Diff for /imach/src/imach.c between versions 1.62 and 1.68

version 1.62, 2002/11/20 07:56:21 version 1.68, 2003/02/04 12:40:59
Line 32 Line 32
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month, quarter,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
Line 83 Line 83
 #define ODIRSEPARATOR '\\'  #define ODIRSEPARATOR '\\'
 #endif  #endif
   
 char version[80]="Imach version 0.9, November 2002, INED-EUROREVES ";  char version[80]="Imach version 0.91, November 2002, INED-EUROREVES ";
 int erreur; /* Error number */  int erreur; /* Error number */
 int nvar;  int nvar;
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
Line 856  double **matprod2(double **out, double * Line 856  double **matprod2(double **out, double *
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month     /* Computes the transition matrix starting at age 'age' over 
      duration (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
      (typically every 2 years instead of every month which is too big).       (typically every 2 years instead of every month which is too big 
        for the memory).
      Model is determined by parameters x and covariates have to be        Model is determined by parameters x and covariates have to be 
      included manually here.        included manually here. 
   
Line 917  double func( double *x) Line 919  double func( double *x)
   double sw; /* Sum of weights */    double sw; /* Sum of weights */
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
   int s1, s2;    int s1, s2;
   double bbh;    double bbh, survp;
   long ipmx;    long ipmx;
   /*extern weight */    /*extern weight */
   /* We are differentiating ll according to initial status */    /* We are differentiating ll according to initial status */
Line 944  double func( double *x) Line 946  double func( double *x)
           for (kk=1; kk<=cptcovage;kk++) {            for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
           
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;            savm=oldm;
           oldm=newm;            oldm=newm;
           
           
         } /* end mult */          } /* end mult */
               
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
Line 968  double func( double *x) Line 967  double func( double *x)
          */           */
         s1=s[mw[mi][i]][i];          s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];          s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;          bbh=(double)bh[mi][i]/(double)stepm; 
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));          /* bias is positive if real duration
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-bbh)*out[s1][s2]));*/           * is higher than the multiple of stepm and negative otherwise.
            */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           /* if s2=-2 lli=out[1][1]+out[1][2];*/
           if (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
             lli= survp;
           }
   
           else
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));  /* linear interpolation */
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         /*if(lli ==000.0)*/          /*if(lli ==000.0)*/
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
Line 979  double func( double *x) Line 989  double func( double *x)
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } /* end of wave */        } /* end of wave */
     } /* end of individual */      } /* end of individual */
   }  else{     }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
           } /* end mult */
         
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
            */
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
            */
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
           } /* end mult */
         
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
            */
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
            */
           /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
     }else{  /* ml=4 no inter-extrapolation */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){
Line 1030  void mlikeli(FILE *ficres,double p[], in Line 1141  void mlikeli(FILE *ficres,double p[], in
   powell(p,xi,npar,ftol,&iter,&fret,func);    powell(p,xi,npar,ftol,&iter,&fret,func);
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
 }  }
Line 1313  void  freqsummary(char fileres[], int ag Line 1424  void  freqsummary(char fileres[], int ag
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     exit(0);      exit(0);
   }    }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    freq= ma3x(-2,nlstate+ndeath,-2,nlstate+ndeath,agemin,agemax+3);
   j1=0;    j1=0;
       
   j=cptcoveff;    j=cptcoveff;
Line 1428  void  freqsummary(char fileres[], int ag Line 1539  void  freqsummary(char fileres[], int ag
           }            }
         }          }
                   
         for(jk=-1; jk <=nlstate+ndeath; jk++)          for(jk=-2; jk <=nlstate+ndeath; jk++)
           for(m=-1; m <=nlstate+ndeath; m++)            for(m=-2; m <=nlstate+ndeath; m++)
             if(freq[jk][m][i] !=0 ) {              if(freq[jk][m][i] !=0 ) {
             if(first==1)              if(first==1)
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
Line 1446  void  freqsummary(char fileres[], int ag Line 1557  void  freqsummary(char fileres[], int ag
   dateintmean=dateintsum/k2cpt;     dateintmean=dateintsum/k2cpt; 
     
   fclose(ficresp);    fclose(ficresp);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    free_ma3x(freq,-2,nlstate+ndeath,-2,nlstate+ndeath,(int) agemin,(int) agemax+3);
   free_vector(pp,1,nlstate);    free_vector(pp,1,nlstate);
       
   /* End of Freq */    /* End of Freq */
Line 1463  void prevalence(int agemin, float agemax Line 1574  void prevalence(int agemin, float agemax
   
   pp=vector(1,nlstate);    pp=vector(1,nlstate);
       
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    freq=ma3x(-2,nlstate+ndeath,-2,nlstate+ndeath,agemin,agemax+3);
   j1=0;    j1=0;
       
   j=cptcoveff;    j=cptcoveff;
Line 1473  void prevalence(int agemin, float agemax Line 1584  void prevalence(int agemin, float agemax
     for(i1=1; i1<=ncodemax[k1];i1++){      for(i1=1; i1<=ncodemax[k1];i1++){
       j1++;        j1++;
               
       for (i=-1; i<=nlstate+ndeath; i++)          for (i=-2; i<=nlstate+ndeath; i++)  
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for (jk=-2; jk<=nlstate+ndeath; jk++)  
           for(m=agemin; m <= agemax+3; m++)            for(m=agemin; m <= agemax+3; m++)
             freq[i][jk][m]=0;              freq[i][jk][m]=0;
             
Line 1531  void prevalence(int agemin, float agemax Line 1642  void prevalence(int agemin, float agemax
   } /* end k1 */    } /* end k1 */
   
       
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    free_ma3x(freq,-2,nlstate+ndeath,-2,nlstate+ndeath,(int) agemin,(int) agemax+3);
   free_vector(pp,1,nlstate);    free_vector(pp,1,nlstate);
       
 }  /* End of Freq */  }  /* End of Freq */
Line 1561  void  concatwav(int wav[], int **dh, int Line 1672  void  concatwav(int wav[], int **dh, int
     mi=0;      mi=0;
     m=firstpass;      m=firstpass;
     while(s[m][i] <= nlstate){      while(s[m][i] <= nlstate){
       if(s[m][i]>=1)        if(s[m][i]>=1 || s[m][i]==-2)
         mw[++mi][i]=m;          mw[++mi][i]=m;
       if(m >=lastpass)        if(m >=lastpass)
         break;          break;
Line 1601  void  concatwav(int wav[], int **dh, int Line 1712  void  concatwav(int wav[], int **dh, int
           if (j <= jmin) jmin=j;            if (j <= jmin) jmin=j;
           sum=sum+j;            sum=sum+j;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            /*if (j<0) printf("j=%d num=%d \n",j,i); */
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           }            }
         }          }
         else{          else{
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           k=k+1;            k=k+1;
           if (j >= jmax) jmax=j;            if (j >= jmax) jmax=j;
           else if (j <= jmin)jmin=j;            else if (j <= jmin)jmin=j;
Line 1614  void  concatwav(int wav[], int **dh, int Line 1727  void  concatwav(int wav[], int **dh, int
         jk= j/stepm;          jk= j/stepm;
         jl= j -jk*stepm;          jl= j -jk*stepm;
         ju= j -(jk+1)*stepm;          ju= j -(jk+1)*stepm;
         if(jl <= -ju){          if(mle <=1){ 
           dh[mi][i]=jk;            if(jl==0){
           bh[mi][i]=jl;              dh[mi][i]=jk;
         }              bh[mi][i]=0;
         else{            }else{ /* We want a negative bias in order to only have interpolation ie
           dh[mi][i]=jk+1;                    * at the price of an extra matrix product in likelihood */
           bh[mi][i]=ju;              dh[mi][i]=jk+1;
         }              bh[mi][i]=ju;
         if(dh[mi][i]==0){            }
           dh[mi][i]=1; /* At least one step */          }else{
           bh[mi][i]=ju; /* At least one step */            if(jl <= -ju){
           printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
                                    */
             }
             else{
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
               printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);
             }
         }          }
         if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm);        } /* end if mle */
       }      } /* end wave */
     }  
   }    }
   jmean=sum/k;    jmean=sum/k;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
Line 1730  void evsij(char fileres[], double ***eij Line 1855  void evsij(char fileres[], double ***eij
    * This is mainly to measure the difference between two models: for example     * This is mainly to measure the difference between two models: for example
    * if stepm=24 months pijx are given only every 2 years and by summing them     * if stepm=24 months pijx are given only every 2 years and by summing them
    * we are calculating an estimate of the Life Expectancy assuming a linear      * we are calculating an estimate of the Life Expectancy assuming a linear 
    * progression inbetween and thus overestimating or underestimating according     * progression in between and thus overestimating or underestimating according
    * to the curvature of the survival function. If, for the same date, we      * to the curvature of the survival function. If, for the same date, we 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    * to compare the new estimate of Life expectancy with the same linear      * to compare the new estimate of Life expectancy with the same linear 
Line 1920  void varevsij(char optionfilefiname[], d Line 2045  void varevsij(char optionfilefiname[], d
   }    }
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficresprobmorprev," p.%-d SE",j);      fprintf(ficresprobmorprev," p.%-d SE",j);
Line 1942  void varevsij(char optionfilefiname[], d Line 2067  void varevsij(char optionfilefiname[], d
     exit(0);      exit(0);
   }    }
   else{    else{
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   }    }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
Line 1977  void varevsij(char optionfilefiname[], d Line 2102  void varevsij(char optionfilefiname[], d
      and note for a fixed period like k years */       and note for a fixed period like k years */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      survival function given by stepm (the optimization length). Unfortunately it       survival function given by stepm (the optimization length). Unfortunately it
      means that if the survival funtion is printed only each two years of age and if       means that if the survival funtion is printed every two years of age and if
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      results. So we changed our mind and took the option of the best precision.       results. So we changed our mind and took the option of the best precision.
   */    */
Line 1993  void varevsij(char optionfilefiname[], d Line 2118  void varevsij(char optionfilefiname[], d
   
   
     for(theta=1; theta <=npar; theta++){      for(theta=1; theta <=npar; theta++){
       for(i=1; i<=npar; i++){ /* Computes gradient */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
Line 2015  void varevsij(char optionfilefiname[], d Line 2140  void varevsij(char optionfilefiname[], d
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
       }        }
       /* This for computing forces of mortality (h=1)as a weighted average */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){        for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){
         for(i=1; i<= nlstate; i++)          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           gpp[j] += prlim[i][i]*p3mat[i][j][1];            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       }            }    
       /* end force of mortality */        /* end probability of death */
   
       for(i=1; i<=npar; i++) /* Computes gradient */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
Line 2043  void varevsij(char optionfilefiname[], d Line 2171  void varevsij(char optionfilefiname[], d
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
       }        }
       /* This for computing force of mortality (h=1)as a weighted average */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
         for(i=1; i<= nlstate; i++)          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           gmp[j] += prlim[i][i]*p3mat[i][j][1];           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       }            }    
       /* end force of mortality */        /* end probability of death */
   
       for(j=1; j<= nlstate; j++) /* vareij */        for(j=1; j<= nlstate; j++) /* vareij */
         for(h=0; h<=nhstepm; h++){          for(h=0; h<=nhstepm; h++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       }        }
Line 2068  void varevsij(char optionfilefiname[], d Line 2200  void varevsij(char optionfilefiname[], d
           trgradg[h][j][theta]=gradg[h][theta][j];            trgradg[h][j][theta]=gradg[h][theta][j];
   
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       for(theta=1; theta <=npar; theta++)        for(theta=1; theta <=npar; theta++) {
         trgradgp[j][theta]=gradgp[theta][j];          trgradgp[j][theta]=gradgp[theta][j];
         }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(i=1;i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
Line 2089  void varevsij(char optionfilefiname[], d Line 2222  void varevsij(char optionfilefiname[], d
     /* pptj */      /* pptj */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)   
       for(i=nlstate+1;i<=nlstate+ndeath;i++)     for(j=nlstate+1;j<=nlstate+ndeath;j++)
        for(i=nlstate+1;i<=nlstate+ndeath;i++){
         varppt[j][i]=doldmp[j][i];          varppt[j][i]=doldmp[j][i];
        }
   
     /* end ppptj */      /* end ppptj */
       /*  x centered again */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
Line 2106  void varevsij(char optionfilefiname[], d Line 2243  void varevsij(char optionfilefiname[], d
       }        }
     }      }
           
     /* This for computing force of mortality (h=1)as a weighted average */      /* This for computing probability of death (h=1 means
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       for(i=1; i<= nlstate; i++)         as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         gmp[j] += prlim[i][i]*p3mat[i][j][1];           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }          }    
     /* end force of mortality */      /* end probability of death */
   
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
Line 2141  void varevsij(char optionfilefiname[], d Line 2281  void varevsij(char optionfilefiname[], d
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", estepm,digitp,digit);
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 */  */
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);
Line 3575  int main(int argc, char *argv[]) Line 3718  int main(int argc, char *argv[])
   for (i=1; i<=imx; i++)  {    for (i=1; i<=imx; i++)  {
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     for(m=1; (m<= maxwav); m++){      for(m=1; (m<= maxwav); m++){
       if(s[m][i] >0){        if(s[m][i] >0 || s[m][i]==-2){
         if (s[m][i] >= nlstate+1) {          if (s[m][i] >= nlstate+1) {
           if(agedc[i]>0)            if(agedc[i]>0)
             if(moisdc[i]!=99 && andc[i]!=9999)              if(moisdc[i]!=99 && andc[i]!=9999) agev[m][i]=agedc[i];
               agev[m][i]=agedc[i];  
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
             else {              else {
               if (andc[i]!=9999){                if (andc[i]!=9999){
Line 3641  int main(int argc, char *argv[]) Line 3783  int main(int argc, char *argv[])
   dh=imatrix(1,lastpass-firstpass+1,1,imx);    dh=imatrix(1,lastpass-firstpass+1,1,imx);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    bh=imatrix(1,lastpass-firstpass+1,1,imx);
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
        
   
   /* Concatenates waves */    /* Concatenates waves */
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
Line 3850  int main(int argc, char *argv[]) Line 3993  int main(int argc, char *argv[])
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
   
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
   /*------------ gnuplot -------------*/    /*------------ gnuplot -------------*/
Line 3896  Interval (in months) between two waves: Line 4040  Interval (in months) between two waves:
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
   free_ivector(num,1,n);    free_ivector(num,1,n);
   free_vector(agedc,1,n);    free_vector(agedc,1,n);
   free_matrix(covar,0,NCOVMAX,1,n);    /*free_matrix(covar,0,NCOVMAX,1,n);*/
   /*free_matrix(covar,1,NCOVMAX,1,n);*/    /*free_matrix(covar,1,NCOVMAX,1,n);*/
   fclose(ficparo);    fclose(ficparo);
   fclose(ficres);    fclose(ficres);
Line 4012  Interval (in months) between two waves: Line 4156  Interval (in months) between two waves:
   
   
   /*---------- Forecasting ------------------*/    /*---------- Forecasting ------------------*/
   if((stepm == 1) && (strcmp(model,".")==0)){     if((stepm == 1) && (strcmp(model,".")==0)){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
   }     } 
Line 4020  Interval (in months) between two waves: Line 4164  Interval (in months) between two waves:
     erreur=108;      erreur=108;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
   }      }
       
   
   /*---------- Health expectancies and variances ------------*/    /*---------- Health expectancies and variances ------------*/
Line 4044  Interval (in months) between two waves: Line 4188  Interval (in months) between two waves:
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    printf("Computing Health Expectancies: result on file '%s' \n", filerese);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
   
   strcpy(fileresv,"v");    strcpy(fileresv,"v");
   strcat(fileresv,fileres);    strcat(fileresv,fileres);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    if((ficresvij=fopen(fileresv,"w"))==NULL) {
Line 4179  Interval (in months) between two waves: Line 4324  Interval (in months) between two waves:
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
      
     free_matrix(covar,0,NCOVMAX,1,n);
   free_matrix(matcov,1,npar,1,npar);    free_matrix(matcov,1,npar,1,npar);
   free_vector(delti,1,npar);    free_vector(delti,1,npar);
   free_matrix(agev,1,maxwav,1,imx);    free_matrix(agev,1,maxwav,1,imx);

Removed from v.1.62  
changed lines
  Added in v.1.68


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>