version 1.60, 2002/11/19 00:17:38
|
version 1.65, 2002/12/11 16:58:19
|
Line 928 double func( double *x)
|
Line 928 double func( double *x)
|
cov[1]=1.; |
cov[1]=1.; |
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
|
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
|
} |
|
|
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
|
|
|
|
} /* end mult */ |
|
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
|
/* But now since version 0.9 we anticipate for bias and large stepm. |
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
|
* (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-bbh)*out[s1][s2])); |
|
/*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-bbh)*out[s1][s2]));*/ |
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
|
/*if(lli ==000.0)*/ |
|
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
|
|
|
if(mle==1){ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
|
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
|
} |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
|
/* But now since version 0.9 we anticipate for bias and large stepm. |
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
|
* (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
/* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
|
*/ |
|
/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
|
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
|
/*if(lli ==000.0)*/ |
|
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
} else if(mle==2){ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<=dh[mi][i]; d++){ |
|
newm=savm; |
|
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
|
} |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
|
/* But now since version 0.9 we anticipate for bias and large stepm. |
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
|
* (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
/* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
|
*/ |
|
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
|
/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
|
/*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */ |
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
|
/*if(lli ==000.0)*/ |
|
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
} else if(mle==3){ /* exponential inter-extrapolation */ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
|
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
|
} |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
|
/* But now since version 0.9 we anticipate for bias and large stepm. |
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
|
* (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
/* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
|
*/ |
|
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */ |
|
lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
|
/*if(lli ==000.0)*/ |
|
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
}else{ /* ml=4 no inter-extrapolation */ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
|
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
|
} |
|
|
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
} /* End of if */ |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
Line 1000 void mlikeli(FILE *ficres,double p[], in
|
Line 1131 void mlikeli(FILE *ficres,double p[], in
|
powell(p,xi,npar,ftol,&iter,&fret,func); |
powell(p,xi,npar,ftol,&iter,&fret,func); |
|
|
printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); |
printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); |
fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
|
|
} |
} |
Line 1584 void concatwav(int wav[], int **dh, int
|
Line 1715 void concatwav(int wav[], int **dh, int
|
jk= j/stepm; |
jk= j/stepm; |
jl= j -jk*stepm; |
jl= j -jk*stepm; |
ju= j -(jk+1)*stepm; |
ju= j -(jk+1)*stepm; |
if(jl <= -ju){ |
if(mle <=1){ |
dh[mi][i]=jk; |
if(jl==0){ |
bh[mi][i]=jl; |
dh[mi][i]=jk; |
} |
bh[mi][i]=0; |
else{ |
}else{ /* We want a negative bias in order to only have interpolation ie |
dh[mi][i]=jk+1; |
* at the price of an extra matrix product in likelihood */ |
bh[mi][i]=ju; |
dh[mi][i]=jk+1; |
} |
bh[mi][i]=ju; |
if(dh[mi][i]==0){ |
} |
dh[mi][i]=1; /* At least one step */ |
}else{ |
bh[mi][i]=ju; /* At least one step */ |
if(jl <= -ju){ |
printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i); |
dh[mi][i]=jk; |
|
bh[mi][i]=jl; /* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
|
*/ |
|
} |
|
else{ |
|
dh[mi][i]=jk+1; |
|
bh[mi][i]=ju; |
|
} |
|
if(dh[mi][i]==0){ |
|
dh[mi][i]=1; /* At least one step */ |
|
bh[mi][i]=ju; /* At least one step */ |
|
printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i); |
|
} |
|
if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm); |
} |
} |
if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm); |
} /* end if mle */ |
} |
} /* end wave */ |
} |
|
} |
} |
jmean=sum/k; |
jmean=sum/k; |
printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); |
printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); |
Line 3122 populforecast(char fileres[], double anp
|
Line 3266 populforecast(char fileres[], double anp
|
|
|
int main(int argc, char *argv[]) |
int main(int argc, char *argv[]) |
{ |
{ |
|
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod; |
int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod; |
double agedeb, agefin,hf; |
double agedeb, agefin,hf; |
double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; |
double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; |
Line 3160 int main(int argc, char *argv[])
|
Line 3304 int main(int argc, char *argv[])
|
double *epj, vepp; |
double *epj, vepp; |
double kk1, kk2; |
double kk1, kk2; |
double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2; |
double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2; |
/*int *movingaverage; */ |
|
|
|
char *alph[]={"a","a","b","c","d","e"}, str[4]; |
char *alph[]={"a","a","b","c","d","e"}, str[4]; |
|
|
Line 3663 int main(int argc, char *argv[])
|
Line 3806 int main(int argc, char *argv[])
|
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
|
|
if(mle==1){ |
if(mle>=1){ /* Could be 1 or 2 */ |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
} |
} |
|
|
Line 3867 Interval (in months) between two waves:
|
Line 4010 Interval (in months) between two waves:
|
free_imatrix(mw,1,lastpass-firstpass+1,1,imx); |
free_imatrix(mw,1,lastpass-firstpass+1,1,imx); |
free_ivector(num,1,n); |
free_ivector(num,1,n); |
free_vector(agedc,1,n); |
free_vector(agedc,1,n); |
free_matrix(covar,0,NCOVMAX,1,n); |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
fclose(ficparo); |
fclose(ficparo); |
fclose(ficres); |
fclose(ficres); |
Line 4150 Interval (in months) between two waves:
|
Line 4293 Interval (in months) between two waves:
|
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
|
|
|
free_matrix(covar,0,NCOVMAX,1,n); |
free_matrix(matcov,1,npar,1,npar); |
free_matrix(matcov,1,npar,1,npar); |
free_vector(delti,1,npar); |
free_vector(delti,1,npar); |
free_matrix(agev,1,maxwav,1,imx); |
free_matrix(agev,1,maxwav,1,imx); |