Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.83

version 1.41.2.2, 2003/06/13 07:45:28 version 1.83, 2003/06/10 13:39:11
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.82  2003/06/05 15:57:20  brouard
   first survey ("cross") where individuals from different ages are    Add log in  imach.c and  fullversion number is now printed.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a  */
   second wave of interviews ("longitudinal") which measure each change  /*
   (if any) in individual health status.  Health expectancies are     Interpolated Markov Chain
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Short summary of the programme:
   Maximum Likelihood of the parameters involved in the model.  The    
   simplest model is the multinomial logistic model where pij is the    This program computes Healthy Life Expectancies from
   probability to be observed in state j at the second wave    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   conditional to be observed in state i at the first wave. Therefore    first survey ("cross") where individuals from different ages are
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    interviewed on their health status or degree of disability (in the
   'age' is age and 'sex' is a covariate. If you want to have a more    case of a health survey which is our main interest) -2- at least a
   complex model than "constant and age", you should modify the program    second wave of interviews ("longitudinal") which measure each change
   where the markup *Covariates have to be included here again* invites    (if any) in individual health status.  Health expectancies are
   you to do it.  More covariates you add, slower the    computed from the time spent in each health state according to a
   convergence.    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
   The advantage of this computer programme, compared to a simple    simplest model is the multinomial logistic model where pij is the
   multinomial logistic model, is clear when the delay between waves is not    probability to be observed in state j at the second wave
   identical for each individual. Also, if a individual missed an    conditional to be observed in state i at the first wave. Therefore
   intermediate interview, the information is lost, but taken into    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   account using an interpolation or extrapolation.      'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   hPijx is the probability to be observed in state i at age x+h    where the markup *Covariates have to be included here again* invites
   conditional to the observed state i at age x. The delay 'h' can be    you to do it.  More covariates you add, slower the
   split into an exact number (nh*stepm) of unobserved intermediate    convergence.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    The advantage of this computer programme, compared to a simple
   matrix is simply the matrix product of nh*stepm elementary matrices    multinomial logistic model, is clear when the delay between waves is not
   and the contribution of each individual to the likelihood is simply    identical for each individual. Also, if a individual missed an
   hPijx.    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    split into an exact number (nh*stepm) of unobserved intermediate
            Institut national d'études démographiques, Paris.    states. This elementary transition (by month, quarter,
   This software have been partly granted by Euro-REVES, a concerted action    semester or year) is modelled as a multinomial logistic.  The hPx
   from the European Union.    matrix is simply the matrix product of nh*stepm elementary matrices
   It is copyrighted identically to a GNU software product, ie programme and    and the contribution of each individual to the likelihood is simply
   software can be distributed freely for non commercial use. Latest version    hPijx.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the stable prevalence. 
 #include <math.h>    
 #include <stdio.h>    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <stdlib.h>             Institut national d'études démographiques, Paris.
 #include <unistd.h>    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 #define MAXLINE 256    It is copyrighted identically to a GNU software product, ie programme and
 #define GNUPLOTPROGRAM "wgnuplot"    software can be distributed freely for non commercial use. Latest version
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /*#define windows*/    
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    **********************************************************************/
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  /*
     main
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    read parameterfile
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    read datafile
     concatwav
 #define NINTERVMAX 8    if (mle >= 1)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */      mlikeli
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    print results files
 #define NCOVMAX 8 /* Maximum number of covariates */    if mle==1 
 #define MAXN 20000       computes hessian
 #define YEARM 12. /* Number of months per year */    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define AGESUP 130        begin-prev-date,...
 #define AGEBASE 40    open gnuplot file
     open html file
     stable prevalence
 int erreur; /* Error number */     for age prevalim()
 int nvar;    h Pij x
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    variance of p varprob
 int npar=NPARMAX;    forecasting if prevfcast==1 prevforecast call prevalence()
 int nlstate=2; /* Number of live states */    health expectancies
 int ndeath=1; /* Number of dead states */    Variance-covariance of DFLE
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    prevalence()
 int popbased=0;     movingaverage()
     varevsij() 
 int *wav; /* Number of waves for this individuual 0 is possible */    if popbased==1 varevsij(,popbased)
 int maxwav; /* Maxim number of waves */    total life expectancies
 int jmin, jmax; /* min, max spacing between 2 waves */    Variance of stable prevalence
 int mle, weightopt;   end
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */   
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #include <math.h>
 FILE *ficgp,*ficresprob,*ficpop;  #include <stdio.h>
 FILE *ficreseij;  #include <stdlib.h>
   char filerese[FILENAMELENGTH];  #include <unistd.h>
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];  #define MAXLINE 256
  FILE  *ficresvpl;  #define GNUPLOTPROGRAM "gnuplot"
   char fileresvpl[FILENAMELENGTH];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 80
 #define NR_END 1  /*#define DEBUG*/
 #define FREE_ARG char*  #define windows
 #define FTOL 1.0e-10  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define NRANSI  
 #define ITMAX 200  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define TOL 2.0e-4  
   #define NINTERVMAX 8
 #define CGOLD 0.3819660  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define ZEPS 1.0e-10  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 #define GOLD 1.618034  #define YEARM 12. /* Number of months per year */
 #define GLIMIT 100.0  #define AGESUP 130
 #define TINY 1.0e-20  #define AGEBASE 40
   #ifdef windows
 static double maxarg1,maxarg2;  #define DIRSEPARATOR '\\'
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define ODIRSEPARATOR '/'
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #else
    #define DIRSEPARATOR '/'
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define ODIRSEPARATOR '\\'
 #define rint(a) floor(a+0.5)  #endif
   
 static double sqrarg;  /* $Id$ */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /* $State$ */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
   char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
 int imx;  char fullversion[]="$Revision$ $Date$"; 
 int stepm;  int erreur; /* Error number */
 /* Stepm, step in month: minimum step interpolation*/  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int estepm;  int npar=NPARMAX;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 int m,nb;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int popbased=0;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  int *wav; /* Number of waves for this individuual 0 is possible */
 double dateintmean=0;  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 double *weight;  int mle, weightopt;
 int **s; /* Status */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double *agedc, **covar, idx;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double jmean; /* Mean space between 2 waves */
 double ftolhess; /* Tolerance for computing hessian */  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /**************** split *************************/  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  FILE *ficlog, *ficrespow;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    char *s;                             /* pointer */  FILE *ficresprobmorprev;
    int  l1, l2;                         /* length counters */  FILE *fichtm; /* Html File */
   FILE *ficreseij;
    l1 = strlen( path );                 /* length of path */  char filerese[FILENAMELENGTH];
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE  *ficresvij;
 #ifdef windows  char fileresv[FILENAMELENGTH];
    s = strrchr( path, '\\' );           /* find last / */  FILE  *ficresvpl;
 #else  char fileresvpl[FILENAMELENGTH];
    s = strrchr( path, '/' );            /* find last / */  char title[MAXLINE];
 #endif  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    if ( s == NULL ) {                   /* no directory, so use current */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char filelog[FILENAMELENGTH]; /* Log file */
       if ( getwd( dirc ) == NULL ) {  char filerest[FILENAMELENGTH];
 #else  char fileregp[FILENAMELENGTH];
       extern char       *getcwd( );  char popfile[FILENAMELENGTH];
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 #endif  
          return( GLOCK_ERROR_GETCWD );  #define NR_END 1
       }  #define FREE_ARG char*
       strcpy( name, path );             /* we've got it */  #define FTOL 1.0e-10
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  #define NRANSI 
       l2 = strlen( s );                 /* length of filename */  #define ITMAX 200 
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  #define TOL 2.0e-4 
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  #define CGOLD 0.3819660 
    }  #define ZEPS 1.0e-10 
    l1 = strlen( dirc );                 /* length of directory */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define GOLD 1.618034 
 #else  #define GLIMIT 100.0 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define TINY 1.0e-20 
 #endif  
    s = strrchr( name, '.' );            /* find last / */  static double maxarg1,maxarg2;
    s++;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    strcpy(ext,s);                       /* save extension */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
    l1= strlen( name);    
    l2= strlen( s)+1;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    strncpy( finame, name, l1-l2);  #define rint(a) floor(a+0.5)
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   
 /******************************************/  int imx; 
   int stepm;
 void replace(char *s, char*t)  /* Stepm, step in month: minimum step interpolation*/
 {  
   int i;  int estepm;
   int lg=20;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   i=0;  
   lg=strlen(t);  int m,nb;
   for(i=0; i<= lg; i++) {  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
     (s[i] = t[i]);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     if (t[i]== '\\') s[i]='/';  double **pmmij, ***probs;
   }  double dateintmean=0;
 }  
   double *weight;
 int nbocc(char *s, char occ)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   int i,j=0;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int lg=20;  
   i=0;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   lg=strlen(s);  double ftolhess; /* Tolerance for computing hessian */
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   return j;  {
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 void cutv(char *u,char *v, char*t, char occ)  
 {    l1 = strlen(path );                   /* length of path */
   int i,lg,j,p=0;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   i=0;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for(j=0; j<=strlen(t)-1; j++) {    if ( ss == NULL ) {                   /* no directory, so use current */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   lg=strlen(t);      /*    extern  char* getcwd ( char *buf , int len);*/
   for(j=0; j<p; j++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     (u[j] = t[j]);        return( GLOCK_ERROR_GETCWD );
   }      }
      u[p]='\0';      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
    for(j=0; j<= lg; j++) {      ss++;                               /* after this, the filename */
     if (j>=(p+1))(v[j-p-1] = t[j]);      l2 = strlen( ss );                  /* length of filename */
   }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /********************** nrerror ********************/      dirc[l1-l2] = 0;                    /* add zero */
     }
 void nrerror(char error_text[])    l1 = strlen( dirc );                  /* length of directory */
 {  #ifdef windows
   fprintf(stderr,"ERREUR ...\n");    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   fprintf(stderr,"%s\n",error_text);  #else
   exit(1);    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 }  #endif
 /*********************** vector *******************/    ss = strrchr( name, '.' );            /* find last / */
 double *vector(int nl, int nh)    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   double *v;    l1= strlen( name);
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    l2= strlen(ss)+1;
   if (!v) nrerror("allocation failure in vector");    strncpy( finame, name, l1-l2);
   return v-nl+NR_END;    finame[l1-l2]= 0;
 }    return( 0 );                          /* we're done */
   }
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  
 {  /******************************************/
   free((FREE_ARG)(v+nl-NR_END));  
 }  void replace(char *s, char*t)
   {
 /************************ivector *******************************/    int i;
 int *ivector(long nl,long nh)    int lg=20;
 {    i=0;
   int *v;    lg=strlen(t);
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    for(i=0; i<= lg; i++) {
   if (!v) nrerror("allocation failure in ivector");      (s[i] = t[i]);
   return v-nl+NR_END;      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  int nbocc(char *s, char occ)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    int i,j=0;
 }    int lg=20;
     i=0;
 /******************* imatrix *******************************/    lg=strlen(s);
 int **imatrix(long nrl, long nrh, long ncl, long nch)    for(i=0; i<= lg; i++) {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    if  (s[i] == occ ) j++;
 {    }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    return j;
   int **m;  }
    
   /* allocate pointers to rows */  void cutv(char *u,char *v, char*t, char occ)
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    /* cuts string t into u and v where u is ended by char occ excluding it
   m += NR_END;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m -= nrl;       gives u="abcedf" and v="ghi2j" */
      int i,lg,j,p=0;
      i=0;
   /* allocate rows and set pointers to them */    for(j=0; j<=strlen(t)-1; j++) {
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    lg=strlen(t);
      for(j=0; j<p; j++) {
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      (u[j] = t[j]);
      }
   /* return pointer to array of pointers to rows */       u[p]='\0';
   return m;  
 }     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
 /****************** free_imatrix *************************/    }
 void free_imatrix(m,nrl,nrh,ncl,nch)  }
       int **m;  
       long nch,ncl,nrh,nrl;  /********************** nrerror ********************/
      /* free an int matrix allocated by imatrix() */  
 {  void nrerror(char error_text[])
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  {
   free((FREE_ARG) (m+nrl-NR_END));    fprintf(stderr,"ERREUR ...\n");
 }    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  /*********************** vector *******************/
 {  double *vector(int nl, int nh)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  {
   double **m;    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if (!v) nrerror("allocation failure in vector");
   if (!m) nrerror("allocation failure 1 in matrix()");    return v-nl+NR_END;
   m += NR_END;  }
   m -= nrl;  
   /************************ free vector ******************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  void free_vector(double*v, int nl, int nh)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    free((FREE_ARG)(v+nl-NR_END));
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /************************ivector *******************************/
   return m;  char *cvector(long nl,long nh)
 }  {
     char *v;
 /*************************free matrix ************************/    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if (!v) nrerror("allocation failure in cvector");
 {    return v-nl+NR_END;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /******************free ivector **************************/
   void free_cvector(char *v, long nl, long nh)
 /******************* ma3x *******************************/  {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    int *v;
   m += NR_END;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m -= nrl;    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /******************free ivector **************************/
   m[nrl] -= ncl;  void free_ivector(int *v, long nl, long nh)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    free((FREE_ARG)(v+nl-NR_END));
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /******************* imatrix *******************************/
   m[nrl][ncl] += NR_END;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   m[nrl][ncl] -= nll;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (j=ncl+1; j<=nch; j++)  { 
     m[nrl][j]=m[nrl][j-1]+nlay;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
      int **m; 
   for (i=nrl+1; i<=nrh; i++) {    
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    /* allocate pointers to rows */ 
     for (j=ncl+1; j<=nch; j++)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       m[i][j]=m[i][j-1]+nlay;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
   return m;    m -= nrl; 
 }    
     
 /*************************free ma3x ************************/    /* allocate rows and set pointers to them */ 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    m[nrl] += NR_END; 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m[nrl] -= ncl; 
   free((FREE_ARG)(m+nrl-NR_END));    
 }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 /***************** f1dim *************************/    /* return pointer to array of pointers to rows */ 
 extern int ncom;    return m; 
 extern double *pcom,*xicom;  } 
 extern double (*nrfunc)(double []);  
    /****************** free_imatrix *************************/
 double f1dim(double x)  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   int j;        long nch,ncl,nrh,nrl; 
   double f;       /* free an int matrix allocated by imatrix() */ 
   double *xt;  { 
      free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   xt=vector(1,ncom);    free((FREE_ARG) (m+nrl-NR_END)); 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  } 
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /******************* matrix *******************************/
   return f;  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*****************brent *************************/    double **m;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int iter;    if (!m) nrerror("allocation failure 1 in matrix()");
   double a,b,d,etemp;    m += NR_END;
   double fu,fv,fw,fx;    m -= nrl;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double e=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
   a=(ax < cx ? ax : cx);    m[nrl] -= ncl;
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   fw=fv=fx=(*f)(x);    return m;
   for (iter=1;iter<=ITMAX;iter++) {    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
     xm=0.5*(a+b);     */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /*************************free matrix ************************/
 #ifdef DEBUG  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /******************* ma3x *******************************/
     }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       r=(x-w)*(fx-fv);    double ***m;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       q=2.0*(q-r);    if (!m) nrerror("allocation failure 1 in matrix()");
       if (q > 0.0) p = -p;    m += NR_END;
       q=fabs(q);    m -= nrl;
       etemp=e;  
       e=d;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl] += NR_END;
       else {    m[nrl] -= ncl;
         d=p/q;  
         u=x+d;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     } else {    m[nrl][ncl] += NR_END;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl][ncl] -= nll;
     }    for (j=ncl+1; j<=nch; j++) 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      m[nrl][j]=m[nrl][j-1]+nlay;
     fu=(*f)(u);    
     if (fu <= fx) {    for (i=nrl+1; i<=nrh; i++) {
       if (u >= x) a=x; else b=x;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       SHFT(v,w,x,u)      for (j=ncl+1; j<=nch; j++) 
         SHFT(fv,fw,fx,fu)        m[i][j]=m[i][j-1]+nlay;
         } else {    }
           if (u < x) a=u; else b=u;    return m; 
           if (fu <= fw || w == x) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             v=w;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
             w=u;    */
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /*************************free ma3x ************************/
             v=u;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
             fv=fu;  {
           }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
 /****************** mnbrak ***********************/  extern double (*nrfunc)(double []); 
    
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double f1dim(double x) 
             double (*func)(double))  { 
 {    int j; 
   double ulim,u,r,q, dum;    double f;
   double fu;    double *xt; 
     
   *fa=(*func)(*ax);    xt=vector(1,ncom); 
   *fb=(*func)(*bx);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   if (*fb > *fa) {    f=(*nrfunc)(xt); 
     SHFT(dum,*ax,*bx,dum)    free_vector(xt,1,ncom); 
       SHFT(dum,*fb,*fa,dum)    return f; 
       }  } 
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /*****************brent *************************/
   while (*fb > *fc) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     r=(*bx-*ax)*(*fb-*fc);  { 
     q=(*bx-*cx)*(*fb-*fa);    int iter; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    double a,b,d,etemp;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    double fu,fv,fw,fx;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    double ftemp;
     if ((*bx-u)*(u-*cx) > 0.0) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       fu=(*func)(u);    double e=0.0; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {   
       fu=(*func)(u);    a=(ax < cx ? ax : cx); 
       if (fu < *fc) {    b=(ax > cx ? ax : cx); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    x=w=v=bx; 
           SHFT(*fb,*fc,fu,(*func)(u))    fw=fv=fx=(*f)(x); 
           }    for (iter=1;iter<=ITMAX;iter++) { 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      xm=0.5*(a+b); 
       u=ulim;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       fu=(*func)(u);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     } else {      printf(".");fflush(stdout);
       u=(*cx)+GOLD*(*cx-*bx);      fprintf(ficlog,".");fflush(ficlog);
       fu=(*func)(u);  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     SHFT(*ax,*bx,*cx,u)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       SHFT(*fa,*fb,*fc,fu)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
 }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 /*************** linmin ************************/        return fx; 
       } 
 int ncom;      ftemp=fu;
 double *pcom,*xicom;      if (fabs(e) > tol1) { 
 double (*nrfunc)(double []);        r=(x-w)*(fx-fv); 
          q=(x-v)*(fx-fw); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        p=(x-v)*q-(x-w)*r; 
 {        q=2.0*(q-r); 
   double brent(double ax, double bx, double cx,        if (q > 0.0) p = -p; 
                double (*f)(double), double tol, double *xmin);        q=fabs(q); 
   double f1dim(double x);        etemp=e; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        e=d; 
               double *fc, double (*func)(double));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int j;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double xx,xmin,bx,ax;        else { 
   double fx,fb,fa;          d=p/q; 
            u=x+d; 
   ncom=n;          if (u-a < tol2 || b-u < tol2) 
   pcom=vector(1,n);            d=SIGN(tol1,xm-x); 
   xicom=vector(1,n);        } 
   nrfunc=func;      } else { 
   for (j=1;j<=n;j++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     pcom[j]=p[j];      } 
     xicom[j]=xi[j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   }      fu=(*f)(u); 
   ax=0.0;      if (fu <= fx) { 
   xx=1.0;        if (u >= x) a=x; else b=x; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        SHFT(v,w,x,u) 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);          SHFT(fv,fw,fx,fu) 
 #ifdef DEBUG          } else { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);            if (u < x) a=u; else b=u; 
 #endif            if (fu <= fw || w == x) { 
   for (j=1;j<=n;j++) {              v=w; 
     xi[j] *= xmin;              w=u; 
     p[j] += xi[j];              fv=fw; 
   }              fw=fu; 
   free_vector(xicom,1,n);            } else if (fu <= fv || v == x || v == w) { 
   free_vector(pcom,1,n);              v=u; 
 }              fv=fu; 
             } 
 /*************** powell ************************/          } 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    } 
             double (*func)(double []))    nrerror("Too many iterations in brent"); 
 {    *xmin=x; 
   void linmin(double p[], double xi[], int n, double *fret,    return fx; 
               double (*func)(double []));  } 
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /****************** mnbrak ***********************/
   double fp,fptt;  
   double *xits;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   pt=vector(1,n);              double (*func)(double)) 
   ptt=vector(1,n);  { 
   xit=vector(1,n);    double ulim,u,r,q, dum;
   xits=vector(1,n);    double fu; 
   *fret=(*func)(p);   
   for (j=1;j<=n;j++) pt[j]=p[j];    *fa=(*func)(*ax); 
   for (*iter=1;;++(*iter)) {    *fb=(*func)(*bx); 
     fp=(*fret);    if (*fb > *fa) { 
     ibig=0;      SHFT(dum,*ax,*bx,dum) 
     del=0.0;        SHFT(dum,*fb,*fa,dum) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        } 
     for (i=1;i<=n;i++)    *cx=(*bx)+GOLD*(*bx-*ax); 
       printf(" %d %.12f",i, p[i]);    *fc=(*func)(*cx); 
     printf("\n");    while (*fb > *fc) { 
     for (i=1;i<=n;i++) {      r=(*bx-*ax)*(*fb-*fc); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      q=(*bx-*cx)*(*fb-*fa); 
       fptt=(*fret);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 #ifdef DEBUG        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       printf("fret=%lf \n",*fret);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 #endif      if ((*bx-u)*(u-*cx) > 0.0) { 
       printf("%d",i);fflush(stdout);        fu=(*func)(u); 
       linmin(p,xit,n,fret,func);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       if (fabs(fptt-(*fret)) > del) {        fu=(*func)(u); 
         del=fabs(fptt-(*fret));        if (fu < *fc) { 
         ibig=i;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       }            SHFT(*fb,*fc,fu,(*func)(u)) 
 #ifdef DEBUG            } 
       printf("%d %.12e",i,(*fret));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for (j=1;j<=n;j++) {        u=ulim; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        fu=(*func)(u); 
         printf(" x(%d)=%.12e",j,xit[j]);      } else { 
       }        u=(*cx)+GOLD*(*cx-*bx); 
       for(j=1;j<=n;j++)        fu=(*func)(u); 
         printf(" p=%.12e",p[j]);      } 
       printf("\n");      SHFT(*ax,*bx,*cx,u) 
 #endif        SHFT(*fa,*fb,*fc,fu) 
     }        } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  } 
 #ifdef DEBUG  
       int k[2],l;  /*************** linmin ************************/
       k[0]=1;  
       k[1]=-1;  int ncom; 
       printf("Max: %.12e",(*func)(p));  double *pcom,*xicom;
       for (j=1;j<=n;j++)  double (*nrfunc)(double []); 
         printf(" %.12e",p[j]);   
       printf("\n");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for(l=0;l<=1;l++) {  { 
         for (j=1;j<=n;j++) {    double brent(double ax, double bx, double cx, 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];                 double (*f)(double), double tol, double *xmin); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double f1dim(double x); 
         }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));                double *fc, double (*func)(double)); 
       }    int j; 
 #endif    double xx,xmin,bx,ax; 
     double fx,fb,fa;
    
       free_vector(xit,1,n);    ncom=n; 
       free_vector(xits,1,n);    pcom=vector(1,n); 
       free_vector(ptt,1,n);    xicom=vector(1,n); 
       free_vector(pt,1,n);    nrfunc=func; 
       return;    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      xicom[j]=xi[j]; 
     for (j=1;j<=n;j++) {    } 
       ptt[j]=2.0*p[j]-pt[j];    ax=0.0; 
       xit[j]=p[j]-pt[j];    xx=1.0; 
       pt[j]=p[j];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     fptt=(*func)(ptt);  #ifdef DEBUG
     if (fptt < fp) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       if (t < 0.0) {  #endif
         linmin(p,xit,n,fret,func);    for (j=1;j<=n;j++) { 
         for (j=1;j<=n;j++) {      xi[j] *= xmin; 
           xi[j][ibig]=xi[j][n];      p[j] += xi[j]; 
           xi[j][n]=xit[j];    } 
         }    free_vector(xicom,1,n); 
 #ifdef DEBUG    free_vector(pcom,1,n); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  } 
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /*************** powell ************************/
         printf("\n");  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 #endif              double (*func)(double [])) 
       }  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
   }                double (*func)(double [])); 
 }    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
 /**** Prevalence limit ****************/    double fp,fptt;
     double *xits;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    pt=vector(1,n); 
 {    ptt=vector(1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    xit=vector(1,n); 
      matrix by transitions matrix until convergence is reached */    xits=vector(1,n); 
     *fret=(*func)(p); 
   int i, ii,j,k;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double min, max, maxmin, maxmax,sumnew=0.;    for (*iter=1;;++(*iter)) { 
   double **matprod2();      fp=(*fret); 
   double **out, cov[NCOVMAX], **pmij();      ibig=0; 
   double **newm;      del=0.0; 
   double agefin, delaymax=50 ; /* Max number of years to converge */      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     for (j=1;j<=nlstate+ndeath;j++){      for (i=1;i<=n;i++) {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
    cov[1]=1.;      }
        printf("\n");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,"\n");
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fprintf(ficrespow,"\n");
     newm=savm;      for (i=1;i<=n;i++) { 
     /* Covariates have to be included here again */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
      cov[2]=agefin;        fptt=(*fret); 
    #ifdef DEBUG
       for (k=1; k<=cptcovn;k++) {        printf("fret=%lf \n",*fret);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        fprintf(ficlog,"fret=%lf \n",*fret);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #endif
       }        printf("%d",i);fflush(stdout);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fprintf(ficlog,"%d",i);fflush(ficlog);
       for (k=1; k<=cptcovprod;k++)        linmin(p,xit,n,fret,func); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          ibig=i; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        } 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #ifdef DEBUG
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
     savm=oldm;        for (j=1;j<=n;j++) {
     oldm=newm;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     maxmax=0.;          printf(" x(%d)=%.12e",j,xit[j]);
     for(j=1;j<=nlstate;j++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       min=1.;        }
       max=0.;        for(j=1;j<=n;j++) {
       for(i=1; i<=nlstate; i++) {          printf(" p=%.12e",p[j]);
         sumnew=0;          fprintf(ficlog," p=%.12e",p[j]);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        }
         prlim[i][j]= newm[i][j]/(1-sumnew);        printf("\n");
         max=FMAX(max,prlim[i][j]);        fprintf(ficlog,"\n");
         min=FMIN(min,prlim[i][j]);  #endif
       }      } 
       maxmin=max-min;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       maxmax=FMAX(maxmax,maxmin);  #ifdef DEBUG
     }        int k[2],l;
     if(maxmax < ftolpl){        k[0]=1;
       return prlim;        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
   }        fprintf(ficlog,"Max: %.12e",(*func)(p));
 }        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 /*************** transition probabilities ***************/          fprintf(ficlog," %.12e",p[j]);
         }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        printf("\n");
 {        fprintf(ficlog,"\n");
   double s1, s2;        for(l=0;l<=1;l++) {
   /*double t34;*/          for (j=1;j<=n;j++) {
   int i,j,j1, nc, ii, jj;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(i=1; i<= nlstate; i++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(j=1; j<i;j++){          }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*s2 += param[i][j][nc]*cov[nc];*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #endif
       }  
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        free_vector(xit,1,n); 
     }        free_vector(xits,1,n); 
     for(j=i+1; j<=nlstate+ndeath;j++){        free_vector(ptt,1,n); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        free_vector(pt,1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        return; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      } 
       }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       ps[i][j]=s2;      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
     /*ps[3][2]=1;*/        pt[j]=p[j]; 
       } 
   for(i=1; i<= nlstate; i++){      fptt=(*func)(ptt); 
      s1=0;      if (fptt < fp) { 
     for(j=1; j<i; j++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       s1+=exp(ps[i][j]);        if (t < 0.0) { 
     for(j=i+1; j<=nlstate+ndeath; j++)          linmin(p,xit,n,fret,func); 
       s1+=exp(ps[i][j]);          for (j=1;j<=n;j++) { 
     ps[i][i]=1./(s1+1.);            xi[j][ibig]=xi[j][n]; 
     for(j=1; j<i; j++)            xi[j][n]=xit[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          }
     for(j=i+1; j<=nlstate+ndeath; j++)  #ifdef DEBUG
       ps[i][j]= exp(ps[i][j])*ps[i][i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   } /* end i */          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            fprintf(ficlog," %.12e",xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){          }
       ps[ii][jj]=0;          printf("\n");
       ps[ii][ii]=1;          fprintf(ficlog,"\n");
     }  #endif
   }        }
       } 
     } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /**** Prevalence limit (stable prevalence)  ****************/
    }  
     printf("\n ");  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 /*       matrix by transitions matrix until convergence is reached */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/    int i, ii,j,k;
     return ps;    double min, max, maxmin, maxmax,sumnew=0.;
 }    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
 /**************** Product of 2 matrices ******************/    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {    for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      for (j=1;j<=nlstate+ndeath;j++){
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* in, b, out are matrice of pointers which should have been initialized      }
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */     cov[1]=1.;
   long i, j, k;   
   for(i=nrl; i<= nrh; i++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(k=ncolol; k<=ncoloh; k++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      newm=savm;
         out[i][k] +=in[i][j]*b[j][k];      /* Covariates have to be included here again */
        cov[2]=agefin;
   return out;    
 }        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 /************* Higher Matrix Product ***************/        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
      (typically every 2 years instead of every month which is too big).      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
      Model is determined by parameters x and covariates have to be  
      included manually here.      savm=oldm;
       oldm=newm;
      */      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   int i, j, d, h, k;        min=1.;
   double **out, cov[NCOVMAX];        max=0.;
   double **newm;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   /* Hstepm could be zero and should return the unit matrix */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (i=1;i<=nlstate+ndeath;i++)          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (j=1;j<=nlstate+ndeath;j++){          max=FMAX(max,prlim[i][j]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);          min=FMIN(min,prlim[i][j]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        }
     }        maxmin=max-min;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        maxmax=FMAX(maxmax,maxmin);
   for(h=1; h <=nhstepm; h++){      }
     for(d=1; d <=hstepm; d++){      if(maxmax < ftolpl){
       newm=savm;        return prlim;
       /* Covariates have to be included here again */      }
       cov[1]=1.;    }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /*************** transition probabilities ***************/ 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     double s1, s2;
     /*double t34;*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    int i,j,j1, nc, ii, jj;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      for(i=1; i<= nlstate; i++){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      for(j=1; j<i;j++){
       savm=oldm;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       oldm=newm;          /*s2 += param[i][j][nc]*cov[nc];*/
     }          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for(i=1; i<=nlstate+ndeath; i++)          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       for(j=1;j<=nlstate+ndeath;j++) {        }
         po[i][j][h]=newm[i][j];        ps[i][j]=s2;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
          */      }
       }      for(j=i+1; j<=nlstate+ndeath;j++){
   } /* end h */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return po;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
         ps[i][j]=s2;
 /*************** log-likelihood *************/      }
 double func( double *x)    }
 {      /*ps[3][2]=1;*/
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for(i=1; i<= nlstate; i++){
   double **out;       s1=0;
   double sw; /* Sum of weights */      for(j=1; j<i; j++)
   double lli; /* Individual log likelihood */        s1+=exp(ps[i][j]);
   int s1, s2;      for(j=i+1; j<=nlstate+ndeath; j++)
   long ipmx;        s1+=exp(ps[i][j]);
   /*extern weight */      ps[i][i]=1./(s1+1.);
   /* We are differentiating ll according to initial status */      for(j=1; j<i; j++)
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /*for(i=1;i<imx;i++)      for(j=i+1; j<=nlstate+ndeath; j++)
     printf(" %d\n",s[4][i]);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   cov[1]=1.;    } /* end i */
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for(jj=1; jj<= nlstate+ndeath; jj++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        ps[ii][jj]=0;
     for(mi=1; mi<= wav[i]-1; mi++){        ps[ii][ii]=1;
       for (ii=1;ii<=nlstate+ndeath;ii++)      }
         for (j=1;j<=nlstate+ndeath;j++){    }
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  
         }    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       for(d=0; d<dh[mi][i]; d++){      for(jj=1; jj<= nlstate+ndeath; jj++){
         newm=savm;       printf("%lf ",ps[ii][jj]);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;     }
         for (kk=1; kk<=cptcovage;kk++) {      printf("\n ");
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
         }      printf("\n ");printf("%lf ",cov[2]);*/
          /*
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for(i=1; i<= npar; i++) printf("%f ",x[i]);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    goto end;*/
         savm=oldm;      return ps;
         oldm=newm;  }
          
          /**************** Product of 2 matrices ******************/
       } /* end mult */  
        double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       s1=s[mw[mi][i]][i];  {
       s2=s[mw[mi+1][i]][i];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       if( s2 > nlstate){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         /* i.e. if s2 is a death state and if the date of death is known then the contribution    /* in, b, out are matrice of pointers which should have been initialized 
            to the likelihood is the probability to die between last step unit time and current       before: only the contents of out is modified. The function returns
            step unit time, which is also the differences between probability to die before dh       a pointer to pointers identical to out */
            and probability to die before dh-stepm .    long i, j, k;
            In version up to 0.92 likelihood was computed    for(i=nrl; i<= nrh; i++)
            as if date of death was unknown. Death was treated as any other      for(k=ncolol; k<=ncoloh; k++)
            health state: the date of the interview describes the actual state        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            and not the date of a change in health state. The former idea was          out[i][k] +=in[i][j]*b[j][k];
            to consider that at each interview the state was recorded  
            (healthy, disable or death) and IMaCh was corrected; but when we    return out;
            introduced the exact date of death then we should have modified  }
            the contribution of an exact death to the likelihood. This new  
            contribution is smaller and very dependent of the step unit  
            stepm. It is no more the probability to die between last interview  /************* Higher Matrix Product ***************/
            and month of death but the probability to survive from last  
            interview up to one month before death multiplied by the  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
            probability to die within a month. Thanks to Chris  {
            Jackson for correcting this bug.  Former versions increased    /* Computes the transition matrix starting at age 'age' over 
            mortality artificially. The bad side is that we add another loop       'nhstepm*hstepm*stepm' months (i.e. until
            which slows down the processing. The difference can be up to 10%       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
            lower mortality.       nhstepm*hstepm matrices. 
         */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         lli=log(out[s1][s2] - savm[s1][s2]);       (typically every 2 years instead of every month which is too big 
       }else{       for the memory).
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */       Model is determined by parameters x and covariates have to be 
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/       included manually here. 
       }  
       ipmx +=1;       */
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    int i, j, d, h, k;
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/    double **out, cov[NCOVMAX];
     } /* end of wave */    double **newm;
   } /* end of individual */  
     /* Hstepm could be zero and should return the unit matrix */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for (i=1;i<=nlstate+ndeath;i++)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for (j=1;j<=nlstate+ndeath;j++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        oldm[i][j]=(i==j ? 1.0 : 0.0);
   /*exit(0);*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
   return -l;      }
 }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
 /*********** Maximum Likelihood Estimation ***************/        newm=savm;
         /* Covariates have to be included here again */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        cov[1]=1.;
 {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   int i,j, iter;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double **xi,*delti;        for (k=1; k<=cptcovage;k++)
   double fret;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   xi=matrix(1,npar,1,npar);        for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=npar;i++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   powell(p,xi,npar,ftol,&iter,&fret,func);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        savm=oldm;
         oldm=newm;
 }      }
       for(i=1; i<=nlstate+ndeath; i++)
 /**** Computes Hessian and covariance matrix ***/        for(j=1;j<=nlstate+ndeath;j++) {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          po[i][j][h]=newm[i][j];
 {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   double  **a,**y,*x,pd;           */
   double **hess;        }
   int i, j,jk;    } /* end h */
   int *indx;    return po;
   }
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*************** log-likelihood *************/
   void ludcmp(double **a, int npar, int *indx, double *d) ;  double func( double *x)
   {
   hess=matrix(1,npar,1,npar);    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   printf("\nCalculation of the hessian matrix. Wait...\n");    double **out;
   for (i=1;i<=npar;i++){    double sw; /* Sum of weights */
     printf("%d",i);fflush(stdout);    double lli; /* Individual log likelihood */
     hess[i][i]=hessii(p,ftolhess,i,delti);    int s1, s2;
     /*printf(" %f ",p[i]);*/    double bbh, survp;
     /*printf(" %lf ",hess[i][i]);*/    long ipmx;
   }    /*extern weight */
      /* We are differentiating ll according to initial status */
   for (i=1;i<=npar;i++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for (j=1;j<=npar;j++)  {    /*for(i=1;i<imx;i++) 
       if (j>i) {      printf(" %d\n",s[4][i]);
         printf(".%d%d",i,j);fflush(stdout);    */
         hess[i][j]=hessij(p,delti,i,j);    cov[1]=1.;
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
     }    if(mle==1){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   a=matrix(1,npar,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   y=matrix(1,npar,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   x=vector(1,npar);            }
   indx=ivector(1,npar);          for(d=0; d<dh[mi][i]; d++){
   for (i=1;i<=npar;i++)            newm=savm;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   ludcmp(a,npar,indx,&pd);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (j=1;j<=npar;j++) {            }
     for (i=1;i<=npar;i++) x[i]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     x[j]=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     lubksb(a,npar,indx,x);            savm=oldm;
     for (i=1;i<=npar;i++){            oldm=newm;
       matcov[i][j]=x[i];          } /* end mult */
     }        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
   printf("\n#Hessian matrix#\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   for (i=1;i<=npar;i++) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
     for (j=1;j<=npar;j++) {           * the nearest (and in case of equal distance, to the lowest) interval but now
       printf("%.3e ",hess[i][j]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     printf("\n");           * probability in order to take into account the bias as a fraction of the way
   }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   /* Recompute Inverse */           * For stepm=1 the results are the same as for previous versions of Imach.
   for (i=1;i<=npar;i++)           * For stepm > 1 the results are less biased than in previous versions. 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];           */
   ludcmp(a,npar,indx,&pd);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   /*  printf("\n#Hessian matrix recomputed#\n");          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
   for (j=1;j<=npar;j++) {           * is higher than the multiple of stepm and negative otherwise.
     for (i=1;i<=npar;i++) x[i]=0;           */
     x[j]=1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     lubksb(a,npar,indx,x);          if( s2 > nlstate){ 
     for (i=1;i<=npar;i++){            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       y[i][j]=x[i];               to the likelihood is the probability to die between last step unit time and current 
       printf("%.3e ",y[i][j]);               step unit time, which is also the differences between probability to die before dh 
     }               and probability to die before dh-stepm . 
     printf("\n");               In version up to 0.92 likelihood was computed
   }          as if date of death was unknown. Death was treated as any other
   */          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   free_matrix(a,1,npar,1,npar);          to consider that at each interview the state was recorded
   free_matrix(y,1,npar,1,npar);          (healthy, disable or death) and IMaCh was corrected; but when we
   free_vector(x,1,npar);          introduced the exact date of death then we should have modified
   free_ivector(indx,1,npar);          the contribution of an exact death to the likelihood. This new
   free_matrix(hess,1,npar,1,npar);          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
 }          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
 /*************** hessian matrix ****************/          Jackson for correcting this bug.  Former versions increased
 double hessii( double x[], double delta, int theta, double delti[])          mortality artificially. The bad side is that we add another loop
 {          which slows down the processing. The difference can be up to 10%
   int i;          lower mortality.
   int l=1, lmax=20;            */
   double k1,k2;            lli=log(out[s1][s2] - savm[s1][s2]);
   double p2[NPARMAX+1];          }else{
   double res;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double fx;          } 
   int k=0,kmax=10;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double l1;          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   fx=func(x);          ipmx +=1;
   for (i=1;i<=npar;i++) p2[i]=x[i];          sw += weight[i];
   for(l=0 ; l <=lmax; l++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     l1=pow(10,l);        } /* end of wave */
     delts=delt;      } /* end of individual */
     for(k=1 ; k <kmax; k=k+1){    }  else if(mle==2){
       delt = delta*(l1*k);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       p2[theta]=x[theta] +delt;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       k1=func(p2)-fx;        for(mi=1; mi<= wav[i]-1; mi++){
       p2[theta]=x[theta]-delt;          for (ii=1;ii<=nlstate+ndeath;ii++)
       k2=func(p2)-fx;            for (j=1;j<=nlstate+ndeath;j++){
       /*res= (k1-2.0*fx+k2)/delt/delt; */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
 #ifdef DEBUG          for(d=0; d<=dh[mi][i]; d++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            newm=savm;
 #endif            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            for (kk=1; kk<=cptcovage;kk++) {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         k=kmax;            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         k=kmax; l=lmax*10.;            savm=oldm;
       }            oldm=newm;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          } /* end mult */
         delts=delt;        
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }          /* But now since version 0.9 we anticipate for bias and large stepm.
   }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   delti[theta]=delts;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   return res;           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
 }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 double hessij( double x[], double delti[], int thetai,int thetaj)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 {           * -stepm/2 to stepm/2 .
   int i;           * For stepm=1 the results are the same as for previous versions of Imach.
   int l=1, l1, lmax=20;           * For stepm > 1 the results are less biased than in previous versions. 
   double k1,k2,k3,k4,res,fx;           */
   double p2[NPARMAX+1];          s1=s[mw[mi][i]][i];
   int k;          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   fx=func(x);          /* bias is positive if real duration
   for (k=1; k<=2; k++) {           * is higher than the multiple of stepm and negative otherwise.
     for (i=1;i<=npar;i++) p2[i]=x[i];           */
     p2[thetai]=x[thetai]+delti[thetai]/k;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     k1=func(p2)-fx;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     p2[thetai]=x[thetai]+delti[thetai]/k;          /*if(lli ==000.0)*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     k2=func(p2)-fx;          ipmx +=1;
            sw += weight[i];
     p2[thetai]=x[thetai]-delti[thetai]/k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        } /* end of wave */
     k3=func(p2)-fx;      } /* end of individual */
      }  else if(mle==3){  /* exponential inter-extrapolation */
     p2[thetai]=x[thetai]-delti[thetai]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     k4=func(p2)-fx;        for(mi=1; mi<= wav[i]-1; mi++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          for (ii=1;ii<=nlstate+ndeath;ii++)
 #ifdef DEBUG            for (j=1;j<=nlstate+ndeath;j++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   return res;          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************** Inverse of matrix **************/            for (kk=1; kk<=cptcovage;kk++) {
 void ludcmp(double **a, int n, int *indx, double *d)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   int i,imax,j,k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double big,dum,sum,temp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *vv;            savm=oldm;
              oldm=newm;
   vv=vector(1,n);          } /* end mult */
   *d=1.0;        
   for (i=1;i<=n;i++) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     big=0.0;          /* But now since version 0.9 we anticipate for bias and large stepm.
     for (j=1;j<=n;j++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if ((temp=fabs(a[i][j])) > big) big=temp;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           * the nearest (and in case of equal distance, to the lowest) interval but now
     vv[i]=1.0/big;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for (j=1;j<=n;j++) {           * probability in order to take into account the bias as a fraction of the way
     for (i=1;i<j;i++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       sum=a[i][j];           * -stepm/2 to stepm/2 .
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * For stepm=1 the results are the same as for previous versions of Imach.
       a[i][j]=sum;           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
     big=0.0;          s1=s[mw[mi][i]][i];
     for (i=j;i<=n;i++) {          s2=s[mw[mi+1][i]][i];
       sum=a[i][j];          bbh=(double)bh[mi][i]/(double)stepm; 
       for (k=1;k<j;k++)          /* bias is positive if real duration
         sum -= a[i][k]*a[k][j];           * is higher than the multiple of stepm and negative otherwise.
       a[i][j]=sum;           */
       if ( (dum=vv[i]*fabs(sum)) >= big) {          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         big=dum;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         imax=i;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       }          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     if (j != imax) {          ipmx +=1;
       for (k=1;k<=n;k++) {          sw += weight[i];
         dum=a[imax][k];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         a[imax][k]=a[j][k];        } /* end of wave */
         a[j][k]=dum;      } /* end of individual */
       }    }else{  /* ml=4 no inter-extrapolation */
       *d = -(*d);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       vv[imax]=vv[j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     indx[j]=imax;          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (a[j][j] == 0.0) a[j][j]=TINY;            for (j=1;j<=nlstate+ndeath;j++){
     if (j != n) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       dum=1.0/(a[j][j]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            }
     }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   free_vector(vv,1,n);  /* Doesn't work */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 ;            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 void lubksb(double **a, int n, int *indx, double b[])          
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i,ii=0,ip,j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum;            savm=oldm;
              oldm=newm;
   for (i=1;i<=n;i++) {          } /* end mult */
     ip=indx[i];        
     sum=b[ip];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     b[ip]=b[i];          ipmx +=1;
     if (ii)          sw += weight[i];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     else if (sum) ii=i;        } /* end of wave */
     b[i]=sum;      } /* end of individual */
   }    } /* End of if */
   for (i=n;i>=1;i--) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     sum=b[i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     b[i]=sum/a[i][i];    return -l;
   }  }
 }  
   
 /************ Frequencies ********************/  /*********** Maximum Likelihood Estimation ***************/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int i,j, iter;
   double ***freq; /* Frequencies */    double **xi;
   double *pp;    double fret;
   double pos, k2, dateintsum=0,k2cpt=0;    char filerespow[FILENAMELENGTH];
   FILE *ficresp;    xi=matrix(1,npar,1,npar);
   char fileresp[FILENAMELENGTH];    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
   pp=vector(1,nlstate);        xi[i][j]=(i==j ? 1.0 : 0.0);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   strcpy(fileresp,"p");    strcpy(filerespow,"pow"); 
   strcat(fileresp,fileres);    strcat(filerespow,fileres);
   if((ficresp=fopen(fileresp,"w"))==NULL) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);      printf("Problem with resultfile: %s\n", filerespow);
     exit(0);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   }    }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   j1=0;    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   j=cptcoveff;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    fprintf(ficrespow,"\n");
      powell(p,xi,npar,ftol,&iter,&fret,func);
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    fclose(ficrespow);
       j1++;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         scanf("%d", i);*/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    }
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  /**** Computes Hessian and covariance matrix ***/
        void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       dateintsum=0;  {
       k2cpt=0;    double  **a,**y,*x,pd;
       for (i=1; i<=imx; i++) {    double **hess;
         bool=1;    int i, j,jk;
         if  (cptcovn>0) {    int *indx;
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double hessii(double p[], double delta, int theta, double delti[]);
               bool=0;    double hessij(double p[], double delti[], int i, int j);
         }    void lubksb(double **a, int npar, int *indx, double b[]) ;
         if (bool==1) {    void ludcmp(double **a, int npar, int *indx, double *d) ;
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);    hess=matrix(1,npar,1,npar);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    printf("\nCalculation of the hessian matrix. Wait...\n");
               if(agev[m][i]==1) agev[m][i]=agemax+2;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
               if (m<lastpass) {    for (i=1;i<=npar;i++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      printf("%d",i);fflush(stdout);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      fprintf(ficlog,"%d",i);fflush(ficlog);
               }      hess[i][i]=hessii(p,ftolhess,i,delti);
                    /*printf(" %f ",p[i]);*/
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      /*printf(" %lf ",hess[i][i]);*/
                 dateintsum=dateintsum+k2;    }
                 k2cpt++;    
               }    for (i=1;i<=npar;i++) {
             }      for (j=1;j<=npar;j++)  {
           }        if (j>i) { 
         }          printf(".%d%d",i,j);fflush(stdout);
       }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
                  hess[i][j]=hessij(p,delti,i,j);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
       if  (cptcovn>0) {        }
         fprintf(ficresp, "\n#********** Variable ");      }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficresp, "**********\n#");    printf("\n");
       }    fprintf(ficlog,"\n");
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       fprintf(ficresp, "\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
          
       for(i=(int)agemin; i <= (int)agemax+3; i++){    a=matrix(1,npar,1,npar);
         if(i==(int)agemax+3)    y=matrix(1,npar,1,npar);
           printf("Total");    x=vector(1,npar);
         else    indx=ivector(1,npar);
           printf("Age %d", i);    for (i=1;i<=npar;i++)
         for(jk=1; jk <=nlstate ; jk++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    ludcmp(a,npar,indx,&pd);
             pp[jk] += freq[jk][m][i];  
         }    for (j=1;j<=npar;j++) {
         for(jk=1; jk <=nlstate ; jk++){      for (i=1;i<=npar;i++) x[i]=0;
           for(m=-1, pos=0; m <=0 ; m++)      x[j]=1;
             pos += freq[jk][m][i];      lubksb(a,npar,indx,x);
           if(pp[jk]>=1.e-10)      for (i=1;i<=npar;i++){ 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        matcov[i][j]=x[i];
           else      }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    }
         }  
     printf("\n#Hessian matrix#\n");
         for(jk=1; jk <=nlstate ; jk++){    fprintf(ficlog,"\n#Hessian matrix#\n");
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    for (i=1;i<=npar;i++) { 
             pp[jk] += freq[jk][m][i];      for (j=1;j<=npar;j++) { 
         }        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
         for(jk=1,pos=0; jk <=nlstate ; jk++)      }
           pos += pp[jk];      printf("\n");
         for(jk=1; jk <=nlstate ; jk++){      fprintf(ficlog,"\n");
           if(pos>=1.e-5)    }
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           else    /* Recompute Inverse */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    for (i=1;i<=npar;i++)
           if( i <= (int) agemax){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             if(pos>=1.e-5){    ludcmp(a,npar,indx,&pd);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;    /*  printf("\n#Hessian matrix recomputed#\n");
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }    for (j=1;j<=npar;j++) {
             else      for (i=1;i<=npar;i++) x[i]=0;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      x[j]=1;
           }      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
                y[i][j]=x[i];
         for(jk=-1; jk <=nlstate+ndeath; jk++)        printf("%.3e ",y[i][j]);
           for(m=-1; m <=nlstate+ndeath; m++)        fprintf(ficlog,"%.3e ",y[i][j]);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      }
         if(i <= (int) agemax)      printf("\n");
           fprintf(ficresp,"\n");      fprintf(ficlog,"\n");
         printf("\n");    }
       }    */
     }  
   }    free_matrix(a,1,npar,1,npar);
   dateintmean=dateintsum/k2cpt;    free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
   fclose(ficresp);    free_ivector(indx,1,npar);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    free_matrix(hess,1,npar,1,npar);
   free_vector(pp,1,nlstate);  
    
   /* End of Freq */  }
 }  
   /*************** hessian matrix ****************/
 /************ Prevalence ********************/  double hessii( double x[], double delta, int theta, double delti[])
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  {
 {  /* Some frequencies */    int i;
      int l=1, lmax=20;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double k1,k2;
   double ***freq; /* Frequencies */    double p2[NPARMAX+1];
   double *pp;    double res;
   double pos, k2;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
   pp=vector(1,nlstate);    int k=0,kmax=10;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double l1;
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    fx=func(x);
   j1=0;    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
   j=cptcoveff;      l1=pow(10,l);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      delts=delt;
        for(k=1 ; k <kmax; k=k+1){
  for(k1=1; k1<=j;k1++){        delt = delta*(l1*k);
     for(i1=1; i1<=ncodemax[k1];i1++){        p2[theta]=x[theta] +delt;
       j1++;        k1=func(p2)-fx;
          p2[theta]=x[theta]-delt;
       for (i=-1; i<=nlstate+ndeath; i++)          k2=func(p2)-fx;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          /*res= (k1-2.0*fx+k2)/delt/delt; */
           for(m=agemin; m <= agemax+3; m++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             freq[i][jk][m]=0;        
        #ifdef DEBUG
       for (i=1; i<=imx; i++) {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         bool=1;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         if  (cptcovn>0) {  #endif
           for (z1=1; z1<=cptcoveff; z1++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
               bool=0;          k=kmax;
         }        }
         if (bool==1) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           for(m=firstpass; m<=lastpass; m++){          k=kmax; l=lmax*10.;
             k2=anint[m][i]+(mint[m][i]/12.);        }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          delts=delt;
               if(agev[m][i]==1) agev[m][i]=agemax+2;        }
               if (m<lastpass)      }
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    }
               else    delti[theta]=delts;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    return res; 
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    
             }  }
           }  
         }  double hessij( double x[], double delti[], int thetai,int thetaj)
       }  {
         for(i=(int)agemin; i <= (int)agemax+3; i++){    int i;
           for(jk=1; jk <=nlstate ; jk++){    int l=1, l1, lmax=20;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double k1,k2,k3,k4,res,fx;
               pp[jk] += freq[jk][m][i];    double p2[NPARMAX+1];
           }    int k;
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pos=0; m <=0 ; m++)    fx=func(x);
             pos += freq[jk][m][i];    for (k=1; k<=2; k++) {
         }      for (i=1;i<=npar;i++) p2[i]=x[i];
              p2[thetai]=x[thetai]+delti[thetai]/k;
          for(jk=1; jk <=nlstate ; jk++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      k1=func(p2)-fx;
              pp[jk] += freq[jk][m][i];    
          }      p2[thetai]=x[thetai]+delti[thetai]/k;
                p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      k2=func(p2)-fx;
     
          for(jk=1; jk <=nlstate ; jk++){                p2[thetai]=x[thetai]-delti[thetai]/k;
            if( i <= (int) agemax){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
              if(pos>=1.e-5){      k3=func(p2)-fx;
                probs[i][jk][j1]= pp[jk]/pos;    
              }      p2[thetai]=x[thetai]-delti[thetai]/k;
            }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          }      k4=func(p2)-fx;
                res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         }  #ifdef DEBUG
     }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
      }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    return res;
   free_vector(pp,1,nlstate);  }
    
 }  /* End of Freq */  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
 /************* Waves Concatenation ***************/  { 
     int i,imax,j,k; 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double big,dum,sum,temp; 
 {    double *vv; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.   
      Death is a valid wave (if date is known).    vv=vector(1,n); 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    *d=1.0; 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    for (i=1;i<=n;i++) { 
      and mw[mi+1][i]. dh depends on stepm.      big=0.0; 
      */      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   int i, mi, m;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      vv[i]=1.0/big; 
      double sum=0., jmean=0.;*/    } 
     for (j=1;j<=n;j++) { 
   int j, k=0,jk, ju, jl;      for (i=1;i<j;i++) { 
   double sum=0.;        sum=a[i][j]; 
   jmin=1e+5;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   jmax=-1;        a[i][j]=sum; 
   jmean=0.;      } 
   for(i=1; i<=imx; i++){      big=0.0; 
     mi=0;      for (i=j;i<=n;i++) { 
     m=firstpass;        sum=a[i][j]; 
     while(s[m][i] <= nlstate){        for (k=1;k<j;k++) 
       if(s[m][i]>=1)          sum -= a[i][k]*a[k][j]; 
         mw[++mi][i]=m;        a[i][j]=sum; 
       if(m >=lastpass)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         break;          big=dum; 
       else          imax=i; 
         m++;        } 
     }/* end while */      } 
     if (s[m][i] > nlstate){      if (j != imax) { 
       mi++;     /* Death is another wave */        for (k=1;k<=n;k++) { 
       /* if(mi==0)  never been interviewed correctly before death */          dum=a[imax][k]; 
          /* Only death is a correct wave */          a[imax][k]=a[j][k]; 
       mw[mi][i]=m;          a[j][k]=dum; 
     }        } 
         *d = -(*d); 
     wav[i]=mi;        vv[imax]=vv[j]; 
     if(mi==0)      } 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      indx[j]=imax; 
   }      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
   for(i=1; i<=imx; i++){        dum=1.0/(a[j][j]); 
     for(mi=1; mi<wav[i];mi++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       if (stepm <=0)      } 
         dh[mi][i]=1;    } 
       else{    free_vector(vv,1,n);  /* Doesn't work */
         if (s[mw[mi+1][i]][i] > nlstate) {  ;
           if (agedc[i] < 2*AGESUP) {  } 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */  void lubksb(double **a, int n, int *indx, double b[]) 
           k=k+1;  { 
           if (j >= jmax) jmax=j;    int i,ii=0,ip,j; 
           if (j <= jmin) jmin=j;    double sum; 
           sum=sum+j;   
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    for (i=1;i<=n;i++) { 
           }      ip=indx[i]; 
         }      sum=b[ip]; 
         else{      b[ip]=b[i]; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      if (ii) 
           k=k+1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           if (j >= jmax) jmax=j;      else if (sum) ii=i; 
           else if (j <= jmin)jmin=j;      b[i]=sum; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    } 
           sum=sum+j;    for (i=n;i>=1;i--) { 
         }      sum=b[i]; 
         jk= j/stepm;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         jl= j -jk*stepm;      b[i]=sum/a[i][i]; 
         ju= j -(jk+1)*stepm;    } 
         if(jl <= -ju)  } 
           dh[mi][i]=jk;  
         else  /************ Frequencies ********************/
           dh[mi][i]=jk+1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
         if(dh[mi][i]==0)  {  /* Some frequencies */
           dh[mi][i]=1; /* At least one step */    
       }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     }    int first;
   }    double ***freq; /* Frequencies */
   jmean=sum/k;    double *pp, **prop;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
  }    FILE *ficresp;
 /*********** Tricode ****************************/    char fileresp[FILENAMELENGTH];
 void tricode(int *Tvar, int **nbcode, int imx)    
 {    pp=vector(1,nlstate);
   int Ndum[20],ij=1, k, j, i;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   int cptcode=0;    strcpy(fileresp,"p");
   cptcoveff=0;    strcat(fileresp,fileres);
      if((ficresp=fopen(fileresp,"w"))==NULL) {
   for (k=0; k<19; k++) Ndum[k]=0;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   for (k=1; k<=7; k++) ncodemax[k]=0;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    }
     for (i=1; i<=imx; i++) {    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       ij=(int)(covar[Tvar[j]][i]);    j1=0;
       Ndum[ij]++;    
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    j=cptcoveff;
       if (ij > cptcode) cptcode=ij;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     }  
     first=1;
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;    for(k1=1; k1<=j;k1++){
     }      for(i1=1; i1<=ncodemax[k1];i1++){
     ij=1;        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
     for (i=1; i<=ncodemax[j]; i++) {        for (i=-1; i<=nlstate+ndeath; i++)  
       for (k=0; k<=19; k++) {          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         if (Ndum[k] != 0) {            for(m=iagemin; m <= iagemax+3; m++)
           nbcode[Tvar[j]][ij]=k;              freq[i][jk][m]=0;
            
           ij++;      for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
         if (ij > ncodemax[j]) break;          prop[i][m]=0;
       }          
     }        dateintsum=0;
   }          k2cpt=0;
         for (i=1; i<=imx; i++) {
  for (k=0; k<19; k++) Ndum[k]=0;          bool=1;
           if  (cptcovn>0) {
  for (i=1; i<=ncovmodel-2; i++) {            for (z1=1; z1<=cptcoveff; z1++) 
       ij=Tvar[i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       Ndum[ij]++;                bool=0;
     }          }
           if (bool==1){
  ij=1;            for(m=firstpass; m<=lastpass; m++){
  for (i=1; i<=10; i++) {              k2=anint[m][i]+(mint[m][i]/12.);
    if((Ndum[i]!=0) && (i<=ncovcol)){              if ((k2>=dateprev1) && (k2<=dateprev2)) {
      Tvaraff[ij]=i;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      ij++;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
  }                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     cptcoveff=ij-1;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 }                }
                 
 /*********** Health Expectancies ****************/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )                  k2cpt++;
                 }
 {              }
   /* Health expectancies */            }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          }
   double age, agelim, hf;        }
   double ***p3mat,***varhe;         
   double **dnewm,**doldm;        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   double *xp;  
   double **gp, **gm;        if  (cptcovn>0) {
   double ***gradg, ***trgradg;          fprintf(ficresp, "\n#********** Variable "); 
   int theta;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        }
   xp=vector(1,npar);        for(i=1; i<=nlstate;i++) 
   dnewm=matrix(1,nlstate*2,1,npar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   doldm=matrix(1,nlstate*2,1,nlstate*2);        fprintf(ficresp, "\n");
          
   fprintf(ficreseij,"# Health expectancies\n");        for(i=iagemin; i <= iagemax+3; i++){
   fprintf(ficreseij,"# Age");          if(i==iagemax+3){
   for(i=1; i<=nlstate;i++)            fprintf(ficlog,"Total");
     for(j=1; j<=nlstate;j++)          }else{
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            if(first==1){
   fprintf(ficreseij,"\n");              first=0;
               printf("See log file for details...\n");
   if(estepm < stepm){            }
     printf ("Problem %d lower than %d\n",estepm, stepm);            fprintf(ficlog,"Age %d", i);
   }          }
   else  hstepm=estepm;            for(jk=1; jk <=nlstate ; jk++){
   /* We compute the life expectancy from trapezoids spaced every estepm months            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
    * This is mainly to measure the difference between two models: for example              pp[jk] += freq[jk][m][i]; 
    * if stepm=24 months pijx are given only every 2 years and by summing them          }
    * we are calculating an estimate of the Life Expectancy assuming a linear          for(jk=1; jk <=nlstate ; jk++){
    * progression inbetween and thus overestimating or underestimating according            for(m=-1, pos=0; m <=0 ; m++)
    * to the curvature of the survival function. If, for the same date, we              pos += freq[jk][m][i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            if(pp[jk]>=1.e-10){
    * to compare the new estimate of Life expectancy with the same linear              if(first==1){
    * hypothesis. A more precise result, taking into account a more precise              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    * curvature will be obtained if estepm is as small as stepm. */              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /* For example we decided to compute the life expectancy with the smallest unit */            }else{
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              if(first==1)
      nhstepm is the number of hstepm from age to agelim                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      nstepm is the number of stepm from age to agelin.              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      Look at hpijx to understand the reason of that which relies in memory size            }
      and note for a fixed period like estepm months */          }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it          for(jk=1; jk <=nlstate ; jk++){
      means that if the survival funtion is printed only each two years of age and if            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              pp[jk] += freq[jk][m][i];
      results. So we changed our mind and took the option of the best precision.          }       
   */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            pos += pp[jk];
             posprop += prop[jk][i];
   agelim=AGESUP;          }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(jk=1; jk <=nlstate ; jk++){
     /* nhstepm age range expressed in number of stepm */            if(pos>=1.e-5){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);              if(first==1)
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     /* if (stepm >= YEARM) hstepm=1;*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            }else{
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(first==1)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     gp=matrix(0,nhstepm,1,nlstate*2);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     gm=matrix(0,nhstepm,1,nlstate*2);            }
             if( i <= iagemax){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              if(pos>=1.e-5){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                  probs[i][jk][j1]= pp[jk]/pos;
                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     /* Computing Variances of health expectancies */            }
           }
      for(theta=1; theta <=npar; theta++){          
       for(i=1; i<=npar; i++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for(m=-1; m <=nlstate+ndeath; m++)
       }              if(freq[jk][m][i] !=0 ) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                if(first==1)
                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       cptj=0;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(j=1; j<= nlstate; j++){              }
         for(i=1; i<=nlstate; i++){          if(i <= iagemax)
           cptj=cptj+1;            fprintf(ficresp,"\n");
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          if(first==1)
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            printf("Others in log...\n");
           }          fprintf(ficlog,"\n");
         }        }
       }      }
          }
          dateintmean=dateintsum/k2cpt; 
       for(i=1; i<=npar; i++)   
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fclose(ficresp);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
          free_vector(pp,1,nlstate);
       cptj=0;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       for(j=1; j<= nlstate; j++){    /* End of Freq */
         for(i=1;i<=nlstate;i++){  }
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  /************ Prevalence ********************/
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           }  {  
         }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       }       in each health status at the date of interview (if between dateprev1 and dateprev2).
             We still use firstpass and lastpass as another selection.
        */
    
       for(j=1; j<= nlstate*2; j++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         for(h=0; h<=nhstepm-1; h++){    double ***freq; /* Frequencies */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double *pp, **prop;
         }    double pos,posprop; 
     double  y2; /* in fractional years */
      }    int iagemin, iagemax;
      
 /* End theta */    iagemin= (int) agemin;
     iagemax= (int) agemax;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
      for(h=0; h<=nhstepm-1; h++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for(j=1; j<=nlstate*2;j++)    j1=0;
         for(theta=1; theta <=npar; theta++)    
         trgradg[h][j][theta]=gradg[h][theta][j];    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
      for(i=1;i<=nlstate*2;i++)    for(k1=1; k1<=j;k1++){
       for(j=1;j<=nlstate*2;j++)      for(i1=1; i1<=ncodemax[k1];i1++){
         varhe[i][j][(int)age] =0.;        j1++;
         
     for(h=0;h<=nhstepm-1;h++){        for (i=1; i<=nlstate; i++)  
       for(k=0;k<=nhstepm-1;k++){          for(m=iagemin; m <= iagemax+3; m++)
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            prop[i][m]=0.0;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);       
         for(i=1;i<=nlstate*2;i++)        for (i=1; i<=imx; i++) { /* Each individual */
           for(j=1;j<=nlstate*2;j++)          bool=1;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++) 
     }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
                } 
     /* Computing expectancies */          if (bool==1) { 
     for(i=1; i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(j=1; j<=nlstate;j++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                          if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
         }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficreseij,"%3.0f",age );                  prop[s[m][i]][iagemax+3] += weight[i]; 
     cptj=0;                } 
     for(i=1; i<=nlstate;i++)              }
       for(j=1; j<=nlstate;j++){            } /* end selection of waves */
         cptj++;          }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        }
       }        for(i=iagemin; i <= iagemax+3; i++){  
     fprintf(ficreseij,"\n");          
              for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     free_matrix(gm,0,nhstepm,1,nlstate*2);            posprop += prop[jk][i]; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);          } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          for(jk=1; jk <=nlstate ; jk++){     
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if( i <=  iagemax){ 
   }              if(posprop>=1.e-5){ 
   free_vector(xp,1,npar);                probs[i][jk][j1]= prop[jk][i]/posprop;
   free_matrix(dnewm,1,nlstate*2,1,npar);              } 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            } 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          }/* end jk */ 
 }        }/* end i */ 
       } /* end i1 */
 /************ Variance ******************/    } /* end k1 */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    
 {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   /* Variance of health expectancies */    /*free_vector(pp,1,nlstate);*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   double **newm;  }  /* End of prevalence */
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h, nstepm ;  /************* Waves Concatenation ***************/
   int k, cptcode;  
   double *xp;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   double **gp, **gm;  {
   double ***gradg, ***trgradg;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   double ***p3mat;       Death is a valid wave (if date is known).
   double age,agelim, hf;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   int theta;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
    fprintf(ficresvij,"# Covariances of life expectancies\n");       */
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    int i, mi, m;
     for(j=1; j<=nlstate;j++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);       double sum=0., jmean=0.;*/
   fprintf(ficresvij,"\n");    int first;
     int j, k=0,jk, ju, jl;
   xp=vector(1,npar);    double sum=0.;
   dnewm=matrix(1,nlstate,1,npar);    first=0;
   doldm=matrix(1,nlstate,1,nlstate);    jmin=1e+5;
      jmax=-1;
   if(estepm < stepm){    jmean=0.;
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(i=1; i<=imx; i++){
   }      mi=0;
   else  hstepm=estepm;        m=firstpass;
   /* For example we decided to compute the life expectancy with the smallest unit */      while(s[m][i] <= nlstate){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        if(s[m][i]>=1)
      nhstepm is the number of hstepm from age to agelim          mw[++mi][i]=m;
      nstepm is the number of stepm from age to agelin.        if(m >=lastpass)
      Look at hpijx to understand the reason of that which relies in memory size          break;
      and note for a fixed period like k years */        else
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          m++;
      survival function given by stepm (the optimization length). Unfortunately it      }/* end while */
      means that if the survival funtion is printed only each two years of age and if      if (s[m][i] > nlstate){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        mi++;     /* Death is another wave */
      results. So we changed our mind and took the option of the best precision.        /* if(mi==0)  never been interviewed correctly before death */
   */           /* Only death is a correct wave */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        mw[mi][i]=m;
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      wav[i]=mi;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      if(mi==0){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(first==0){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
     gp=matrix(0,nhstepm,1,nlstate);          first=1;
     gm=matrix(0,nhstepm,1,nlstate);        }
         if(first==1){
     for(theta=1; theta <=npar; theta++){          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end mi==0 */
       }    } /* End individuals */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
       if (popbased==1) {        if (stepm <=0)
         for(i=1; i<=nlstate;i++)          dh[mi][i]=1;
           prlim[i][i]=probs[(int)age][i][ij];        else{
       }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
       for(j=1; j<= nlstate; j++){            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for(h=0; h<=nhstepm; h++){            if(j==0) j=1;  /* Survives at least one month after exam */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            k=k+1;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            if (j >= jmax) jmax=j;
         }            if (j <= jmin) jmin=j;
       }            sum=sum+j;
                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       for(i=1; i<=npar; i++) /* Computes gradient */            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
            else{
       if (popbased==1) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         for(i=1; i<=nlstate;i++)            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           prlim[i][i]=probs[(int)age][i][ij];            k=k+1;
       }            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
       for(j=1; j<= nlstate; j++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for(h=0; h<=nhstepm; h++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            sum=sum+j;
         }          }
       }          jk= j/stepm;
           jl= j -jk*stepm;
       for(j=1; j<= nlstate; j++)          ju= j -(jk+1)*stepm;
         for(h=0; h<=nhstepm; h++){          if(mle <=1){ 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            if(jl==0){
         }              dh[mi][i]=jk;
     } /* End theta */              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
     for(h=0; h<=nhstepm; h++)              bh[mi][i]=ju;
       for(j=1; j<=nlstate;j++)            }
         for(theta=1; theta <=npar; theta++)          }else{
           trgradg[h][j][theta]=gradg[h][theta][j];            if(jl <= -ju){
               dh[mi][i]=jk;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              bh[mi][i]=jl;       /* bias is positive if real duration
     for(i=1;i<=nlstate;i++)                                   * is higher than the multiple of stepm and negative otherwise.
       for(j=1;j<=nlstate;j++)                                   */
         vareij[i][j][(int)age] =0.;            }
             else{
     for(h=0;h<=nhstepm;h++){              dh[mi][i]=jk+1;
       for(k=0;k<=nhstepm;k++){              bh[mi][i]=ju;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            if(dh[mi][i]==0){
         for(i=1;i<=nlstate;i++)              dh[mi][i]=1; /* At least one step */
           for(j=1;j<=nlstate;j++)              bh[mi][i]=ju; /* At least one step */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
     }          }
         } /* end if mle */
     fprintf(ficresvij,"%.0f ",age );      } /* end wave */
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){    jmean=sum/k;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficresvij,"\n");   }
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  /*********** Tricode ****************************/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  void tricode(int *Tvar, int **nbcode, int imx)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   } /* End age */    int Ndum[20],ij=1, k, j, i, maxncov=19;
      int cptcode=0;
   free_vector(xp,1,npar);    cptcoveff=0; 
   free_matrix(doldm,1,nlstate,1,npar);   
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
 }  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 /************ Variance of prevlim ******************/      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                                 modality*/ 
 {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   /* Variance of prevalence limit */        Ndum[ij]++; /*store the modality */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   double **newm;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   double **dnewm,**doldm;                                         Tvar[j]. If V=sex and male is 0 and 
   int i, j, nhstepm, hstepm;                                         female is 1, then  cptcode=1.*/
   int k, cptcode;      }
   double *xp;  
   double *gp, *gm;      for (i=0; i<=cptcode; i++) {
   double **gradg, **trgradg;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   double age,agelim;      }
   int theta;  
          ij=1; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      for (i=1; i<=ncodemax[j]; i++) {
   fprintf(ficresvpl,"# Age");        for (k=0; k<= maxncov; k++) {
   for(i=1; i<=nlstate;i++)          if (Ndum[k] != 0) {
       fprintf(ficresvpl," %1d-%1d",i,i);            nbcode[Tvar[j]][ij]=k; 
   fprintf(ficresvpl,"\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
   xp=vector(1,npar);            ij++;
   dnewm=matrix(1,nlstate,1,npar);          }
   doldm=matrix(1,nlstate,1,nlstate);          if (ij > ncodemax[j]) break; 
          }  
   hstepm=1*YEARM; /* Every year of age */      } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    }  
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   for (k=0; k< maxncov; k++) Ndum[k]=0;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;   for (i=1; i<=ncovmodel-2; i++) { 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     gradg=matrix(1,npar,1,nlstate);     ij=Tvar[i];
     gp=vector(1,nlstate);     Ndum[ij]++;
     gm=vector(1,nlstate);   }
   
     for(theta=1; theta <=npar; theta++){   ij=1;
       for(i=1; i<=npar; i++){ /* Computes gradient */   for (i=1; i<= maxncov; i++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     if((Ndum[i]!=0) && (i<=ncovcol)){
       }       Tvaraff[ij]=i; /*For printing */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       ij++;
       for(i=1;i<=nlstate;i++)     }
         gp[i] = prlim[i][i];   }
       
       for(i=1; i<=npar; i++) /* Computes gradient */   cptcoveff=ij-1; /*Number of simple covariates*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /*********** Health Expectancies ****************/
         gm[i] = prlim[i][i];  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  {
     } /* End theta */    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     trgradg =matrix(1,nlstate,1,npar);    double age, agelim, hf;
     double ***p3mat,***varhe;
     for(j=1; j<=nlstate;j++)    double **dnewm,**doldm;
       for(theta=1; theta <=npar; theta++)    double *xp;
         trgradg[j][theta]=gradg[theta][j];    double **gp, **gm;
     double ***gradg, ***trgradg;
     for(i=1;i<=nlstate;i++)    int theta;
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    xp=vector(1,npar);
     for(i=1;i<=nlstate;i++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     fprintf(ficresvpl,"%.0f ",age );    fprintf(ficreseij,"# Health expectancies\n");
     for(i=1; i<=nlstate;i++)    fprintf(ficreseij,"# Age");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for(i=1; i<=nlstate;i++)
     fprintf(ficresvpl,"\n");      for(j=1; j<=nlstate;j++)
     free_vector(gp,1,nlstate);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     free_vector(gm,1,nlstate);    fprintf(ficreseij,"\n");
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    if(estepm < stepm){
   } /* End age */      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   free_vector(xp,1,npar);    else  hstepm=estepm;   
   free_matrix(doldm,1,nlstate,1,npar);    /* We compute the life expectancy from trapezoids spaced every estepm months
   free_matrix(dnewm,1,nlstate,1,nlstate);     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
 }     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
 /************ Variance of one-step probabilities  ******************/     * to the curvature of the survival function. If, for the same date, we 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 {     * to compare the new estimate of Life expectancy with the same linear 
   int i, j, i1, k1, j1, z1;     * hypothesis. A more precise result, taking into account a more precise
   int k=0, cptcode;     * curvature will be obtained if estepm is as small as stepm. */
   double **dnewm,**doldm;  
   double *xp;    /* For example we decided to compute the life expectancy with the smallest unit */
   double *gp, *gm;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double **gradg, **trgradg;       nhstepm is the number of hstepm from age to agelim 
   double age,agelim, cov[NCOVMAX];       nstepm is the number of stepm from age to agelin. 
   int theta;       Look at hpijx to understand the reason of that which relies in memory size
   char fileresprob[FILENAMELENGTH];       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   strcpy(fileresprob,"prob");       survival function given by stepm (the optimization length). Unfortunately it
   strcat(fileresprob,fileres);       means that if the survival funtion is printed only each two years of age and if
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     printf("Problem with resultfile: %s\n", fileresprob);       results. So we changed our mind and took the option of the best precision.
   }    */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    agelim=AGESUP;
   fprintf(ficresprob,"# Age");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   for(i=1; i<=nlstate;i++)      /* nhstepm age range expressed in number of stepm */
     for(j=1; j<=(nlstate+ndeath);j++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresprob,"\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
   xp=vector(1,npar);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   cov[1]=1;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   j=cptcoveff;   
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
   j1=0;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   for(k1=1; k1<=1;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){      /* Computing Variances of health expectancies */
     j1++;  
        for(theta=1; theta <=npar; theta++){
     if  (cptcovn>0) {        for(i=1; i<=npar; i++){ 
       fprintf(ficresprob, "\n#********** Variable ");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
       fprintf(ficresprob, "**********\n#");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }    
            cptj=0;
       for (age=bage; age<=fage; age ++){        for(j=1; j<= nlstate; j++){
         cov[2]=age;          for(i=1; i<=nlstate; i++){
         for (k=1; k<=cptcovn;k++) {            cptj=cptj+1;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                        gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         }            }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          }
         for (k=1; k<=cptcovprod;k++)        }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       
               
         gradg=matrix(1,npar,1,9);        for(i=1; i<=npar; i++) 
         trgradg=matrix(1,9,1,npar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        
            cptj=0;
         for(theta=1; theta <=npar; theta++){        for(j=1; j<= nlstate; j++){
           for(i=1; i<=npar; i++)          for(i=1;i<=nlstate;i++){
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            cptj=cptj+1;
                      for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
                        gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           k=0;            }
           for(i=1; i<= (nlstate+ndeath); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){        }
               k=k+1;        for(j=1; j<= nlstate*nlstate; j++)
               gp[k]=pmmij[i][j];          for(h=0; h<=nhstepm-1; h++){
             }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }          }
                 } 
           for(i=1; i<=npar; i++)     
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  /* End theta */
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           k=0;  
           for(i=1; i<=(nlstate+ndeath); i++){       for(h=0; h<=nhstepm-1; h++)
             for(j=1; j<=(nlstate+ndeath);j++){        for(j=1; j<=nlstate*nlstate;j++)
               k=k+1;          for(theta=1; theta <=npar; theta++)
               gm[k]=pmmij[i][j];            trgradg[h][j][theta]=gradg[h][theta][j];
             }       
           }  
             for(i=1;i<=nlstate*nlstate;i++)
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        for(j=1;j<=nlstate*nlstate;j++)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            varhe[i][j][(int)age] =0.;
         }  
        printf("%d|",(int)age);fflush(stdout);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for(theta=1; theta <=npar; theta++)       for(h=0;h<=nhstepm-1;h++){
             trgradg[j][theta]=gradg[theta][j];        for(k=0;k<=nhstepm-1;k++){
                  matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          for(i=1;i<=nlstate*nlstate;i++)
                    for(j=1;j<=nlstate*nlstate;j++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                }
         k=0;      }
         for(i=1; i<=(nlstate+ndeath); i++){      /* Computing expectancies */
           for(j=1; j<=(nlstate+ndeath);j++){      for(i=1; i<=nlstate;i++)
             k=k+1;        for(j=1; j<=nlstate;j++)
             gm[k]=pmmij[i][j];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         }            
        /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
      }*/      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
         fprintf(ficresprob,"\n%d ",(int)age);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          cptj++;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
          }
       }      fprintf(ficreseij,"\n");
     }     
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_vector(xp,1,npar);    }
   fclose(ficresprob);    printf("\n");
      fprintf(ficlog,"\n");
 }  
     free_vector(xp,1,npar);
 /******************* Printing html file ***********/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
  int lastpass, int stepm, int weightopt, char model[],\    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  }
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  
  char version[], int popforecast, int estepm ){  /************ Variance ******************/
   int jj1, k1, i1, cpt;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   FILE *fichtm;  {
   /*char optionfilehtm[FILENAMELENGTH];*/    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   strcpy(optionfilehtm,optionfile);    /* double **newm;*/
   strcat(optionfilehtm,".htm");    double **dnewm,**doldm;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    double **dnewmp,**doldmp;
     printf("Problem with %s \n",optionfilehtm), exit(0);    int i, j, nhstepm, hstepm, h, nstepm ;
   }    int k, cptcode;
     double *xp;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    double **gp, **gm;  /* for var eij */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    double ***gradg, ***trgradg; /*for var eij */
 \n    double **gradgp, **trgradgp; /* for var p point j */
 Total number of observations=%d <br>\n    double *gpp, *gmp; /* for var p point j */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 <hr  size=\"2\" color=\"#EC5E5E\">    double ***p3mat;
  <ul><li>Outputs files<br>\n    double age,agelim, hf;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double ***mobaverage;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    int theta;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    char digit[4];
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    char digitp[25];
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    char fileresprobmorprev[FILENAMELENGTH];
   
  fprintf(fichtm,"\n    if(popbased==1){
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      if(mobilav!=0)
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        strcpy(digitp,"-populbased-mobilav-");
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      else strcpy(digitp,"-populbased-nomobil-");
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    }
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    else 
       strcpy(digitp,"-stablbased-");
  if(popforecast==1) fprintf(fichtm,"\n  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    if (mobilav!=0) {
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         <br>",fileres,fileres,fileres,fileres);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  else        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 fprintf(fichtm," <li>Graphs</li><p>");      }
     }
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
  jj1=0;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
  for(k1=1; k1<=m;k1++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
    for(i1=1; i1<=ncodemax[k1];i1++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
        jj1++;    strcat(fileresprobmorprev,fileres);
        if (cptcovn > 0) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
          for (cpt=1; cpt<=cptcoveff;cpt++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
        for(cpt=1; cpt<nlstate;cpt++){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      fprintf(ficresprobmorprev," p.%-d SE",j);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for(i=1; i<=nlstate;i++)
        }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     for(cpt=1; cpt<=nlstate;cpt++) {    }  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    fprintf(ficresprobmorprev,"\n");
 interval) in state (%d): v%s%d%d.gif <br>    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
      }      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
      for(cpt=1; cpt<=nlstate;cpt++) {      exit(0);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    else{
      }      fprintf(ficgp,"\n# Routine varevsij");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    }
 health expectancies in states (1) and (2): e%s%d.gif<br>    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      printf("Problem with html file: %s\n", optionfilehtm);
 fprintf(fichtm,"\n</body>");      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
    }      exit(0);
    }    }
 fclose(fichtm);    else{
 }      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 /******************* Gnuplot file **************/    }
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
   strcpy(optionfilegnuplot,optionfilefiname);    for(i=1; i<=nlstate;i++)
   strcat(optionfilegnuplot,".gp.txt");      for(j=1; j<=nlstate;j++)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     printf("Problem with file %s",optionfilegnuplot);    fprintf(ficresvij,"\n");
   }  
     xp=vector(1,npar);
 #ifdef windows    dnewm=matrix(1,nlstate,1,npar);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    doldm=matrix(1,nlstate,1,nlstate);
 #endif    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 m=pow(2,cptcoveff);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
  /* 1eme*/    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    gpp=vector(nlstate+1,nlstate+ndeath);
    for (k1=1; k1<= m ; k1 ++) {    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    
     if(estepm < stepm){
 for (i=1; i<= nlstate ; i ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    else  hstepm=estepm;   
 }    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for (i=1; i<= nlstate ; i ++) {       nhstepm is the number of hstepm from age to agelim 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       nstepm is the number of stepm from age to agelin. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Look at hpijx to understand the reason of that which relies in memory size
 }       and note for a fixed period like k years */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      for (i=1; i<= nlstate ; i ++) {       survival function given by stepm (the optimization length). Unfortunately it
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       means that if the survival funtion is printed every two years of age and if
   else fprintf(ficgp," \%%*lf (\%%*lf)");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 }         results. So we changed our mind and took the option of the best precision.
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    agelim = AGESUP;
    }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   /*2 eme*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (k1=1; k1<= m ; k1 ++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);      gp=matrix(0,nhstepm,1,nlstate);
          gm=matrix(0,nhstepm,1,nlstate);
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      for(theta=1; theta <=npar; theta++){
       for (j=1; j<= nlstate+1 ; j ++) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        if (popbased==1) {
       for (j=1; j<= nlstate+1 ; j ++) {          if(mobilav ==0){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1; i<=nlstate;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");              prlim[i][i]=probs[(int)age][i][ij];
 }            }else{ /* mobilav */ 
       fprintf(ficgp,"\" t\"\" w l 0,");            for(i=1; i<=nlstate;i++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       for (j=1; j<= nlstate+1 ; j ++) {          }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }          for(j=1; j<= nlstate; j++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for(h=0; h<=nhstepm; h++){
       else fprintf(ficgp,"\" t\"\" w l 0,");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          }
   }        }
          /* This for computing probability of death (h=1 means
   /*3eme*/           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   for (k1=1; k1<= m ; k1 ++) {        */
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       k=2+nlstate*(2*cpt-2);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        }    
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        /* end probability of death */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 */   
       for (i=1; i< nlstate ; i ++) {        if (popbased==1) {
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   /* CV preval stat */        }
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(j=1; j<= nlstate; j++){
       k=3;          for(h=0; h<=nhstepm; h++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for (i=1; i< nlstate ; i ++)          }
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        /* This for computing probability of death (h=1 means
                 computed over hstepm matrices product = hstepm*stepm months) 
       l=3+(nlstate+ndeath)*cpt;           as a weighted average of prlim.
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        */
       for (i=1; i< nlstate ; i ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         l=3+(nlstate+ndeath)*cpt;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         fprintf(ficgp,"+$%d",l+i+1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          /* end probability of death */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }        for(j=1; j<= nlstate; j++) /* vareij */
   }            for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /* proba elementaires */          }
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       if (k != i) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         for(j=1; j <=ncovmodel; j++){        }
          
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      } /* End theta */
           jk++;  
           fprintf(ficgp,"\n");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         }  
       }      for(h=0; h<=nhstepm; h++) /* veij */
     }        for(j=1; j<=nlstate;j++)
     }          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
     for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
    i=1;        for(theta=1; theta <=npar; theta++)
    for(k2=1; k2<=nlstate; k2++) {          trgradgp[j][theta]=gradgp[theta][j];
      k3=i;    
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      for(i=1;i<=nlstate;i++)
 ij=1;        for(j=1;j<=nlstate;j++)
         for(j=3; j <=ncovmodel; j++) {          vareij[i][j][(int)age] =0.;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for(h=0;h<=nhstepm;h++){
             ij++;        for(k=0;k<=nhstepm;k++){
           }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           else          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(i=1;i<=nlstate;i++)
         }            for(j=1;j<=nlstate;j++)
           fprintf(ficgp,")/(1");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                }
         for(k1=1; k1 <=nlstate; k1++){        }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    
 ij=1;      /* pptj */
           for(j=3; j <=ncovmodel; j++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
             ij++;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           }          varppt[j][i]=doldmp[j][i];
           else      /* end ppptj */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      /*  x centered again */
           }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficgp,")");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         }   
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      if (popbased==1) {
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        if(mobilav ==0){
         i=i+ncovmodel;          for(i=1; i<=nlstate;i++)
        }            prlim[i][i]=probs[(int)age][i][ij];
      }        }else{ /* mobilav */ 
    }          for(i=1; i<=nlstate;i++)
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            prlim[i][i]=mobaverage[(int)age][i][ij];
    }        }
          }
   fclose(ficgp);               
 }  /* end gnuplot */      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
 /*************** Moving average **************/      */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   int i, cpt, cptcod;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      }    
       for (i=1; i<=nlstate;i++)      /* end probability of death */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
          for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       for (i=1; i<=nlstate;i++){        for(i=1; i<=nlstate;i++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           for (cpt=0;cpt<=4;cpt++){        }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      } 
           }      fprintf(ficresprobmorprev,"\n");
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }      fprintf(ficresvij,"%.0f ",age );
       }      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++){
              fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 }        }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
 /************** Forecasting ******************/      free_matrix(gm,0,nhstepm,1,nlstate);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int *popage;    } /* End age */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   double *popeffectif,*popcount;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   double ***p3mat;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   char fileresf[FILENAMELENGTH];    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
  agelim=AGESUP;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
   strcpy(fileresf,"f");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
   strcat(fileresf,fileres);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
   }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   printf("Computing forecasting: result on file '%s' \n", fileresf);  */
     fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     free_vector(xp,1,npar);
   if (mobilav==1) {    free_matrix(doldm,1,nlstate,1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(dnewm,1,nlstate,1,npar);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if (stepm<=12) stepsize=1;    fclose(ficresprobmorprev);
      fclose(ficgp);
   agelim=AGESUP;    fclose(fichtm);
    }  
   hstepm=1;  
   hstepm=hstepm/stepm;  /************ Variance of prevlim ******************/
   yp1=modf(dateintmean,&yp);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   anprojmean=yp;  {
   yp2=modf((yp1*12),&yp);    /* Variance of prevalence limit */
   mprojmean=yp;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   yp1=modf((yp2*30.5),&yp);    double **newm;
   jprojmean=yp;    double **dnewm,**doldm;
   if(jprojmean==0) jprojmean=1;    int i, j, nhstepm, hstepm;
   if(mprojmean==0) jprojmean=1;    int k, cptcode;
      double *xp;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double *gp, *gm;
      double **gradg, **trgradg;
   for(cptcov=1;cptcov<=i2;cptcov++){    double age,agelim;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int theta;
       k=k+1;     
       fprintf(ficresf,"\n#******");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficresvpl,"# Age");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++)
       }        fprintf(ficresvpl," %1d-%1d",i,i);
       fprintf(ficresf,"******\n");    fprintf(ficresvpl,"\n");
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    xp=vector(1,npar);
          dnewm=matrix(1,nlstate,1,npar);
          doldm=matrix(1,nlstate,1,nlstate);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    
         fprintf(ficresf,"\n");    hstepm=1*YEARM; /* Every year of age */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm;      if (stepm >= YEARM) hstepm=1;
                nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gradg=matrix(1,npar,1,nlstate);
           oldm=oldms;savm=savms;      gp=vector(1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        gm=vector(1,nlstate);
          
           for (h=0; h<=nhstepm; h++){      for(theta=1; theta <=npar; theta++){
             if (h==(int) (calagedate+YEARM*cpt)) {        for(i=1; i<=npar; i++){ /* Computes gradient */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               kk1=0.;kk2=0;        for(i=1;i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                        gp[i] = prlim[i][i];
                 if (mobilav==1)      
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(i=1; i<=npar; i++) /* Computes gradient */
                 else {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 }        for(i=1;i<=nlstate;i++)
                          gm[i] = prlim[i][i];
               }  
               if (h==(int)(calagedate+12*cpt)){        for(i=1;i<=nlstate;i++)
                 fprintf(ficresf," %.3f", kk1);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                              } /* End theta */
               }  
             }      trgradg =matrix(1,nlstate,1,npar);
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=nlstate;j++)
         }        for(theta=1; theta <=npar; theta++)
       }          trgradg[j][theta]=gradg[theta][j];
     }  
   }      for(i=1;i<=nlstate;i++)
                varpl[i][(int)age] =0.;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   fclose(ficresf);      for(i=1;i<=nlstate;i++)
 }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      fprintf(ficresvpl,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   int *popage;      fprintf(ficresvpl,"\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      free_vector(gp,1,nlstate);
   double *popeffectif,*popcount;      free_vector(gm,1,nlstate);
   double ***p3mat,***tabpop,***tabpopprev;      free_matrix(gradg,1,npar,1,nlstate);
   char filerespop[FILENAMELENGTH];      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(xp,1,npar);
   agelim=AGESUP;    free_matrix(doldm,1,nlstate,1,npar);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  }
    
    /************ Variance of one-step probabilities  ******************/
   strcpy(filerespop,"pop");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   strcat(filerespop,fileres);  {
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    int i, j=0,  i1, k1, l1, t, tj;
     printf("Problem with forecast resultfile: %s\n", filerespop);    int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double **dnewm,**doldm;
     double *xp;
   if (mobilav==1) {    double *gp, *gm;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **gradg, **trgradg;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double **mu;
   }    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int theta;
   if (stepm<=12) stepsize=1;    char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
   agelim=AGESUP;    char fileresprobcor[FILENAMELENGTH];
    
   hstepm=1;    double ***varpij;
   hstepm=hstepm/stepm;  
      strcpy(fileresprob,"prob"); 
   if (popforecast==1) {    strcat(fileresprob,fileres);
     if((ficpop=fopen(popfile,"r"))==NULL) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with population file : %s\n",popfile);exit(0);      printf("Problem with resultfile: %s\n", fileresprob);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     popage=ivector(0,AGESUP);    }
     popeffectif=vector(0,AGESUP);    strcpy(fileresprobcov,"probcov"); 
     popcount=vector(0,AGESUP);    strcat(fileresprobcov,fileres);
        if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     i=1;        printf("Problem with resultfile: %s\n", fileresprobcov);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
     imx=i;    strcpy(fileresprobcor,"probcor"); 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficrespop,"\n#******");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for(j=1;j<=cptcoveff;j++) {    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficrespop,"******\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficrespop,"# Age");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficresprob,"# Age");
          fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficresprobcov,"# Age");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
            fprintf(ficresprobcov,"# Age");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    for(i=1; i<=nlstate;i++)
                for(j=1; j<=(nlstate+ndeath);j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           oldm=oldms;savm=savms;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresprobcor," p%1d-%1d ",i,j);
              }  
           for (h=0; h<=nhstepm; h++){   /* fprintf(ficresprob,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresprobcov,"\n");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprobcor,"\n");
             }   */
             for(j=1; j<=nlstate+ndeath;j++) {   xp=vector(1,npar);
               kk1=0.;kk2=0;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               for(i=1; i<=nlstate;i++) {                  doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                 if (mobilav==1)    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                 else {    first=1;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
                 }      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
               }      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
               if (h==(int)(calagedate+12*cpt)){      exit(0);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    }
                   /*fprintf(ficrespop," %.3f", kk1);    else{
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      fprintf(ficgp,"\n# Routine varprob");
               }    }
             }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
             for(i=1; i<=nlstate;i++){      printf("Problem with html file: %s\n", optionfilehtm);
               kk1=0.;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
                 for(j=1; j<=nlstate;j++){      exit(0);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    }
                 }    else{
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
             }      fprintf(fichtm,"\n");
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           }      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    }
       }  
      cov[1]=1;
   /******/    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    j1=0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      for(t=1; t<=tj;t++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(i1=1; i1<=ncodemax[t];i1++){ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        j1++;
           nhstepm = nhstepm/hstepm;        if  (cptcovn>0) {
                    fprintf(ficresprob, "\n#********** Variable "); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           oldm=oldms;savm=savms;          fprintf(ficresprob, "**********\n#\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficresprobcov, "\n#********** Variable "); 
           for (h=0; h<=nhstepm; h++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficresprobcov, "**********\n#\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          
             }          fprintf(ficgp, "\n#********** Variable "); 
             for(j=1; j<=nlstate+ndeath;j++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               kk1=0.;kk2=0;          fprintf(ficgp, "**********\n#\n");
               for(i=1; i<=nlstate;i++) {                        
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              
               }          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             }          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           }          
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresprobcor, "\n#********** Variable ");    
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresprobcor, "**********\n#");    
    }        }
   }        
          for (age=bage; age<=fage; age ++){ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   if (popforecast==1) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     free_ivector(popage,0,AGESUP);          }
     free_vector(popeffectif,0,AGESUP);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     free_vector(popcount,0,AGESUP);          for (k=1; k<=cptcovprod;k++)
   }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   fclose(ficrespop);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 }          gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
 /***********************************************/      
 /**************** Main Program *****************/          for(theta=1; theta <=npar; theta++){
 /***********************************************/            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 int main(int argc, char *argv[])            
 {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            k=0;
   double agedeb, agefin,hf;            for(i=1; i<= (nlstate); i++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   double fret;                gp[k]=pmmij[i][j];
   double **xi,tmp,delta;              }
             }
   double dum; /* Dummy variable */            
   double ***p3mat;            for(i=1; i<=npar; i++)
   int *indx;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   char line[MAXLINE], linepar[MAXLINE];      
   char title[MAXLINE];            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];            k=0;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            for(i=1; i<=(nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];                k=k+1;
                 gm[k]=pmmij[i][j];
   char filerest[FILENAMELENGTH];              }
   char fileregp[FILENAMELENGTH];            }
   char popfile[FILENAMELENGTH];       
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   int firstobs=1, lastobs=10;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   int sdeb, sfin; /* Status at beginning and end */          }
   int c,  h , cpt,l;  
   int ju,jl, mi;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            for(theta=1; theta <=npar; theta++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              trgradg[j][theta]=gradg[theta][j];
   int mobilav=0,popforecast=0;          
   int hstepm, nhstepm;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   double bage, fage, age, agelim, agebase;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   double ftolpl=FTOL;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   double **prlim;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   double *severity;  
   double ***param; /* Matrix of parameters */          pmij(pmmij,cov,ncovmodel,x,nlstate);
   double  *p;          
   double **matcov; /* Matrix of covariance */          k=0;
   double ***delti3; /* Scale */          for(i=1; i<=(nlstate); i++){
   double *delti; /* Scale */            for(j=1; j<=(nlstate+ndeath);j++){
   double ***eij, ***vareij;              k=k+1;
   double **varpl; /* Variances of prevalence limits by age */              mu[k][(int) age]=pmmij[i][j];
   double *epj, vepp;            }
   double kk1, kk2;          }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
              for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   char z[1]="c", occ;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 #include <sys/time.h>            }*/
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
   /* long total_usecs;          fprintf(ficresprobcor,"\n%d ",(int)age);
   struct timeval start_time, end_time;  
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   getcwd(pathcd, size);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   printf("\n%s",version);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   if(argc <=1){          }
     printf("\nEnter the parameter file name: ");          i=0;
     scanf("%s",pathtot);          for (k=1; k<=(nlstate);k++){
   }            for (l=1; l<=(nlstate+ndeath);l++){ 
   else{              i=i++;
     strcpy(pathtot,argv[1]);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/              for (j=1; j<=i;j++){
   /*cygwin_split_path(pathtot,path,optionfile);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   /* cutv(path,optionfile,pathtot,'\\');*/              }
             }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          }/* end of loop for state */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        } /* end of loop for age */
   chdir(path);  
   replace(pathc,path);        /* Confidence intervalle of pij  */
         /*
 /*-------- arguments in the command line --------*/          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   strcpy(fileres,"r");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   strcat(fileres, optionfilefiname);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   strcat(fileres,".txt");    /* Other files have txt extension */          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   /*---------arguments file --------*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     goto end;        first1=1;
   }        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   strcpy(filereso,"o");            if(l2==k2) continue;
   strcat(filereso,fileres);            j=(k2-1)*(nlstate+ndeath)+l2;
   if((ficparo=fopen(filereso,"w"))==NULL) {            for (k1=1; k1<=(nlstate);k1++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   }                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
   /* Reads comments: lines beginning with '#' */                if(i<=j) continue;
   while((c=getc(ficpar))=='#' && c!= EOF){                for (age=bage; age<=fage; age ++){ 
     ungetc(c,ficpar);                  if ((int)age %5==0){
     fgets(line, MAXLINE, ficpar);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     puts(line);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fputs(line,ficparo);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    mu1=mu[i][(int) age]/stepm*YEARM ;
   ungetc(c,ficpar);                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                    /* Computing eigen value of matrix of covariance */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 while((c=getc(ficpar))=='#' && c!= EOF){                    /* Eigen vectors */
     ungetc(c,ficpar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     fgets(line, MAXLINE, ficpar);                    /*v21=sqrt(1.-v11*v11); *//* error */
     puts(line);                    v21=(lc1-v1)/cv12*v11;
     fputs(line,ficparo);                    v12=-v21;
   }                    v22=v11;
   ungetc(c,ficpar);                    tnalp=v21/v11;
                      if(first1==1){
                          first1=0;
   covar=matrix(0,NCOVMAX,1,n);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   cptcovn=0;                    }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   ncovmodel=2+cptcovn;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                      if(first==1){
   /* Read guess parameters */                      first=0;
   /* Reads comments: lines beginning with '#' */                      fprintf(ficgp,"\nset parametric;unset label");
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     ungetc(c,ficpar);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     fgets(line, MAXLINE, ficpar);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
     puts(line);                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
     fputs(line,ficparo);                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
   ungetc(c,ficpar);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for(i=1; i <=nlstate; i++)                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     for(j=1; j <=nlstate+ndeath-1; j++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    }else{
       fprintf(ficparo,"%1d%1d",i1,j1);                      first=0;
       printf("%1d%1d",i,j);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
       for(k=1; k<=ncovmodel;k++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         fscanf(ficpar," %lf",&param[i][j][k]);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         printf(" %lf",param[i][j][k]);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         fprintf(ficparo," %lf",param[i][j][k]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fscanf(ficpar,"\n");                    }/* if first */
       printf("\n");                  } /* age mod 5 */
       fprintf(ficparo,"\n");                } /* end loop age */
     }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                  first=1;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              } /*l12 */
             } /* k12 */
   p=param[1][1];          } /*l1 */
          }/* k1 */
   /* Reads comments: lines beginning with '#' */      } /* loop covariates */
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     fgets(line, MAXLINE, ficpar);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     puts(line);    free_vector(xp,1,npar);
     fputs(line,ficparo);    fclose(ficresprob);
   }    fclose(ficresprobcov);
   ungetc(c,ficpar);    fclose(ficresprobcor);
     fclose(ficgp);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fclose(fichtm);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  }
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /******************* Printing html file ***********/
       printf("%1d%1d",i,j);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       fprintf(ficparo,"%1d%1d",i1,j1);                    int lastpass, int stepm, int weightopt, char model[],\
       for(k=1; k<=ncovmodel;k++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         fscanf(ficpar,"%le",&delti3[i][j][k]);                    int popforecast, int estepm ,\
         printf(" %le",delti3[i][j][k]);                    double jprev1, double mprev1,double anprev1, \
         fprintf(ficparo," %le",delti3[i][j][k]);                    double jprev2, double mprev2,double anprev2){
       }    int jj1, k1, i1, cpt;
       fscanf(ficpar,"\n");    /*char optionfilehtm[FILENAMELENGTH];*/
       printf("\n");    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       fprintf(ficparo,"\n");      printf("Problem with %s \n",optionfilehtm), exit(0);
     }      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
   }    }
   delti=delti3[1][1];  
       fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
   /* Reads comments: lines beginning with '#' */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
   while((c=getc(ficpar))=='#' && c!= EOF){   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
     ungetc(c,ficpar);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     fgets(line, MAXLINE, ficpar);   - Life expectancies by age and initial health status (estepm=%2d months): 
     puts(line);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
     fputs(line,ficparo);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   }  
   ungetc(c,ficpar);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    
   matcov=matrix(1,npar,1,npar);   m=cptcoveff;
   for(i=1; i <=npar; i++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);   jj1=0;
     fprintf(ficparo,"%s",str);   for(k1=1; k1<=m;k1++){
     for(j=1; j <=i; j++){     for(i1=1; i1<=ncodemax[k1];i1++){
       fscanf(ficpar," %le",&matcov[i][j]);       jj1++;
       printf(" %.5le",matcov[i][j]);       if (cptcovn > 0) {
       fprintf(ficparo," %.5le",matcov[i][j]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     }         for (cpt=1; cpt<=cptcoveff;cpt++) 
     fscanf(ficpar,"\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     printf("\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fprintf(ficparo,"\n");       }
   }       /* Pij */
   for(i=1; i <=npar; i++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
     for(j=i+1;j<=npar;j++)  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
       matcov[i][j]=matcov[j][i];       /* Quasi-incidences */
           fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
   printf("\n");  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
     /*-------- Rewriting paramater file ----------*/           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
      strcpy(rfileres,"r");    /* "Rparameterfile */  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/         }
      strcat(rfileres,".");    /* */       for(cpt=1; cpt<=nlstate;cpt++) {
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
     if((ficres =fopen(rfileres,"w"))==NULL) {  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;       }
     }       fprintf(fichtm,"\n<br>- Total life expectancy by age and
     fprintf(ficres,"#%s\n",version);  health expectancies in states (1) and (2): e%s%d.png<br>
      <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
     /*-------- data file ----------*/     } /* end i1 */
     if((fic=fopen(datafile,"r"))==NULL)    {   }/* End k1 */
       printf("Problem with datafile: %s\n", datafile);goto end;   fprintf(fichtm,"</ul>");
     }  
   
     n= lastobs;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
     severity = vector(1,maxwav);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
     outcome=imatrix(1,maxwav+1,1,n);   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
     num=ivector(1,n);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
     moisnais=vector(1,n);   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
     annais=vector(1,n);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
     moisdc=vector(1,n);   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
     andc=vector(1,n);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
     agedc=vector(1,n);  
     cod=ivector(1,n);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     weight=vector(1,n);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     mint=matrix(1,maxwav,1,n);  /*      <br>",fileres,fileres,fileres,fileres); */
     anint=matrix(1,maxwav,1,n);  /*  else  */
     s=imatrix(1,maxwav+1,1,n);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     adl=imatrix(1,maxwav+1,1,n);      fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {   jj1=0;
       if ((i >= firstobs) && (i <=lastobs)) {   for(k1=1; k1<=m;k1++){
             for(i1=1; i1<=ncodemax[k1];i1++){
         for (j=maxwav;j>=1;j--){       jj1++;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);       if (cptcovn > 0) {
           strcpy(line,stra);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         for (cpt=1; cpt<=cptcoveff;cpt++) 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);       for(cpt=1; cpt<=nlstate;cpt++) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
   interval) in state (%d): v%s%d%d.png <br>
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);       }
      } /* end i1 */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   }/* End k1 */
         for (j=ncovcol;j>=1;j--){   fprintf(fichtm,"</ul>");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  fclose(fichtm);
         }  }
         num[i]=atol(stra);  
          /******************* Gnuplot file **************/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         i=i+1;    int ng;
       }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     }      printf("Problem with file %s",optionfilegnuplot);
     /* printf("ii=%d", ij);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
        scanf("%d",i);*/    }
   imx=i-1; /* Number of individuals */  
     /*#ifdef windows */
   /* for (i=1; i<=imx; i++){      fprintf(ficgp,"cd \"%s\" \n",pathc);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      /*#endif */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  m=pow(2,cptcoveff);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    
     }*/   /* 1eme*/
    /*  for (i=1; i<=imx; i++){    for (cpt=1; cpt<= nlstate ; cpt ++) {
      if (s[4][i]==9)  s[4][i]=-1;     for (k1=1; k1<= m ; k1 ++) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
    
   /* Calculation of the number of parameter from char model*/       for (i=1; i<= nlstate ; i ++) {
   Tvar=ivector(1,15);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   Tprod=ivector(1,15);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   Tvaraff=ivector(1,15);       }
   Tvard=imatrix(1,15,1,2);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
   Tage=ivector(1,15);             for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if (strlen(model) >1){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     j=0, j1=0, k1=1, k2=1;       } 
     j=nbocc(model,'+');       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     j1=nbocc(model,'*');       for (i=1; i<= nlstate ; i ++) {
     cptcovn=j+1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     cptcovprod=j1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }  
     strcpy(modelsav,model);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){     }
       printf("Error. Non available option model=%s ",model);    }
       goto end;    /*2 eme*/
     }    
        for (k1=1; k1<= m ; k1 ++) { 
     for(i=(j+1); i>=1;i--){      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       cutv(stra,strb,modelsav,'+');      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      for (i=1; i<= nlstate+1 ; i ++) {
       /*scanf("%d",i);*/        k=2*i;
       if (strchr(strb,'*')) {        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         cutv(strd,strc,strb,'*');        for (j=1; j<= nlstate+1 ; j ++) {
         if (strcmp(strc,"age")==0) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           cptcovprod--;          else fprintf(ficgp," \%%*lf (\%%*lf)");
           cutv(strb,stre,strd,'V');        }   
           Tvar[i]=atoi(stre);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           cptcovage++;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
             Tage[cptcovage]=i;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
             /*printf("stre=%s ", stre);*/        for (j=1; j<= nlstate+1 ; j ++) {
         }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         else if (strcmp(strd,"age")==0) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
           cptcovprod--;        }   
           cutv(strb,stre,strc,'V');        fprintf(ficgp,"\" t\"\" w l 0,");
           Tvar[i]=atoi(stre);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
           cptcovage++;        for (j=1; j<= nlstate+1 ; j ++) {
           Tage[cptcovage]=i;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         }          else fprintf(ficgp," \%%*lf (\%%*lf)");
         else {        }   
           cutv(strb,stre,strc,'V');        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           Tvar[i]=ncovcol+k1;        else fprintf(ficgp,"\" t\"\" w l 0,");
           cutv(strb,strc,strd,'V');      }
           Tprod[k1]=i;    }
           Tvard[k1][1]=atoi(strc);    
           Tvard[k1][2]=atoi(stre);    /*3eme*/
           Tvar[cptcovn+k2]=Tvard[k1][1];    
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    for (k1=1; k1<= m ; k1 ++) { 
           for (k=1; k<=lastobs;k++)      for (cpt=1; cpt<= nlstate ; cpt ++) {
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        k=2+nlstate*(2*cpt-2);
           k1++;        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           k2=k2+2;        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       else {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
        /*  scanf("%d",i);*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       cutv(strd,strc,strb,'V');          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       Tvar[i]=atoi(strc);          
       }        */
       strcpy(modelsav,stra);          for (i=1; i< nlstate ; i ++) {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
         scanf("%d",i);*/          
     }        } 
 }      }
      }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    
   printf("cptcovprod=%d ", cptcovprod);    /* CV preval stable (period) */
   scanf("%d ",i);*/    for (k1=1; k1<= m ; k1 ++) { 
     fclose(fic);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
     /*  if(mle==1){*/        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     if (weightopt != 1) { /* Maximisation without weights*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
       for(i=1;i<=n;i++) weight[i]=1.0;        
     }        for (i=1; i< nlstate ; i ++)
     /*-calculation of age at interview from date of interview and age at death -*/          fprintf(ficgp,"+$%d",k+i+1);
     agev=matrix(1,maxwav,1,imx);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
     for (i=1; i<=imx; i++) {        l=3+(nlstate+ndeath)*cpt;
       for(m=2; (m<= maxwav); m++) {        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        for (i=1; i< nlstate ; i ++) {
          anint[m][i]=9999;          l=3+(nlstate+ndeath)*cpt;
          s[m][i]=-1;          fprintf(ficgp,"+$%d",l+i+1);
        }        }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       }      } 
     }    }  
     
     for (i=1; i<=imx; i++)  {    /* proba elementaires */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    for(i=1,jk=1; i <=nlstate; i++){
       for(m=1; (m<= maxwav); m++){      for(k=1; k <=(nlstate+ndeath); k++){
         if(s[m][i] >0){        if (k != i) {
           if (s[m][i] >= nlstate+1) {          for(j=1; j <=ncovmodel; j++){
             if(agedc[i]>0)            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
               if(moisdc[i]!=99 && andc[i]!=9999)            jk++; 
                 agev[m][i]=agedc[i];            fprintf(ficgp,"\n");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          }
            else {        }
               if (andc[i]!=9999){      }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);     }
               agev[m][i]=-1;  
               }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
             }       for(jk=1; jk <=m; jk++) {
           }         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
           else if(s[m][i] !=9){ /* Should no more exist */         if (ng==2)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
             if(mint[m][i]==99 || anint[m][i]==9999)         else
               agev[m][i]=1;           fprintf(ficgp,"\nset title \"Probability\"\n");
             else if(agev[m][i] <agemin){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
               agemin=agev[m][i];         i=1;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/         for(k2=1; k2<=nlstate; k2++) {
             }           k3=i;
             else if(agev[m][i] >agemax){           for(k=1; k<=(nlstate+ndeath); k++) {
               agemax=agev[m][i];             if (k != k2){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/               if(ng==2)
             }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
             /*agev[m][i]=anint[m][i]-annais[i];*/               else
             /*   agev[m][i] = age[i]+2*m;*/                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           }               ij=1;
           else { /* =9 */               for(j=3; j <=ncovmodel; j++) {
             agev[m][i]=1;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
             s[m][i]=-1;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           }                   ij++;
         }                 }
         else /*= 0 Unknown */                 else
           agev[m][i]=1;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       }               }
                   fprintf(ficgp,")/(1");
     }               
     for (i=1; i<=imx; i++)  {               for(k1=1; k1 <=nlstate; k1++){   
       for(m=1; (m<= maxwav); m++){                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         if (s[m][i] > (nlstate+ndeath)) {                 ij=1;
           printf("Error: Wrong value in nlstate or ndeath\n");                   for(j=3; j <=ncovmodel; j++){
           goto end;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       }                     ij++;
     }                   }
                    else
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
     free_vector(severity,1,maxwav);                 fprintf(ficgp,")");
     free_imatrix(outcome,1,maxwav+1,1,n);               }
     free_vector(moisnais,1,n);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     free_vector(annais,1,n);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     /* free_matrix(mint,1,maxwav,1,n);               i=i+ncovmodel;
        free_matrix(anint,1,maxwav,1,n);*/             }
     free_vector(moisdc,1,n);           } /* end k */
     free_vector(andc,1,n);         } /* end k2 */
        } /* end jk */
         } /* end ng */
     wav=ivector(1,imx);     fclose(ficgp); 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  }  /* end gnuplot */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
      
     /* Concatenates waves */  /*************** Moving average **************/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
       Tcode=ivector(1,100);    int modcovmax =1;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    int mobilavrange, mob;
       ncodemax[1]=1;    double age;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
          modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
    codtab=imatrix(1,100,1,10);                             a covariate has 2 modalities */
    h=0;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
    m=pow(2,cptcoveff);  
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
    for(k=1;k<=cptcoveff; k++){      if(mobilav==1) mobilavrange=5; /* default */
      for(i=1; i <=(m/pow(2,k));i++){      else mobilavrange=mobilav;
        for(j=1; j <= ncodemax[k]; j++){      for (age=bage; age<=fage; age++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for (i=1; i<=nlstate;i++)
            h++;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      /* We keep the original values on the extreme ages bage, fage and for 
          }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
        }         we use a 5 terms etc. until the borders are no more concerned. 
      }      */ 
    }      for (mob=3;mob <=mobilavrange;mob=mob+2){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       codtab[1][2]=1;codtab[2][2]=2; */          for (i=1; i<=nlstate;i++){
    /* for(i=1; i <=m ;i++){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       for(k=1; k <=cptcovn; k++){              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       printf("\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       }                }
       scanf("%d",i);*/              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                }
    /* Calculates basic frequencies. Computes observed prevalence at single age          }
        and prints on file fileres'p'. */        }/* end age */
       }/* end mob */
        }else return -1;
        return 0;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }/* End movingaverage */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************** Forecasting ******************/
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
          /* proj1, year, month, day of starting projection 
     /* For Powell, parameters are in a vector p[] starting at p[1]       agemin, agemax range of age
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       dateprev1 dateprev2 range of dates during which prevalence is computed
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       anproj2 year of en of projection (same day and month as proj1).
     */
     if(mle==1){    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int *popage;
     }    double agec; /* generic age */
        double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     /*--------- results files --------------*/    double *popeffectif,*popcount;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double ***p3mat;
      double ***mobaverage;
     char fileresf[FILENAMELENGTH];
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    agelim=AGESUP;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    for(i=1,jk=1; i <=nlstate; i++){   
      for(k=1; k <=(nlstate+ndeath); k++){    strcpy(fileresf,"f"); 
        if (k != i)    strcat(fileresf,fileres);
          {    if((ficresf=fopen(fileresf,"w"))==NULL) {
            printf("%d%d ",i,k);      printf("Problem with forecast resultfile: %s\n", fileresf);
            fprintf(ficres,"%1d%1d ",i,k);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
            for(j=1; j <=ncovmodel; j++){    }
              printf("%f ",p[jk]);    printf("Computing forecasting: result on file '%s' \n", fileresf);
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
              jk++;  
            }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
            printf("\n");  
            fprintf(ficres,"\n");    if (mobilav!=0) {
          }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
    }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  if(mle==1){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     /* Computing hessian and covariance matrix */      }
     ftolhess=ftol; /* Usually correct */    }
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }    stepsize=(int) (stepm+YEARM-1)/YEARM;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    if (stepm<=12) stepsize=1;
     printf("# Scales (for hessian or gradient estimation)\n");    if(estepm < stepm){
      for(i=1,jk=1; i <=nlstate; i++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(j=1; j <=nlstate+ndeath; j++){    }
         if (j!=i) {    else  hstepm=estepm;   
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);    hstepm=hstepm/stepm; 
           for(k=1; k<=ncovmodel;k++){    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
             printf(" %.5e",delti[jk]);                                 fractional in yp1 */
             fprintf(ficres," %.5e",delti[jk]);    anprojmean=yp;
             jk++;    yp2=modf((yp1*12),&yp);
           }    mprojmean=yp;
           printf("\n");    yp1=modf((yp2*30.5),&yp);
           fprintf(ficres,"\n");    jprojmean=yp;
         }    if(jprojmean==0) jprojmean=1;
       }    if(mprojmean==0) jprojmean=1;
      }  
        i1=cptcoveff;
     k=1;    if (cptcovn < 1){i1=1;}
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     for(i=1;i<=npar;i++){    
       /*  if (k>nlstate) k=1;    fprintf(ficresf,"#****** Routine prevforecast **\n");
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  /*            if (h==(int)(YEARM*yearp)){ */
       printf("%s%d%d",alph[k],i1,tab[i]);*/    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       fprintf(ficres,"%3d",i);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       printf("%3d",i);        k=k+1;
       for(j=1; j<=i;j++){        fprintf(ficresf,"\n#******");
         fprintf(ficres," %.5e",matcov[i][j]);        for(j=1;j<=cptcoveff;j++) {
         printf(" %.5e",matcov[i][j]);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       }        }
       fprintf(ficres,"\n");        fprintf(ficresf,"******\n");
       printf("\n");        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       k++;        for(j=1; j<=nlstate+ndeath;j++){ 
     }          for(i=1; i<=nlstate;i++)              
                fprintf(ficresf," p%d%d",i,j);
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresf," p.%d",j);
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       puts(line);          fprintf(ficresf,"\n");
       fputs(line,ficparo);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     }  
     ungetc(c,ficpar);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     estepm=0;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            nhstepm = nhstepm/hstepm; 
     if (estepm==0 || estepm < stepm) estepm=stepm;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if (fage <= 2) {            oldm=oldms;savm=savms;
       bage = ageminpar;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       fage = agemaxpar;          
     }            for (h=0; h<=nhstepm; h++){
                  if (h*hstepm/YEARM*stepm ==yearp) {
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                fprintf(ficresf,"\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                for(j=1;j<=cptcoveff;j++) 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                  fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     while((c=getc(ficpar))=='#' && c!= EOF){              } 
     ungetc(c,ficpar);              for(j=1; j<=nlstate+ndeath;j++) {
     fgets(line, MAXLINE, ficpar);                ppij=0.;
     puts(line);                for(i=1; i<=nlstate;i++) {
     fputs(line,ficparo);                  if (mobilav==1) 
   }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   ungetc(c,ficpar);                  else {
                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                  }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                  if (h*hstepm/YEARM*stepm== yearp) {
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                        }
   while((c=getc(ficpar))=='#' && c!= EOF){                } /* end i */
     ungetc(c,ficpar);                if (h*hstepm/YEARM*stepm==yearp) {
     fgets(line, MAXLINE, ficpar);                  fprintf(ficresf," %.3f", ppij);
     puts(line);                }
     fputs(line,ficparo);              }/* end j */
   }            } /* end h */
   ungetc(c,ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            } /* end agec */
         } /* end yearp */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      } /* end cptcod */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    } /* end  cptcov */
          
   fscanf(ficpar,"pop_based=%d\n",&popbased);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);      fclose(ficresf);
    }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************** Forecasting *****not tested NB*************/
     fgets(line, MAXLINE, ficpar);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     puts(line);    
     fputs(line,ficparo);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   }    int *popage;
   ungetc(c,ficpar);    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    double ***p3mat,***tabpop,***tabpopprev;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    double ***mobaverage;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 while((c=getc(ficpar))=='#' && c!= EOF){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     ungetc(c,ficpar);    agelim=AGESUP;
     fgets(line, MAXLINE, ficpar);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     puts(line);    
     fputs(line,ficparo);    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }    
   ungetc(c,ficpar);    
     strcpy(filerespop,"pop"); 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    strcat(filerespop,fileres);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
 /*------------ gnuplot -------------*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  
      if (cptcoveff==0) ncodemax[cptcoveff]=1;
 /*------------ free_vector  -------------*/  
  chdir(path);    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  free_ivector(wav,1,imx);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          printf(" Error in movingaverage mobilav=%d\n",mobilav);
  free_ivector(num,1,n);      }
  free_vector(agedc,1,n);    }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);    stepsize=(int) (stepm+YEARM-1)/YEARM;
  fclose(ficres);    if (stepm<=12) stepsize=1;
     
 /*--------- index.htm --------*/    agelim=AGESUP;
     
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    hstepm=1;
     hstepm=hstepm/stepm; 
      
   /*--------------- Prevalence limit --------------*/    if (popforecast==1) {
        if((ficpop=fopen(popfile,"r"))==NULL) {
   strcpy(filerespl,"pl");        printf("Problem with population file : %s\n",popfile);exit(0);
   strcat(filerespl,fileres);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      } 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      popage=ivector(0,AGESUP);
   }      popeffectif=vector(0,AGESUP);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      popcount=vector(0,AGESUP);
   fprintf(ficrespl,"#Prevalence limit\n");      
   fprintf(ficrespl,"#Age ");      i=1;   
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   fprintf(ficrespl,"\n");     
        imx=i;
   prlim=matrix(1,nlstate,1,nlstate);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        k=k+1;
   k=0;        fprintf(ficrespop,"\n#******");
   agebase=ageminpar;        for(j=1;j<=cptcoveff;j++) {
   agelim=agemaxpar;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   ftolpl=1.e-10;        }
   i1=cptcoveff;        fprintf(ficrespop,"******\n");
   if (cptcovn < 1){i1=1;}        fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   for(cptcov=1;cptcov<=i1;cptcov++){        if (popforecast==1)  fprintf(ficrespop," [Population]");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        
         k=k+1;        for (cpt=0; cpt<=0;cpt++) { 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
         fprintf(ficrespl,"\n#******");          
         for(j=1;j<=cptcoveff;j++)          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         fprintf(ficrespl,"******\n");            nhstepm = nhstepm/hstepm; 
                    
         for (age=agebase; age<=agelim; age++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            oldm=oldms;savm=savms;
           fprintf(ficrespl,"%.0f",age );            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           for(i=1; i<=nlstate;i++)          
           fprintf(ficrespl," %.5f", prlim[i][i]);            for (h=0; h<=nhstepm; h++){
           fprintf(ficrespl,"\n");              if (h==(int) (calagedatem+YEARM*cpt)) {
         }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       }              } 
     }              for(j=1; j<=nlstate+ndeath;j++) {
   fclose(ficrespl);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   /*------------- h Pij x at various ages ------------*/                  if (mobilav==1) 
                      kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                  else {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                  }
   }                }
   printf("Computing pij: result on file '%s' \n", filerespij);                if (h==(int)(calagedatem+12*cpt)){
                    tabpop[(int)(agedeb)][j][cptcod]=kk1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    /*fprintf(ficrespop," %.3f", kk1);
   /*if (stepm<=24) stepsize=2;*/                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
   agelim=AGESUP;              }
   hstepm=stepsize*YEARM; /* Every year of age */              for(i=1; i<=nlstate;i++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                kk1=0.;
                    for(j=1; j<=nlstate;j++){
   k=0;                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   for(cptcov=1;cptcov<=i1;cptcov++){                  }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
       k=k+1;              }
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
         fprintf(ficrespij,"******\n");            }
                    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /******/
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespij,"# Age");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for(i=1; i<=nlstate;i++)          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             for(j=1; j<=nlstate+ndeath;j++)            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
               fprintf(ficrespij," %1d-%1d",i,j);            nhstepm = nhstepm/hstepm; 
           fprintf(ficrespij,"\n");            
            for (h=0; h<=nhstepm; h++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            oldm=oldms;savm=savms;
             for(i=1; i<=nlstate;i++)            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
               for(j=1; j<=nlstate+ndeath;j++)            for (h=0; h<=nhstepm; h++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              if (h==(int) (calagedatem+YEARM*cpt)) {
             fprintf(ficrespij,"\n");                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
              }              } 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              for(j=1; j<=nlstate+ndeath;j++) {
           fprintf(ficrespij,"\n");                kk1=0.;kk2=0;
         }                for(i=1; i<=nlstate;i++) {              
     }                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   }                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);              }
             }
   fclose(ficrespij);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
   /*---------- Forecasting ------------------*/     } 
   if((stepm == 1) && (strcmp(model,".")==0)){    }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
   else{    if (popforecast==1) {
     erreur=108;      free_ivector(popage,0,AGESUP);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      free_vector(popeffectif,0,AGESUP);
   }      free_vector(popcount,0,AGESUP);
      }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*---------- Health expectancies and variances ------------*/    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   strcpy(filerest,"t");  }
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  /***********************************************/
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /**************** Main Program *****************/
   }  /***********************************************/
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
   int main(int argc, char *argv[])
   {
   strcpy(filerese,"e");    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   strcat(filerese,fileres);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    double agedeb, agefin,hf;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double fret;
     double **xi,tmp,delta;
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);    double dum; /* Dummy variable */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double ***p3mat;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double ***mobaverage;
   }    int *indx;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    char line[MAXLINE], linepar[MAXLINE];
   calagedate=-1;    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
   k=0;    int c,  h , cpt,l;
   for(cptcov=1;cptcov<=i1;cptcov++){    int ju,jl, mi;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
       k=k+1;    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
       fprintf(ficrest,"\n#****** ");    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
       for(j=1;j<=cptcoveff;j++)    int mobilav=0,popforecast=0;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int hstepm, nhstepm;
       fprintf(ficrest,"******\n");    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    double bage, fage, age, agelim, agebase;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ftolpl=FTOL;
       fprintf(ficreseij,"******\n");    double **prlim;
     double *severity;
       fprintf(ficresvij,"\n#****** ");    double ***param; /* Matrix of parameters */
       for(j=1;j<=cptcoveff;j++)    double  *p;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **matcov; /* Matrix of covariance */
       fprintf(ficresvij,"******\n");    double ***delti3; /* Scale */
     double *delti; /* Scale */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double ***eij, ***vareij;
       oldm=oldms;savm=savms;    double **varpl; /* Variances of prevalence limits by age */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      double *epj, vepp;
      double kk1, kk2;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    char *alph[]={"a","a","b","c","d","e"}, str[4];
      
   
      char z[1]="c", occ;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  #include <sys/time.h>
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  #include <time.h>
       fprintf(ficrest,"\n");    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
       epj=vector(1,nlstate+1);    /* long total_usecs;
       for(age=bage; age <=fage ;age++){       struct timeval start_time, end_time;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    
         if (popbased==1) {       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
           for(i=1; i<=nlstate;i++)    getcwd(pathcd, size);
             prlim[i][i]=probs[(int)age][i][k];  
         }    printf("\n%s\n%s",version,fullversion);
            if(argc <=1){
         fprintf(ficrest," %4.0f",age);      printf("\nEnter the parameter file name: ");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      scanf("%s",pathtot);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    else{
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      strcpy(pathtot,argv[1]);
           }    }
           epj[nlstate+1] +=epj[j];    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
         }    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
         for(i=1, vepp=0.;i <=nlstate;i++)    /* cutv(path,optionfile,pathtot,'\\');*/
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
         for(j=1;j <=nlstate;j++){    chdir(path);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    replace(pathc,path);
         }  
         fprintf(ficrest,"\n");    /*-------- arguments in the command line --------*/
       }  
     }    /* Log file */
   }    strcat(filelog, optionfilefiname);
 free_matrix(mint,1,maxwav,1,n);    strcat(filelog,".log");    /* */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    if((ficlog=fopen(filelog,"w"))==NULL)    {
     free_vector(weight,1,n);      printf("Problem with logfile %s\n",filelog);
   fclose(ficreseij);      goto end;
   fclose(ficresvij);    }
   fclose(ficrest);    fprintf(ficlog,"Log filename:%s\n",filelog);
   fclose(ficpar);    fprintf(ficlog,"\n%s",version);
   free_vector(epj,1,nlstate+1);    fprintf(ficlog,"\nEnter the parameter file name: ");
      fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   /*------- Variance limit prevalence------*/      fflush(ficlog);
   
   strcpy(fileresvpl,"vpl");    /* */
   strcat(fileresvpl,fileres);    strcpy(fileres,"r");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    strcat(fileres, optionfilefiname);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    strcat(fileres,".txt");    /* Other files have txt extension */
     exit(0);  
   }    /*---------arguments file --------*/
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
   k=0;      printf("Problem with optionfile %s\n",optionfile);
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      goto end;
       k=k+1;    }
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    strcpy(filereso,"o");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(filereso,fileres);
       fprintf(ficresvpl,"******\n");    if((ficparo=fopen(filereso,"w"))==NULL) {
            printf("Problem with Output resultfile: %s\n", filereso);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       oldm=oldms;savm=savms;      goto end;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    }
     }  
  }    /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
   fclose(ficresvpl);      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
   /*---------- End : free ----------------*/      puts(line);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fputs(line,ficparo);
      }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    ungetc(c,ficpar);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
      fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
      printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    while((c=getc(ficpar))=='#' && c!= EOF){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      ungetc(c,ficpar);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      fgets(line, MAXLINE, ficpar);
        puts(line);
   free_matrix(matcov,1,npar,1,npar);      fputs(line,ficparo);
   free_vector(delti,1,npar);    }
   free_matrix(agev,1,maxwav,1,imx);    ungetc(c,ficpar);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    
      
   if(erreur >0)    covar=matrix(0,NCOVMAX,1,n); 
     printf("End of Imach with error or warning %d\n",erreur);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   else   printf("End of Imach\n");    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
      ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    
   /*------ End -----------*/    /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
  end:      ungetc(c,ficpar);
   /* chdir(pathcd);*/      fgets(line, MAXLINE, ficpar);
  /*system("wgnuplot graph.plt");*/      puts(line);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      fputs(line,ficparo);
  /*system("cd ../gp37mgw");*/    }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    ungetc(c,ficpar);
  strcpy(plotcmd,GNUPLOTPROGRAM);    
  strcat(plotcmd," ");    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
  strcat(plotcmd,optionfilegnuplot);    for(i=1; i <=nlstate; i++)
  system(plotcmd);      for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
  /*#ifdef windows*/        fprintf(ficparo,"%1d%1d",i1,j1);
   while (z[0] != 'q') {        if(mle==1)
     /* chdir(path); */          printf("%1d%1d",i,j);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        fprintf(ficlog,"%1d%1d",i,j);
     scanf("%s",z);        for(k=1; k<=ncovmodel;k++){
     if (z[0] == 'c') system("./imach");          fscanf(ficpar," %lf",&param[i][j][k]);
     else if (z[0] == 'e') system(optionfilehtm);          if(mle==1){
     else if (z[0] == 'g') system(plotcmd);            printf(" %lf",param[i][j][k]);
     else if (z[0] == 'q') exit(0);            fprintf(ficlog," %lf",param[i][j][k]);
   }          }
   /*#endif */          else
 }            fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.83


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>