Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.74

version 1.41.2.2, 2003/06/13 07:45:28 version 1.74, 2003/05/02 18:51:41
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month, quarter,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.    of the life expectancies. It also computes the stable prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include <math.h>    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #include <stdio.h>    
 #include <stdlib.h>    **********************************************************************/
 #include <unistd.h>  /*
     main
 #define MAXLINE 256    read parameterfile
 #define GNUPLOTPROGRAM "wgnuplot"    read datafile
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    concatwav
 #define FILENAMELENGTH 80    if (mle >= 1)
 /*#define DEBUG*/      mlikeli
     print results files
 /*#define windows*/    if mle==1 
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */       computes hessian
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    open gnuplot file
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    open html file
     stable prevalence
 #define NINTERVMAX 8     for age prevalim()
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    h Pij x
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    variance of p varprob
 #define NCOVMAX 8 /* Maximum number of covariates */    forecasting if prevfcast==1 prevforecast call prevalence()
 #define MAXN 20000    health expectancies
 #define YEARM 12. /* Number of months per year */    Variance-covariance of DFLE
 #define AGESUP 130    prevalence()
 #define AGEBASE 40     movingaverage()
     varevsij() 
     if popbased==1 varevsij(,popbased)
 int erreur; /* Error number */    total life expectancies
 int nvar;    Variance of stable prevalence
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;   end
 int npar=NPARMAX;  */
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;   
   #include <math.h>
 int *wav; /* Number of waves for this individuual 0 is possible */  #include <stdio.h>
 int maxwav; /* Maxim number of waves */  #include <stdlib.h>
 int jmin, jmax; /* min, max spacing between 2 waves */  #include <unistd.h>
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define MAXLINE 256
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define GNUPLOTPROGRAM "gnuplot"
 double jmean; /* Mean space between 2 waves */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define FILENAMELENGTH 80
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  /*#define DEBUG*/
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define windows
 FILE *ficgp,*ficresprob,*ficpop;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 FILE *ficreseij;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   char fileresv[FILENAMELENGTH];  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define NR_END 1  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define FREE_ARG char*  #define NCOVMAX 8 /* Maximum number of covariates */
 #define FTOL 1.0e-10  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 #define NRANSI  #define AGESUP 130
 #define ITMAX 200  #define AGEBASE 40
   #ifdef windows
 #define TOL 2.0e-4  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 #define CGOLD 0.3819660  #else
 #define ZEPS 1.0e-10  #define DIRSEPARATOR '/'
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define ODIRSEPARATOR '\\'
   #endif
 #define GOLD 1.618034  
 #define GLIMIT 100.0  char version[80]="Imach version 0.95, February 2003, INED-EUROREVES ";
 #define TINY 1.0e-20  int erreur; /* Error number */
   int nvar;
 static double maxarg1,maxarg2;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  int npar=NPARMAX;
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  int nlstate=2; /* Number of live states */
    int ndeath=1; /* Number of dead states */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #define rint(a) floor(a+0.5)  int popbased=0;
   
 static double sqrarg;  int *wav; /* Number of waves for this individuual 0 is possible */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  int maxwav; /* Maxim number of waves */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  int jmin, jmax; /* min, max spacing between 2 waves */
   int mle, weightopt;
 int imx;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int stepm;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /* Stepm, step in month: minimum step interpolation*/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 int estepm;  double jmean; /* Mean space between 2 waves */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 int m,nb;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  FILE *ficlog;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double **pmmij, ***probs, ***mobaverage;  FILE *ficresprobmorprev;
 double dateintmean=0;  FILE *fichtm; /* Html File */
   FILE *ficreseij;
 double *weight;  char filerese[FILENAMELENGTH];
 int **s; /* Status */  FILE  *ficresvij;
 double *agedc, **covar, idx;  char fileresv[FILENAMELENGTH];
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  char title[MAXLINE];
 double ftolhess; /* Tolerance for computing hessian */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  char filelog[FILENAMELENGTH]; /* Log file */
    char *s;                             /* pointer */  char filerest[FILENAMELENGTH];
    int  l1, l2;                         /* length counters */  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */  #define NR_END 1
 #else  #define FREE_ARG char*
    s = strrchr( path, '/' );            /* find last / */  #define FTOL 1.0e-10
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */  #define NRANSI 
 #if     defined(__bsd__)                /* get current working directory */  #define ITMAX 200 
       extern char       *getwd( );  
   #define TOL 2.0e-4 
       if ( getwd( dirc ) == NULL ) {  
 #else  #define CGOLD 0.3819660 
       extern char       *getcwd( );  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  #define GOLD 1.618034 
          return( GLOCK_ERROR_GETCWD );  #define GLIMIT 100.0 
       }  #define TINY 1.0e-20 
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */  static double maxarg1,maxarg2;
       s++;                              /* after this, the filename */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       l2 = strlen( s );                 /* length of filename */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    
       strcpy( name, s );                /* save file name */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define rint(a) floor(a+0.5)
       dirc[l1-l2] = 0;                  /* add zero */  
    }  static double sqrarg;
    l1 = strlen( dirc );                 /* length of directory */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 #ifdef windows  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  int imx; 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int stepm;
 #endif  /* Stepm, step in month: minimum step interpolation*/
    s = strrchr( name, '.' );            /* find last / */  
    s++;  int estepm;
    strcpy(ext,s);                       /* save extension */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    l1= strlen( name);  
    l2= strlen( s)+1;  int m,nb;
    strncpy( finame, name, l1-l2);  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
    finame[l1-l2]= 0;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    return( 0 );                         /* we're done */  double **pmmij, ***probs;
 }  double dateintmean=0;
   
   double *weight;
 /******************************************/  int **s; /* Status */
   double *agedc, **covar, idx;
 void replace(char *s, char*t)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  
   int i;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   int lg=20;  double ftolhess; /* Tolerance for computing hessian */
   i=0;  
   lg=strlen(t);  /**************** split *************************/
   for(i=0; i<= lg; i++) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     (s[i] = t[i]);  {
     if (t[i]== '\\') s[i]='/';    char  *ss;                            /* pointer */
   }    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 int nbocc(char *s, char occ)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int i,j=0;    if ( ss == NULL ) {                   /* no directory, so use current */
   int lg=20;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   i=0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   lg=strlen(s);      /* get current working directory */
   for(i=0; i<= lg; i++) {      /*    extern  char* getcwd ( char *buf , int len);*/
   if  (s[i] == occ ) j++;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   }        return( GLOCK_ERROR_GETCWD );
   return j;      }
 }      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
 void cutv(char *u,char *v, char*t, char occ)      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   int i,lg,j,p=0;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   i=0;      strcpy( name, ss );         /* save file name */
   for(j=0; j<=strlen(t)-1; j++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      dirc[l1-l2] = 0;                    /* add zero */
   }    }
     l1 = strlen( dirc );                  /* length of directory */
   lg=strlen(t);  #ifdef windows
   for(j=0; j<p; j++) {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
     (u[j] = t[j]);  #else
   }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
      u[p]='\0';  #endif
     ss = strrchr( name, '.' );            /* find last / */
    for(j=0; j<= lg; j++) {    ss++;
     if (j>=(p+1))(v[j-p-1] = t[j]);    strcpy(ext,ss);                       /* save extension */
   }    l1= strlen( name);
 }    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
 /********************** nrerror ********************/    finame[l1-l2]= 0;
     return( 0 );                          /* we're done */
 void nrerror(char error_text[])  }
 {  
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  /******************************************/
   exit(1);  
 }  void replace(char *s, char*t)
 /*********************** vector *******************/  {
 double *vector(int nl, int nh)    int i;
 {    int lg=20;
   double *v;    i=0;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    lg=strlen(t);
   if (!v) nrerror("allocation failure in vector");    for(i=0; i<= lg; i++) {
   return v-nl+NR_END;      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /************************ free vector ******************/  }
 void free_vector(double*v, int nl, int nh)  
 {  int nbocc(char *s, char occ)
   free((FREE_ARG)(v+nl-NR_END));  {
 }    int i,j=0;
     int lg=20;
 /************************ivector *******************************/    i=0;
 int *ivector(long nl,long nh)    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   int *v;    if  (s[i] == occ ) j++;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    }
   if (!v) nrerror("allocation failure in ivector");    return j;
   return v-nl+NR_END;  }
 }  
   void cutv(char *u,char *v, char*t, char occ)
 /******************free ivector **************************/  {
 void free_ivector(int *v, long nl, long nh)    /* cuts string t into u and v where u is ended by char occ excluding it
 {       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   free((FREE_ARG)(v+nl-NR_END));       gives u="abcedf" and v="ghi2j" */
 }    int i,lg,j,p=0;
     i=0;
 /******************* imatrix *******************************/    for(j=0; j<=strlen(t)-1; j++) {
 int **imatrix(long nrl, long nrh, long ncl, long nch)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    }
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    lg=strlen(t);
   int **m;    for(j=0; j<p; j++) {
        (u[j] = t[j]);
   /* allocate pointers to rows */    }
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));       u[p]='\0';
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;     for(j=0; j<= lg; j++) {
   m -= nrl;      if (j>=(p+1))(v[j-p-1] = t[j]);
      }
    }
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /********************** nrerror ********************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  void nrerror(char error_text[])
   m[nrl] -= ncl;  {
      fprintf(stderr,"ERREUR ...\n");
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    fprintf(stderr,"%s\n",error_text);
      exit(EXIT_FAILURE);
   /* return pointer to array of pointers to rows */  }
   return m;  /*********************** vector *******************/
 }  double *vector(int nl, int nh)
   {
 /****************** free_imatrix *************************/    double *v;
 void free_imatrix(m,nrl,nrh,ncl,nch)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       int **m;    if (!v) nrerror("allocation failure in vector");
       long nch,ncl,nrh,nrl;    return v-nl+NR_END;
      /* free an int matrix allocated by imatrix() */  }
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /************************ free vector ******************/
   free((FREE_ARG) (m+nrl-NR_END));  void free_vector(double*v, int nl, int nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  /************************ivector *******************************/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int *ivector(long nl,long nh)
   double **m;  {
     int *v;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!v) nrerror("allocation failure in ivector");
   m += NR_END;    return v-nl+NR_END;
   m -= nrl;  }
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /******************free ivector **************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void free_ivector(int *v, long nl, long nh)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    free((FREE_ARG)(v+nl-NR_END));
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  /******************* imatrix *******************************/
 }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 /*************************free matrix ************************/  { 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 {    int **m; 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    
   free((FREE_ARG)(m+nrl-NR_END));    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 /******************* ma3x *******************************/    m += NR_END; 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    m -= nrl; 
 {    
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    
   double ***m;    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   if (!m) nrerror("allocation failure 1 in matrix()");    m[nrl] += NR_END; 
   m += NR_END;    m[nrl] -= ncl; 
   m -= nrl;    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    /* return pointer to array of pointers to rows */ 
   m[nrl] += NR_END;    return m; 
   m[nrl] -= ncl;  } 
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));        int **m;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");        long nch,ncl,nrh,nrl; 
   m[nrl][ncl] += NR_END;       /* free an int matrix allocated by imatrix() */ 
   m[nrl][ncl] -= nll;  { 
   for (j=ncl+1; j<=nch; j++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     m[nrl][j]=m[nrl][j-1]+nlay;    free((FREE_ARG) (m+nrl-NR_END)); 
    } 
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /******************* matrix *******************************/
     for (j=ncl+1; j<=nch; j++)  double **matrix(long nrl, long nrh, long ncl, long nch)
       m[i][j]=m[i][j-1]+nlay;  {
   }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   return m;    double **m;
 }  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /*************************free ma3x ************************/    if (!m) nrerror("allocation failure 1 in matrix()");
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    m += NR_END;
 {    m -= nrl;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   free((FREE_ARG)(m+nrl-NR_END));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /***************** f1dim *************************/  
 extern int ncom;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 extern double *pcom,*xicom;    return m;
 extern double (*nrfunc)(double []);    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
       */
 double f1dim(double x)  }
 {  
   int j;  /*************************free matrix ************************/
   double f;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double *xt;  {
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
   xt=vector(1,ncom);    free((FREE_ARG)(m+nrl-NR_END));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  }
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /******************* ma3x *******************************/
   return f;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 }  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 /*****************brent *************************/    double ***m;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int iter;    if (!m) nrerror("allocation failure 1 in matrix()");
   double a,b,d,etemp;    m += NR_END;
   double fu,fv,fw,fx;    m -= nrl;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double e=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
   a=(ax < cx ? ax : cx);    m[nrl] -= ncl;
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     xm=0.5*(a+b);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    m[nrl][ncl] += NR_END;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m[nrl][ncl] -= nll;
     printf(".");fflush(stdout);    for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG      m[nrl][j]=m[nrl][j-1]+nlay;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for (i=nrl+1; i<=nrh; i++) {
 #endif      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      for (j=ncl+1; j<=nch; j++) 
       *xmin=x;        m[i][j]=m[i][j-1]+nlay;
       return fx;    }
     }    return m; 
     ftemp=fu;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     if (fabs(e) > tol1) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       r=(x-w)*(fx-fv);    */
       q=(x-v)*(fx-fw);  }
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /*************************free ma3x ************************/
       if (q > 0.0) p = -p;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       q=fabs(q);  {
       etemp=e;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       e=d;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    free((FREE_ARG)(m+nrl-NR_END));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  /***************** f1dim *************************/
         u=x+d;  extern int ncom; 
         if (u-a < tol2 || b-u < tol2)  extern double *pcom,*xicom;
           d=SIGN(tol1,xm-x);  extern double (*nrfunc)(double []); 
       }   
     } else {  double f1dim(double x) 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  { 
     }    int j; 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    double f;
     fu=(*f)(u);    double *xt; 
     if (fu <= fx) {   
       if (u >= x) a=x; else b=x;    xt=vector(1,ncom); 
       SHFT(v,w,x,u)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         SHFT(fv,fw,fx,fu)    f=(*nrfunc)(xt); 
         } else {    free_vector(xt,1,ncom); 
           if (u < x) a=u; else b=u;    return f; 
           if (fu <= fw || w == x) {  } 
             v=w;  
             w=u;  /*****************brent *************************/
             fv=fw;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
             fw=fu;  { 
           } else if (fu <= fv || v == x || v == w) {    int iter; 
             v=u;    double a,b,d,etemp;
             fv=fu;    double fu,fv,fw,fx;
           }    double ftemp;
         }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   }    double e=0.0; 
   nrerror("Too many iterations in brent");   
   *xmin=x;    a=(ax < cx ? ax : cx); 
   return fx;    b=(ax > cx ? ax : cx); 
 }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
 /****************** mnbrak ***********************/    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
             double (*func)(double))      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 {      printf(".");fflush(stdout);
   double ulim,u,r,q, dum;      fprintf(ficlog,".");fflush(ficlog);
   double fu;  #ifdef DEBUG
        printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   *fa=(*func)(*ax);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   *fb=(*func)(*bx);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   if (*fb > *fa) {  #endif
     SHFT(dum,*ax,*bx,dum)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       SHFT(dum,*fb,*fa,dum)        *xmin=x; 
       }        return fx; 
   *cx=(*bx)+GOLD*(*bx-*ax);      } 
   *fc=(*func)(*cx);      ftemp=fu;
   while (*fb > *fc) {      if (fabs(e) > tol1) { 
     r=(*bx-*ax)*(*fb-*fc);        r=(x-w)*(fx-fv); 
     q=(*bx-*cx)*(*fb-*fa);        q=(x-v)*(fx-fw); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/        p=(x-v)*q-(x-w)*r; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        q=2.0*(q-r); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);        if (q > 0.0) p = -p; 
     if ((*bx-u)*(u-*cx) > 0.0) {        q=fabs(q); 
       fu=(*func)(u);        etemp=e; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {        e=d; 
       fu=(*func)(u);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       if (fu < *fc) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))        else { 
           SHFT(*fb,*fc,fu,(*func)(u))          d=p/q; 
           }          u=x+d; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {          if (u-a < tol2 || b-u < tol2) 
       u=ulim;            d=SIGN(tol1,xm-x); 
       fu=(*func)(u);        } 
     } else {      } else { 
       u=(*cx)+GOLD*(*cx-*bx);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       fu=(*func)(u);      } 
     }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     SHFT(*ax,*bx,*cx,u)      fu=(*f)(u); 
       SHFT(*fa,*fb,*fc,fu)      if (fu <= fx) { 
       }        if (u >= x) a=x; else b=x; 
 }        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 /*************** linmin ************************/          } else { 
             if (u < x) a=u; else b=u; 
 int ncom;            if (fu <= fw || w == x) { 
 double *pcom,*xicom;              v=w; 
 double (*nrfunc)(double []);              w=u; 
                fv=fw; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))              fw=fu; 
 {            } else if (fu <= fv || v == x || v == w) { 
   double brent(double ax, double bx, double cx,              v=u; 
                double (*f)(double), double tol, double *xmin);              fv=fu; 
   double f1dim(double x);            } 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,          } 
               double *fc, double (*func)(double));    } 
   int j;    nrerror("Too many iterations in brent"); 
   double xx,xmin,bx,ax;    *xmin=x; 
   double fx,fb,fa;    return fx; 
    } 
   ncom=n;  
   pcom=vector(1,n);  /****************** mnbrak ***********************/
   xicom=vector(1,n);  
   nrfunc=func;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for (j=1;j<=n;j++) {              double (*func)(double)) 
     pcom[j]=p[j];  { 
     xicom[j]=xi[j];    double ulim,u,r,q, dum;
   }    double fu; 
   ax=0.0;   
   xx=1.0;    *fa=(*func)(*ax); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    *fb=(*func)(*bx); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if (*fb > *fa) { 
 #ifdef DEBUG      SHFT(dum,*ax,*bx,dum) 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        SHFT(dum,*fb,*fa,dum) 
 #endif        } 
   for (j=1;j<=n;j++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
     xi[j] *= xmin;    *fc=(*func)(*cx); 
     p[j] += xi[j];    while (*fb > *fc) { 
   }      r=(*bx-*ax)*(*fb-*fc); 
   free_vector(xicom,1,n);      q=(*bx-*cx)*(*fb-*fa); 
   free_vector(pcom,1,n);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
 /*************** powell ************************/      if ((*bx-u)*(u-*cx) > 0.0) { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        fu=(*func)(u); 
             double (*func)(double []))      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 {        fu=(*func)(u); 
   void linmin(double p[], double xi[], int n, double *fret,        if (fu < *fc) { 
               double (*func)(double []));          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   int i,ibig,j;            SHFT(*fb,*fc,fu,(*func)(u)) 
   double del,t,*pt,*ptt,*xit;            } 
   double fp,fptt;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double *xits;        u=ulim; 
   pt=vector(1,n);        fu=(*func)(u); 
   ptt=vector(1,n);      } else { 
   xit=vector(1,n);        u=(*cx)+GOLD*(*cx-*bx); 
   xits=vector(1,n);        fu=(*func)(u); 
   *fret=(*func)(p);      } 
   for (j=1;j<=n;j++) pt[j]=p[j];      SHFT(*ax,*bx,*cx,u) 
   for (*iter=1;;++(*iter)) {        SHFT(*fa,*fb,*fc,fu) 
     fp=(*fret);        } 
     ibig=0;  } 
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /*************** linmin ************************/
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  int ncom; 
     printf("\n");  double *pcom,*xicom;
     for (i=1;i<=n;i++) {  double (*nrfunc)(double []); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   
       fptt=(*fret);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 #ifdef DEBUG  { 
       printf("fret=%lf \n",*fret);    double brent(double ax, double bx, double cx, 
 #endif                 double (*f)(double), double tol, double *xmin); 
       printf("%d",i);fflush(stdout);    double f1dim(double x); 
       linmin(p,xit,n,fret,func);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       if (fabs(fptt-(*fret)) > del) {                double *fc, double (*func)(double)); 
         del=fabs(fptt-(*fret));    int j; 
         ibig=i;    double xx,xmin,bx,ax; 
       }    double fx,fb,fa;
 #ifdef DEBUG   
       printf("%d %.12e",i,(*fret));    ncom=n; 
       for (j=1;j<=n;j++) {    pcom=vector(1,n); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    xicom=vector(1,n); 
         printf(" x(%d)=%.12e",j,xit[j]);    nrfunc=func; 
       }    for (j=1;j<=n;j++) { 
       for(j=1;j<=n;j++)      pcom[j]=p[j]; 
         printf(" p=%.12e",p[j]);      xicom[j]=xi[j]; 
       printf("\n");    } 
 #endif    ax=0.0; 
     }    xx=1.0; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 #ifdef DEBUG    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       int k[2],l;  #ifdef DEBUG
       k[0]=1;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       k[1]=-1;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       printf("Max: %.12e",(*func)(p));  #endif
       for (j=1;j<=n;j++)    for (j=1;j<=n;j++) { 
         printf(" %.12e",p[j]);      xi[j] *= xmin; 
       printf("\n");      p[j] += xi[j]; 
       for(l=0;l<=1;l++) {    } 
         for (j=1;j<=n;j++) {    free_vector(xicom,1,n); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    free_vector(pcom,1,n); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  } 
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*************** powell ************************/
       }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 #endif              double (*func)(double [])) 
   { 
     void linmin(double p[], double xi[], int n, double *fret, 
       free_vector(xit,1,n);                double (*func)(double [])); 
       free_vector(xits,1,n);    int i,ibig,j; 
       free_vector(ptt,1,n);    double del,t,*pt,*ptt,*xit;
       free_vector(pt,1,n);    double fp,fptt;
       return;    double *xits;
     }    pt=vector(1,n); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    ptt=vector(1,n); 
     for (j=1;j<=n;j++) {    xit=vector(1,n); 
       ptt[j]=2.0*p[j]-pt[j];    xits=vector(1,n); 
       xit[j]=p[j]-pt[j];    *fret=(*func)(p); 
       pt[j]=p[j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
     fptt=(*func)(ptt);      fp=(*fret); 
     if (fptt < fp) {      ibig=0; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      del=0.0; 
       if (t < 0.0) {      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         linmin(p,xit,n,fret,func);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         for (j=1;j<=n;j++) {      for (i=1;i<=n;i++) 
           xi[j][ibig]=xi[j][n];        printf(" %d %.12f",i, p[i]);
           xi[j][n]=xit[j];      fprintf(ficlog," %d %.12f",i, p[i]);
         }      printf("\n");
 #ifdef DEBUG      fprintf(ficlog,"\n");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      for (i=1;i<=n;i++) { 
         for(j=1;j<=n;j++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
           printf(" %.12e",xit[j]);        fptt=(*fret); 
         printf("\n");  #ifdef DEBUG
 #endif        printf("fret=%lf \n",*fret);
       }        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
   }        printf("%d",i);fflush(stdout);
 }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
 /**** Prevalence limit ****************/        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          ibig=i; 
 {        } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #ifdef DEBUG
      matrix by transitions matrix until convergence is reached */        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   int i, ii,j,k;        for (j=1;j<=n;j++) {
   double min, max, maxmin, maxmax,sumnew=0.;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double **matprod2();          printf(" x(%d)=%.12e",j,xit[j]);
   double **out, cov[NCOVMAX], **pmij();          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double **newm;        }
   double agefin, delaymax=50 ; /* Max number of years to converge */        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   for (ii=1;ii<=nlstate+ndeath;ii++)          fprintf(ficlog," p=%.12e",p[j]);
     for (j=1;j<=nlstate+ndeath;j++){        }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        printf("\n");
     }        fprintf(ficlog,"\n");
   #endif
    cov[1]=1.;      } 
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #ifdef DEBUG
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        int k[2],l;
     newm=savm;        k[0]=1;
     /* Covariates have to be included here again */        k[1]=-1;
      cov[2]=agefin;        printf("Max: %.12e",(*func)(p));
          fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (k=1; k<=cptcovn;k++) {        for (j=1;j<=n;j++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          printf(" %.12e",p[j]);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          fprintf(ficlog," %.12e",p[j]);
       }        }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        printf("\n");
       for (k=1; k<=cptcovprod;k++)        fprintf(ficlog,"\n");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     savm=oldm;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     oldm=newm;        }
     maxmax=0.;  #endif
     for(j=1;j<=nlstate;j++){  
       min=1.;  
       max=0.;        free_vector(xit,1,n); 
       for(i=1; i<=nlstate; i++) {        free_vector(xits,1,n); 
         sumnew=0;        free_vector(ptt,1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        free_vector(pt,1,n); 
         prlim[i][j]= newm[i][j]/(1-sumnew);        return; 
         max=FMAX(max,prlim[i][j]);      } 
         min=FMIN(min,prlim[i][j]);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { 
       maxmin=max-min;        ptt[j]=2.0*p[j]-pt[j]; 
       maxmax=FMAX(maxmax,maxmin);        xit[j]=p[j]-pt[j]; 
     }        pt[j]=p[j]; 
     if(maxmax < ftolpl){      } 
       return prlim;      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 }        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
 /*************** transition probabilities ***************/          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            xi[j][n]=xit[j]; 
 {          }
   double s1, s2;  #ifdef DEBUG
   /*double t34;*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i,j,j1, nc, ii, jj;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
     for(i=1; i<= nlstate; i++){            printf(" %.12e",xit[j]);
     for(j=1; j<i;j++){            fprintf(ficlog," %.12e",xit[j]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          }
         /*s2 += param[i][j][nc]*cov[nc];*/          printf("\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          fprintf(ficlog,"\n");
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #endif
       }        }
       ps[i][j]=s2;      } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    } 
     }  } 
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /**** Prevalence limit (stable prevalence)  ****************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       }  {
       ps[i][j]=s2;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
   }  
     /*ps[3][2]=1;*/    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   for(i=1; i<= nlstate; i++){    double **matprod2();
      s1=0;    double **out, cov[NCOVMAX], **pmij();
     for(j=1; j<i; j++)    double **newm;
       s1+=exp(ps[i][j]);    double agefin, delaymax=50 ; /* Max number of years to converge */
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);    for (ii=1;ii<=nlstate+ndeath;ii++)
     ps[i][i]=1./(s1+1.);      for (j=1;j<=nlstate+ndeath;j++){
     for(j=1; j<i; j++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];     cov[1]=1.;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */   
   } /* end i */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      newm=savm;
     for(jj=1; jj<= nlstate+ndeath; jj++){      /* Covariates have to be included here again */
       ps[ii][jj]=0;       cov[2]=agefin;
       ps[ii][ii]=1;    
     }        for (k=1; k<=cptcovn;k++) {
   }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(jj=1; jj<= nlstate+ndeath; jj++){        for (k=1; k<=cptcovprod;k++)
      printf("%lf ",ps[ii][jj]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    }  
     printf("\n ");        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     printf("\n ");printf("%lf ",cov[2]);*/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 /*      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/      savm=oldm;
     return ps;      oldm=newm;
 }      maxmax=0.;
       for(j=1;j<=nlstate;j++){
 /**************** Product of 2 matrices ******************/        min=1.;
         max=0.;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        for(i=1; i<=nlstate; i++) {
 {          sumnew=0;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          prlim[i][j]= newm[i][j]/(1-sumnew);
   /* in, b, out are matrice of pointers which should have been initialized          max=FMAX(max,prlim[i][j]);
      before: only the contents of out is modified. The function returns          min=FMIN(min,prlim[i][j]);
      a pointer to pointers identical to out */        }
   long i, j, k;        maxmin=max-min;
   for(i=nrl; i<= nrh; i++)        maxmax=FMAX(maxmax,maxmin);
     for(k=ncolol; k<=ncoloh; k++)      }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      if(maxmax < ftolpl){
         out[i][k] +=in[i][j]*b[j][k];        return prlim;
       }
   return out;    }
 }  }
   
   /*************** transition probabilities ***************/ 
 /************* Higher Matrix Product ***************/  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  {
 {    double s1, s2;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    /*double t34;*/
      duration (i.e. until    int i,j,j1, nc, ii, jj;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      for(i=1; i<= nlstate; i++){
      (typically every 2 years instead of every month which is too big).      for(j=1; j<i;j++){
      Model is determined by parameters x and covariates have to be        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
      included manually here.          /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
      */          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
   int i, j, d, h, k;        ps[i][j]=s2;
   double **out, cov[NCOVMAX];        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   double **newm;      }
       for(j=i+1; j<=nlstate+ndeath;j++){
   /* Hstepm could be zero and should return the unit matrix */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=nlstate+ndeath;i++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=1;j<=nlstate+ndeath;j++){          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       oldm[i][j]=(i==j ? 1.0 : 0.0);        }
       po[i][j][0]=(i==j ? 1.0 : 0.0);        ps[i][j]=s2;
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(h=1; h <=nhstepm; h++){      /*ps[3][2]=1;*/
     for(d=1; d <=hstepm; d++){  
       newm=savm;    for(i=1; i<= nlstate; i++){
       /* Covariates have to be included here again */       s1=0;
       cov[1]=1.;      for(j=1; j<i; j++)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        s1+=exp(ps[i][j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      for(j=i+1; j<=nlstate+ndeath; j++)
       for (k=1; k<=cptcovage;k++)        s1+=exp(ps[i][j]);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      ps[i][i]=1./(s1+1.);
       for (k=1; k<=cptcovprod;k++)      for(j=1; j<i; j++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    } /* end i */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       savm=oldm;      for(jj=1; jj<= nlstate+ndeath; jj++){
       oldm=newm;        ps[ii][jj]=0;
     }        ps[ii][ii]=1;
     for(i=1; i<=nlstate+ndeath; i++)      }
       for(j=1;j<=nlstate+ndeath;j++) {    }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       }      for(jj=1; jj<= nlstate+ndeath; jj++){
   } /* end h */       printf("%lf ",ps[ii][jj]);
   return po;     }
 }      printf("\n ");
       }
       printf("\n ");printf("%lf ",cov[2]);*/
 /*************** log-likelihood *************/  /*
 double func( double *x)    for(i=1; i<= npar; i++) printf("%f ",x[i]);
 {    goto end;*/
   int i, ii, j, k, mi, d, kk;      return ps;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  }
   double **out;  
   double sw; /* Sum of weights */  /**************** Product of 2 matrices ******************/
   double lli; /* Individual log likelihood */  
   int s1, s2;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   long ipmx;  {
   /*extern weight */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   /* We are differentiating ll according to initial status */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* in, b, out are matrice of pointers which should have been initialized 
   /*for(i=1;i<imx;i++)       before: only the contents of out is modified. The function returns
     printf(" %d\n",s[4][i]);       a pointer to pointers identical to out */
   */    long i, j, k;
   cov[1]=1.;    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   for(k=1; k<=nlstate; k++) ll[k]=0.;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          out[i][k] +=in[i][j]*b[j][k];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){    return out;
       for (ii=1;ii<=nlstate+ndeath;ii++)  }
         for (j=1;j<=nlstate+ndeath;j++){  
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  /************* Higher Matrix Product ***************/
         }  
       for(d=0; d<dh[mi][i]; d++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         newm=savm;  {
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* Computes the transition matrix starting at age 'age' over 
         for (kk=1; kk<=cptcovage;kk++) {       'nhstepm*hstepm*stepm' months (i.e. until
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         }       nhstepm*hstepm matrices. 
               Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       (typically every 2 years instead of every month which is too big 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       for the memory).
         savm=oldm;       Model is determined by parameters x and covariates have to be 
         oldm=newm;       included manually here. 
          
               */
       } /* end mult */  
          int i, j, d, h, k;
       s1=s[mw[mi][i]][i];    double **out, cov[NCOVMAX];
       s2=s[mw[mi+1][i]][i];    double **newm;
       if( s2 > nlstate){  
         /* i.e. if s2 is a death state and if the date of death is known then the contribution    /* Hstepm could be zero and should return the unit matrix */
            to the likelihood is the probability to die between last step unit time and current    for (i=1;i<=nlstate+ndeath;i++)
            step unit time, which is also the differences between probability to die before dh      for (j=1;j<=nlstate+ndeath;j++){
            and probability to die before dh-stepm .        oldm[i][j]=(i==j ? 1.0 : 0.0);
            In version up to 0.92 likelihood was computed        po[i][j][0]=(i==j ? 1.0 : 0.0);
            as if date of death was unknown. Death was treated as any other      }
            health state: the date of the interview describes the actual state    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            and not the date of a change in health state. The former idea was    for(h=1; h <=nhstepm; h++){
            to consider that at each interview the state was recorded      for(d=1; d <=hstepm; d++){
            (healthy, disable or death) and IMaCh was corrected; but when we        newm=savm;
            introduced the exact date of death then we should have modified        /* Covariates have to be included here again */
            the contribution of an exact death to the likelihood. This new        cov[1]=1.;
            contribution is smaller and very dependent of the step unit        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
            stepm. It is no more the probability to die between last interview        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            and month of death but the probability to survive from last        for (k=1; k<=cptcovage;k++)
            interview up to one month before death multiplied by the          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            probability to die within a month. Thanks to Chris        for (k=1; k<=cptcovprod;k++)
            Jackson for correcting this bug.  Former versions increased          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            mortality artificially. The bad side is that we add another loop  
            which slows down the processing. The difference can be up to 10%  
            lower mortality.        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         lli=log(out[s1][s2] - savm[s1][s2]);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       }else{                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */        savm=oldm;
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        oldm=newm;
       }      }
       ipmx +=1;      for(i=1; i<=nlstate+ndeath; i++)
       sw += weight[i];        for(j=1;j<=nlstate+ndeath;j++) {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          po[i][j][h]=newm[i][j];
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     } /* end of wave */           */
   } /* end of individual */        }
     } /* end h */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    return po;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   /*exit(0);*/  
   return -l;  /*************** log-likelihood *************/
 }  double func( double *x)
   {
     int i, ii, j, k, mi, d, kk;
 /*********** Maximum Likelihood Estimation ***************/    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    double sw; /* Sum of weights */
 {    double lli; /* Individual log likelihood */
   int i,j, iter;    int s1, s2;
   double **xi,*delti;    double bbh, survp;
   double fret;    long ipmx;
   xi=matrix(1,npar,1,npar);    /*extern weight */
   for (i=1;i<=npar;i++)    /* We are differentiating ll according to initial status */
     for (j=1;j<=npar;j++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       xi[i][j]=(i==j ? 1.0 : 0.0);    /*for(i=1;i<imx;i++) 
   printf("Powell\n");      printf(" %d\n",s[4][i]);
   powell(p,xi,npar,ftol,&iter,&fret,func);    */
     cov[1]=1.;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 }    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /**** Computes Hessian and covariance matrix ***/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   double  **a,**y,*x,pd;            for (j=1;j<=nlstate+ndeath;j++){
   double **hess;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j,jk;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int *indx;            }
           for(d=0; d<dh[mi][i]; d++){
   double hessii(double p[], double delta, int theta, double delti[]);            newm=savm;
   double hessij(double p[], double delti[], int i, int j);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   void lubksb(double **a, int npar, int *indx, double b[]) ;            for (kk=1; kk<=cptcovage;kk++) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   hess=matrix(1,npar,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("\nCalculation of the hessian matrix. Wait...\n");            savm=oldm;
   for (i=1;i<=npar;i++){            oldm=newm;
     printf("%d",i);fflush(stdout);          } /* end mult */
     hess[i][i]=hessii(p,ftolhess,i,delti);        
     /*printf(" %f ",p[i]);*/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     /*printf(" %lf ",hess[i][i]);*/          /* But now since version 0.9 we anticipate for bias and large stepm.
   }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   for (i=1;i<=npar;i++) {           * the nearest (and in case of equal distance, to the lowest) interval but now
     for (j=1;j<=npar;j++)  {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       if (j>i) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         printf(".%d%d",i,j);fflush(stdout);           * probability in order to take into account the bias as a fraction of the way
         hess[i][j]=hessij(p,delti,i,j);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         hess[j][i]=hess[i][j];               * -stepm/2 to stepm/2 .
         /*printf(" %lf ",hess[i][j]);*/           * For stepm=1 the results are the same as for previous versions of Imach.
       }           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
   }          s1=s[mw[mi][i]][i];
   printf("\n");          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          /* bias is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
   a=matrix(1,npar,1,npar);           */
   y=matrix(1,npar,1,npar);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   x=vector(1,npar);          if( s2 > nlstate){ 
   indx=ivector(1,npar);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   for (i=1;i<=npar;i++)               to the likelihood is the probability to die between last step unit time and current 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];               step unit time, which is also the differences between probability to die before dh 
   ludcmp(a,npar,indx,&pd);               and probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
   for (j=1;j<=npar;j++) {          as if date of death was unknown. Death was treated as any other
     for (i=1;i<=npar;i++) x[i]=0;          health state: the date of the interview describes the actual state
     x[j]=1;          and not the date of a change in health state. The former idea was
     lubksb(a,npar,indx,x);          to consider that at each interview the state was recorded
     for (i=1;i<=npar;i++){          (healthy, disable or death) and IMaCh was corrected; but when we
       matcov[i][j]=x[i];          introduced the exact date of death then we should have modified
     }          the contribution of an exact death to the likelihood. This new
   }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
   printf("\n#Hessian matrix#\n");          and month of death but the probability to survive from last
   for (i=1;i<=npar;i++) {          interview up to one month before death multiplied by the
     for (j=1;j<=npar;j++) {          probability to die within a month. Thanks to Chris
       printf("%.3e ",hess[i][j]);          Jackson for correcting this bug.  Former versions increased
     }          mortality artificially. The bad side is that we add another loop
     printf("\n");          which slows down the processing. The difference can be up to 10%
   }          lower mortality.
             */
   /* Recompute Inverse */            lli=log(out[s1][s2] - savm[s1][s2]);
   for (i=1;i<=npar;i++)          }else{
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   ludcmp(a,npar,indx,&pd);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
   /*  printf("\n#Hessian matrix recomputed#\n");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   for (j=1;j<=npar;j++) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for (i=1;i<=npar;i++) x[i]=0;          ipmx +=1;
     x[j]=1;          sw += weight[i];
     lubksb(a,npar,indx,x);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1;i<=npar;i++){        } /* end of wave */
       y[i][j]=x[i];      } /* end of individual */
       printf("%.3e ",y[i][j]);    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     printf("\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   */          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(a,1,npar,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(y,1,npar,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(x,1,npar);            }
   free_ivector(indx,1,npar);          for(d=0; d<=dh[mi][i]; d++){
   free_matrix(hess,1,npar,1,npar);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /*************** hessian matrix ****************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 double hessii( double x[], double delta, int theta, double delti[])                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   int i;            oldm=newm;
   int l=1, lmax=20;          } /* end mult */
   double k1,k2;        
   double p2[NPARMAX+1];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double res;          /* But now since version 0.9 we anticipate for bias and large stepm.
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double fx;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int k=0,kmax=10;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double l1;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   fx=func(x);           * probability in order to take into account the bias as a fraction of the way
   for (i=1;i<=npar;i++) p2[i]=x[i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   for(l=0 ; l <=lmax; l++){           * -stepm/2 to stepm/2 .
     l1=pow(10,l);           * For stepm=1 the results are the same as for previous versions of Imach.
     delts=delt;           * For stepm > 1 the results are less biased than in previous versions. 
     for(k=1 ; k <kmax; k=k+1){           */
       delt = delta*(l1*k);          s1=s[mw[mi][i]][i];
       p2[theta]=x[theta] +delt;          s2=s[mw[mi+1][i]][i];
       k1=func(p2)-fx;          bbh=(double)bh[mi][i]/(double)stepm; 
       p2[theta]=x[theta]-delt;          /* bias is positive if real duration
       k2=func(p2)-fx;           * is higher than the multiple of stepm and negative otherwise.
       /*res= (k1-2.0*fx+k2)/delt/delt; */           */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 #ifdef DEBUG          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 #endif          /*if(lli ==000.0)*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          ipmx +=1;
         k=kmax;          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        } /* end of wave */
         k=kmax; l=lmax*10.;      } /* end of individual */
       }    }  else if(mle==3){  /* exponential inter-extrapolation */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         delts=delt;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   delti[theta]=delts;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return res;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 double hessij( double x[], double delti[], int thetai,int thetaj)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   int i;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int l=1, l1, lmax=20;            }
   double k1,k2,k3,k4,res,fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double p2[NPARMAX+1];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int k;            savm=oldm;
             oldm=newm;
   fx=func(x);          } /* end mult */
   for (k=1; k<=2; k++) {        
     for (i=1;i<=npar;i++) p2[i]=x[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetai]=x[thetai]+delti[thetai]/k;          /* But now since version 0.9 we anticipate for bias and large stepm.
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     k1=func(p2)-fx;           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetai]=x[thetai]+delti[thetai]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     k2=func(p2)-fx;           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     p2[thetai]=x[thetai]-delti[thetai]/k;           * -stepm/2 to stepm/2 .
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * For stepm=1 the results are the same as for previous versions of Imach.
     k3=func(p2)-fx;           * For stepm > 1 the results are less biased than in previous versions. 
             */
     p2[thetai]=x[thetai]-delti[thetai]/k;          s1=s[mw[mi][i]][i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          s2=s[mw[mi+1][i]][i];
     k4=func(p2)-fx;          bbh=(double)bh[mi][i]/(double)stepm; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          /* bias is positive if real duration
 #ifdef DEBUG           * is higher than the multiple of stepm and negative otherwise.
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           */
 #endif          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   return res;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 /************** Inverse of matrix **************/          ipmx +=1;
 void ludcmp(double **a, int n, int *indx, double *d)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i,imax,j,k;        } /* end of wave */
   double big,dum,sum,temp;      } /* end of individual */
   double *vv;    }else{  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   vv=vector(1,n);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   *d=1.0;        for(mi=1; mi<= wav[i]-1; mi++){
   for (i=1;i<=n;i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     big=0.0;            for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=n;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if ((temp=fabs(a[i][j])) > big) big=temp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            }
     vv[i]=1.0/big;          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   for (j=1;j<=n;j++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1;i<j;i++) {            for (kk=1; kk<=cptcovage;kk++) {
       sum=a[i][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            }
       a[i][j]=sum;          
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     big=0.0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=j;i<=n;i++) {            savm=oldm;
       sum=a[i][j];            oldm=newm;
       for (k=1;k<j;k++)          } /* end mult */
         sum -= a[i][k]*a[k][j];        
       a[i][j]=sum;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if ( (dum=vv[i]*fabs(sum)) >= big) {          ipmx +=1;
         big=dum;          sw += weight[i];
         imax=i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
     if (j != imax) {    } /* End of if */
       for (k=1;k<=n;k++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         dum=a[imax][k];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         a[imax][k]=a[j][k];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         a[j][k]=dum;    return -l;
       }  }
       *d = -(*d);  
       vv[imax]=vv[j];  
     }  /*********** Maximum Likelihood Estimation ***************/
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     if (j != n) {  {
       dum=1.0/(a[j][j]);    int i,j, iter;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double **xi;
     }    double fret;
   }    xi=matrix(1,npar,1,npar);
   free_vector(vv,1,n);  /* Doesn't work */    for (i=1;i<=npar;i++)
 ;      for (j=1;j<=npar;j++)
 }        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 void lubksb(double **a, int n, int *indx, double b[])    powell(p,xi,npar,ftol,&iter,&fret,func);
 {  
   int i,ii=0,ip,j;     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double sum;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (i=1;i<=n;i++) {  
     ip=indx[i];  }
     sum=b[ip];  
     b[ip]=b[i];  /**** Computes Hessian and covariance matrix ***/
     if (ii)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  {
     else if (sum) ii=i;    double  **a,**y,*x,pd;
     b[i]=sum;    double **hess;
   }    int i, j,jk;
   for (i=n;i>=1;i--) {    int *indx;
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    double hessii(double p[], double delta, int theta, double delti[]);
     b[i]=sum/a[i][i];    double hessij(double p[], double delti[], int i, int j);
   }    void lubksb(double **a, int npar, int *indx, double b[]) ;
 }    void ludcmp(double **a, int npar, int *indx, double *d) ;
   
 /************ Frequencies ********************/    hess=matrix(1,npar,1,npar);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */    printf("\nCalculation of the hessian matrix. Wait...\n");
      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    for (i=1;i<=npar;i++){
   double ***freq; /* Frequencies */      printf("%d",i);fflush(stdout);
   double *pp;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double pos, k2, dateintsum=0,k2cpt=0;      hess[i][i]=hessii(p,ftolhess,i,delti);
   FILE *ficresp;      /*printf(" %f ",p[i]);*/
   char fileresp[FILENAMELENGTH];      /*printf(" %lf ",hess[i][i]);*/
      }
   pp=vector(1,nlstate);    
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=1;i<=npar;i++) {
   strcpy(fileresp,"p");      for (j=1;j<=npar;j++)  {
   strcat(fileresp,fileres);        if (j>i) { 
   if((ficresp=fopen(fileresp,"w"))==NULL) {          printf(".%d%d",i,j);fflush(stdout);
     printf("Problem with prevalence resultfile: %s\n", fileresp);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     exit(0);          hess[i][j]=hessij(p,delti,i,j);
   }          hess[j][i]=hess[i][j];    
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*printf(" %lf ",hess[i][j]);*/
   j1=0;        }
        }
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    printf("\n");
      fprintf(ficlog,"\n");
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       j1++;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    
         scanf("%d", i);*/    a=matrix(1,npar,1,npar);
       for (i=-1; i<=nlstate+ndeath; i++)      y=matrix(1,npar,1,npar);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      x=vector(1,npar);
           for(m=agemin; m <= agemax+3; m++)    indx=ivector(1,npar);
             freq[i][jk][m]=0;    for (i=1;i<=npar;i++)
            for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       dateintsum=0;    ludcmp(a,npar,indx,&pd);
       k2cpt=0;  
       for (i=1; i<=imx; i++) {    for (j=1;j<=npar;j++) {
         bool=1;      for (i=1;i<=npar;i++) x[i]=0;
         if  (cptcovn>0) {      x[j]=1;
           for (z1=1; z1<=cptcoveff; z1++)      lubksb(a,npar,indx,x);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for (i=1;i<=npar;i++){ 
               bool=0;        matcov[i][j]=x[i];
         }      }
         if (bool==1) {    }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);    printf("\n#Hessian matrix#\n");
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    fprintf(ficlog,"\n#Hessian matrix#\n");
               if(agev[m][i]==0) agev[m][i]=agemax+1;    for (i=1;i<=npar;i++) { 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (j=1;j<=npar;j++) { 
               if (m<lastpass) {        printf("%.3e ",hess[i][j]);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        fprintf(ficlog,"%.3e ",hess[i][j]);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      }
               }      printf("\n");
                    fprintf(ficlog,"\n");
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    }
                 dateintsum=dateintsum+k2;  
                 k2cpt++;    /* Recompute Inverse */
               }    for (i=1;i<=npar;i++)
             }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           }    ludcmp(a,npar,indx,&pd);
         }  
       }    /*  printf("\n#Hessian matrix recomputed#\n");
          
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
       if  (cptcovn>0) {      x[j]=1;
         fprintf(ficresp, "\n#********** Variable ");      lubksb(a,npar,indx,x);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (i=1;i<=npar;i++){ 
         fprintf(ficresp, "**********\n#");        y[i][j]=x[i];
       }        printf("%.3e ",y[i][j]);
       for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      }
       fprintf(ficresp, "\n");      printf("\n");
            fprintf(ficlog,"\n");
       for(i=(int)agemin; i <= (int)agemax+3; i++){    }
         if(i==(int)agemax+3)    */
           printf("Total");  
         else    free_matrix(a,1,npar,1,npar);
           printf("Age %d", i);    free_matrix(y,1,npar,1,npar);
         for(jk=1; jk <=nlstate ; jk++){    free_vector(x,1,npar);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    free_ivector(indx,1,npar);
             pp[jk] += freq[jk][m][i];    free_matrix(hess,1,npar,1,npar);
         }  
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  }
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)  /*************** hessian matrix ****************/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  double hessii( double x[], double delta, int theta, double delti[])
           else  {
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    int i;
         }    int l=1, lmax=20;
     double k1,k2;
         for(jk=1; jk <=nlstate ; jk++){    double p2[NPARMAX+1];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double res;
             pp[jk] += freq[jk][m][i];    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         }    double fx;
     int k=0,kmax=10;
         for(jk=1,pos=0; jk <=nlstate ; jk++)    double l1;
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){    fx=func(x);
           if(pos>=1.e-5)    for (i=1;i<=npar;i++) p2[i]=x[i];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for(l=0 ; l <=lmax; l++){
           else      l1=pow(10,l);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      delts=delt;
           if( i <= (int) agemax){      for(k=1 ; k <kmax; k=k+1){
             if(pos>=1.e-5){        delt = delta*(l1*k);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        p2[theta]=x[theta] +delt;
               probs[i][jk][j1]= pp[jk]/pos;        k1=func(p2)-fx;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        p2[theta]=x[theta]-delt;
             }        k2=func(p2)-fx;
             else        /*res= (k1-2.0*fx+k2)/delt/delt; */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           }        
         }  #ifdef DEBUG
                printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(jk=-1; jk <=nlstate+ndeath; jk++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(m=-1; m <=nlstate+ndeath; m++)  #endif
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if(i <= (int) agemax)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           fprintf(ficresp,"\n");          k=kmax;
         printf("\n");        }
       }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     }          k=kmax; l=lmax*10.;
   }        }
   dateintmean=dateintsum/k2cpt;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
   fclose(ficresp);        }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      }
   free_vector(pp,1,nlstate);    }
      delti[theta]=delts;
   /* End of Freq */    return res; 
 }    
   }
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  double hessij( double x[], double delti[], int thetai,int thetaj)
 {  /* Some frequencies */  {
      int i;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    int l=1, l1, lmax=20;
   double ***freq; /* Frequencies */    double k1,k2,k3,k4,res,fx;
   double *pp;    double p2[NPARMAX+1];
   double pos, k2;    int k;
   
   pp=vector(1,nlstate);    fx=func(x);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k=1; k<=2; k++) {
        for (i=1;i<=npar;i++) p2[i]=x[i];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      p2[thetai]=x[thetai]+delti[thetai]/k;
   j1=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
   j=cptcoveff;    
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  for(k1=1; k1<=j;k1++){      k2=func(p2)-fx;
     for(i1=1; i1<=ncodemax[k1];i1++){    
       j1++;      p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for (i=-1; i<=nlstate+ndeath; i++)        k3=func(p2)-fx;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      
           for(m=agemin; m <= agemax+3; m++)      p2[thetai]=x[thetai]-delti[thetai]/k;
             freq[i][jk][m]=0;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            k4=func(p2)-fx;
       for (i=1; i<=imx; i++) {      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         bool=1;  #ifdef DEBUG
         if  (cptcovn>0) {      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for (z1=1; z1<=cptcoveff; z1++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  #endif
               bool=0;    }
         }    return res;
         if (bool==1) {  }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /************** Inverse of matrix **************/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  void ludcmp(double **a, int n, int *indx, double *d) 
               if(agev[m][i]==0) agev[m][i]=agemax+1;  { 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    int i,imax,j,k; 
               if (m<lastpass)    double big,dum,sum,temp; 
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    double *vv; 
               else   
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    vv=vector(1,n); 
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    *d=1.0; 
             }    for (i=1;i<=n;i++) { 
           }      big=0.0; 
         }      for (j=1;j<=n;j++) 
       }        if ((temp=fabs(a[i][j])) > big) big=temp; 
         for(i=(int)agemin; i <= (int)agemax+3; i++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           for(jk=1; jk <=nlstate ; jk++){      vv[i]=1.0/big; 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    } 
               pp[jk] += freq[jk][m][i];    for (j=1;j<=n;j++) { 
           }      for (i=1;i<j;i++) { 
           for(jk=1; jk <=nlstate ; jk++){        sum=a[i][j]; 
             for(m=-1, pos=0; m <=0 ; m++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
             pos += freq[jk][m][i];        a[i][j]=sum; 
         }      } 
              big=0.0; 
          for(jk=1; jk <=nlstate ; jk++){      for (i=j;i<=n;i++) { 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        sum=a[i][j]; 
              pp[jk] += freq[jk][m][i];        for (k=1;k<j;k++) 
          }          sum -= a[i][k]*a[k][j]; 
                  a[i][j]=sum; 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
          for(jk=1; jk <=nlstate ; jk++){                    imax=i; 
            if( i <= (int) agemax){        } 
              if(pos>=1.e-5){      } 
                probs[i][jk][j1]= pp[jk]/pos;      if (j != imax) { 
              }        for (k=1;k<=n;k++) { 
            }          dum=a[imax][k]; 
          }          a[imax][k]=a[j][k]; 
                    a[j][k]=dum; 
         }        } 
     }        *d = -(*d); 
   }        vv[imax]=vv[j]; 
       } 
        indx[j]=imax; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   free_vector(pp,1,nlstate);      if (j != n) { 
          dum=1.0/(a[j][j]); 
 }  /* End of Freq */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
 /************* Waves Concatenation ***************/    } 
     free_vector(vv,1,n);  /* Doesn't work */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  ;
 {  } 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).  void lubksb(double **a, int n, int *indx, double b[]) 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  { 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    int i,ii=0,ip,j; 
      and mw[mi+1][i]. dh depends on stepm.    double sum; 
      */   
     for (i=1;i<=n;i++) { 
   int i, mi, m;      ip=indx[i]; 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      sum=b[ip]; 
      double sum=0., jmean=0.;*/      b[ip]=b[i]; 
       if (ii) 
   int j, k=0,jk, ju, jl;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   double sum=0.;      else if (sum) ii=i; 
   jmin=1e+5;      b[i]=sum; 
   jmax=-1;    } 
   jmean=0.;    for (i=n;i>=1;i--) { 
   for(i=1; i<=imx; i++){      sum=b[i]; 
     mi=0;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     m=firstpass;      b[i]=sum/a[i][i]; 
     while(s[m][i] <= nlstate){    } 
       if(s[m][i]>=1)  } 
         mw[++mi][i]=m;  
       if(m >=lastpass)  /************ Frequencies ********************/
         break;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
       else  {  /* Some frequencies */
         m++;    
     }/* end while */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     if (s[m][i] > nlstate){    int first;
       mi++;     /* Death is another wave */    double ***freq; /* Frequencies */
       /* if(mi==0)  never been interviewed correctly before death */    double *pp, **prop;
          /* Only death is a correct wave */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       mw[mi][i]=m;    FILE *ficresp;
     }    char fileresp[FILENAMELENGTH];
     
     wav[i]=mi;    pp=vector(1,nlstate);
     if(mi==0)    prop=matrix(1,nlstate,iagemin,iagemax+3);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    strcpy(fileresp,"p");
   }    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
   for(i=1; i<=imx; i++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(mi=1; mi<wav[i];mi++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       if (stepm <=0)      exit(0);
         dh[mi][i]=1;    }
       else{    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         if (s[mw[mi+1][i]][i] > nlstate) {    j1=0;
           if (agedc[i] < 2*AGESUP) {    
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    j=cptcoveff;
           if(j==0) j=1;  /* Survives at least one month after exam */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           k=k+1;  
           if (j >= jmax) jmax=j;    first=1;
           if (j <= jmin) jmin=j;  
           sum=sum+j;    for(k1=1; k1<=j;k1++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      for(i1=1; i1<=ncodemax[k1];i1++){
           }        j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         else{          scanf("%d", i);*/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for (i=-1; i<=nlstate+ndeath; i++)  
           k=k+1;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
           if (j >= jmax) jmax=j;            for(m=iagemin; m <= iagemax+3; m++)
           else if (j <= jmin)jmin=j;              freq[i][jk][m]=0;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;      for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
         jk= j/stepm;          prop[i][m]=0;
         jl= j -jk*stepm;        
         ju= j -(jk+1)*stepm;        dateintsum=0;
         if(jl <= -ju)        k2cpt=0;
           dh[mi][i]=jk;        for (i=1; i<=imx; i++) {
         else          bool=1;
           dh[mi][i]=jk+1;          if  (cptcovn>0) {
         if(dh[mi][i]==0)            for (z1=1; z1<=cptcoveff; z1++) 
           dh[mi][i]=1; /* At least one step */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
     }          }
   }          if (bool==1){
   jmean=sum/k;            for(m=firstpass; m<=lastpass; m++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              k2=anint[m][i]+(mint[m][i]/12.);
  }              if ((k2>=dateprev1) && (k2<=dateprev2)) {
 /*********** Tricode ****************************/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 void tricode(int *Tvar, int **nbcode, int imx)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int Ndum[20],ij=1, k, j, i;                if (m<lastpass) {
   int cptcode=0;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   cptcoveff=0;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                  }
   for (k=0; k<19; k++) Ndum[k]=0;                
   for (k=1; k<=7; k++) ncodemax[k]=0;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                  k2cpt++;
     for (i=1; i<=imx; i++) {                }
       ij=(int)(covar[Tvar[j]][i]);              }
       Ndum[ij]++;            }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          }
       if (ij > cptcode) cptcode=ij;        }
     }         
         fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;        if  (cptcovn>0) {
     }          fprintf(ficresp, "\n#********** Variable "); 
     ij=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
         }
     for (i=1; i<=ncodemax[j]; i++) {        for(i=1; i<=nlstate;i++) 
       for (k=0; k<=19; k++) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         if (Ndum[k] != 0) {        fprintf(ficresp, "\n");
           nbcode[Tvar[j]][ij]=k;        
                  for(i=iagemin; i <= iagemax+3; i++){
           ij++;          if(i==iagemax+3){
         }            fprintf(ficlog,"Total");
         if (ij > ncodemax[j]) break;          }else{
       }              if(first==1){
     }              first=0;
   }                printf("See log file for details...\n");
             }
  for (k=0; k<19; k++) Ndum[k]=0;            fprintf(ficlog,"Age %d", i);
           }
  for (i=1; i<=ncovmodel-2; i++) {          for(jk=1; jk <=nlstate ; jk++){
       ij=Tvar[i];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       Ndum[ij]++;              pp[jk] += freq[jk][m][i]; 
     }          }
           for(jk=1; jk <=nlstate ; jk++){
  ij=1;            for(m=-1, pos=0; m <=0 ; m++)
  for (i=1; i<=10; i++) {              pos += freq[jk][m][i];
    if((Ndum[i]!=0) && (i<=ncovcol)){            if(pp[jk]>=1.e-10){
      Tvaraff[ij]=i;              if(first==1){
      ij++;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    }              }
  }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
              }else{
     cptcoveff=ij-1;              if(first==1)
 }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 /*********** Health Expectancies ****************/            }
           }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
           for(jk=1; jk <=nlstate ; jk++){
 {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   /* Health expectancies */              pp[jk] += freq[jk][m][i];
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          }       
   double age, agelim, hf;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double ***p3mat,***varhe;            pos += pp[jk];
   double **dnewm,**doldm;            posprop += prop[jk][i];
   double *xp;          }
   double **gp, **gm;          for(jk=1; jk <=nlstate ; jk++){
   double ***gradg, ***trgradg;            if(pos>=1.e-5){
   int theta;              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   xp=vector(1,npar);            }else{
   dnewm=matrix(1,nlstate*2,1,npar);              if(first==1)
   doldm=matrix(1,nlstate*2,1,nlstate*2);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficreseij,"# Health expectancies\n");            }
   fprintf(ficreseij,"# Age");            if( i <= iagemax){
   for(i=1; i<=nlstate;i++)              if(pos>=1.e-5){
     for(j=1; j<=nlstate;j++)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);                probs[i][jk][j1]= pp[jk]/pos;
   fprintf(ficreseij,"\n");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
   if(estepm < stepm){              else
     printf ("Problem %d lower than %d\n",estepm, stepm);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   }            }
   else  hstepm=estepm;            }
   /* We compute the life expectancy from trapezoids spaced every estepm months          
    * This is mainly to measure the difference between two models: for example          for(jk=-1; jk <=nlstate+ndeath; jk++)
    * if stepm=24 months pijx are given only every 2 years and by summing them            for(m=-1; m <=nlstate+ndeath; m++)
    * we are calculating an estimate of the Life Expectancy assuming a linear              if(freq[jk][m][i] !=0 ) {
    * progression inbetween and thus overestimating or underestimating according              if(first==1)
    * to the curvature of the survival function. If, for the same date, we                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
    * to compare the new estimate of Life expectancy with the same linear              }
    * hypothesis. A more precise result, taking into account a more precise          if(i <= iagemax)
    * curvature will be obtained if estepm is as small as stepm. */            fprintf(ficresp,"\n");
           if(first==1)
   /* For example we decided to compute the life expectancy with the smallest unit */            printf("Others in log...\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          fprintf(ficlog,"\n");
      nhstepm is the number of hstepm from age to agelim        }
      nstepm is the number of stepm from age to agelin.      }
      Look at hpijx to understand the reason of that which relies in memory size    }
      and note for a fixed period like estepm months */    dateintmean=dateintsum/k2cpt; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the   
      survival function given by stepm (the optimization length). Unfortunately it    fclose(ficresp);
      means that if the survival funtion is printed only each two years of age and if    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    free_vector(pp,1,nlstate);
      results. So we changed our mind and took the option of the best precision.    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   */    /* End of Freq */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  }
   
   agelim=AGESUP;  /************ Prevalence ********************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     /* nhstepm age range expressed in number of stepm */  {  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */       in each health status at the date of interview (if between dateprev1 and dateprev2).
     /* if (stepm >= YEARM) hstepm=1;*/       We still use firstpass and lastpass as another selection.
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     gp=matrix(0,nhstepm,1,nlstate*2);    double ***freq; /* Frequencies */
     gm=matrix(0,nhstepm,1,nlstate*2);    double *pp, **prop;
     double pos,posprop; 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double  y2; /* in fractional years */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    int iagemin, iagemax;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
      iagemin= (int) agemin;
     iagemax= (int) agemax;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /* Computing Variances of health expectancies */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
      for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){    j=cptcoveff;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       }    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
       cptj=0;        j1++;
       for(j=1; j<= nlstate; j++){        
         for(i=1; i<=nlstate; i++){        for (i=1; i<=nlstate; i++)  
           cptj=cptj+1;          for(m=iagemin; m <= iagemax+3; m++)
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            prop[i][m]=0.0;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;       
           }        for (i=1; i<=imx; i++) { /* Each individual */
         }          bool=1;
       }          if  (cptcovn>0) {
                  for (z1=1; z1<=cptcoveff; z1++) 
                    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       for(i=1; i<=npar; i++)                bool=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            if (bool==1) { 
                  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       cptj=0;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       for(j=1; j<= nlstate; j++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         for(i=1;i<=nlstate;i++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           cptj=cptj+1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                      } 
                  }
             } /* end selection of waves */
       for(j=1; j<= nlstate*2; j++)          }
         for(h=0; h<=nhstepm-1; h++){        }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for(i=iagemin; i <= iagemax+3; i++){  
         }          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      }            posprop += prop[jk][i]; 
              } 
 /* End theta */  
           for(jk=1; jk <=nlstate ; jk++){     
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
      for(h=0; h<=nhstepm-1; h++)                probs[i][jk][j1]= prop[jk][i]/posprop;
       for(j=1; j<=nlstate*2;j++)              } 
         for(theta=1; theta <=npar; theta++)            } 
         trgradg[h][j][theta]=gradg[h][theta][j];          }/* end jk */ 
         }/* end i */ 
       } /* end i1 */
      for(i=1;i<=nlstate*2;i++)    } /* end k1 */
       for(j=1;j<=nlstate*2;j++)    
         varhe[i][j][(int)age] =0.;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     for(h=0;h<=nhstepm-1;h++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for(k=0;k<=nhstepm-1;k++){  }  /* End of prevalence */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  /************* Waves Concatenation ***************/
         for(i=1;i<=nlstate*2;i++)  
           for(j=1;j<=nlstate*2;j++)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  {
       }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     }       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     /* Computing expectancies */       and mw[mi+1][i]. dh depends on stepm.
     for(i=1; i<=nlstate;i++)       */
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    int i, mi, m;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                 double sum=0., jmean=0.;*/
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    int first;
     int j, k=0,jk, ju, jl;
         }    double sum=0.;
     first=0;
     fprintf(ficreseij,"%3.0f",age );    jmin=1e+5;
     cptj=0;    jmax=-1;
     for(i=1; i<=nlstate;i++)    jmean=0.;
       for(j=1; j<=nlstate;j++){    for(i=1; i<=imx; i++){
         cptj++;      mi=0;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      m=firstpass;
       }      while(s[m][i] <= nlstate){
     fprintf(ficreseij,"\n");        if(s[m][i]>=1)
              mw[++mi][i]=m;
     free_matrix(gm,0,nhstepm,1,nlstate*2);        if(m >=lastpass)
     free_matrix(gp,0,nhstepm,1,nlstate*2);          break;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        else
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          m++;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }/* end while */
   }      if (s[m][i] > nlstate){
   free_vector(xp,1,npar);        mi++;     /* Death is another wave */
   free_matrix(dnewm,1,nlstate*2,1,npar);        /* if(mi==0)  never been interviewed correctly before death */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);           /* Only death is a correct wave */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        mw[mi][i]=m;
 }      }
   
 /************ Variance ******************/      wav[i]=mi;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      if(mi==0){
 {        if(first==0){
   /* Variance of health expectancies */          printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          first=1;
   double **newm;        }
   double **dnewm,**doldm;        if(first==1){
   int i, j, nhstepm, hstepm, h, nstepm ;          fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
   int k, cptcode;        }
   double *xp;      } /* end mi==0 */
   double **gp, **gm;    }
   double ***gradg, ***trgradg;  
   double ***p3mat;    for(i=1; i<=imx; i++){
   double age,agelim, hf;      for(mi=1; mi<wav[i];mi++){
   int theta;        if (stepm <=0)
           dh[mi][i]=1;
    fprintf(ficresvij,"# Covariances of life expectancies\n");        else{
   fprintf(ficresvij,"# Age");          if (s[mw[mi+1][i]][i] > nlstate) {
   for(i=1; i<=nlstate;i++)            if (agedc[i] < 2*AGESUP) {
     for(j=1; j<=nlstate;j++)            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            if(j==0) j=1;  /* Survives at least one month after exam */
   fprintf(ficresvij,"\n");            k=k+1;
             if (j >= jmax) jmax=j;
   xp=vector(1,npar);            if (j <= jmin) jmin=j;
   dnewm=matrix(1,nlstate,1,npar);            sum=sum+j;
   doldm=matrix(1,nlstate,1,nlstate);            /*if (j<0) printf("j=%d num=%d \n",j,i); */
              /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if(estepm < stepm){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);            }
   }          }
   else  hstepm=estepm;            else{
   /* For example we decided to compute the life expectancy with the smallest unit */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      nhstepm is the number of hstepm from age to agelim            k=k+1;
      nstepm is the number of stepm from age to agelin.            if (j >= jmax) jmax=j;
      Look at hpijx to understand the reason of that which relies in memory size            else if (j <= jmin)jmin=j;
      and note for a fixed period like k years */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      survival function given by stepm (the optimization length). Unfortunately it            sum=sum+j;
      means that if the survival funtion is printed only each two years of age and if          }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          jk= j/stepm;
      results. So we changed our mind and took the option of the best precision.          jl= j -jk*stepm;
   */          ju= j -(jk+1)*stepm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          if(mle <=1){ 
   agelim = AGESUP;            if(jl==0){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              dh[mi][i]=jk;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              bh[mi][i]=0;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            }else{ /* We want a negative bias in order to only have interpolation ie
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    * at the price of an extra matrix product in likelihood */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              dh[mi][i]=jk+1;
     gp=matrix(0,nhstepm,1,nlstate);              bh[mi][i]=ju;
     gm=matrix(0,nhstepm,1,nlstate);            }
           }else{
     for(theta=1; theta <=npar; theta++){            if(jl <= -ju){
       for(i=1; i<=npar; i++){ /* Computes gradient */              dh[mi][i]=jk;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                                     */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
             else{
       if (popbased==1) {              dh[mi][i]=jk+1;
         for(i=1; i<=nlstate;i++)              bh[mi][i]=ju;
           prlim[i][i]=probs[(int)age][i][ij];            }
       }            if(dh[mi][i]==0){
                dh[mi][i]=1; /* At least one step */
       for(j=1; j<= nlstate; j++){              bh[mi][i]=ju; /* At least one step */
         for(h=0; h<=nhstepm; h++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }        } /* end if mle */
       }      } /* end wave */
        }
       for(i=1; i<=npar; i++) /* Computes gradient */    jmean=sum/k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   }
    
       if (popbased==1) {  /*********** Tricode ****************************/
         for(i=1; i<=nlstate;i++)  void tricode(int *Tvar, int **nbcode, int imx)
           prlim[i][i]=probs[(int)age][i][ij];  {
       }    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
       for(j=1; j<= nlstate; j++){    int cptcode=0;
         for(h=0; h<=nhstepm; h++){    cptcoveff=0; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)   
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    for (k=0; k<maxncov; k++) Ndum[k]=0;
         }    for (k=1; k<=7; k++) ncodemax[k]=0;
       }  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for(j=1; j<= nlstate; j++)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         for(h=0; h<=nhstepm; h++){                                 modality*/ 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         }        Ndum[ij]++; /*store the modality */
     } /* End theta */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
     for(h=0; h<=nhstepm; h++)      }
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)      for (i=0; i<=cptcode; i++) {
           trgradg[h][j][theta]=gradg[h][theta][j];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)      ij=1; 
       for(j=1;j<=nlstate;j++)      for (i=1; i<=ncodemax[j]; i++) {
         vareij[i][j][(int)age] =0.;        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
     for(h=0;h<=nhstepm;h++){            nbcode[Tvar[j]][ij]=k; 
       for(k=0;k<=nhstepm;k++){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            ij++;
         for(i=1;i<=nlstate;i++)          }
           for(j=1;j<=nlstate;j++)          if (ij > ncodemax[j]) break; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        }  
       }      } 
     }    }  
   
     fprintf(ficresvij,"%.0f ",age );   for (k=0; k< maxncov; k++) Ndum[k]=0;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){   for (i=1; i<=ncovmodel-2; i++) { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       }     ij=Tvar[i];
     fprintf(ficresvij,"\n");     Ndum[ij]++;
     free_matrix(gp,0,nhstepm,1,nlstate);   }
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);   ij=1;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);   for (i=1; i<= maxncov; i++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     if((Ndum[i]!=0) && (i<=ncovcol)){
   } /* End age */       Tvaraff[ij]=i; /*For printing */
         ij++;
   free_vector(xp,1,npar);     }
   free_matrix(doldm,1,nlstate,1,npar);   }
   free_matrix(dnewm,1,nlstate,1,nlstate);   
    cptcoveff=ij-1; /*Number of simple covariates*/
 }  }
   
 /************ Variance of prevlim ******************/  /*********** Health Expectancies ****************/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  {
   double **newm;    /* Health expectancies */
   double **dnewm,**doldm;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   int i, j, nhstepm, hstepm;    double age, agelim, hf;
   int k, cptcode;    double ***p3mat,***varhe;
   double *xp;    double **dnewm,**doldm;
   double *gp, *gm;    double *xp;
   double **gradg, **trgradg;    double **gp, **gm;
   double age,agelim;    double ***gradg, ***trgradg;
   int theta;    int theta;
      
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fprintf(ficresvpl,"# Age");    xp=vector(1,npar);
   for(i=1; i<=nlstate;i++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficresvpl," %1d-%1d",i,i);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficresvpl,"\n");    
     fprintf(ficreseij,"# Health expectancies\n");
   xp=vector(1,npar);    fprintf(ficreseij,"# Age");
   dnewm=matrix(1,nlstate,1,npar);    for(i=1; i<=nlstate;i++)
   doldm=matrix(1,nlstate,1,nlstate);      for(j=1; j<=nlstate;j++)
          fprintf(ficreseij," %1d-%1d (SE)",i,j);
   hstepm=1*YEARM; /* Every year of age */    fprintf(ficreseij,"\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    if(estepm < stepm){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf ("Problem %d lower than %d\n",estepm, stepm);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;    else  hstepm=estepm;   
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* We compute the life expectancy from trapezoids spaced every estepm months
     gradg=matrix(1,npar,1,nlstate);     * This is mainly to measure the difference between two models: for example
     gp=vector(1,nlstate);     * if stepm=24 months pijx are given only every 2 years and by summing them
     gm=vector(1,nlstate);     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
     for(theta=1; theta <=npar; theta++){     * to the curvature of the survival function. If, for the same date, we 
       for(i=1; i<=npar; i++){ /* Computes gradient */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     * curvature will be obtained if estepm is as small as stepm. */
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for(i=1; i<=npar; i++) /* Computes gradient */       nhstepm is the number of hstepm from age to agelim 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       nstepm is the number of stepm from age to agelin. 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       Look at hpijx to understand the reason of that which relies in memory size
       for(i=1;i<=nlstate;i++)       and note for a fixed period like estepm months */
         gm[i] = prlim[i][i];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
       for(i=1;i<=nlstate;i++)       means that if the survival funtion is printed only each two years of age and if
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     } /* End theta */       results. So we changed our mind and took the option of the best precision.
     */
     trgradg =matrix(1,nlstate,1,npar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     for(j=1; j<=nlstate;j++)    agelim=AGESUP;
       for(theta=1; theta <=npar; theta++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         trgradg[j][theta]=gradg[theta][j];      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     for(i=1;i<=nlstate;i++)      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       varpl[i][(int)age] =0.;      /* if (stepm >= YEARM) hstepm=1;*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1;i<=nlstate;i++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     fprintf(ficresvpl,"\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     free_vector(gp,1,nlstate);   
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */      /* Computing Variances of health expectancies */
   
   free_vector(xp,1,npar);       for(theta=1; theta <=npar; theta++){
   free_matrix(doldm,1,nlstate,1,npar);        for(i=1; i<=npar; i++){ 
   free_matrix(dnewm,1,nlstate,1,nlstate);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
 /************ Variance of one-step probabilities  ******************/        cptj=0;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for(j=1; j<= nlstate; j++){
 {          for(i=1; i<=nlstate; i++){
   int i, j, i1, k1, j1, z1;            cptj=cptj+1;
   int k=0, cptcode;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   double **dnewm,**doldm;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   double *xp;            }
   double *gp, *gm;          }
   double **gradg, **trgradg;        }
   double age,agelim, cov[NCOVMAX];       
   int theta;       
   char fileresprob[FILENAMELENGTH];        for(i=1; i<=npar; i++) 
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   strcpy(fileresprob,"prob");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcat(fileresprob,fileres);        
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        cptj=0;
     printf("Problem with resultfile: %s\n", fileresprob);        for(j=1; j<= nlstate; j++){
   }          for(i=1;i<=nlstate;i++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            cptj=cptj+1;
              for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   fprintf(ficresprob,"# Age");            }
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=(nlstate+ndeath);j++)        }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   fprintf(ficresprob,"\n");          }
        } 
      
   xp=vector(1,npar);  /* End theta */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    
   cov[1]=1;       for(h=0; h<=nhstepm-1; h++)
   j=cptcoveff;        for(j=1; j<=nlstate*nlstate;j++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for(theta=1; theta <=npar; theta++)
   j1=0;            trgradg[h][j][theta]=gradg[h][theta][j];
   for(k1=1; k1<=1;k1++){       
     for(i1=1; i1<=ncodemax[k1];i1++){  
     j1++;       for(i=1;i<=nlstate*nlstate;i++)
         for(j=1;j<=nlstate*nlstate;j++)
     if  (cptcovn>0) {          varhe[i][j][(int)age] =0.;
       fprintf(ficresprob, "\n#********** Variable ");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficresprob, "**********\n#");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }       for(h=0;h<=nhstepm-1;h++){
            for(k=0;k<=nhstepm-1;k++){
       for (age=bage; age<=fage; age ++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         cov[2]=age;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         for (k=1; k<=cptcovn;k++) {          for(i=1;i<=nlstate*nlstate;i++)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            for(j=1;j<=nlstate*nlstate;j++)
                        varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
         for (k=1; k<=cptcovprod;k++)      /* Computing expectancies */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++)
         gradg=matrix(1,npar,1,9);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         trgradg=matrix(1,9,1,npar);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      
         for(theta=1; theta <=npar; theta++){          }
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficreseij,"%3.0f",age );
                cptj=0;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(i=1; i<=nlstate;i++)
                  for(j=1; j<=nlstate;j++){
           k=0;          cptj++;
           for(i=1; i<= (nlstate+ndeath); i++){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
             for(j=1; j<=(nlstate+ndeath);j++){        }
               k=k+1;      fprintf(ficreseij,"\n");
               gp[k]=pmmij[i][j];     
             }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           for(i=1; i<=npar; i++)      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    printf("\n");
           k=0;    fprintf(ficlog,"\n");
           for(i=1; i<=(nlstate+ndeath); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){    free_vector(xp,1,npar);
               k=k+1;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
               gm[k]=pmmij[i][j];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
             }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           }  }
        
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  /************ Variance ******************/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
         }  {
     /* Variance of health expectancies */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           for(theta=1; theta <=npar; theta++)    /* double **newm;*/
             trgradg[j][theta]=gradg[theta][j];    double **dnewm,**doldm;
            double **dnewmp,**doldmp;
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    int i, j, nhstepm, hstepm, h, nstepm ;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    int k, cptcode;
            double *xp;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    double **gp, **gm;  /* for var eij */
            double ***gradg, ***trgradg; /*for var eij */
         k=0;    double **gradgp, **trgradgp; /* for var p point j */
         for(i=1; i<=(nlstate+ndeath); i++){    double *gpp, *gmp; /* for var p point j */
           for(j=1; j<=(nlstate+ndeath);j++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             k=k+1;    double ***p3mat;
             gm[k]=pmmij[i][j];    double age,agelim, hf;
           }    double ***mobaverage;
         }    int theta;
          char digit[4];
      /*printf("\n%d ",(int)age);    char digitp[25];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    char fileresprobmorprev[FILENAMELENGTH];
      }*/  
     if(popbased==1){
         fprintf(ficresprob,"\n%d ",(int)age);      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)      else strcpy(digitp,"-populbased-nomobil-");
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    }
      else 
       }      strcpy(digitp,"-stablbased-");
     }  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    if (mobilav!=0) {
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   free_vector(xp,1,npar);      }
   fclose(ficresprob);    }
    
 }    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
 /******************* Printing html file ***********/    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    strcat(fileresprobmorprev,digit); /* Tvar to be done */
  int lastpass, int stepm, int weightopt, char model[],\    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    strcat(fileresprobmorprev,fileres);
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
  char version[], int popforecast, int estepm ){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   int jj1, k1, i1, cpt;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   FILE *fichtm;    }
   /*char optionfilehtm[FILENAMELENGTH];*/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   strcpy(optionfilehtm,optionfile);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   strcat(optionfilehtm,".htm");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     printf("Problem with %s \n",optionfilehtm), exit(0);      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    }  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    fprintf(ficresprobmorprev,"\n");
 \n    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 Total number of observations=%d <br>\n      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 <hr  size=\"2\" color=\"#EC5E5E\">      exit(0);
  <ul><li>Outputs files<br>\n    }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    else{
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      fprintf(ficgp,"\n# Routine varevsij");
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    }
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      printf("Problem with html file: %s\n", optionfilehtm);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
  fprintf(fichtm,"\n    }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    else{
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    }
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
  if(popforecast==1) fprintf(fichtm,"\n    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    fprintf(ficresvij,"# Age");
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    for(i=1; i<=nlstate;i++)
         <br>",fileres,fileres,fileres,fileres);      for(j=1; j<=nlstate;j++)
  else        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    fprintf(ficresvij,"\n");
 fprintf(fichtm," <li>Graphs</li><p>");  
     xp=vector(1,npar);
  m=cptcoveff;    dnewm=matrix(1,nlstate,1,npar);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  jj1=0;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        jj1++;    gpp=vector(nlstate+1,nlstate+ndeath);
        if (cptcovn > 0) {    gmp=vector(nlstate+1,nlstate+ndeath);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          for (cpt=1; cpt<=cptcoveff;cpt++)    
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    if(estepm < stepm){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      printf ("Problem %d lower than %d\n",estepm, stepm);
        }    }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    else  hstepm=estepm;   
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /* For example we decided to compute the life expectancy with the smallest unit */
        for(cpt=1; cpt<nlstate;cpt++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>       nhstepm is the number of hstepm from age to agelim 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       nstepm is the number of stepm from age to agelin. 
        }       Look at hpijx to understand the reason of that which relies in memory size
     for(cpt=1; cpt<=nlstate;cpt++) {       and note for a fixed period like k years */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 interval) in state (%d): v%s%d%d.gif <br>       survival function given by stepm (the optimization length). Unfortunately it
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         means that if the survival funtion is printed every two years of age and if
      }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      for(cpt=1; cpt<=nlstate;cpt++) {       results. So we changed our mind and took the option of the best precision.
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      }    agelim = AGESUP;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 health expectancies in states (1) and (2): e%s%d.gif<br>      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 fprintf(fichtm,"\n</body>");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
    }      gp=matrix(0,nhstepm,1,nlstate);
 fclose(fichtm);      gm=matrix(0,nhstepm,1,nlstate);
 }  
   
 /******************* Gnuplot file **************/      for(theta=1; theta <=npar; theta++){
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcpy(optionfilegnuplot,optionfilefiname);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcat(optionfilegnuplot,".gp.txt");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        if (popbased==1) {
     printf("Problem with file %s",optionfilegnuplot);          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
 #ifdef windows          }else{ /* mobilav */ 
     fprintf(ficgp,"cd \"%s\" \n",pathc);            for(i=1; i<=nlstate;i++)
 #endif              prlim[i][i]=mobaverage[(int)age][i][ij];
 m=pow(2,cptcoveff);          }
          }
  /* 1eme*/    
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for(j=1; j<= nlstate; j++){
    for (k1=1; k1<= m ; k1 ++) {          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        /* This for computing probability of death (h=1 means
   else fprintf(ficgp," \%%*lf (\%%*lf)");           computed over hstepm matrices product = hstepm*stepm months) 
 }           as a weighted average of prlim.
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        */
     for (i=1; i<= nlstate ; i ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
 }        }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        /* end probability of death */
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        if (popbased==1) {
    }          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   /*2 eme*/              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   for (k1=1; k1<= m ; k1 ++) {            for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              prlim[i][i]=mobaverage[(int)age][i][ij];
              }
     for (i=1; i<= nlstate+1 ; i ++) {        }
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++){
       for (j=1; j<= nlstate+1 ; j ++) {          for(h=0; h<=nhstepm; h++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 }            }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        /* This for computing probability of death (h=1 means
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);           computed over hstepm matrices product = hstepm*stepm months) 
       for (j=1; j<= nlstate+1 ; j ++) {           as a weighted average of prlim.
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        */
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 }            for(i=1,gmp[j]=0.; i<= nlstate; i++)
       fprintf(ficgp,"\" t\"\" w l 0,");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        }    
       for (j=1; j<= nlstate+1 ; j ++) {        /* end probability of death */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate; j++) /* vareij */
 }            for(h=0; h<=nhstepm; h++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       else fprintf(ficgp,"\" t\"\" w l 0,");          }
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
   /*3eme*/  
       } /* End theta */
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      for(h=0; h<=nhstepm; h++) /* veij */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(j=1; j<=nlstate;j++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          for(theta=1; theta <=npar; theta++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            trgradg[h][j][theta]=gradg[h][theta][j];
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
 */    
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
       }        for(j=1;j<=nlstate;j++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          vareij[i][j][(int)age] =0.;
     }  
     }      for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
   /* CV preval stat */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     for (k1=1; k1<= m ; k1 ++) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     for (cpt=1; cpt<nlstate ; cpt ++) {          for(i=1;i<=nlstate;i++)
       k=3;            for(j=1;j<=nlstate;j++)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       for (i=1; i< nlstate ; i ++)      }
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      /* pptj */
            matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       l=3+(nlstate+ndeath)*cpt;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       for (i=1; i< nlstate ; i ++) {        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         l=3+(nlstate+ndeath)*cpt;          varppt[j][i]=doldmp[j][i];
         fprintf(ficgp,"+$%d",l+i+1);      /* end ppptj */
       }      /*  x centered again */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     }   
   }        if (popbased==1) {
          if(mobilav ==0){
   /* proba elementaires */          for(i=1; i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){            prlim[i][i]=probs[(int)age][i][ij];
     for(k=1; k <=(nlstate+ndeath); k++){        }else{ /* mobilav */ 
       if (k != i) {          for(i=1; i<=nlstate;i++)
         for(j=1; j <=ncovmodel; j++){            prlim[i][i]=mobaverage[(int)age][i][ij];
                }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      }
           jk++;               
           fprintf(ficgp,"\n");      /* This for computing probability of death (h=1 means
         }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       }         as a weighted average of prlim.
     }      */
     }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     for(jk=1; jk <=m; jk++) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      }    
    i=1;      /* end probability of death */
    for(k2=1; k2<=nlstate; k2++) {  
      k3=i;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
      for(k=1; k<=(nlstate+ndeath); k++) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        if (k != k2){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(i=1; i<=nlstate;i++){
 ij=1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         for(j=3; j <=ncovmodel; j++) {        }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      } 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      fprintf(ficresprobmorprev,"\n");
             ij++;  
           }      fprintf(ficresvij,"%.0f ",age );
           else      for(i=1; i<=nlstate;i++)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(j=1; j<=nlstate;j++){
         }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           fprintf(ficgp,")/(1");        }
              fprintf(ficresvij,"\n");
         for(k1=1; k1 <=nlstate; k1++){        free_matrix(gp,0,nhstepm,1,nlstate);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      free_matrix(gm,0,nhstepm,1,nlstate);
 ij=1;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           for(j=3; j <=ncovmodel; j++){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    } /* End age */
             ij++;    free_vector(gpp,nlstate+1,nlstate+ndeath);
           }    free_vector(gmp,nlstate+1,nlstate+ndeath);
           else    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           fprintf(ficgp,")");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         i=i+ncovmodel;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
        }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
      }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
    }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
    }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
        /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   fclose(ficgp);  */
 }  /* end gnuplot */    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   
     free_vector(xp,1,npar);
 /*************** Moving average **************/    free_matrix(doldm,1,nlstate,1,nlstate);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int i, cpt, cptcod;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (i=1; i<=nlstate;i++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    fclose(ficresprobmorprev);
           mobaverage[(int)agedeb][i][cptcod]=0.;    fclose(ficgp);
        fclose(fichtm);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  }  
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  /************ Variance of prevlim ******************/
           for (cpt=0;cpt<=4;cpt++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  {
           }    /* Variance of prevalence limit */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         }    double **newm;
       }    double **dnewm,**doldm;
     }    int i, j, nhstepm, hstepm;
        int k, cptcode;
 }    double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
 /************** Forecasting ******************/    double age,agelim;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    int theta;
       
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   int *popage;    fprintf(ficresvpl,"# Age");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    for(i=1; i<=nlstate;i++)
   double *popeffectif,*popcount;        fprintf(ficresvpl," %1d-%1d",i,i);
   double ***p3mat;    fprintf(ficresvpl,"\n");
   char fileresf[FILENAMELENGTH];  
     xp=vector(1,npar);
  agelim=AGESUP;    dnewm=matrix(1,nlstate,1,npar);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    doldm=matrix(1,nlstate,1,nlstate);
     
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    hstepm=1*YEARM; /* Every year of age */
      hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      agelim = AGESUP;
   strcpy(fileresf,"f");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   strcat(fileresf,fileres);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if((ficresf=fopen(fileresf,"w"))==NULL) {      if (stepm >= YEARM) hstepm=1;
     printf("Problem with forecast resultfile: %s\n", fileresf);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   }      gradg=matrix(1,npar,1,nlstate);
   printf("Computing forecasting: result on file '%s' \n", fileresf);      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
       for(theta=1; theta <=npar; theta++){
   if (mobilav==1) {        for(i=1; i<=npar; i++){ /* Computes gradient */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     movingaverage(agedeb, fage, ageminpar, mobaverage);        }
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          gp[i] = prlim[i][i];
   if (stepm<=12) stepsize=1;      
          for(i=1; i<=npar; i++) /* Computes gradient */
   agelim=AGESUP;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   hstepm=1;        for(i=1;i<=nlstate;i++)
   hstepm=hstepm/stepm;          gm[i] = prlim[i][i];
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;        for(i=1;i<=nlstate;i++)
   yp2=modf((yp1*12),&yp);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   mprojmean=yp;      } /* End theta */
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;      trgradg =matrix(1,nlstate,1,npar);
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;      for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          trgradg[j][theta]=gradg[theta][j];
    
   for(cptcov=1;cptcov<=i2;cptcov++){      for(i=1;i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        varpl[i][(int)age] =0.;
       k=k+1;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficresf,"\n#******");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(j=1;j<=cptcoveff;j++) {      for(i=1;i<=nlstate;i++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       }  
       fprintf(ficresf,"******\n");      fprintf(ficresvpl,"%.0f ",age );
       fprintf(ficresf,"# StartingAge FinalAge");      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
            fprintf(ficresvpl,"\n");
            free_vector(gp,1,nlstate);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      free_vector(gm,1,nlstate);
         fprintf(ficresf,"\n");      free_matrix(gradg,1,npar,1,nlstate);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    free_vector(xp,1,npar);
           nhstepm = nhstepm/hstepm;    free_matrix(doldm,1,nlstate,1,npar);
              free_matrix(dnewm,1,nlstate,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
          /************ Variance of one-step probabilities  ******************/
           for (h=0; h<=nhstepm; h++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
             if (h==(int) (calagedate+YEARM*cpt)) {  {
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    int i, j=0,  i1, k1, l1, t, tj;
             }    int k2, l2, j1,  z1;
             for(j=1; j<=nlstate+ndeath;j++) {    int k=0,l, cptcode;
               kk1=0.;kk2=0;    int first=1, first1;
               for(i=1; i<=nlstate;i++) {                  double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                 if (mobilav==1)    double **dnewm,**doldm;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double *xp;
                 else {    double *gp, *gm;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double **gradg, **trgradg;
                 }    double **mu;
                    double age,agelim, cov[NCOVMAX];
               }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
               if (h==(int)(calagedate+12*cpt)){    int theta;
                 fprintf(ficresf," %.3f", kk1);    char fileresprob[FILENAMELENGTH];
                            char fileresprobcov[FILENAMELENGTH];
               }    char fileresprobcor[FILENAMELENGTH];
             }  
           }    double ***varpij;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    strcpy(fileresprob,"prob"); 
       }    strcat(fileresprob,fileres);
     }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprob);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     strcpy(fileresprobcov,"probcov"); 
   fclose(ficresf);    strcat(fileresprobcov,fileres);
 }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 /************** Forecasting ******************/      printf("Problem with resultfile: %s\n", fileresprobcov);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    strcpy(fileresprobcor,"probcor"); 
   int *popage;    strcat(fileresprobcor,fileres);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   double *popeffectif,*popcount;      printf("Problem with resultfile: %s\n", fileresprobcor);
   double ***p3mat,***tabpop,***tabpopprev;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   char filerespop[FILENAMELENGTH];    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   agelim=AGESUP;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficresprob,"# Age");
   strcpy(filerespop,"pop");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   strcat(filerespop,fileres);    fprintf(ficresprobcov,"# Age");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(ficresprobcov,"# Age");
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
     for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   if (mobilav==1) {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      }  
   }   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficresprobcor,"\n");
   if (stepm<=12) stepsize=1;   */
     xp=vector(1,npar);
   agelim=AGESUP;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   hstepm=1;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   hstepm=hstepm/stepm;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
   if (popforecast==1) {    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     if((ficpop=fopen(popfile,"r"))==NULL) {      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       printf("Problem with population file : %s\n",popfile);exit(0);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     }      exit(0);
     popage=ivector(0,AGESUP);    }
     popeffectif=vector(0,AGESUP);    else{
     popcount=vector(0,AGESUP);      fprintf(ficgp,"\n# Routine varprob");
        }
     i=1;      if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      printf("Problem with html file: %s\n", optionfilehtm);
          fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
     imx=i;      exit(0);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    }
   }    else{
       fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(fichtm,"\n");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(ficrespop,"\n#******");      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       for(j=1;j<=cptcoveff;j++) {      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    }
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");    cov[1]=1;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    tj=cptcoveff;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
          j1=0;
       for (cpt=0; cpt<=0;cpt++) {    for(t=1; t<=tj;t++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(i1=1; i1<=ncodemax[t];i1++){ 
                j1++;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        if  (cptcovn>0) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(ficresprob, "\n#********** Variable "); 
           nhstepm = nhstepm/hstepm;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                    fprintf(ficresprob, "**********\n#\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresprobcov, "\n#********** Variable "); 
           oldm=oldms;savm=savms;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficresprobcov, "**********\n#\n");
                  
           for (h=0; h<=nhstepm; h++){          fprintf(ficgp, "\n#********** Variable "); 
             if (h==(int) (calagedate+YEARM*cpt)) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficgp, "**********\n#\n");
             }          
             for(j=1; j<=nlstate+ndeath;j++) {          
               kk1=0.;kk2=0;          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
               for(i=1; i<=nlstate;i++) {                        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                 if (mobilav==1)          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          
                 else {          fprintf(ficresprobcor, "\n#********** Variable ");    
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                 }          fprintf(ficresprobcor, "**********\n#");    
               }        }
               if (h==(int)(calagedate+12*cpt)){        
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for (age=bage; age<=fage; age ++){ 
                   /*fprintf(ficrespop," %.3f", kk1);          cov[2]=age;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          for (k=1; k<=cptcovn;k++) {
               }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
             }          }
             for(i=1; i<=nlstate;i++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               kk1=0.;          for (k=1; k<=cptcovprod;k++)
                 for(j=1; j<=nlstate;j++){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          
                 }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             }          gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          for(theta=1; theta <=npar; theta++){
           }            for(i=1; i<=npar; i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         }            
       }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              
   /******/            k=0;
             for(i=1; i<= (nlstate); i++){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {              for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  k=k+1;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                gp[k]=pmmij[i][j];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              }
           nhstepm = nhstepm/hstepm;            }
                      
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=npar; i++)
           oldm=oldms;savm=savms;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        
           for (h=0; h<=nhstepm; h++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {            k=0;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            for(i=1; i<=(nlstate); i++){
             }              for(j=1; j<=(nlstate+ndeath);j++){
             for(j=1; j<=nlstate+ndeath;j++) {                k=k+1;
               kk1=0.;kk2=0;                gm[k]=pmmij[i][j];
               for(i=1; i<=nlstate;i++) {                            }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }
               }       
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
             }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       }            for(theta=1; theta <=npar; theta++)
    }              trgradg[j][theta]=gradg[theta][j];
   }          
            matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   if (popforecast==1) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     free_ivector(popage,0,AGESUP);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     free_vector(popeffectif,0,AGESUP);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     free_vector(popcount,0,AGESUP);  
   }          pmij(pmmij,cov,ncovmodel,x,nlstate);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          k=0;
   fclose(ficrespop);          for(i=1; i<=(nlstate); i++){
 }            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
 /***********************************************/              mu[k][(int) age]=pmmij[i][j];
 /**************** Main Program *****************/            }
 /***********************************************/          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 int main(int argc, char *argv[])            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 {              varpij[i][j][(int)age] = doldm[i][j];
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          /*printf("\n%d ",(int)age);
   double agedeb, agefin,hf;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   double fret;            }*/
   double **xi,tmp,delta;  
           fprintf(ficresprob,"\n%d ",(int)age);
   double dum; /* Dummy variable */          fprintf(ficresprobcov,"\n%d ",(int)age);
   double ***p3mat;          fprintf(ficresprobcor,"\n%d ",(int)age);
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   char title[MAXLINE];            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          }
           i=0;
   char filerest[FILENAMELENGTH];          for (k=1; k<=(nlstate);k++){
   char fileregp[FILENAMELENGTH];            for (l=1; l<=(nlstate+ndeath);l++){ 
   char popfile[FILENAMELENGTH];              i=i++;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   int firstobs=1, lastobs=10;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   int sdeb, sfin; /* Status at beginning and end */              for (j=1; j<=i;j++){
   int c,  h , cpt,l;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   int ju,jl, mi;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            }
   int mobilav=0,popforecast=0;          }/* end of loop for state */
   int hstepm, nhstepm;        } /* end of loop for age */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
         /* Confidence intervalle of pij  */
   double bage, fage, age, agelim, agebase;        /*
   double ftolpl=FTOL;          fprintf(ficgp,"\nset noparametric;unset label");
   double **prlim;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   double *severity;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   double ***param; /* Matrix of parameters */          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   double  *p;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   double **matcov; /* Matrix of covariance */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   double ***delti3; /* Scale */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   double *delti; /* Scale */        */
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   double *epj, vepp;        first1=1;
   double kk1, kk2;        for (k2=1; k2<=(nlstate);k2++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";            for (k1=1; k1<=(nlstate);k1++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
   char z[1]="c", occ;                if(i<=j) continue;
 #include <sys/time.h>                for (age=bage; age<=fage; age ++){ 
 #include <time.h>                  if ((int)age %5==0){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /* long total_usecs;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   struct timeval start_time, end_time;                    mu1=mu[i][(int) age]/stepm*YEARM ;
                      mu2=mu[j][(int) age]/stepm*YEARM;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                    c12=cv12/sqrt(v1*v2);
   getcwd(pathcd, size);                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   printf("\n%s",version);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if(argc <=1){                    /* Eigen vectors */
     printf("\nEnter the parameter file name: ");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     scanf("%s",pathtot);                    /*v21=sqrt(1.-v11*v11); *//* error */
   }                    v21=(lc1-v1)/cv12*v11;
   else{                    v12=-v21;
     strcpy(pathtot,argv[1]);                    v22=v11;
   }                    tnalp=v21/v11;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                    if(first1==1){
   /*cygwin_split_path(pathtot,path,optionfile);                      first1=0;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   /* cutv(path,optionfile,pathtot,'\\');*/                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                    /*printf(fignu*/
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   chdir(path);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   replace(pathc,path);                    if(first==1){
                       first=0;
 /*-------- arguments in the command line --------*/                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   strcpy(fileres,"r");                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   strcat(fileres, optionfilefiname);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   strcat(fileres,".txt");    /* Other files have txt extension */                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   /*---------arguments file --------*/                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     printf("Problem with optionfile %s\n",optionfile);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     goto end;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
   strcpy(filereso,"o");                      first=0;
   strcat(filereso,fileres);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
   if((ficparo=fopen(filereso,"w"))==NULL) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /* Reads comments: lines beginning with '#' */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   while((c=getc(ficpar))=='#' && c!= EOF){                    }/* if first */
     ungetc(c,ficpar);                  } /* age mod 5 */
     fgets(line, MAXLINE, ficpar);                } /* end loop age */
     puts(line);                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
     fputs(line,ficparo);                first=1;
   }              } /*l12 */
   ungetc(c,ficpar);            } /* k12 */
           } /*l1 */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        }/* k1 */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      } /* loop covariates */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    }
 while((c=getc(ficpar))=='#' && c!= EOF){    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     ungetc(c,ficpar);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     fgets(line, MAXLINE, ficpar);    free_vector(xp,1,npar);
     puts(line);    fclose(ficresprob);
     fputs(line,ficparo);    fclose(ficresprobcov);
   }    fclose(ficresprobcor);
   ungetc(c,ficpar);    fclose(ficgp);
      fclose(fichtm);
      }
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   ncovmodel=2+cptcovn;                    int lastpass, int stepm, int weightopt, char model[],\
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                      int popforecast, int estepm ,\
   /* Read guess parameters */                    double jprev1, double mprev1,double anprev1, \
   /* Reads comments: lines beginning with '#' */                    double jprev2, double mprev2,double anprev2){
   while((c=getc(ficpar))=='#' && c!= EOF){    int jj1, k1, i1, cpt;
     ungetc(c,ficpar);    /*char optionfilehtm[FILENAMELENGTH];*/
     fgets(line, MAXLINE, ficpar);    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
     puts(line);      printf("Problem with %s \n",optionfilehtm), exit(0);
     fputs(line,ficparo);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
   }    }
   ungetc(c,ficpar);  
       fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
     for(i=1; i <=nlstate; i++)   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
     for(j=1; j <=nlstate+ndeath-1; j++){   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
       fscanf(ficpar,"%1d%1d",&i1,&j1);   - Life expectancies by age and initial health status (estepm=%2d months): 
       fprintf(ficparo,"%1d%1d",i1,j1);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
       printf("%1d%1d",i,j);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);   m=cptcoveff;
       }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       fscanf(ficpar,"\n");  
       printf("\n");   jj1=0;
       fprintf(ficparo,"\n");   for(k1=1; k1<=m;k1++){
     }     for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   p=param[1][1];         for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /* Reads comments: lines beginning with '#' */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   while((c=getc(ficpar))=='#' && c!= EOF){       }
     ungetc(c,ficpar);       /* Pij */
     fgets(line, MAXLINE, ficpar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
     puts(line);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
     fputs(line,ficparo);       /* Quasi-incidences */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
   ungetc(c,ficpar);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);         for(cpt=1; cpt<nlstate;cpt++){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
   for(i=1; i <=nlstate; i++){  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
     for(j=1; j <=nlstate+ndeath-1; j++){         }
       fscanf(ficpar,"%1d%1d",&i1,&j1);       for(cpt=1; cpt<=nlstate;cpt++) {
       printf("%1d%1d",i,j);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
       fprintf(ficparo,"%1d%1d",i1,j1);  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       for(k=1; k<=ncovmodel;k++){       }
         fscanf(ficpar,"%le",&delti3[i][j][k]);       fprintf(fichtm,"\n<br>- Total life expectancy by age and
         printf(" %le",delti3[i][j][k]);  health expectancies in states (1) and (2): e%s%d.png<br>
         fprintf(ficparo," %le",delti3[i][j][k]);  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
       }     } /* end i1 */
       fscanf(ficpar,"\n");   }/* End k1 */
       printf("\n");   fprintf(fichtm,"</ul>");
       fprintf(ficparo,"\n");  
     }  
   }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
   delti=delti3[1][1];   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
     - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
   /* Reads comments: lines beginning with '#' */   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
   while((c=getc(ficpar))=='#' && c!= EOF){   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
     ungetc(c,ficpar);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
     fgets(line, MAXLINE, ficpar);   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
     puts(line);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
     fputs(line,ficparo);  
   }   if(popforecast==1) fprintf(fichtm,"\n
   ungetc(c,ficpar);   - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
     - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
   matcov=matrix(1,npar,1,npar);          <br>",fileres,fileres,fileres,fileres);
   for(i=1; i <=npar; i++){   else 
     fscanf(ficpar,"%s",&str);     fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
     printf("%s",str);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){   m=cptcoveff;
       fscanf(ficpar," %le",&matcov[i][j]);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);   jj1=0;
     }   for(k1=1; k1<=m;k1++){
     fscanf(ficpar,"\n");     for(i1=1; i1<=ncodemax[k1];i1++){
     printf("\n");       jj1++;
     fprintf(ficparo,"\n");       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   for(i=1; i <=npar; i++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
     for(j=i+1;j<=npar;j++)           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       matcov[i][j]=matcov[j][i];         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           }
   printf("\n");       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
   interval) in state (%d): v%s%d%d.png <br>
     /*-------- Rewriting paramater file ----------*/  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      strcpy(rfileres,"r");    /* "Rparameterfile */       }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/     } /* end i1 */
      strcat(rfileres,".");    /* */   }/* End k1 */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */   fprintf(fichtm,"</ul>");
     if((ficres =fopen(rfileres,"w"))==NULL) {  fclose(fichtm);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  }
     }  
     fprintf(ficres,"#%s\n",version);  /******************* Gnuplot file **************/
      void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       printf("Problem with datafile: %s\n", datafile);goto end;    int ng;
     }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     n= lastobs;      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     severity = vector(1,maxwav);    }
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);    /*#ifdef windows */
     moisnais=vector(1,n);      fprintf(ficgp,"cd \"%s\" \n",pathc);
     annais=vector(1,n);      /*#endif */
     moisdc=vector(1,n);  m=pow(2,cptcoveff);
     andc=vector(1,n);    
     agedc=vector(1,n);   /* 1eme*/
     cod=ivector(1,n);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     weight=vector(1,n);     for (k1=1; k1<= m ; k1 ++) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     mint=matrix(1,maxwav,1,n);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);       for (i=1; i<= nlstate ; i ++) {
     adl=imatrix(1,maxwav+1,1,n);             if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     tab=ivector(1,NCOVMAX);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     ncodemax=ivector(1,8);       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
     i=1;       for (i=1; i<= nlstate ; i ++) {
     while (fgets(line, MAXLINE, fic) != NULL)    {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       if ((i >= firstobs) && (i <=lastobs)) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
               } 
         for (j=maxwav;j>=1;j--){       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);       for (i=1; i<= nlstate ; i ++) {
           strcpy(line,stra);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       }  
         }       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
             }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    /*2 eme*/
     
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (k1=1; k1<= m ; k1 ++) { 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      
         for (j=ncovcol;j>=1;j--){      for (i=1; i<= nlstate+1 ; i ++) {
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        k=2*i;
         }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         num[i]=atol(stra);        for (j=1; j<= nlstate+1 ; j ++) {
                  if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          else fprintf(ficgp," \%%*lf (\%%*lf)");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         i=i+1;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
     }        for (j=1; j<= nlstate+1 ; j ++) {
     /* printf("ii=%d", ij);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
        scanf("%d",i);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
   imx=i-1; /* Number of individuals */        }   
         fprintf(ficgp,"\" t\"\" w l 0,");
   /* for (i=1; i<=imx; i++){        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for (j=1; j<= nlstate+1 ; j ++) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }*/        }   
    /*  for (i=1; i<=imx; i++){        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      if (s[4][i]==9)  s[4][i]=-1;        else fprintf(ficgp,"\" t\"\" w l 0,");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      }
      }
      
   /* Calculation of the number of parameter from char model*/    /*3eme*/
   Tvar=ivector(1,15);    
   Tprod=ivector(1,15);    for (k1=1; k1<= m ; k1 ++) { 
   Tvaraff=ivector(1,15);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   Tvard=imatrix(1,15,1,2);        k=2+nlstate*(2*cpt-2);
   Tage=ivector(1,15);              fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
            fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
   if (strlen(model) >1){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     j=0, j1=0, k1=1, k2=1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     j=nbocc(model,'+');          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     j1=nbocc(model,'*');          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     cptcovn=j+1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     cptcovprod=j1;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
              
     strcpy(modelsav,model);        */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        for (i=1; i< nlstate ; i ++) {
       printf("Error. Non available option model=%s ",model);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
       goto end;          
     }        } 
          }
     for(i=(j+1); i>=1;i--){    }
       cutv(stra,strb,modelsav,'+');    
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    /* CV preval stat */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    for (k1=1; k1<= m ; k1 ++) { 
       /*scanf("%d",i);*/      for (cpt=1; cpt<nlstate ; cpt ++) {
       if (strchr(strb,'*')) {        k=3;
         cutv(strd,strc,strb,'*');        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         if (strcmp(strc,"age")==0) {        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
           cptcovprod--;        
           cutv(strb,stre,strd,'V');        for (i=1; i< nlstate ; i ++)
           Tvar[i]=atoi(stre);          fprintf(ficgp,"+$%d",k+i+1);
           cptcovage++;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
             Tage[cptcovage]=i;        
             /*printf("stre=%s ", stre);*/        l=3+(nlstate+ndeath)*cpt;
         }        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         else if (strcmp(strd,"age")==0) {        for (i=1; i< nlstate ; i ++) {
           cptcovprod--;          l=3+(nlstate+ndeath)*cpt;
           cutv(strb,stre,strc,'V');          fprintf(ficgp,"+$%d",l+i+1);
           Tvar[i]=atoi(stre);        }
           cptcovage++;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
           Tage[cptcovage]=i;      } 
         }    }  
         else {    
           cutv(strb,stre,strc,'V');    /* proba elementaires */
           Tvar[i]=ncovcol+k1;    for(i=1,jk=1; i <=nlstate; i++){
           cutv(strb,strc,strd,'V');      for(k=1; k <=(nlstate+ndeath); k++){
           Tprod[k1]=i;        if (k != i) {
           Tvard[k1][1]=atoi(strc);          for(j=1; j <=ncovmodel; j++){
           Tvard[k1][2]=atoi(stre);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           Tvar[cptcovn+k2]=Tvard[k1][1];            jk++; 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            fprintf(ficgp,"\n");
           for (k=1; k<=lastobs;k++)          }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        }
           k1++;      }
           k2=k2+2;     }
         }  
       }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       else {       for(jk=1; jk <=m; jk++) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
        /*  scanf("%d",i);*/         if (ng==2)
       cutv(strd,strc,strb,'V');           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       Tvar[i]=atoi(strc);         else
       }           fprintf(ficgp,"\nset title \"Probability\"\n");
       strcpy(modelsav,stra);           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);         i=1;
         scanf("%d",i);*/         for(k2=1; k2<=nlstate; k2++) {
     }           k3=i;
 }           for(k=1; k<=(nlstate+ndeath); k++) {
               if (k != k2){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);               if(ng==2)
   printf("cptcovprod=%d ", cptcovprod);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   scanf("%d ",i);*/               else
     fclose(fic);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
     /*  if(mle==1){*/               for(j=3; j <=ncovmodel; j++) {
     if (weightopt != 1) { /* Maximisation without weights*/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       for(i=1;i<=n;i++) weight[i]=1.0;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     }                   ij++;
     /*-calculation of age at interview from date of interview and age at death -*/                 }
     agev=matrix(1,maxwav,1,imx);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     for (i=1; i<=imx; i++) {               }
       for(m=2; (m<= maxwav); m++) {               fprintf(ficgp,")/(1");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){               
          anint[m][i]=9999;               for(k1=1; k1 <=nlstate; k1++){   
          s[m][i]=-1;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
        }                 ij=1;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                 for(j=3; j <=ncovmodel; j++){
       }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
     for (i=1; i<=imx; i++)  {                   }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                   else
       for(m=1; (m<= maxwav); m++){                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         if(s[m][i] >0){                 }
           if (s[m][i] >= nlstate+1) {                 fprintf(ficgp,")");
             if(agedc[i]>0)               }
               if(moisdc[i]!=99 && andc[i]!=9999)               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 agev[m][i]=agedc[i];               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/               i=i+ncovmodel;
            else {             }
               if (andc[i]!=9999){           } /* end k */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);         } /* end k2 */
               agev[m][i]=-1;       } /* end jk */
               }     } /* end ng */
             }     fclose(ficgp); 
           }  }  /* end gnuplot */
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)  /*************** Moving average **************/
               agev[m][i]=1;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];    int i, cpt, cptcod;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int modcovmax =1;
             }    int mobilavrange, mob;
             else if(agev[m][i] >agemax){    double age;
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
             }                             a covariate has 2 modalities */
             /*agev[m][i]=anint[m][i]-annais[i];*/    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
             /*   agev[m][i] = age[i]+2*m;*/  
           }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           else { /* =9 */      if(mobilav==1) mobilavrange=5; /* default */
             agev[m][i]=1;      else mobilavrange=mobilav;
             s[m][i]=-1;      for (age=bage; age<=fage; age++)
           }        for (i=1; i<=nlstate;i++)
         }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
         else /*= 0 Unknown */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           agev[m][i]=1;      /* We keep the original values on the extreme ages bage, fage and for 
       }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
             we use a 5 terms etc. until the borders are no more concerned. 
     }      */ 
     for (i=1; i<=imx; i++)  {      for (mob=3;mob <=mobilavrange;mob=mob+2){
       for(m=1; (m<= maxwav); m++){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         if (s[m][i] > (nlstate+ndeath)) {          for (i=1; i<=nlstate;i++){
           printf("Error: Wrong value in nlstate or ndeath\n");              for (cptcod=1;cptcod<=modcovmax;cptcod++){
           goto end;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
     free_vector(severity,1,maxwav);          }
     free_imatrix(outcome,1,maxwav+1,1,n);        }/* end age */
     free_vector(moisnais,1,n);      }/* end mob */
     free_vector(annais,1,n);    }else return -1;
     /* free_matrix(mint,1,maxwav,1,n);    return 0;
        free_matrix(anint,1,maxwav,1,n);*/  }/* End movingaverage */
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);  
   /************** Forecasting ******************/
      prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     wav=ivector(1,imx);    /* proj1, year, month, day of starting projection 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);       agemin, agemax range of age
     mw=imatrix(1,lastpass-firstpass+1,1,imx);       dateprev1 dateprev2 range of dates during which prevalence is computed
           anproj2 year of en of projection (same day and month as proj1).
     /* Concatenates waves */    */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
       Tcode=ivector(1,100);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double *popeffectif,*popcount;
       ncodemax[1]=1;    double ***p3mat;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    double ***mobaverage;
          char fileresf[FILENAMELENGTH];
    codtab=imatrix(1,100,1,10);  
    h=0;    agelim=AGESUP;
    m=pow(2,cptcoveff);    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
    for(k=1;k<=cptcoveff; k++){    strcpy(fileresf,"f"); 
      for(i=1; i <=(m/pow(2,k));i++){    strcat(fileresf,fileres);
        for(j=1; j <= ncodemax[k]; j++){    if((ficresf=fopen(fileresf,"w"))==NULL) {
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      printf("Problem with forecast resultfile: %s\n", fileresf);
            h++;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    printf("Computing forecasting: result on file '%s' \n", fileresf);
          }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
        }  
      }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    if (mobilav!=0) {
       codtab[1][2]=1;codtab[2][2]=2; */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    /* for(i=1; i <=m ;i++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       for(k=1; k <=cptcovn; k++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }      }
       printf("\n");    }
       }  
       scanf("%d",i);*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
        if (stepm<=12) stepsize=1;
    /* Calculates basic frequencies. Computes observed prevalence at single age    if(estepm < stepm){
        and prints on file fileres'p'. */      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
        else  hstepm=estepm;   
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    hstepm=hstepm/stepm; 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                                 fractional in yp1 */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    anprojmean=yp;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    yp2=modf((yp1*12),&yp);
          mprojmean=yp;
     /* For Powell, parameters are in a vector p[] starting at p[1]    yp1=modf((yp2*30.5),&yp);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    jprojmean=yp;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    i1=cptcoveff;
     }    if (cptcovn < 1){i1=1;}
        
     /*--------- results files --------------*/    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    
      fprintf(ficresf,"#****** Routine prevforecast **\n");
   
    jk=1;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        k=k+1;
    for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficresf,"\n#******");
      for(k=1; k <=(nlstate+ndeath); k++){        for(j=1;j<=cptcoveff;j++) {
        if (k != i)          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
          {        }
            printf("%d%d ",i,k);        fprintf(ficresf,"******\n");
            fprintf(ficres,"%1d%1d ",i,k);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
            for(j=1; j <=ncovmodel; j++){        for(j=1; j<=nlstate+ndeath;j++){ 
              printf("%f ",p[jk]);          for(i=1; i<=nlstate;i++)              
              fprintf(ficres,"%f ",p[jk]);            fprintf(ficresf," p%d%d",i,j);
              jk++;          fprintf(ficresf," p.%d",j);
            }        }
            printf("\n");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
            fprintf(ficres,"\n");          fprintf(ficresf,"\n");
          }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
      }  
    }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
  if(mle==1){            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     /* Computing hessian and covariance matrix */            nhstepm = nhstepm/hstepm; 
     ftolhess=ftol; /* Usually correct */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     hesscov(matcov, p, npar, delti, ftolhess, func);            oldm=oldms;savm=savms;
  }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          
     printf("# Scales (for hessian or gradient estimation)\n");            for (h=0; h<=nhstepm; h++){
      for(i=1,jk=1; i <=nlstate; i++){              if (h==(int) (YEARM*yearp)) {
       for(j=1; j <=nlstate+ndeath; j++){                fprintf(ficresf,"\n");
         if (j!=i) {                for(j=1;j<=cptcoveff;j++) 
           fprintf(ficres,"%1d%1d",i,j);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf("%1d%1d",i,j);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
           for(k=1; k<=ncovmodel;k++){              } 
             printf(" %.5e",delti[jk]);              for(j=1; j<=nlstate+ndeath;j++) {
             fprintf(ficres," %.5e",delti[jk]);                ppij=0.;
             jk++;                for(i=1; i<=nlstate;i++) {
           }                  if (mobilav==1) 
           printf("\n");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
           fprintf(ficres,"\n");                  else {
         }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       }                  }
      }                  if (h==(int)(YEARM*yearp))
                        fprintf(ficresf," %.3f", p3mat[i][j][h]);
     k=1;                }
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                if (h==(int)(YEARM*yearp)){
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                  fprintf(ficresf," %.3f", ppij);
     for(i=1;i<=npar;i++){                }
       /*  if (k>nlstate) k=1;              }
       i1=(i-1)/(ncovmodel*nlstate)+1;            }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("%s%d%d",alph[k],i1,tab[i]);*/          }
       fprintf(ficres,"%3d",i);        }
       printf("%3d",i);      }
       for(j=1; j<=i;j++){    }
         fprintf(ficres," %.5e",matcov[i][j]);         
         printf(" %.5e",matcov[i][j]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }  
       fprintf(ficres,"\n");    fclose(ficresf);
       printf("\n");  }
       k++;  
     }  /************** Forecasting *****not tested NB*************/
      populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     while((c=getc(ficpar))=='#' && c!= EOF){    
       ungetc(c,ficpar);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       fgets(line, MAXLINE, ficpar);    int *popage;
       puts(line);    double calagedatem, agelim, kk1, kk2;
       fputs(line,ficparo);    double *popeffectif,*popcount;
     }    double ***p3mat,***tabpop,***tabpopprev;
     ungetc(c,ficpar);    double ***mobaverage;
     estepm=0;    char filerespop[FILENAMELENGTH];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if (fage <= 2) {    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       bage = ageminpar;    agelim=AGESUP;
       fage = agemaxpar;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     }    
        prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    strcpy(filerespop,"pop"); 
      strcat(filerespop,fileres);
     while((c=getc(ficpar))=='#' && c!= EOF){    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with forecast resultfile: %s\n", filerespop);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     puts(line);    }
     fputs(line,ficparo);    printf("Computing forecasting: result on file '%s' \n", filerespop);
   }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   ungetc(c,ficpar);  
      if (cptcoveff==0) ncodemax[cptcoveff]=1;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    if (mobilav!=0) {
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     ungetc(c,ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);  
   }    stepsize=(int) (stepm+YEARM-1)/YEARM;
   ungetc(c,ficpar);    if (stepm<=12) stepsize=1;
      
     agelim=AGESUP;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    hstepm=1;
     hstepm=hstepm/stepm; 
   fscanf(ficpar,"pop_based=%d\n",&popbased);    
   fprintf(ficparo,"pop_based=%d\n",popbased);      if (popforecast==1) {
   fprintf(ficres,"pop_based=%d\n",popbased);        if((ficpop=fopen(popfile,"r"))==NULL) {
          printf("Problem with population file : %s\n",popfile);exit(0);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     ungetc(c,ficpar);      } 
     fgets(line, MAXLINE, ficpar);      popage=ivector(0,AGESUP);
     puts(line);      popeffectif=vector(0,AGESUP);
     fputs(line,ficparo);      popcount=vector(0,AGESUP);
   }      
   ungetc(c,ficpar);      i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);     
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      imx=i;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
 while((c=getc(ficpar))=='#' && c!= EOF){    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     ungetc(c,ficpar);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     fgets(line, MAXLINE, ficpar);        k=k+1;
     puts(line);        fprintf(ficrespop,"\n#******");
     fputs(line,ficparo);        for(j=1;j<=cptcoveff;j++) {
   }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   ungetc(c,ficpar);        }
         fprintf(ficrespop,"******\n");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        fprintf(ficrespop,"# Age");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        if (popforecast==1)  fprintf(ficrespop," [Population]");
         
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 /*------------ gnuplot -------------*/          
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
              nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 /*------------ free_vector  -------------*/            nhstepm = nhstepm/hstepm; 
  chdir(path);            
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  free_ivector(wav,1,imx);            oldm=oldms;savm=savms;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            
  free_ivector(num,1,n);            for (h=0; h<=nhstepm; h++){
  free_vector(agedc,1,n);              if (h==(int) (calagedatem+YEARM*cpt)) {
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  fclose(ficparo);              } 
  fclose(ficres);              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
 /*--------- index.htm --------*/                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                      kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   /*--------------- Prevalence limit --------------*/                  }
                  }
   strcpy(filerespl,"pl");                if (h==(int)(calagedatem+12*cpt)){
   strcat(filerespl,fileres);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                    /*fprintf(ficrespop," %.3f", kk1);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   }                }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              }
   fprintf(ficrespl,"#Prevalence limit\n");              for(i=1; i<=nlstate;i++){
   fprintf(ficrespl,"#Age ");                kk1=0.;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                  for(j=1; j<=nlstate;j++){
   fprintf(ficrespl,"\n");                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                    }
   prlim=matrix(1,nlstate,1,nlstate);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }
   k=0;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agebase=ageminpar;          }
   agelim=agemaxpar;        }
   ftolpl=1.e-10;   
   i1=cptcoveff;    /******/
   if (cptcovn < 1){i1=1;}  
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
         k=k+1;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            nhstepm = nhstepm/hstepm; 
         fprintf(ficrespl,"\n#******");            
         for(j=1;j<=cptcoveff;j++)            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            oldm=oldms;savm=savms;
         fprintf(ficrespl,"******\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                    for (h=0; h<=nhstepm; h++){
         for (age=agebase; age<=agelim; age++){              if (h==(int) (calagedatem+YEARM*cpt)) {
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           fprintf(ficrespl,"%.0f",age );              } 
           for(i=1; i<=nlstate;i++)              for(j=1; j<=nlstate+ndeath;j++) {
           fprintf(ficrespl," %.5f", prlim[i][i]);                kk1=0.;kk2=0;
           fprintf(ficrespl,"\n");                for(i=1; i<=nlstate;i++) {              
         }                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       }                }
     }                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   fclose(ficrespl);              }
             }
   /*------------- h Pij x at various ages ------------*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {     } 
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    }
   }   
   printf("Computing pij: result on file '%s' \n", filerespij);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if (popforecast==1) {
   /*if (stepm<=24) stepsize=2;*/      free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
   agelim=AGESUP;      free_vector(popcount,0,AGESUP);
   hstepm=stepsize*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   k=0;    fclose(ficrespop);
   for(cptcov=1;cptcov<=i1;cptcov++){  }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  /***********************************************/
         fprintf(ficrespij,"\n#****** ");  /**************** Main Program *****************/
         for(j=1;j<=cptcoveff;j++)  /***********************************************/
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  int main(int argc, char *argv[])
          {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double agedeb, agefin,hf;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double fret;
           fprintf(ficrespij,"# Age");    double **xi,tmp,delta;
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)    double dum; /* Dummy variable */
               fprintf(ficrespij," %1d-%1d",i,j);    double ***p3mat;
           fprintf(ficrespij,"\n");    double ***mobaverage;
            for (h=0; h<=nhstepm; h++){    int *indx;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    char line[MAXLINE], linepar[MAXLINE];
             for(i=1; i<=nlstate;i++)    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
               for(j=1; j<=nlstate+ndeath;j++)    int firstobs=1, lastobs=10;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    int sdeb, sfin; /* Status at beginning and end */
             fprintf(ficrespij,"\n");    int c,  h , cpt,l;
              }    int ju,jl, mi;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
           fprintf(ficrespij,"\n");    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
         }    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     }    int mobilav=0,popforecast=0;
   }    int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
   fclose(ficrespij);    double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
   /*---------- Forecasting ------------------*/    double *severity;
   if((stepm == 1) && (strcmp(model,".")==0)){    double ***param; /* Matrix of parameters */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    double  *p;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double **matcov; /* Matrix of covariance */
   }    double ***delti3; /* Scale */
   else{    double *delti; /* Scale */
     erreur=108;    double ***eij, ***vareij;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double **varpl; /* Variances of prevalence limits by age */
   }    double *epj, vepp;
      double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   /*---------- Health expectancies and variances ------------*/  
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   strcpy(filerest,"t");  
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    char z[1]="c", occ;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  #include <sys/time.h>
   }  #include <time.h>
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
   strcpy(filerese,"e");       struct timeval start_time, end_time;
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    getcwd(pathcd, size);
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    printf("\n%s",version);
     if(argc <=1){
  strcpy(fileresv,"v");      printf("\nEnter the parameter file name: ");
   strcat(fileresv,fileres);      scanf("%s",pathtot);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    else{
   }      strcpy(pathtot,argv[1]);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    }
   calagedate=-1;    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   k=0;    /* cutv(path,optionfile,pathtot,'\\');*/
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
       k=k+1;    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       fprintf(ficrest,"\n#****** ");    chdir(path);
       for(j=1;j<=cptcoveff;j++)    replace(pathc,path);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    /*-------- arguments in the command line --------*/
   
       fprintf(ficreseij,"\n#****** ");    /* Log file */
       for(j=1;j<=cptcoveff;j++)    strcat(filelog, optionfilefiname);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(filelog,".log");    /* */
       fprintf(ficreseij,"******\n");    if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       fprintf(ficresvij,"\n#****** ");      goto end;
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Log filename:%s\n",filelog);
       fprintf(ficresvij,"******\n");    fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       oldm=oldms;savm=savms;    fflush(ficlog);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
      /* */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    strcpy(fileres,"r");
       oldm=oldms;savm=savms;    strcat(fileres, optionfilefiname);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    strcat(fileres,".txt");    /* Other files have txt extension */
      
     /*---------arguments file --------*/
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    if((ficpar=fopen(optionfile,"r"))==NULL)    {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficrest,"\n");      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
       epj=vector(1,nlstate+1);    }
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcpy(filereso,"o");
         if (popbased==1) {    strcat(filereso,fileres);
           for(i=1; i<=nlstate;i++)    if((ficparo=fopen(filereso,"w"))==NULL) {
             prlim[i][i]=probs[(int)age][i][k];      printf("Problem with Output resultfile: %s\n", filereso);
         }      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
              goto end;
         fprintf(ficrest," %4.0f",age);    }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    /* Reads comments: lines beginning with '#' */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    while((c=getc(ficpar))=='#' && c!= EOF){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      ungetc(c,ficpar);
           }      fgets(line, MAXLINE, ficpar);
           epj[nlstate+1] +=epj[j];      puts(line);
         }      fputs(line,ficparo);
     }
         for(i=1, vepp=0.;i <=nlstate;i++)    ungetc(c,ficpar);
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
         for(j=1;j <=nlstate;j++){    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    while((c=getc(ficpar))=='#' && c!= EOF){
         }      ungetc(c,ficpar);
         fprintf(ficrest,"\n");      fgets(line, MAXLINE, ficpar);
       }      puts(line);
     }      fputs(line,ficparo);
   }    }
 free_matrix(mint,1,maxwav,1,n);    ungetc(c,ficpar);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    
     free_vector(weight,1,n);     
   fclose(ficreseij);    covar=matrix(0,NCOVMAX,1,n); 
   fclose(ficresvij);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   fclose(ficrest);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
      nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   /*------- Variance limit prevalence------*/      
     /* Read guess parameters */
   strcpy(fileresvpl,"vpl");    /* Reads comments: lines beginning with '#' */
   strcat(fileresvpl,fileres);    while((c=getc(ficpar))=='#' && c!= EOF){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      ungetc(c,ficpar);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      fgets(line, MAXLINE, ficpar);
     exit(0);      puts(line);
   }      fputs(line,ficparo);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    }
     ungetc(c,ficpar);
   k=0;    
   for(cptcov=1;cptcov<=i1;cptcov++){    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i <=nlstate; i++)
       k=k+1;      for(j=1; j <=nlstate+ndeath-1; j++){
       fprintf(ficresvpl,"\n#****** ");        fscanf(ficpar,"%1d%1d",&i1,&j1);
       for(j=1;j<=cptcoveff;j++)        fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if(mle==1)
       fprintf(ficresvpl,"******\n");          printf("%1d%1d",i,j);
              fprintf(ficlog,"%1d%1d",i,j);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        for(k=1; k<=ncovmodel;k++){
       oldm=oldms;savm=savms;          fscanf(ficpar," %lf",&param[i][j][k]);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          if(mle==1){
     }            printf(" %lf",param[i][j][k]);
  }            fprintf(ficlog," %lf",param[i][j][k]);
           }
   fclose(ficresvpl);          else
             fprintf(ficlog," %lf",param[i][j][k]);
   /*---------- End : free ----------------*/          fprintf(ficparo," %lf",param[i][j][k]);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        }
          fscanf(ficpar,"\n");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        if(mle==1)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          printf("\n");
          fprintf(ficlog,"\n");
          fprintf(ficparo,"\n");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
      p=param[1][1];
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);    /* Reads comments: lines beginning with '#' */
   free_matrix(agev,1,maxwav,1,imx);    while((c=getc(ficpar))=='#' && c!= EOF){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
   if(erreur >0)      puts(line);
     printf("End of Imach with error or warning %d\n",erreur);      fputs(line,ficparo);
   else   printf("End of Imach\n");    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    ungetc(c,ficpar);
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
   /*------ End -----------*/    for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
  end:        printf("%1d%1d",i,j);
   /* chdir(pathcd);*/        fprintf(ficparo,"%1d%1d",i1,j1);
  /*system("wgnuplot graph.plt");*/        for(k=1; k<=ncovmodel;k++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/          fscanf(ficpar,"%le",&delti3[i][j][k]);
  /*system("cd ../gp37mgw");*/          printf(" %le",delti3[i][j][k]);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          fprintf(ficparo," %le",delti3[i][j][k]);
  strcpy(plotcmd,GNUPLOTPROGRAM);        }
  strcat(plotcmd," ");        fscanf(ficpar,"\n");
  strcat(plotcmd,optionfilegnuplot);        printf("\n");
  system(plotcmd);        fprintf(ficparo,"\n");
       }
  /*#ifdef windows*/    }
   while (z[0] != 'q') {    delti=delti3[1][1];
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);    /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     if (z[0] == 'c') system("./imach");    
     else if (z[0] == 'e') system(optionfilehtm);    /* Reads comments: lines beginning with '#' */
     else if (z[0] == 'g') system(plotcmd);    while((c=getc(ficpar))=='#' && c!= EOF){
     else if (z[0] == 'q') exit(0);      ungetc(c,ficpar);
   }      fgets(line, MAXLINE, ficpar);
   /*#endif */      puts(line);
 }      fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if(moisdc[i]!=99 && andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if (andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if(mint[m][i]==99 || anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting: %s\n",plotcmd);fflush(stdout);
     system(plotcmd);
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.74


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>