Diff for /imach/src/imach.c between versions 1.6 and 1.102

version 1.6, 2001/05/02 17:47:10 version 1.102, 2004/09/15 17:31:30
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.102  2004/09/15 17:31:30  brouard
   individuals from different ages are interviewed on their health status    Add the possibility to read data file including tab characters.
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.101  2004/09/15 10:38:38  brouard
   Health expectancies are computed from the transistions observed between    Fix on curr_time
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.100  2004/07/12 18:29:06  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    Add version for Mac OS X. Just define UNIX in Makefile
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.99  2004/06/05 08:57:40  brouard
   to be observed in state i at the first wave. Therefore the model is:    *** empty log message ***
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.98  2004/05/16 15:05:56  brouard
   age", you should modify the program where the markup    New version 0.97 . First attempt to estimate force of mortality
     *Covariates have to be included here again* invites you to do it.    directly from the data i.e. without the need of knowing the health
   More covariates you add, less is the speed of the convergence.    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
   The advantage that this computer programme claims, comes from that if the    other analysis, in order to test if the mortality estimated from the
   delay between waves is not identical for each individual, or if some    cross-longitudinal survey is different from the mortality estimated
   individual missed an interview, the information is not rounded or lost, but    from other sources like vital statistic data.
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    The same imach parameter file can be used but the option for mle should be -3.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Agnès, who wrote this part of the code, tried to keep most of the
   unobserved intermediate  states. This elementary transition (by month or    former routines in order to include the new code within the former code.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    The output is very simple: only an estimate of the intercept and of
   and the contribution of each individual to the likelihood is simply hPijx.    the slope with 95% confident intervals.
   
   Also this programme outputs the covariance matrix of the parameters but also    Current limitations:
   of the life expectancies. It also computes the prevalence limits.    A) Even if you enter covariates, i.e. with the
      model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    B) There is no computation of Life Expectancy nor Life Table.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.97  2004/02/20 13:25:42  lievre
   from the European Union.    Version 0.96d. Population forecasting command line is (temporarily)
   It is copyrighted identically to a GNU software product, ie programme and    suppressed.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.96  2003/07/15 15:38:55  brouard
   **********************************************************************/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
      rewritten within the same printf. Workaround: many printfs.
 #include <math.h>  
 #include <stdio.h>    Revision 1.95  2003/07/08 07:54:34  brouard
 #include <stdlib.h>    * imach.c (Repository):
 #include <unistd.h>    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.94  2003/06/27 13:00:02  brouard
 /*#define DEBUG*/    Just cleaning
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.93  2003/06/25 16:33:55  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Version 0.96b
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.92  2003/06/25 16:30:45  brouard
 #define NINTERVMAX 8    (Module): On windows (cygwin) function asctime_r doesn't
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    exist so I changed back to asctime which exists.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.91  2003/06/25 15:30:29  brouard
 #define MAXN 20000    * imach.c (Repository): Duplicated warning errors corrected.
 #define YEARM 12. /* Number of months per year */    (Repository): Elapsed time after each iteration is now output. It
 #define AGESUP 130    helps to forecast when convergence will be reached. Elapsed time
 #define AGEBASE 40    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
   
 int nvar;    Revision 1.90  2003/06/24 12:34:15  brouard
 static int cptcov;    (Module): Some bugs corrected for windows. Also, when
 int cptcovn, cptcovage=0;    mle=-1 a template is output in file "or"mypar.txt with the design
 int npar=NPARMAX;    of the covariance matrix to be input.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.89  2003/06/24 12:30:52  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int *wav; /* Number of waves for this individuual 0 is possible */    of the covariance matrix to be input.
 int maxwav; /* Maxim number of waves */  
 int mle, weightopt;    Revision 1.88  2003/06/23 17:54:56  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.87  2003/06/18 12:26:01  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Version 0.96
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;  
 FILE *ficgp, *fichtm;    Revision 1.86  2003/06/17 20:04:08  brouard
 FILE *ficreseij;    (Module): Change position of html and gnuplot routines and added
   char filerese[FILENAMELENGTH];    routine fileappend.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.85  2003/06/17 13:12:43  brouard
  FILE  *ficresvpl;    * imach.c (Repository): Check when date of death was earlier that
   char fileresvpl[FILENAMELENGTH];    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 #define NR_END 1    was wrong (infinity). We still send an "Error" but patch by
 #define FREE_ARG char*    assuming that the date of death was just one stepm after the
 #define FTOL 1.0e-10    interview.
     (Repository): Because some people have very long ID (first column)
 #define NRANSI    we changed int to long in num[] and we added a new lvector for
 #define ITMAX 200    memory allocation. But we also truncated to 8 characters (left
     truncation)
 #define TOL 2.0e-4    (Repository): No more line truncation errors.
   
 #define CGOLD 0.3819660    Revision 1.84  2003/06/13 21:44:43  brouard
 #define ZEPS 1.0e-10    * imach.c (Repository): Replace "freqsummary" at a correct
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 #define GOLD 1.618034    parcimony.
 #define GLIMIT 100.0    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define TINY 1.0e-20  
     Revision 1.83  2003/06/10 13:39:11  lievre
 static double maxarg1,maxarg2;    *** empty log message ***
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)  */
   /*
 static double sqrarg;     Interpolated Markov Chain
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Short summary of the programme:
     
 int imx;    This program computes Healthy Life Expectancies from
 int stepm;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 /* Stepm, step in month: minimum step interpolation*/    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 int m,nb;    case of a health survey which is our main interest) -2- at least a
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    second wave of interviews ("longitudinal") which measure each change
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (if any) in individual health status.  Health expectancies are
 double **pmmij;    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 double *weight;    Maximum Likelihood of the parameters involved in the model.  The
 int **s; /* Status */    simplest model is the multinomial logistic model where pij is the
 double *agedc, **covar, idx;    probability to be observed in state j at the second wave
 int **nbcode, *Tcode, *Tvar, **codtab;    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    'age' is age and 'sex' is a covariate. If you want to have a more
 double ftolhess; /* Tolerance for computing hessian */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 static  int split( char *path, char *dirc, char *name )    convergence.
 {  
    char *s;                             /* pointer */    The advantage of this computer programme, compared to a simple
    int  l1, l2;                         /* length counters */    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
    l1 = strlen( path );                 /* length of path */    intermediate interview, the information is lost, but taken into
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    account using an interpolation or extrapolation.  
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    hPijx is the probability to be observed in state i at age x+h
 #if     defined(__bsd__)                /* get current working directory */    conditional to the observed state i at age x. The delay 'h' can be
       extern char       *getwd( );    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
       if ( getwd( dirc ) == NULL ) {    semester or year) is modelled as a multinomial logistic.  The hPx
 #else    matrix is simply the matrix product of nh*stepm elementary matrices
       extern char       *getcwd( );    and the contribution of each individual to the likelihood is simply
     hPijx.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Also this programme outputs the covariance matrix of the parameters but also
          return( GLOCK_ERROR_GETCWD );    of the life expectancies. It also computes the stable prevalence. 
       }    
       strcpy( name, path );             /* we've got it */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    } else {                             /* strip direcotry from path */             Institut national d'études démographiques, Paris.
       s++;                              /* after this, the filename */    This software have been partly granted by Euro-REVES, a concerted action
       l2 = strlen( s );                 /* length of filename */    from the European Union.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    It is copyrighted identically to a GNU software product, ie programme and
       strcpy( name, s );                /* save file name */    software can be distributed freely for non commercial use. Latest version
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    can be accessed at http://euroreves.ined.fr/imach .
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    l1 = strlen( dirc );                 /* length of directory */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    
    return( 0 );                         /* we're done */    **********************************************************************/
 }  /*
     main
     read parameterfile
 /******************************************/    read datafile
     concatwav
 void replace(char *s, char*t)    freqsummary
 {    if (mle >= 1)
   int i;      mlikeli
   int lg=20;    print results files
   i=0;    if mle==1 
   lg=strlen(t);       computes hessian
   for(i=0; i<= lg; i++) {    read end of parameter file: agemin, agemax, bage, fage, estepm
     (s[i] = t[i]);        begin-prev-date,...
     if (t[i]== '\\') s[i]='/';    open gnuplot file
   }    open html file
 }    stable prevalence
      for age prevalim()
 int nbocc(char *s, char occ)    h Pij x
 {    variance of p varprob
   int i,j=0;    forecasting if prevfcast==1 prevforecast call prevalence()
   int lg=20;    health expectancies
   i=0;    Variance-covariance of DFLE
   lg=strlen(s);    prevalence()
   for(i=0; i<= lg; i++) {     movingaverage()
   if  (s[i] == occ ) j++;    varevsij() 
   }    if popbased==1 varevsij(,popbased)
   return j;    total life expectancies
 }    Variance of stable prevalence
    end
 void cutv(char *u,char *v, char*t, char occ)  */
 {  
   int i,lg,j,p=0;  
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {   
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #include <math.h>
   }  #include <stdio.h>
   #include <stdlib.h>
   lg=strlen(t);  #include <unistd.h>
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  /* #include <sys/time.h> */
   }  #include <time.h>
      u[p]='\0';  #include "timeval.h"
   
    for(j=0; j<= lg; j++) {  /* #include <libintl.h> */
     if (j>=(p+1))(v[j-p-1] = t[j]);  /* #define _(String) gettext (String) */
   }  
 }  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 /********************** nrerror ********************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 void nrerror(char error_text[])  /*#define DEBUG*/
 {  /*#define windows*/
   fprintf(stderr,"ERREUR ...\n");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   fprintf(stderr,"%s\n",error_text);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   exit(1);  
 }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /*********************** vector *******************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double *vector(int nl, int nh)  
 {  #define NINTERVMAX 8
   double *v;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   if (!v) nrerror("allocation failure in vector");  #define NCOVMAX 8 /* Maximum number of covariates */
   return v-nl+NR_END;  #define MAXN 20000
 }  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 /************************ free vector ******************/  #define AGEBASE 40
 void free_vector(double*v, int nl, int nh)  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   free((FREE_ARG)(v+nl-NR_END));  #define DIRSEPARATOR '/'
 }  #define ODIRSEPARATOR '\\'
   #else
 /************************ivector *******************************/  #define DIRSEPARATOR '\\'
 int *ivector(long nl,long nh)  #define ODIRSEPARATOR '/'
 {  #endif
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /* $Id$ */
   if (!v) nrerror("allocation failure in ivector");  /* $State$ */
   return v-nl+NR_END;  
 }  char version[]="Imach version 0.97c, September 2004, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 /******************free ivector **************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 void free_ivector(int *v, long nl, long nh)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   free((FREE_ARG)(v+nl-NR_END));  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************* imatrix *******************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int popbased=0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int maxwav; /* Maxim number of waves */
   int **m;  int jmin, jmax; /* min, max spacing between 2 waves */
    int gipmx, gsw; /* Global variables on the number of contributions 
   /* allocate pointers to rows */                     to the likelihood and the sum of weights (done by funcone)*/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int mle, weightopt;
   if (!m) nrerror("allocation failure 1 in matrix()");  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m += NR_END;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m -= nrl;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
               * wave mi and wave mi+1 is not an exact multiple of stepm. */
    double jmean; /* Mean space between 2 waves */
   /* allocate rows and set pointers to them */  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl] += NR_END;  FILE *ficlog, *ficrespow;
   m[nrl] -= ncl;  int globpr; /* Global variable for printing or not */
    double fretone; /* Only one call to likelihood */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  long ipmx; /* Number of contributions */
    double sw; /* Sum of weights */
   /* return pointer to array of pointers to rows */  char filerespow[FILENAMELENGTH];
   return m;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /****************** free_imatrix *************************/  FILE *ficresprobmorprev;
 void free_imatrix(m,nrl,nrh,ncl,nch)  FILE *fichtm, *fichtmcov; /* Html File */
       int **m;  FILE *ficreseij;
       long nch,ncl,nrh,nrl;  char filerese[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  FILE  *ficresvpl;
   free((FREE_ARG) (m+nrl-NR_END));  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /******************* matrix *******************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 double **matrix(long nrl, long nrh, long ncl, long nch)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 {  char command[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int  outcmd=0;
   double **m;  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char filelog[FILENAMELENGTH]; /* Log file */
   m += NR_END;  char filerest[FILENAMELENGTH];
   m -= nrl;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  extern int gettimeofday();
   return m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /*************************free matrix ************************/  char strcurr[80], strfor[80];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define NR_END 1
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define FREE_ARG char*
   free((FREE_ARG)(m+nrl-NR_END));  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /******************* ma3x *******************************/  #define ITMAX 200 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #define TOL 2.0e-4 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define GOLD 1.618034 
   m -= nrl;  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  static double maxarg1,maxarg2;
   m[nrl] += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl] -= ncl;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  static double sqrarg;
   m[nrl][ncl] += NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl][ncl] -= nll;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for (j=ncl+1; j<=nch; j++)  int agegomp= AGEGOMP;
     m[nrl][j]=m[nrl][j-1]+nlay;  
    int imx; 
   for (i=nrl+1; i<=nrh; i++) {  int stepm=1;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /* Stepm, step in month: minimum step interpolation*/
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  int estepm;
   }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return m;  
 }  int m,nb;
   long *num;
 /*************************free ma3x ************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double *ageexmed,*agecens;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double dateintmean=0;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  double *weight;
   int **s; /* Status */
 /***************** f1dim *************************/  double *agedc, **covar, idx;
 extern int ncom;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    double ftolhess; /* Tolerance for computing hessian */
 double f1dim(double x)  
 {  /**************** split *************************/
   int j;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double f;  {
   double *xt;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
         the name of the file (name), its extension only (ext) and its first part of the name (finame)
   xt=vector(1,ncom);    */ 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    char  *ss;                            /* pointer */
   f=(*nrfunc)(xt);    int   l1, l2;                         /* length counters */
   free_vector(xt,1,ncom);  
   return f;    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /*****************brent *************************/    if ( ss == NULL ) {                   /* no directory, so use current */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int iter;      /* get current working directory */
   double a,b,d,etemp;      /*    extern  char* getcwd ( char *buf , int len);*/
   double fu,fv,fw,fx;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double ftemp;        return( GLOCK_ERROR_GETCWD );
   double p,q,r,tol1,tol2,u,v,w,x,xm;      }
   double e=0.0;      strcpy( name, path );               /* we've got it */
      } else {                              /* strip direcotry from path */
   a=(ax < cx ? ax : cx);      ss++;                               /* after this, the filename */
   b=(ax > cx ? ax : cx);      l2 = strlen( ss );                  /* length of filename */
   x=w=v=bx;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   fw=fv=fx=(*f)(x);      strcpy( name, ss );         /* save file name */
   for (iter=1;iter<=ITMAX;iter++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     xm=0.5*(a+b);      dirc[l1-l2] = 0;                    /* add zero */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    l1 = strlen( dirc );                  /* length of directory */
     printf(".");fflush(stdout);    /*#ifdef windows
 #ifdef DEBUG    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #else
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 #endif  #endif
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    */
       *xmin=x;    ss = strrchr( name, '.' );            /* find last / */
       return fx;    if (ss >0){
     }      ss++;
     ftemp=fu;      strcpy(ext,ss);                     /* save extension */
     if (fabs(e) > tol1) {      l1= strlen( name);
       r=(x-w)*(fx-fv);      l2= strlen(ss)+1;
       q=(x-v)*(fx-fw);      strncpy( finame, name, l1-l2);
       p=(x-v)*q-(x-w)*r;      finame[l1-l2]= 0;
       q=2.0*(q-r);    }
       if (q > 0.0) p = -p;    return( 0 );                          /* we're done */
       q=fabs(q);  }
       etemp=e;  
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /******************************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  void replace_back_to_slash(char *s, char*t)
         d=p/q;  {
         u=x+d;    int i;
         if (u-a < tol2 || b-u < tol2)    int lg=0;
           d=SIGN(tol1,xm-x);    i=0;
       }    lg=strlen(t);
     } else {    for(i=0; i<= lg; i++) {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      (s[i] = t[i]);
     }      if (t[i]== '\\') s[i]='/';
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    }
     fu=(*f)(u);  }
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  int nbocc(char *s, char occ)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    int i,j=0;
         } else {    int lg=20;
           if (u < x) a=u; else b=u;    i=0;
           if (fu <= fw || w == x) {    lg=strlen(s);
             v=w;    for(i=0; i<= lg; i++) {
             w=u;    if  (s[i] == occ ) j++;
             fv=fw;    }
             fw=fu;    return j;
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  void cutv(char *u,char *v, char*t, char occ)
           }  {
         }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   nrerror("Too many iterations in brent");       gives u="abcedf" and v="ghi2j" */
   *xmin=x;    int i,lg,j,p=0;
   return fx;    i=0;
 }    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 /****************** mnbrak ***********************/    }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    lg=strlen(t);
             double (*func)(double))    for(j=0; j<p; j++) {
 {      (u[j] = t[j]);
   double ulim,u,r,q, dum;    }
   double fu;       u[p]='\0';
    
   *fa=(*func)(*ax);     for(j=0; j<= lg; j++) {
   *fb=(*func)(*bx);      if (j>=(p+1))(v[j-p-1] = t[j]);
   if (*fb > *fa) {    }
     SHFT(dum,*ax,*bx,dum)  }
       SHFT(dum,*fb,*fa,dum)  
       }  /********************** nrerror ********************/
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  void nrerror(char error_text[])
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    fprintf(stderr,"ERREUR ...\n");
     q=(*bx-*cx)*(*fb-*fa);    fprintf(stderr,"%s\n",error_text);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    exit(EXIT_FAILURE);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /*********************** vector *******************/
     if ((*bx-u)*(u-*cx) > 0.0) {  double *vector(int nl, int nh)
       fu=(*func)(u);  {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    double *v;
       fu=(*func)(u);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       if (fu < *fc) {    if (!v) nrerror("allocation failure in vector");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    return v-nl+NR_END;
           SHFT(*fb,*fc,fu,(*func)(u))  }
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /************************ free vector ******************/
       u=ulim;  void free_vector(double*v, int nl, int nh)
       fu=(*func)(u);  {
     } else {    free((FREE_ARG)(v+nl-NR_END));
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  /************************ivector *******************************/
     SHFT(*ax,*bx,*cx,u)  int *ivector(long nl,long nh)
       SHFT(*fa,*fb,*fc,fu)  {
       }    int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /*************** linmin ************************/    return v-nl+NR_END;
   }
 int ncom;  
 double *pcom,*xicom;  /******************free ivector **************************/
 double (*nrfunc)(double []);  void free_ivector(int *v, long nl, long nh)
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free((FREE_ARG)(v+nl-NR_END));
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /************************lvector *******************************/
   double f1dim(double x);  long *lvector(long nl,long nh)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    long *v;
   int j;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double xx,xmin,bx,ax;    if (!v) nrerror("allocation failure in ivector");
   double fx,fb,fa;    return v-nl+NR_END;
    }
   ncom=n;  
   pcom=vector(1,n);  /******************free lvector **************************/
   xicom=vector(1,n);  void free_lvector(long *v, long nl, long nh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
     pcom[j]=p[j];  }
     xicom[j]=xi[j];  
   }  /******************* imatrix *******************************/
   ax=0.0;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   xx=1.0;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  { 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #ifdef DEBUG    int **m; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    
 #endif    /* allocate pointers to rows */ 
   for (j=1;j<=n;j++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     xi[j] *= xmin;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     p[j] += xi[j];    m += NR_END; 
   }    m -= nrl; 
   free_vector(xicom,1,n);    
   free_vector(pcom,1,n);    
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 /*************** powell ************************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl] += NR_END; 
             double (*func)(double []))    m[nrl] -= ncl; 
 {    
   void linmin(double p[], double xi[], int n, double *fret,    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
               double (*func)(double []));    
   int i,ibig,j;    /* return pointer to array of pointers to rows */ 
   double del,t,*pt,*ptt,*xit;    return m; 
   double fp,fptt;  } 
   double *xits;  
   pt=vector(1,n);  /****************** free_imatrix *************************/
   ptt=vector(1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
   xit=vector(1,n);        int **m;
   xits=vector(1,n);        long nch,ncl,nrh,nrl; 
   *fret=(*func)(p);       /* free an int matrix allocated by imatrix() */ 
   for (j=1;j<=n;j++) pt[j]=p[j];  { 
   for (*iter=1;;++(*iter)) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     fp=(*fret);    free((FREE_ARG) (m+nrl-NR_END)); 
     ibig=0;  } 
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************* matrix *******************************/
     for (i=1;i<=n;i++)  double **matrix(long nrl, long nrh, long ncl, long nch)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for (i=1;i<=n;i++) {    double **m;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("fret=%lf \n",*fret);    m += NR_END;
 #endif    m -= nrl;
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (fabs(fptt-(*fret)) > del) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         del=fabs(fptt-(*fret));    m[nrl] += NR_END;
         ibig=i;    m[nrl] -= ncl;
       }  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("%d %.12e",i,(*fret));    return m;
       for (j=1;j<=n;j++) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);     */
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  /*************************free matrix ************************/
         printf(" p=%.12e",p[j]);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       printf("\n");  {
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  /******************* ma3x *******************************/
       k[0]=1;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       for (j=1;j<=n;j++)    double ***m;
         printf(" %.12e",p[j]);  
       printf("\n");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for(l=0;l<=1;l++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         for (j=1;j<=n;j++) {    m += NR_END;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m -= nrl;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
 #endif    m[nrl] -= ncl;
   
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       free_vector(xit,1,n);  
       free_vector(xits,1,n);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       free_vector(ptt,1,n);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       free_vector(pt,1,n);    m[nrl][ncl] += NR_END;
       return;    m[nrl][ncl] -= nll;
     }    for (j=ncl+1; j<=nch; j++) 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      m[nrl][j]=m[nrl][j-1]+nlay;
     for (j=1;j<=n;j++) {    
       ptt[j]=2.0*p[j]-pt[j];    for (i=nrl+1; i<=nrh; i++) {
       xit[j]=p[j]-pt[j];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       pt[j]=p[j];      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
     fptt=(*func)(ptt);    }
     if (fptt < fp) {    return m; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       if (t < 0.0) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         linmin(p,xit,n,fret,func);    */
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /*************************free ma3x ************************/
         }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         for(j=1;j<=n;j++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           printf(" %.12e",xit[j]);    free((FREE_ARG)(m+nrl-NR_END));
         printf("\n");  }
 #endif  
       }  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
   }  {
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /**** Prevalence limit ****************/    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return tmpout;
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    
   double **matprod2();    /* Caution optionfilefiname is hidden */
   double **out, cov[NCOVMAX], **pmij();    strcpy(tmpout,optionfilefiname);
   double **newm;    strcat(tmpout,"/");
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   for (ii=1;ii<=nlstate+ndeath;ii++)    return tmpout;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
    cov[1]=1.;  {
      
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Caution optionfilefiname is hidden */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcpy(tmpout,optionfilefiname);
     newm=savm;    strcat(tmpout,"/");
     /* Covariates have to be included here again */    strcat(tmpout,preop);
      cov[2]=agefin;    strcat(tmpout,preop2);
      strcat(tmpout,fileres);
       for (k=1; k<=cptcovn;k++) {    return tmpout;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];  }
   
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/  /***************** f1dim *************************/
       }  extern int ncom; 
       for (k=1; k<=cptcovage;k++)  extern double *pcom,*xicom;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  extern double (*nrfunc)(double []); 
       
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  double f1dim(double x) 
   { 
     savm=oldm;    int j; 
     oldm=newm;    double f;
     maxmax=0.;    double *xt; 
     for(j=1;j<=nlstate;j++){   
       min=1.;    xt=vector(1,ncom); 
       max=0.;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for(i=1; i<=nlstate; i++) {    f=(*nrfunc)(xt); 
         sumnew=0;    free_vector(xt,1,ncom); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    return f; 
         prlim[i][j]= newm[i][j]/(1-sumnew);  } 
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  /*****************brent *************************/
       }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       maxmin=max-min;  { 
       maxmax=FMAX(maxmax,maxmin);    int iter; 
     }    double a,b,d,etemp;
     if(maxmax < ftolpl){    double fu,fv,fw,fx;
       return prlim;    double ftemp;
     }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   }    double e=0.0; 
 }   
     a=(ax < cx ? ax : cx); 
 /*************** transition probabilities **********/    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    fw=fv=fx=(*f)(x); 
 {    for (iter=1;iter<=ITMAX;iter++) { 
   double s1, s2;      xm=0.5*(a+b); 
   /*double t34;*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   int i,j,j1, nc, ii, jj;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
     for(i=1; i<= nlstate; i++){      fprintf(ficlog,".");fflush(ficlog);
     for(j=1; j<i;j++){  #ifdef DEBUG
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*s2 += param[i][j][nc]*cov[nc];*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       ps[i][j]=s2;        *xmin=x; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        return fx; 
     }      } 
     for(j=i+1; j<=nlstate+ndeath;j++){      ftemp=fu;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if (fabs(e) > tol1) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        r=(x-w)*(fx-fv); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
       ps[i][j]=s2;        q=2.0*(q-r); 
     }        if (q > 0.0) p = -p; 
   }        q=fabs(q); 
   for(i=1; i<= nlstate; i++){        etemp=e; 
      s1=0;        e=d; 
     for(j=1; j<i; j++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       s1+=exp(ps[i][j]);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=i+1; j<=nlstate+ndeath; j++)        else { 
       s1+=exp(ps[i][j]);          d=p/q; 
     ps[i][i]=1./(s1+1.);          u=x+d; 
     for(j=1; j<i; j++)          if (u-a < tol2 || b-u < tol2) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            d=SIGN(tol1,xm-x); 
     for(j=i+1; j<=nlstate+ndeath; j++)        } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } else { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   } /* end i */      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      fu=(*f)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      if (fu <= fx) { 
       ps[ii][jj]=0;        if (u >= x) a=x; else b=x; 
       ps[ii][ii]=1;        SHFT(v,w,x,u) 
     }          SHFT(fv,fw,fx,fu) 
   }          } else { 
             if (u < x) a=u; else b=u; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            if (fu <= fw || w == x) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){              v=w; 
      printf("%lf ",ps[ii][jj]);              w=u; 
    }              fv=fw; 
     printf("\n ");              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     printf("\n ");printf("%lf ",cov[2]);*/              v=u; 
 /*              fv=fu; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);            } 
   goto end;*/          } 
     return ps;    } 
 }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /**************** Product of 2 matrices ******************/    return fx; 
   } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  /****************** mnbrak ***********************/
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /* in, b, out are matrice of pointers which should have been initialized              double (*func)(double)) 
      before: only the contents of out is modified. The function returns  { 
      a pointer to pointers identical to out */    double ulim,u,r,q, dum;
   long i, j, k;    double fu; 
   for(i=nrl; i<= nrh; i++)   
     for(k=ncolol; k<=ncoloh; k++)    *fa=(*func)(*ax); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    *fb=(*func)(*bx); 
         out[i][k] +=in[i][j]*b[j][k];    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
   return out;        SHFT(dum,*fb,*fa,dum) 
 }        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 /************* Higher Matrix Product ***************/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      q=(*bx-*cx)*(*fb-*fa); 
 {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      duration (i.e. until      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      if ((*bx-u)*(u-*cx) > 0.0) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        fu=(*func)(u); 
      (typically every 2 years instead of every month which is too big).      } else if ((*cx-u)*(u-ulim) > 0.0) { 
      Model is determined by parameters x and covariates have to be        fu=(*func)(u); 
      included manually here.        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      */            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
   int i, j, d, h, k;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double **out, cov[NCOVMAX];        u=ulim; 
   double **newm;        fu=(*func)(u); 
       } else { 
   /* Hstepm could be zero and should return the unit matrix */        u=(*cx)+GOLD*(*cx-*bx); 
   for (i=1;i<=nlstate+ndeath;i++)        fu=(*func)(u); 
     for (j=1;j<=nlstate+ndeath;j++){      } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      SHFT(*ax,*bx,*cx,u) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        SHFT(*fa,*fb,*fc,fu) 
     }        } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  } 
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  /*************** linmin ************************/
       newm=savm;  
       /* Covariates have to be included here again */  int ncom; 
       cov[1]=1.;  double *pcom,*xicom;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  double (*nrfunc)(double []); 
       if (cptcovn>0){   
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double brent(double ax, double bx, double cx, 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/                 double (*f)(double), double tol, double *xmin); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double f1dim(double x); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       savm=oldm;                double *fc, double (*func)(double)); 
       oldm=newm;    int j; 
     }    double xx,xmin,bx,ax; 
     for(i=1; i<=nlstate+ndeath; i++)    double fx,fb,fa;
       for(j=1;j<=nlstate+ndeath;j++) {   
         po[i][j][h]=newm[i][j];    ncom=n; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    pcom=vector(1,n); 
          */    xicom=vector(1,n); 
       }    nrfunc=func; 
   } /* end h */    for (j=1;j<=n;j++) { 
   return po;      pcom[j]=p[j]; 
 }      xicom[j]=xi[j]; 
     } 
     ax=0.0; 
 /*************** log-likelihood *************/    xx=1.0; 
 double func( double *x)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   int i, ii, j, k, mi, d, kk;  #ifdef DEBUG
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **out;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double sw; /* Sum of weights */  #endif
   double lli; /* Individual log likelihood */    for (j=1;j<=n;j++) { 
   long ipmx;      xi[j] *= xmin; 
   /*extern weight */      p[j] += xi[j]; 
   /* We are differentiating ll according to initial status */    } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    free_vector(xicom,1,n); 
   /*for(i=1;i<imx;i++)    free_vector(pcom,1,n); 
 printf(" %d\n",s[4][i]);  } 
   */  
   cov[1]=1.;  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   for(k=1; k<=nlstate; k++) ll[k]=0.;    long sec_left, days, hours, minutes;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    days = (time_sec) / (60*60*24);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    sec_left = (time_sec) % (60*60*24);
        for(mi=1; mi<= wav[i]-1; mi++){    hours = (sec_left) / (60*60) ;
       for (ii=1;ii<=nlstate+ndeath;ii++)    sec_left = (sec_left) %(60*60);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    minutes = (sec_left) /60;
             for(d=0; d<dh[mi][i]; d++){    sec_left = (sec_left) % (60);
               newm=savm;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    return ascdiff;
               for (kk=1; kk<=cptcovage;kk++) {  }
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
                  /*printf("%d %d",kk,Tage[kk]);*/  /*************** powell ************************/
               }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/              double (*func)(double [])) 
               /*cov[3]=pow(cov[2],2)/1000.;*/  { 
     void linmin(double p[], double xi[], int n, double *fret, 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                double (*func)(double [])); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    int i,ibig,j; 
           savm=oldm;    double del,t,*pt,*ptt,*xit;
           oldm=newm;    double fp,fptt;
     double *xits;
     int niterf, itmp;
       } /* end mult */  
        pt=vector(1,n); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    ptt=vector(1,n); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    xit=vector(1,n); 
       ipmx +=1;    xits=vector(1,n); 
       sw += weight[i];    *fret=(*func)(p); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     } /* end of wave */    for (*iter=1;;++(*iter)) { 
   } /* end of individual */      fp=(*fret); 
       ibig=0; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      del=0.0; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      last_time=curr_time;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      (void) gettimeofday(&curr_time,&tzp);
   return -l;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 }      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
 /*********** Maximum Likelihood Estimation ***************/     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   int i,j, iter;      }
   double **xi,*delti;      printf("\n");
   double fret;      fprintf(ficlog,"\n");
   xi=matrix(1,npar,1,npar);      fprintf(ficrespow,"\n");fflush(ficrespow);
   for (i=1;i<=npar;i++)      if(*iter <=3){
     for (j=1;j<=npar;j++)        tm = *localtime(&curr_time.tv_sec);
       xi[i][j]=(i==j ? 1.0 : 0.0);        strcpy(strcurr,asctime(&tm));
   printf("Powell\n");  /*       asctime_r(&tm,strcurr); */
   powell(p,xi,npar,ftol,&iter,&fret,func);        forecast_time=curr_time; 
         itmp = strlen(strcurr);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
 /**** Computes Hessian and covariance matrix ***/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          tmf = *localtime(&forecast_time.tv_sec);
 {  /*      asctime_r(&tmf,strfor); */
   double  **a,**y,*x,pd;          strcpy(strfor,asctime(&tmf));
   double **hess;          itmp = strlen(strfor);
   int i, j,jk;          if(strfor[itmp-1]=='\n')
   int *indx;          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double hessii(double p[], double delta, int theta, double delti[]);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double hessij(double p[], double delti[], int i, int j);        }
   void lubksb(double **a, int npar, int *indx, double b[]) ;      }
   void ludcmp(double **a, int npar, int *indx, double *d) ;      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   hess=matrix(1,npar,1,npar);  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   printf("\nCalculation of the hessian matrix. Wait...\n");        fprintf(ficlog,"fret=%lf \n",*fret);
   for (i=1;i<=npar;i++){  #endif
     printf("%d",i);fflush(stdout);        printf("%d",i);fflush(stdout);
     hess[i][i]=hessii(p,ftolhess,i,delti);        fprintf(ficlog,"%d",i);fflush(ficlog);
     /*printf(" %f ",p[i]);*/        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   for (i=1;i<=npar;i++) {          ibig=i; 
     for (j=1;j<=npar;j++)  {        } 
       if (j>i) {  #ifdef DEBUG
         printf(".%d%d",i,j);fflush(stdout);        printf("%d %.12e",i,(*fret));
         hess[i][j]=hessij(p,delti,i,j);        fprintf(ficlog,"%d %.12e",i,(*fret));
         hess[j][i]=hess[i][j];        for (j=1;j<=n;j++) {
       }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     }          printf(" x(%d)=%.12e",j,xit[j]);
   }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   printf("\n");        }
         for(j=1;j<=n;j++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
   a=matrix(1,npar,1,npar);        }
   y=matrix(1,npar,1,npar);        printf("\n");
   x=vector(1,npar);        fprintf(ficlog,"\n");
   indx=ivector(1,npar);  #endif
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   ludcmp(a,npar,indx,&pd);  #ifdef DEBUG
         int k[2],l;
   for (j=1;j<=npar;j++) {        k[0]=1;
     for (i=1;i<=npar;i++) x[i]=0;        k[1]=-1;
     x[j]=1;        printf("Max: %.12e",(*func)(p));
     lubksb(a,npar,indx,x);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (i=1;i<=npar;i++){        for (j=1;j<=n;j++) {
       matcov[i][j]=x[i];          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
   }        }
         printf("\n");
   printf("\n#Hessian matrix#\n");        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++) {        for(l=0;l<=1;l++) {
     for (j=1;j<=npar;j++) {          for (j=1;j<=n;j++) {
       printf("%.3e ",hess[i][j]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("\n");            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   /* Recompute Inverse */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  #endif
   ludcmp(a,npar,indx,&pd);  
   
   /*  printf("\n#Hessian matrix recomputed#\n");        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
   for (j=1;j<=npar;j++) {        free_vector(ptt,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(pt,1,n); 
     x[j]=1;        return; 
     lubksb(a,npar,indx,x);      } 
     for (i=1;i<=npar;i++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       y[i][j]=x[i];      for (j=1;j<=n;j++) { 
       printf("%.3e ",y[i][j]);        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
     printf("\n");        pt[j]=p[j]; 
   }      } 
   */      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   free_matrix(a,1,npar,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   free_matrix(y,1,npar,1,npar);        if (t < 0.0) { 
   free_vector(x,1,npar);          linmin(p,xit,n,fret,func); 
   free_ivector(indx,1,npar);          for (j=1;j<=n;j++) { 
   free_matrix(hess,1,npar,1,npar);            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
           }
 }  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /*************** hessian matrix ****************/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double hessii( double x[], double delta, int theta, double delti[])          for(j=1;j<=n;j++){
 {            printf(" %.12e",xit[j]);
   int i;            fprintf(ficlog," %.12e",xit[j]);
   int l=1, lmax=20;          }
   double k1,k2;          printf("\n");
   double p2[NPARMAX+1];          fprintf(ficlog,"\n");
   double res;  #endif
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        }
   double fx;      } 
   int k=0,kmax=10;    } 
   double l1;  } 
   
   fx=func(x);  /**** Prevalence limit (stable prevalence)  ****************/
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     l1=pow(10,l);  {
     delts=delt;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for(k=1 ; k <kmax; k=k+1){       matrix by transitions matrix until convergence is reached */
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;    int i, ii,j,k;
       k1=func(p2)-fx;    double min, max, maxmin, maxmax,sumnew=0.;
       p2[theta]=x[theta]-delt;    double **matprod2();
       k2=func(p2)-fx;    double **out, cov[NCOVMAX], **pmij();
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double **newm;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double agefin, delaymax=50 ; /* Max number of years to converge */
        
 #ifdef DEBUG    for (ii=1;ii<=nlstate+ndeath;ii++)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for (j=1;j<=nlstate+ndeath;j++){
 #endif        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;     cov[1]=1.;
       }   
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         k=kmax; l=lmax*10.;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       }      newm=savm;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      /* Covariates have to be included here again */
         delts=delt;       cov[2]=agefin;
       }    
     }        for (k=1; k<=cptcovn;k++) {
   }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   delti[theta]=delts;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   return res;        }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int i;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int l=1, l1, lmax=20;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double k1,k2,k3,k4,res,fx;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double p2[NPARMAX+1];  
   int k;      savm=oldm;
       oldm=newm;
   fx=func(x);      maxmax=0.;
   for (k=1; k<=2; k++) {      for(j=1;j<=nlstate;j++){
     for (i=1;i<=npar;i++) p2[i]=x[i];        min=1.;
     p2[thetai]=x[thetai]+delti[thetai]/k;        max=0.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(i=1; i<=nlstate; i++) {
     k1=func(p2)-fx;          sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetai]=x[thetai]+delti[thetai]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          max=FMAX(max,prlim[i][j]);
     k2=func(p2)-fx;          min=FMIN(min,prlim[i][j]);
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;        maxmin=max-min;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        maxmax=FMAX(maxmax,maxmin);
     k3=func(p2)-fx;      }
        if(maxmax < ftolpl){
     p2[thetai]=x[thetai]-delti[thetai]/k;        return prlim;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k4=func(p2)-fx;    }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  }
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*************** transition probabilities ***************/ 
 #endif  
   }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   return res;  {
 }    double s1, s2;
     /*double t34;*/
 /************** Inverse of matrix **************/    int i,j,j1, nc, ii, jj;
 void ludcmp(double **a, int n, int *indx, double *d)  
 {      for(i=1; i<= nlstate; i++){
   int i,imax,j,k;        for(j=1; j<i;j++){
   double big,dum,sum,temp;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double *vv;            /*s2 += param[i][j][nc]*cov[nc];*/
              s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   vv=vector(1,n);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   *d=1.0;          }
   for (i=1;i<=n;i++) {          ps[i][j]=s2;
     big=0.0;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(j=i+1; j<=nlstate+ndeath;j++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     vv[i]=1.0/big;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   for (j=1;j<=n;j++) {          }
     for (i=1;i<j;i++) {          ps[i][j]=s2;
       sum=a[i][j];        }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;      /*ps[3][2]=1;*/
     }      
     big=0.0;      for(i=1; i<= nlstate; i++){
     for (i=j;i<=n;i++) {        s1=0;
       sum=a[i][j];        for(j=1; j<i; j++)
       for (k=1;k<j;k++)          s1+=exp(ps[i][j]);
         sum -= a[i][k]*a[k][j];        for(j=i+1; j<=nlstate+ndeath; j++)
       a[i][j]=sum;          s1+=exp(ps[i][j]);
       if ( (dum=vv[i]*fabs(sum)) >= big) {        ps[i][i]=1./(s1+1.);
         big=dum;        for(j=1; j<i; j++)
         imax=i;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        for(j=i+1; j<=nlstate+ndeath; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if (j != imax) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for (k=1;k<=n;k++) {      } /* end i */
         dum=a[imax][k];      
         a[imax][k]=a[j][k];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         a[j][k]=dum;        for(jj=1; jj<= nlstate+ndeath; jj++){
       }          ps[ii][jj]=0;
       *d = -(*d);          ps[ii][ii]=1;
       vv[imax]=vv[j];        }
     }      }
     indx[j]=imax;      
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       dum=1.0/(a[j][j]);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*         printf("ddd %lf ",ps[ii][jj]); */
     }  /*       } */
   }  /*       printf("\n "); */
   free_vector(vv,1,n);  /* Doesn't work */  /*        } */
 ;  /*        printf("\n ");printf("%lf ",cov[2]); */
 }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 void lubksb(double **a, int n, int *indx, double b[])        goto end;*/
 {      return ps;
   int i,ii=0,ip,j;  }
   double sum;  
    /**************** Product of 2 matrices ******************/
   for (i=1;i<=n;i++) {  
     ip=indx[i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     sum=b[ip];  {
     b[ip]=b[i];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     if (ii)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    /* in, b, out are matrice of pointers which should have been initialized 
     else if (sum) ii=i;       before: only the contents of out is modified. The function returns
     b[i]=sum;       a pointer to pointers identical to out */
   }    long i, j, k;
   for (i=n;i>=1;i--) {    for(i=nrl; i<= nrh; i++)
     sum=b[i];      for(k=ncolol; k<=ncoloh; k++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     b[i]=sum/a[i][i];          out[i][k] +=in[i][j]*b[j][k];
   }  
 }    return out;
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)  
 {  /* Some frequencies */  /************* Higher Matrix Product ***************/
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double ***freq; /* Frequencies */  {
   double *pp;    /* Computes the transition matrix starting at age 'age' over 
   double pos;       'nhstepm*hstepm*stepm' months (i.e. until
   FILE *ficresp;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   char fileresp[FILENAMELENGTH];       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   pp=vector(1,nlstate);       (typically every 2 years instead of every month which is too big 
        for the memory).
   strcpy(fileresp,"p");       Model is determined by parameters x and covariates have to be 
   strcat(fileresp,fileres);       included manually here. 
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);       */
     exit(0);  
   }    int i, j, d, h, k;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double **out, cov[NCOVMAX];
   j1=0;    double **newm;
   
   j=cptcovn;    /* Hstepm could be zero and should return the unit matrix */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   for(k1=1; k1<=j;k1++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
    for(i1=1; i1<=ncodemax[k1];i1++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
        j1++;      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for (i=-1; i<=nlstate+ndeath; i++)      for(h=1; h <=nhstepm; h++){
          for (jk=-1; jk<=nlstate+ndeath; jk++)        for(d=1; d <=hstepm; d++){
            for(m=agemin; m <= agemax+3; m++)        newm=savm;
              freq[i][jk][m]=0;        /* Covariates have to be included here again */
                cov[1]=1.;
        for (i=1; i<=imx; i++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          bool=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          if  (cptcovn>0) {        for (k=1; k<=cptcovage;k++)
            for (z1=1; z1<=cptcovn; z1++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;        for (k=1; k<=cptcovprod;k++)
          }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           if (bool==1) {  
            for(m=firstpass; m<=lastpass-1; m++){  
              if(agev[m][i]==0) agev[m][i]=agemax+1;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
              if(agev[m][i]==1) agev[m][i]=agemax+2;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
            }        savm=oldm;
          }        oldm=newm;
        }      }
         if  (cptcovn>0) {      for(i=1; i<=nlstate+ndeath; i++)
          fprintf(ficresp, "\n#Variable");        for(j=1;j<=nlstate+ndeath;j++) {
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          po[i][j][h]=newm[i][j];
        }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
        fprintf(ficresp, "\n#");           */
        for(i=1; i<=nlstate;i++)        }
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    } /* end h */
        fprintf(ficresp, "\n");    return po;
          }
   for(i=(int)agemin; i <= (int)agemax+3; i++){  
     if(i==(int)agemax+3)  
       printf("Total");  /*************** log-likelihood *************/
     else  double func( double *x)
       printf("Age %d", i);  {
     for(jk=1; jk <=nlstate ; jk++){    int i, ii, j, k, mi, d, kk;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         pp[jk] += freq[jk][m][i];    double **out;
     }    double sw; /* Sum of weights */
     for(jk=1; jk <=nlstate ; jk++){    double lli; /* Individual log likelihood */
       for(m=-1, pos=0; m <=0 ; m++)    int s1, s2;
         pos += freq[jk][m][i];    double bbh, survp;
       if(pp[jk]>=1.e-10)    long ipmx;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /*extern weight */
       else    /* We are differentiating ll according to initial status */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
     for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)    */
         pp[jk] += freq[jk][m][i];    cov[1]=1.;
     }  
     for(jk=1,pos=0; jk <=nlstate ; jk++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
       pos += pp[jk];  
     for(jk=1; jk <=nlstate ; jk++){    if(mle==1){
       if(pos>=1.e-5)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else        for(mi=1; mi<= wav[i]-1; mi++){
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for (ii=1;ii<=nlstate+ndeath;ii++)
       if( i <= (int) agemax){            for (j=1;j<=nlstate+ndeath;j++){
         if(pos>=1.e-5)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else            }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(jk=-1; jk <=nlstate+ndeath; jk++)            for (kk=1; kk<=cptcovage;kk++) {
       for(m=-1; m <=nlstate+ndeath; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            }
     if(i <= (int) agemax)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresp,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("\n");            savm=oldm;
     }            oldm=newm;
     }          } /* end mult */
  }        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   fclose(ficresp);          /* But now since version 0.9 we anticipate for bias at large stepm.
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   free_vector(pp,1,nlstate);           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 }  /* End of Freq */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 /************* Waves Concatenation ***************/           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           * -stepm/2 to stepm/2 .
 {           * For stepm=1 the results are the same as for previous versions of Imach.
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * For stepm > 1 the results are less biased than in previous versions. 
      Death is a valid wave (if date is known).           */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          s1=s[mw[mi][i]][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          s2=s[mw[mi+1][i]][i];
      and mw[mi+1][i]. dh depends on stepm.          bbh=(double)bh[mi][i]/(double)stepm; 
      */          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   int i, mi, m;           */
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 float sum=0.;          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known then the contribution
   for(i=1; i<=imx; i++){               to the likelihood is the probability to die between last step unit time and current 
     mi=0;               step unit time, which is also equal to probability to die before dh 
     m=firstpass;               minus probability to die before dh-stepm . 
     while(s[m][i] <= nlstate){               In version up to 0.92 likelihood was computed
       if(s[m][i]>=1)          as if date of death was unknown. Death was treated as any other
         mw[++mi][i]=m;          health state: the date of the interview describes the actual state
       if(m >=lastpass)          and not the date of a change in health state. The former idea was
         break;          to consider that at each interview the state was recorded
       else          (healthy, disable or death) and IMaCh was corrected; but when we
         m++;          introduced the exact date of death then we should have modified
     }/* end while */          the contribution of an exact death to the likelihood. This new
     if (s[m][i] > nlstate){          contribution is smaller and very dependent of the step unit
       mi++;     /* Death is another wave */          stepm. It is no more the probability to die between last interview
       /* if(mi==0)  never been interviewed correctly before death */          and month of death but the probability to survive from last
          /* Only death is a correct wave */          interview up to one month before death multiplied by the
       mw[mi][i]=m;          probability to die within a month. Thanks to Chris
     }          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
     wav[i]=mi;          which slows down the processing. The difference can be up to 10%
     if(mi==0)          lower mortality.
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            */
   }            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   for(i=1; i<=imx; i++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(mi=1; mi<wav[i];mi++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       if (stepm <=0)          } 
         dh[mi][i]=1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       else{          /*if(lli ==000.0)*/
         if (s[mw[mi+1][i]][i] > nlstate) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ipmx +=1;
           if(j=0) j=1;  /* Survives at least one month after exam */          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else{        } /* end of wave */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      } /* end of individual */
           k=k+1;    }  else if(mle==2){
           if (j >= jmax) jmax=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           else if (j <= jmin)jmin=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           sum=sum+j;        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         jk= j/stepm;            for (j=1;j<=nlstate+ndeath;j++){
         jl= j -jk*stepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         ju= j -(jk+1)*stepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(jl <= -ju)            }
           dh[mi][i]=jk;          for(d=0; d<=dh[mi][i]; d++){
         else            newm=savm;
           dh[mi][i]=jk+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(dh[mi][i]==0)            for (kk=1; kk<=cptcovage;kk++) {
           dh[mi][i]=1; /* At least one step */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);            savm=oldm;
 }            oldm=newm;
 /*********** Tricode ****************************/          } /* end mult */
 void tricode(int *Tvar, int **nbcode, int imx)        
 {          s1=s[mw[mi][i]][i];
   int Ndum[80],ij=1, k, j, i, Ntvar[20];          s2=s[mw[mi+1][i]][i];
   int cptcode=0;          bbh=(double)bh[mi][i]/(double)stepm; 
   for (k=0; k<79; k++) Ndum[k]=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (k=1; k<=7; k++) ncodemax[k]=0;          ipmx +=1;
           sw += weight[i];
   for (j=1; j<=cptcovn; j++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1; i<=imx; i++) {        } /* end of wave */
       ij=(int)(covar[Tvar[j]][i]);      } /* end of individual */
       Ndum[ij]++;    }  else if(mle==3){  /* exponential inter-extrapolation */
       if (ij > cptcode) cptcode=ij;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        for(mi=1; mi<= wav[i]-1; mi++){
     for (i=0; i<=cptcode; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(Ndum[i]!=0) ncodemax[j]++;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     ij=1;            }
     for (i=1; i<=ncodemax[j]; i++) {          for(d=0; d<dh[mi][i]; d++){
       for (k=0; k<=79; k++) {            newm=savm;
         if (Ndum[k] != 0) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           nbcode[Tvar[j]][ij]=k;            for (kk=1; kk<=cptcovage;kk++) {
           ij++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         if (ij > ncodemax[j]) break;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }              oldm=newm;
            } /* end mult */
 }        
           s1=s[mw[mi][i]][i];
 /*********** Health Expectancies ****************/          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {          ipmx +=1;
   /* Health expectancies */          sw += weight[i];
   int i, j, nhstepm, hstepm, h;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double age, agelim,hf;        } /* end of wave */
   double ***p3mat;      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   fprintf(ficreseij,"# Health expectancies\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficreseij,"# Age");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
     for(j=1; j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficreseij," %1d-%1d",i,j);            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficreseij,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=1*YEARM; /*  Every j years of age (in month) */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   agelim=AGESUP;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (kk=1; kk<=cptcovage;kk++) {
     /* nhstepm age range expressed in number of stepm */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            }
     /* Typically if 20 years = 20*12/6=40 stepm */          
     if (stepm >= YEARM) hstepm=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm=oldm;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            oldm=newm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          } /* end mult */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          if( s2 > nlstate){ 
       for(j=1; j<=nlstate;j++)            lli=log(out[s1][s2] - savm[s1][s2]);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          }else{
           eij[i][j][(int)age] +=p3mat[i][j][h];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
              ipmx +=1;
     hf=1;          sw += weight[i];
     if (stepm >= YEARM) hf=stepm/YEARM;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficreseij,"%.0f",age );  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i=1; i<=nlstate;i++)        } /* end of wave */
       for(j=1; j<=nlstate;j++){      } /* end of individual */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficreseij,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Variance ******************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            }
 {          for(d=0; d<dh[mi][i]; d++){
   /* Variance of health expectancies */            newm=savm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **newm;            for (kk=1; kk<=cptcovage;kk++) {
   double **dnewm,**doldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j, nhstepm, hstepm, h;            }
   int k, cptcode;          
    double *xp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **gp, **gm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***gradg, ***trgradg;            savm=oldm;
   double ***p3mat;            oldm=newm;
   double age,agelim;          } /* end mult */
   int theta;        
           s1=s[mw[mi][i]][i];
    fprintf(ficresvij,"# Covariances of life expectancies\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficresvij,"# Age");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for(i=1; i<=nlstate;i++)          ipmx +=1;
     for(j=1; j<=nlstate;j++)          sw += weight[i];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvij,"\n");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
   xp=vector(1,npar);      } /* end of individual */
   dnewm=matrix(1,nlstate,1,npar);    } /* End of if */
   doldm=matrix(1,nlstate,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   hstepm=1*YEARM; /* Every year of age */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    return -l;
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*************** log-likelihood *************/
     if (stepm >= YEARM) hstepm=1;  double funcone( double *x)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Same as likeli but slower because of a lot of printf and if */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    int i, ii, j, k, mi, d, kk;
     gp=matrix(0,nhstepm,1,nlstate);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     gm=matrix(0,nhstepm,1,nlstate);    double **out;
     double lli; /* Individual log likelihood */
     for(theta=1; theta <=npar; theta++){    double llt;
       for(i=1; i<=npar; i++){ /* Computes gradient */    int s1, s2;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double bbh, survp;
       }    /*extern weight */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* We are differentiating ll according to initial status */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(j=1; j<= nlstate; j++){    /*for(i=1;i<imx;i++) 
         for(h=0; h<=nhstepm; h++){      printf(" %d\n",s[4][i]);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    cov[1]=1.;
         }  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
      
       for(i=1; i<=npar; i++) /* Computes gradient */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(mi=1; mi<= wav[i]-1; mi++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate; j++){          for (j=1;j<=nlstate+ndeath;j++){
         for(h=0; h<=nhstepm; h++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }        for(d=0; d<dh[mi][i]; d++){
       }          newm=savm;
       for(j=1; j<= nlstate; j++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(h=0; h<=nhstepm; h++){          for (kk=1; kk<=cptcovage;kk++) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }          }
     } /* End theta */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          savm=oldm;
           oldm=newm;
     for(h=0; h<=nhstepm; h++)        } /* end mult */
       for(j=1; j<=nlstate;j++)        
         for(theta=1; theta <=npar; theta++)        s1=s[mw[mi][i]][i];
           trgradg[h][j][theta]=gradg[h][theta][j];        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
     for(i=1;i<=nlstate;i++)        /* bias is positive if real duration
       for(j=1;j<=nlstate;j++)         * is higher than the multiple of stepm and negative otherwise.
         vareij[i][j][(int)age] =0.;         */
     for(h=0;h<=nhstepm;h++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(k=0;k<=nhstepm;k++){          lli=log(out[s1][s2] - savm[s1][s2]);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        } else if (mle==1){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(i=1;i<=nlstate;i++)        } else if(mle==2){
           for(j=1;j<=nlstate;j++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             vareij[i][j][(int)age] += doldm[i][j];        } else if(mle==3){  /* exponential inter-extrapolation */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     h=1;          lli=log(out[s1][s2]); /* Original formula */
     if (stepm >= YEARM) h=stepm/YEARM;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     fprintf(ficresvij,"%.0f ",age );          lli=log(out[s1][s2]); /* Original formula */
     for(i=1; i<=nlstate;i++)        } /* End of if */
       for(j=1; j<=nlstate;j++){        ipmx +=1;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        sw += weight[i];
       }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficresvij,"\n");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     free_matrix(gp,0,nhstepm,1,nlstate);        if(globpr){
     free_matrix(gm,0,nhstepm,1,nlstate);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);   %10.6f %10.6f %10.6f ", \
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   } /* End age */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
              llt +=ll[k]*gipmx/gsw;
   free_vector(xp,1,npar);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   free_matrix(doldm,1,nlstate,1,npar);          }
   free_matrix(dnewm,1,nlstate,1,nlstate);          fprintf(ficresilk," %10.6f\n", -llt);
         }
 }      } /* end of wave */
     } /* end of individual */
 /************ Variance of prevlim ******************/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* Variance of prevalence limit */    if(globpr==0){ /* First time we count the contributions and weights */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      gipmx=ipmx;
   double **newm;      gsw=sw;
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm;    return -l;
   int k, cptcode;  }
   double *xp;  
   double *gp, *gm;  
   double **gradg, **trgradg;  /*************** function likelione ***********/
   double age,agelim;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int theta;  {
        /* This routine should help understanding what is done with 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");       the selection of individuals/waves and
   fprintf(ficresvpl,"# Age");       to check the exact contribution to the likelihood.
   for(i=1; i<=nlstate;i++)       Plotting could be done.
       fprintf(ficresvpl," %1d-%1d",i,i);     */
   fprintf(ficresvpl,"\n");    int k;
   
   xp=vector(1,npar);    if(*globpri !=0){ /* Just counts and sums, no printings */
   dnewm=matrix(1,nlstate,1,npar);      strcpy(fileresilk,"ilk"); 
   doldm=matrix(1,nlstate,1,nlstate);      strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   hstepm=1*YEARM; /* Every year of age */        printf("Problem with resultfile: %s\n", fileresilk);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     if (stepm >= YEARM) hstepm=1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for(k=1; k<=nlstate; k++) 
     gradg=matrix(1,npar,1,nlstate);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     gp=vector(1,nlstate);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     gm=vector(1,nlstate);    }
   
     for(theta=1; theta <=npar; theta++){    *fretone=(*funcone)(p);
       for(i=1; i<=npar; i++){ /* Computes gradient */    if(*globpri !=0){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fclose(ficresilk);
       }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fflush(fichtm); 
       for(i=1;i<=nlstate;i++)    } 
         gp[i] = prlim[i][i];    return;
      }
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*********** Maximum Likelihood Estimation ***************/
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
       for(i=1;i<=nlstate;i++)    int i,j, iter;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double **xi;
     } /* End theta */    double fret;
     double fretone; /* Only one call to likelihood */
     trgradg =matrix(1,nlstate,1,npar);    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++)
       for(theta=1; theta <=npar; theta++)      for (j=1;j<=npar;j++)
         trgradg[j][theta]=gradg[theta][j];        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(i=1;i<=nlstate;i++)    strcpy(filerespow,"pow"); 
       varpl[i][(int)age] =0.;    strcat(filerespow,fileres);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      printf("Problem with resultfile: %s\n", filerespow);
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     fprintf(ficresvpl,"%.0f ",age );    for (i=1;i<=nlstate;i++)
     for(i=1; i<=nlstate;i++)      for(j=1;j<=nlstate+ndeath;j++)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficresvpl,"\n");    fprintf(ficrespow,"\n");
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    powell(p,xi,npar,ftol,&iter,&fret,func);
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    fclose(ficrespow);
   } /* End age */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   free_vector(xp,1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  }
   
 }  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     double  **a,**y,*x,pd;
 /***********************************************/    double **hess;
 /**************** Main Program *****************/    int i, j,jk;
 /***********************************************/    int *indx;
   
 /*int main(int argc, char *argv[])*/    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 int main()    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 {    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    double gompertz(double p[]);
   double agedeb, agefin,hf;    hess=matrix(1,npar,1,npar);
   double agemin=1.e20, agemax=-1.e20;  
     printf("\nCalculation of the hessian matrix. Wait...\n");
   double fret;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double **xi,tmp,delta;    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   double dum; /* Dummy variable */      fprintf(ficlog,"%d",i);fflush(ficlog);
   double ***p3mat;     
   int *indx;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   char line[MAXLINE], linepar[MAXLINE];      
   char title[MAXLINE];      /*  printf(" %f ",p[i]);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    }
   char filerest[FILENAMELENGTH];    
   char fileregp[FILENAMELENGTH];    for (i=1;i<=npar;i++) {
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      for (j=1;j<=npar;j++)  {
   int firstobs=1, lastobs=10;        if (j>i) { 
   int sdeb, sfin; /* Status at beginning and end */          printf(".%d%d",i,j);fflush(stdout);
   int c,  h , cpt,l;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int ju,jl, mi;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;          
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
   int hstepm, nhstepm;        }
   double bage, fage, age, agelim, agebase;      }
   double ftolpl=FTOL;    }
   double **prlim;    printf("\n");
   double *severity;    fprintf(ficlog,"\n");
   double ***param; /* Matrix of parameters */  
   double  *p;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   double **matcov; /* Matrix of covariance */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   double ***delti3; /* Scale */    
   double *delti; /* Scale */    a=matrix(1,npar,1,npar);
   double ***eij, ***vareij;    y=matrix(1,npar,1,npar);
   double **varpl; /* Variances of prevalence limits by age */    x=vector(1,npar);
   double *epj, vepp;    indx=ivector(1,npar);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    for (i=1;i<=npar;i++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   char z[1]="c", occ;  
 #include <sys/time.h>    for (j=1;j<=npar;j++) {
 #include <time.h>      for (i=1;i<=npar;i++) x[i]=0;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      x[j]=1;
   /* long total_usecs;      lubksb(a,npar,indx,x);
   struct timeval start_time, end_time;      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      }
     }
   
   printf("\nIMACH, Version 0.64a");    printf("\n#Hessian matrix#\n");
   printf("\nEnter the parameter file name: ");    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
 #ifdef windows      for (j=1;j<=npar;j++) { 
   scanf("%s",pathtot);        printf("%.3e ",hess[i][j]);
   getcwd(pathcd, size);        fprintf(ficlog,"%.3e ",hess[i][j]);
   /*cygwin_split_path(pathtot,path,optionfile);      }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      printf("\n");
   /* cutv(path,optionfile,pathtot,'\\');*/      fprintf(ficlog,"\n");
     }
 split(pathtot, path,optionfile);  
   chdir(path);    /* Recompute Inverse */
   replace(pathc,path);    for (i=1;i<=npar;i++)
 #endif      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 #ifdef unix    ludcmp(a,npar,indx,&pd);
   scanf("%s",optionfile);  
 #endif    /*  printf("\n#Hessian matrix recomputed#\n");
   
 /*-------- arguments in the command line --------*/    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   strcpy(fileres,"r");      x[j]=1;
   strcat(fileres, optionfile);      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   /*---------arguments file --------*/        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        fprintf(ficlog,"%.3e ",y[i][j]);
     printf("Problem with optionfile %s\n",optionfile);      }
     goto end;      printf("\n");
   }      fprintf(ficlog,"\n");
     }
   strcpy(filereso,"o");    */
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    free_matrix(a,1,npar,1,npar);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    free_matrix(y,1,npar,1,npar);
   }    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
   /* Reads comments: lines beginning with '#' */    free_matrix(hess,1,npar,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  /*************** hessian matrix ****************/
   }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   ungetc(c,ficpar);  {
     int i;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    int l=1, lmax=20;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    double k1,k2;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    double p2[NPARMAX+1];
     double res;
   covar=matrix(0,NCOVMAX,1,n);        double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   if (strlen(model)<=1) cptcovn=0;    double fx;
   else {    int k=0,kmax=10;
     j=0;    double l1;
     j=nbocc(model,'+');  
     cptcovn=j+1;    fx=func(x);
   }    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   ncovmodel=2+cptcovn;      l1=pow(10,l);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   /* Read guess parameters */        delt = delta*(l1*k);
   /* Reads comments: lines beginning with '#' */        p2[theta]=x[theta] +delt;
   while((c=getc(ficpar))=='#' && c!= EOF){        k1=func(p2)-fx;
     ungetc(c,ficpar);        p2[theta]=x[theta]-delt;
     fgets(line, MAXLINE, ficpar);        k2=func(p2)-fx;
     puts(line);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     fputs(line,ficparo);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   }        
   ungetc(c,ficpar);  #ifdef DEBUG
          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1; i <=nlstate; i++)  #endif
     for(j=1; j <=nlstate+ndeath-1; j++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       fscanf(ficpar,"%1d%1d",&i1,&j1);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       fprintf(ficparo,"%1d%1d",i1,j1);          k=kmax;
       printf("%1d%1d",i,j);        }
       for(k=1; k<=ncovmodel;k++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         fscanf(ficpar," %lf",&param[i][j][k]);          k=kmax; l=lmax*10.;
         printf(" %lf",param[i][j][k]);        }
         fprintf(ficparo," %lf",param[i][j][k]);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       }          delts=delt;
       fscanf(ficpar,"\n");        }
       printf("\n");      }
       fprintf(ficparo,"\n");    }
     }    delti[theta]=delts;
      return res; 
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    
   p=param[1][1];  }
    
   /* Reads comments: lines beginning with '#' */  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    int i;
     fgets(line, MAXLINE, ficpar);    int l=1, l1, lmax=20;
     puts(line);    double k1,k2,k3,k4,res,fx;
     fputs(line,ficparo);    double p2[NPARMAX+1];
   }    int k;
   ungetc(c,ficpar);  
     fx=func(x);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (k=1; k<=2; k++) {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      for (i=1;i<=npar;i++) p2[i]=x[i];
   for(i=1; i <=nlstate; i++){      p2[thetai]=x[thetai]+delti[thetai]/k;
     for(j=1; j <=nlstate+ndeath-1; j++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fscanf(ficpar,"%1d%1d",&i1,&j1);      k1=func(p2)-fx;
       printf("%1d%1d",i,j);    
       fprintf(ficparo,"%1d%1d",i1,j1);      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(k=1; k<=ncovmodel;k++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         fscanf(ficpar,"%le",&delti3[i][j][k]);      k2=func(p2)-fx;
         printf(" %le",delti3[i][j][k]);    
         fprintf(ficparo," %le",delti3[i][j][k]);      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fscanf(ficpar,"\n");      k3=func(p2)-fx;
       printf("\n");    
       fprintf(ficparo,"\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
   delti=delti3[1][1];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    #ifdef DEBUG
   /* Reads comments: lines beginning with '#' */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     ungetc(c,ficpar);  #endif
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    return res;
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  /************** Inverse of matrix **************/
    void ludcmp(double **a, int n, int *indx, double *d) 
   matcov=matrix(1,npar,1,npar);  { 
   for(i=1; i <=npar; i++){    int i,imax,j,k; 
     fscanf(ficpar,"%s",&str);    double big,dum,sum,temp; 
     printf("%s",str);    double *vv; 
     fprintf(ficparo,"%s",str);   
     for(j=1; j <=i; j++){    vv=vector(1,n); 
       fscanf(ficpar," %le",&matcov[i][j]);    *d=1.0; 
       printf(" %.5le",matcov[i][j]);    for (i=1;i<=n;i++) { 
       fprintf(ficparo," %.5le",matcov[i][j]);      big=0.0; 
     }      for (j=1;j<=n;j++) 
     fscanf(ficpar,"\n");        if ((temp=fabs(a[i][j])) > big) big=temp; 
     printf("\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficparo,"\n");      vv[i]=1.0/big; 
   }    } 
   for(i=1; i <=npar; i++)    for (j=1;j<=n;j++) { 
     for(j=i+1;j<=npar;j++)      for (i=1;i<j;i++) { 
       matcov[i][j]=matcov[j][i];        sum=a[i][j]; 
            for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   printf("\n");        a[i][j]=sum; 
       } 
       big=0.0; 
     /*-------- data file ----------*/      for (i=j;i<=n;i++) { 
     if((ficres =fopen(fileres,"w"))==NULL) {        sum=a[i][j]; 
       printf("Problem with resultfile: %s\n", fileres);goto end;        for (k=1;k<j;k++) 
     }          sum -= a[i][k]*a[k][j]; 
     fprintf(ficres,"#%s\n",version);        a[i][j]=sum; 
            if ( (dum=vv[i]*fabs(sum)) >= big) { 
     if((fic=fopen(datafile,"r"))==NULL)    {          big=dum; 
       printf("Problem with datafile: %s\n", datafile);goto end;          imax=i; 
     }        } 
       } 
     n= lastobs;      if (j != imax) { 
     severity = vector(1,maxwav);        for (k=1;k<=n;k++) { 
     outcome=imatrix(1,maxwav+1,1,n);          dum=a[imax][k]; 
     num=ivector(1,n);          a[imax][k]=a[j][k]; 
     moisnais=vector(1,n);          a[j][k]=dum; 
     annais=vector(1,n);        } 
     moisdc=vector(1,n);        *d = -(*d); 
     andc=vector(1,n);        vv[imax]=vv[j]; 
     agedc=vector(1,n);      } 
     cod=ivector(1,n);      indx[j]=imax; 
     weight=vector(1,n);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      if (j != n) { 
     mint=matrix(1,maxwav,1,n);        dum=1.0/(a[j][j]); 
     anint=matrix(1,maxwav,1,n);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     s=imatrix(1,maxwav+1,1,n);      } 
     adl=imatrix(1,maxwav+1,1,n);        } 
     tab=ivector(1,NCOVMAX);    free_vector(vv,1,n);  /* Doesn't work */
     ncodemax=ivector(1,8);  ;
   } 
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {  void lubksb(double **a, int n, int *indx, double b[]) 
       if ((i >= firstobs) && (i <=lastobs)) {  { 
            int i,ii=0,ip,j; 
         for (j=maxwav;j>=1;j--){    double sum; 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);   
           strcpy(line,stra);    for (i=1;i<=n;i++) { 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      ip=indx[i]; 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      sum=b[ip]; 
         }      b[ip]=b[i]; 
              if (ii) 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      else if (sum) ii=i; 
       b[i]=sum; 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    } 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         for (j=ncov;j>=1;j--){      b[i]=sum/a[i][i]; 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    } 
         }  } 
         num[i]=atol(stra);  
   /************ Frequencies ********************/
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
         i=i+1;    
       }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     }    int first;
     double ***freq; /* Frequencies */
     /*scanf("%d",i);*/    double *pp, **prop;
   imx=i-1; /* Number of individuals */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
   /* Calculation of the number of parameter from char model*/    char fileresp[FILENAMELENGTH];
   Tvar=ivector(1,15);        
   Tage=ivector(1,15);          pp=vector(1,nlstate);
        prop=matrix(1,nlstate,iagemin,iagemax+3);
   if (strlen(model) >1){    strcpy(fileresp,"p");
     j=0, j1=0;    strcat(fileresp,fileres);
     j=nbocc(model,'+');    if((ficresp=fopen(fileresp,"w"))==NULL) {
     j1=nbocc(model,'*');      printf("Problem with prevalence resultfile: %s\n", fileresp);
     cptcovn=j+1;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
          exit(0);
     strcpy(modelsav,model);    }
     if (j==0) {    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       if (j1==0){    j1=0;
        cutv(stra,strb,modelsav,'V');    
        Tvar[1]=atoi(strb);    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       else if (j1==1) {  
        cutv(stra,strb,modelsav,'*');    first=1;
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/  
        Tage[1]=1; cptcovage++;    for(k1=1; k1<=j;k1++){
        if (strcmp(stra,"age")==0) {      for(i1=1; i1<=ncodemax[k1];i1++){
          cutv(strd,strc,strb,'V');        j1++;
          Tvar[1]=atoi(strc);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
        }          scanf("%d", i);*/
        else if (strcmp(strb,"age")==0) {        for (i=-1; i<=nlstate+ndeath; i++)  
          cutv(strd,strc,stra,'V');          for (jk=-1; jk<=nlstate+ndeath; jk++)  
          Tvar[1]=atoi(strc);            for(m=iagemin; m <= iagemax+3; m++)
        }              freq[i][jk][m]=0;
        else {printf("Error"); exit(0);}  
       }      for (i=1; i<=nlstate; i++)  
     }        for(m=iagemin; m <= iagemax+3; m++)
     else {          prop[i][m]=0;
       for(i=j; i>=1;i--){        
         cutv(stra,strb,modelsav,'+');        dateintsum=0;
         /*printf("%s %s %s\n", stra,strb,modelsav);*/        k2cpt=0;
         if (strchr(strb,'*')) {        for (i=1; i<=imx; i++) {
           cutv(strd,strc,strb,'*');          bool=1;
           if (strcmp(strc,"age")==0) {          if  (cptcovn>0) {
             cutv(strb,stre,strd,'V');            for (z1=1; z1<=cptcoveff; z1++) 
             Tvar[i+1]=atoi(stre);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             cptcovage++;                bool=0;
             Tage[cptcovage]=i+1;          }
             printf("stre=%s ", stre);          if (bool==1){
           }            for(m=firstpass; m<=lastpass; m++){
           else if (strcmp(strd,"age")==0) {              k2=anint[m][i]+(mint[m][i]/12.);
             cutv(strb,stre,strc,'V');              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             Tvar[i+1]=atoi(stre);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             cptcovage++;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             Tage[cptcovage]=i+1;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                if (m<lastpass) {
           else {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             cutv(strb,stre,strc,'V');                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             Tvar[i+1]=ncov+1;                }
             cutv(strb,strc,strd,'V');                
             for (k=1; k<=lastobs;k++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                  dateintsum=dateintsum+k2;
           }                  k2cpt++;
         }                }
         else {                /*}*/
           cutv(strd,strc,strb,'V');            }
           /* printf("%s %s %s", strd,strc,strb);*/          }
         }
         Tvar[i+1]=atoi(strc);         
         }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         strcpy(modelsav,stra);    
       }        if  (cptcovn>0) {
       cutv(strd,strc,stra,'V');          fprintf(ficresp, "\n#********** Variable "); 
       Tvar[1]=atoi(strc);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresp, "**********\n#");
   }        }
         for(i=1; i<=nlstate;i++) 
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      scanf("%d ",i);*/        fprintf(ficresp, "\n");
     fclose(fic);        
         for(i=iagemin; i <= iagemax+3; i++){
    if(mle==1){          if(i==iagemax+3){
     if (weightopt != 1) { /* Maximisation without weights*/            fprintf(ficlog,"Total");
       for(i=1;i<=n;i++) weight[i]=1.0;          }else{
     }            if(first==1){
     /*-calculation of age at interview from date of interview and age at death -*/              first=0;
     agev=matrix(1,maxwav,1,imx);              printf("See log file for details...\n");
                }
     for (i=1; i<=imx; i++)  {            fprintf(ficlog,"Age %d", i);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }
       for(m=1; (m<= maxwav); m++){          for(jk=1; jk <=nlstate ; jk++){
         if(s[m][i] >0){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           if (s[m][i] == nlstate+1) {              pp[jk] += freq[jk][m][i]; 
             if(agedc[i]>0)          }
               if(moisdc[i]!=99 && andc[i]!=9999)          for(jk=1; jk <=nlstate ; jk++){
               agev[m][i]=agedc[i];            for(m=-1, pos=0; m <=0 ; m++)
             else{              pos += freq[jk][m][i];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            if(pp[jk]>=1.e-10){
               agev[m][i]=-1;              if(first==1){
             }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }              }
           else if(s[m][i] !=9){ /* Should no more exist */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            }else{
             if(mint[m][i]==99 || anint[m][i]==9999)              if(first==1)
               agev[m][i]=1;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             else if(agev[m][i] <agemin){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               agemin=agev[m][i];            }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          }
             }  
             else if(agev[m][i] >agemax){          for(jk=1; jk <=nlstate ; jk++){
               agemax=agev[m][i];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              pp[jk] += freq[jk][m][i];
             }          }       
             /*agev[m][i]=anint[m][i]-annais[i];*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             /*   agev[m][i] = age[i]+2*m;*/            pos += pp[jk];
           }            posprop += prop[jk][i];
           else { /* =9 */          }
             agev[m][i]=1;          for(jk=1; jk <=nlstate ; jk++){
             s[m][i]=-1;            if(pos>=1.e-5){
           }              if(first==1)
         }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         else /*= 0 Unknown */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           agev[m][i]=1;            }else{
       }              if(first==1)
                    printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<=imx; i++)  {            }
       for(m=1; (m<= maxwav); m++){            if( i <= iagemax){
         if (s[m][i] > (nlstate+ndeath)) {              if(pos>=1.e-5){
           printf("Error: Wrong value in nlstate or ndeath\n");                  fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           goto end;                /*probs[i][jk][j1]= pp[jk]/pos;*/
         }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
     }              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            }
           }
     free_vector(severity,1,maxwav);          
     free_imatrix(outcome,1,maxwav+1,1,n);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     free_vector(moisnais,1,n);            for(m=-1; m <=nlstate+ndeath; m++)
     free_vector(annais,1,n);              if(freq[jk][m][i] !=0 ) {
     free_matrix(mint,1,maxwav,1,n);              if(first==1)
     free_matrix(anint,1,maxwav,1,n);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(moisdc,1,n);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(andc,1,n);              }
           if(i <= iagemax)
                fprintf(ficresp,"\n");
     wav=ivector(1,imx);          if(first==1)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            printf("Others in log...\n");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(ficlog,"\n");
            }
     /* Concatenates waves */      }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    }
     dateintmean=dateintsum/k2cpt; 
    
       Tcode=ivector(1,100);    fclose(ficresp);
    nbcode=imatrix(1,nvar,1,8);      free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
    ncodemax[1]=1;    free_vector(pp,1,nlstate);
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      /* End of Freq */
    codtab=imatrix(1,100,1,10);  }
    h=0;  
    m=pow(2,cptcovn);  /************ Prevalence ********************/
    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    for(k=1;k<=cptcovn; k++){  {  
      for(i=1; i <=(m/pow(2,k));i++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        for(j=1; j <= ncodemax[k]; j++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){       We still use firstpass and lastpass as another selection.
            h++;    */
            if (h>m) h=1;codtab[h][k]=j;   
          }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
        }    double ***freq; /* Frequencies */
      }    double *pp, **prop;
    }    double pos,posprop; 
     double  y2; /* in fractional years */
    /* for(i=1; i <=m ;i++){    int iagemin, iagemax;
      for(k=1; k <=cptcovn; k++){  
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    iagemin= (int) agemin;
      }    iagemax= (int) agemax;
      printf("\n");    /*pp=vector(1,nlstate);*/
    }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
    scanf("%d",i);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        j1=0;
    /* Calculates basic frequencies. Computes observed prevalence at single age    
        and prints on file fileres'p'. */    j=cptcoveff;
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(k1=1; k1<=j;k1++){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i1=1; i1<=ncodemax[k1];i1++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        j1++;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
     /* For Powell, parameters are in a vector p[] starting at p[1]            prop[i][m]=0.0;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        for (i=1; i<=imx; i++) { /* Each individual */
              bool=1;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     /*--------- results files --------------*/                bool=0;
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          } 
              if (bool==1) { 
    jk=1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    fprintf(ficres,"# Parameters\n");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    printf("# Parameters\n");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    for(i=1,jk=1; i <=nlstate; i++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      for(k=1; k <=(nlstate+ndeath); k++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
        if (k != i)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
          {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
            printf("%d%d ",i,k);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
            fprintf(ficres,"%1d%1d ",i,k);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
            for(j=1; j <=ncovmodel; j++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
              printf("%f ",p[jk]);                } 
              fprintf(ficres,"%f ",p[jk]);              }
              jk++;            } /* end selection of waves */
            }          }
            printf("\n");        }
            fprintf(ficres,"\n");        for(i=iagemin; i <= iagemax+3; i++){  
          }          
      }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
    }            posprop += prop[jk][i]; 
           } 
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */          for(jk=1; jk <=nlstate ; jk++){     
     hesscov(matcov, p, npar, delti, ftolhess, func);            if( i <=  iagemax){ 
     fprintf(ficres,"# Scales\n");              if(posprop>=1.e-5){ 
     printf("# Scales\n");                probs[i][jk][j1]= prop[jk][i]/posprop;
      for(i=1,jk=1; i <=nlstate; i++){              } 
       for(j=1; j <=nlstate+ndeath; j++){            } 
         if (j!=i) {          }/* end jk */ 
           fprintf(ficres,"%1d%1d",i,j);        }/* end i */ 
           printf("%1d%1d",i,j);      } /* end i1 */
           for(k=1; k<=ncovmodel;k++){    } /* end k1 */
             printf(" %.5e",delti[jk]);    
             fprintf(ficres," %.5e",delti[jk]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             jk++;    /*free_vector(pp,1,nlstate);*/
           }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           printf("\n");  }  /* End of prevalence */
           fprintf(ficres,"\n");  
         }  /************* Waves Concatenation ***************/
       }  
       }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      {
     k=1;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     fprintf(ficres,"# Covariance\n");       Death is a valid wave (if date is known).
     printf("# Covariance\n");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     for(i=1;i<=npar;i++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       /*  if (k>nlstate) k=1;       and mw[mi+1][i]. dh depends on stepm.
       i1=(i-1)/(ncovmodel*nlstate)+1;       */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/    int i, mi, m;
       fprintf(ficres,"%3d",i);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       printf("%3d",i);       double sum=0., jmean=0.;*/
       for(j=1; j<=i;j++){    int first;
         fprintf(ficres," %.5e",matcov[i][j]);    int j, k=0,jk, ju, jl;
         printf(" %.5e",matcov[i][j]);    double sum=0.;
       }    first=0;
       fprintf(ficres,"\n");    jmin=1e+5;
       printf("\n");    jmax=-1;
       k++;    jmean=0.;
     }    for(i=1; i<=imx; i++){
          mi=0;
     while((c=getc(ficpar))=='#' && c!= EOF){      m=firstpass;
       ungetc(c,ficpar);      while(s[m][i] <= nlstate){
       fgets(line, MAXLINE, ficpar);        if(s[m][i]>=1)
       puts(line);          mw[++mi][i]=m;
       fputs(line,ficparo);        if(m >=lastpass)
     }          break;
     ungetc(c,ficpar);        else
            m++;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      }/* end while */
          if (s[m][i] > nlstate){
     if (fage <= 2) {        mi++;     /* Death is another wave */
       bage = agemin;        /* if(mi==0)  never been interviewed correctly before death */
       fage = agemax;           /* Only death is a correct wave */
     }        mw[mi][i]=m;
       }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      wav[i]=mi;
 /*------------ gnuplot -------------*/      if(mi==0){
 chdir(pathcd);        nbwarn++;
   if((ficgp=fopen("graph.plt","w"))==NULL) {        if(first==0){
     printf("Problem with file graph.gp");goto end;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   }          first=1;
 #ifdef windows        }
   fprintf(ficgp,"cd \"%s\" \n",pathc);        if(first==1){
 #endif          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 m=pow(2,cptcovn);        }
        } /* end mi==0 */
  /* 1eme*/    } /* End individuals */
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
 #ifdef windows        if (stepm <=0)
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          dh[mi][i]=1;
 #endif        else{
 #ifdef unix          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            if (agedc[i] < 2*AGESUP) {
 #endif              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
 for (i=1; i<= nlstate ; i ++) {              else if(j<0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                nberr++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                j=1; /* Temporary Dangerous patch */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     for (i=1; i<= nlstate ; i ++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }              k=k+1;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              if (j >= jmax) jmax=j;
      for (i=1; i<= nlstate ; i ++) {              if (j <= jmin) jmin=j;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              sum=sum+j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 }                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            }
 #ifdef unix          }
 fprintf(ficgp,"\nset ter gif small size 400,300");          else{
 #endif            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    }            k=k+1;
   }            if (j >= jmax) jmax=j;
   /*2 eme*/            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   for (k1=1; k1<= m ; k1 ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            if(j<0){
                  nberr++;
     for (i=1; i<= nlstate+1 ; i ++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k=2*i;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            sum=sum+j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          jk= j/stepm;
 }            jl= j -jk*stepm;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          ju= j -(jk+1)*stepm;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(jl==0){
       for (j=1; j<= nlstate+1 ; j ++) {              dh[mi][i]=jk;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=0;
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }else{ /* We want a negative bias in order to only have interpolation ie
 }                      * at the price of an extra matrix product in likelihood */
       fprintf(ficgp,"\" t\"\" w l 0,");              dh[mi][i]=jk+1;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=ju;
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(jl <= -ju){
 }                dh[mi][i]=jk;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              bh[mi][i]=jl;       /* bias is positive if real duration
       else fprintf(ficgp,"\" t\"\" w l 0,");                                   * is higher than the multiple of stepm and negative otherwise.
     }                                   */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            }
   }            else{
                dh[mi][i]=jk+1;
   /*3eme*/              bh[mi][i]=ju;
             }
   for (k1=1; k1<= m ; k1 ++) {            if(dh[mi][i]==0){
     for (cpt=1; cpt<= nlstate ; cpt ++) {              dh[mi][i]=1; /* At least one step */
       k=2+nlstate*(cpt-1);              bh[mi][i]=ju; /* At least one step */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for (i=1; i< nlstate ; i ++) {            }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          } /* end if mle */
       }        }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      } /* end wave */
     }    }
   }    jmean=sum/k;
      printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   /* CV preval stat */    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   for (k1=1; k1<= m ; k1 ++) {   }
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;  /*********** Tricode ****************************/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  void tricode(int *Tvar, int **nbcode, int imx)
       for (i=1; i< nlstate ; i ++)  {
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
          int cptcode=0;
       l=3+(nlstate+ndeath)*cpt;    cptcoveff=0; 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);   
       for (i=1; i< nlstate ; i ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
         l=3+(nlstate+ndeath)*cpt;    for (k=1; k<=7; k++) ncodemax[k]=0;
         fprintf(ficgp,"+$%d",l+i+1);  
       }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                                 modality*/ 
     }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   }        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /* proba elementaires */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
    for(i=1,jk=1; i <=nlstate; i++){                                         Tvar[j]. If V=sex and male is 0 and 
     for(k=1; k <=(nlstate+ndeath); k++){                                         female is 1, then  cptcode=1.*/
       if (k != i) {      }
         for(j=1; j <=ncovmodel; j++){  
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      for (i=0; i<=cptcode; i++) {
           /*fprintf(ficgp,"%s",alph[1]);*/        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      }
           jk++;  
           fprintf(ficgp,"\n");      ij=1; 
         }      for (i=1; i<=ncodemax[j]; i++) {
       }        for (k=0; k<= maxncov; k++) {
     }          if (Ndum[k] != 0) {
     }            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   for(jk=1; jk <=m; jk++) {            
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);            ij++;
    i=1;          }
    for(k2=1; k2<=nlstate; k2++) {          if (ij > ncodemax[j]) break; 
      k3=i;        }  
      for(k=1; k<=(nlstate+ndeath); k++) {      } 
        if (k != k2){    }  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
         for(j=3; j <=ncovmodel; j++)  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   for (i=1; i<=ncovmodel-2; i++) { 
         fprintf(ficgp,")/(1");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             ij=Tvar[i];
         for(k1=1; k1 <=nlstate; k1++){       Ndum[ij]++;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   }
           for(j=3; j <=ncovmodel; j++)  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   ij=1;
           fprintf(ficgp,")");   for (i=1; i<= maxncov; i++) {
         }     if((Ndum[i]!=0) && (i<=ncovcol)){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);       Tvaraff[ij]=i; /*For printing */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       ij++;
         i=i+ncovmodel;     }
        }   }
      }   
    }   cptcoveff=ij-1; /*Number of simple covariates*/
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  }
   }  
      /*********** Health Expectancies ****************/
   fclose(ficgp);  
      void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 chdir(path);  
     free_matrix(agev,1,maxwav,1,imx);  {
     free_ivector(wav,1,imx);    /* Health expectancies */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    double age, agelim, hf;
        double ***p3mat,***varhe;
     free_imatrix(s,1,maxwav+1,1,n);    double **dnewm,**doldm;
        double *xp;
        double **gp, **gm;
     free_ivector(num,1,n);    double ***gradg, ***trgradg;
     free_vector(agedc,1,n);    int theta;
     free_vector(weight,1,n);  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fclose(ficparo);    xp=vector(1,npar);
     fclose(ficres);    dnewm=matrix(1,nlstate*nlstate,1,npar);
    }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
    /*________fin mle=1_________*/    fprintf(ficreseij,"# Health expectancies\n");
        fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
     /* No more information from the sample is required now */        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   /* Reads comments: lines beginning with '#' */    fprintf(ficreseij,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    if(estepm < stepm){
     fgets(line, MAXLINE, ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
     puts(line);    }
     fputs(line,ficparo);    else  hstepm=estepm;   
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
   ungetc(c,ficpar);     * This is mainly to measure the difference between two models: for example
       * if stepm=24 months pijx are given only every 2 years and by summing them
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);     * progression in between and thus overestimating or underestimating according
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);     * to the curvature of the survival function. If, for the same date, we 
 /*--------- index.htm --------*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   if((fichtm=fopen("index.htm","w"))==NULL)    {     * hypothesis. A more precise result, taking into account a more precise
     printf("Problem with index.htm \n");goto end;     * curvature will be obtained if estepm is as small as stepm. */
   }  
     /* For example we decided to compute the life expectancy with the smallest unit */
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       nhstepm is the number of hstepm from age to agelim 
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>       nstepm is the number of stepm from age to agelin. 
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>       Look at hpijx to understand the reason of that which relies in memory size
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>       and note for a fixed period like estepm months */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>       survival function given by stepm (the optimization length). Unfortunately it
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>       means that if the survival funtion is printed only each two years of age and if
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);       results. So we changed our mind and took the option of the best precision.
     */
  fprintf(fichtm," <li>Graphs</li>\n<p>");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
  m=cptcovn;    agelim=AGESUP;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
  j1=0;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
  for(k1=1; k1<=m;k1++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    for(i1=1; i1<=ncodemax[k1];i1++){      /* if (stepm >= YEARM) hstepm=1;*/
        j1++;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        if (cptcovn > 0) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          fprintf(fichtm,"<hr>************ Results for covariates");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
          for (cpt=1; cpt<=cptcovn;cpt++)      gp=matrix(0,nhstepm,1,nlstate*nlstate);
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
          fprintf(fichtm," ************\n<hr>");  
        }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
        for(cpt=1; cpt<nlstate;cpt++){   
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {      /* Computing  Variances of health expectancies */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.gif <br>       for(theta=1; theta <=npar; theta++){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(i=1; i<=npar; i++){ 
      }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      for(cpt=1; cpt<=nlstate;cpt++) {        }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }        cptj=0;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        for(j=1; j<= nlstate; j++){
 health expectancies in states (1) and (2): e%s%d.gif<br>          for(i=1; i<=nlstate; i++){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            cptj=cptj+1;
 fprintf(fichtm,"\n</body>");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
    }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
  }            }
 fclose(fichtm);          }
         }
   /*--------------- Prevalence limit --------------*/       
         
   strcpy(filerespl,"pl");        for(i=1; i<=npar; i++) 
   strcat(filerespl,fileres);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        
   }        cptj=0;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        for(j=1; j<= nlstate; j++){
   fprintf(ficrespl,"#Prevalence limit\n");          for(i=1;i<=nlstate;i++){
   fprintf(ficrespl,"#Age ");            cptj=cptj+1;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   fprintf(ficrespl,"\n");  
                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   prlim=matrix(1,nlstate,1,nlstate);            }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<= nlstate*nlstate; j++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(h=0; h<=nhstepm-1; h++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   k=0;          }
   agebase=agemin;       } 
   agelim=agemax;     
   ftolpl=1.e-10;  /* End theta */
   i1=cptcovn;  
   if (cptcovn < 1){i1=1;}       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   for(cptcov=1;cptcov<=i1;cptcov++){       for(h=0; h<=nhstepm-1; h++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j<=nlstate*nlstate;j++)
         k=k+1;          for(theta=1; theta <=npar; theta++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            trgradg[h][j][theta]=gradg[h][theta][j];
         fprintf(ficrespl,"\n#******");       
         for(j=1;j<=cptcovn;j++)  
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);       for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficrespl,"******\n");        for(j=1;j<=nlstate*nlstate;j++)
                  varhe[i][j][(int)age] =0.;
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       printf("%d|",(int)age);fflush(stdout);
           fprintf(ficrespl,"%.0f",age );       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for(i=1; i<=nlstate;i++)       for(h=0;h<=nhstepm-1;h++){
           fprintf(ficrespl," %.5f", prlim[i][i]);        for(k=0;k<=nhstepm-1;k++){
           fprintf(ficrespl,"\n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       }          for(i=1;i<=nlstate*nlstate;i++)
     }            for(j=1;j<=nlstate*nlstate;j++)
   fclose(ficrespl);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   /*------------- h Pij x at various ages ------------*/        }
        }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      /* Computing expectancies */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for(j=1; j<=nlstate;j++)
   }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   printf("Computing pij: result on file '%s' \n", filerespij);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if (stepm<=24) stepsize=2;  
           }
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */      fprintf(ficreseij,"%3.0f",age );
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      cptj=0;
        for(i=1; i<=nlstate;i++)
   k=0;        for(j=1; j<=nlstate;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){          cptj++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       k=k+1;        }
         fprintf(ficrespij,"\n#****** ");      fprintf(ficreseij,"\n");
         for(j=1;j<=cptcovn;j++)     
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficrespij,"******\n");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
              free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\n");
           oldm=oldms;savm=savms;    fprintf(ficlog,"\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");    free_vector(xp,1,npar);
           for(i=1; i<=nlstate;i++)    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
             for(j=1; j<=nlstate+ndeath;j++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               fprintf(ficrespij," %1d-%1d",i,j);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           fprintf(ficrespij,"\n");  }
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /************ Variance ******************/
             for(i=1; i<=nlstate;i++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
               for(j=1; j<=nlstate+ndeath;j++)  {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* Variance of health expectancies */
             fprintf(ficrespij,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           }    /* double **newm;*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **dnewm,**doldm;
           fprintf(ficrespij,"\n");    double **dnewmp,**doldmp;
         }    int i, j, nhstepm, hstepm, h, nstepm ;
     }    int k, cptcode;
   }    double *xp;
     double **gp, **gm;  /* for var eij */
   fclose(ficrespij);    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   /*---------- Health expectancies and variances ------------*/    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   strcpy(filerest,"t");    double ***p3mat;
   strcat(filerest,fileres);    double age,agelim, hf;
   if((ficrest=fopen(filerest,"w"))==NULL) {    double ***mobaverage;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    int theta;
   }    char digit[4];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   strcpy(filerese,"e");  
   strcat(filerese,fileres);    if(popbased==1){
   if((ficreseij=fopen(filerese,"w"))==NULL) {      if(mobilav!=0)
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        strcpy(digitp,"-populbased-mobilav-");
   }      else strcpy(digitp,"-populbased-nomobil-");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    }
     else 
  strcpy(fileresv,"v");      strcpy(digitp,"-stablbased-");
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    if (mobilav!=0) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    strcpy(fileresprobmorprev,"prmorprev"); 
       fprintf(ficrest,"\n#****** ");    sprintf(digit,"%-d",ij);
       for(j=1;j<=cptcovn;j++)    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       fprintf(ficrest,"******\n");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
       fprintf(ficreseij,"\n#****** ");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       for(j=1;j<=cptcovn;j++)      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficreseij,"******\n");    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficresvij,"\n#****** ");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(j=1;j<=cptcovn;j++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficresvij,"******\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(i=1; i<=nlstate;i++)
       oldm=oldms;savm=savms;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      }  
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficresprobmorprev,"\n");
       oldm=oldms;savm=savms;    fprintf(ficgp,"\n# Routine varevsij");
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
          fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /*   } */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficrest,"\n");  
            fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       hf=1;    fprintf(ficresvij,"# Age");
       if (stepm >= YEARM) hf=stepm/YEARM;    for(i=1; i<=nlstate;i++)
       epj=vector(1,nlstate+1);      for(j=1; j<=nlstate;j++)
       for(age=bage; age <=fage ;age++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficresvij,"\n");
         fprintf(ficrest," %.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    xp=vector(1,npar);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    dnewm=matrix(1,nlstate,1,npar);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    doldm=matrix(1,nlstate,1,nlstate);
           }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           epj[nlstate+1] +=epj[j];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }  
         for(i=1, vepp=0.;i <=nlstate;i++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           for(j=1;j <=nlstate;j++)    gpp=vector(nlstate+1,nlstate+ndeath);
             vepp += vareij[i][j][(int)age];    gmp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         for(j=1;j <=nlstate;j++){    
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrest,"\n");    }
       }    else  hstepm=estepm;   
     }    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               nhstepm is the number of hstepm from age to agelim 
  fclose(ficreseij);       nstepm is the number of stepm from age to agelin. 
  fclose(ficresvij);       Look at hpijx to understand the reason of that which relies in memory size
   fclose(ficrest);       and note for a fixed period like k years */
   fclose(ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   free_vector(epj,1,nlstate+1);       survival function given by stepm (the optimization length). Unfortunately it
   /*  scanf("%d ",i); */       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /*------- Variance limit prevalence------*/         results. So we changed our mind and took the option of the best precision.
     */
 strcpy(fileresvpl,"vpl");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcat(fileresvpl,fileres);    agelim = AGESUP;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     exit(0);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
  k=0;      gm=matrix(0,nhstepm,1,nlstate);
  for(cptcov=1;cptcov<=i1;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;      for(theta=1; theta <=npar; theta++){
      fprintf(ficresvpl,"\n#****** ");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      for(j=1;j<=cptcovn;j++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        }
      fprintf(ficresvpl,"******\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
              prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  
      oldm=oldms;savm=savms;        if (popbased==1) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          if(mobilav ==0){
    }            for(i=1; i<=nlstate;i++)
  }              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   fclose(ficresvpl);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   /*---------- End : free ----------------*/          }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        }
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(j=1; j<= nlstate; j++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        /* This for computing probability of death (h=1 means
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   free_matrix(matcov,1,npar,1,npar);        */
   free_vector(delti,1,npar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   printf("End of Imach\n");        /* end probability of death */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /*printf("Total time was %d uSec.\n", total_usecs);*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /*------ End -----------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
  end:        if (popbased==1) {
 #ifdef windows          if(mobilav ==0){
  chdir(pathcd);            for(i=1; i<=nlstate;i++)
 #endif              prlim[i][i]=probs[(int)age][i][ij];
  system("wgnuplot graph.plt");          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
 #ifdef windows              prlim[i][i]=mobaverage[(int)age][i][ij];
   while (z[0] != 'q') {          }
     chdir(pathcd);        }
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  
     scanf("%s",z);        for(j=1; j<= nlstate; j++){
     if (z[0] == 'c') system("./imach");          for(h=0; h<=nhstepm; h++){
     else if (z[0] == 'e') {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       chdir(path);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       system("index.htm");          }
     }        }
     else if (z[0] == 'q') exit(0);        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months) 
 #endif           as a weighted average of prlim.
 }        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.6  
changed lines
  Added in v.1.102


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>