0.0;    double e=0.0; 
     
   a=(ax < cx ? ax : cx);    a=(ax < cx ? ax : cx); 
   b=(ax > cx ? ax : cx);    b=(ax > cx ? ax : cx); 
   x=w=v=bx;    x=w=v=bx; 
   fw=fv=fx=(*f)(x);    fw=fv=fx=(*f)(x); 
   for (iter=1;iter<=ITMAX;iter++) {    for (iter=1;iter<=ITMAX;iter++) { 
     xm=0.5*(a+b);      xm=0.5*(a+b); 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf(".");fflush(stdout);      printf(".");fflush(stdout);
     fprintf(ficlog,".");fflush(ficlog);      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 #endif  #endif
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       *xmin=x;        *xmin=x; 
       return fx;        return fx; 
     }      } 
     ftemp=fu;      ftemp=fu;
     if (fabs(e) > tol1) {      if (fabs(e) > tol1) { 
       r=(x-w)*(fx-fv);        r=(x-w)*(fx-fv); 
       q=(x-v)*(fx-fw);        q=(x-v)*(fx-fw); 
       p=(x-v)*q-(x-w)*r;        p=(x-v)*q-(x-w)*r; 
       q=2.0*(q-r);        q=2.0*(q-r); 
       if (q > 0.0) p = -p;        if (q > 0.0) p = -p; 
       q=fabs(q);        q=fabs(q); 
       etemp=e;        etemp=e; 
       e=d;        e=d; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       else {        else { 
         d=p/q;          d=p/q; 
         u=x+d;          u=x+d; 
         if (u-a < tol2 || b-u < tol2)          if (u-a < tol2 || b-u < tol2) 
           d=SIGN(tol1,xm-x);            d=SIGN(tol1,xm-x); 
       }        } 
     } else {      } else { 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     fu=(*f)(u);      fu=(*f)(u); 
     if (fu <= fx) {      if (fu <= fx) { 
       if (u >= x) a=x; else b=x;        if (u >= x) a=x; else b=x; 
       SHFT(v,w,x,u)        SHFT(v,w,x,u) 
         SHFT(fv,fw,fx,fu)          SHFT(fv,fw,fx,fu) 
         } else {          } else { 
           if (u < x) a=u; else b=u;            if (u < x) a=u; else b=u; 
           if (fu <= fw || w == x) {            if (fu <= fw || w == x) { 
             v=w;              v=w; 
             w=u;              w=u; 
             fv=fw;              fv=fw; 
             fw=fu;              fw=fu; 
           } else if (fu <= fv || v == x || v == w) {            } else if (fu <= fv || v == x || v == w) { 
             v=u;              v=u; 
             fv=fu;              fv=fu; 
           }            } 
         }          } 
   }    } 
   nrerror("Too many iterations in brent");    nrerror("Too many iterations in brent"); 
   *xmin=x;    *xmin=x; 
   return fx;    return fx; 
 }  } 
   
 /****************** mnbrak ***********************/  /****************** mnbrak ***********************/
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
             double (*func)(double))              double (*func)(double)) 
 {  { 
   double ulim,u,r,q, dum;    double ulim,u,r,q, dum;
   double fu;    double fu; 
     
   *fa=(*func)(*ax);    *fa=(*func)(*ax); 
   *fb=(*func)(*bx);    *fb=(*func)(*bx); 
   if (*fb > *fa) {    if (*fb > *fa) { 
     SHFT(dum,*ax,*bx,dum)      SHFT(dum,*ax,*bx,dum) 
       SHFT(dum,*fb,*fa,dum)        SHFT(dum,*fb,*fa,dum) 
       }        } 
   *cx=(*bx)+GOLD*(*bx-*ax);    *cx=(*bx)+GOLD*(*bx-*ax); 
   *fc=(*func)(*cx);    *fc=(*func)(*cx); 
   while (*fb > *fc) {    while (*fb > *fc) { 
     r=(*bx-*ax)*(*fb-*fc);      r=(*bx-*ax)*(*fb-*fc); 
     q=(*bx-*cx)*(*fb-*fa);      q=(*bx-*cx)*(*fb-*fa); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     if ((*bx-u)*(u-*cx) > 0.0) {      if ((*bx-u)*(u-*cx) > 0.0) { 
       fu=(*func)(u);        fu=(*func)(u); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       fu=(*func)(u);        fu=(*func)(u); 
       if (fu < *fc) {        if (fu < *fc) { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           SHFT(*fb,*fc,fu,(*func)(u))            SHFT(*fb,*fc,fu,(*func)(u)) 
           }            } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       u=ulim;        u=ulim; 
       fu=(*func)(u);        fu=(*func)(u); 
     } else {      } else { 
       u=(*cx)+GOLD*(*cx-*bx);        u=(*cx)+GOLD*(*cx-*bx); 
       fu=(*func)(u);        fu=(*func)(u); 
     }      } 
     SHFT(*ax,*bx,*cx,u)      SHFT(*ax,*bx,*cx,u) 
       SHFT(*fa,*fb,*fc,fu)        SHFT(*fa,*fb,*fc,fu) 
       }        } 
 }  } 
   
 /*************** linmin ************************/  /*************** linmin ************************/
   
 int ncom;  int ncom; 
 double *pcom,*xicom;  double *pcom,*xicom;
 double (*nrfunc)(double []);  double (*nrfunc)(double []); 
     
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 {  { 
   double brent(double ax, double bx, double cx,    double brent(double ax, double bx, double cx, 
                double (*f)(double), double tol, double *xmin);                 double (*f)(double), double tol, double *xmin); 
   double f1dim(double x);    double f1dim(double x); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
               double *fc, double (*func)(double));                double *fc, double (*func)(double)); 
   int j;    int j; 
   double xx,xmin,bx,ax;    double xx,xmin,bx,ax; 
   double fx,fb,fa;    double fx,fb,fa;
     
   ncom=n;    ncom=n; 
   pcom=vector(1,n);    pcom=vector(1,n); 
   xicom=vector(1,n);    xicom=vector(1,n); 
   nrfunc=func;    nrfunc=func; 
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     pcom[j]=p[j];      pcom[j]=p[j]; 
     xicom[j]=xi[j];      xicom[j]=xi[j]; 
   }    } 
   ax=0.0;    ax=0.0; 
   xx=1.0;    xx=1.0; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 #ifdef DEBUG  #ifdef DEBUG
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 #endif  #endif
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     xi[j] *= xmin;      xi[j] *= xmin; 
     p[j] += xi[j];      p[j] += xi[j]; 
   }    } 
   free_vector(xicom,1,n);    free_vector(xicom,1,n); 
   free_vector(pcom,1,n);    free_vector(pcom,1,n); 
 }  } 
   
 /*************** powell ************************/  /*************** powell ************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             double (*func)(double []))              double (*func)(double [])) 
 {  { 
   void linmin(double p[], double xi[], int n, double *fret,    void linmin(double p[], double xi[], int n, double *fret, 
               double (*func)(double []));                double (*func)(double [])); 
   int i,ibig,j;    int i,ibig,j; 
   double del,t,*pt,*ptt,*xit;    double del,t,*pt,*ptt,*xit;
   double fp,fptt;    double fp,fptt;
   double *xits;    double *xits;
   pt=vector(1,n);    pt=vector(1,n); 
   ptt=vector(1,n);    ptt=vector(1,n); 
   xit=vector(1,n);    xit=vector(1,n); 
   xits=vector(1,n);    xits=vector(1,n); 
   *fret=(*func)(p);    *fret=(*func)(p); 
   for (j=1;j<=n;j++) pt[j]=p[j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (*iter=1;;++(*iter)) {    for (*iter=1;;++(*iter)) { 
     fp=(*fret);      fp=(*fret); 
     ibig=0;      ibig=0; 
     del=0.0;      del=0.0; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     for (i=1;i<=n;i++)      for (i=1;i<=n;i++) 
       printf(" %d %.12f",i, p[i]);        printf(" %d %.12f",i, p[i]);
     fprintf(ficlog," %d %.12f",i, p[i]);      fprintf(ficlog," %d %.12f",i, p[i]);
     printf("\n");      printf("\n");
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
     for (i=1;i<=n;i++) {      for (i=1;i<=n;i++) { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       fptt=(*fret);        fptt=(*fret); 
 #ifdef DEBUG  #ifdef DEBUG
       printf("fret=%lf \n",*fret);        printf("fret=%lf \n",*fret);
       fprintf(ficlog,"fret=%lf \n",*fret);        fprintf(ficlog,"fret=%lf \n",*fret);
 #endif  #endif
       printf("%d",i);fflush(stdout);        printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);        fprintf(ficlog,"%d",i);fflush(ficlog);
       linmin(p,xit,n,fret,func);        linmin(p,xit,n,fret,func); 
       if (fabs(fptt-(*fret)) > del) {        if (fabs(fptt-(*fret)) > del) { 
         del=fabs(fptt-(*fret));          del=fabs(fptt-(*fret)); 
         ibig=i;          ibig=i; 
       }        } 
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %.12e",i,(*fret));        printf("%d %.12e",i,(*fret));
       fprintf(ficlog,"%d %.12e",i,(*fret));        fprintf(ficlog,"%d %.12e",i,(*fret));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         printf(" x(%d)=%.12e",j,xit[j]);          printf(" x(%d)=%.12e",j,xit[j]);
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       for(j=1;j<=n;j++) {        for(j=1;j<=n;j++) {
         printf(" p=%.12e",p[j]);          printf(" p=%.12e",p[j]);
         fprintf(ficlog," p=%.12e",p[j]);          fprintf(ficlog," p=%.12e",p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
 #endif  #endif
     }      } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 #ifdef DEBUG  #ifdef DEBUG
       int k[2],l;        int k[2],l;
       k[0]=1;        k[0]=1;
       k[1]=-1;        k[1]=-1;
       printf("Max: %.12e",(*func)(p));        printf("Max: %.12e",(*func)(p));
       fprintf(ficlog,"Max: %.12e",(*func)(p));        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         printf(" %.12e",p[j]);          printf(" %.12e",p[j]);
         fprintf(ficlog," %.12e",p[j]);          fprintf(ficlog," %.12e",p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
       for(l=0;l<=1;l++) {        for(l=0;l<=1;l++) {
         for (j=1;j<=n;j++) {          for (j=1;j<=n;j++) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }          }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
 #endif  #endif
   
   
       free_vector(xit,1,n);        free_vector(xit,1,n); 
       free_vector(xits,1,n);        free_vector(xits,1,n); 
       free_vector(ptt,1,n);        free_vector(ptt,1,n); 
       free_vector(pt,1,n);        free_vector(pt,1,n); 
       return;        return; 
     }      } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (j=1;j<=n;j++) {      for (j=1;j<=n;j++) { 
       ptt[j]=2.0*p[j]-pt[j];        ptt[j]=2.0*p[j]-pt[j]; 
       xit[j]=p[j]-pt[j];        xit[j]=p[j]-pt[j]; 
       pt[j]=p[j];        pt[j]=p[j]; 
     }      } 
     fptt=(*func)(ptt);      fptt=(*func)(ptt); 
     if (fptt < fp) {      if (fptt < fp) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       if (t < 0.0) {        if (t < 0.0) { 
         linmin(p,xit,n,fret,func);          linmin(p,xit,n,fret,func); 
         for (j=1;j<=n;j++) {          for (j=1;j<=n;j++) { 
           xi[j][ibig]=xi[j][n];            xi[j][ibig]=xi[j][n]; 
           xi[j][n]=xit[j];            xi[j][n]=xit[j]; 
         }          }
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(j=1;j<=n;j++){          for(j=1;j<=n;j++){
           printf(" %.12e",xit[j]);            printf(" %.12e",xit[j]);
           fprintf(ficlog," %.12e",xit[j]);            fprintf(ficlog," %.12e",xit[j]);
         }          }
         printf("\n");          printf("\n");
         fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
 #endif  #endif
       }        }
     }      } 
   }    } 
 }  } 
   
 /**** Prevalence limit ****************/  /**** Prevalence limit (stable prevalence)  ****************/
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      matrix by transitions matrix until convergence is reached */       matrix by transitions matrix until convergence is reached */
   
   int i, ii,j,k;    int i, ii,j,k;
   double min, max, maxmin, maxmax,sumnew=0.;    double min, max, maxmin, maxmax,sumnew=0.;
   double **matprod2();    double **matprod2();
   double **out, cov[NCOVMAX], **pmij();    double **out, cov[NCOVMAX], **pmij();
   double **newm;    double **newm;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
   
    cov[1]=1.;     cov[1]=1.;
     
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     newm=savm;      newm=savm;
     /* Covariates have to be included here again */      /* Covariates have to be included here again */
      cov[2]=agefin;       cov[2]=agefin;
      
       for (k=1; k<=cptcovn;k++) {        for (k=1; k<=cptcovn;k++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1; k<=cptcovprod;k++)        for (k=1; k<=cptcovprod;k++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
     savm=oldm;      savm=oldm;
     oldm=newm;      oldm=newm;
     maxmax=0.;      maxmax=0.;
     for(j=1;j<=nlstate;j++){      for(j=1;j<=nlstate;j++){
       min=1.;        min=1.;
       max=0.;        max=0.;
       for(i=1; i<=nlstate; i++) {        for(i=1; i<=nlstate; i++) {
         sumnew=0;          sumnew=0;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         prlim[i][j]= newm[i][j]/(1-sumnew);          prlim[i][j]= newm[i][j]/(1-sumnew);
         max=FMAX(max,prlim[i][j]);          max=FMAX(max,prlim[i][j]);
         min=FMIN(min,prlim[i][j]);          min=FMIN(min,prlim[i][j]);
       }        }
       maxmin=max-min;        maxmin=max-min;
       maxmax=FMAX(maxmax,maxmin);        maxmax=FMAX(maxmax,maxmin);
     }      }
     if(maxmax < ftolpl){      if(maxmax < ftolpl){
       return prlim;        return prlim;
     }      }
   }    }
 }  }
   
 /*************** transition probabilities ***************/  /*************** transition probabilities ***************/ 
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   double s1, s2;    double s1, s2;
   /*double t34;*/    /*double t34;*/
   int i,j,j1, nc, ii, jj;    int i,j,j1, nc, ii, jj;
   
     for(i=1; i<= nlstate; i++){      for(i=1; i<= nlstate; i++){
     for(j=1; j<i;j++){      for(j=1; j<i;j++){
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         /*s2 += param[i][j][nc]*cov[nc];*/          /*s2 += param[i][j][nc]*cov[nc];*/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       }        }
       ps[i][j]=s2;        ps[i][j]=s2;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     }      }
     for(j=i+1; j<=nlstate+ndeath;j++){      for(j=i+1; j<=nlstate+ndeath;j++){
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       }        }
       ps[i][j]=s2;        ps[i][j]=s2;
     }      }
   }    }
     /*ps[3][2]=1;*/      /*ps[3][2]=1;*/
   
   for(i=1; i<= nlstate; i++){    for(i=1; i<= nlstate; i++){
      s1=0;       s1=0;
     for(j=1; j<i; j++)      for(j=1; j<i; j++)
       s1+=exp(ps[i][j]);        s1+=exp(ps[i][j]);
     for(j=i+1; j<=nlstate+ndeath; j++)      for(j=i+1; j<=nlstate+ndeath; j++)
       s1+=exp(ps[i][j]);        s1+=exp(ps[i][j]);
     ps[i][i]=1./(s1+1.);      ps[i][i]=1./(s1+1.);
     for(j=1; j<i; j++)      for(j=1; j<i; j++)
       ps[i][j]= exp(ps[i][j])*ps[i][i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(j=i+1; j<=nlstate+ndeath; j++)      for(j=i+1; j<=nlstate+ndeath; j++)
       ps[i][j]= exp(ps[i][j])*ps[i][i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   } /* end i */    } /* end i */
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for(jj=1; jj<= nlstate+ndeath; jj++){      for(jj=1; jj<= nlstate+ndeath; jj++){
       ps[ii][jj]=0;        ps[ii][jj]=0;
       ps[ii][ii]=1;        ps[ii][ii]=1;
     }      }
   }    }
   
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     for(jj=1; jj<= nlstate+ndeath; jj++){      for(jj=1; jj<= nlstate+ndeath; jj++){
      printf("%lf ",ps[ii][jj]);       printf("%lf ",ps[ii][jj]);
    }     }
     printf("\n ");      printf("\n ");
     }      }
     printf("\n ");printf("%lf ",cov[2]);*/      printf("\n ");printf("%lf ",cov[2]);*/
 /*  /*
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   goto end;*/    goto end;*/
     return ps;      return ps;
 }  }
   
 /**************** Product of 2 matrices ******************/  /**************** Product of 2 matrices ******************/
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 {  {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /* in, b, out are matrice of pointers which should have been initialized    /* in, b, out are matrice of pointers which should have been initialized 
      before: only the contents of out is modified. The function returns       before: only the contents of out is modified. The function returns
      a pointer to pointers identical to out */       a pointer to pointers identical to out */
   long i, j, k;    long i, j, k;
   for(i=nrl; i<= nrh; i++)    for(i=nrl; i<= nrh; i++)
     for(k=ncolol; k<=ncoloh; k++)      for(k=ncolol; k<=ncoloh; k++)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         out[i][k] +=in[i][j]*b[j][k];          out[i][k] +=in[i][j]*b[j][k];
   
   return out;    return out;
 }  }
   
   
 /************* Higher Matrix Product ***************/  /************* Higher Matrix Product ***************/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month 
      duration (i.e. until       duration (i.e. until
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.       age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
      (typically every 2 years instead of every month which is too big).       (typically every 2 years instead of every month which is too big).
      Model is determined by parameters x and covariates have to be       Model is determined by parameters x and covariates have to be 
      included manually here.       included manually here. 
   
      */       */
   
   int i, j, d, h, k;    int i, j, d, h, k;
   double **out, cov[NCOVMAX];    double **out, cov[NCOVMAX];
   double **newm;    double **newm;
   
   /* Hstepm could be zero and should return the unit matrix */    /* Hstepm could be zero and should return the unit matrix */
   for (i=1;i<=nlstate+ndeath;i++)    for (i=1;i<=nlstate+ndeath;i++)
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[i][j]=(i==j ? 1.0 : 0.0);        oldm[i][j]=(i==j ? 1.0 : 0.0);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        po[i][j][0]=(i==j ? 1.0 : 0.0);
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(h=1; h <=nhstepm; h++){    for(h=1; h <=nhstepm; h++){
     for(d=1; d <=hstepm; d++){      for(d=1; d <=hstepm; d++){
       newm=savm;        newm=savm;
       /* Covariates have to be included here again */        /* Covariates have to be included here again */
       cov[1]=1.;        cov[1]=1.;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=1; k<=cptcovage;k++)        for (k=1; k<=cptcovage;k++)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1; k<=cptcovprod;k++)        for (k=1; k<=cptcovprod;k++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       savm=oldm;        savm=oldm;
       oldm=newm;        oldm=newm;
     }      }
     for(i=1; i<=nlstate+ndeath; i++)      for(i=1; i<=nlstate+ndeath; i++)
       for(j=1;j<=nlstate+ndeath;j++) {        for(j=1;j<=nlstate+ndeath;j++) {
         po[i][j][h]=newm[i][j];          po[i][j][h]=newm[i][j];
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
          */           */
       }        }
   } /* end h */    } /* end h */
   return po;    return po;
 }  }
   
   
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
 double func( double *x)  double func( double *x)
 {  {
   int i, ii, j, k, mi, d, kk;    int i, ii, j, k, mi, d, kk;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double **out;    double **out;
   double sw; /* Sum of weights */    double sw; /* Sum of weights */
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
   long ipmx;    long ipmx;
   /*extern weight */    /*extern weight */
   /* We are differentiating ll according to initial status */    /* We are differentiating ll according to initial status */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /*for(i=1;i<imx;i++)    /*for(i=1;i<imx;i++) 
     printf(" %d\n",s[4][i]);      printf(" %d\n",s[4][i]);
   */    */
   cov[1]=1.;    cov[1]=1.;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(mi=1; mi<= wav[i]-1; mi++){      for(mi=1; mi<= wav[i]-1; mi++){
       for (ii=1;ii<=nlstate+ndeath;ii++)        for (ii=1;ii<=nlstate+ndeath;ii++)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(d=0; d<dh[mi][i]; d++){        for(d=0; d<dh[mi][i]; d++){
         newm=savm;          newm=savm;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (kk=1; kk<=cptcovage;kk++) {          for (kk=1; kk<=cptcovage;kk++) {
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }          }
                  
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;          savm=oldm;
         oldm=newm;          oldm=newm;
                  
                  
       } /* end mult */        } /* end mult */
              
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/
       ipmx +=1;        ipmx +=1;
       sw += weight[i];        sw += weight[i];
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     } /* end of wave */      } /* end of wave */
   } /* end of individual */    } /* end of individual */
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   return -l;    return -l;
 }  }
   
   
 /*********** Maximum Likelihood Estimation ***************/  /*********** Maximum Likelihood Estimation ***************/
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 {  {
   int i,j, iter;    int i,j, iter;
   double **xi,*delti;    double **xi,*delti;
   double fret;    double fret;
   xi=matrix(1,npar,1,npar);    xi=matrix(1,npar,1,npar);
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++)
     for (j=1;j<=npar;j++)      for (j=1;j<=npar;j++)
       xi[i][j]=(i==j ? 1.0 : 0.0);        xi[i][j]=(i==j ? 1.0 : 0.0);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   powell(p,xi,npar,ftol,&iter,&fret,func);    powell(p,xi,npar,ftol,&iter,&fret,func);
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
 }  }
   
 /**** Computes Hessian and covariance matrix ***/  /**** Computes Hessian and covariance matrix ***/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 {  {
   double  **a,**y,*x,pd;    double  **a,**y,*x,pd;
   double **hess;    double **hess;
   int i, j,jk;    int i, j,jk;
   int *indx;    int *indx;
   
   double hessii(double p[], double delta, int theta, double delti[]);    double hessii(double p[], double delta, int theta, double delti[]);
   double hessij(double p[], double delti[], int i, int j);    double hessij(double p[], double delti[], int i, int j);
   void lubksb(double **a, int npar, int *indx, double b[]) ;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   
   hess=matrix(1,npar,1,npar);    hess=matrix(1,npar,1,npar);
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   for (i=1;i<=npar;i++){    for (i=1;i<=npar;i++){
     printf("%d",i);fflush(stdout);      printf("%d",i);fflush(stdout);
     fprintf(ficlog,"%d",i);fflush(ficlog);      fprintf(ficlog,"%d",i);fflush(ficlog);
     hess[i][i]=hessii(p,ftolhess,i,delti);      hess[i][i]=hessii(p,ftolhess,i,delti);
     /*printf(" %f ",p[i]);*/      /*printf(" %f ",p[i]);*/
     /*printf(" %lf ",hess[i][i]);*/      /*printf(" %lf ",hess[i][i]);*/
   }    }
      
   for (i=1;i<=npar;i++) {    for (i=1;i<=npar;i++) {
     for (j=1;j<=npar;j++)  {      for (j=1;j<=npar;j++)  {
       if (j>i) {        if (j>i) { 
         printf(".%d%d",i,j);fflush(stdout);          printf(".%d%d",i,j);fflush(stdout);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         hess[i][j]=hessij(p,delti,i,j);          hess[i][j]=hessij(p,delti,i,j);
         hess[j][i]=hess[i][j];              hess[j][i]=hess[i][j];    
         /*printf(" %lf ",hess[i][j]);*/          /*printf(" %lf ",hess[i][j]);*/
       }        }
     }      }
   }    }
   printf("\n");    printf("\n");
   fprintf(ficlog,"\n");    fprintf(ficlog,"\n");
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
   a=matrix(1,npar,1,npar);    a=matrix(1,npar,1,npar);
   y=matrix(1,npar,1,npar);    y=matrix(1,npar,1,npar);
   x=vector(1,npar);    x=vector(1,npar);
   indx=ivector(1,npar);    indx=ivector(1,npar);
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   ludcmp(a,npar,indx,&pd);    ludcmp(a,npar,indx,&pd);
   
   for (j=1;j<=npar;j++) {    for (j=1;j<=npar;j++) {
     for (i=1;i<=npar;i++) x[i]=0;      for (i=1;i<=npar;i++) x[i]=0;
     x[j]=1;      x[j]=1;
     lubksb(a,npar,indx,x);      lubksb(a,npar,indx,x);
     for (i=1;i<=npar;i++){      for (i=1;i<=npar;i++){ 
       matcov[i][j]=x[i];        matcov[i][j]=x[i];
     }      }
   }    }
   
   printf("\n#Hessian matrix#\n");    printf("\n#Hessian matrix#\n");
   fprintf(ficlog,"\n#Hessian matrix#\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
   for (i=1;i<=npar;i++) {    for (i=1;i<=npar;i++) { 
     for (j=1;j<=npar;j++) {      for (j=1;j<=npar;j++) { 
       printf("%.3e ",hess[i][j]);        printf("%.3e ",hess[i][j]);
       fprintf(ficlog,"%.3e ",hess[i][j]);        fprintf(ficlog,"%.3e ",hess[i][j]);
     }      }
     printf("\n");      printf("\n");
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
   }    }
   
   /* Recompute Inverse */    /* Recompute Inverse */
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   ludcmp(a,npar,indx,&pd);    ludcmp(a,npar,indx,&pd);
   
   /*  printf("\n#Hessian matrix recomputed#\n");    /*  printf("\n#Hessian matrix recomputed#\n");
   
   for (j=1;j<=npar;j++) {    for (j=1;j<=npar;j++) {
     for (i=1;i<=npar;i++) x[i]=0;      for (i=1;i<=npar;i++) x[i]=0;
     x[j]=1;      x[j]=1;
     lubksb(a,npar,indx,x);      lubksb(a,npar,indx,x);
     for (i=1;i<=npar;i++){      for (i=1;i<=npar;i++){ 
       y[i][j]=x[i];        y[i][j]=x[i];
       printf("%.3e ",y[i][j]);        printf("%.3e ",y[i][j]);
       fprintf(ficlog,"%.3e ",y[i][j]);        fprintf(ficlog,"%.3e ",y[i][j]);
     }      }
     printf("\n");      printf("\n");
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
   }    }
   */    */
   
   free_matrix(a,1,npar,1,npar);    free_matrix(a,1,npar,1,npar);
   free_matrix(y,1,npar,1,npar);    free_matrix(y,1,npar,1,npar);
   free_vector(x,1,npar);    free_vector(x,1,npar);
   free_ivector(indx,1,npar);    free_ivector(indx,1,npar);
   free_matrix(hess,1,npar,1,npar);    free_matrix(hess,1,npar,1,npar);
   
   
 }  }
   
 /*************** hessian matrix ****************/  /*************** hessian matrix ****************/
 double hessii( double x[], double delta, int theta, double delti[])  double hessii( double x[], double delta, int theta, double delti[])
 {  {
   int i;    int i;
   int l=1, lmax=20;    int l=1, lmax=20;
   double k1,k2;    double k1,k2;
   double p2[NPARMAX+1];    double p2[NPARMAX+1];
   double res;    double res;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double fx;    double fx;
   int k=0,kmax=10;    int k=0,kmax=10;
   double l1;    double l1;
   
   fx=func(x);    fx=func(x);
   for (i=1;i<=npar;i++) p2[i]=x[i];    for (i=1;i<=npar;i++) p2[i]=x[i];
   for(l=0 ; l <=lmax; l++){    for(l=0 ; l <=lmax; l++){
     l1=pow(10,l);      l1=pow(10,l);
     delts=delt;      delts=delt;
     for(k=1 ; k <kmax; k=k+1){      for(k=1 ; k <kmax; k=k+1){
       delt = delta*(l1*k);        delt = delta*(l1*k);
       p2[theta]=x[theta] +delt;        p2[theta]=x[theta] +delt;
       k1=func(p2)-fx;        k1=func(p2)-fx;
       p2[theta]=x[theta]-delt;        p2[theta]=x[theta]-delt;
       k2=func(p2)-fx;        k2=func(p2)-fx;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        /*res= (k1-2.0*fx+k2)/delt/delt; */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
              
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 #endif  #endif
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         k=kmax;          k=kmax;
       }        }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         k=kmax; l=lmax*10.;          k=kmax; l=lmax*10.;
       }        }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         delts=delt;          delts=delt;
       }        }
     }      }
   }    }
   delti[theta]=delts;    delti[theta]=delts;
   return res;    return res; 
      
 }  }
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  double hessij( double x[], double delti[], int thetai,int thetaj)
 {  {
   int i;    int i;
   int l=1, l1, lmax=20;    int l=1, l1, lmax=20;
   double k1,k2,k3,k4,res,fx;    double k1,k2,k3,k4,res,fx;
   double p2[NPARMAX+1];    double p2[NPARMAX+1];
   int k;    int k;
   
   fx=func(x);    fx=func(x);
   for (k=1; k<=2; k++) {    for (k=1; k<=2; k++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];      for (i=1;i<=npar;i++) p2[i]=x[i];
     p2[thetai]=x[thetai]+delti[thetai]/k;      p2[thetai]=x[thetai]+delti[thetai]/k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     k1=func(p2)-fx;      k1=func(p2)-fx;
      
     p2[thetai]=x[thetai]+delti[thetai]/k;      p2[thetai]=x[thetai]+delti[thetai]/k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     k2=func(p2)-fx;      k2=func(p2)-fx;
      
     p2[thetai]=x[thetai]-delti[thetai]/k;      p2[thetai]=x[thetai]-delti[thetai]/k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     k3=func(p2)-fx;      k3=func(p2)-fx;
      
     p2[thetai]=x[thetai]-delti[thetai]/k;      p2[thetai]=x[thetai]-delti[thetai]/k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     k4=func(p2)-fx;      k4=func(p2)-fx;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 #ifdef DEBUG  #ifdef DEBUG
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #endif  #endif
   }    }
   return res;    return res;
 }  }
   
 /************** Inverse of matrix **************/  /************** Inverse of matrix **************/
 void ludcmp(double **a, int n, int *indx, double *d)  void ludcmp(double **a, int n, int *indx, double *d) 
 {  { 
   int i,imax,j,k;    int i,imax,j,k; 
   double big,dum,sum,temp;    double big,dum,sum,temp; 
   double *vv;    double *vv; 
     
   vv=vector(1,n);    vv=vector(1,n); 
   *d=1.0;    *d=1.0; 
   for (i=1;i<=n;i++) {    for (i=1;i<=n;i++) { 
     big=0.0;      big=0.0; 
     for (j=1;j<=n;j++)      for (j=1;j<=n;j++) 
       if ((temp=fabs(a[i][j])) > big) big=temp;        if ((temp=fabs(a[i][j])) > big) big=temp; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     vv[i]=1.0/big;      vv[i]=1.0/big; 
   }    } 
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     for (i=1;i<j;i++) {      for (i=1;i<j;i++) { 
       sum=a[i][j];        sum=a[i][j]; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       a[i][j]=sum;        a[i][j]=sum; 
     }      } 
     big=0.0;      big=0.0; 
     for (i=j;i<=n;i++) {      for (i=j;i<=n;i++) { 
       sum=a[i][j];        sum=a[i][j]; 
       for (k=1;k<j;k++)        for (k=1;k<j;k++) 
         sum -= a[i][k]*a[k][j];          sum -= a[i][k]*a[k][j]; 
       a[i][j]=sum;        a[i][j]=sum; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         big=dum;          big=dum; 
         imax=i;          imax=i; 
       }        } 
     }      } 
     if (j != imax) {      if (j != imax) { 
       for (k=1;k<=n;k++) {        for (k=1;k<=n;k++) { 
         dum=a[imax][k];          dum=a[imax][k]; 
         a[imax][k]=a[j][k];          a[imax][k]=a[j][k]; 
         a[j][k]=dum;          a[j][k]=dum; 
       }        } 
       *d = -(*d);        *d = -(*d); 
       vv[imax]=vv[j];        vv[imax]=vv[j]; 
     }      } 
     indx[j]=imax;      indx[j]=imax; 
     if (a[j][j] == 0.0) a[j][j]=TINY;      if (a[j][j] == 0.0) a[j][j]=TINY; 
     if (j != n) {      if (j != n) { 
       dum=1.0/(a[j][j]);        dum=1.0/(a[j][j]); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     }      } 
   }    } 
   free_vector(vv,1,n);  /* Doesn't work */    free_vector(vv,1,n);  /* Doesn't work */
 ;  ;
 }  } 
   
 void lubksb(double **a, int n, int *indx, double b[])  void lubksb(double **a, int n, int *indx, double b[]) 
 {  { 
   int i,ii=0,ip,j;    int i,ii=0,ip,j; 
   double sum;    double sum; 
     
   for (i=1;i<=n;i++) {    for (i=1;i<=n;i++) { 
     ip=indx[i];      ip=indx[i]; 
     sum=b[ip];      sum=b[ip]; 
     b[ip]=b[i];      b[ip]=b[i]; 
     if (ii)      if (ii) 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     else if (sum) ii=i;      else if (sum) ii=i; 
     b[i]=sum;      b[i]=sum; 
   }    } 
   for (i=n;i>=1;i--) {    for (i=n;i>=1;i--) { 
     sum=b[i];      sum=b[i]; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     b[i]=sum/a[i][i];      b[i]=sum/a[i][i]; 
   }    } 
 }  } 
   
 /************ Frequencies ********************/  /************ Frequencies ********************/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
 {  /* Some frequencies */  {  /* Some frequencies */
      
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   int first;    int first;
   double ***freq; /* Frequencies */    double ***freq; /* Frequencies */
   double *pp;    double *pp;
   double pos, k2, dateintsum=0,k2cpt=0;    double pos, k2, dateintsum=0,k2cpt=0;
   FILE *ficresp;    FILE *ficresp;
   char fileresp[FILENAMELENGTH];    char fileresp[FILENAMELENGTH];
      
   pp=vector(1,nlstate);    pp=vector(1,nlstate);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(fileresp,"p");    strcpy(fileresp,"p");
   strcat(fileresp,fileres);    strcat(fileresp,fileres);
   if((ficresp=fopen(fileresp,"w"))==NULL) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     exit(0);      exit(0);
   }    }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
   j1=0;    j1=0;
      
   j=cptcoveff;    j=cptcoveff;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   first=1;    first=1;
   
   for(k1=1; k1<=j;k1++){    for(k1=1; k1<=j;k1++){
     for(i1=1; i1<=ncodemax[k1];i1++){      for(i1=1; i1<=ncodemax[k1];i1++){
       j1++;        j1++;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         scanf("%d", i);*/          scanf("%d", i);*/
       for (i=-1; i<=nlstate+ndeath; i++)          for (i=-1; i<=nlstate+ndeath; i++)  
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for (jk=-1; jk<=nlstate+ndeath; jk++)  
           for(m=agemin; m <= agemax+3; m++)            for(m=agemin; m <= agemax+3; m++)
             freq[i][jk][m]=0;              freq[i][jk][m]=0;
              
       dateintsum=0;        dateintsum=0;
       k2cpt=0;        k2cpt=0;
       for (i=1; i<=imx; i++) {        for (i=1; i<=imx; i++) {
         bool=1;          bool=1;
         if  (cptcovn>0) {          if  (cptcovn>0) {
           for (z1=1; z1<=cptcoveff; z1++)            for (z1=1; z1<=cptcoveff; z1++) 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
               bool=0;                bool=0;
         }          }
         if (bool==1) {          if (bool==1){
           for(m=firstpass; m<=lastpass; m++){            for(m=firstpass; m<=lastpass; m++){
             k2=anint[m][i]+(mint[m][i]/12.);              k2=anint[m][i]+(mint[m][i]/12.);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              if ((k2>=dateprev1) && (k2<=dateprev2)) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;                if(agev[m][i]==0) agev[m][i]=agemax+1;
               if(agev[m][i]==1) agev[m][i]=agemax+2;                if(agev[m][i]==1) agev[m][i]=agemax+2;
               if (m<lastpass) {                if (m<lastpass) {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];                  freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
               }                }
                              
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
                 dateintsum=dateintsum+k2;                  dateintsum=dateintsum+k2;
                 k2cpt++;                  k2cpt++;
               }                }
             }              }
           }            }
         }          }
       }        }
                 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
       if  (cptcovn>0) {        if  (cptcovn>0) {
         fprintf(ficresp, "\n#********** Variable ");          fprintf(ficresp, "\n#********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficresp, "**********\n#");          fprintf(ficresp, "**********\n#");
       }        }
       for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fprintf(ficresp, "\n");        fprintf(ficresp, "\n");
              
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(i=(int)agemin; i <= (int)agemax+3; i++){
         if(i==(int)agemax+3){          if(i==(int)agemax+3){
           fprintf(ficlog,"Total");            fprintf(ficlog,"Total");
         }else{          }else{
           if(first==1){            if(first==1){
             first=0;              first=0;
             printf("See log file for details...\n");              printf("See log file for details...\n");
           }            }
           fprintf(ficlog,"Age %d", i);            fprintf(ficlog,"Age %d", i);
         }          }
         for(jk=1; jk <=nlstate ; jk++){          for(jk=1; jk <=nlstate ; jk++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             pp[jk] += freq[jk][m][i];              pp[jk] += freq[jk][m][i]; 
         }          }
         for(jk=1; jk <=nlstate ; jk++){          for(jk=1; jk <=nlstate ; jk++){
           for(m=-1, pos=0; m <=0 ; m++)            for(m=-1, pos=0; m <=0 ; m++)
             pos += freq[jk][m][i];              pos += freq[jk][m][i];
           if(pp[jk]>=1.e-10){            if(pp[jk]>=1.e-10){
             if(first==1){              if(first==1){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }              }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }else{            }else{
             if(first==1)              if(first==1)
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           }            }
         }          }
   
         for(jk=1; jk <=nlstate ; jk++){          for(jk=1; jk <=nlstate ; jk++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             pp[jk] += freq[jk][m][i];              pp[jk] += freq[jk][m][i];
         }          }
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)          for(jk=1,pos=0; jk <=nlstate ; jk++)
           pos += pp[jk];            pos += pp[jk];
         for(jk=1; jk <=nlstate ; jk++){          for(jk=1; jk <=nlstate ; jk++){
           if(pos>=1.e-5){            if(pos>=1.e-5){
             if(first==1)              if(first==1)
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }else{            }else{
             if(first==1)              if(first==1)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           }            }
           if( i <= (int) agemax){            if( i <= (int) agemax){
             if(pos>=1.e-5){              if(pos>=1.e-5){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);                fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
               probs[i][jk][j1]= pp[jk]/pos;                probs[i][jk][j1]= pp[jk]/pos;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             }              }
             else              else
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);                fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
           }            }
         }          }
                  
         for(jk=-1; jk <=nlstate+ndeath; jk++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
           for(m=-1; m <=nlstate+ndeath; m++)            for(m=-1; m <=nlstate+ndeath; m++)
             if(freq[jk][m][i] !=0 ) {              if(freq[jk][m][i] !=0 ) {
             if(first==1)              if(first==1)
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             }              }
         if(i <= (int) agemax)          if(i <= (int) agemax)
           fprintf(ficresp,"\n");            fprintf(ficresp,"\n");
         if(first==1)          if(first==1)
           printf("Others in log...\n");            printf("Others in log...\n");
         fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
       }        }
     }      }
   }    }
   dateintmean=dateintsum/k2cpt;    dateintmean=dateintsum/k2cpt; 
     
   fclose(ficresp);    fclose(ficresp);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
   free_vector(pp,1,nlstate);    free_vector(pp,1,nlstate);
      
   /* End of Freq */    /* End of Freq */
 }  }
   
 /************ Prevalence ********************/  /************ Prevalence ********************/
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
 {  /* Some frequencies */  {  /* Some frequencies */
     
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   double ***freq; /* Frequencies */    double ***freq; /* Frequencies */
   double *pp;    double *pp;
   double pos, k2;    double pos, k2;
   
   pp=vector(1,nlstate);    pp=vector(1,nlstate);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    
      freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    j1=0;
   j1=0;    
      j=cptcoveff;
   j=cptcoveff;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    
      for(k1=1; k1<=j;k1++){
   for(k1=1; k1<=j;k1++){      for(i1=1; i1<=ncodemax[k1];i1++){
     for(i1=1; i1<=ncodemax[k1];i1++){        j1++;
       j1++;        
              for (i=-1; i<=nlstate+ndeath; i++)  
       for (i=-1; i<=nlstate+ndeath; i++)            for (jk=-1; jk<=nlstate+ndeath; jk++)  
         for (jk=-1; jk<=nlstate+ndeath; jk++)              for(m=agemin; m <= agemax+3; m++)
           for(m=agemin; m <= agemax+3; m++)              freq[i][jk][m]=0;
             freq[i][jk][m]=0;       
              for (i=1; i<=imx; i++) {
       for (i=1; i<=imx; i++) {          bool=1;
         bool=1;          if  (cptcovn>0) {
         if  (cptcovn>0) {            for (z1=1; z1<=cptcoveff; z1++) 
           for (z1=1; z1<=cptcoveff; z1++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                bool=0;
               bool=0;          } 
         }          if (bool==1) { 
         if (bool==1) {            for(m=firstpass; m<=lastpass; m++){
           for(m=firstpass; m<=lastpass; m++){              k2=anint[m][i]+(mint[m][i]/12.);
             k2=anint[m][i]+(mint[m][i]/12.);              if ((k2>=dateprev1) && (k2<=dateprev2)) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {                if(agev[m][i]==0) agev[m][i]=agemax+1;
               if(agev[m][i]==0) agev[m][i]=agemax+1;                if(agev[m][i]==1) agev[m][i]=agemax+2;
               if(agev[m][i]==1) agev[m][i]=agemax+2;                if (m<lastpass) {
               if (m<lastpass) {                  if (calagedate>0) 
                 if (calagedate>0)                    freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];                  else
                 else                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                  freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];                }
               }              }
             }            }
           }          }
         }        }
       }        for(i=(int)agemin; i <= (int)agemax+3; i++){ 
       for(i=(int)agemin; i <= (int)agemax+3; i++){          for(jk=1; jk <=nlstate ; jk++){
         for(jk=1; jk <=nlstate ; jk++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              pp[jk] += freq[jk][m][i]; 
             pp[jk] += freq[jk][m][i];          }
         }          for(jk=1; jk <=nlstate ; jk++){
         for(jk=1; jk <=nlstate ; jk++){            for(m=-1, pos=0; m <=0 ; m++)
           for(m=-1, pos=0; m <=0 ; m++)              pos += freq[jk][m][i];
             pos += freq[jk][m][i];          }
         }          
                  for(jk=1; jk <=nlstate ; jk++){
         for(jk=1; jk <=nlstate ; jk++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              pp[jk] += freq[jk][m][i];
             pp[jk] += freq[jk][m][i];          }
         }          
                  for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          
                  for(jk=1; jk <=nlstate ; jk++){    
         for(jk=1; jk <=nlstate ; jk++){                if( i <= (int) agemax){
           if( i <= (int) agemax){              if(pos>=1.e-5){
             if(pos>=1.e-5){                probs[i][jk][j1]= pp[jk]/pos;
               probs[i][jk][j1]= pp[jk]/pos;              }
             }            }
           }          }/* end jk */
         }/* end jk */        }/* end i */
       }/* end i */      } /* end i1 */
     } /* end i1 */    } /* end k1 */
   } /* end k1 */  
     
      free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    free_vector(pp,1,nlstate);
   free_vector(pp,1,nlstate);    
    }  /* End of Freq */
 }  /* End of Freq */  
   /************* Waves Concatenation ***************/
 /************* Waves Concatenation ***************/  
   void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  {
 {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.       Death is a valid wave (if date is known).
      Death is a valid wave (if date is known).       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]       and mw[mi+1][i]. dh depends on stepm.
      and mw[mi+1][i]. dh depends on stepm.       */
      */  
     int i, mi, m;
   int i, mi, m;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       double sum=0., jmean=0.;*/
      double sum=0., jmean=0.;*/    int first;
   int first;    int j, k=0,jk, ju, jl;
   int j, k=0,jk, ju, jl;    double sum=0.;
   double sum=0.;    first=0;
   first=0;    jmin=1e+5;
   jmin=1e+5;    jmax=-1;
   jmax=-1;    jmean=0.;
   jmean=0.;    for(i=1; i<=imx; i++){
   for(i=1; i<=imx; i++){      mi=0;
     mi=0;      m=firstpass;
     m=firstpass;      while(s[m][i] <= nlstate){
     while(s[m][i] <= nlstate){        if(s[m][i]>=1)
       if(s[m][i]>=1)          mw[++mi][i]=m;
         mw[++mi][i]=m;        if(m >=lastpass)
       if(m >=lastpass)          break;
         break;        else
       else          m++;
         m++;      }/* end while */
     }/* end while */      if (s[m][i] > nlstate){
     if (s[m][i] > nlstate){        mi++;     /* Death is another wave */
       mi++;     /* Death is another wave */        /* if(mi==0)  never been interviewed correctly before death */
       /* if(mi==0)  never been interviewed correctly before death */           /* Only death is a correct wave */
          /* Only death is a correct wave */        mw[mi][i]=m;
       mw[mi][i]=m;      }
     }  
       wav[i]=mi;
     wav[i]=mi;      if(mi==0){
     if(mi==0){        if(first==0){
       if(first==0){          printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);          first=1;
         first=1;        }
       }        if(first==1){
       if(first==1){          fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        }
       }      } /* end mi==0 */
     } /* end mi==0 */    }
   }  
     for(i=1; i<=imx; i++){
   for(i=1; i<=imx; i++){      for(mi=1; mi<wav[i];mi++){
     for(mi=1; mi<wav[i];mi++){        if (stepm <=0)
       if (stepm <=0)          dh[mi][i]=1;
         dh[mi][i]=1;        else{
       else{          if (s[mw[mi+1][i]][i] > nlstate) {
         if (s[mw[mi+1][i]][i] > nlstate) {            if (agedc[i] < 2*AGESUP) {
           if (agedc[i] < 2*AGESUP) {            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            if(j==0) j=1;  /* Survives at least one month after exam */
           if(j==0) j=1;  /* Survives at least one month after exam */            k=k+1;
           k=k+1;            if (j >= jmax) jmax=j;
           if (j >= jmax) jmax=j;            if (j <= jmin) jmin=j;
           if (j <= jmin) jmin=j;            sum=sum+j;
           sum=sum+j;            /*if (j<0) printf("j=%d num=%d \n",j,i); */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            }
           }          }
         }          else{
         else{            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            k=k+1;
           k=k+1;            if (j >= jmax) jmax=j;
           if (j >= jmax) jmax=j;            else if (j <= jmin)jmin=j;
           else if (j <= jmin)jmin=j;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            sum=sum+j;
           sum=sum+j;          }
         }          jk= j/stepm;
         jk= j/stepm;          jl= j -jk*stepm;
         jl= j -jk*stepm;          ju= j -(jk+1)*stepm;
         ju= j -(jk+1)*stepm;          if(jl <= -ju)
         if(jl <= -ju)            dh[mi][i]=jk;
           dh[mi][i]=jk;          else
         else            dh[mi][i]=jk+1;
           dh[mi][i]=jk+1;          if(dh[mi][i]==0)
         if(dh[mi][i]==0)            dh[mi][i]=1; /* At least one step */
           dh[mi][i]=1; /* At least one step */        }
       }      }
     }    }
   }    jmean=sum/k;
   jmean=sum/k;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);   }
  }  
   /*********** Tricode ****************************/
 /*********** Tricode ****************************/  void tricode(int *Tvar, int **nbcode, int imx)
 void tricode(int *Tvar, int **nbcode, int imx)  {
 {    
   int Ndum[20],ij=1, k, j, i;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   int cptcode=0;    int cptcode=0;
   cptcoveff=0;    cptcoveff=0; 
     
   for (k=0; k<19; k++) Ndum[k]=0;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   for (k=1; k<=7; k++) ncodemax[k]=0;    for (k=1; k<=7; k++) ncodemax[k]=0;
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     for (i=1; i<=imx; i++) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       ij=(int)(covar[Tvar[j]][i]);                                 modality*/ 
       Ndum[ij]++;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        Ndum[ij]++; /*store the modality */
       if (ij > cptcode) cptcode=ij;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
     for (i=0; i<=cptcode; i++) {                                         female is 1, then  cptcode=1.*/
       if(Ndum[i]!=0) ncodemax[j]++;      }
     }  
     ij=1;      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {      ij=1; 
         if (Ndum[k] != 0) {      for (i=1; i<=ncodemax[j]; i++) {
           nbcode[Tvar[j]][ij]=k;        for (k=0; k<= maxncov; k++) {
                    if (Ndum[k] != 0) {
           ij++;            nbcode[Tvar[j]][ij]=k; 
         }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         if (ij > ncodemax[j]) break;            
       }              ij++;
     }          }
   }            if (ij > ncodemax[j]) break; 
         }  
  for (k=0; k<19; k++) Ndum[k]=0;      } 
     }  
  for (i=1; i<=ncovmodel-2; i++) {  
    ij=Tvar[i];   for (k=0; k< maxncov; k++) Ndum[k]=0;
    Ndum[ij]++;  
  }   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
  ij=1;     ij=Tvar[i];
  for (i=1; i<=10; i++) {     Ndum[ij]++;
    if((Ndum[i]!=0) && (i<=ncovcol)){   }
      Tvaraff[ij]=i;  
      ij++;   ij=1;
    }   for (i=1; i<= maxncov; i++) {
  }     if((Ndum[i]!=0) && (i<=ncovcol)){
         Tvaraff[ij]=i; /*For printing */
  cptcoveff=ij-1;       ij++;
 }     }
    }
 /*********** Health Expectancies ****************/   
    cptcoveff=ij-1; /*Number of simple covariates*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  }
   
 {  /*********** Health Expectancies ****************/
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   double age, agelim, hf;  
   double ***p3mat,***varhe;  {
   double **dnewm,**doldm;    /* Health expectancies */
   double *xp;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   double **gp, **gm;    double age, agelim, hf;
   double ***gradg, ***trgradg;    double ***p3mat,***varhe;
   int theta;    double **dnewm,**doldm;
     double *xp;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    double **gp, **gm;
   xp=vector(1,npar);    double ***gradg, ***trgradg;
   dnewm=matrix(1,nlstate*2,1,npar);    int theta;
   doldm=matrix(1,nlstate*2,1,nlstate*2);  
      varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
   fprintf(ficreseij,"# Health expectancies\n");    xp=vector(1,npar);
   fprintf(ficreseij,"# Age");    dnewm=matrix(1,nlstate*2,1,npar);
   for(i=1; i<=nlstate;i++)    doldm=matrix(1,nlstate*2,1,nlstate*2);
     for(j=1; j<=nlstate;j++)    
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    fprintf(ficreseij,"# Health expectancies\n");
   fprintf(ficreseij,"\n");    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
   if(estepm < stepm){      for(j=1; j<=nlstate;j++)
     printf ("Problem %d lower than %d\n",estepm, stepm);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   }    fprintf(ficreseij,"\n");
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    if(estepm < stepm){
    * This is mainly to measure the difference between two models: for example      printf ("Problem %d lower than %d\n",estepm, stepm);
    * if stepm=24 months pijx are given only every 2 years and by summing them    }
    * we are calculating an estimate of the Life Expectancy assuming a linear    else  hstepm=estepm;   
    * progression inbetween and thus overestimating or underestimating according    /* We compute the life expectancy from trapezoids spaced every estepm months
    * to the curvature of the survival function. If, for the same date, we     * This is mainly to measure the difference between two models: for example
    * estimate the model with stepm=1 month, we can keep estepm to 24 months     * if stepm=24 months pijx are given only every 2 years and by summing them
    * to compare the new estimate of Life expectancy with the same linear     * we are calculating an estimate of the Life Expectancy assuming a linear 
    * hypothesis. A more precise result, taking into account a more precise     * progression inbetween and thus overestimating or underestimating according
    * curvature will be obtained if estepm is as small as stepm. */     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /* For example we decided to compute the life expectancy with the smallest unit */     * to compare the new estimate of Life expectancy with the same linear 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     * hypothesis. A more precise result, taking into account a more precise
      nhstepm is the number of hstepm from age to agelim     * curvature will be obtained if estepm is as small as stepm. */
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    /* For example we decided to compute the life expectancy with the smallest unit */
      and note for a fixed period like estepm months */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       nhstepm is the number of hstepm from age to agelim 
      survival function given by stepm (the optimization length). Unfortunately it       nstepm is the number of stepm from age to agelin. 
      means that if the survival funtion is printed only each two years of age and if       Look at hpijx to understand the reason of that which relies in memory size
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       and note for a fixed period like estepm months */
      results. So we changed our mind and took the option of the best precision.    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   */       survival function given by stepm (the optimization length). Unfortunately it
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   agelim=AGESUP;       results. So we changed our mind and took the option of the best precision.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    */
     /* nhstepm age range expressed in number of stepm */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    agelim=AGESUP;
     /* if (stepm >= YEARM) hstepm=1;*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      /* nhstepm age range expressed in number of stepm */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     gp=matrix(0,nhstepm,1,nlstate*2);      /* if (stepm >= YEARM) hstepm=1;*/
     gm=matrix(0,nhstepm,1,nlstate*2);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      gp=matrix(0,nhstepm,1,nlstate*2);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        gm=matrix(0,nhstepm,1,nlstate*2);
    
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     /* Computing Variances of health expectancies */   
   
      for(theta=1; theta <=npar; theta++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /* Computing Variances of health expectancies */
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
       cptj=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(j=1; j<= nlstate; j++){        }
         for(i=1; i<=nlstate; i++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           cptj=cptj+1;    
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        cptj=0;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        for(j=1; j<= nlstate; j++){
           }          for(i=1; i<=nlstate; i++){
         }            cptj=cptj+1;
       }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                    gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                  }
       for(i=1; i<=npar; i++)          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         
             
       cptj=0;        for(i=1; i<=npar; i++) 
       for(j=1; j<= nlstate; j++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         for(i=1;i<=nlstate;i++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           cptj=cptj+1;        
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        cptj=0;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        for(j=1; j<= nlstate; j++){
           }          for(i=1;i<=nlstate;i++){
         }            cptj=cptj+1;
       }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       for(j=1; j<= nlstate*2; j++)              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for(h=0; h<=nhstepm-1; h++){            }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }        }
      }        for(j=1; j<= nlstate*2; j++)
              for(h=0; h<=nhstepm-1; h++){
 /* End theta */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);       } 
      
      for(h=0; h<=nhstepm-1; h++)  /* End theta */
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)       trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
           trgradg[h][j][theta]=gradg[h][theta][j];  
             for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*2;j++)
      for(i=1;i<=nlstate*2;i++)          for(theta=1; theta <=npar; theta++)
       for(j=1;j<=nlstate*2;j++)            trgradg[h][j][theta]=gradg[h][theta][j];
         varhe[i][j][(int)age] =0.;       
   
      printf("%d|",(int)age);fflush(stdout);       for(i=1;i<=nlstate*2;i++)
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        for(j=1;j<=nlstate*2;j++)
      for(h=0;h<=nhstepm-1;h++){          varhe[i][j][(int)age] =0.;
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);       printf("%d|",(int)age);fflush(stdout);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(i=1;i<=nlstate*2;i++)       for(h=0;h<=nhstepm-1;h++){
           for(j=1;j<=nlstate*2;j++)        for(k=0;k<=nhstepm-1;k++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
     }          for(i=1;i<=nlstate*2;i++)
     /* Computing expectancies */            for(j=1;j<=nlstate*2;j++)
     for(i=1; i<=nlstate;i++)              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       for(j=1; j<=nlstate;j++)        }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      /* Computing expectancies */
                for(i=1; i<=nlstate;i++)
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
     fprintf(ficreseij,"%3.0f",age );  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     cptj=0;  
     for(i=1; i<=nlstate;i++)          }
       for(j=1; j<=nlstate;j++){  
         cptj++;      fprintf(ficreseij,"%3.0f",age );
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      cptj=0;
       }      for(i=1; i<=nlstate;i++)
     fprintf(ficreseij,"\n");        for(j=1; j<=nlstate;j++){
              cptj++;
     free_matrix(gm,0,nhstepm,1,nlstate*2);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     free_matrix(gp,0,nhstepm,1,nlstate*2);        }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      fprintf(ficreseij,"\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);     
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_matrix(gm,0,nhstepm,1,nlstate*2);
   }      free_matrix(gp,0,nhstepm,1,nlstate*2);
   printf("\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
   fprintf(ficlog,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_vector(xp,1,npar);    }
   free_matrix(dnewm,1,nlstate*2,1,npar);    printf("\n");
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    fprintf(ficlog,"\n");
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  
 }    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*2,1,npar);
 /************ Variance ******************/    free_matrix(doldm,1,nlstate*2,1,nlstate*2);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
 {  }
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  /************ Variance ******************/
   /* double **newm;*/  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   double **dnewm,**doldm;  {
   double **dnewmp,**doldmp;    /* Variance of health expectancies */
   int i, j, nhstepm, hstepm, h, nstepm ;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   int k, cptcode;    /* double **newm;*/
   double *xp;    double **dnewm,**doldm;
   double **gp, **gm;  /* for var eij */    double **dnewmp,**doldmp;
   double ***gradg, ***trgradg; /*for var eij */    int i, j, nhstepm, hstepm, h, nstepm ;
   double **gradgp, **trgradgp; /* for var p point j */    int k, cptcode;
   double *gpp, *gmp; /* for var p point j */    double *xp;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    double **gp, **gm;  /* for var eij */
   double ***p3mat;    double ***gradg, ***trgradg; /*for var eij */
   double age,agelim, hf;    double **gradgp, **trgradgp; /* for var p point j */
   int theta;    double *gpp, *gmp; /* for var p point j */
   char digit[4];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   char digitp[16];    double ***p3mat;
     double age,agelim, hf;
   char fileresprobmorprev[FILENAMELENGTH];    double ***mobaverage;
     int theta;
   if(popbased==1)    char digit[4];
     strcpy(digitp,"-populbased-");    char digitp[25];
   else  
     strcpy(digitp,"-stablbased-");    char fileresprobmorprev[FILENAMELENGTH];
   
   strcpy(fileresprobmorprev,"prmorprev");    if(popbased==1){
   sprintf(digit,"%-d",ij);      if(mobilav!=0)
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        strcpy(digitp,"-populbased-mobilav-");
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      else strcpy(digitp,"-populbased-nomobil-");
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    }
   strcat(fileresprobmorprev,fileres);    else 
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      strcpy(digitp,"-stablbased-");
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    }
     fprintf(ficresprobmorprev," p.%-d SE",j);  
     for(i=1; i<=nlstate;i++)    strcpy(fileresprobmorprev,"prmorprev"); 
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    sprintf(digit,"%-d",ij);
   }      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fprintf(ficresprobmorprev,"\n");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    strcat(fileresprobmorprev,fileres);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     exit(0);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   else{    }
     fprintf(ficgp,"\n# Routine varevsij");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");
     printf("Problem with html file: %s\n", optionfilehtm);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     exit(0);      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   else{        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    }  
   }    fprintf(ficresprobmorprev,"\n");
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   fprintf(ficresvij,"# Age");      exit(0);
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)    else{
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      fprintf(ficgp,"\n# Routine varevsij");
   fprintf(ficresvij,"\n");    }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   xp=vector(1,npar);      printf("Problem with html file: %s\n", optionfilehtm);
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   doldm=matrix(1,nlstate,1,nlstate);      exit(0);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    }
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    else{
       fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp);
   gpp=vector(nlstate+1,nlstate+ndeath);    }
   gmp=vector(nlstate+1,nlstate+ndeath);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   if(estepm < stepm){    fprintf(ficresvij,"# Age");
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
   else  hstepm=estepm;          fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(ficresvij,"\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    xp=vector(1,npar);
      nstepm is the number of stepm from age to agelin.    dnewm=matrix(1,nlstate,1,npar);
      Look at hpijx to understand the reason of that which relies in memory size    doldm=matrix(1,nlstate,1,nlstate);
      and note for a fixed period like k years */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    gpp=vector(nlstate+1,nlstate+ndeath);
      results. So we changed our mind and took the option of the best precision.    gmp=vector(nlstate+1,nlstate+ndeath);
   */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
   agelim = AGESUP;    if(estepm < stepm){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf ("Problem %d lower than %d\n",estepm, stepm);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    else  hstepm=estepm;   
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* For example we decided to compute the life expectancy with the smallest unit */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     gp=matrix(0,nhstepm,1,nlstate);       nhstepm is the number of hstepm from age to agelim 
     gm=matrix(0,nhstepm,1,nlstate);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     for(theta=1; theta <=npar; theta++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(i=1; i<=npar; i++){ /* Computes gradient */       survival function given by stepm (the optimization length). Unfortunately it
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       means that if the survival funtion is printed only each two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         results. So we changed our mind and took the option of the best precision.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       if (popbased==1) {    agelim = AGESUP;
         for(i=1; i<=nlstate;i++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           prlim[i][i]=probs[(int)age][i][ij];      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1; j<= nlstate; j++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         for(h=0; h<=nhstepm; h++){      gp=matrix(0,nhstepm,1,nlstate);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      gm=matrix(0,nhstepm,1,nlstate);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  
       }      for(theta=1; theta <=npar; theta++){
       /* This for computing forces of mortality (h=1)as a weighted average */        for(i=1; i<=npar; i++){ /* Computes gradient */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for(i=1; i<= nlstate; i++)        }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       /* end force of mortality */  
         if (popbased==1) {
       for(i=1; i<=npar; i++) /* Computes gradient */          if(mobilav ==0){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for(i=1; i<=nlstate;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                prlim[i][i]=probs[(int)age][i][ij];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
       if (popbased==1) {              prlim[i][i]=mobaverage[(int)age][i][ij];
         for(i=1; i<=nlstate;i++)          }
           prlim[i][i]=probs[(int)age][i][ij];        }
       }    
         for(j=1; j<= nlstate; j++){
       for(j=1; j<= nlstate; j++){          for(h=0; h<=nhstepm; h++){
         for(h=0; h<=nhstepm; h++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }        }
       }        /* This for computing forces of mortality (h=1)as a weighted average */
       /* This for computing force of mortality (h=1)as a weighted average */        for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          for(i=1; i<= nlstate; i++)
         for(i=1; i<= nlstate; i++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           gmp[j] += prlim[i][i]*p3mat[i][j][1];        }    
       }            /* end force of mortality */
       /* end force of mortality */  
         for(i=1; i<=npar; i++) /* Computes gradient */
       for(j=1; j<= nlstate; j++) /* vareij */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         for(h=0; h<=nhstepm; h++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        if (popbased==1) {
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
     } /* End theta */          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
     for(h=0; h<=nhstepm; h++) /* veij */        }
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)        for(j=1; j<= nlstate; j++){
           trgradg[h][j][theta]=gradg[h][theta][j];          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(theta=1; theta <=npar; theta++)          }
         trgradgp[j][theta]=gradgp[theta][j];        }
         /* This for computing force of mortality (h=1)as a weighted average */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
     for(i=1;i<=nlstate;i++)          for(i=1; i<= nlstate; i++)
       for(j=1;j<=nlstate;j++)            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         vareij[i][j][(int)age] =0.;        }    
         /* end force of mortality */
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){        for(j=1; j<= nlstate; j++) /* vareij */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          for(h=0; h<=nhstepm; h++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for(i=1;i<=nlstate;i++)          }
           for(j=1;j<=nlstate;j++)        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       }        }
     }  
       } /* End theta */
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      for(h=0; h<=nhstepm; h++) /* veij */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        for(j=1; j<=nlstate;j++)
         varppt[j][i]=doldmp[j][i];          for(theta=1; theta <=npar; theta++)
     /* end ppptj */            trgradg[h][j][theta]=gradg[h][theta][j];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          for(theta=1; theta <=npar; theta++)
     if (popbased==1) {          trgradgp[j][theta]=gradgp[theta][j];
       for(i=1; i<=nlstate;i++)  
         prlim[i][i]=probs[(int)age][i][ij];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }      for(i=1;i<=nlstate;i++)
            for(j=1;j<=nlstate;j++)
     /* This for computing force of mortality (h=1)as a weighted average */          vareij[i][j][(int)age] =0.;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  
       for(i=1; i<= nlstate; i++)      for(h=0;h<=nhstepm;h++){
         gmp[j] += prlim[i][i]*p3mat[i][j][1];        for(k=0;k<=nhstepm;k++){
     }              matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     /* end force of mortality */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            for(j=1;j<=nlstate;j++)
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        }
       for(i=1; i<=nlstate;i++){      }
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }      /* pptj */
     }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     fprintf(ficresprobmorprev,"\n");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
     fprintf(ficresvij,"%.0f ",age );        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     for(i=1; i<=nlstate;i++)          varppt[j][i]=doldmp[j][i];
       for(j=1; j<=nlstate;j++){      /* end ppptj */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     fprintf(ficresvij,"\n");   
     free_matrix(gp,0,nhstepm,1,nlstate);      if (popbased==1) {
     free_matrix(gm,0,nhstepm,1,nlstate);        if(mobilav ==0){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for(i=1; i<=nlstate;i++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            prlim[i][i]=probs[(int)age][i][ij];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }else{ /* mobilav */ 
   } /* End age */          for(i=1; i<=nlstate;i++)
   free_vector(gpp,nlstate+1,nlstate+ndeath);            prlim[i][i]=mobaverage[(int)age][i][ij];
   free_vector(gmp,nlstate+1,nlstate+ndeath);        }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      }
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      /* This for computing force of mortality (h=1)as a weighted average */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");        for(i=1; i<= nlstate; i++)
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);      }    
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);      /* end force of mortality */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   free_vector(xp,1,npar);        for(i=1; i<=nlstate;i++){
   free_matrix(doldm,1,nlstate,1,nlstate);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   free_matrix(dnewm,1,nlstate,1,npar);        }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      } 
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      fprintf(ficresprobmorprev,"\n");
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   fclose(ficresprobmorprev);      fprintf(ficresvij,"%.0f ",age );
   fclose(ficgp);      for(i=1; i<=nlstate;i++)
   fclose(fichtm);        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 }        }
       fprintf(ficresvij,"\n");
 /************ Variance of prevlim ******************/      free_matrix(gp,0,nhstepm,1,nlstate);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      free_matrix(gm,0,nhstepm,1,nlstate);
 {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   /* Variance of prevalence limit */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **newm;    } /* End age */
   double **dnewm,**doldm;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   int i, j, nhstepm, hstepm;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   int k, cptcode;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   double *xp;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double *gp, *gm;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   double **gradg, **trgradg;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   double age,agelim;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   int theta;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);
        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);
   fprintf(ficresvpl,"# Age");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
   for(i=1; i<=nlstate;i++)    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);
       fprintf(ficresvpl," %1d-%1d",i,i);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   fprintf(ficresvpl,"\n");  */
     fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    free_vector(xp,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
   hstepm=1*YEARM; /* Every year of age */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   agelim = AGESUP;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fclose(ficresprobmorprev);
     if (stepm >= YEARM) hstepm=1;    fclose(ficgp);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fclose(fichtm);
     gradg=matrix(1,npar,1,nlstate);  }
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     for(theta=1; theta <=npar; theta++){  {
       for(i=1; i<=npar; i++){ /* Computes gradient */    /* Variance of prevalence limit */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       }    double **newm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double **dnewm,**doldm;
       for(i=1;i<=nlstate;i++)    int i, j, nhstepm, hstepm;
         gp[i] = prlim[i][i];    int k, cptcode;
        double *xp;
       for(i=1; i<=npar; i++) /* Computes gradient */    double *gp, *gm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double **gradg, **trgradg;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double age,agelim;
       for(i=1;i<=nlstate;i++)    int theta;
         gm[i] = prlim[i][i];     
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       for(i=1;i<=nlstate;i++)    fprintf(ficresvpl,"# Age");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    for(i=1; i<=nlstate;i++)
     } /* End theta */        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
     trgradg =matrix(1,nlstate,1,npar);  
     xp=vector(1,npar);
     for(j=1; j<=nlstate;j++)    dnewm=matrix(1,nlstate,1,npar);
       for(theta=1; theta <=npar; theta++)    doldm=matrix(1,nlstate,1,nlstate);
         trgradg[j][theta]=gradg[theta][j];    
     hstepm=1*YEARM; /* Every year of age */
     for(i=1;i<=nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       varpl[i][(int)age] =0.;    agelim = AGESUP;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     for(i=1;i<=nlstate;i++)      if (stepm >= YEARM) hstepm=1;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
     fprintf(ficresvpl,"%.0f ",age );      gp=vector(1,nlstate);
     for(i=1; i<=nlstate;i++)      gm=vector(1,nlstate);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");      for(theta=1; theta <=npar; theta++){
     free_vector(gp,1,nlstate);        for(i=1; i<=npar; i++){ /* Computes gradient */
     free_vector(gm,1,nlstate);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_matrix(gradg,1,npar,1,nlstate);        }
     free_matrix(trgradg,1,nlstate,1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   } /* End age */        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   free_vector(xp,1,npar);      
   free_matrix(doldm,1,nlstate,1,npar);        for(i=1; i<=npar; i++) /* Computes gradient */
   free_matrix(dnewm,1,nlstate,1,nlstate);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for(i=1;i<=nlstate;i++)
 {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   int i, j=0,  i1, k1, l1, t, tj;      } /* End theta */
   int k2, l2, j1,  z1;  
   int k=0,l, cptcode;      trgradg =matrix(1,nlstate,1,npar);
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      for(j=1; j<=nlstate;j++)
   double **dnewm,**doldm;        for(theta=1; theta <=npar; theta++)
   double *xp;          trgradg[j][theta]=gradg[theta][j];
   double *gp, *gm;  
   double **gradg, **trgradg;      for(i=1;i<=nlstate;i++)
   double **mu;        varpl[i][(int)age] =0.;
   double age,agelim, cov[NCOVMAX];      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   int theta;      for(i=1;i<=nlstate;i++)
   char fileresprob[FILENAMELENGTH];        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   double ***varpij;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   strcpy(fileresprob,"prob");      free_vector(gp,1,nlstate);
   strcat(fileresprob,fileres);      free_vector(gm,1,nlstate);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      free_matrix(gradg,1,npar,1,nlstate);
     printf("Problem with resultfile: %s\n", fileresprob);      free_matrix(trgradg,1,nlstate,1,npar);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    } /* End age */
   }  
   strcpy(fileresprobcov,"probcov");    free_vector(xp,1,npar);
   strcat(fileresprobcov,fileres);    free_matrix(doldm,1,nlstate,1,npar);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    free_matrix(dnewm,1,nlstate,1,nlstate);
     printf("Problem with resultfile: %s\n", fileresprobcov);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  }
   }  
   strcpy(fileresprobcor,"probcor");  /************ Variance of one-step probabilities  ******************/
   strcat(fileresprobcor,fileres);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  {
     printf("Problem with resultfile: %s\n", fileresprobcor);    int i, j=0,  i1, k1, l1, t, tj;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    int first=1, first1;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double **dnewm,**doldm;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double *xp;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double *gp, *gm;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double **gradg, **trgradg;
      double **mu;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    double age,agelim, cov[NCOVMAX];
   fprintf(ficresprob,"# Age");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    int theta;
   fprintf(ficresprobcov,"# Age");    char fileresprob[FILENAMELENGTH];
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    char fileresprobcov[FILENAMELENGTH];
   fprintf(ficresprobcov,"# Age");    char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){    strcpy(fileresprob,"prob"); 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    strcat(fileresprob,fileres);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      printf("Problem with resultfile: %s\n", fileresprob);
     }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   fprintf(ficresprob,"\n");    }
   fprintf(ficresprobcov,"\n");    strcpy(fileresprobcov,"probcov"); 
   fprintf(ficresprobcor,"\n");    strcat(fileresprobcov,fileres);
   xp=vector(1,npar);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      printf("Problem with resultfile: %s\n", fileresprobcov);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    strcpy(fileresprobcor,"probcor"); 
   first=1;    strcat(fileresprobcor,fileres);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      printf("Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     exit(0);    }
   }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   else{    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficgp,"\n# Routine varprob");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     printf("Problem with html file: %s\n", optionfilehtm);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    
     exit(0);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   }    fprintf(ficresprob,"# Age");
   else{    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    fprintf(ficresprobcov,"# Age");
     fprintf(fichtm,"\n");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");  
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   cov[1]=1;      }  
   tj=cptcoveff;    fprintf(ficresprob,"\n");
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    fprintf(ficresprobcov,"\n");
   j1=0;    fprintf(ficresprobcor,"\n");
   for(t=1; t<=tj;t++){    xp=vector(1,npar);
     for(i1=1; i1<=ncodemax[t];i1++){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       j1++;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
          mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       if  (cptcovn>0) {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(ficresprob, "\n#********** Variable ");    first=1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
         fprintf(ficresprob, "**********\n#");      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
         fprintf(ficresprobcov, "\n#********** Variable ");      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      exit(0);
         fprintf(ficresprobcov, "**********\n#");    }
            else{
         fprintf(ficgp, "\n#********** Variable ");      fprintf(ficgp,"\n# Routine varprob");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficgp, "**********\n#");    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
              printf("Problem with html file: %s\n", optionfilehtm);
              fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      exit(0);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    else{
              fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         fprintf(ficresprobcor, "\n#********** Variable ");          fprintf(fichtm,"\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficgp, "**********\n#");          fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       }      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
            fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;    }
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];   
         }    cov[1]=1;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    tj=cptcoveff;
         for (k=1; k<=cptcovprod;k++)    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    j1=0;
            for(t=1; t<=tj;t++){
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      for(i1=1; i1<=ncodemax[t];i1++){ 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        j1++;
         gp=vector(1,(nlstate)*(nlstate+ndeath));        
         gm=vector(1,(nlstate)*(nlstate+ndeath));        if  (cptcovn>0) {
              fprintf(ficresprob, "\n#********** Variable "); 
         for(theta=1; theta <=npar; theta++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(i=1; i<=npar; i++)          fprintf(ficresprob, "**********\n#");
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          fprintf(ficresprobcov, "\n#********** Variable "); 
                    for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficresprobcov, "**********\n#");
                    
           k=0;          fprintf(ficgp, "\n#********** Variable "); 
           for(i=1; i<= (nlstate); i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficgp, "**********\n#");
               k=k+1;          
               gp[k]=pmmij[i][j];          
             }          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                    fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           for(i=1; i<=npar; i++)          
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficresprobcor, "\n#********** Variable ");    
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficgp, "**********\n#");    
           k=0;        }
           for(i=1; i<=(nlstate); i++){        
             for(j=1; j<=(nlstate+ndeath);j++){        for (age=bage; age<=fage; age ++){ 
               k=k+1;          cov[2]=age;
               gm[k]=pmmij[i][j];          for (k=1; k<=cptcovn;k++) {
             }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }          }
                for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          for (k=1; k<=cptcovprod;k++)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           for(theta=1; theta <=npar; theta++)          gp=vector(1,(nlstate)*(nlstate+ndeath));
             trgradg[j][theta]=gradg[theta][j];          gm=vector(1,(nlstate)*(nlstate+ndeath));
              
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          for(theta=1; theta <=npar; theta++){
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            for(i=1; i<=npar; i++)
                      xp[i] = x[i] + (i==theta ?delti[theta]:0);
         pmij(pmmij,cov,ncovmodel,x,nlstate);            
                    pmij(pmmij,cov,ncovmodel,xp,nlstate);
         k=0;            
         for(i=1; i<=(nlstate); i++){            k=0;
           for(j=1; j<=(nlstate+ndeath);j++){            for(i=1; i<= (nlstate); i++){
             k=k+1;              for(j=1; j<=(nlstate+ndeath);j++){
             mu[k][(int) age]=pmmij[i][j];                k=k+1;
           }                gp[k]=pmmij[i][j];
         }              }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            
             varpij[i][j][(int)age] = doldm[i][j];            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:0);
         /*printf("\n%d ",(int)age);      
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            k=0;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            for(i=1; i<=(nlstate); i++){
      }*/              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
         fprintf(ficresprob,"\n%d ",(int)age);                gm[k]=pmmij[i][j];
         fprintf(ficresprobcov,"\n%d ",(int)age);              }
         fprintf(ficresprobcor,"\n%d ",(int)age);            }
        
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         }            for(theta=1; theta <=npar; theta++)
         i=0;              trgradg[j][theta]=gradg[theta][j];
         for (k=1; k<=(nlstate);k++){          
           for (l=1; l<=(nlstate+ndeath);l++){          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
             i=i++;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          pmij(pmmij,cov,ncovmodel,x,nlstate);
             for (j=1; j<=i;j++){          
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          k=0;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          for(i=1; i<=(nlstate); i++){
             }            for(j=1; j<=(nlstate+ndeath);j++){
           }              k=k+1;
         }/* end of loop for state */              mu[k][(int) age]=pmmij[i][j];
       } /* end of loop for age */            }
           }
       /* Confidence intervalle of pij  */          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       /*            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficgp,"\nset noparametric;unset label");              varpij[i][j][(int)age] = doldm[i][j];
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          /*printf("\n%d ",(int)age);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);       for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);         printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);         fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);       }*/
       */  
           fprintf(ficresprob,"\n%d ",(int)age);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          fprintf(ficresprobcov,"\n%d ",(int)age);
       first1=1;          fprintf(ficresprobcor,"\n%d ",(int)age);
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           if(l2==k2) continue;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           j=(k2-1)*(nlstate+ndeath)+l2;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           for (k1=1; k1<=(nlstate);k1++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             for (l1=1; l1<=(nlstate+ndeath);l1++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
               if(l1==k1) continue;          }
               i=(k1-1)*(nlstate+ndeath)+l1;          i=0;
               if(i<=j) continue;          for (k=1; k<=(nlstate);k++){
               for (age=bage; age<=fage; age ++){            for (l=1; l<=(nlstate+ndeath);l++){ 
                 if ((int)age %5==0){              i=i++;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              for (j=1; j<=i;j++){
                   mu1=mu[i][(int) age]/stepm*YEARM ;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   mu2=mu[j][(int) age]/stepm*YEARM;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   c12=cv12/sqrt(v1*v2);              }
                   /* Computing eigen value of matrix of covariance */            }
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          }/* end of loop for state */
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        } /* end of loop for age */
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        /* Confidence intervalle of pij  */
                   /*v21=sqrt(1.-v11*v11); *//* error */        /*
                   v21=(lc1-v1)/cv12*v11;        fprintf(ficgp,"\nset noparametric;unset label");
                   v12=-v21;        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   v22=v11;        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   tnalp=v21/v11;        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   if(first1==1){        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                     first1=0;        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   }        */
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   /*printf(fignu*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        first1=1;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */        for (k2=1; k2<=(nlstate);k2++){
                   if(first==1){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                     first=0;            if(l2==k2) continue;
                     fprintf(ficgp,"\nset parametric;unset label");            j=(k2-1)*(nlstate+ndeath)+l2;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);            for (k1=1; k1<=(nlstate);k1++){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);                if(l1==k1) continue;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);                i=(k1-1)*(nlstate+ndeath)+l1;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);                if(i<=j) continue;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                for (age=bage; age<=fage; age ++){ 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                  if ((int)age %5==0){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   }else{                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     first=0;                    mu2=mu[j][(int) age]/stepm*YEARM;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                    c12=cv12/sqrt(v1*v2);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                    /* Computing eigen value of matrix of covariance */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                    /* Eigen vectors */
                   }/* if first */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                 } /* age mod 5 */                    /*v21=sqrt(1.-v11*v11); *//* error */
               } /* end loop age */                    v21=(lc1-v1)/cv12*v11;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);                    v12=-v21;
               first=1;                    v22=v11;
             } /*l12 */                    tnalp=v21/v11;
           } /* k12 */                    if(first1==1){
         } /*l1 */                      first1=0;
       }/* k1 */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     } /* loop covariates */                    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                    /*printf(fignu*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                    if(first==1){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                      first=0;
   }                      fprintf(ficgp,"\nset parametric;unset label");
   free_vector(xp,1,npar);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   fclose(ficresprob);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fclose(ficresprobcov);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   fclose(ficresprobcor);                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
   fclose(ficgp);                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   fclose(fichtm);                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
 }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 /******************* Printing html file ***********/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   int lastpass, int stepm, int weightopt, char model[],\                    }else{
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                      first=0;
                   int popforecast, int estepm ,\                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                   double jprev1, double mprev1,double anprev1, \                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   double jprev2, double mprev2,double anprev2){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   int jj1, k1, i1, cpt;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /*char optionfilehtm[FILENAMELENGTH];*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     printf("Problem with %s \n",optionfilehtm), exit(0);                    }/* if first */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);                  } /* age mod 5 */
   }                } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n                first=1;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              } /*l12 */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n            } /* k12 */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          } /*l1 */
  - Life expectancies by age and initial health status (estepm=%2d months):        }/* k1 */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      } /* loop covariates */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
  m=cptcoveff;      free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     }
  jj1=0;    free_vector(xp,1,npar);
  for(k1=1; k1<=m;k1++){    fclose(ficresprob);
    for(i1=1; i1<=ncodemax[k1];i1++){    fclose(ficresprobcov);
      jj1++;    fclose(ficresprobcor);
      if (cptcovn > 0) {    fclose(ficgp);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fclose(fichtm);
        for (cpt=1; cpt<=cptcoveff;cpt++)  }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }  /******************* Printing html file ***********/
      /* Pij */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>                    int lastpass, int stepm, int weightopt, char model[],\
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                        int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
      /* Quasi-incidences */                    int popforecast, int estepm ,\
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>                    double jprev1, double mprev1,double anprev1, \
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    double jprev2, double mprev2,double anprev2){
        /* Stable prevalence in each health state */    int jj1, k1, i1, cpt;
        for(cpt=1; cpt<nlstate;cpt++){    /*char optionfilehtm[FILENAMELENGTH];*/
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      printf("Problem with %s \n",optionfilehtm), exit(0);
        }      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
      for(cpt=1; cpt<=nlstate;cpt++) {    }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
      }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
      fprintf(fichtm,"\n<br>- Total life expectancy by age and   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
 health expectancies in states (1) and (2): e%s%d.png<br>   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);   - Life expectancies by age and initial health status (estepm=%2d months): 
    } /* end i1 */     <a href=\"e%s\">e%s</a> <br>\n</li>", \
  }/* End k1 */    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
  fprintf(fichtm,"</ul>");  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n   m=cptcoveff;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n   jj1=0;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n   for(k1=1; k1<=m;k1++){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n     for(i1=1; i1<=ncodemax[k1];i1++){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       jj1++;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  if(popforecast==1) fprintf(fichtm,"\n         for (cpt=1; cpt<=cptcoveff;cpt++) 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         <br>",fileres,fileres,fileres,fileres);       }
  else       /* Pij */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
  m=cptcoveff;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
  jj1=0;         for(cpt=1; cpt<nlstate;cpt++){
  for(k1=1; k1<=m;k1++){           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
    for(i1=1; i1<=ncodemax[k1];i1++){  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
      jj1++;         }
      if (cptcovn > 0) {       for(cpt=1; cpt<=nlstate;cpt++) {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
        for (cpt=1; cpt<=cptcoveff;cpt++)  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       fprintf(fichtm,"\n<br>- Total life expectancy by age and
      }  health expectancies in states (1) and (2): e%s%d.png<br>
      for(cpt=1; cpt<=nlstate;cpt++) {  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident     } /* end i1 */
 interval) in state (%d): v%s%d%d.png <br>   }/* End k1 */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     fprintf(fichtm,"</ul>");
      }  
    } /* end i1 */  
  }/* End k1 */   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
  fprintf(fichtm,"</ul>");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
 fclose(fichtm);   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
 }   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
 /******************* Gnuplot file **************/   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;   if(popforecast==1) fprintf(fichtm,"\n
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {   - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
     printf("Problem with file %s",optionfilegnuplot);   - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);          <br>",fileres,fileres,fileres,fileres);
   }   else 
      fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
 #ifdef windows  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif   m=cptcoveff;
 m=pow(2,cptcoveff);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
  /* 1eme*/   jj1=0;
   for (cpt=1; cpt<= nlstate ; cpt ++) {   for(k1=1; k1<=m;k1++){
    for (k1=1; k1<= m ; k1 ++) {     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
 #ifdef windows       if (cptcovn > 0) {
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);         for (cpt=1; cpt<=cptcoveff;cpt++) 
 #endif           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 #ifdef unix         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       for(cpt=1; cpt<=nlstate;cpt++) {
 #endif         fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
   interval) in state (%d): v%s%d%d.png <br>
 for (i=1; i<= nlstate ; i ++) {  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       }
   else fprintf(ficgp," \%%*lf (\%%*lf)");     } /* end i1 */
 }   }/* End k1 */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);   fprintf(fichtm,"</ul>");
     for (i=1; i<= nlstate ; i ++) {  fclose(fichtm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }  /******************* Gnuplot file **************/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int ng;
 }      if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      printf("Problem with file %s",optionfilegnuplot);
 #ifdef unix      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    }
 #endif  
    }    /*#ifdef windows */
   }      fprintf(ficgp,"cd \"%s\" \n",pathc);
   /*2 eme*/      /*#endif */
   m=pow(2,cptcoveff);
   for (k1=1; k1<= m ; k1 ++) {    
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);   /* 1eme*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    for (cpt=1; cpt<= nlstate ; cpt ++) {
         for (k1=1; k1<= m ; k1 ++) {
     for (i=1; i<= nlstate+1 ; i ++) {       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       k=2*i;       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {       for (i=1; i<= nlstate ; i ++) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   else fprintf(ficgp," \%%*lf (\%%*lf)");         else fprintf(ficgp," \%%*lf (\%%*lf)");
 }         }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       for (i=1; i<= nlstate ; i ++) {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for (j=1; j<= nlstate+1 ; j ++) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       } 
         else fprintf(ficgp," \%%*lf (\%%*lf)");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); 
 }         for (i=1; i<= nlstate ; i ++) {
       fprintf(ficgp,"\" t\"\" w l 0,");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       for (j=1; j<= nlstate+1 ; j ++) {       }  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
   else fprintf(ficgp," \%%*lf (\%%*lf)");     }
 }      }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /*2 eme*/
       else fprintf(ficgp,"\" t\"\" w l 0,");    
     }    for (k1=1; k1<= m ; k1 ++) { 
   }      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
        fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   /*3eme*/      
       for (i=1; i<= nlstate+1 ; i ++) {
   for (k1=1; k1<= m ; k1 ++) {        k=2*i;
     for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
       k=2+nlstate*(2*cpt-2);        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        }   
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for (j=1; j<= nlstate+1 ; j ++) {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
 */        }   
       for (i=1; i< nlstate ; i ++) {        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
       }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }   
          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   /* CV preval stat */        else fprintf(ficgp,"\" t\"\" w l 0,");
     for (k1=1; k1<= m ; k1 ++) {      }
     for (cpt=1; cpt<nlstate ; cpt ++) {    }
       k=3;    
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /*3eme*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    
     for (k1=1; k1<= m ; k1 ++) { 
       for (i=1; i< nlstate ; i ++)      for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficgp,"+$%d",k+i+1);        k=2+nlstate*(2*cpt-2);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
              fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
       l=3+(nlstate+ndeath)*cpt;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for (i=1; i< nlstate ; i ++) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         l=3+(nlstate+ndeath)*cpt;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fprintf(ficgp,"+$%d",l+i+1);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            
     }        */
   }          for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
   /* proba elementaires */          
    for(i=1,jk=1; i <=nlstate; i++){        } 
     for(k=1; k <=(nlstate+ndeath); k++){      }
       if (k != i) {    }
         for(j=1; j <=ncovmodel; j++){    
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    /* CV preval stat */
           jk++;    for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficgp,"\n");      for (cpt=1; cpt<nlstate ; cpt ++) {
         }        k=3;
       }        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
    }        
         for (i=1; i< nlstate ; i ++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          fprintf(ficgp,"+$%d",k+i+1);
      for(jk=1; jk <=m; jk++) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        
        if (ng==2)        l=3+(nlstate+ndeath)*cpt;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
        else        for (i=1; i< nlstate ; i ++) {
          fprintf(ficgp,"\nset title \"Probability\"\n");          l=3+(nlstate+ndeath)*cpt;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          fprintf(ficgp,"+$%d",l+i+1);
        i=1;        }
        for(k2=1; k2<=nlstate; k2++) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
          k3=i;      } 
          for(k=1; k<=(nlstate+ndeath); k++) {    }  
            if (k != k2){    
              if(ng==2)    /* proba elementaires */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    for(i=1,jk=1; i <=nlstate; i++){
              else      for(k=1; k <=(nlstate+ndeath); k++){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        if (k != i) {
              ij=1;          for(j=1; j <=ncovmodel; j++){
              for(j=3; j <=ncovmodel; j++) {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            jk++; 
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            fprintf(ficgp,"\n");
                  ij++;          }
                }        }
                else      }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     }
              }  
              fprintf(ficgp,")/(1");     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
                     for(jk=1; jk <=m; jk++) {
              for(k1=1; k1 <=nlstate; k1++){           fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);         if (ng==2)
                ij=1;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                for(j=3; j <=ncovmodel; j++){         else
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {           fprintf(ficgp,"\nset title \"Probability\"\n");
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                    ij++;         i=1;
                  }         for(k2=1; k2<=nlstate; k2++) {
                  else           k3=i;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);           for(k=1; k<=(nlstate+ndeath); k++) {
                }             if (k != k2){
                fprintf(ficgp,")");               if(ng==2)
              }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);               else
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
              i=i+ncovmodel;               ij=1;
            }               for(j=3; j <=ncovmodel; j++) {
          } /* end k */                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
        } /* end k2 */                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
      } /* end jk */                   ij++;
    } /* end ng */                 }
    fclose(ficgp);                 else
 }  /* end gnuplot */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
 /*************** Moving average **************/               
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   int i, cpt, cptcod;                 ij=1;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                 for(j=3; j <=ncovmodel; j++){
       for (i=1; i<=nlstate;i++)                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           mobaverage[(int)agedeb][i][cptcod]=0.;                     ij++;
                       }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                   else
       for (i=1; i<=nlstate;i++){                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                 }
           for (cpt=0;cpt<=4;cpt++){                 fprintf(ficgp,")");
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];               }
           }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         }               i=i+ncovmodel;
       }             }
     }           } /* end k */
             } /* end k2 */
 }       } /* end jk */
      } /* end ng */
      fclose(ficgp); 
 /************** Forecasting ******************/  }  /* end gnuplot */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  /*************** Moving average **************/
   int *popage;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    int i, cpt, cptcod;
   double ***p3mat;    int modcovmax =1;
   char fileresf[FILENAMELENGTH];    int mobilavrange, mob;
     double age;
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
    
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   strcpy(fileresf,"f");      if(mobilav==1) mobilavrange=5; /* default */
   strcat(fileresf,fileres);      else mobilavrange=mobilav;
   if((ficresf=fopen(fileresf,"w"))==NULL) {      for (age=bage; age<=fage; age++)
     printf("Problem with forecast resultfile: %s\n", fileresf);        for (i=1; i<=nlstate;i++)
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   printf("Computing forecasting: result on file '%s' \n", fileresf);      /* We keep the original values on the extreme ages bage, fage and for 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
   if (mobilav==1) {        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (i=1; i<=nlstate;i++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   if (stepm<=12) stepsize=1;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                  }
   agelim=AGESUP;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              }
   hstepm=1;          }
   hstepm=hstepm/stepm;        }/* end age */
   yp1=modf(dateintmean,&yp);      }/* end mob */
   anprojmean=yp;    }else return -1;
   yp2=modf((yp1*12),&yp);    return 0;
   mprojmean=yp;  }/* End movingaverage */
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;  /************** Forecasting ******************/
   if(mprojmean==0) jprojmean=1;  prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
      
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      int *popage;
   for(cptcov=1;cptcov<=i2;cptcov++){    double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double *popeffectif,*popcount;
       k=k+1;    double ***p3mat;
       fprintf(ficresf,"\n#******");    double ***mobaverage;
       for(j=1;j<=cptcoveff;j++) {    char fileresf[FILENAMELENGTH];
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }   agelim=AGESUP;
       fprintf(ficresf,"******\n");   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
         
         
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    strcpy(fileresf,"f"); 
         fprintf(ficresf,"\n");    strcat(fileresf,fileres);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    printf("Computing forecasting: result on file '%s' \n", fileresf);
              fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            if (mobilav!=0) {
           for (h=0; h<=nhstepm; h++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             if (h==(int) (calagedate+YEARM*cpt)) {      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             for(j=1; j<=nlstate+ndeath;j++) {      }
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)    stepsize=(int) (stepm+YEARM-1)/YEARM;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    if (stepm<=12) stepsize=1;
                 else {    
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    agelim=AGESUP;
                 }    
                    hstepm=1;
               }    hstepm=hstepm/stepm; 
               if (h==(int)(calagedate+12*cpt)){    yp1=modf(dateintmean,&yp);
                 fprintf(ficresf," %.3f", kk1);    anprojmean=yp;
                            yp2=modf((yp1*12),&yp);
               }    mprojmean=yp;
             }    yp1=modf((yp2*30.5),&yp);
           }    jprojmean=yp;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(jprojmean==0) jprojmean=1;
         }    if(mprojmean==0) jprojmean=1;
       }    
     }    fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); 
   }    
            for(cptcov=1;cptcov<=i2;cptcov++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   fclose(ficresf);        fprintf(ficresf,"\n#******");
 }        for(j=1;j<=cptcoveff;j++) {
 /************** Forecasting ******************/          fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        }
          fprintf(ficresf,"******\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        fprintf(ficresf,"# StartingAge FinalAge");
   int *popage;        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        
   double *popeffectif,*popcount;        
   double ***p3mat,***tabpop,***tabpopprev;        for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { 
   char filerespop[FILENAMELENGTH];          fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
   agelim=AGESUP;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            nhstepm = nhstepm/hstepm; 
              
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   strcpy(filerespop,"pop");          
   strcat(filerespop,fileres);            for (h=0; h<=nhstepm; h++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {              if (h==(int) (calagedate+YEARM*cpt)) {
     printf("Problem with forecast resultfile: %s\n", filerespop);                fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);              } 
   }              for(j=1; j<=nlstate+ndeath;j++) {
   printf("Computing forecasting: result on file '%s' \n", filerespop);                kk1=0.;kk2=0;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
   if (mobilav==1) {                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  }
     movingaverage(agedeb, fage, ageminpar, mobaverage);                  
   }                }
                 if (h==(int)(calagedate+12*cpt)){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                  fprintf(ficresf," %.3f", kk1);
   if (stepm<=12) stepsize=1;                          
                  }
   agelim=AGESUP;              }
              }
   hstepm=1;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   hstepm=hstepm/stepm;          }
          }
   if (popforecast==1) {      }
     if((ficpop=fopen(popfile,"r"))==NULL) {    }
       printf("Problem with population file : %s\n",popfile);exit(0);         
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  
     popage=ivector(0,AGESUP);    fclose(ficresf);
     popeffectif=vector(0,AGESUP);  }
     popcount=vector(0,AGESUP);  /************** Forecasting ******************/
      populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
        int *popage;
     imx=i;    double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    double *popeffectif,*popcount;
   }    double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
   for(cptcov=1;cptcov<=i2;cptcov++){    char filerespop[FILENAMELENGTH];
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficrespop,"\n#******");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1;j<=cptcoveff;j++) {    agelim=AGESUP;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       }    
       fprintf(ficrespop,"******\n");    prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
       fprintf(ficrespop,"# Age");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    
       if (popforecast==1)  fprintf(ficrespop," [Population]");    strcpy(filerespop,"pop"); 
          strcat(filerespop,fileres);
       for (cpt=0; cpt<=0;cpt++) {    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        printf("Problem with forecast resultfile: %s\n", filerespop);
              fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    printf("Computing forecasting: result on file '%s' \n", filerespop);
           nhstepm = nhstepm/hstepm;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if (mobilav!=0) {
              mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for (h=0; h<=nhstepm; h++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
             if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {    }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  stepsize=(int) (stepm+YEARM-1)/YEARM;
                 if (mobilav==1)    if (stepm<=12) stepsize=1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    
                 else {    agelim=AGESUP;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    
                 }    hstepm=1;
               }    hstepm=hstepm/stepm; 
               if (h==(int)(calagedate+12*cpt)){    
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    if (popforecast==1) {
                   /*fprintf(ficrespop," %.3f", kk1);      if((ficpop=fopen(popfile,"r"))==NULL) {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        printf("Problem with population file : %s\n",popfile);exit(0);
               }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
             }      } 
             for(i=1; i<=nlstate;i++){      popage=ivector(0,AGESUP);
               kk1=0.;      popeffectif=vector(0,AGESUP);
                 for(j=1; j<=nlstate;j++){      popcount=vector(0,AGESUP);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      
                 }      i=1;   
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
             }     
       imx=i;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(cptcov=1;cptcov<=i2;cptcov++){
         }     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       }        k=k+1;
          fprintf(ficrespop,"\n#******");
   /******/        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          fprintf(ficrespop,"******\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        fprintf(ficrespop,"# Age");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           nhstepm = nhstepm/hstepm;        if (popforecast==1)  fprintf(ficrespop," [Population]");
                  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (cpt=0; cpt<=0;cpt++) { 
           oldm=oldms;savm=savms;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            
           for (h=0; h<=nhstepm; h++){          for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             if (h==(int) (calagedate+YEARM*cpt)) {            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            nhstepm = nhstepm/hstepm; 
             }            
             for(j=1; j<=nlstate+ndeath;j++) {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               kk1=0.;kk2=0;            oldm=oldms;savm=savms;
               for(i=1; i<=nlstate;i++) {                          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              
               }            for (h=0; h<=nhstepm; h++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);              if (h==(int) (calagedate+YEARM*cpt)) {
             }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           }              } 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              for(j=1; j<=nlstate+ndeath;j++) {
         }                kk1=0.;kk2=0;
       }                for(i=1; i<=nlstate;i++) {              
    }                  if (mobilav==1) 
   }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                    else {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
   if (popforecast==1) {                }
     free_ivector(popage,0,AGESUP);                if (h==(int)(calagedate+12*cpt)){
     free_vector(popeffectif,0,AGESUP);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     free_vector(popcount,0,AGESUP);                    /*fprintf(ficrespop," %.3f", kk1);
   }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }
   fclose(ficrespop);              for(i=1; i<=nlstate;i++){
 }                kk1=0.;
                   for(j=1; j<=nlstate;j++){
 /***********************************************/                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 /**************** Main Program *****************/                  }
 /***********************************************/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
               }
 int main(int argc, char *argv[])  
 {              if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            }
   double agedeb, agefin,hf;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          }
         }
   double fret;   
   double **xi,tmp,delta;    /******/
   
   double dum; /* Dummy variable */        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   double ***p3mat;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   int *indx;          for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
   char line[MAXLINE], linepar[MAXLINE];            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];            nhstepm = nhstepm/hstepm; 
   int firstobs=1, lastobs=10;            
   int sdeb, sfin; /* Status at beginning and end */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int c,  h , cpt,l;            oldm=oldms;savm=savms;
   int ju,jl, mi;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            for (h=0; h<=nhstepm; h++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              if (h==(int) (calagedate+YEARM*cpt)) {
   int mobilav=0,popforecast=0;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   int hstepm, nhstepm;              } 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
   double bage, fage, age, agelim, agebase;                for(i=1; i<=nlstate;i++) {              
   double ftolpl=FTOL;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   double **prlim;                }
   double *severity;                if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1); 
   double ***param; /* Matrix of parameters */              }
   double  *p;            }
   double **matcov; /* Matrix of covariance */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***delti3; /* Scale */          }
   double *delti; /* Scale */        }
   double ***eij, ***vareij;     } 
   double **varpl; /* Variances of prevalence limits by age */    }
   double *epj, vepp;   
   double kk1, kk2;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
      if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
   char *alph[]={"a","a","b","c","d","e"}, str[4];      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
   char z[1]="c", occ;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 #include <sys/time.h>    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 #include <time.h>    fclose(ficrespop);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  }
    
   /* long total_usecs;  /***********************************************/
   struct timeval start_time, end_time;  /**************** Main Program *****************/
    /***********************************************/
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);  int main(int argc, char *argv[])
   {
   printf("\n%s",version);  
   if(argc <=1){    int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
     printf("\nEnter the parameter file name: ");    double agedeb, agefin,hf;
     scanf("%s",pathtot);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   }  
   else{    double fret;
     strcpy(pathtot,argv[1]);    double **xi,tmp,delta;
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    double dum; /* Dummy variable */
   /*cygwin_split_path(pathtot,path,optionfile);    double ***p3mat;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double ***mobaverage;
   /* cutv(path,optionfile,pathtot,'\\');*/    int *indx;
     char line[MAXLINE], linepar[MAXLINE];
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int firstobs=1, lastobs=10;
   chdir(path);    int sdeb, sfin; /* Status at beginning and end */
   replace(pathc,path);    int c,  h , cpt,l;
     int ju,jl, mi;
 /*-------- arguments in the command line --------*/    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab; 
   /* Log file */    int mobilav=0,popforecast=0;
   strcat(filelog, optionfilefiname);    int hstepm, nhstepm;
   strcat(filelog,".log");    /* */    double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;
   if((ficlog=fopen(filelog,"w"))==NULL)    {  
     printf("Problem with logfile %s\n",filelog);    double bage, fage, age, agelim, agebase;
     goto end;    double ftolpl=FTOL;
   }    double **prlim;
   fprintf(ficlog,"Log filename:%s\n",filelog);    double *severity;
   fprintf(ficlog,"\n%s",version);    double ***param; /* Matrix of parameters */
   fprintf(ficlog,"\nEnter the parameter file name: ");    double  *p;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double **matcov; /* Matrix of covariance */
   fflush(ficlog);    double ***delti3; /* Scale */
     double *delti; /* Scale */
   /* */    double ***eij, ***vareij;
   strcpy(fileres,"r");    double **varpl; /* Variances of prevalence limits by age */
   strcat(fileres, optionfilefiname);    double *epj, vepp;
   strcat(fileres,".txt");    /* Other files have txt extension */    double kk1, kk2;
     double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
   /*---------arguments file --------*/    
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    char *alph[]={"a","a","b","c","d","e"}, str[4];
     printf("Problem with optionfile %s\n",optionfile);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  
     goto end;    char z[1]="c", occ;
   }  #include <sys/time.h>
   #include <time.h>
   strcpy(filereso,"o");    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   strcat(filereso,fileres);   
   if((ficparo=fopen(filereso,"w"))==NULL) {    /* long total_usecs;
     printf("Problem with Output resultfile: %s\n", filereso);    struct timeval start_time, end_time;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    
     goto end;    gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   }    getcwd(pathcd, size);
   
   /* Reads comments: lines beginning with '#' */    printf("\n%s",version);
   while((c=getc(ficpar))=='#' && c!= EOF){    if(argc <=1){
     ungetc(c,ficpar);      printf("\nEnter the parameter file name: ");
     fgets(line, MAXLINE, ficpar);      scanf("%s",pathtot);
     puts(line);    }
     fputs(line,ficparo);    else{
   }      strcpy(pathtot,argv[1]);
   ungetc(c,ficpar);    }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*cygwin_split_path(pathtot,path,optionfile);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    /* cutv(path,optionfile,pathtot,'\\');*/
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     fgets(line, MAXLINE, ficpar);     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     puts(line);    chdir(path);
     fputs(line,ficparo);    replace(pathc,path);
   }  
   ungetc(c,ficpar);  /*-------- arguments in the command line --------*/
    
        /* Log file */
   covar=matrix(0,NCOVMAX,1,n);    strcat(filelog, optionfilefiname);
   cptcovn=0;    strcat(filelog,".log");    /* */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
   ncovmodel=2+cptcovn;      goto end;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
      fprintf(ficlog,"Log filename:%s\n",filelog);
   /* Read guess parameters */    fprintf(ficlog,"\n%s",version);
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"\nEnter the parameter file name: ");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     ungetc(c,ficpar);    fflush(ficlog);
     fgets(line, MAXLINE, ficpar);  
     puts(line);    /* */
     fputs(line,ficparo);    strcpy(fileres,"r");
   }    strcat(fileres, optionfilefiname);
   ungetc(c,ficpar);    strcat(fileres,".txt");    /* Other files have txt extension */
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /*---------arguments file --------*/
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    if((ficpar=fopen(optionfile,"r"))==NULL)    {
       fscanf(ficpar,"%1d%1d",&i1,&j1);      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       if(mle==1)      goto end;
         printf("%1d%1d",i,j);    }
       fprintf(ficlog,"%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){    strcpy(filereso,"o");
         fscanf(ficpar," %lf",&param[i][j][k]);    strcat(filereso,fileres);
         if(mle==1){    if((ficparo=fopen(filereso,"w"))==NULL) {
           printf(" %lf",param[i][j][k]);      printf("Problem with Output resultfile: %s\n", filereso);
           fprintf(ficlog," %lf",param[i][j][k]);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
         }      goto end;
         else    }
           fprintf(ficlog," %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);    /* Reads comments: lines beginning with '#' */
       }    while((c=getc(ficpar))=='#' && c!= EOF){
       fscanf(ficpar,"\n");      ungetc(c,ficpar);
       if(mle==1)      fgets(line, MAXLINE, ficpar);
         printf("\n");      puts(line);
       fprintf(ficlog,"\n");      fputs(line,ficparo);
       fprintf(ficparo,"\n");    }
     }    ungetc(c,ficpar);
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   p=param[1][1];    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
    while((c=getc(ficpar))=='#' && c!= EOF){
   /* Reads comments: lines beginning with '#' */      ungetc(c,ficpar);
   while((c=getc(ficpar))=='#' && c!= EOF){      fgets(line, MAXLINE, ficpar);
     ungetc(c,ficpar);      puts(line);
     fgets(line, MAXLINE, ficpar);      fputs(line,ficparo);
     puts(line);    }
     fputs(line,ficparo);    ungetc(c,ficpar);
   }    
   ungetc(c,ficpar);     
     covar=matrix(0,NCOVMAX,1,n); 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       printf("%1d%1d",i,j);    
       fprintf(ficparo,"%1d%1d",i1,j1);    /* Read guess parameters */
       for(k=1; k<=ncovmodel;k++){    /* Reads comments: lines beginning with '#' */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    while((c=getc(ficpar))=='#' && c!= EOF){
         printf(" %le",delti3[i][j][k]);      ungetc(c,ficpar);
         fprintf(ficparo," %le",delti3[i][j][k]);      fgets(line, MAXLINE, ficpar);
       }      puts(line);
       fscanf(ficpar,"\n");      fputs(line,ficparo);
       printf("\n");    }
       fprintf(ficparo,"\n");    ungetc(c,ficpar);
     }    
   }    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   delti=delti3[1][1];      for(i=1; i <=nlstate; i++)
        for(j=1; j <=nlstate+ndeath-1; j++){
   /* Reads comments: lines beginning with '#' */        fscanf(ficpar,"%1d%1d",&i1,&j1);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficparo,"%1d%1d",i1,j1);
     ungetc(c,ficpar);        if(mle==1)
     fgets(line, MAXLINE, ficpar);          printf("%1d%1d",i,j);
     puts(line);        fprintf(ficlog,"%1d%1d",i,j);
     fputs(line,ficparo);        for(k=1; k<=ncovmodel;k++){
   }          fscanf(ficpar," %lf",&param[i][j][k]);
   ungetc(c,ficpar);          if(mle==1){
              printf(" %lf",param[i][j][k]);
   matcov=matrix(1,npar,1,npar);            fprintf(ficlog," %lf",param[i][j][k]);
   for(i=1; i <=npar; i++){          }
     fscanf(ficpar,"%s",&str);          else
     if(mle==1)            fprintf(ficlog," %lf",param[i][j][k]);
       printf("%s",str);          fprintf(ficparo," %lf",param[i][j][k]);
     fprintf(ficlog,"%s",str);        }
     fprintf(ficparo,"%s",str);        fscanf(ficpar,"\n");
     for(j=1; j <=i; j++){        if(mle==1)
       fscanf(ficpar," %le",&matcov[i][j]);          printf("\n");
       if(mle==1){        fprintf(ficlog,"\n");
         printf(" %.5le",matcov[i][j]);        fprintf(ficparo,"\n");
         fprintf(ficlog," %.5le",matcov[i][j]);      }
       }    
       else      npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
         fprintf(ficlog," %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);    p=param[1][1];
     }    
     fscanf(ficpar,"\n");    /* Reads comments: lines beginning with '#' */
     if(mle==1)    while((c=getc(ficpar))=='#' && c!= EOF){
       printf("\n");      ungetc(c,ficpar);
     fprintf(ficlog,"\n");      fgets(line, MAXLINE, ficpar);
     fprintf(ficparo,"\n");      puts(line);
   }      fputs(line,ficparo);
   for(i=1; i <=npar; i++)    }
     for(j=i+1;j<=npar;j++)    ungetc(c,ficpar);
       matcov[i][j]=matcov[j][i];  
        delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   if(mle==1)    delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
     printf("\n");    for(i=1; i <=nlstate; i++){
   fprintf(ficlog,"\n");      for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
     /*-------- Rewriting paramater file ----------*/        fprintf(ficparo,"%1d%1d",i1,j1);
      strcpy(rfileres,"r");    /* "Rparameterfile */        for(k=1; k<=ncovmodel;k++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          fscanf(ficpar,"%le",&delti3[i][j][k]);
      strcat(rfileres,".");    /* */          printf(" %le",delti3[i][j][k]);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          fprintf(ficparo," %le",delti3[i][j][k]);
     if((ficres =fopen(rfileres,"w"))==NULL) {        }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        fscanf(ficpar,"\n");
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        printf("\n");
     }        fprintf(ficparo,"\n");
     fprintf(ficres,"#%s\n",version);      }
        }
     /*-------- data file ----------*/    delti=delti3[1][1];
     if((fic=fopen(datafile,"r"))==NULL)    {    
       printf("Problem with datafile: %s\n", datafile);goto end;    /* Reads comments: lines beginning with '#' */
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    while((c=getc(ficpar))=='#' && c!= EOF){
     }      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
     n= lastobs;      puts(line);
     severity = vector(1,maxwav);      fputs(line,ficparo);
     outcome=imatrix(1,maxwav+1,1,n);    }
     num=ivector(1,n);    ungetc(c,ficpar);
     moisnais=vector(1,n);    
     annais=vector(1,n);    matcov=matrix(1,npar,1,npar);
     moisdc=vector(1,n);    for(i=1; i <=npar; i++){
     andc=vector(1,n);      fscanf(ficpar,"%s",&str);
     agedc=vector(1,n);      if(mle==1)
     cod=ivector(1,n);        printf("%s",str);
     weight=vector(1,n);      fprintf(ficlog,"%s",str);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      fprintf(ficparo,"%s",str);
     mint=matrix(1,maxwav,1,n);      for(j=1; j <=i; j++){
     anint=matrix(1,maxwav,1,n);        fscanf(ficpar," %le",&matcov[i][j]);
     s=imatrix(1,maxwav+1,1,n);        if(mle==1){
     adl=imatrix(1,maxwav+1,1,n);              printf(" %.5le",matcov[i][j]);
     tab=ivector(1,NCOVMAX);          fprintf(ficlog," %.5le",matcov[i][j]);
     ncodemax=ivector(1,8);        }
         else
     i=1;          fprintf(ficlog," %.5le",matcov[i][j]);
     while (fgets(line, MAXLINE, fic) != NULL)    {        fprintf(ficparo," %.5le",matcov[i][j]);
       if ((i >= firstobs) && (i <=lastobs)) {      }
              fscanf(ficpar,"\n");
         for (j=maxwav;j>=1;j--){      if(mle==1)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        printf("\n");
           strcpy(line,stra);      fprintf(ficlog,"\n");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficparo,"\n");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
         }    for(i=1; i <=npar; i++)
              for(j=i+1;j<=npar;j++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        matcov[i][j]=matcov[j][i];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);     
     if(mle==1)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      printf("\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\n");
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){      /*-------- Rewriting paramater file ----------*/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       strcpy(rfileres,"r");    /* "Rparameterfile */
         }       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
         num[i]=atol(stra);       strcat(rfileres,".");    /* */
               strcat(rfileres,optionfilext);    /* Other files have txt extension */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      if((ficres =fopen(rfileres,"w"))==NULL) {
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
         i=i+1;      }
       }      fprintf(ficres,"#%s\n",version);
     }      
     /* printf("ii=%d", ij);      /*-------- data file ----------*/
        scanf("%d",i);*/      if((fic=fopen(datafile,"r"))==NULL)    {
   imx=i-1; /* Number of individuals */        printf("Problem with datafile: %s\n", datafile);goto end;
         fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
   /* for (i=1; i<=imx; i++){      }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      n= lastobs;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      severity = vector(1,maxwav);
     }*/      outcome=imatrix(1,maxwav+1,1,n);
    /*  for (i=1; i<=imx; i++){      num=ivector(1,n);
      if (s[4][i]==9)  s[4][i]=-1;      moisnais=vector(1,n);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      annais=vector(1,n);
        moisdc=vector(1,n);
        andc=vector(1,n);
   /* Calculation of the number of parameter from char model*/      agedc=vector(1,n);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      cod=ivector(1,n);
   Tprod=ivector(1,15);      weight=vector(1,n);
   Tvaraff=ivector(1,15);      for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
   Tvard=imatrix(1,15,1,2);      mint=matrix(1,maxwav,1,n);
   Tage=ivector(1,15);            anint=matrix(1,maxwav,1,n);
          s=imatrix(1,maxwav+1,1,n);
   if (strlen(model) >1){      adl=imatrix(1,maxwav+1,1,n);    
     j=0, j1=0, k1=1, k2=1;      tab=ivector(1,NCOVMAX);
     j=nbocc(model,'+');      ncodemax=ivector(1,8);
     j1=nbocc(model,'*');  
     cptcovn=j+1;      i=1;
     cptcovprod=j1;      while (fgets(line, MAXLINE, fic) != NULL)    {
            if ((i >= firstobs) && (i <=lastobs)) {
     strcpy(modelsav,model);          
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for (j=maxwav;j>=1;j--){
       printf("Error. Non available option model=%s ",model);            cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
       fprintf(ficlog,"Error. Non available option model=%s ",model);            strcpy(line,stra);
       goto end;            cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
     }            cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
              }
     for(i=(j+1); i>=1;i--){          
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */          cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */          cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/          cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
       if (strchr(strb,'*')) {  /* Model includes a product */          cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  
         if (strcmp(strc,"age")==0) { /* Vn*age */          cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
           cptcovprod--;          for (j=ncovcol;j>=1;j--){
           cutv(strb,stre,strd,'V');            cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          } 
           cptcovage++;          num[i]=atol(stra);
             Tage[cptcovage]=i;          
             /*printf("stre=%s ", stre);*/          /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         }            printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  
           cptcovprod--;          i=i+1;
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=atoi(stre);      } 
           cptcovage++;      /* printf("ii=%d", ij);
           Tage[cptcovage]=i;         scanf("%d",i);*/
         }    imx=i-1; /* Number of individuals */
         else {  /* Age is not in the model */  
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    /* for (i=1; i<=imx; i++){
           Tvar[i]=ncovcol+k1;      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
           Tprod[k1]=i;      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
           Tvard[k1][1]=atoi(strc); /* m*/      }*/
           Tvard[k1][2]=atoi(stre); /* n */     /*  for (i=1; i<=imx; i++){
           Tvar[cptcovn+k2]=Tvard[k1][1];       if (s[4][i]==9)  s[4][i]=-1; 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
           for (k=1; k<=lastobs;k++)    
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   
           k1++;    /* Calculation of the number of parameter from char model*/
           k2=k2+2;    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
         }    Tprod=ivector(1,15); 
       }    Tvaraff=ivector(1,15); 
       else { /* no more sum */    Tvard=imatrix(1,15,1,2);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    Tage=ivector(1,15);      
        /*  scanf("%d",i);*/     
       cutv(strd,strc,strb,'V');    if (strlen(model) >1){ /* If there is at least 1 covariate */
       Tvar[i]=atoi(strc);      j=0, j1=0, k1=1, k2=1;
       }      j=nbocc(model,'+'); /* j=Number of '+' */
       strcpy(modelsav,stra);        j1=nbocc(model,'*'); /* j1=Number of '*' */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      cptcovn=j+1; 
         scanf("%d",i);*/      cptcovprod=j1; /*Number of products */
     } /* end of loop + */      
   } /* end model */      strcpy(modelsav,model); 
        if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        printf("Error. Non available option model=%s ",model);
   printf("cptcovprod=%d ", cptcovprod);        fprintf(ficlog,"Error. Non available option model=%s ",model);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        goto end;
   scanf("%d ",i);*/      }
     fclose(fic);      
       /* This loop fill the array Tvar from the string 'model'.*/
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/      for(i=(j+1); i>=1;i--){
       for(i=1;i<=n;i++) weight[i]=1.0;        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
     }        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */
     /*-calculation of age at interview from date of interview and age at death -*/        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
     agev=matrix(1,maxwav,1,imx);        /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
     for (i=1; i<=imx; i++) {          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
       for(m=2; (m<= maxwav); m++) {          if (strcmp(strc,"age")==0) { /* Vn*age */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            cptcovprod--;
          anint[m][i]=9999;            cutv(strb,stre,strd,'V');
          s[m][i]=-1;            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
        }            cptcovage++;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              Tage[cptcovage]=i;
       }              /*printf("stre=%s ", stre);*/
     }          }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
     for (i=1; i<=imx; i++)  {            cptcovprod--;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            cutv(strb,stre,strc,'V');
       for(m=1; (m<= maxwav); m++){            Tvar[i]=atoi(stre);
         if(s[m][i] >0){            cptcovage++;
           if (s[m][i] >= nlstate+1) {            Tage[cptcovage]=i;
             if(agedc[i]>0)          }
               if(moisdc[i]!=99 && andc[i]!=9999)          else {  /* Age is not in the model */
                 agev[m][i]=agedc[i];            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            Tvar[i]=ncovcol+k1;
            else {            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
               if (andc[i]!=9999){            Tprod[k1]=i;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            Tvard[k1][1]=atoi(strc); /* m*/
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);            Tvard[k1][2]=atoi(stre); /* n */
               agev[m][i]=-1;            Tvar[cptcovn+k2]=Tvard[k1][1];
               }            Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             }            for (k=1; k<=lastobs;k++) 
           }              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
           else if(s[m][i] !=9){ /* Should no more exist */            k1++;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            k2=k2+2;
             if(mint[m][i]==99 || anint[m][i]==9999)          }
               agev[m][i]=1;        }
             else if(agev[m][i] <agemin){        else { /* no more sum */
               agemin=agev[m][i];          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/         /*  scanf("%d",i);*/
             }        cutv(strd,strc,strb,'V');
             else if(agev[m][i] >agemax){        Tvar[i]=atoi(strc);
               agemax=agev[m][i];        }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        strcpy(modelsav,stra);  
             }        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             /*agev[m][i]=anint[m][i]-annais[i];*/          scanf("%d",i);*/
             /*   agev[m][i] = age[i]+2*m;*/      } /* end of loop + */
           }    } /* end model */
           else { /* =9 */    
             agev[m][i]=1;    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
             s[m][i]=-1;      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
           }  
         }    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
         else /*= 0 Unknown */    printf("cptcovprod=%d ", cptcovprod);
           agev[m][i]=1;    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
       }  
        scanf("%d ",i);
     }    fclose(fic);*/
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){      /*  if(mle==1){*/
         if (s[m][i] > (nlstate+ndeath)) {      if (weightopt != 1) { /* Maximisation without weights*/
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          for(i=1;i<=n;i++) weight[i]=1.0;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        }
           goto end;      /*-calculation of age at interview from date of interview and age at death -*/
         }      agev=matrix(1,maxwav,1,imx);
       }  
     }      for (i=1; i<=imx; i++) {
         for(m=2; (m<= maxwav); m++) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           anint[m][i]=9999;
            s[m][i]=-1;
     free_vector(severity,1,maxwav);         }
     free_imatrix(outcome,1,maxwav+1,1,n);       if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
     free_vector(moisnais,1,n);        }
     free_vector(annais,1,n);      }
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/      for (i=1; i<=imx; i++)  {
     free_vector(moisdc,1,n);        agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     free_vector(andc,1,n);        for(m=1; (m<= maxwav); m++){
           if(s[m][i] >0){
                if (s[m][i] >= nlstate+1) {
     wav=ivector(1,imx);              if(agedc[i]>0)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                if(moisdc[i]!=99 && andc[i]!=9999)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                  agev[m][i]=agedc[i];
                  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     /* Concatenates waves */             else {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                if (andc[i]!=9999){
                 printf("Warning negative age at death: %d line:%d\n",num[i],i);
                 fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
       Tcode=ivector(1,100);                agev[m][i]=-1;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                }
       ncodemax[1]=1;              }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            }
                  else if(s[m][i] !=9){ /* Should no more exist */
    codtab=imatrix(1,100,1,10);              agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
    h=0;              if(mint[m][i]==99 || anint[m][i]==9999)
    m=pow(2,cptcoveff);                agev[m][i]=1;
                else if(agev[m][i] <agemin){ 
    for(k=1;k<=cptcoveff; k++){                agemin=agev[m][i];
      for(i=1; i <=(m/pow(2,k));i++){                /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
        for(j=1; j <= ncodemax[k]; j++){              }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              else if(agev[m][i] >agemax){
            h++;                agemax=agev[m][i];
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/              }
          }              /*agev[m][i]=anint[m][i]-annais[i];*/
        }              /*   agev[m][i] = age[i]+2*m;*/
      }            }
    }            else { /* =9 */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);              agev[m][i]=1;
       codtab[1][2]=1;codtab[2][2]=2; */              s[m][i]=-1;
    /* for(i=1; i <=m ;i++){            }
       for(k=1; k <=cptcovn; k++){          }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          else /*= 0 Unknown */
       }            agev[m][i]=1;
       printf("\n");        }
       }      
       scanf("%d",i);*/      }
          for (i=1; i<=imx; i++)  {
    /* Calculates basic frequencies. Computes observed prevalence at single age        for(m=1; (m<= maxwav); m++){
        and prints on file fileres'p'. */          if (s[m][i] > (nlstate+ndeath)) {
             printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);   
                fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);   
                goto end;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
            fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      free_vector(severity,1,maxwav);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      free_imatrix(outcome,1,maxwav+1,1,n);
       free_vector(moisnais,1,n);
     if(mle==1){      free_vector(annais,1,n);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      /* free_matrix(mint,1,maxwav,1,n);
     }         free_matrix(anint,1,maxwav,1,n);*/
          free_vector(moisdc,1,n);
     /*--------- results files --------------*/      free_vector(andc,1,n);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
       
       wav=ivector(1,imx);
    jk=1;      dh=imatrix(1,lastpass-firstpass+1,1,imx);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      mw=imatrix(1,lastpass-firstpass+1,1,imx);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /* Concatenates waves */
    for(i=1,jk=1; i <=nlstate; i++){        concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)        /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
          {  
            printf("%d%d ",i,k);        Tcode=ivector(1,100);
            fprintf(ficlog,"%d%d ",i,k);        nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
            fprintf(ficres,"%1d%1d ",i,k);        ncodemax[1]=1;
            for(j=1; j <=ncovmodel; j++){        if (cptcovn > 0) tricode(Tvar,nbcode,imx);
              printf("%f ",p[jk]);        
              fprintf(ficlog,"%f ",p[jk]);        codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
              fprintf(ficres,"%f ",p[jk]);                                       the estimations*/
              jk++;     h=0;
            }     m=pow(2,cptcoveff);
            printf("\n");   
            fprintf(ficlog,"\n");     for(k=1;k<=cptcoveff; k++){
            fprintf(ficres,"\n");       for(i=1; i <=(m/pow(2,k));i++){
          }         for(j=1; j <= ncodemax[k]; j++){
      }           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
    }             h++;
    if(mle==1){             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
      /* Computing hessian and covariance matrix */             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
      ftolhess=ftol; /* Usually correct */           } 
      hesscov(matcov, p, npar, delti, ftolhess, func);         }
    }       }
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     } 
    printf("# Scales (for hessian or gradient estimation)\n");     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        codtab[1][2]=1;codtab[2][2]=2; */
    for(i=1,jk=1; i <=nlstate; i++){     /* for(i=1; i <=m ;i++){ 
      for(j=1; j <=nlstate+ndeath; j++){        for(k=1; k <=cptcovn; k++){
        if (j!=i) {        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
          fprintf(ficres,"%1d%1d",i,j);        }
          printf("%1d%1d",i,j);        printf("\n");
          fprintf(ficlog,"%1d%1d",i,j);        }
          for(k=1; k<=ncovmodel;k++){        scanf("%d",i);*/
            printf(" %.5e",delti[jk]);      
            fprintf(ficlog," %.5e",delti[jk]);     /* Calculates basic frequencies. Computes observed prevalence at single age
            fprintf(ficres," %.5e",delti[jk]);         and prints on file fileres'p'. */
            jk++;  
          }      
          printf("\n");     
          fprintf(ficlog,"\n");      pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
          fprintf(ficres,"\n");      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
        }      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
      }      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
    }      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
           
    k=1;      /* For Powell, parameters are in a vector p[] starting at p[1]
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
    if(mle==1)      p=param[1][1]; /* *(*(*(param +1)+1)+0) */
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      if(mle==1){
    for(i=1;i<=npar;i++){      mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
      /*  if (k>nlstate) k=1;      }
          i1=(i-1)/(ncovmodel*nlstate)+1;      
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      /*--------- results files --------------*/
          printf("%s%d%d",alph[k],i1,tab[i]);*/      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      fprintf(ficres,"%3d",i);    
      if(mle==1)  
        printf("%3d",i);     jk=1;
      fprintf(ficlog,"%3d",i);     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
      for(j=1; j<=i;j++){     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
        fprintf(ficres," %.5e",matcov[i][j]);     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
        if(mle==1)     for(i=1,jk=1; i <=nlstate; i++){
          printf(" %.5e",matcov[i][j]);       for(k=1; k <=(nlstate+ndeath); k++){
        fprintf(ficlog," %.5e",matcov[i][j]);         if (k != i) 
      }           {
      fprintf(ficres,"\n");             printf("%d%d ",i,k);
      if(mle==1)             fprintf(ficlog,"%d%d ",i,k);
        printf("\n");             fprintf(ficres,"%1d%1d ",i,k);
      fprintf(ficlog,"\n");             for(j=1; j <=ncovmodel; j++){
      k++;               printf("%f ",p[jk]);
    }               fprintf(ficlog,"%f ",p[jk]);
                   fprintf(ficres,"%f ",p[jk]);
    while((c=getc(ficpar))=='#' && c!= EOF){               jk++; 
      ungetc(c,ficpar);             }
      fgets(line, MAXLINE, ficpar);             printf("\n");
      puts(line);             fprintf(ficlog,"\n");
      fputs(line,ficparo);             fprintf(ficres,"\n");
    }           }
    ungetc(c,ficpar);       }
    estepm=0;     }
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     if(mle==1){
    if (estepm==0 || estepm < stepm) estepm=stepm;       /* Computing hessian and covariance matrix */
    if (fage <= 2) {       ftolhess=ftol; /* Usually correct */
      bage = ageminpar;       hesscov(matcov, p, npar, delti, ftolhess, func);
      fage = agemaxpar;     }
    }     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
         printf("# Scales (for hessian or gradient estimation)\n");
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     for(i=1,jk=1; i <=nlstate; i++){
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       for(j=1; j <=nlstate+ndeath; j++){
             if (j!=i) {
    while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(ficres,"%1d%1d",i,j);
      ungetc(c,ficpar);           printf("%1d%1d",i,j);
      fgets(line, MAXLINE, ficpar);           fprintf(ficlog,"%1d%1d",i,j);
      puts(line);           for(k=1; k<=ncovmodel;k++){
      fputs(line,ficparo);             printf(" %.5e",delti[jk]);
    }             fprintf(ficlog," %.5e",delti[jk]);
    ungetc(c,ficpar);             fprintf(ficres," %.5e",delti[jk]);
               jk++;
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);           }
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           printf("\n");
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
    while((c=getc(ficpar))=='#' && c!= EOF){         }
      ungetc(c,ficpar);       }
      fgets(line, MAXLINE, ficpar);     }
      puts(line);     
      fputs(line,ficparo);     k=1;
    }     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
    ungetc(c,ficpar);     if(mle==1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;     for(i=1;i<=npar;i++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       /*  if (k>nlstate) k=1;
            i1=(i-1)/(ncovmodel*nlstate)+1; 
   fscanf(ficpar,"pop_based=%d\n",&popbased);           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
   fprintf(ficparo,"pop_based=%d\n",popbased);             printf("%s%d%d",alph[k],i1,tab[i]);*/
   fprintf(ficres,"pop_based=%d\n",popbased);         fprintf(ficres,"%3d",i);
         if(mle==1)
   while((c=getc(ficpar))=='#' && c!= EOF){         printf("%3d",i);
     ungetc(c,ficpar);       fprintf(ficlog,"%3d",i);
     fgets(line, MAXLINE, ficpar);       for(j=1; j<=i;j++){
     puts(line);         fprintf(ficres," %.5e",matcov[i][j]);
     fputs(line,ficparo);         if(mle==1)
   }           printf(" %.5e",matcov[i][j]);
   ungetc(c,ficpar);         fprintf(ficlog," %.5e",matcov[i][j]);
        }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);       fprintf(ficres,"\n");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       if(mle==1)
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         printf("\n");
        fprintf(ficlog,"\n");
        k++;
 while((c=getc(ficpar))=='#' && c!= EOF){     }
     ungetc(c,ficpar);     
     fgets(line, MAXLINE, ficpar);     while((c=getc(ficpar))=='#' && c!= EOF){
     puts(line);       ungetc(c,ficpar);
     fputs(line,ficparo);       fgets(line, MAXLINE, ficpar);
   }       puts(line);
   ungetc(c,ficpar);       fputs(line,ficparo);
      }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);     ungetc(c,ficpar);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     estepm=0;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
      if (estepm==0 || estepm < stepm) estepm=stepm;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     if (fage <= 2) {
        bage = ageminpar;
 /*------------ gnuplot -------------*/       fage = agemaxpar;
   strcpy(optionfilegnuplot,optionfilefiname);     }
   strcat(optionfilegnuplot,".gp");     
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     printf("Problem with file %s",optionfilegnuplot);     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   }     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   fclose(ficgp);     
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);     while((c=getc(ficpar))=='#' && c!= EOF){
 /*--------- index.htm --------*/       ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
   strcpy(optionfilehtm,optionfile);       puts(line);
   strcat(optionfilehtm,".htm");       fputs(line,ficparo);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {     }
     printf("Problem with %s \n",optionfilehtm), exit(0);     ungetc(c,ficpar);
   }    
      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 \n     
 Total number of observations=%d <br>\n     while((c=getc(ficpar))=='#' && c!= EOF){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n       ungetc(c,ficpar);
 <hr  size=\"2\" color=\"#EC5E5E\">       fgets(line, MAXLINE, ficpar);
  <ul><li><h4>Parameter files</h4>\n       puts(line);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n       fputs(line,ficparo);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n     }
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);     ungetc(c,ficpar);
   fclose(fichtm);   
   
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);     dateprev1=anprev1+mprev1/12.+jprev1/365.;
       dateprev2=anprev2+mprev2/12.+jprev2/365.;
 /*------------ free_vector  -------------*/  
  chdir(path);    fscanf(ficpar,"pop_based=%d\n",&popbased);
      fprintf(ficparo,"pop_based=%d\n",popbased);   
  free_ivector(wav,1,imx);    fprintf(ficres,"pop_based=%d\n",popbased);   
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      while((c=getc(ficpar))=='#' && c!= EOF){
  free_ivector(num,1,n);      ungetc(c,ficpar);
  free_vector(agedc,1,n);      fgets(line, MAXLINE, ficpar);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      puts(line);
  fclose(ficparo);      fputs(line,ficparo);
  fclose(ficres);    }
     ungetc(c,ficpar);
   
   /*--------------- Prevalence limit --------------*/    fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);
    fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
   strcpy(filerespl,"pl");  fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  while((c=getc(ficpar))=='#' && c!= EOF){
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;      ungetc(c,ficpar);
   }      fgets(line, MAXLINE, ficpar);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      puts(line);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);      fputs(line,ficparo);
   fprintf(ficrespl,"#Prevalence limit\n");    }
   fprintf(ficrespl,"#Age ");    ungetc(c,ficpar);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");    fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
      fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*------------ gnuplot -------------*/
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   strcpy(optionfilegnuplot,optionfilefiname);
   k=0;   strcat(optionfilegnuplot,".gp");
   agebase=ageminpar;   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
   agelim=agemaxpar;     printf("Problem with file %s",optionfilegnuplot);
   ftolpl=1.e-10;   }
   i1=cptcoveff;   else{
   if (cptcovn < 1){i1=1;}     fprintf(ficgp,"\n# %s\n", version); 
      fprintf(ficgp,"# %s\n", optionfilegnuplot); 
   for(cptcov=1;cptcov<=i1;cptcov++){     fprintf(ficgp,"set missing 'NaNq'\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  }
         k=k+1;   fclose(ficgp);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
         fprintf(ficrespl,"\n#******");  /*--------- index.htm --------*/
         printf("\n#******");  
         fprintf(ficlog,"\n#******");    strcpy(optionfilehtm,optionfile);
         for(j=1;j<=cptcoveff;j++) {    strcat(optionfilehtm,".htm");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with %s \n",optionfilehtm), exit(0);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         }  
         fprintf(ficrespl,"******\n");    fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
         printf("******\n");  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
         fprintf(ficlog,"******\n");  \n
          Total number of observations=%d <br>\n
         for (age=agebase; age<=agelim; age++){  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  <hr  size=\"2\" color=\"#EC5E5E\">
           fprintf(ficrespl,"%.0f",age );   <ul><li><h4>Parameter files</h4>\n
           for(i=1; i<=nlstate;i++)   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
           fprintf(ficrespl," %.5f", prlim[i][i]);   - Log file of the run: <a href=\"%s\">%s</a><br>\n
           fprintf(ficrespl,"\n");   - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
         }    fclose(fichtm);
       }  
     }   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
   fclose(ficrespl);   
   /*------------ free_vector  -------------*/
   /*------------- h Pij x at various ages ------------*/   chdir(path);
     
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   free_ivector(wav,1,imx);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;   free_ivector(num,1,n);
   }   free_vector(agedc,1,n);
   printf("Computing pij: result on file '%s' \n", filerespij);   /*free_matrix(covar,1,NCOVMAX,1,n);*/
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);   fclose(ficparo);
     fclose(ficres);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/  
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
   agelim=AGESUP;    
   hstepm=stepsize*YEARM; /* Every year of age */    strcpy(filerespl,"pl");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
   /* hstepm=1;   aff par mois*/      printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       k=k+1;    fprintf(ficrespl,"#Stable prevalence \n");
         fprintf(ficrespij,"\n#****** ");    fprintf(ficrespl,"#Age ");
         for(j=1;j<=cptcoveff;j++)    for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficrespl,"\n");
         fprintf(ficrespij,"******\n");    
            prlim=matrix(1,nlstate,1,nlstate);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     k=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agebase=ageminpar;
           oldm=oldms;savm=savms;    agelim=agemaxpar;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      ftolpl=1.e-10;
           fprintf(ficrespij,"# Age");    i1=cptcoveff;
           for(i=1; i<=nlstate;i++)    if (cptcovn < 1){i1=1;}
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    for(cptcov=1;cptcov<=i1;cptcov++){
           fprintf(ficrespij,"\n");      for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
            for (h=0; h<=nhstepm; h++){          k=k+1;
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
             for(i=1; i<=nlstate;i++)          fprintf(ficrespl,"\n#******");
               for(j=1; j<=nlstate+ndeath;j++)          printf("\n#******");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          fprintf(ficlog,"\n#******");
             fprintf(ficrespij,"\n");          for(j=1;j<=cptcoveff;j++) {
              }            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"\n");            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }          }
     }          fprintf(ficrespl,"******\n");
   }          printf("******\n");
           fprintf(ficlog,"******\n");
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          
           for (age=agebase; age<=agelim; age++){
   fclose(ficrespij);            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f",age );
             for(i=1; i<=nlstate;i++)
   /*---------- Forecasting ------------------*/            fprintf(ficrespl," %.5f", prlim[i][i]);
   if((stepm == 1) && (strcmp(model,".")==0)){            fprintf(ficrespl,"\n");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        }
   }      }
   else{    fclose(ficrespl);
     erreur=108;  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    /*------------- h Pij x at various ages ------------*/
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    
   }    strcpy(filerespij,"pij");  strcat(filerespij,fileres);
      if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
   /*---------- Health expectancies and variances ------------*/      fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
   strcpy(filerest,"t");    printf("Computing pij: result on file '%s' \n", filerespij);
   strcat(filerest,fileres);    fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
   if((ficrest=fopen(filerest,"w"))==NULL) {    
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    stepsize=(int) (stepm+YEARM-1)/YEARM;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    /*if (stepm<=24) stepsize=2;*/
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    agelim=AGESUP;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
   strcpy(filerese,"e");    /* hstepm=1;   aff par mois*/
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    k=0;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    for(cptcov=1;cptcov<=i1;cptcov++){
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
   }        k=k+1;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficrespij,"\n#****** ");
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   strcpy(fileresv,"v");          fprintf(ficrespij,"******\n");
   strcat(fileresv,fileres);          
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            /*      nhstepm=nhstepm*YEARM; aff par mois*/
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   k=0;            fprintf(ficrespij,"# Age");
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              for(j=1; j<=nlstate+ndeath;j++)
       k=k+1;                fprintf(ficrespij," %1d-%1d",i,j);
       fprintf(ficrest,"\n#****** ");            fprintf(ficrespij,"\n");
       for(j=1;j<=cptcoveff;j++)             for (h=0; h<=nhstepm; h++){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
       fprintf(ficrest,"******\n");              for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
       fprintf(ficreseij,"\n#****** ");                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
       for(j=1;j<=cptcoveff;j++)              fprintf(ficrespij,"\n");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               }
       fprintf(ficreseij,"******\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
       fprintf(ficresvij,"\n#****** ");          }
       for(j=1;j<=cptcoveff;j++)      }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficresvij,"******\n");  
     varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    fclose(ficrespij);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /*---------- Forecasting ------------------*/
       oldm=oldms;savm=savms;    if((stepm == 1) && (strcmp(model,".")==0)){
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);      prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
       if(popbased==1){      if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    } 
        }    else{
       erreur=108;
        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    }
       fprintf(ficrest,"\n");    
   
       epj=vector(1,nlstate+1);    /*---------- Health expectancies and variances ------------*/
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcpy(filerest,"t");
         if (popbased==1) {    strcat(filerest,fileres);
           for(i=1; i<=nlstate;i++)    if((ficrest=fopen(filerest,"w"))==NULL) {
             prlim[i][i]=probs[(int)age][i][k];      printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         }      fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
            }
         fprintf(ficrest," %4.0f",age);    printf("Computing Total LEs with variances: file '%s' \n", filerest); 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    strcpy(filerese,"e");
           }    strcat(filerese,fileres);
           epj[nlstate+1] +=epj[j];    if((ficreseij=fopen(filerese,"w"))==NULL) {
         }      printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         for(i=1, vepp=0.;i <=nlstate;i++)    }
           for(j=1;j <=nlstate;j++)    printf("Computing Health Expectancies: result on file '%s' \n", filerese);
             vepp += vareij[i][j][(int)age];    fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    strcpy(fileresv,"v");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    strcat(fileresv,fileres);
         }    if((ficresvij=fopen(fileresv,"w"))==NULL) {
         fprintf(ficrest,"\n");      printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       }      fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }    }
   }    printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 free_matrix(mint,1,maxwav,1,n);    fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);    calagedate=-1;
   fclose(ficreseij);  
   fclose(ficresvij);    prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
   fclose(ficrest);  
   fclose(ficpar);    if (mobilav!=0) {
   free_vector(epj,1,nlstate+1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   /*------- Variance limit prevalence------*/          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(fileresvpl,"vpl");      }
   strcat(fileresvpl,fileres);    }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    k=0;
     exit(0);    for(cptcov=1;cptcov<=i1;cptcov++){
   }      for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        k=k+1; 
         fprintf(ficrest,"\n#****** ");
   k=0;        for(j=1;j<=cptcoveff;j++) 
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficrest,"******\n");
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");        fprintf(ficreseij,"\n#****** ");
       for(j=1;j<=cptcoveff;j++)        for(j=1;j<=cptcoveff;j++) 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       fprintf(ficresvpl,"******\n");        fprintf(ficreseij,"******\n");
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        fprintf(ficresvij,"\n#****** ");
       oldm=oldms;savm=savms;        for(j=1;j<=cptcoveff;j++) 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     }        fprintf(ficresvij,"******\n");
  }  
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
   fclose(ficresvpl);        oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
   /*---------- End : free ----------------*/   
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
          oldm=oldms;savm=savms;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        if(popbased==1){
            varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
          fprintf(ficrest,"\n");
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);        epj=vector(1,nlstate+1);
   free_matrix(agev,1,maxwav,1,imx);        for(age=bage; age <=fage ;age++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
   fprintf(fichtm,"\n</body>");            if(mobilav ==0){
   fclose(fichtm);              for(i=1; i<=nlstate;i++)
   fclose(ficgp);                prlim[i][i]=probs[(int)age][i][k];
              }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
   if(erreur >0){                prlim[i][i]=mobaverage[(int)age][i][k];
     printf("End of Imach with error or warning %d\n",erreur);            }
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          }
   }else{          
    printf("End of Imach\n");          fprintf(ficrest," %4.0f",age);
    fprintf(ficlog,"End of Imach\n");          for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
   }            for(i=1, epj[j]=0.;i <=nlstate;i++) {
   printf("See log file on %s\n",filelog);              epj[j] += prlim[i][i]*eij[i][j][(int)age];
   fclose(ficlog);              /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            }
              epj[nlstate+1] +=epj[j];
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          }
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/          for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
  end:          fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 #ifdef windows          for(j=1;j <=nlstate;j++){
   /* chdir(pathcd);*/            fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 #endif          }
  /*system("wgnuplot graph.plt");*/          fprintf(ficrest,"\n");
  /*system("../gp37mgw/wgnuplot graph.plt");*/        }
  /*system("cd ../gp37mgw");*/      }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    }
  strcpy(plotcmd,GNUPLOTPROGRAM);  free_matrix(mint,1,maxwav,1,n);
  strcat(plotcmd," ");      free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);
  strcat(plotcmd,optionfilegnuplot);      free_vector(weight,1,n);
  system(plotcmd);    fclose(ficreseij);
     fclose(ficresvij);
 #ifdef windows    fclose(ficrest);
   while (z[0] != 'q') {    fclose(ficpar);
     /* chdir(path); */    free_vector(epj,1,nlstate+1);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    
     scanf("%s",z);    /*------- Variance of stable prevalence------*/   
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);    strcpy(fileresvpl,"vpl");
     else if (z[0] == 'g') system(plotcmd);    strcat(fileresvpl,fileres);
     else if (z[0] == 'q') exit(0);    if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
   }      printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
 #endif      exit(0);
 }    }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     k=0;
     for(cptcov=1;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
        varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
       }
    }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
     
     free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     
     
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
    
     free_matrix(matcov,1,npar,1,npar);
     free_vector(delti,1,npar);
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fprintf(fichtm,"\n</body>");
     fclose(fichtm);
     fclose(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
   
    end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
    strcpy(plotcmd,GNUPLOTPROGRAM);
    strcat(plotcmd," ");
    strcat(plotcmd,optionfilegnuplot);
    printf("Starting: %s\n",plotcmd);fflush(stdout);
    system(plotcmd);
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.51  
changed lines
  Added in v.1.58


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>