version 1.59, 2002/11/18 23:01:13
|
version 1.74, 2003/05/02 18:51:41
|
Line 32
|
Line 32
|
hPijx is the probability to be observed in state i at age x+h |
hPijx is the probability to be observed in state i at age x+h |
conditional to the observed state i at age x. The delay 'h' can be |
conditional to the observed state i at age x. The delay 'h' can be |
split into an exact number (nh*stepm) of unobserved intermediate |
split into an exact number (nh*stepm) of unobserved intermediate |
states. This elementary transition (by month or quarter trimester, |
states. This elementary transition (by month, quarter, |
semester or year) is model as a multinomial logistic. The hPx |
semester or year) is modelled as a multinomial logistic. The hPx |
matrix is simply the matrix product of nh*stepm elementary matrices |
matrix is simply the matrix product of nh*stepm elementary matrices |
and the contribution of each individual to the likelihood is simply |
and the contribution of each individual to the likelihood is simply |
hPijx. |
hPijx. |
Line 48
|
Line 48
|
It is copyrighted identically to a GNU software product, ie programme and |
It is copyrighted identically to a GNU software product, ie programme and |
software can be distributed freely for non commercial use. Latest version |
software can be distributed freely for non commercial use. Latest version |
can be accessed at http://euroreves.ined.fr/imach . |
can be accessed at http://euroreves.ined.fr/imach . |
|
|
|
Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach |
|
or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so |
|
|
**********************************************************************/ |
**********************************************************************/ |
|
/* |
|
main |
|
read parameterfile |
|
read datafile |
|
concatwav |
|
if (mle >= 1) |
|
mlikeli |
|
print results files |
|
if mle==1 |
|
computes hessian |
|
read end of parameter file: agemin, agemax, bage, fage, estepm |
|
begin-prev-date,... |
|
open gnuplot file |
|
open html file |
|
stable prevalence |
|
for age prevalim() |
|
h Pij x |
|
variance of p varprob |
|
forecasting if prevfcast==1 prevforecast call prevalence() |
|
health expectancies |
|
Variance-covariance of DFLE |
|
prevalence() |
|
movingaverage() |
|
varevsij() |
|
if popbased==1 varevsij(,popbased) |
|
total life expectancies |
|
Variance of stable prevalence |
|
end |
|
*/ |
|
|
|
|
|
|
|
|
#include <math.h> |
#include <math.h> |
#include <stdio.h> |
#include <stdio.h> |
Line 83
|
Line 119
|
#define ODIRSEPARATOR '\\' |
#define ODIRSEPARATOR '\\' |
#endif |
#endif |
|
|
char version[80]="Imach version 0.9, November 2002, INED-EUROREVES "; |
char version[80]="Imach version 0.95, February 2003, INED-EUROREVES "; |
int erreur; /* Error number */ |
int erreur; /* Error number */ |
int nvar; |
int nvar; |
int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov; |
int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov; |
Line 188 static int split( char *path, char *dirc
|
Line 224 static int split( char *path, char *dirc
|
if ( ss == NULL ) { /* no directory, so use current */ |
if ( ss == NULL ) { /* no directory, so use current */ |
/*if(strrchr(path, ODIRSEPARATOR )==NULL) |
/*if(strrchr(path, ODIRSEPARATOR )==NULL) |
printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/ |
printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/ |
#if defined(__bsd__) /* get current working directory */ |
/* get current working directory */ |
extern char *getwd( ); |
/* extern char* getcwd ( char *buf , int len);*/ |
|
|
if ( getwd( dirc ) == NULL ) { |
|
#else |
|
extern char *getcwd( ); |
|
|
|
if ( getcwd( dirc, FILENAME_MAX ) == NULL ) { |
if ( getcwd( dirc, FILENAME_MAX ) == NULL ) { |
#endif |
|
return( GLOCK_ERROR_GETCWD ); |
return( GLOCK_ERROR_GETCWD ); |
} |
} |
strcpy( name, path ); /* we've got it */ |
strcpy( name, path ); /* we've got it */ |
Line 365 double **matrix(long nrl, long nrh, long
|
Line 395 double **matrix(long nrl, long nrh, long
|
|
|
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; |
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; |
return m; |
return m; |
|
/* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) |
|
*/ |
} |
} |
|
|
/*************************free matrix ************************/ |
/*************************free matrix ************************/ |
Line 404 double ***ma3x(long nrl, long nrh, long
|
Line 436 double ***ma3x(long nrl, long nrh, long
|
for (j=ncl+1; j<=nch; j++) |
for (j=ncl+1; j<=nch; j++) |
m[i][j]=m[i][j-1]+nlay; |
m[i][j]=m[i][j-1]+nlay; |
} |
} |
return m; |
return m; |
|
/* gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1]) |
|
&(m[i][j][k]) <=> *((*(m+i) + j)+k) |
|
*/ |
} |
} |
|
|
/*************************free ma3x ************************/ |
/*************************free ma3x ************************/ |
Line 856 double **matprod2(double **out, double *
|
Line 891 double **matprod2(double **out, double *
|
|
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
{ |
{ |
/* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month |
/* Computes the transition matrix starting at age 'age' over |
duration (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
|
nhstepm*hstepm matrices. |
Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
(typically every 2 years instead of every month which is too big). |
(typically every 2 years instead of every month which is too big |
|
for the memory). |
Model is determined by parameters x and covariates have to be |
Model is determined by parameters x and covariates have to be |
included manually here. |
included manually here. |
|
|
Line 917 double func( double *x)
|
Line 954 double func( double *x)
|
double sw; /* Sum of weights */ |
double sw; /* Sum of weights */ |
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
int s1, s2; |
int s1, s2; |
double bbh; |
double bbh, survp; |
long ipmx; |
long ipmx; |
/*extern weight */ |
/*extern weight */ |
/* We are differentiating ll according to initial status */ |
/* We are differentiating ll according to initial status */ |
Line 928 double func( double *x)
|
Line 965 double func( double *x)
|
cov[1]=1.; |
cov[1]=1.; |
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
if(mle==1){ |
for(mi=1; mi<= wav[i]-1; mi++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
for (j=1;j<=nlstate+ndeath;j++){ |
for(mi=1; mi<= wav[i]-1; mi++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
for (ii=1;ii<=nlstate+ndeath;ii++) |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
for (j=1;j<=nlstate+ndeath;j++){ |
} |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
for(d=0; d<dh[mi][i]; d++){ |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
newm=savm; |
} |
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
for(d=0; d<dh[mi][i]; d++){ |
for (kk=1; kk<=cptcovage;kk++) { |
newm=savm; |
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
} |
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
} |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
savm=oldm; |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
oldm=newm; |
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
|
/* But now since version 0.9 we anticipate for bias and large stepm. |
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
|
* (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
/* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
|
*/ |
|
/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
|
if( s2 > nlstate){ |
|
/* i.e. if s2 is a death state and if the date of death is known then the contribution |
|
to the likelihood is the probability to die between last step unit time and current |
|
step unit time, which is also the differences between probability to die before dh |
|
and probability to die before dh-stepm . |
|
In version up to 0.92 likelihood was computed |
|
as if date of death was unknown. Death was treated as any other |
|
health state: the date of the interview describes the actual state |
|
and not the date of a change in health state. The former idea was |
|
to consider that at each interview the state was recorded |
|
(healthy, disable or death) and IMaCh was corrected; but when we |
|
introduced the exact date of death then we should have modified |
|
the contribution of an exact death to the likelihood. This new |
|
contribution is smaller and very dependent of the step unit |
|
stepm. It is no more the probability to die between last interview |
|
and month of death but the probability to survive from last |
|
interview up to one month before death multiplied by the |
|
probability to die within a month. Thanks to Chris |
|
Jackson for correcting this bug. Former versions increased |
|
mortality artificially. The bad side is that we add another loop |
|
which slows down the processing. The difference can be up to 10% |
|
lower mortality. |
|
*/ |
|
lli=log(out[s1][s2] - savm[s1][s2]); |
|
}else{ |
|
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
|
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
|
} |
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
|
/*if(lli ==000.0)*/ |
|
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
} else if(mle==2){ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<=dh[mi][i]; d++){ |
|
newm=savm; |
|
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
|
} |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
|
/* But now since version 0.9 we anticipate for bias and large stepm. |
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
|
* (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
/* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
|
*/ |
|
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
|
/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
|
/*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */ |
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
|
/*if(lli ==000.0)*/ |
|
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
} else if(mle==3){ /* exponential inter-extrapolation */ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
|
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
|
} |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
|
/* But now since version 0.9 we anticipate for bias and large stepm. |
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
|
* (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
/* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
|
*/ |
|
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */ |
|
lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
|
/*if(lli ==000.0)*/ |
|
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
}else{ /* ml=4 no inter-extrapolation */ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
|
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
|
} |
|
|
} /* end mult */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
/* But now since version 0.9 we anticipate for bias and large stepm. |
ipmx +=1; |
* If stepm is larger than one month (smallest stepm) and if the exact delay |
sw += weight[i]; |
* (in months) between two waves is not a multiple of stepm, we rounded to |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
* the nearest (and in case of equal distance, to the lowest) interval but now |
} /* end of wave */ |
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
} /* end of individual */ |
* (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the |
} /* End of if */ |
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is neagtive or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-bbh)*out[s1][s2])); |
|
/*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-bbh)*out[s1][s2]));*/ |
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
|
/*if(lli ==000.0)*/ |
|
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
|
|
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
Line 990 double func( double *x)
|
Line 1185 double func( double *x)
|
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
{ |
{ |
int i,j, iter; |
int i,j, iter; |
double **xi,*delti; |
double **xi; |
double fret; |
double fret; |
xi=matrix(1,npar,1,npar); |
xi=matrix(1,npar,1,npar); |
for (i=1;i<=npar;i++) |
for (i=1;i<=npar;i++) |
Line 1000 void mlikeli(FILE *ficres,double p[], in
|
Line 1195 void mlikeli(FILE *ficres,double p[], in
|
powell(p,xi,npar,ftol,&iter,&fret,func); |
powell(p,xi,npar,ftol,&iter,&fret,func); |
|
|
printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); |
printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); |
fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
|
|
} |
} |
Line 1263 void lubksb(double **a, int n, int *indx
|
Line 1458 void lubksb(double **a, int n, int *indx
|
} |
} |
|
|
/************ Frequencies ********************/ |
/************ Frequencies ********************/ |
void freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2) |
void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2) |
{ /* Some frequencies */ |
{ /* Some frequencies */ |
|
|
int i, m, jk, k1,i1, j1, bool, z1,z2,j; |
int i, m, jk, k1,i1, j1, bool, z1,z2,j; |
int first; |
int first; |
double ***freq; /* Frequencies */ |
double ***freq; /* Frequencies */ |
double *pp; |
double *pp, **prop; |
double pos, k2, dateintsum=0,k2cpt=0; |
double pos,posprop, k2, dateintsum=0,k2cpt=0; |
FILE *ficresp; |
FILE *ficresp; |
char fileresp[FILENAMELENGTH]; |
char fileresp[FILENAMELENGTH]; |
|
|
pp=vector(1,nlstate); |
pp=vector(1,nlstate); |
probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); |
prop=matrix(1,nlstate,iagemin,iagemax+3); |
strcpy(fileresp,"p"); |
strcpy(fileresp,"p"); |
strcat(fileresp,fileres); |
strcat(fileresp,fileres); |
if((ficresp=fopen(fileresp,"w"))==NULL) { |
if((ficresp=fopen(fileresp,"w"))==NULL) { |
Line 1283 void freqsummary(char fileres[], int ag
|
Line 1478 void freqsummary(char fileres[], int ag
|
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
exit(0); |
exit(0); |
} |
} |
freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); |
freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3); |
j1=0; |
j1=0; |
|
|
j=cptcoveff; |
j=cptcoveff; |
Line 1298 void freqsummary(char fileres[], int ag
|
Line 1493 void freqsummary(char fileres[], int ag
|
scanf("%d", i);*/ |
scanf("%d", i);*/ |
for (i=-1; i<=nlstate+ndeath; i++) |
for (i=-1; i<=nlstate+ndeath; i++) |
for (jk=-1; jk<=nlstate+ndeath; jk++) |
for (jk=-1; jk<=nlstate+ndeath; jk++) |
for(m=agemin; m <= agemax+3; m++) |
for(m=iagemin; m <= iagemax+3; m++) |
freq[i][jk][m]=0; |
freq[i][jk][m]=0; |
|
|
|
for (i=1; i<=nlstate; i++) |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
prop[i][m]=0; |
|
|
dateintsum=0; |
dateintsum=0; |
k2cpt=0; |
k2cpt=0; |
Line 1314 void freqsummary(char fileres[], int ag
|
Line 1513 void freqsummary(char fileres[], int ag
|
for(m=firstpass; m<=lastpass; m++){ |
for(m=firstpass; m<=lastpass; m++){ |
k2=anint[m][i]+(mint[m][i]/12.); |
k2=anint[m][i]+(mint[m][i]/12.); |
if ((k2>=dateprev1) && (k2<=dateprev2)) { |
if ((k2>=dateprev1) && (k2<=dateprev2)) { |
if(agev[m][i]==0) agev[m][i]=agemax+1; |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
if(agev[m][i]==1) agev[m][i]=agemax+2; |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
|
if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
if (m<lastpass) { |
if (m<lastpass) { |
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; |
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; |
freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i]; |
freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; |
} |
} |
|
|
if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) { |
if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) { |
dateintsum=dateintsum+k2; |
dateintsum=dateintsum+k2; |
k2cpt++; |
k2cpt++; |
} |
} |
Line 1341 void freqsummary(char fileres[], int ag
|
Line 1541 void freqsummary(char fileres[], int ag
|
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
fprintf(ficresp, "\n"); |
fprintf(ficresp, "\n"); |
|
|
for(i=(int)agemin; i <= (int)agemax+3; i++){ |
for(i=iagemin; i <= iagemax+3; i++){ |
if(i==(int)agemax+3){ |
if(i==iagemax+3){ |
fprintf(ficlog,"Total"); |
fprintf(ficlog,"Total"); |
}else{ |
}else{ |
if(first==1){ |
if(first==1){ |
Line 1373 void freqsummary(char fileres[], int ag
|
Line 1573 void freqsummary(char fileres[], int ag
|
for(jk=1; jk <=nlstate ; jk++){ |
for(jk=1; jk <=nlstate ; jk++){ |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) |
pp[jk] += freq[jk][m][i]; |
pp[jk] += freq[jk][m][i]; |
} |
} |
|
for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){ |
for(jk=1,pos=0; jk <=nlstate ; jk++) |
|
pos += pp[jk]; |
pos += pp[jk]; |
|
posprop += prop[jk][i]; |
|
} |
for(jk=1; jk <=nlstate ; jk++){ |
for(jk=1; jk <=nlstate ; jk++){ |
if(pos>=1.e-5){ |
if(pos>=1.e-5){ |
if(first==1) |
if(first==1) |
Line 1387 void freqsummary(char fileres[], int ag
|
Line 1588 void freqsummary(char fileres[], int ag
|
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
} |
} |
if( i <= (int) agemax){ |
if( i <= iagemax){ |
if(pos>=1.e-5){ |
if(pos>=1.e-5){ |
fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos); |
fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop); |
probs[i][jk][j1]= pp[jk]/pos; |
probs[i][jk][j1]= pp[jk]/pos; |
/*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ |
/*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ |
} |
} |
else |
else |
fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos); |
fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop); |
} |
} |
} |
} |
|
|
Line 1405 void freqsummary(char fileres[], int ag
|
Line 1606 void freqsummary(char fileres[], int ag
|
printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); |
printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); |
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]); |
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]); |
} |
} |
if(i <= (int) agemax) |
if(i <= iagemax) |
fprintf(ficresp,"\n"); |
fprintf(ficresp,"\n"); |
if(first==1) |
if(first==1) |
printf("Others in log...\n"); |
printf("Others in log...\n"); |
Line 1416 void freqsummary(char fileres[], int ag
|
Line 1617 void freqsummary(char fileres[], int ag
|
dateintmean=dateintsum/k2cpt; |
dateintmean=dateintsum/k2cpt; |
|
|
fclose(ficresp); |
fclose(ficresp); |
free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); |
free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3); |
free_vector(pp,1,nlstate); |
free_vector(pp,1,nlstate); |
|
free_matrix(prop,1,nlstate,iagemin, iagemax+3); |
/* End of Freq */ |
/* End of Freq */ |
} |
} |
|
|
/************ Prevalence ********************/ |
/************ Prevalence ********************/ |
void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate) |
void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
{ /* Some frequencies */ |
{ |
|
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
|
in each health status at the date of interview (if between dateprev1 and dateprev2). |
|
We still use firstpass and lastpass as another selection. |
|
*/ |
|
|
int i, m, jk, k1, i1, j1, bool, z1,z2,j; |
int i, m, jk, k1, i1, j1, bool, z1,z2,j; |
double ***freq; /* Frequencies */ |
double ***freq; /* Frequencies */ |
double *pp; |
double *pp, **prop; |
double pos, k2; |
double pos,posprop; |
|
double y2; /* in fractional years */ |
pp=vector(1,nlstate); |
int iagemin, iagemax; |
|
|
freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); |
iagemin= (int) agemin; |
|
iagemax= (int) agemax; |
|
/*pp=vector(1,nlstate);*/ |
|
prop=matrix(1,nlstate,iagemin,iagemax+3); |
|
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
j1=0; |
j1=0; |
|
|
j=cptcoveff; |
j=cptcoveff; |
Line 1443 void prevalence(int agemin, float agemax
|
Line 1652 void prevalence(int agemin, float agemax
|
for(i1=1; i1<=ncodemax[k1];i1++){ |
for(i1=1; i1<=ncodemax[k1];i1++){ |
j1++; |
j1++; |
|
|
for (i=-1; i<=nlstate+ndeath; i++) |
for (i=1; i<=nlstate; i++) |
for (jk=-1; jk<=nlstate+ndeath; jk++) |
for(m=iagemin; m <= iagemax+3; m++) |
for(m=agemin; m <= agemax+3; m++) |
prop[i][m]=0.0; |
freq[i][jk][m]=0; |
|
|
|
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { /* Each individual */ |
bool=1; |
bool=1; |
if (cptcovn>0) { |
if (cptcovn>0) { |
for (z1=1; z1<=cptcoveff; z1++) |
for (z1=1; z1<=cptcoveff; z1++) |
Line 1456 void prevalence(int agemin, float agemax
|
Line 1664 void prevalence(int agemin, float agemax
|
bool=0; |
bool=0; |
} |
} |
if (bool==1) { |
if (bool==1) { |
for(m=firstpass; m<=lastpass; m++){ |
for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/ |
k2=anint[m][i]+(mint[m][i]/12.); |
y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
if ((k2>=dateprev1) && (k2<=dateprev2)) { |
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
if(agev[m][i]==0) agev[m][i]=agemax+1; |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
if(agev[m][i]==1) agev[m][i]=agemax+2; |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
if (m<lastpass) { |
if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); |
if (calagedate>0) |
if (s[m][i]>0 && s[m][i]<=nlstate) { |
freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i]; |
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
else |
prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; |
prop[s[m][i]][iagemax+3] += weight[i]; |
freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; |
} |
} |
|
} |
} |
} |
} /* end selection of waves */ |
} |
} |
} |
} |
for(i=(int)agemin; i <= (int)agemax+3; i++){ |
for(i=iagemin; i <= iagemax+3; i++){ |
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
|
pp[jk] += freq[jk][m][i]; |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pos=0; m <=0 ; m++) |
|
pos += freq[jk][m][i]; |
|
} |
|
|
|
for(jk=1; jk <=nlstate ; jk++){ |
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) |
posprop += prop[jk][i]; |
pp[jk] += freq[jk][m][i]; |
} |
} |
|
|
for(jk=1; jk <=nlstate ; jk++){ |
for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk]; |
if( i <= iagemax){ |
|
if(posprop>=1.e-5){ |
for(jk=1; jk <=nlstate ; jk++){ |
probs[i][jk][j1]= prop[jk][i]/posprop; |
if( i <= (int) agemax){ |
} |
if(pos>=1.e-5){ |
} |
probs[i][jk][j1]= pp[jk]/pos; |
}/* end jk */ |
} |
}/* end i */ |
} |
|
}/* end jk */ |
|
}/* end i */ |
|
} /* end i1 */ |
} /* end i1 */ |
} /* end k1 */ |
} /* end k1 */ |
|
|
|
|
free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); |
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
free_vector(pp,1,nlstate); |
/*free_vector(pp,1,nlstate);*/ |
|
free_matrix(prop,1,nlstate, iagemin,iagemax+3); |
} /* End of Freq */ |
} /* End of prevalence */ |
|
|
/************* Waves Concatenation ***************/ |
/************* Waves Concatenation ***************/ |
|
|
Line 1571 void concatwav(int wav[], int **dh, int
|
Line 1766 void concatwav(int wav[], int **dh, int
|
if (j <= jmin) jmin=j; |
if (j <= jmin) jmin=j; |
sum=sum+j; |
sum=sum+j; |
/*if (j<0) printf("j=%d num=%d \n",j,i); */ |
/*if (j<0) printf("j=%d num=%d \n",j,i); */ |
|
/* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
|
/*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ |
} |
} |
} |
} |
else{ |
else{ |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
|
/* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
k=k+1; |
k=k+1; |
if (j >= jmax) jmax=j; |
if (j >= jmax) jmax=j; |
else if (j <= jmin)jmin=j; |
else if (j <= jmin)jmin=j; |
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
|
/*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ |
sum=sum+j; |
sum=sum+j; |
} |
} |
jk= j/stepm; |
jk= j/stepm; |
jl= j -jk*stepm; |
jl= j -jk*stepm; |
ju= j -(jk+1)*stepm; |
ju= j -(jk+1)*stepm; |
if(jl <= -ju){ |
if(mle <=1){ |
dh[mi][i]=jk; |
if(jl==0){ |
bh[mi][i]=jl; |
dh[mi][i]=jk; |
} |
bh[mi][i]=0; |
else{ |
}else{ /* We want a negative bias in order to only have interpolation ie |
dh[mi][i]=jk+1; |
* at the price of an extra matrix product in likelihood */ |
bh[mi][i]=ju; |
dh[mi][i]=jk+1; |
} |
bh[mi][i]=ju; |
if(dh[mi][i]==0){ |
} |
dh[mi][i]=1; /* At least one step */ |
}else{ |
bh[mi][i]=ju; /* At least one step */ |
if(jl <= -ju){ |
printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i); |
dh[mi][i]=jk; |
|
bh[mi][i]=jl; /* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
|
*/ |
|
} |
|
else{ |
|
dh[mi][i]=jk+1; |
|
bh[mi][i]=ju; |
|
} |
|
if(dh[mi][i]==0){ |
|
dh[mi][i]=1; /* At least one step */ |
|
bh[mi][i]=ju; /* At least one step */ |
|
/* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ |
|
} |
} |
} |
if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm); |
} /* end if mle */ |
} |
} /* end wave */ |
} |
|
} |
} |
jmean=sum/k; |
jmean=sum/k; |
printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); |
printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); |
Line 1680 void evsij(char fileres[], double ***eij
|
Line 1891 void evsij(char fileres[], double ***eij
|
double ***gradg, ***trgradg; |
double ***gradg, ***trgradg; |
int theta; |
int theta; |
|
|
varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage); |
varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage); |
xp=vector(1,npar); |
xp=vector(1,npar); |
dnewm=matrix(1,nlstate*2,1,npar); |
dnewm=matrix(1,nlstate*nlstate,1,npar); |
doldm=matrix(1,nlstate*2,1,nlstate*2); |
doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate); |
|
|
fprintf(ficreseij,"# Health expectancies\n"); |
fprintf(ficreseij,"# Health expectancies\n"); |
fprintf(ficreseij,"# Age"); |
fprintf(ficreseij,"# Age"); |
Line 1700 void evsij(char fileres[], double ***eij
|
Line 1911 void evsij(char fileres[], double ***eij
|
* This is mainly to measure the difference between two models: for example |
* This is mainly to measure the difference between two models: for example |
* if stepm=24 months pijx are given only every 2 years and by summing them |
* if stepm=24 months pijx are given only every 2 years and by summing them |
* we are calculating an estimate of the Life Expectancy assuming a linear |
* we are calculating an estimate of the Life Expectancy assuming a linear |
* progression inbetween and thus overestimating or underestimating according |
* progression in between and thus overestimating or underestimating according |
* to the curvature of the survival function. If, for the same date, we |
* to the curvature of the survival function. If, for the same date, we |
* estimate the model with stepm=1 month, we can keep estepm to 24 months |
* estimate the model with stepm=1 month, we can keep estepm to 24 months |
* to compare the new estimate of Life expectancy with the same linear |
* to compare the new estimate of Life expectancy with the same linear |
Line 1729 void evsij(char fileres[], double ***eij
|
Line 1940 void evsij(char fileres[], double ***eij
|
/* if (stepm >= YEARM) hstepm=1;*/ |
/* if (stepm >= YEARM) hstepm=1;*/ |
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2); |
gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate); |
gp=matrix(0,nhstepm,1,nlstate*2); |
gp=matrix(0,nhstepm,1,nlstate*nlstate); |
gm=matrix(0,nhstepm,1,nlstate*2); |
gm=matrix(0,nhstepm,1,nlstate*nlstate); |
|
|
/* Computed by stepm unit matrices, product of hstepm matrices, stored |
/* Computed by stepm unit matrices, product of hstepm matrices, stored |
in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ |
in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ |
Line 1772 void evsij(char fileres[], double ***eij
|
Line 1983 void evsij(char fileres[], double ***eij
|
} |
} |
} |
} |
} |
} |
for(j=1; j<= nlstate*2; j++) |
for(j=1; j<= nlstate*nlstate; j++) |
for(h=0; h<=nhstepm-1; h++){ |
for(h=0; h<=nhstepm-1; h++){ |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
} |
} |
Line 1780 void evsij(char fileres[], double ***eij
|
Line 1991 void evsij(char fileres[], double ***eij
|
|
|
/* End theta */ |
/* End theta */ |
|
|
trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar); |
trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar); |
|
|
for(h=0; h<=nhstepm-1; h++) |
for(h=0; h<=nhstepm-1; h++) |
for(j=1; j<=nlstate*2;j++) |
for(j=1; j<=nlstate*nlstate;j++) |
for(theta=1; theta <=npar; theta++) |
for(theta=1; theta <=npar; theta++) |
trgradg[h][j][theta]=gradg[h][theta][j]; |
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
|
|
for(i=1;i<=nlstate*2;i++) |
for(i=1;i<=nlstate*nlstate;i++) |
for(j=1;j<=nlstate*2;j++) |
for(j=1;j<=nlstate*nlstate;j++) |
varhe[i][j][(int)age] =0.; |
varhe[i][j][(int)age] =0.; |
|
|
printf("%d|",(int)age);fflush(stdout); |
printf("%d|",(int)age);fflush(stdout); |
fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
for(h=0;h<=nhstepm-1;h++){ |
for(h=0;h<=nhstepm-1;h++){ |
for(k=0;k<=nhstepm-1;k++){ |
for(k=0;k<=nhstepm-1;k++){ |
matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov); |
matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]); |
matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); |
for(i=1;i<=nlstate*2;i++) |
for(i=1;i<=nlstate*nlstate;i++) |
for(j=1;j<=nlstate*2;j++) |
for(j=1;j<=nlstate*nlstate;j++) |
varhe[i][j][(int)age] += doldm[i][j]*hf*hf; |
varhe[i][j][(int)age] += doldm[i][j]*hf*hf; |
} |
} |
} |
} |
Line 1822 void evsij(char fileres[], double ***eij
|
Line 2033 void evsij(char fileres[], double ***eij
|
} |
} |
fprintf(ficreseij,"\n"); |
fprintf(ficreseij,"\n"); |
|
|
free_matrix(gm,0,nhstepm,1,nlstate*2); |
free_matrix(gm,0,nhstepm,1,nlstate*nlstate); |
free_matrix(gp,0,nhstepm,1,nlstate*2); |
free_matrix(gp,0,nhstepm,1,nlstate*nlstate); |
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2); |
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate); |
free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar); |
free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar); |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
|
|
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
free_matrix(dnewm,1,nlstate*2,1,npar); |
free_matrix(dnewm,1,nlstate*nlstate,1,npar); |
free_matrix(doldm,1,nlstate*2,1,nlstate*2); |
free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); |
free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage); |
free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); |
} |
} |
|
|
/************ Variance ******************/ |
/************ Variance ******************/ |
Line 1890 void varevsij(char optionfilefiname[], d
|
Line 2101 void varevsij(char optionfilefiname[], d
|
} |
} |
printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n"); |
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
fprintf(ficresprobmorprev," p.%-d SE",j); |
fprintf(ficresprobmorprev," p.%-d SE",j); |
Line 1912 void varevsij(char optionfilefiname[], d
|
Line 2123 void varevsij(char optionfilefiname[], d
|
exit(0); |
exit(0); |
} |
} |
else{ |
else{ |
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp); |
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
} |
} |
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
|
Line 1947 void varevsij(char optionfilefiname[], d
|
Line 2158 void varevsij(char optionfilefiname[], d
|
and note for a fixed period like k years */ |
and note for a fixed period like k years */ |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
survival function given by stepm (the optimization length). Unfortunately it |
survival function given by stepm (the optimization length). Unfortunately it |
means that if the survival funtion is printed only each two years of age and if |
means that if the survival funtion is printed every two years of age and if |
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
results. So we changed our mind and took the option of the best precision. |
results. So we changed our mind and took the option of the best precision. |
*/ |
*/ |
Line 1963 void varevsij(char optionfilefiname[], d
|
Line 2174 void varevsij(char optionfilefiname[], d
|
|
|
|
|
for(theta=1; theta <=npar; theta++){ |
for(theta=1; theta <=npar; theta++){ |
for(i=1; i<=npar; i++){ /* Computes gradient */ |
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
Line 1985 void varevsij(char optionfilefiname[], d
|
Line 2196 void varevsij(char optionfilefiname[], d
|
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
} |
} |
} |
} |
/* This for computing forces of mortality (h=1)as a weighted average */ |
/* This for computing probability of death (h=1 means |
for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){ |
computed over hstepm matrices product = hstepm*stepm months) |
for(i=1; i<= nlstate; i++) |
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
} |
} |
/* end force of mortality */ |
/* end probability of death */ |
|
|
for(i=1; i<=npar; i++) /* Computes gradient */ |
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
Line 2013 void varevsij(char optionfilefiname[], d
|
Line 2227 void varevsij(char optionfilefiname[], d
|
gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
} |
} |
} |
} |
/* This for computing force of mortality (h=1)as a weighted average */ |
/* This for computing probability of death (h=1 means |
for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){ |
computed over hstepm matrices product = hstepm*stepm months) |
for(i=1; i<= nlstate; i++) |
as a weighted average of prlim. |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
|
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
} |
} |
/* end force of mortality */ |
/* end probability of death */ |
|
|
for(j=1; j<= nlstate; j++) /* vareij */ |
for(j=1; j<= nlstate; j++) /* vareij */ |
for(h=0; h<=nhstepm; h++){ |
for(h=0; h<=nhstepm; h++){ |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
} |
} |
|
|
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
} |
} |
Line 2040 void varevsij(char optionfilefiname[], d
|
Line 2258 void varevsij(char optionfilefiname[], d
|
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
for(theta=1; theta <=npar; theta++) |
for(theta=1; theta <=npar; theta++) |
trgradgp[j][theta]=gradgp[theta][j]; |
trgradgp[j][theta]=gradgp[theta][j]; |
|
|
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
Line 2055 void varevsij(char optionfilefiname[], d
|
Line 2274 void varevsij(char optionfilefiname[], d
|
vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
} |
} |
} |
} |
|
|
/* pptj */ |
/* pptj */ |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
Line 2063 void varevsij(char optionfilefiname[], d
|
Line 2282 void varevsij(char optionfilefiname[], d
|
for(i=nlstate+1;i<=nlstate+ndeath;i++) |
for(i=nlstate+1;i<=nlstate+ndeath;i++) |
varppt[j][i]=doldmp[j][i]; |
varppt[j][i]=doldmp[j][i]; |
/* end ppptj */ |
/* end ppptj */ |
|
/* x centered again */ |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij); |
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij); |
|
|
Line 2075 void varevsij(char optionfilefiname[], d
|
Line 2295 void varevsij(char optionfilefiname[], d
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
prlim[i][i]=mobaverage[(int)age][i][ij]; |
} |
} |
} |
} |
|
|
/* This for computing force of mortality (h=1)as a weighted average */ |
/* This for computing probability of death (h=1 means |
for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){ |
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
for(i=1; i<= nlstate; i++) |
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
} |
} |
/* end force of mortality */ |
/* end probability of death */ |
|
|
fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
Line 2111 void varevsij(char optionfilefiname[], d
|
Line 2334 void varevsij(char optionfilefiname[], d
|
fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65"); |
fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65"); |
/* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ |
/* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ |
fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); |
fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); |
fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); |
/* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ |
fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); |
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); |
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l 1 ",fileresprobmorprev); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev); |
fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev); |
fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev); |
fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit); |
fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit); |
/* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit); |
/* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit); |
*/ |
*/ |
fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit); |
fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); |
|
|
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
free_matrix(doldm,1,nlstate,1,nlstate); |
free_matrix(doldm,1,nlstate,1,nlstate); |
Line 2130 void varevsij(char optionfilefiname[], d
|
Line 2356 void varevsij(char optionfilefiname[], d
|
fclose(ficresprobmorprev); |
fclose(ficresprobmorprev); |
fclose(ficgp); |
fclose(ficgp); |
fclose(fichtm); |
fclose(fichtm); |
} |
} |
|
|
/************ Variance of prevlim ******************/ |
/************ Variance of prevlim ******************/ |
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) |
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) |
Line 2276 void varprob(char optionfilefiname[], do
|
Line 2502 void varprob(char optionfilefiname[], do
|
fprintf(ficresprobcov," p%1d-%1d ",i,j); |
fprintf(ficresprobcov," p%1d-%1d ",i,j); |
fprintf(ficresprobcor," p%1d-%1d ",i,j); |
fprintf(ficresprobcor," p%1d-%1d ",i,j); |
} |
} |
fprintf(ficresprob,"\n"); |
/* fprintf(ficresprob,"\n"); |
fprintf(ficresprobcov,"\n"); |
fprintf(ficresprobcov,"\n"); |
fprintf(ficresprobcor,"\n"); |
fprintf(ficresprobcor,"\n"); |
xp=vector(1,npar); |
*/ |
|
xp=vector(1,npar); |
dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); |
mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); |
Line 2318 void varprob(char optionfilefiname[], do
|
Line 2545 void varprob(char optionfilefiname[], do
|
if (cptcovn>0) { |
if (cptcovn>0) { |
fprintf(ficresprob, "\n#********** Variable "); |
fprintf(ficresprob, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
fprintf(ficresprob, "**********\n#"); |
fprintf(ficresprob, "**********\n#\n"); |
fprintf(ficresprobcov, "\n#********** Variable "); |
fprintf(ficresprobcov, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
fprintf(ficresprobcov, "**********\n#"); |
fprintf(ficresprobcov, "**********\n#\n"); |
|
|
fprintf(ficgp, "\n#********** Variable "); |
fprintf(ficgp, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
fprintf(ficgp, "**********\n#"); |
fprintf(ficgp, "**********\n#\n"); |
|
|
|
|
fprintf(fichtm, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
fprintf(fichtm, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
Line 2334 void varprob(char optionfilefiname[], do
|
Line 2561 void varprob(char optionfilefiname[], do
|
|
|
fprintf(ficresprobcor, "\n#********** Variable "); |
fprintf(ficresprobcor, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
fprintf(ficgp, "**********\n#"); |
fprintf(ficresprobcor, "**********\n#"); |
} |
} |
|
|
for (age=bage; age<=fage; age ++){ |
for (age=bage; age<=fage; age ++){ |
Line 2353 void varprob(char optionfilefiname[], do
|
Line 2580 void varprob(char optionfilefiname[], do
|
|
|
for(theta=1; theta <=npar; theta++){ |
for(theta=1; theta <=npar; theta++){ |
for(i=1; i<=npar; i++) |
for(i=1; i<=npar; i++) |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
|
|
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
|
|
Line 2366 void varprob(char optionfilefiname[], do
|
Line 2593 void varprob(char optionfilefiname[], do
|
} |
} |
|
|
for(i=1; i<=npar; i++) |
for(i=1; i<=npar; i++) |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); |
|
|
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
k=0; |
k=0; |
Line 2378 void varprob(char optionfilefiname[], do
|
Line 2605 void varprob(char optionfilefiname[], do
|
} |
} |
|
|
for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) |
for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) |
gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta]; |
gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; |
} |
} |
|
|
for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) |
for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) |
Line 2653 m=pow(2,cptcoveff);
|
Line 2880 m=pow(2,cptcoveff);
|
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
else fprintf(ficgp," \%%*lf (\%%*lf)"); |
else fprintf(ficgp," \%%*lf (\%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1); |
fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1); |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
else fprintf(ficgp," \%%*lf (\%%*lf)"); |
else fprintf(ficgp," \%%*lf (\%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); |
fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
else fprintf(ficgp," \%%*lf (\%%*lf)"); |
else fprintf(ficgp," \%%*lf (\%%*lf)"); |
Line 2849 int movingaverage(double ***probs, doubl
|
Line 3076 int movingaverage(double ***probs, doubl
|
|
|
|
|
/************** Forecasting ******************/ |
/************** Forecasting ******************/ |
prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){ |
prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
|
/* proj1, year, month, day of starting projection |
int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |
agemin, agemax range of age |
|
dateprev1 dateprev2 range of dates during which prevalence is computed |
|
anproj2 year of en of projection (same day and month as proj1). |
|
*/ |
|
int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1; |
int *popage; |
int *popage; |
double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double agec; /* generic age */ |
|
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double *popeffectif,*popcount; |
double *popeffectif,*popcount; |
double ***p3mat; |
double ***p3mat; |
double ***mobaverage; |
double ***mobaverage; |
char fileresf[FILENAMELENGTH]; |
char fileresf[FILENAMELENGTH]; |
|
|
agelim=AGESUP; |
agelim=AGESUP; |
calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM; |
prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
|
prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); |
|
|
|
|
|
strcpy(fileresf,"f"); |
strcpy(fileresf,"f"); |
strcat(fileresf,fileres); |
strcat(fileresf,fileres); |
Line 2886 prevforecast(char fileres[], double anpr
|
Line 3115 prevforecast(char fileres[], double anpr
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
stepsize=(int) (stepm+YEARM-1)/YEARM; |
if (stepm<=12) stepsize=1; |
if (stepm<=12) stepsize=1; |
|
if(estepm < stepm){ |
agelim=AGESUP; |
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
hstepm=1; |
else hstepm=estepm; |
|
|
hstepm=hstepm/stepm; |
hstepm=hstepm/stepm; |
yp1=modf(dateintmean,&yp); |
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
|
fractional in yp1 */ |
anprojmean=yp; |
anprojmean=yp; |
yp2=modf((yp1*12),&yp); |
yp2=modf((yp1*12),&yp); |
mprojmean=yp; |
mprojmean=yp; |
Line 2899 prevforecast(char fileres[], double anpr
|
Line 3130 prevforecast(char fileres[], double anpr
|
jprojmean=yp; |
jprojmean=yp; |
if(jprojmean==0) jprojmean=1; |
if(jprojmean==0) jprojmean=1; |
if(mprojmean==0) jprojmean=1; |
if(mprojmean==0) jprojmean=1; |
|
|
|
i1=cptcoveff; |
|
if (cptcovn < 1){i1=1;} |
|
|
fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); |
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
|
|
for(cptcov=1;cptcov<=i2;cptcov++){ |
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
|
|
|
for(cptcov=1, k=0;cptcov<=i1;cptcov++){ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
k=k+1; |
k=k+1; |
fprintf(ficresf,"\n#******"); |
fprintf(ficresf,"\n#******"); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); |
fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); |
} |
} |
fprintf(ficresf,"******\n"); |
fprintf(ficresf,"******\n"); |
fprintf(ficresf,"# StartingAge FinalAge"); |
fprintf(ficresf,"# Covariate valuofcovar yearproj age"); |
for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j); |
for(j=1; j<=nlstate+ndeath;j++){ |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresf," p%d%d",i,j); |
for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { |
fprintf(ficresf," p.%d",j); |
|
} |
|
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
fprintf(ficresf,"\n"); |
fprintf(ficresf,"\n"); |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt); |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
|
|
for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ |
for (agec=fage; agec>=(ageminpar-1); agec--){ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
nhstepm = nhstepm/hstepm; |
nhstepm = nhstepm/hstepm; |
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
|
for (h=0; h<=nhstepm; h++){ |
for (h=0; h<=nhstepm; h++){ |
if (h==(int) (calagedate+YEARM*cpt)) { |
if (h==(int) (YEARM*yearp)) { |
fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm); |
fprintf(ficresf,"\n"); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); |
|
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
} |
} |
for(j=1; j<=nlstate+ndeath;j++) { |
for(j=1; j<=nlstate+ndeath;j++) { |
kk1=0.;kk2=0; |
ppij=0.; |
for(i=1; i<=nlstate;i++) { |
for(i=1; i<=nlstate;i++) { |
if (mobilav==1) |
if (mobilav==1) |
kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; |
ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; |
else { |
else { |
kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; |
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; |
} |
} |
|
if (h==(int)(YEARM*yearp)) |
|
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
} |
} |
if (h==(int)(calagedate+12*cpt)){ |
if (h==(int)(YEARM*yearp)){ |
fprintf(ficresf," %.3f", kk1); |
fprintf(ficresf," %.3f", ppij); |
|
|
} |
} |
} |
} |
} |
} |
Line 2956 prevforecast(char fileres[], double anpr
|
Line 3196 prevforecast(char fileres[], double anpr
|
|
|
fclose(ficresf); |
fclose(ficresf); |
} |
} |
/************** Forecasting ******************/ |
|
|
/************** Forecasting *****not tested NB*************/ |
populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ |
populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ |
|
|
int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |
int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |
int *popage; |
int *popage; |
double calagedate, agelim, kk1, kk2; |
double calagedatem, agelim, kk1, kk2; |
double *popeffectif,*popcount; |
double *popeffectif,*popcount; |
double ***p3mat,***tabpop,***tabpopprev; |
double ***p3mat,***tabpop,***tabpopprev; |
double ***mobaverage; |
double ***mobaverage; |
Line 2970 populforecast(char fileres[], double anp
|
Line 3211 populforecast(char fileres[], double anp
|
tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
agelim=AGESUP; |
agelim=AGESUP; |
calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; |
calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; |
|
|
prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); |
prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
|
|
|
strcpy(filerespop,"pop"); |
strcpy(filerespop,"pop"); |
Line 3018 populforecast(char fileres[], double anp
|
Line 3259 populforecast(char fileres[], double anp
|
for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; |
for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; |
} |
} |
|
|
for(cptcov=1;cptcov<=i2;cptcov++){ |
for(cptcov=1,k=0;cptcov<=i2;cptcov++){ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
k=k+1; |
k=k+1; |
fprintf(ficrespop,"\n#******"); |
fprintf(ficrespop,"\n#******"); |
Line 3033 populforecast(char fileres[], double anp
|
Line 3274 populforecast(char fileres[], double anp
|
for (cpt=0; cpt<=0;cpt++) { |
for (cpt=0; cpt<=0;cpt++) { |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
|
|
for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ |
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
nhstepm = nhstepm/hstepm; |
nhstepm = nhstepm/hstepm; |
|
|
Line 3042 populforecast(char fileres[], double anp
|
Line 3283 populforecast(char fileres[], double anp
|
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
|
for (h=0; h<=nhstepm; h++){ |
for (h=0; h<=nhstepm; h++){ |
if (h==(int) (calagedate+YEARM*cpt)) { |
if (h==(int) (calagedatem+YEARM*cpt)) { |
fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
} |
} |
for(j=1; j<=nlstate+ndeath;j++) { |
for(j=1; j<=nlstate+ndeath;j++) { |
Line 3054 populforecast(char fileres[], double anp
|
Line 3295 populforecast(char fileres[], double anp
|
kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; |
kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; |
} |
} |
} |
} |
if (h==(int)(calagedate+12*cpt)){ |
if (h==(int)(calagedatem+12*cpt)){ |
tabpop[(int)(agedeb)][j][cptcod]=kk1; |
tabpop[(int)(agedeb)][j][cptcod]=kk1; |
/*fprintf(ficrespop," %.3f", kk1); |
/*fprintf(ficrespop," %.3f", kk1); |
if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ |
if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ |
Line 3065 populforecast(char fileres[], double anp
|
Line 3306 populforecast(char fileres[], double anp
|
for(j=1; j<=nlstate;j++){ |
for(j=1; j<=nlstate;j++){ |
kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; |
kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; |
} |
} |
tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)]; |
tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; |
} |
} |
|
|
if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) |
if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) |
fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); |
fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); |
} |
} |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
Line 3079 populforecast(char fileres[], double anp
|
Line 3320 populforecast(char fileres[], double anp
|
|
|
for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { |
for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ |
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
nhstepm = nhstepm/hstepm; |
nhstepm = nhstepm/hstepm; |
|
|
Line 3087 populforecast(char fileres[], double anp
|
Line 3328 populforecast(char fileres[], double anp
|
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
for (h=0; h<=nhstepm; h++){ |
for (h=0; h<=nhstepm; h++){ |
if (h==(int) (calagedate+YEARM*cpt)) { |
if (h==(int) (calagedatem+YEARM*cpt)) { |
fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
} |
} |
for(j=1; j<=nlstate+ndeath;j++) { |
for(j=1; j<=nlstate+ndeath;j++) { |
Line 3095 populforecast(char fileres[], double anp
|
Line 3336 populforecast(char fileres[], double anp
|
for(i=1; i<=nlstate;i++) { |
for(i=1; i<=nlstate;i++) { |
kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; |
kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; |
} |
} |
if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1); |
if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); |
} |
} |
} |
} |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
Line 3122 populforecast(char fileres[], double anp
|
Line 3363 populforecast(char fileres[], double anp
|
|
|
int main(int argc, char *argv[]) |
int main(int argc, char *argv[]) |
{ |
{ |
|
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod; |
int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod; |
double agedeb, agefin,hf; |
double agedeb, agefin,hf; |
double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; |
double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; |
|
|
Line 3142 int main(int argc, char *argv[])
|
Line 3383 int main(int argc, char *argv[])
|
int ju,jl, mi; |
int ju,jl, mi; |
int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; |
int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; |
int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; |
int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; |
|
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
int mobilav=0,popforecast=0; |
int mobilav=0,popforecast=0; |
int hstepm, nhstepm; |
int hstepm, nhstepm; |
double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate; |
double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000; |
|
double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000; |
|
|
double bage, fage, age, agelim, agebase; |
double bage, fage, age, agelim, agebase; |
double ftolpl=FTOL; |
double ftolpl=FTOL; |
Line 3159 int main(int argc, char *argv[])
|
Line 3402 int main(int argc, char *argv[])
|
double **varpl; /* Variances of prevalence limits by age */ |
double **varpl; /* Variances of prevalence limits by age */ |
double *epj, vepp; |
double *epj, vepp; |
double kk1, kk2; |
double kk1, kk2; |
double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2; |
double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; |
/*int *movingaverage; */ |
|
|
|
char *alph[]={"a","a","b","c","d","e"}, str[4]; |
char *alph[]={"a","a","b","c","d","e"}, str[4]; |
|
|
Line 3307 int main(int argc, char *argv[])
|
Line 3549 int main(int argc, char *argv[])
|
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */ |
/* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */ |
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
for(j=1; j <=nlstate+ndeath-1; j++){ |
for(j=1; j <=nlstate+ndeath-1; j++){ |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
Line 3324 int main(int argc, char *argv[])
|
Line 3566 int main(int argc, char *argv[])
|
} |
} |
} |
} |
delti=delti3[1][1]; |
delti=delti3[1][1]; |
|
|
|
|
|
/* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ |
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
Line 3443 int main(int argc, char *argv[])
|
Line 3688 int main(int argc, char *argv[])
|
if (s[4][i]==9) s[4][i]=-1; |
if (s[4][i]==9) s[4][i]=-1; |
printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/ |
printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/ |
|
|
|
for (i=1; i<=imx; i++) |
|
|
|
/*if ((s[3][i]==3) || (s[4][i]==3)) weight[i]=0.08; |
|
else weight[i]=1;*/ |
|
|
/* Calculation of the number of parameter from char model*/ |
/* Calculation of the number of parameter from char model*/ |
Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */ |
Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */ |
Tprod=ivector(1,15); |
Tprod=ivector(1,15); |
Line 3545 int main(int argc, char *argv[])
|
Line 3794 int main(int argc, char *argv[])
|
|
|
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { |
agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); |
agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); |
for(m=1; (m<= maxwav); m++){ |
for(m=firstpass; (m<= lastpass); m++){ |
if(s[m][i] >0){ |
if(s[m][i] >0){ |
if (s[m][i] >= nlstate+1) { |
if (s[m][i] >= nlstate+1) { |
if(agedc[i]>0) |
if(agedc[i]>0) |
Line 3560 int main(int argc, char *argv[])
|
Line 3809 int main(int argc, char *argv[])
|
} |
} |
} |
} |
} |
} |
else if(s[m][i] !=9){ /* Should no more exist */ |
else if(s[m][i] !=9){ /* Standard case, age in fractional |
|
years but with the precision of a |
|
month */ |
agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); |
agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); |
if(mint[m][i]==99 || anint[m][i]==9999) |
if(mint[m][i]==99 || anint[m][i]==9999) |
agev[m][i]=1; |
agev[m][i]=1; |
Line 3586 int main(int argc, char *argv[])
|
Line 3837 int main(int argc, char *argv[])
|
|
|
} |
} |
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { |
for(m=1; (m<= maxwav); m++){ |
for(m=firstpass; (m<=lastpass); m++){ |
if (s[m][i] > (nlstate+ndeath)) { |
if (s[m][i] > (nlstate+ndeath)) { |
printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); |
printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); |
fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); |
fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); |
Line 3595 int main(int argc, char *argv[])
|
Line 3846 int main(int argc, char *argv[])
|
} |
} |
} |
} |
|
|
|
/*for (i=1; i<=imx; i++){ |
|
for (m=firstpass; (m<lastpass); m++){ |
|
printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]); |
|
} |
|
|
|
}*/ |
|
|
printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); |
printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); |
fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); |
fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); |
|
|
Line 3652 int main(int argc, char *argv[])
|
Line 3910 int main(int argc, char *argv[])
|
/* Calculates basic frequencies. Computes observed prevalence at single age |
/* Calculates basic frequencies. Computes observed prevalence at single age |
and prints on file fileres'p'. */ |
and prints on file fileres'p'. */ |
|
|
|
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
|
|
|
|
/* For Powell, parameters are in a vector p[] starting at p[1] |
/* For Powell, parameters are in a vector p[] starting at p[1] |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
|
|
if(mle==1){ |
if(mle>=1){ /* Could be 1 or 2 */ |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
} |
} |
|
|
Line 3774 int main(int argc, char *argv[])
|
Line 4037 int main(int argc, char *argv[])
|
fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); |
fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); |
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
ungetc(c,ficpar); |
ungetc(c,ficpar); |
Line 3784 int main(int argc, char *argv[])
|
Line 4049 int main(int argc, char *argv[])
|
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
|
|
dateprev1=anprev1+mprev1/12.+jprev1/365.; |
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
dateprev2=anprev2+mprev2/12.+jprev2/365.; |
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
|
|
fscanf(ficpar,"pop_based=%d\n",&popbased); |
fscanf(ficpar,"pop_based=%d\n",&popbased); |
fprintf(ficparo,"pop_based=%d\n",popbased); |
fprintf(ficparo,"pop_based=%d\n",popbased); |
Line 3799 int main(int argc, char *argv[])
|
Line 4064 int main(int argc, char *argv[])
|
} |
} |
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2); |
fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); |
fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2); |
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2); |
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
ungetc(c,ficpar); |
ungetc(c,ficpar); |
Line 3816 int main(int argc, char *argv[])
|
Line 4083 int main(int argc, char *argv[])
|
fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); |
fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); |
fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); |
fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); |
|
|
|
probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); |
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); |
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); |
|
|
/*------------ gnuplot -------------*/ |
/*------------ gnuplot -------------*/ |
Line 3849 Interval (in months) between two waves:
|
Line 4117 Interval (in months) between two waves:
|
- Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n |
- Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n |
- Log file of the run: <a href=\"%s\">%s</a><br>\n |
- Log file of the run: <a href=\"%s\">%s</a><br>\n |
- Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot); |
- Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot); |
fclose(fichtm); |
fclose(fichtm); |
|
|
printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); |
printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); |
|
|
Line 3862 Interval (in months) between two waves:
|
Line 4130 Interval (in months) between two waves:
|
free_imatrix(mw,1,lastpass-firstpass+1,1,imx); |
free_imatrix(mw,1,lastpass-firstpass+1,1,imx); |
free_ivector(num,1,n); |
free_ivector(num,1,n); |
free_vector(agedc,1,n); |
free_vector(agedc,1,n); |
free_matrix(covar,0,NCOVMAX,1,n); |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
fclose(ficparo); |
fclose(ficparo); |
fclose(ficres); |
fclose(ficres); |
Line 3884 Interval (in months) between two waves:
|
Line 4152 Interval (in months) between two waves:
|
fprintf(ficrespl,"\n"); |
fprintf(ficrespl,"\n"); |
|
|
prlim=matrix(1,nlstate,1,nlstate); |
prlim=matrix(1,nlstate,1,nlstate); |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
|
|
|
agebase=ageminpar; |
agebase=ageminpar; |
agelim=agemaxpar; |
agelim=agemaxpar; |
Line 3914 Interval (in months) between two waves:
|
Line 4177 Interval (in months) between two waves:
|
|
|
for (age=agebase; age<=agelim; age++){ |
for (age=agebase; age<=agelim; age++){ |
prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); |
prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); |
fprintf(ficrespl,"%.0f",age ); |
fprintf(ficrespl,"%.0f ",age ); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
fprintf(ficrespl," %.5f", prlim[i][i]); |
fprintf(ficrespl," %.5f", prlim[i][i]); |
fprintf(ficrespl,"\n"); |
fprintf(ficrespl,"\n"); |
Line 3942 Interval (in months) between two waves:
|
Line 4207 Interval (in months) between two waves:
|
|
|
/* hstepm=1; aff par mois*/ |
/* hstepm=1; aff par mois*/ |
|
|
|
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
k=k+1; |
k=k+1; |
Line 3959 Interval (in months) between two waves:
|
Line 4225 Interval (in months) between two waves:
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
fprintf(ficrespij,"# Age"); |
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
fprintf(ficrespij," %1d-%1d",i,j); |
fprintf(ficrespij," %1d-%1d",i,j); |
fprintf(ficrespij,"\n"); |
fprintf(ficrespij,"\n"); |
for (h=0; h<=nhstepm; h++){ |
for (h=0; h<=nhstepm; h++){ |
fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); |
fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
Line 3977 Interval (in months) between two waves:
|
Line 4243 Interval (in months) between two waves:
|
} |
} |
} |
} |
|
|
varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax); |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax); |
|
|
fclose(ficrespij); |
fclose(ficrespij); |
|
|
|
|
/*---------- Forecasting ------------------*/ |
/*---------- Forecasting ------------------*/ |
if((stepm == 1) && (strcmp(model,".")==0)){ |
/*if((stepm == 1) && (strcmp(model,".")==0)){*/ |
prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1); |
if(prevfcast==1){ |
if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1); |
/* if(stepm ==1){*/ |
} |
prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
else{ |
/* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/ |
erreur=108; |
/* } */ |
printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); |
/* else{ */ |
fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); |
/* erreur=108; */ |
|
/* printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ |
|
/* fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ |
|
/* } */ |
} |
} |
|
|
|
|
Line 4024 Interval (in months) between two waves:
|
Line 4293 Interval (in months) between two waves:
|
printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); |
printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); |
fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); |
fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); |
|
|
calagedate=-1; |
/* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */ |
|
prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); |
/* printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d, mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\ |
|
ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass); |
|
*/ |
|
|
if (mobilav!=0) { |
if (mobilav!=0) { |
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
Line 4150 Interval (in months) between two waves:
|
Line 4421 Interval (in months) between two waves:
|
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
|
|
|
free_matrix(covar,0,NCOVMAX,1,n); |
free_matrix(matcov,1,npar,1,npar); |
free_matrix(matcov,1,npar,1,npar); |
free_vector(delti,1,npar); |
/*free_vector(delti,1,npar);*/ |
|
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_matrix(agev,1,maxwav,1,imx); |
free_matrix(agev,1,maxwav,1,imx); |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
|
free_ivector(ncodemax,1,8); |
free_ivector(ncodemax,1,8); |
free_ivector(Tvar,1,15); |
free_ivector(Tvar,1,15); |
free_ivector(Tprod,1,15); |
free_ivector(Tprod,1,15); |
Line 4163 Interval (in months) between two waves:
|
Line 4438 Interval (in months) between two waves:
|
free_ivector(Tage,1,15); |
free_ivector(Tage,1,15); |
free_ivector(Tcode,1,100); |
free_ivector(Tcode,1,100); |
|
|
fprintf(fichtm,"\n</body>"); |
/* fclose(fichtm);*/ |
fclose(fichtm); |
/* fclose(ficgp);*/ /* ALready done */ |
fclose(ficgp); |
|
|
|
|
|
if(erreur >0){ |
if(erreur >0){ |