Diff for /imach/src/imach.c between versions 1.52 and 1.85

version 1.52, 2002/07/19 18:49:30 version 1.85, 2003/06/17 13:12:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.85  2003/06/17 13:12:43  brouard
      * imach.c (Repository): Check when date of death was earlier that
   This program computes Healthy Life Expectancies from    current date of interview. It may happen when the death was just
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    prior to the death. In this case, dh was negative and likelihood
   first survey ("cross") where individuals from different ages are    was wrong (infinity). We still send an "Error" but patch by
   interviewed on their health status or degree of disability (in the    assuming that the date of death was just one stepm after the
   case of a health survey which is our main interest) -2- at least a    interview.
   second wave of interviews ("longitudinal") which measure each change    (Repository): Because some people have very long ID (first column)
   (if any) in individual health status.  Health expectancies are    we changed int to long in num[] and we added a new lvector for
   computed from the time spent in each health state according to a    memory allocation. But we also truncated to 8 characters (left
   model. More health states you consider, more time is necessary to reach the    truncation)
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): No more line truncation errors.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.84  2003/06/13 21:44:43  brouard
   conditional to be observed in state i at the first wave. Therefore    * imach.c (Repository): Replace "freqsummary" at a correct
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    place. It differs from routine "prevalence" which may be called
   'age' is age and 'sex' is a covariate. If you want to have a more    many times. Probs is memory consuming and must be used with
   complex model than "constant and age", you should modify the program    parcimony.
   where the markup *Covariates have to be included here again* invites    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.82  2003/06/05 15:57:20  brouard
   identical for each individual. Also, if a individual missed an    Add log in  imach.c and  fullversion number is now printed.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.    */
   /*
   hPijx is the probability to be observed in state i at age x+h     Interpolated Markov Chain
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Short summary of the programme:
   states. This elementary transition (by month or quarter trimester,    
   semester or year) is model as a multinomial logistic.  The hPx    This program computes Healthy Life Expectancies from
   matrix is simply the matrix product of nh*stepm elementary matrices    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   and the contribution of each individual to the likelihood is simply    first survey ("cross") where individuals from different ages are
   hPijx.    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
   Also this programme outputs the covariance matrix of the parameters but also    second wave of interviews ("longitudinal") which measure each change
   of the life expectancies. It also computes the prevalence limits.    (if any) in individual health status.  Health expectancies are
      computed from the time spent in each health state according to a
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    model. More health states you consider, more time is necessary to reach the
            Institut national d'études démographiques, Paris.    Maximum Likelihood of the parameters involved in the model.  The
   This software have been partly granted by Euro-REVES, a concerted action    simplest model is the multinomial logistic model where pij is the
   from the European Union.    probability to be observed in state j at the second wave
   It is copyrighted identically to a GNU software product, ie programme and    conditional to be observed in state i at the first wave. Therefore
   software can be distributed freely for non commercial use. Latest version    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   can be accessed at http://euroreves.ined.fr/imach .    'age' is age and 'sex' is a covariate. If you want to have a more
   **********************************************************************/    complex model than "constant and age", you should modify the program
      where the markup *Covariates have to be included here again* invites
 #include <math.h>    you to do it.  More covariates you add, slower the
 #include <stdio.h>    convergence.
 #include <stdlib.h>  
 #include <unistd.h>    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define MAXLINE 256    identical for each individual. Also, if a individual missed an
 #define GNUPLOTPROGRAM "gnuplot"    intermediate interview, the information is lost, but taken into
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    account using an interpolation or extrapolation.  
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    hPijx is the probability to be observed in state i at age x+h
 #define windows    conditional to the observed state i at age x. The delay 'h' can be
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    split into an exact number (nh*stepm) of unobserved intermediate
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    matrix is simply the matrix product of nh*stepm elementary matrices
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    and the contribution of each individual to the likelihood is simply
     hPijx.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Also this programme outputs the covariance matrix of the parameters but also
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    of the life expectancies. It also computes the stable prevalence. 
 #define NCOVMAX 8 /* Maximum number of covariates */    
 #define MAXN 20000    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define YEARM 12. /* Number of months per year */             Institut national d'études démographiques, Paris.
 #define AGESUP 130    This software have been partly granted by Euro-REVES, a concerted action
 #define AGEBASE 40    from the European Union.
 #ifdef windows    It is copyrighted identically to a GNU software product, ie programme and
 #define DIRSEPARATOR '\\'    software can be distributed freely for non commercial use. Latest version
 #define ODIRSEPARATOR '/'    can be accessed at http://euroreves.ined.fr/imach .
 #else  
 #define DIRSEPARATOR '/'    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define ODIRSEPARATOR '\\'    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #endif    
     **********************************************************************/
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  /*
 int erreur; /* Error number */    main
 int nvar;    read parameterfile
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    read datafile
 int npar=NPARMAX;    concatwav
 int nlstate=2; /* Number of live states */    freqsummary
 int ndeath=1; /* Number of dead states */    if (mle >= 1)
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */      mlikeli
 int popbased=0;    print results files
     if mle==1 
 int *wav; /* Number of waves for this individuual 0 is possible */       computes hessian
 int maxwav; /* Maxim number of waves */    read end of parameter file: agemin, agemax, bage, fage, estepm
 int jmin, jmax; /* min, max spacing between 2 waves */        begin-prev-date,...
 int mle, weightopt;    open gnuplot file
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    open html file
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    stable prevalence
 double jmean; /* Mean space between 2 waves */     for age prevalim()
 double **oldm, **newm, **savm; /* Working pointers to matrices */    h Pij x
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    variance of p varprob
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    forecasting if prevfcast==1 prevforecast call prevalence()
 FILE *ficlog;    health expectancies
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Variance-covariance of DFLE
 FILE *ficresprobmorprev;    prevalence()
 FILE *fichtm; /* Html File */     movingaverage()
 FILE *ficreseij;    varevsij() 
 char filerese[FILENAMELENGTH];    if popbased==1 varevsij(,popbased)
 FILE  *ficresvij;    total life expectancies
 char fileresv[FILENAMELENGTH];    Variance of stable prevalence
 FILE  *ficresvpl;   end
 char fileresvpl[FILENAMELENGTH];  */
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
    
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #include <math.h>
 char filelog[FILENAMELENGTH]; /* Log file */  #include <stdio.h>
 char filerest[FILENAMELENGTH];  #include <stdlib.h>
 char fileregp[FILENAMELENGTH];  #include <unistd.h>
 char popfile[FILENAMELENGTH];  
   #define MAXLINE 256
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define NR_END 1  #define FILENAMELENGTH 132
 #define FREE_ARG char*  /*#define DEBUG*/
 #define FTOL 1.0e-10  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define NRANSI  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define ITMAX 200  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define TOL 2.0e-4  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define CGOLD 0.3819660  #define NINTERVMAX 8
 #define ZEPS 1.0e-10  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 #define GOLD 1.618034  #define MAXN 20000
 #define GLIMIT 100.0  #define YEARM 12. /* Number of months per year */
 #define TINY 1.0e-20  #define AGESUP 130
   #define AGEBASE 40
 static double maxarg1,maxarg2;  #ifdef unix
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define DIRSEPARATOR '/'
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define ODIRSEPARATOR '\\'
    #else
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define DIRSEPARATOR '\\'
 #define rint(a) floor(a+0.5)  #define ODIRSEPARATOR '/'
   #endif
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /* $Id$ */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  /* $State$ */
   
 int imx;  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 int stepm;  char fullversion[]="$Revision$ $Date$"; 
 /* Stepm, step in month: minimum step interpolation*/  int erreur; /* Error number */
   int nvar;
 int estepm;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 int m,nb;  int ndeath=1; /* Number of dead states */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int popbased=0;
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 double *weight;  int jmin, jmax; /* min, max spacing between 2 waves */
 int **s; /* Status */  int mle, weightopt;
 double *agedc, **covar, idx;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double ftolhess; /* Tolerance for computing hessian */  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /**************** split *************************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
    char *s;                             /* pointer */  int globpr; /* Global variable for printing or not */
    int  l1, l2;                         /* length counters */  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
    l1 = strlen( path );                 /* length of path */  double sw; /* Sum of weights */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  FILE *ficresilk;
    if ( s == NULL ) {                   /* no directory, so use current */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  FILE *ficresprobmorprev;
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  FILE *fichtm; /* Html File */
 #if     defined(__bsd__)                /* get current working directory */  FILE *ficreseij;
       extern char       *getwd( );  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
       if ( getwd( dirc ) == NULL ) {  char fileresv[FILENAMELENGTH];
 #else  FILE  *ficresvpl;
       extern char       *getcwd( );  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #endif  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
          return( GLOCK_ERROR_GETCWD );  
       }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       strcpy( name, path );             /* we've got it */  char filelog[FILENAMELENGTH]; /* Log file */
    } else {                             /* strip direcotry from path */  char filerest[FILENAMELENGTH];
       s++;                              /* after this, the filename */  char fileregp[FILENAMELENGTH];
       l2 = strlen( s );                 /* length of filename */  char popfile[FILENAMELENGTH];
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  #define NR_END 1
    }  #define FREE_ARG char*
    l1 = strlen( dirc );                 /* length of directory */  #define FTOL 1.0e-10
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define NRANSI 
 #else  #define ITMAX 200 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif  #define TOL 2.0e-4 
    s = strrchr( name, '.' );            /* find last / */  
    s++;  #define CGOLD 0.3819660 
    strcpy(ext,s);                       /* save extension */  #define ZEPS 1.0e-10 
    l1= strlen( name);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  #define GOLD 1.618034 
    finame[l1-l2]= 0;  #define GLIMIT 100.0 
    return( 0 );                         /* we're done */  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /******************************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 void replace(char *s, char*t)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   int i;  
   int lg=20;  static double sqrarg;
   i=0;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   lg=strlen(t);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  int imx; 
     if (t[i]== '\\') s[i]='/';  int stepm;
   }  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 int nbocc(char *s, char occ)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   int i,j=0;  int m,nb;
   int lg=20;  long *num;
   i=0;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   lg=strlen(s);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for(i=0; i<= lg; i++) {  double **pmmij, ***probs;
   if  (s[i] == occ ) j++;  double dateintmean=0;
   }  
   return j;  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 void cutv(char *u,char *v, char*t, char occ)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  double ftolhess; /* Tolerance for computing hessian */
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  /**************** split *************************/
   i=0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   for(j=0; j<=strlen(t)-1; j++) {  {
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    char  *ss;                            /* pointer */
   }    int   l1, l2;                         /* length counters */
   
   lg=strlen(t);    l1 = strlen(path );                   /* length of path */
   for(j=0; j<p; j++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     (u[j] = t[j]);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   }    if ( ss == NULL ) {                   /* no directory, so use current */
      u[p]='\0';      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
    for(j=0; j<= lg; j++) {      /* get current working directory */
     if (j>=(p+1))(v[j-p-1] = t[j]);      /*    extern  char* getcwd ( char *buf , int len);*/
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /********************** nrerror ********************/      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
 void nrerror(char error_text[])      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   fprintf(stderr,"ERREUR ...\n");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   fprintf(stderr,"%s\n",error_text);      strcpy( name, ss );         /* save file name */
   exit(1);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
 /*********************** vector *******************/    }
 double *vector(int nl, int nh)    l1 = strlen( dirc );                  /* length of directory */
 {    /*#ifdef windows
   double *v;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #else
   if (!v) nrerror("allocation failure in vector");    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   return v-nl+NR_END;  #endif
 }    */
     ss = strrchr( name, '.' );            /* find last / */
 /************************ free vector ******************/    ss++;
 void free_vector(double*v, int nl, int nh)    strcpy(ext,ss);                       /* save extension */
 {    l1= strlen( name);
   free((FREE_ARG)(v+nl-NR_END));    l2= strlen(ss)+1;
 }    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
 /************************ivector *******************************/    return( 0 );                          /* we're done */
 int *ivector(long nl,long nh)  }
 {  
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /******************************************/
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  void replace(char *s, char*t)
 }  {
     int i;
 /******************free ivector **************************/    int lg=20;
 void free_ivector(int *v, long nl, long nh)    i=0;
 {    lg=strlen(t);
   free((FREE_ARG)(v+nl-NR_END));    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /******************* imatrix *******************************/    }
 int **imatrix(long nrl, long nrh, long ncl, long nch)  }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  int nbocc(char *s, char occ)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  {
   int **m;    int i,j=0;
      int lg=20;
   /* allocate pointers to rows */    i=0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    lg=strlen(s);
   if (!m) nrerror("allocation failure 1 in matrix()");    for(i=0; i<= lg; i++) {
   m += NR_END;    if  (s[i] == occ ) j++;
   m -= nrl;    }
      return j;
    }
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  void cutv(char *u,char *v, char*t, char occ)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    /* cuts string t into u and v where u is ended by char occ excluding it
   m[nrl] -= ncl;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
         gives u="abcedf" and v="ghi2j" */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    int i,lg,j,p=0;
      i=0;
   /* return pointer to array of pointers to rows */    for(j=0; j<=strlen(t)-1; j++) {
   return m;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 }    }
   
 /****************** free_imatrix *************************/    lg=strlen(t);
 void free_imatrix(m,nrl,nrh,ncl,nch)    for(j=0; j<p; j++) {
       int **m;      (u[j] = t[j]);
       long nch,ncl,nrh,nrl;    }
      /* free an int matrix allocated by imatrix() */       u[p]='\0';
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     for(j=0; j<= lg; j++) {
   free((FREE_ARG) (m+nrl-NR_END));      if (j>=(p+1))(v[j-p-1] = t[j]);
 }    }
   }
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  /********************** nrerror ********************/
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  void nrerror(char error_text[])
   double **m;  {
     fprintf(stderr,"ERREUR ...\n");
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    fprintf(stderr,"%s\n",error_text);
   if (!m) nrerror("allocation failure 1 in matrix()");    exit(EXIT_FAILURE);
   m += NR_END;  }
   m -= nrl;  /*********************** vector *******************/
   double *vector(int nl, int nh)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    double *v;
   m[nrl] += NR_END;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m[nrl] -= ncl;    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   return m;  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*************************free matrix ************************/  {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /************************ivector *******************************/
 }  int *ivector(long nl,long nh)
   {
 /******************* ma3x *******************************/    int *v;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 {    if (!v) nrerror("allocation failure in ivector");
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    return v-nl+NR_END;
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /******************free ivector **************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  void free_ivector(int *v, long nl, long nh)
   m += NR_END;  {
   m -= nrl;    free((FREE_ARG)(v+nl-NR_END));
   }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /************************lvector *******************************/
   m[nrl] += NR_END;  long *lvector(long nl,long nh)
   m[nrl] -= ncl;  {
     long *v;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /******************free lvector **************************/
   for (j=ncl+1; j<=nch; j++)  void free_lvector(long *v, long nl, long nh)
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      free((FREE_ARG)(v+nl-NR_END));
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  /******************* imatrix *******************************/
       m[i][j]=m[i][j-1]+nlay;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   return m;  { 
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 /*************************free ma3x ************************/    
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    /* allocate pointers to rows */ 
 {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if (!m) nrerror("allocation failure 1 in matrix()"); 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m += NR_END; 
   free((FREE_ARG)(m+nrl-NR_END));    m -= nrl; 
 }    
     
 /***************** f1dim *************************/    /* allocate rows and set pointers to them */ 
 extern int ncom;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 extern double *pcom,*xicom;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 extern double (*nrfunc)(double []);    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
 double f1dim(double x)    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int j;    
   double f;    /* return pointer to array of pointers to rows */ 
   double *xt;    return m; 
    } 
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /****************** free_imatrix *************************/
   f=(*nrfunc)(xt);  void free_imatrix(m,nrl,nrh,ncl,nch)
   free_vector(xt,1,ncom);        int **m;
   return f;        long nch,ncl,nrh,nrl; 
 }       /* free an int matrix allocated by imatrix() */ 
   { 
 /*****************brent *************************/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG) (m+nrl-NR_END)); 
 {  } 
   int iter;  
   double a,b,d,etemp;  /******************* matrix *******************************/
   double fu,fv,fw,fx;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double e=0.0;    double **m;
    
   a=(ax < cx ? ax : cx);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   b=(ax > cx ? ax : cx);    if (!m) nrerror("allocation failure 1 in matrix()");
   x=w=v=bx;    m += NR_END;
   fw=fv=fx=(*f)(x);    m -= nrl;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m[nrl] += NR_END;
     printf(".");fflush(stdout);    m[nrl] -= ncl;
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    return m;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */     */
 #endif  }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  /*************************free matrix ************************/
       return fx;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     }  {
     ftemp=fu;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if (fabs(e) > tol1) {    free((FREE_ARG)(m+nrl-NR_END));
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /******************* ma3x *******************************/
       q=2.0*(q-r);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       etemp=e;    double ***m;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m) nrerror("allocation failure 1 in matrix()");
       else {    m += NR_END;
         d=p/q;    m -= nrl;
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           d=SIGN(tol1,xm-x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
     } else {    m[nrl] -= ncl;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (fu <= fx) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       if (u >= x) a=x; else b=x;    m[nrl][ncl] += NR_END;
       SHFT(v,w,x,u)    m[nrl][ncl] -= nll;
         SHFT(fv,fw,fx,fu)    for (j=ncl+1; j<=nch; j++) 
         } else {      m[nrl][j]=m[nrl][j-1]+nlay;
           if (u < x) a=u; else b=u;    
           if (fu <= fw || w == x) {    for (i=nrl+1; i<=nrh; i++) {
             v=w;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
             w=u;      for (j=ncl+1; j<=nch; j++) 
             fv=fw;        m[i][j]=m[i][j-1]+nlay;
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {    return m; 
             v=u;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             fv=fu;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
           }    */
         }  }
   }  
   nrerror("Too many iterations in brent");  /*************************free ma3x ************************/
   *xmin=x;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   return fx;  {
 }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /****************** mnbrak ***********************/    free((FREE_ARG)(m+nrl-NR_END));
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /***************** f1dim *************************/
 {  extern int ncom; 
   double ulim,u,r,q, dum;  extern double *pcom,*xicom;
   double fu;  extern double (*nrfunc)(double []); 
     
   *fa=(*func)(*ax);  double f1dim(double x) 
   *fb=(*func)(*bx);  { 
   if (*fb > *fa) {    int j; 
     SHFT(dum,*ax,*bx,dum)    double f;
       SHFT(dum,*fb,*fa,dum)    double *xt; 
       }   
   *cx=(*bx)+GOLD*(*bx-*ax);    xt=vector(1,ncom); 
   *fc=(*func)(*cx);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   while (*fb > *fc) {    f=(*nrfunc)(xt); 
     r=(*bx-*ax)*(*fb-*fc);    free_vector(xt,1,ncom); 
     q=(*bx-*cx)*(*fb-*fa);    return f; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  } 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /*****************brent *************************/
     if ((*bx-u)*(u-*cx) > 0.0) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       fu=(*func)(u);  { 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    int iter; 
       fu=(*func)(u);    double a,b,d,etemp;
       if (fu < *fc) {    double fu,fv,fw,fx;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    double ftemp;
           SHFT(*fb,*fc,fu,(*func)(u))    double p,q,r,tol1,tol2,u,v,w,x,xm; 
           }    double e=0.0; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   
       u=ulim;    a=(ax < cx ? ax : cx); 
       fu=(*func)(u);    b=(ax > cx ? ax : cx); 
     } else {    x=w=v=bx; 
       u=(*cx)+GOLD*(*cx-*bx);    fw=fv=fx=(*f)(x); 
       fu=(*func)(u);    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
     SHFT(*ax,*bx,*cx,u)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       SHFT(*fa,*fb,*fc,fu)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       }      printf(".");fflush(stdout);
 }      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 /*************** linmin ************************/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 int ncom;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 double *pcom,*xicom;  #endif
 double (*nrfunc)(double []);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
          *xmin=x; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        return fx; 
 {      } 
   double brent(double ax, double bx, double cx,      ftemp=fu;
                double (*f)(double), double tol, double *xmin);      if (fabs(e) > tol1) { 
   double f1dim(double x);        r=(x-w)*(fx-fv); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        q=(x-v)*(fx-fw); 
               double *fc, double (*func)(double));        p=(x-v)*q-(x-w)*r; 
   int j;        q=2.0*(q-r); 
   double xx,xmin,bx,ax;        if (q > 0.0) p = -p; 
   double fx,fb,fa;        q=fabs(q); 
          etemp=e; 
   ncom=n;        e=d; 
   pcom=vector(1,n);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   xicom=vector(1,n);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   nrfunc=func;        else { 
   for (j=1;j<=n;j++) {          d=p/q; 
     pcom[j]=p[j];          u=x+d; 
     xicom[j]=xi[j];          if (u-a < tol2 || b-u < tol2) 
   }            d=SIGN(tol1,xm-x); 
   ax=0.0;        } 
   xx=1.0;      } else { 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      } 
 #ifdef DEBUG      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      fu=(*f)(u); 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      if (fu <= fx) { 
 #endif        if (u >= x) a=x; else b=x; 
   for (j=1;j<=n;j++) {        SHFT(v,w,x,u) 
     xi[j] *= xmin;          SHFT(fv,fw,fx,fu) 
     p[j] += xi[j];          } else { 
   }            if (u < x) a=u; else b=u; 
   free_vector(xicom,1,n);            if (fu <= fw || w == x) { 
   free_vector(pcom,1,n);              v=w; 
 }              w=u; 
               fv=fw; 
 /*************** powell ************************/              fw=fu; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,            } else if (fu <= fv || v == x || v == w) { 
             double (*func)(double []))              v=u; 
 {              fv=fu; 
   void linmin(double p[], double xi[], int n, double *fret,            } 
               double (*func)(double []));          } 
   int i,ibig,j;    } 
   double del,t,*pt,*ptt,*xit;    nrerror("Too many iterations in brent"); 
   double fp,fptt;    *xmin=x; 
   double *xits;    return fx; 
   pt=vector(1,n);  } 
   ptt=vector(1,n);  
   xit=vector(1,n);  /****************** mnbrak ***********************/
   xits=vector(1,n);  
   *fret=(*func)(p);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for (j=1;j<=n;j++) pt[j]=p[j];              double (*func)(double)) 
   for (*iter=1;;++(*iter)) {  { 
     fp=(*fret);    double ulim,u,r,q, dum;
     ibig=0;    double fu; 
     del=0.0;   
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    *fa=(*func)(*ax); 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    *fb=(*func)(*bx); 
     for (i=1;i<=n;i++)    if (*fb > *fa) { 
       printf(" %d %.12f",i, p[i]);      SHFT(dum,*ax,*bx,dum) 
     fprintf(ficlog," %d %.12f",i, p[i]);        SHFT(dum,*fb,*fa,dum) 
     printf("\n");        } 
     fprintf(ficlog,"\n");    *cx=(*bx)+GOLD*(*bx-*ax); 
     for (i=1;i<=n;i++) {    *fc=(*func)(*cx); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    while (*fb > *fc) { 
       fptt=(*fret);      r=(*bx-*ax)*(*fb-*fc); 
 #ifdef DEBUG      q=(*bx-*cx)*(*fb-*fa); 
       printf("fret=%lf \n",*fret);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       fprintf(ficlog,"fret=%lf \n",*fret);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #endif      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       printf("%d",i);fflush(stdout);      if ((*bx-u)*(u-*cx) > 0.0) { 
       fprintf(ficlog,"%d",i);fflush(ficlog);        fu=(*func)(u); 
       linmin(p,xit,n,fret,func);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       if (fabs(fptt-(*fret)) > del) {        fu=(*func)(u); 
         del=fabs(fptt-(*fret));        if (fu < *fc) { 
         ibig=i;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       }            SHFT(*fb,*fc,fu,(*func)(u)) 
 #ifdef DEBUG            } 
       printf("%d %.12e",i,(*fret));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       fprintf(ficlog,"%d %.12e",i,(*fret));        u=ulim; 
       for (j=1;j<=n;j++) {        fu=(*func)(u); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      } else { 
         printf(" x(%d)=%.12e",j,xit[j]);        u=(*cx)+GOLD*(*cx-*bx); 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);        fu=(*func)(u); 
       }      } 
       for(j=1;j<=n;j++) {      SHFT(*ax,*bx,*cx,u) 
         printf(" p=%.12e",p[j]);        SHFT(*fa,*fb,*fc,fu) 
         fprintf(ficlog," p=%.12e",p[j]);        } 
       }  } 
       printf("\n");  
       fprintf(ficlog,"\n");  /*************** linmin ************************/
 #endif  
     }  int ncom; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  double *pcom,*xicom;
 #ifdef DEBUG  double (*nrfunc)(double []); 
       int k[2],l;   
       k[0]=1;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       k[1]=-1;  { 
       printf("Max: %.12e",(*func)(p));    double brent(double ax, double bx, double cx, 
       fprintf(ficlog,"Max: %.12e",(*func)(p));                 double (*f)(double), double tol, double *xmin); 
       for (j=1;j<=n;j++) {    double f1dim(double x); 
         printf(" %.12e",p[j]);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         fprintf(ficlog," %.12e",p[j]);                double *fc, double (*func)(double)); 
       }    int j; 
       printf("\n");    double xx,xmin,bx,ax; 
       fprintf(ficlog,"\n");    double fx,fb,fa;
       for(l=0;l<=1;l++) {   
         for (j=1;j<=n;j++) {    ncom=n; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    pcom=vector(1,n); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    xicom=vector(1,n); 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    nrfunc=func; 
         }    for (j=1;j<=n;j++) { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      pcom[j]=p[j]; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      xicom[j]=xi[j]; 
       }    } 
 #endif    ax=0.0; 
     xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       free_vector(xit,1,n);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       free_vector(xits,1,n);  #ifdef DEBUG
       free_vector(ptt,1,n);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       free_vector(pt,1,n);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       return;  #endif
     }    for (j=1;j<=n;j++) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      xi[j] *= xmin; 
     for (j=1;j<=n;j++) {      p[j] += xi[j]; 
       ptt[j]=2.0*p[j]-pt[j];    } 
       xit[j]=p[j]-pt[j];    free_vector(xicom,1,n); 
       pt[j]=p[j];    free_vector(pcom,1,n); 
     }  } 
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /*************** powell ************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       if (t < 0.0) {              double (*func)(double [])) 
         linmin(p,xit,n,fret,func);  { 
         for (j=1;j<=n;j++) {    void linmin(double p[], double xi[], int n, double *fret, 
           xi[j][ibig]=xi[j][n];                double (*func)(double [])); 
           xi[j][n]=xit[j];    int i,ibig,j; 
         }    double del,t,*pt,*ptt,*xit;
 #ifdef DEBUG    double fp,fptt;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double *xits;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    pt=vector(1,n); 
         for(j=1;j<=n;j++){    ptt=vector(1,n); 
           printf(" %.12e",xit[j]);    xit=vector(1,n); 
           fprintf(ficlog," %.12e",xit[j]);    xits=vector(1,n); 
         }    *fret=(*func)(p); 
         printf("\n");    for (j=1;j<=n;j++) pt[j]=p[j]; 
         fprintf(ficlog,"\n");    for (*iter=1;;++(*iter)) { 
 #endif      fp=(*fret); 
       }      ibig=0; 
     }      del=0.0; 
   }      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
 }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficrespow,"%d %.12f",*iter,*fret);
 /**** Prevalence limit ****************/      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      }
      matrix by transitions matrix until convergence is reached */      printf("\n");
       fprintf(ficlog,"\n");
   int i, ii,j,k;      fprintf(ficrespow,"\n");
   double min, max, maxmin, maxmax,sumnew=0.;      for (i=1;i<=n;i++) { 
   double **matprod2();        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double **out, cov[NCOVMAX], **pmij();        fptt=(*fret); 
   double **newm;  #ifdef DEBUG
   double agefin, delaymax=50 ; /* Max number of years to converge */        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
     for (j=1;j<=nlstate+ndeath;j++){        printf("%d",i);fflush(stdout);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
    cov[1]=1.;          del=fabs(fptt-(*fret)); 
            ibig=i; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #ifdef DEBUG
     newm=savm;        printf("%d %.12e",i,(*fret));
     /* Covariates have to be included here again */        fprintf(ficlog,"%d %.12e",i,(*fret));
      cov[2]=agefin;        for (j=1;j<=n;j++) {
            xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for (k=1; k<=cptcovn;k++) {          printf(" x(%d)=%.12e",j,xit[j]);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        }
       }        for(j=1;j<=n;j++) {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          printf(" p=%.12e",p[j]);
       for (k=1; k<=cptcovprod;k++)          fprintf(ficlog," p=%.12e",p[j]);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        }
         printf("\n");
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        fprintf(ficlog,"\n");
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #endif
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
     savm=oldm;        int k[2],l;
     oldm=newm;        k[0]=1;
     maxmax=0.;        k[1]=-1;
     for(j=1;j<=nlstate;j++){        printf("Max: %.12e",(*func)(p));
       min=1.;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       max=0.;        for (j=1;j<=n;j++) {
       for(i=1; i<=nlstate; i++) {          printf(" %.12e",p[j]);
         sumnew=0;          fprintf(ficlog," %.12e",p[j]);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        }
         prlim[i][j]= newm[i][j]/(1-sumnew);        printf("\n");
         max=FMAX(max,prlim[i][j]);        fprintf(ficlog,"\n");
         min=FMIN(min,prlim[i][j]);        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
       maxmin=max-min;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       maxmax=FMAX(maxmax,maxmin);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     if(maxmax < ftolpl){          }
       return prlim;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }        }
 }  #endif
   
 /*************** transition probabilities ***************/  
         free_vector(xit,1,n); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   double s1, s2;        free_vector(pt,1,n); 
   /*double t34;*/        return; 
   int i,j,j1, nc, ii, jj;      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for(i=1; i<= nlstate; i++){      for (j=1;j<=n;j++) { 
     for(j=1; j<i;j++){        ptt[j]=2.0*p[j]-pt[j]; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        xit[j]=p[j]-pt[j]; 
         /*s2 += param[i][j][nc]*cov[nc];*/        pt[j]=p[j]; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      fptt=(*func)(ptt); 
       }      if (fptt < fp) { 
       ps[i][j]=s2;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        if (t < 0.0) { 
     }          linmin(p,xit,n,fret,func); 
     for(j=i+1; j<=nlstate+ndeath;j++){          for (j=1;j<=n;j++) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            xi[j][ibig]=xi[j][n]; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            xi[j][n]=xit[j]; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          }
       }  #ifdef DEBUG
       ps[i][j]=s2;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
     /*ps[3][2]=1;*/            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   for(i=1; i<= nlstate; i++){          }
      s1=0;          printf("\n");
     for(j=1; j<i; j++)          fprintf(ficlog,"\n");
       s1+=exp(ps[i][j]);  #endif
     for(j=i+1; j<=nlstate+ndeath; j++)        }
       s1+=exp(ps[i][j]);      } 
     ps[i][i]=1./(s1+1.);    } 
     for(j=1; j<i; j++)  } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  /**** Prevalence limit (stable prevalence)  ****************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   } /* end i */  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){       matrix by transitions matrix until convergence is reached */
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;    int i, ii,j,k;
       ps[ii][ii]=1;    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
   }    double **out, cov[NCOVMAX], **pmij();
     double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (ii=1;ii<=nlstate+ndeath;ii++)
      printf("%lf ",ps[ii][jj]);      for (j=1;j<=nlstate+ndeath;j++){
    }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("\n ");      }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/     cov[1]=1.;
 /*   
   for(i=1; i<= npar; i++) printf("%f ",x[i]);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   goto end;*/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     return ps;      newm=savm;
 }      /* Covariates have to be included here again */
        cov[2]=agefin;
 /**************** Product of 2 matrices ******************/    
         for (k=1; k<=cptcovn;k++) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /* in, b, out are matrice of pointers which should have been initialized        for (k=1; k<=cptcovprod;k++)
      before: only the contents of out is modified. The function returns          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      a pointer to pointers identical to out */  
   long i, j, k;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   for(i=nrl; i<= nrh; i++)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for(k=ncolol; k<=ncoloh; k++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         out[i][k] +=in[i][j]*b[j][k];  
       savm=oldm;
   return out;      oldm=newm;
 }      maxmax=0.;
       for(j=1;j<=nlstate;j++){
         min=1.;
 /************* Higher Matrix Product ***************/        max=0.;
         for(i=1; i<=nlstate; i++) {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          sumnew=0;
 {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          prlim[i][j]= newm[i][j]/(1-sumnew);
      duration (i.e. until          max=FMAX(max,prlim[i][j]);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          min=FMIN(min,prlim[i][j]);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        }
      (typically every 2 years instead of every month which is too big).        maxmin=max-min;
      Model is determined by parameters x and covariates have to be        maxmax=FMAX(maxmax,maxmin);
      included manually here.      }
       if(maxmax < ftolpl){
      */        return prlim;
       }
   int i, j, d, h, k;    }
   double **out, cov[NCOVMAX];  }
   double **newm;  
   /*************** transition probabilities ***************/ 
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double s1, s2;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    /*double t34;*/
     }    int i,j,j1, nc, ii, jj;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){      for(i=1; i<= nlstate; i++){
     for(d=1; d <=hstepm; d++){      for(j=1; j<i;j++){
       newm=savm;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       /* Covariates have to be included here again */          /*s2 += param[i][j][nc]*cov[nc];*/
       cov[1]=1.;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        }
       for (k=1; k<=cptcovage;k++)        ps[i][j]=s2;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        ps[i][j]=s2;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      }
       savm=oldm;    }
       oldm=newm;      /*ps[3][2]=1;*/
     }  
     for(i=1; i<=nlstate+ndeath; i++)    for(i=1; i<= nlstate; i++){
       for(j=1;j<=nlstate+ndeath;j++) {       s1=0;
         po[i][j][h]=newm[i][j];      for(j=1; j<i; j++)
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        s1+=exp(ps[i][j]);
          */      for(j=i+1; j<=nlstate+ndeath; j++)
       }        s1+=exp(ps[i][j]);
   } /* end h */      ps[i][i]=1./(s1+1.);
   return po;      for(j=1; j<i; j++)
 }        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
 /*************** log-likelihood *************/      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 double func( double *x)    } /* end i */
 {  
   int i, ii, j, k, mi, d, kk;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(jj=1; jj<= nlstate+ndeath; jj++){
   double **out;        ps[ii][jj]=0;
   double sw; /* Sum of weights */        ps[ii][ii]=1;
   double lli; /* Individual log likelihood */      }
   long ipmx;    }
   /*extern weight */  
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   /*for(i=1;i<imx;i++)      for(jj=1; jj<= nlstate+ndeath; jj++){
     printf(" %d\n",s[4][i]);       printf("%lf ",ps[ii][jj]);
   */     }
   cov[1]=1.;      printf("\n ");
       }
   for(k=1; k<=nlstate; k++) ll[k]=0.;      printf("\n ");printf("%lf ",cov[2]);*/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for(mi=1; mi<= wav[i]-1; mi++){    goto end;*/
       for (ii=1;ii<=nlstate+ndeath;ii++)      return ps;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  /**************** Product of 2 matrices ******************/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
         }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
               b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    /* in, b, out are matrice of pointers which should have been initialized 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       before: only the contents of out is modified. The function returns
         savm=oldm;       a pointer to pointers identical to out */
         oldm=newm;    long i, j, k;
            for(i=nrl; i<= nrh; i++)
              for(k=ncolol; k<=ncoloh; k++)
       } /* end mult */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
                out[i][k] +=in[i][j]*b[j][k];
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    return out;
       ipmx +=1;  }
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /************* Higher Matrix Product ***************/
   } /* end of individual */  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* Computes the transition matrix starting at age 'age' over 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */       'nhstepm*hstepm*stepm' months (i.e. until
   return -l;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 /*********** Maximum Likelihood Estimation ***************/       for the memory).
        Model is determined by parameters x and covariates have to be 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       included manually here. 
 {  
   int i,j, iter;       */
   double **xi,*delti;  
   double fret;    int i, j, d, h, k;
   xi=matrix(1,npar,1,npar);    double **out, cov[NCOVMAX];
   for (i=1;i<=npar;i++)    double **newm;
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);    /* Hstepm could be zero and should return the unit matrix */
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    for (i=1;i<=nlstate+ndeath;i++)
   powell(p,xi,npar,ftol,&iter,&fret,func);      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        po[i][j][0]=(i==j ? 1.0 : 0.0);
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
 }      for(d=1; d <=hstepm; d++){
         newm=savm;
 /**** Computes Hessian and covariance matrix ***/        /* Covariates have to be included here again */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        cov[1]=1.;
 {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double  **a,**y,*x,pd;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double **hess;        for (k=1; k<=cptcovage;k++)
   int i, j,jk;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int *indx;        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   void ludcmp(double **a, int npar, int *indx, double *d) ;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   hess=matrix(1,npar,1,npar);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
   printf("\nCalculation of the hessian matrix. Wait...\n");        oldm=newm;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");      }
   for (i=1;i<=npar;i++){      for(i=1; i<=nlstate+ndeath; i++)
     printf("%d",i);fflush(stdout);        for(j=1;j<=nlstate+ndeath;j++) {
     fprintf(ficlog,"%d",i);fflush(ficlog);          po[i][j][h]=newm[i][j];
     hess[i][i]=hessii(p,ftolhess,i,delti);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     /*printf(" %f ",p[i]);*/           */
     /*printf(" %lf ",hess[i][i]);*/        }
   }    } /* end h */
      return po;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /*************** log-likelihood *************/
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  double func( double *x)
         hess[i][j]=hessij(p,delti,i,j);  {
         hess[j][i]=hess[i][j];        int i, ii, j, k, mi, d, kk;
         /*printf(" %lf ",hess[i][j]);*/    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       }    double **out;
     }    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
   printf("\n");    int s1, s2;
   fprintf(ficlog,"\n");    double bbh, survp;
     long ipmx;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    /*extern weight */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   a=matrix(1,npar,1,npar);    /*for(i=1;i<imx;i++) 
   y=matrix(1,npar,1,npar);      printf(" %d\n",s[4][i]);
   x=vector(1,npar);    */
   indx=ivector(1,npar);    cov[1]=1.;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   ludcmp(a,npar,indx,&pd);  
     if(mle==1){
   for (j=1;j<=npar;j++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1;i<=npar;i++) x[i]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     x[j]=1;        for(mi=1; mi<= wav[i]-1; mi++){
     lubksb(a,npar,indx,x);          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<=npar;i++){            for (j=1;j<=nlstate+ndeath;j++){
       matcov[i][j]=x[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
   printf("\n#Hessian matrix#\n");            newm=savm;
   fprintf(ficlog,"\n#Hessian matrix#\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=1;i<=npar;i++) {            for (kk=1; kk<=cptcovage;kk++) {
     for (j=1;j<=npar;j++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       printf("%.3e ",hess[i][j]);            }
       fprintf(ficlog,"%.3e ",hess[i][j]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("\n");            savm=oldm;
     fprintf(ficlog,"\n");            oldm=newm;
   }          } /* end mult */
         
   /* Recompute Inverse */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   for (i=1;i<=npar;i++)          /* But now since version 0.9 we anticipate for bias and large stepm.
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   ludcmp(a,npar,indx,&pd);           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
   /*  printf("\n#Hessian matrix recomputed#\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for (j=1;j<=npar;j++) {           * probability in order to take into account the bias as a fraction of the way
     for (i=1;i<=npar;i++) x[i]=0;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     x[j]=1;           * -stepm/2 to stepm/2 .
     lubksb(a,npar,indx,x);           * For stepm=1 the results are the same as for previous versions of Imach.
     for (i=1;i<=npar;i++){           * For stepm > 1 the results are less biased than in previous versions. 
       y[i][j]=x[i];           */
       printf("%.3e ",y[i][j]);          s1=s[mw[mi][i]][i];
       fprintf(ficlog,"%.3e ",y[i][j]);          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     printf("\n");          /* bias is positive if real duration
     fprintf(ficlog,"\n");           * is higher than the multiple of stepm and negative otherwise.
   }           */
   */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   free_matrix(a,1,npar,1,npar);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   free_matrix(y,1,npar,1,npar);               to the likelihood is the probability to die between last step unit time and current 
   free_vector(x,1,npar);               step unit time, which is also the differences between probability to die before dh 
   free_ivector(indx,1,npar);               and probability to die before dh-stepm . 
   free_matrix(hess,1,npar,1,npar);               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 /*************** hessian matrix ****************/          (healthy, disable or death) and IMaCh was corrected; but when we
 double hessii( double x[], double delta, int theta, double delti[])          introduced the exact date of death then we should have modified
 {          the contribution of an exact death to the likelihood. This new
   int i;          contribution is smaller and very dependent of the step unit
   int l=1, lmax=20;          stepm. It is no more the probability to die between last interview
   double k1,k2;          and month of death but the probability to survive from last
   double p2[NPARMAX+1];          interview up to one month before death multiplied by the
   double res;          probability to die within a month. Thanks to Chris
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          Jackson for correcting this bug.  Former versions increased
   double fx;          mortality artificially. The bad side is that we add another loop
   int k=0,kmax=10;          which slows down the processing. The difference can be up to 10%
   double l1;          lower mortality.
             */
   fx=func(x);            lli=log(out[s1][s2] - savm[s1][s2]);
   for (i=1;i<=npar;i++) p2[i]=x[i];          }else{
   for(l=0 ; l <=lmax; l++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     l1=pow(10,l);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     delts=delt;          } 
     for(k=1 ; k <kmax; k=k+1){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       delt = delta*(l1*k);          /*if(lli ==000.0)*/
       p2[theta]=x[theta] +delt;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       k1=func(p2)-fx;          ipmx +=1;
       p2[theta]=x[theta]-delt;          sw += weight[i];
       k2=func(p2)-fx;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        } /* end of wave */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      } /* end of individual */
          }  else if(mle==2){
 #ifdef DEBUG      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for(mi=1; mi<= wav[i]-1; mi++){
 #endif          for (ii=1;ii<=nlstate+ndeath;ii++)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            for (j=1;j<=nlstate+ndeath;j++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         k=kmax;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          for(d=0; d<=dh[mi][i]; d++){
         k=kmax; l=lmax*10.;            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            for (kk=1; kk<=cptcovage;kk++) {
         delts=delt;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   delti[theta]=delts;            savm=oldm;
   return res;            oldm=newm;
            } /* end mult */
 }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 double hessij( double x[], double delti[], int thetai,int thetaj)          /* But now since version 0.9 we anticipate for bias and large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int l=1, l1, lmax=20;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double k1,k2,k3,k4,res,fx;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double p2[NPARMAX+1];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   int k;           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   fx=func(x);           * -stepm/2 to stepm/2 .
   for (k=1; k<=2; k++) {           * For stepm=1 the results are the same as for previous versions of Imach.
     for (i=1;i<=npar;i++) p2[i]=x[i];           * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetai]=x[thetai]+delti[thetai]/k;           */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          s1=s[mw[mi][i]][i];
     k1=func(p2)-fx;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetai]=x[thetai]+delti[thetai]/k;          /* bias is positive if real duration
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * is higher than the multiple of stepm and negative otherwise.
     k2=func(p2)-fx;           */
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     p2[thetai]=x[thetai]-delti[thetai]/k;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     k3=func(p2)-fx;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ipmx +=1;
     k4=func(p2)-fx;          sw += weight[i];
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 #ifdef DEBUG        } /* end of wave */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      } /* end of individual */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    }  else if(mle==3){  /* exponential inter-extrapolation */
 #endif      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   return res;        for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************** Inverse of matrix **************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void ludcmp(double **a, int n, int *indx, double *d)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i,imax,j,k;          for(d=0; d<dh[mi][i]; d++){
   double big,dum,sum,temp;            newm=savm;
   double *vv;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   vv=vector(1,n);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   *d=1.0;            }
   for (i=1;i<=n;i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     big=0.0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (j=1;j<=n;j++)            savm=oldm;
       if ((temp=fabs(a[i][j])) > big) big=temp;            oldm=newm;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          } /* end mult */
     vv[i]=1.0/big;        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   for (j=1;j<=n;j++) {          /* But now since version 0.9 we anticipate for bias and large stepm.
     for (i=1;i<j;i++) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       sum=a[i][j];           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * the nearest (and in case of equal distance, to the lowest) interval but now
       a[i][j]=sum;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     big=0.0;           * probability in order to take into account the bias as a fraction of the way
     for (i=j;i<=n;i++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       sum=a[i][j];           * -stepm/2 to stepm/2 .
       for (k=1;k<j;k++)           * For stepm=1 the results are the same as for previous versions of Imach.
         sum -= a[i][k]*a[k][j];           * For stepm > 1 the results are less biased than in previous versions. 
       a[i][j]=sum;           */
       if ( (dum=vv[i]*fabs(sum)) >= big) {          s1=s[mw[mi][i]][i];
         big=dum;          s2=s[mw[mi+1][i]][i];
         imax=i;          bbh=(double)bh[mi][i]/(double)stepm; 
       }          /* bias is positive if real duration
     }           * is higher than the multiple of stepm and negative otherwise.
     if (j != imax) {           */
       for (k=1;k<=n;k++) {          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         dum=a[imax][k];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         a[imax][k]=a[j][k];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         a[j][k]=dum;          /*if(lli ==000.0)*/
       }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       *d = -(*d);          ipmx +=1;
       vv[imax]=vv[j];          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     indx[j]=imax;        } /* end of wave */
     if (a[j][j] == 0.0) a[j][j]=TINY;      } /* end of individual */
     if (j != n) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       dum=1.0/(a[j][j]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(vv,1,n);  /* Doesn't work */            for (j=1;j<=nlstate+ndeath;j++){
 ;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 void lubksb(double **a, int n, int *indx, double b[])          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   int i,ii=0,ip,j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double sum;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (i=1;i<=n;i++) {            }
     ip=indx[i];          
     sum=b[ip];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     b[ip]=b[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (ii)            savm=oldm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            oldm=newm;
     else if (sum) ii=i;          } /* end mult */
     b[i]=sum;        
   }          s1=s[mw[mi][i]][i];
   for (i=n;i>=1;i--) {          s2=s[mw[mi+1][i]][i];
     sum=b[i];          if( s2 > nlstate){ 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            lli=log(out[s1][s2] - savm[s1][s2]);
     b[i]=sum/a[i][i];          }else{
   }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 }          }
           ipmx +=1;
 /************ Frequencies ********************/          sw += weight[i];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {  /* Some frequencies */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      } /* end of individual */
   int first;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double ***freq; /* Frequencies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *pp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double pos, k2, dateintsum=0,k2cpt=0;        for(mi=1; mi<= wav[i]-1; mi++){
   FILE *ficresp;          for (ii=1;ii<=nlstate+ndeath;ii++)
   char fileresp[FILENAMELENGTH];            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   strcpy(fileresp,"p");          for(d=0; d<dh[mi][i]; d++){
   strcat(fileresp,fileres);            newm=savm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("Problem with prevalence resultfile: %s\n", fileresp);            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     exit(0);            }
   }          
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   j1=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   j=cptcoveff;            oldm=newm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          } /* end mult */
         
   first=1;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for(k1=1; k1<=j;k1++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(i1=1; i1<=ncodemax[k1];i1++){          ipmx +=1;
       j1++;          sw += weight[i];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         scanf("%d", i);*/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for (i=-1; i<=nlstate+ndeath; i++)          } /* end of wave */
         for (jk=-1; jk<=nlstate+ndeath; jk++)        } /* end of individual */
           for(m=agemin; m <= agemax+3; m++)    } /* End of if */
             freq[i][jk][m]=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
          /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       dateintsum=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       k2cpt=0;    return -l;
       for (i=1; i<=imx; i++) {  }
         bool=1;  
         if  (cptcovn>0) {  /*************** log-likelihood *************/
           for (z1=1; z1<=cptcoveff; z1++)  double funcone( double *x)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  {
               bool=0;    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if (bool==1) {    double **out;
           for(m=firstpass; m<=lastpass; m++){    double lli; /* Individual log likelihood */
             k2=anint[m][i]+(mint[m][i]/12.);    int s1, s2;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double bbh, survp;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /*extern weight */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* We are differentiating ll according to initial status */
               if (m<lastpass) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /*for(i=1;i<imx;i++) 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      printf(" %d\n",s[4][i]);
               }    */
                  cov[1]=1.;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;    for(k=1; k<=nlstate; k++) ll[k]=0.;
                 k2cpt++;  
               }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }      for(mi=1; mi<= wav[i]-1; mi++){
         }        for (ii=1;ii<=nlstate+ndeath;ii++)
       }          for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
       if  (cptcovn>0) {        for(d=0; d<dh[mi][i]; d++){
         fprintf(ficresp, "\n#********** Variable ");          newm=savm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresp, "**********\n#");          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=nlstate;i++)          }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresp, "\n");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){          oldm=newm;
         if(i==(int)agemax+3){        } /* end mult */
           fprintf(ficlog,"Total");        
         }else{        s1=s[mw[mi][i]][i];
           if(first==1){        s2=s[mw[mi+1][i]][i];
             first=0;        bbh=(double)bh[mi][i]/(double)stepm; 
             printf("See log file for details...\n");        /* bias is positive if real duration
           }         * is higher than the multiple of stepm and negative otherwise.
           fprintf(ficlog,"Age %d", i);         */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         for(jk=1; jk <=nlstate ; jk++){          lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        } else if (mle==1){
             pp[jk] += freq[jk][m][i];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
         for(jk=1; jk <=nlstate ; jk++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           for(m=-1, pos=0; m <=0 ; m++)        } else if(mle==3){  /* exponential inter-extrapolation */
             pos += freq[jk][m][i];          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           if(pp[jk]>=1.e-10){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             if(first==1){          lli=log(out[s1][s2]); /* Original formula */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
             }          lli=log(out[s1][s2]); /* Original formula */
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        } /* End of if */
           }else{        ipmx +=1;
             if(first==1)        sw += weight[i];
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           }        if(globpr){
         }          fprintf(ficresilk,"%6d %1d %1d %1d %1d %3d %10.6f %6.4f %10.6f %10.6f %10.6f ", \
                   i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for(jk=1; jk <=nlstate ; jk++){          for(k=1,l=0.; k<=nlstate; k++) 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            fprintf(ficresilk," %10.6f",ll[k]);
             pp[jk] += freq[jk][m][i];          fprintf(ficresilk,"\n");
         }        }
       } /* end of wave */
         for(jk=1,pos=0; jk <=nlstate ; jk++)    } /* end of individual */
           pos += pp[jk];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(jk=1; jk <=nlstate ; jk++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           if(pos>=1.e-5){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             if(first==1)    return -l;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           }else{  
             if(first==1)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  {
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    /* This routine should help understanding what is done with the selection of individuals/waves and
           }       to check the exact contribution to the likelihood.
           if( i <= (int) agemax){       Plotting could be done.
             if(pos>=1.e-5){     */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    int k;
               probs[i][jk][j1]= pp[jk]/pos;    if(globpr !=0){ /* Just counts and sums no printings */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      strcpy(fileresilk,"ilk"); 
             }      strcat(fileresilk,fileres);
             else      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        printf("Problem with resultfile: %s\n", fileresilk);
           }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }      }
              fprintf(ficresilk, "# individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state");
         for(jk=-1; jk <=nlstate+ndeath; jk++)      fprintf(ficresilk, "# i s1 s2 mi mw dh likeli weight out sav ");
           for(m=-1; m <=nlstate+ndeath; m++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
             if(freq[jk][m][i] !=0 ) {      for(k=1; k<=nlstate; k++) 
             if(first==1)        fprintf(ficresilk," ll[%d]",k);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      fprintf(ficresilk,"\n");
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    }
             }  
         if(i <= (int) agemax)    *fretone=(*funcone)(p);
           fprintf(ficresp,"\n");    if(globpr !=0)
         if(first==1)      fclose(ficresilk);
           printf("Others in log...\n");    return;
         fprintf(ficlog,"\n");  }
       }  
     }  /*********** Maximum Likelihood Estimation ***************/
   }  
   dateintmean=dateintsum/k2cpt;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    {
   fclose(ficresp);    int i,j, iter;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double **xi;
   free_vector(pp,1,nlstate);    double fret;
      double fretone; /* Only one call to likelihood */
   /* End of Freq */    char filerespow[FILENAMELENGTH];
 }    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
 /************ Prevalence ********************/      for (j=1;j<=npar;j++)
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        xi[i][j]=(i==j ? 1.0 : 0.0);
 {  /* Some frequencies */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      strcpy(filerespow,"pow"); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    strcat(filerespow,fileres);
   double ***freq; /* Frequencies */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   double *pp;      printf("Problem with resultfile: %s\n", filerespow);
   double pos, k2;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
   pp=vector(1,nlstate);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   j1=0;    fprintf(ficrespow,"\n");
    
   j=cptcoveff;    powell(p,xi,npar,ftol,&iter,&fret,func);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
      fclose(ficrespow);
   for(k1=1; k1<=j;k1++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       j1++;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /**** Computes Hessian and covariance matrix ***/
             freq[i][jk][m]=0;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
        {
       for (i=1; i<=imx; i++) {    double  **a,**y,*x,pd;
         bool=1;    double **hess;
         if  (cptcovn>0) {    int i, j,jk;
           for (z1=1; z1<=cptcoveff; z1++)    int *indx;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;    double hessii(double p[], double delta, int theta, double delti[]);
         }    double hessij(double p[], double delti[], int i, int j);
         if (bool==1) {    void lubksb(double **a, int npar, int *indx, double b[]) ;
           for(m=firstpass; m<=lastpass; m++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    hess=matrix(1,npar,1,npar);
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    printf("\nCalculation of the hessian matrix. Wait...\n");
               if (m<lastpass) {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                 if (calagedate>0)    for (i=1;i<=npar;i++){
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      printf("%d",i);fflush(stdout);
                 else      fprintf(ficlog,"%d",i);fflush(ficlog);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      hess[i][i]=hessii(p,ftolhess,i,delti);
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      /*printf(" %f ",p[i]);*/
               }      /*printf(" %lf ",hess[i][i]);*/
             }    }
           }    
         }    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++)  {
       for(i=(int)agemin; i <= (int)agemax+3; i++){        if (j>i) { 
         for(jk=1; jk <=nlstate ; jk++){          printf(".%d%d",i,j);fflush(stdout);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
             pp[jk] += freq[jk][m][i];          hess[i][j]=hessij(p,delti,i,j);
         }          hess[j][i]=hess[i][j];    
         for(jk=1; jk <=nlstate ; jk++){          /*printf(" %lf ",hess[i][j]);*/
           for(m=-1, pos=0; m <=0 ; m++)        }
             pos += freq[jk][m][i];      }
         }    }
            printf("\n");
         for(jk=1; jk <=nlstate ; jk++){    fprintf(ficlog,"\n");
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
            
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    a=matrix(1,npar,1,npar);
            y=matrix(1,npar,1,npar);
         for(jk=1; jk <=nlstate ; jk++){        x=vector(1,npar);
           if( i <= (int) agemax){    indx=ivector(1,npar);
             if(pos>=1.e-5){    for (i=1;i<=npar;i++)
               probs[i][jk][j1]= pp[jk]/pos;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             }    ludcmp(a,npar,indx,&pd);
           }  
         }/* end jk */    for (j=1;j<=npar;j++) {
       }/* end i */      for (i=1;i<=npar;i++) x[i]=0;
     } /* end i1 */      x[j]=1;
   } /* end k1 */      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      }
   free_vector(pp,1,nlstate);    }
    
 }  /* End of Freq */    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
 /************* Waves Concatenation ***************/    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        printf("%.3e ",hess[i][j]);
 {        fprintf(ficlog,"%.3e ",hess[i][j]);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      }
      Death is a valid wave (if date is known).      printf("\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      fprintf(ficlog,"\n");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    }
      and mw[mi+1][i]. dh depends on stepm.  
      */    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
   int i, mi, m;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    ludcmp(a,npar,indx,&pd);
      double sum=0., jmean=0.;*/  
   int first;    /*  printf("\n#Hessian matrix recomputed#\n");
   int j, k=0,jk, ju, jl;  
   double sum=0.;    for (j=1;j<=npar;j++) {
   first=0;      for (i=1;i<=npar;i++) x[i]=0;
   jmin=1e+5;      x[j]=1;
   jmax=-1;      lubksb(a,npar,indx,x);
   jmean=0.;      for (i=1;i<=npar;i++){ 
   for(i=1; i<=imx; i++){        y[i][j]=x[i];
     mi=0;        printf("%.3e ",y[i][j]);
     m=firstpass;        fprintf(ficlog,"%.3e ",y[i][j]);
     while(s[m][i] <= nlstate){      }
       if(s[m][i]>=1)      printf("\n");
         mw[++mi][i]=m;      fprintf(ficlog,"\n");
       if(m >=lastpass)    }
         break;    */
       else  
         m++;    free_matrix(a,1,npar,1,npar);
     }/* end while */    free_matrix(y,1,npar,1,npar);
     if (s[m][i] > nlstate){    free_vector(x,1,npar);
       mi++;     /* Death is another wave */    free_ivector(indx,1,npar);
       /* if(mi==0)  never been interviewed correctly before death */    free_matrix(hess,1,npar,1,npar);
          /* Only death is a correct wave */  
       mw[mi][i]=m;  
     }  }
   
     wav[i]=mi;  /*************** hessian matrix ****************/
     if(mi==0){  double hessii( double x[], double delta, int theta, double delti[])
       if(first==0){  {
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    int i;
         first=1;    int l=1, lmax=20;
       }    double k1,k2;
       if(first==1){    double p2[NPARMAX+1];
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    double res;
       }    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     } /* end mi==0 */    double fx;
   }    int k=0,kmax=10;
     double l1;
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){    fx=func(x);
       if (stepm <=0)    for (i=1;i<=npar;i++) p2[i]=x[i];
         dh[mi][i]=1;    for(l=0 ; l <=lmax; l++){
       else{      l1=pow(10,l);
         if (s[mw[mi+1][i]][i] > nlstate) {      delts=delt;
           if (agedc[i] < 2*AGESUP) {      for(k=1 ; k <kmax; k=k+1){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        delt = delta*(l1*k);
           if(j==0) j=1;  /* Survives at least one month after exam */        p2[theta]=x[theta] +delt;
           k=k+1;        k1=func(p2)-fx;
           if (j >= jmax) jmax=j;        p2[theta]=x[theta]-delt;
           if (j <= jmin) jmin=j;        k2=func(p2)-fx;
           sum=sum+j;        /*res= (k1-2.0*fx+k2)/delt/delt; */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           }        
         }  #ifdef DEBUG
         else{        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           k=k+1;  #endif
           if (j >= jmax) jmax=j;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           else if (j <= jmin)jmin=j;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          k=kmax;
           sum=sum+j;        }
         }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         jk= j/stepm;          k=kmax; l=lmax*10.;
         jl= j -jk*stepm;        }
         ju= j -(jk+1)*stepm;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         if(jl <= -ju)          delts=delt;
           dh[mi][i]=jk;        }
         else      }
           dh[mi][i]=jk+1;    }
         if(dh[mi][i]==0)    delti[theta]=delts;
           dh[mi][i]=1; /* At least one step */    return res; 
       }    
     }  }
   }  
   jmean=sum/k;  double hessij( double x[], double delti[], int thetai,int thetaj)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  {
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    int i;
  }    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 /*********** Tricode ****************************/    double p2[NPARMAX+1];
 void tricode(int *Tvar, int **nbcode, int imx)    int k;
 {  
   int Ndum[20],ij=1, k, j, i;    fx=func(x);
   int cptcode=0;    for (k=1; k<=2; k++) {
   cptcoveff=0;      for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
   for (k=0; k<19; k++) Ndum[k]=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   for (k=1; k<=7; k++) ncodemax[k]=0;      k1=func(p2)-fx;
     
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      p2[thetai]=x[thetai]+delti[thetai]/k;
     for (i=1; i<=imx; i++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       ij=(int)(covar[Tvar[j]][i]);      k2=func(p2)-fx;
       Ndum[ij]++;    
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      p2[thetai]=x[thetai]-delti[thetai]/k;
       if (ij > cptcode) cptcode=ij;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     }      k3=func(p2)-fx;
     
     for (i=0; i<=cptcode; i++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
       if(Ndum[i]!=0) ncodemax[j]++;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }      k4=func(p2)-fx;
     ij=1;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for (i=1; i<=ncodemax[j]; i++) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for (k=0; k<=19; k++) {  #endif
         if (Ndum[k] != 0) {    }
           nbcode[Tvar[j]][ij]=k;    return res;
            }
           ij++;  
         }  /************** Inverse of matrix **************/
         if (ij > ncodemax[j]) break;  void ludcmp(double **a, int n, int *indx, double *d) 
       }    { 
     }    int i,imax,j,k; 
   }      double big,dum,sum,temp; 
     double *vv; 
  for (k=0; k<19; k++) Ndum[k]=0;   
     vv=vector(1,n); 
  for (i=1; i<=ncovmodel-2; i++) {    *d=1.0; 
    ij=Tvar[i];    for (i=1;i<=n;i++) { 
    Ndum[ij]++;      big=0.0; 
  }      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
  ij=1;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
  for (i=1; i<=10; i++) {      vv[i]=1.0/big; 
    if((Ndum[i]!=0) && (i<=ncovcol)){    } 
      Tvaraff[ij]=i;    for (j=1;j<=n;j++) { 
      ij++;      for (i=1;i<j;i++) { 
    }        sum=a[i][j]; 
  }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
  cptcoveff=ij-1;      } 
 }      big=0.0; 
       for (i=j;i<=n;i++) { 
 /*********** Health Expectancies ****************/        sum=a[i][j]; 
         for (k=1;k<j;k++) 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /* Health expectancies */          big=dum; 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          imax=i; 
   double age, agelim, hf;        } 
   double ***p3mat,***varhe;      } 
   double **dnewm,**doldm;      if (j != imax) { 
   double *xp;        for (k=1;k<=n;k++) { 
   double **gp, **gm;          dum=a[imax][k]; 
   double ***gradg, ***trgradg;          a[imax][k]=a[j][k]; 
   int theta;          a[j][k]=dum; 
         } 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        *d = -(*d); 
   xp=vector(1,npar);        vv[imax]=vv[j]; 
   dnewm=matrix(1,nlstate*2,1,npar);      } 
   doldm=matrix(1,nlstate*2,1,nlstate*2);      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   fprintf(ficreseij,"# Health expectancies\n");      if (j != n) { 
   fprintf(ficreseij,"# Age");        dum=1.0/(a[j][j]); 
   for(i=1; i<=nlstate;i++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(j=1; j<=nlstate;j++)      } 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    } 
   fprintf(ficreseij,"\n");    free_vector(vv,1,n);  /* Doesn't work */
   ;
   if(estepm < stepm){  } 
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  void lubksb(double **a, int n, int *indx, double b[]) 
   else  hstepm=estepm;    { 
   /* We compute the life expectancy from trapezoids spaced every estepm months    int i,ii=0,ip,j; 
    * This is mainly to measure the difference between two models: for example    double sum; 
    * if stepm=24 months pijx are given only every 2 years and by summing them   
    * we are calculating an estimate of the Life Expectancy assuming a linear    for (i=1;i<=n;i++) { 
    * progression inbetween and thus overestimating or underestimating according      ip=indx[i]; 
    * to the curvature of the survival function. If, for the same date, we      sum=b[ip]; 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      b[ip]=b[i]; 
    * to compare the new estimate of Life expectancy with the same linear      if (ii) 
    * hypothesis. A more precise result, taking into account a more precise        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
    * curvature will be obtained if estepm is as small as stepm. */      else if (sum) ii=i; 
       b[i]=sum; 
   /* For example we decided to compute the life expectancy with the smallest unit */    } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=n;i>=1;i--) { 
      nhstepm is the number of hstepm from age to agelim      sum=b[i]; 
      nstepm is the number of stepm from age to agelin.      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      Look at hpijx to understand the reason of that which relies in memory size      b[i]=sum/a[i][i]; 
      and note for a fixed period like estepm months */    } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  } 
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  /************ Frequencies ********************/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
      results. So we changed our mind and took the option of the best precision.  {  /* Some frequencies */
   */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
   agelim=AGESUP;    double ***freq; /* Frequencies */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double *pp, **prop;
     /* nhstepm age range expressed in number of stepm */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    FILE *ficresp;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    char fileresp[FILENAMELENGTH];
     /* if (stepm >= YEARM) hstepm=1;*/    
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    pp=vector(1,nlstate);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    strcpy(fileresp,"p");
     gp=matrix(0,nhstepm,1,nlstate*2);    strcat(fileresp,fileres);
     gm=matrix(0,nhstepm,1,nlstate*2);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      exit(0);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      }
      freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    
     j=cptcoveff;
     /* Computing Variances of health expectancies */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
      for(theta=1; theta <=npar; theta++){    first=1;
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          j1++;
          /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       cptj=0;          scanf("%d", i);*/
       for(j=1; j<= nlstate; j++){        for (i=-1; i<=nlstate+ndeath; i++)  
         for(i=1; i<=nlstate; i++){          for (jk=-1; jk<=nlstate+ndeath; jk++)  
           cptj=cptj+1;            for(m=iagemin; m <= iagemax+3; m++)
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){              freq[i][jk][m]=0;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }      for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
       }          prop[i][m]=0;
              
              dateintsum=0;
       for(i=1; i<=npar; i++)        k2cpt=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (i=1; i<=imx; i++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            bool=1;
                if  (cptcovn>0) {
       cptj=0;            for (z1=1; z1<=cptcoveff; z1++) 
       for(j=1; j<= nlstate; j++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(i=1;i<=nlstate;i++){                bool=0;
           cptj=cptj+1;          }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          if (bool==1){
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            for(m=firstpass; m<=lastpass; m++){
           }              k2=anint[m][i]+(mint[m][i]/12.);
         }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(j=1; j<= nlstate*2; j++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(h=0; h<=nhstepm-1; h++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                if (m<lastpass) {
         }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                    }
 /* End theta */                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);                  dateintsum=dateintsum+k2;
                   k2cpt++;
      for(h=0; h<=nhstepm-1; h++)                }
       for(j=1; j<=nlstate*2;j++)                /*}*/
         for(theta=1; theta <=npar; theta++)            }
           trgradg[h][j][theta]=gradg[h][theta][j];          }
              }
          
      for(i=1;i<=nlstate*2;i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
      printf("%d|",(int)age);fflush(stdout);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          fprintf(ficresp, "**********\n#");
      for(h=0;h<=nhstepm-1;h++){        }
       for(k=0;k<=nhstepm-1;k++){        for(i=1; i<=nlstate;i++) 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        fprintf(ficresp, "\n");
         for(i=1;i<=nlstate*2;i++)        
           for(j=1;j<=nlstate*2;j++)        for(i=iagemin; i <= iagemax+3; i++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          if(i==iagemax+3){
       }            fprintf(ficlog,"Total");
     }          }else{
     /* Computing expectancies */            if(first==1){
     for(i=1; i<=nlstate;i++)              first=0;
       for(j=1; j<=nlstate;j++)              printf("See log file for details...\n");
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            fprintf(ficlog,"Age %d", i);
                    }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         }              pp[jk] += freq[jk][m][i]; 
           }
     fprintf(ficreseij,"%3.0f",age );          for(jk=1; jk <=nlstate ; jk++){
     cptj=0;            for(m=-1, pos=0; m <=0 ; m++)
     for(i=1; i<=nlstate;i++)              pos += freq[jk][m][i];
       for(j=1; j<=nlstate;j++){            if(pp[jk]>=1.e-10){
         cptj++;              if(first==1){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }              }
     fprintf(ficreseij,"\n");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }else{
     free_matrix(gm,0,nhstepm,1,nlstate*2);              if(first==1)
     free_matrix(gp,0,nhstepm,1,nlstate*2);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);            }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
   }  
   printf("\n");          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficlog,"\n");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
   free_vector(xp,1,npar);          }       
   free_matrix(dnewm,1,nlstate*2,1,npar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            pos += pp[jk];
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);            posprop += prop[jk][i];
 }          }
           for(jk=1; jk <=nlstate ; jk++){
 /************ Variance ******************/            if(pos>=1.e-5){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)              if(first==1)
 {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /* Variance of health expectancies */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            }else{
   /* double **newm;*/              if(first==1)
   double **dnewm,**doldm;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double **dnewmp,**doldmp;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, j, nhstepm, hstepm, h, nstepm ;            }
   int k, cptcode;            if( i <= iagemax){
   double *xp;              if(pos>=1.e-5){
   double **gp, **gm;  /* for var eij */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   double ***gradg, ***trgradg; /*for var eij */                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double **gradgp, **trgradgp; /* for var p point j */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double *gpp, *gmp; /* for var p point j */              }
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */              else
   double ***p3mat;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double age,agelim, hf;            }
   int theta;          }
   char digit[4];          
   char digitp[16];          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   char fileresprobmorprev[FILENAMELENGTH];              if(freq[jk][m][i] !=0 ) {
               if(first==1)
   if(popbased==1)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     strcpy(digitp,"-populbased-");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   else              }
     strcpy(digitp,"-stablbased-");          if(i <= iagemax)
             fprintf(ficresp,"\n");
   strcpy(fileresprobmorprev,"prmorprev");          if(first==1)
   sprintf(digit,"%-d",ij);            printf("Others in log...\n");
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          fprintf(ficlog,"\n");
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        }
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      }
   strcat(fileresprobmorprev,fileres);    }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    dateintmean=dateintsum/k2cpt; 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);   
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    fclose(ficresp);
   }    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    free_vector(pp,1,nlstate);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    /* End of Freq */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);  /************ Prevalence ********************/
     for(i=1; i<=nlstate;i++)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  {  
   }      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fprintf(ficresprobmorprev,"\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       We still use firstpass and lastpass as another selection.
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);   
     exit(0);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   }    double ***freq; /* Frequencies */
   else{    double *pp, **prop;
     fprintf(ficgp,"\n# Routine varevsij");    double pos,posprop; 
   }    double  y2; /* in fractional years */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    int iagemin, iagemax;
     printf("Problem with html file: %s\n", optionfilehtm);  
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    iagemin= (int) agemin;
     exit(0);    iagemax= (int) agemax;
   }    /*pp=vector(1,nlstate);*/
   else{    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   }    j1=0;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    
     j=cptcoveff;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresvij,"# Age");    
   for(i=1; i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
     for(j=1; j<=nlstate;j++)      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        j1++;
   fprintf(ficresvij,"\n");        
         for (i=1; i<=nlstate; i++)  
   xp=vector(1,npar);          for(m=iagemin; m <= iagemax+3; m++)
   dnewm=matrix(1,nlstate,1,npar);            prop[i][m]=0.0;
   doldm=matrix(1,nlstate,1,nlstate);       
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        for (i=1; i<=imx; i++) { /* Each individual */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          bool=1;
           if  (cptcovn>0) {
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);            for (z1=1; z1<=cptcoveff; z1++) 
   gpp=vector(nlstate+1,nlstate+ndeath);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   gmp=vector(nlstate+1,nlstate+ndeath);                bool=0;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          } 
            if (bool==1) { 
   if(estepm < stepm){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     printf ("Problem %d lower than %d\n",estepm, stepm);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   else  hstepm=estepm;                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /* For example we decided to compute the life expectancy with the smallest unit */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      nhstepm is the number of hstepm from age to agelim                if (s[m][i]>0 && s[m][i]<=nlstate) { 
      nstepm is the number of stepm from age to agelin.                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
      Look at hpijx to understand the reason of that which relies in memory size                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      and note for a fixed period like k years */                  prop[s[m][i]][iagemax+3] += weight[i]; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                } 
      survival function given by stepm (the optimization length). Unfortunately it              }
      means that if the survival funtion is printed only each two years of age and if            } /* end selection of waves */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          }
      results. So we changed our mind and took the option of the best precision.        }
   */        for(i=iagemin; i <= iagemax+3; i++){  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          
   agelim = AGESUP;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            posprop += prop[jk][i]; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          } 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){     
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            if( i <=  iagemax){ 
     gp=matrix(0,nhstepm,1,nlstate);              if(posprop>=1.e-5){ 
     gm=matrix(0,nhstepm,1,nlstate);                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
             } 
     for(theta=1; theta <=npar; theta++){          }/* end jk */ 
       for(i=1; i<=npar; i++){ /* Computes gradient */        }/* end i */ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end i1 */
       }    } /* end k1 */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
       if (popbased==1) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         for(i=1; i<=nlstate;i++)  }  /* End of prevalence */
           prlim[i][i]=probs[(int)age][i][ij];  
       }  /************* Waves Concatenation ***************/
    
       for(j=1; j<= nlstate; j++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         for(h=0; h<=nhstepm; h++){  {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];       Death is a valid wave (if date is known).
         }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       /* This for computing forces of mortality (h=1)as a weighted average */       and mw[mi+1][i]. dh depends on stepm.
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){       */
         for(i=1; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    int i, mi, m;
       }        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       /* end force of mortality */       double sum=0., jmean=0.;*/
     int first;
       for(i=1; i<=npar; i++) /* Computes gradient */    int j, k=0,jk, ju, jl;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double sum=0.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      first=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    jmin=1e+5;
      jmax=-1;
       if (popbased==1) {    jmean=0.;
         for(i=1; i<=nlstate;i++)    for(i=1; i<=imx; i++){
           prlim[i][i]=probs[(int)age][i][ij];      mi=0;
       }      m=firstpass;
       while(s[m][i] <= nlstate){
       for(j=1; j<= nlstate; j++){        if(s[m][i]>=1)
         for(h=0; h<=nhstepm; h++){          mw[++mi][i]=m;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        if(m >=lastpass)
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          break;
         }        else
       }          m++;
       /* This for computing force of mortality (h=1)as a weighted average */      }/* end while */
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      if (s[m][i] > nlstate){
         for(i=1; i<= nlstate; i++)        mi++;     /* Death is another wave */
           gmp[j] += prlim[i][i]*p3mat[i][j][1];        /* if(mi==0)  never been interviewed correctly before death */
       }               /* Only death is a correct wave */
       /* end force of mortality */        mw[mi][i]=m;
       }
       for(j=1; j<= nlstate; j++) /* vareij */  
         for(h=0; h<=nhstepm; h++){      wav[i]=mi;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      if(mi==0){
         }        if(first==0){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          first=1;
       }        }
         if(first==1){
     } /* End theta */          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      } /* end mi==0 */
     } /* End individuals */
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)    for(i=1; i<=imx; i++){
         for(theta=1; theta <=npar; theta++)      for(mi=1; mi<wav[i];mi++){
           trgradg[h][j][theta]=gradg[h][theta][j];        if (stepm <=0)
           dh[mi][i]=1;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        else{
       for(theta=1; theta <=npar; theta++)          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         trgradgp[j][theta]=gradgp[theta][j];            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              if(j==0) j=1;  /* Survives at least one month after exam */
     for(i=1;i<=nlstate;i++)              else if(j<0){
       for(j=1;j<=nlstate;j++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         vareij[i][j][(int)age] =0.;                j=1; /* Careful Patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fixe the contradiction between dates.\n",stepm);
     for(h=0;h<=nhstepm;h++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(k=0;k<=nhstepm;k++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              k=k+1;
         for(i=1;i<=nlstate;i++)              if (j >= jmax) jmax=j;
           for(j=1;j<=nlstate;j++)              if (j <= jmin) jmin=j;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              sum=sum+j;
       }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
     /* pptj */          }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          else{
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for(j=nlstate+1;j<=nlstate+ndeath;j++)            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for(i=nlstate+1;i<=nlstate+ndeath;i++)            k=k+1;
         varppt[j][i]=doldmp[j][i];            if (j >= jmax) jmax=j;
     /* end ppptj */            else if (j <= jmin)jmin=j;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0){
     if (popbased==1) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(i=1; i<=nlstate;i++)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         prlim[i][i]=probs[(int)age][i][ij];            }
     }            sum=sum+j;
              }
     /* This for computing force of mortality (h=1)as a weighted average */          jk= j/stepm;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          jl= j -jk*stepm;
       for(i=1; i<= nlstate; i++)          ju= j -(jk+1)*stepm;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     }                if(jl==0){
     /* end force of mortality */              dh[mi][i]=jk;
               bh[mi][i]=0;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            }else{ /* We want a negative bias in order to only have interpolation ie
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){                    * at the price of an extra matrix product in likelihood */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));              dh[mi][i]=jk+1;
       for(i=1; i<=nlstate;i++){              bh[mi][i]=ju;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            }
       }          }else{
     }            if(jl <= -ju){
     fprintf(ficresprobmorprev,"\n");              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
     fprintf(ficresvij,"%.0f ",age );                                   * is higher than the multiple of stepm and negative otherwise.
     for(i=1; i<=nlstate;i++)                                   */
       for(j=1; j<=nlstate;j++){            }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            else{
       }              dh[mi][i]=jk+1;
     fprintf(ficresvij,"\n");              bh[mi][i]=ju;
     free_matrix(gp,0,nhstepm,1,nlstate);            }
     free_matrix(gm,0,nhstepm,1,nlstate);            if(dh[mi][i]==0){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              dh[mi][i]=1; /* At least one step */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              bh[mi][i]=ju; /* At least one step */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   } /* End age */            }
   free_vector(gpp,nlstate+1,nlstate+ndeath);          } /* end if mle */
   free_vector(gmp,nlstate+1,nlstate+ndeath);        }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      } /* end wave */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    jmean=sum/k;
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);   }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  /*********** Tricode ****************************/
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  void tricode(int *Tvar, int **nbcode, int imx)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);  {
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    
 */    int Ndum[20],ij=1, k, j, i, maxncov=19;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    int cptcode=0;
     cptcoveff=0; 
   free_vector(xp,1,npar);   
   free_matrix(doldm,1,nlstate,1,nlstate);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   free_matrix(dnewm,1,nlstate,1,npar);    for (k=1; k<=7; k++) ncodemax[k]=0;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   fclose(ficresprobmorprev);                                 modality*/ 
   fclose(ficgp);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   fclose(fichtm);        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
 /************ Variance of prevlim ******************/                                         female is 1, then  cptcode=1.*/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }
 {  
   /* Variance of prevalence limit */      for (i=0; i<=cptcode; i++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   double **newm;      }
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;      ij=1; 
   int k, cptcode;      for (i=1; i<=ncodemax[j]; i++) {
   double *xp;        for (k=0; k<= maxncov; k++) {
   double *gp, *gm;          if (Ndum[k] != 0) {
   double **gradg, **trgradg;            nbcode[Tvar[j]][ij]=k; 
   double age,agelim;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   int theta;            
                ij++;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          }
   fprintf(ficresvpl,"# Age");          if (ij > ncodemax[j]) break; 
   for(i=1; i<=nlstate;i++)        }  
       fprintf(ficresvpl," %1d-%1d",i,i);      } 
   fprintf(ficresvpl,"\n");    }  
   
   xp=vector(1,npar);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);   for (i=1; i<=ncovmodel-2; i++) { 
       /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   hstepm=1*YEARM; /* Every year of age */     ij=Tvar[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     Ndum[ij]++;
   agelim = AGESUP;   }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   ij=1;
     if (stepm >= YEARM) hstepm=1;   for (i=1; i<= maxncov; i++) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     if((Ndum[i]!=0) && (i<=ncovcol)){
     gradg=matrix(1,npar,1,nlstate);       Tvaraff[ij]=i; /*For printing */
     gp=vector(1,nlstate);       ij++;
     gm=vector(1,nlstate);     }
    }
     for(theta=1; theta <=npar; theta++){   
       for(i=1; i<=npar; i++){ /* Computes gradient */   cptcoveff=ij-1; /*Number of simple covariates*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*********** Health Expectancies ****************/
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
      
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Health expectancies */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       for(i=1;i<=nlstate;i++)    double age, agelim, hf;
         gm[i] = prlim[i][i];    double ***p3mat,***varhe;
     double **dnewm,**doldm;
       for(i=1;i<=nlstate;i++)    double *xp;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double **gp, **gm;
     } /* End theta */    double ***gradg, ***trgradg;
     int theta;
     trgradg =matrix(1,nlstate,1,npar);  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     for(j=1; j<=nlstate;j++)    xp=vector(1,npar);
       for(theta=1; theta <=npar; theta++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
         trgradg[j][theta]=gradg[theta][j];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     for(i=1;i<=nlstate;i++)    fprintf(ficreseij,"# Health expectancies\n");
       varpl[i][(int)age] =0.;    fprintf(ficreseij,"# Age");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    for(i=1; i<=nlstate;i++)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      for(j=1; j<=nlstate;j++)
     for(i=1;i<=nlstate;i++)        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    fprintf(ficreseij,"\n");
   
     fprintf(ficresvpl,"%.0f ",age );    if(estepm < stepm){
     for(i=1; i<=nlstate;i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    }
     fprintf(ficresvpl,"\n");    else  hstepm=estepm;   
     free_vector(gp,1,nlstate);    /* We compute the life expectancy from trapezoids spaced every estepm months
     free_vector(gm,1,nlstate);     * This is mainly to measure the difference between two models: for example
     free_matrix(gradg,1,npar,1,nlstate);     * if stepm=24 months pijx are given only every 2 years and by summing them
     free_matrix(trgradg,1,nlstate,1,npar);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   } /* End age */     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   free_vector(xp,1,npar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   free_matrix(doldm,1,nlstate,1,npar);     * to compare the new estimate of Life expectancy with the same linear 
   free_matrix(dnewm,1,nlstate,1,nlstate);     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
 }  
     /* For example we decided to compute the life expectancy with the smallest unit */
 /************ Variance of one-step probabilities  ******************/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)       nhstepm is the number of hstepm from age to agelim 
 {       nstepm is the number of stepm from age to agelin. 
   int i, j=0,  i1, k1, l1, t, tj;       Look at hpijx to understand the reason of that which relies in memory size
   int k2, l2, j1,  z1;       and note for a fixed period like estepm months */
   int k=0,l, cptcode;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   int first=1, first1;       survival function given by stepm (the optimization length). Unfortunately it
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;       means that if the survival funtion is printed only each two years of age and if
   double **dnewm,**doldm;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double *xp;       results. So we changed our mind and took the option of the best precision.
   double *gp, *gm;    */
   double **gradg, **trgradg;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double **mu;  
   double age,agelim, cov[NCOVMAX];    agelim=AGESUP;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int theta;      /* nhstepm age range expressed in number of stepm */
   char fileresprob[FILENAMELENGTH];      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   char fileresprobcov[FILENAMELENGTH];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   char fileresprobcor[FILENAMELENGTH];      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double ***varpij;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   strcpy(fileresprob,"prob");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   strcat(fileresprob,fileres);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   strcpy(fileresprobcov,"probcov");   
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     printf("Problem with resultfile: %s\n", fileresprobcov);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      /* Computing Variances of health expectancies */
   }  
   strcpy(fileresprobcor,"probcor");       for(theta=1; theta <=npar; theta++){
   strcat(fileresprobcor,fileres);        for(i=1; i<=npar; i++){ 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("Problem with resultfile: %s\n", fileresprobcor);        }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }    
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        cptj=0;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for(j=1; j<= nlstate; j++){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for(i=1; i<=nlstate; i++){
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            cptj=cptj+1;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          }
   fprintf(ficresprob,"# Age");        }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");       
   fprintf(ficresprobcov,"# Age");       
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        for(i=1; i<=npar; i++) 
   fprintf(ficresprobcov,"# Age");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
   for(i=1; i<=nlstate;i++)        cptj=0;
     for(j=1; j<=(nlstate+ndeath);j++){        for(j=1; j<= nlstate; j++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          for(i=1;i<=nlstate;i++){
       fprintf(ficresprobcov," p%1d-%1d ",i,j);            cptj=cptj+1;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     }    
   fprintf(ficresprob,"\n");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   fprintf(ficresprobcov,"\n");            }
   fprintf(ficresprobcor,"\n");          }
   xp=vector(1,npar);        }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        for(j=1; j<= nlstate*nlstate; j++)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          for(h=0; h<=nhstepm-1; h++){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          }
   first=1;       } 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {     
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  /* End theta */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  
     exit(0);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   }  
   else{       for(h=0; h<=nhstepm-1; h++)
     fprintf(ficgp,"\n# Routine varprob");        for(j=1; j<=nlstate*nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("Problem with html file: %s\n", optionfilehtm);       
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);       for(i=1;i<=nlstate*nlstate;i++)
   }        for(j=1;j<=nlstate*nlstate;j++)
   else{          varhe[i][j][(int)age] =0.;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");  
     fprintf(fichtm,"\n");       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");       for(h=0;h<=nhstepm-1;h++){
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        for(k=0;k<=nhstepm-1;k++){
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   }          for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   cov[1]=1;        }
   tj=cptcoveff;      }
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      /* Computing expectancies */
   j1=0;      for(i=1; i<=nlstate;i++)
   for(t=1; t<=tj;t++){        for(j=1; j<=nlstate;j++)
     for(i1=1; i1<=ncodemax[t];i1++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       j1++;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                  
       if  (cptcovn>0) {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         fprintf(ficresprob, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficresprob, "**********\n#");  
         fprintf(ficresprobcov, "\n#********** Variable ");      fprintf(ficreseij,"%3.0f",age );
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      cptj=0;
         fprintf(ficresprobcov, "**********\n#");      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++){
         fprintf(ficgp, "\n#********** Variable ");          cptj++;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         fprintf(ficgp, "**********\n#");        }
              fprintf(ficreseij,"\n");
             
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
              free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficresprobcor, "\n#********** Variable ");          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficgp, "**********\n#");        printf("\n");
       }    fprintf(ficlog,"\n");
        
       for (age=bage; age<=fage; age ++){    free_vector(xp,1,npar);
         cov[2]=age;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         for (k=1; k<=cptcovn;k++) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         }  }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)  /************ Variance ******************/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
          {
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    /* Variance of health expectancies */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         gp=vector(1,(nlstate)*(nlstate+ndeath));    /* double **newm;*/
         gm=vector(1,(nlstate)*(nlstate+ndeath));    double **dnewm,**doldm;
        double **dnewmp,**doldmp;
         for(theta=1; theta <=npar; theta++){    int i, j, nhstepm, hstepm, h, nstepm ;
           for(i=1; i<=npar; i++)    int k, cptcode;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double *xp;
              double **gp, **gm;  /* for var eij */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double ***gradg, ***trgradg; /*for var eij */
              double **gradgp, **trgradgp; /* for var p point j */
           k=0;    double *gpp, *gmp; /* for var p point j */
           for(i=1; i<= (nlstate); i++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             for(j=1; j<=(nlstate+ndeath);j++){    double ***p3mat;
               k=k+1;    double age,agelim, hf;
               gp[k]=pmmij[i][j];    double ***mobaverage;
             }    int theta;
           }    char digit[4];
              char digitp[25];
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    char fileresprobmorprev[FILENAMELENGTH];
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    if(popbased==1){
           k=0;      if(mobilav!=0)
           for(i=1; i<=(nlstate); i++){        strcpy(digitp,"-populbased-mobilav-");
             for(j=1; j<=(nlstate+ndeath);j++){      else strcpy(digitp,"-populbased-nomobil-");
               k=k+1;    }
               gm[k]=pmmij[i][j];    else 
             }      strcpy(digitp,"-stablbased-");
           }  
          if (mobilav!=0) {
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      }
           for(theta=1; theta <=npar; theta++)    }
             trgradg[j][theta]=gradg[theta][j];  
            strcpy(fileresprobmorprev,"prmorprev"); 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    sprintf(digit,"%-d",ij);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
            strcat(fileresprobmorprev,digit); /* Tvar to be done */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
            strcat(fileresprobmorprev,fileres);
         k=0;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         for(i=1; i<=(nlstate); i++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           for(j=1; j<=(nlstate+ndeath);j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             k=k+1;    }
             mu[k][(int) age]=pmmij[i][j];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             varpij[i][j][(int)age] = doldm[i][j];      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         /*printf("\n%d ",(int)age);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    }  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    fprintf(ficresprobmorprev,"\n");
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
      }*/      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         fprintf(ficresprob,"\n%d ",(int)age);      exit(0);
         fprintf(ficresprobcov,"\n%d ",(int)age);    }
         fprintf(ficresprobcor,"\n%d ",(int)age);    else{
       fprintf(ficgp,"\n# Routine varevsij");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      printf("Problem with html file: %s\n", optionfilehtm);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      exit(0);
         }    }
         i=0;    else{
         for (k=1; k<=(nlstate);k++){      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           for (l=1; l<=(nlstate+ndeath);l++){      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             i=i++;    }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    fprintf(ficresvij,"# Age");
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++)
           }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
         }/* end of loop for state */    fprintf(ficresvij,"\n");
       } /* end of loop for age */  
     xp=vector(1,npar);
       /* Confidence intervalle of pij  */    dnewm=matrix(1,nlstate,1,npar);
       /*    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficgp,"\nset noparametric;unset label");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    gpp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    gmp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       */    
     if(estepm < stepm){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      printf ("Problem %d lower than %d\n",estepm, stepm);
       first1=1;    }
       for (k2=1; k2<=(nlstate);k2++){    else  hstepm=estepm;   
         for (l2=1; l2<=(nlstate+ndeath);l2++){    /* For example we decided to compute the life expectancy with the smallest unit */
           if(l2==k2) continue;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           j=(k2-1)*(nlstate+ndeath)+l2;       nhstepm is the number of hstepm from age to agelim 
           for (k1=1; k1<=(nlstate);k1++){       nstepm is the number of stepm from age to agelin. 
             for (l1=1; l1<=(nlstate+ndeath);l1++){       Look at hpijx to understand the reason of that which relies in memory size
               if(l1==k1) continue;       and note for a fixed period like k years */
               i=(k1-1)*(nlstate+ndeath)+l1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               if(i<=j) continue;       survival function given by stepm (the optimization length). Unfortunately it
               for (age=bage; age<=fage; age ++){       means that if the survival funtion is printed every two years of age and if
                 if ((int)age %5==0){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;       results. So we changed our mind and took the option of the best precision.
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   mu1=mu[i][(int) age]/stepm*YEARM ;    agelim = AGESUP;
                   mu2=mu[j][(int) age]/stepm*YEARM;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   c12=cv12/sqrt(v1*v2);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   /* Computing eigen value of matrix of covariance */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   /* Eigen vectors */      gp=matrix(0,nhstepm,1,nlstate);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      gm=matrix(0,nhstepm,1,nlstate);
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;  
                   v12=-v21;      for(theta=1; theta <=npar; theta++){
                   v22=v11;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                   tnalp=v21/v11;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   if(first1==1){        }
                     first1=0;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   }  
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        if (popbased==1) {
                   /*printf(fignu*/          if(mobilav ==0){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            for(i=1; i<=nlstate;i++)
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */              prlim[i][i]=probs[(int)age][i][ij];
                   if(first==1){          }else{ /* mobilav */ 
                     first=0;            for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset parametric;unset label");              prlim[i][i]=mobaverage[(int)age][i][ij];
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);          }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);        for(j=1; j<= nlstate; j++){
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);          for(h=0; h<=nhstepm; h++){
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        /* This for computing probability of death (h=1 means
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));           computed over hstepm matrices product = hstepm*stepm months) 
                   }else{           as a weighted average of prlim.
                     first=0;        */
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        }    
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        /* end probability of death */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  
                   }/* if first */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                 } /* age mod 5 */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               } /* end loop age */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               first=1;   
             } /*l12 */        if (popbased==1) {
           } /* k12 */          if(mobilav ==0){
         } /*l1 */            for(i=1; i<=nlstate;i++)
       }/* k1 */              prlim[i][i]=probs[(int)age][i][ij];
     } /* loop covariates */          }else{ /* mobilav */ 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            for(i=1; i<=nlstate;i++)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              prlim[i][i]=mobaverage[(int)age][i][ij];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(j=1; j<= nlstate; j++){
   }          for(h=0; h<=nhstepm; h++){
   free_vector(xp,1,npar);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   fclose(ficresprob);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   fclose(ficresprobcov);          }
   fclose(ficresprobcor);        }
   fclose(ficgp);        /* This for computing probability of death (h=1 means
   fclose(fichtm);           computed over hstepm matrices product = hstepm*stepm months) 
 }           as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
 /******************* Printing html file ***********/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   int lastpass, int stepm, int weightopt, char model[],\        }    
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        /* end probability of death */
                   int popforecast, int estepm ,\  
                   double jprev1, double mprev1,double anprev1, \        for(j=1; j<= nlstate; j++) /* vareij */
                   double jprev2, double mprev2,double anprev2){          for(h=0; h<=nhstepm; h++){
   int jj1, k1, i1, cpt;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /*char optionfilehtm[FILENAMELENGTH];*/          }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   }        }
   
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      } /* End theta */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months):      for(h=0; h<=nhstepm; h++) /* veij */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        for(j=1; j<=nlstate;j++)
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
  m=cptcoveff;        for(theta=1; theta <=npar; theta++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          trgradgp[j][theta]=gradgp[theta][j];
     
  jj1=0;  
  for(k1=1; k1<=m;k1++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    for(i1=1; i1<=ncodemax[k1];i1++){      for(i=1;i<=nlstate;i++)
      jj1++;        for(j=1;j<=nlstate;j++)
      if (cptcovn > 0) {          vareij[i][j][(int)age] =0.;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)      for(h=0;h<=nhstepm;h++){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for(k=0;k<=nhstepm;k++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
      }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
      /* Pij */          for(i=1;i<=nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>            for(j=1;j<=nlstate;j++)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
      /* Quasi-incidences */        }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    
        /* Stable prevalence in each health state */      /* pptj */
        for(cpt=1; cpt<nlstate;cpt++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
        }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
      for(cpt=1; cpt<=nlstate;cpt++) {          varppt[j][i]=doldmp[j][i];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      /* end ppptj */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      /*  x centered again */
      }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 health expectancies in states (1) and (2): e%s%d.png<br>   
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      if (popbased==1) {
    } /* end i1 */        if(mobilav ==0){
  }/* End k1 */          for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"</ul>");            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n            prlim[i][i]=mobaverage[(int)age][i][ij];
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      }
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n               
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      /* This for computing probability of death (h=1 means
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n         as a weighted average of prlim.
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
  if(popforecast==1) fprintf(fichtm,"\n        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      }    
         <br>",fileres,fileres,fileres,fileres);      /* end probability of death */
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
  m=cptcoveff;        for(i=1; i<=nlstate;i++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
  jj1=0;      } 
  for(k1=1; k1<=m;k1++){      fprintf(ficresprobmorprev,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;      fprintf(ficresvij,"%.0f ",age );
      if (cptcovn > 0) {      for(i=1; i<=nlstate;i++)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for(j=1; j<=nlstate;j++){
        for (cpt=1; cpt<=cptcoveff;cpt++)          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      fprintf(ficresvij,"\n");
      }      free_matrix(gp,0,nhstepm,1,nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {      free_matrix(gm,0,nhstepm,1,nlstate);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 interval) in state (%d): v%s%d%d.png <br>      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    } /* End age */
    } /* end i1 */    free_vector(gpp,nlstate+1,nlstate+ndeath);
  }/* End k1 */    free_vector(gmp,nlstate+1,nlstate+ndeath);
  fprintf(fichtm,"</ul>");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 fclose(fichtm);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 /******************* Gnuplot file **************/    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   int ng;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
     printf("Problem with file %s",optionfilegnuplot);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
   }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 #ifdef windows  */
     fprintf(ficgp,"cd \"%s\" \n",pathc);    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
 #endif  
 m=pow(2,cptcoveff);    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
  /* 1eme*/    free_matrix(dnewm,1,nlstate,1,npar);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    for (k1=1; k1<= m ; k1 ++) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 #ifdef windows    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fclose(ficresprobmorprev);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    fclose(ficgp);
 #endif    fclose(fichtm);
 #ifdef unix  }  /* end varevsij */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  /************ Variance of prevlim ******************/
 #endif  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
 for (i=1; i<= nlstate ; i ++) {    /* Variance of prevalence limit */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **newm;
 }    double **dnewm,**doldm;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    int i, j, nhstepm, hstepm;
     for (i=1; i<= nlstate ; i ++) {    int k, cptcode;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double *xp;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *gp, *gm;
 }    double **gradg, **trgradg;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double age,agelim;
      for (i=1; i<= nlstate ; i ++) {    int theta;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 }      fprintf(ficresvpl,"# Age");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    for(i=1; i<=nlstate;i++)
 #ifdef unix        fprintf(ficresvpl," %1d-%1d",i,i);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    fprintf(ficresvpl,"\n");
 #endif  
    }    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   /*2 eme*/    doldm=matrix(1,nlstate,1,nlstate);
     
   for (k1=1; k1<= m ; k1 ++) {    hstepm=1*YEARM; /* Every year of age */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    agelim = AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for (i=1; i<= nlstate+1 ; i ++) {      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       k=2*i;      if (stepm >= YEARM) hstepm=1;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       for (j=1; j<= nlstate+1 ; j ++) {      gradg=matrix(1,npar,1,nlstate);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      gp=vector(1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      gm=vector(1,nlstate);
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for(theta=1; theta <=npar; theta++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for(i=1; i<=npar; i++){ /* Computes gradient */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for (j=1; j<= nlstate+1 ; j ++) {        }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1;i<=nlstate;i++)
 }            gp[i] = prlim[i][i];
       fprintf(ficgp,"\" t\"\" w l 0,");      
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(i=1; i<=npar; i++) /* Computes gradient */
       for (j=1; j<= nlstate+1 ; j ++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1;i<=nlstate;i++)
 }            gm[i] = prlim[i][i];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");        for(i=1;i<=nlstate;i++)
     }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
    
   /*3eme*/      trgradg =matrix(1,nlstate,1,npar);
   
   for (k1=1; k1<= m ; k1 ++) {      for(j=1; j<=nlstate;j++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(theta=1; theta <=npar; theta++)
       k=2+nlstate*(2*cpt-2);          trgradg[j][theta]=gradg[theta][j];
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      for(i=1;i<=nlstate;i++)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        varpl[i][(int)age] =0.;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for(i=1;i<=nlstate;i++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
       fprintf(ficresvpl,"%.0f ",age );
 */      for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       }      free_vector(gm,1,nlstate);
     }      free_matrix(gradg,1,npar,1,nlstate);
   }      free_matrix(trgradg,1,nlstate,1,npar);
      } /* End age */
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {    free_vector(xp,1,npar);
     for (cpt=1; cpt<nlstate ; cpt ++) {    free_matrix(doldm,1,nlstate,1,npar);
       k=3;    free_matrix(dnewm,1,nlstate,1,nlstate);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  }
   
       for (i=1; i< nlstate ; i ++)  /************ Variance of one-step probabilities  ******************/
         fprintf(ficgp,"+$%d",k+i+1);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  {
          int i, j=0,  i1, k1, l1, t, tj;
       l=3+(nlstate+ndeath)*cpt;    int k2, l2, j1,  z1;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    int k=0,l, cptcode;
       for (i=1; i< nlstate ; i ++) {    int first=1, first1;
         l=3+(nlstate+ndeath)*cpt;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         fprintf(ficgp,"+$%d",l+i+1);    double **dnewm,**doldm;
       }    double *xp;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      double *gp, *gm;
     }    double **gradg, **trgradg;
   }      double **mu;
      double age,agelim, cov[NCOVMAX];
   /* proba elementaires */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
    for(i=1,jk=1; i <=nlstate; i++){    int theta;
     for(k=1; k <=(nlstate+ndeath); k++){    char fileresprob[FILENAMELENGTH];
       if (k != i) {    char fileresprobcov[FILENAMELENGTH];
         for(j=1; j <=ncovmodel; j++){    char fileresprobcor[FILENAMELENGTH];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;    double ***varpij;
           fprintf(ficgp,"\n");  
         }    strcpy(fileresprob,"prob"); 
       }    strcat(fileresprob,fileres);
     }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
    }      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    }
      for(jk=1; jk <=m; jk++) {    strcpy(fileresprobcov,"probcov"); 
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    strcat(fileresprobcov,fileres);
        if (ng==2)    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      printf("Problem with resultfile: %s\n", fileresprobcov);
        else      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
          fprintf(ficgp,"\nset title \"Probability\"\n");    }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    strcpy(fileresprobcor,"probcor"); 
        i=1;    strcat(fileresprobcor,fileres);
        for(k2=1; k2<=nlstate; k2++) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          k3=i;      printf("Problem with resultfile: %s\n", fileresprobcor);
          for(k=1; k<=(nlstate+ndeath); k++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
            if (k != k2){    }
              if(ng==2)    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
              else    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
              ij=1;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              for(j=3; j <=ncovmodel; j++) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                  ij++;    fprintf(ficresprob,"# Age");
                }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                else    fprintf(ficresprobcov,"# Age");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
              }    fprintf(ficresprobcov,"# Age");
              fprintf(ficgp,")/(1");  
                
              for(k1=1; k1 <=nlstate; k1++){      for(i=1; i<=nlstate;i++)
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      for(j=1; j<=(nlstate+ndeath);j++){
                ij=1;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                for(j=3; j <=ncovmodel; j++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }  
                    ij++;   /* fprintf(ficresprob,"\n");
                  }    fprintf(ficresprobcov,"\n");
                  else    fprintf(ficresprobcor,"\n");
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   */
                }   xp=vector(1,npar);
                fprintf(ficgp,")");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
              }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
              i=i+ncovmodel;    first=1;
            }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
          } /* end k */      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
        } /* end k2 */      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
      } /* end jk */      exit(0);
    } /* end ng */    }
    fclose(ficgp);    else{
 }  /* end gnuplot */      fprintf(ficgp,"\n# Routine varprob");
     }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
 /*************** Moving average **************/      printf("Problem with html file: %s\n", optionfilehtm);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
   int i, cpt, cptcod;    }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    else{
       for (i=1; i<=nlstate;i++)      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      fprintf(fichtm,"\n");
           mobaverage[(int)agedeb][i][cptcod]=0.;  
          fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       for (i=1; i<=nlstate;i++){      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){    }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }    cov[1]=1;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    tj=cptcoveff;
         }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       }    j1=0;
     }    for(t=1; t<=tj;t++){
          for(i1=1; i1<=ncodemax[t];i1++){ 
 }        j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
 /************** Forecasting ******************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int *popage;          fprintf(ficresprobcov, "**********\n#\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          
   double *popeffectif,*popcount;          fprintf(ficgp, "\n#********** Variable "); 
   double ***p3mat;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char fileresf[FILENAMELENGTH];          fprintf(ficgp, "**********\n#\n");
           
  agelim=AGESUP;          
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
            fprintf(ficresprobcor, "\n#********** Variable ");    
   strcpy(fileresf,"f");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcat(fileresf,fileres);          fprintf(ficresprobcor, "**********\n#");    
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);        
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);        for (age=bage; age<=fage; age ++){ 
   }          cov[2]=age;
   printf("Computing forecasting: result on file '%s' \n", fileresf);          for (k=1; k<=cptcovn;k++) {
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   if (mobilav==1) {            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
     movingaverage(agedeb, fage, ageminpar, mobaverage);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
   stepsize=(int) (stepm+YEARM-1)/YEARM;          gm=vector(1,(nlstate)*(nlstate+ndeath));
   if (stepm<=12) stepsize=1;      
            for(theta=1; theta <=npar; theta++){
   agelim=AGESUP;            for(i=1; i<=npar; i++)
                xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   hstepm=1;            
   hstepm=hstepm/stepm;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   yp1=modf(dateintmean,&yp);            
   anprojmean=yp;            k=0;
   yp2=modf((yp1*12),&yp);            for(i=1; i<= (nlstate); i++){
   mprojmean=yp;              for(j=1; j<=(nlstate+ndeath);j++){
   yp1=modf((yp2*30.5),&yp);                k=k+1;
   jprojmean=yp;                gp[k]=pmmij[i][j];
   if(jprojmean==0) jprojmean=1;              }
   if(mprojmean==0) jprojmean=1;            }
              
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            for(i=1; i<=npar; i++)
                xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   for(cptcov=1;cptcov<=i2;cptcov++){      
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       k=k+1;            k=0;
       fprintf(ficresf,"\n#******");            for(i=1; i<=(nlstate); i++){
       for(j=1;j<=cptcoveff;j++) {              for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                k=k+1;
       }                gm[k]=pmmij[i][j];
       fprintf(ficresf,"******\n");              }
       fprintf(ficresf,"# StartingAge FinalAge");            }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       
                  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          }
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              trgradg[j][theta]=gradg[theta][j];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          
           nhstepm = nhstepm/hstepm;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                    matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           oldm=oldms;savm=savms;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                  free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          
             }          k=0;
             for(j=1; j<=nlstate+ndeath;j++) {          for(i=1; i<=(nlstate); i++){
               kk1=0.;kk2=0;            for(j=1; j<=(nlstate+ndeath);j++){
               for(i=1; i<=nlstate;i++) {                            k=k+1;
                 if (mobilav==1)              mu[k][(int) age]=pmmij[i][j];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            }
                 else {          }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                 }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                              varpij[i][j][(int)age] = doldm[i][j];
               }  
               if (h==(int)(calagedate+12*cpt)){          /*printf("\n%d ",(int)age);
                 fprintf(ficresf," %.3f", kk1);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                                    printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }            }*/
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresprob,"\n%d ",(int)age);
         }          fprintf(ficresprobcov,"\n%d ",(int)age);
       }          fprintf(ficresprobcor,"\n%d ",(int)age);
     }  
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                    fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   fclose(ficresf);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 }          }
 /************** Forecasting ******************/          i=0;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          for (k=1; k<=(nlstate);k++){
              for (l=1; l<=(nlstate+ndeath);l++){ 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              i=i++;
   int *popage;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   double *popeffectif,*popcount;              for (j=1; j<=i;j++){
   double ***p3mat,***tabpop,***tabpopprev;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   char filerespop[FILENAMELENGTH];                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }/* end of loop for state */
   agelim=AGESUP;        } /* end of loop for age */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
          /* Confidence intervalle of pij  */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        /*
            fprintf(ficgp,"\nset noparametric;unset label");
            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   strcpy(filerespop,"pop");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   strcat(filerespop,fileres);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     printf("Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   }        */
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   if (mobilav==1) {            if(l2==k2) continue;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            j=(k2-1)*(nlstate+ndeath)+l2;
     movingaverage(agedeb, fage, ageminpar, mobaverage);            for (k1=1; k1<=(nlstate);k1++){
   }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                i=(k1-1)*(nlstate+ndeath)+l1;
   if (stepm<=12) stepsize=1;                if(i<=j) continue;
                  for (age=bage; age<=fage; age ++){ 
   agelim=AGESUP;                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   hstepm=1;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   hstepm=hstepm/stepm;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      mu1=mu[i][(int) age]/stepm*YEARM ;
   if (popforecast==1) {                    mu2=mu[j][(int) age]/stepm*YEARM;
     if((ficpop=fopen(popfile,"r"))==NULL) {                    c12=cv12/sqrt(v1*v2);
       printf("Problem with population file : %s\n",popfile);exit(0);                    /* Computing eigen value of matrix of covariance */
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     popage=ivector(0,AGESUP);                    /* Eigen vectors */
     popeffectif=vector(0,AGESUP);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     popcount=vector(0,AGESUP);                    /*v21=sqrt(1.-v11*v11); *//* error */
                        v21=(lc1-v1)/cv12*v11;
     i=1;                      v12=-v21;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                    v22=v11;
                        tnalp=v21/v11;
     imx=i;                    if(first1==1){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                      first1=0;
   }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
   for(cptcov=1;cptcov<=i2;cptcov++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                    /*printf(fignu*/
       k=k+1;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       fprintf(ficrespop,"\n#******");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       for(j=1;j<=cptcoveff;j++) {                    if(first==1){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      first=0;
       }                      fprintf(ficgp,"\nset parametric;unset label");
       fprintf(ficrespop,"******\n");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       fprintf(ficrespop,"# Age");                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
       if (popforecast==1)  fprintf(ficrespop," [Population]");                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                            fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       for (cpt=0; cpt<=0;cpt++) {                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                              fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           nhstepm = nhstepm/hstepm;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                              }else{
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      first=0;
           oldm=oldms;savm=savms;                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                              fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           for (h=0; h<=nhstepm; h++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             if (h==(int) (calagedate+YEARM*cpt)) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             }                    }/* if first */
             for(j=1; j<=nlstate+ndeath;j++) {                  } /* age mod 5 */
               kk1=0.;kk2=0;                } /* end loop age */
               for(i=1; i<=nlstate;i++) {                              fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 if (mobilav==1)                first=1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              } /*l12 */
                 else {            } /* k12 */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          } /*l1 */
                 }        }/* k1 */
               }      } /* loop covariates */
               if (h==(int)(calagedate+12*cpt)){    }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   /*fprintf(ficrespop," %.3f", kk1);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    free_vector(xp,1,npar);
               }    fclose(ficresprob);
             }    fclose(ficresprobcov);
             for(i=1; i<=nlstate;i++){    fclose(ficresprobcor);
               kk1=0.;    fclose(ficgp);
                 for(j=1; j<=nlstate;j++){    fclose(fichtm);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  }
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                    int lastpass, int stepm, int weightopt, char model[],\
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           }                    int popforecast, int estepm ,\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    double jprev1, double mprev1,double anprev1, \
         }                    double jprev2, double mprev2,double anprev2){
       }    int jj1, k1, i1, cpt;
      /*char optionfilehtm[FILENAMELENGTH];*/
   /******/    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
           nhstepm = nhstepm/hstepm;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
             - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
           oldm=oldms;savm=savms;   - Life expectancies by age and initial health status (estepm=%2d months): \
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       <a href=\"e%s\">e%s</a> <br>\n</li>", \
           for (h=0; h<=nhstepm; h++){    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
             }  
             for(j=1; j<=nlstate+ndeath;j++) {   m=cptcoveff;
               kk1=0.;kk2=0;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];       jj1=0;
               }   for(k1=1; k1<=m;k1++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);     for(i1=1; i1<=ncodemax[k1];i1++){
             }       jj1++;
           }       if (cptcovn > 0) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         }         for (cpt=1; cpt<=cptcoveff;cpt++) 
       }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   }       }
         /* Pij */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
   if (popforecast==1) {       /* Quasi-incidences */
     free_ivector(popage,0,AGESUP);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     free_vector(popeffectif,0,AGESUP);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
     free_vector(popcount,0,AGESUP);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
   }         /* Stable prevalence in each health state */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         for(cpt=1; cpt<nlstate;cpt++){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   fclose(ficrespop);  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
 }         }
        for(cpt=1; cpt<=nlstate;cpt++) {
 /***********************************************/          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
 /**************** Main Program *****************/  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
 /***********************************************/       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 int main(int argc, char *argv[])  health expectancies in states (1) and (2): e%s%d.png<br>\
 {  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;   }/* End k1 */
   double agedeb, agefin,hf;   fprintf(fichtm,"</ul>");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
   
   double fret;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   double **xi,tmp,delta;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
   double dum; /* Dummy variable */   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
   double ***p3mat;   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
   int *indx;   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
   char line[MAXLINE], linepar[MAXLINE];   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */  /*  if(popforecast==1) fprintf(fichtm,"\n */
   int c,  h , cpt,l;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   int ju,jl, mi;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  /*      <br>",fileres,fileres,fileres,fileres); */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  /*  else  */
   int mobilav=0,popforecast=0;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   int hstepm, nhstepm;  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
    m=cptcoveff;
   double bage, fage, age, agelim, agebase;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   double ftolpl=FTOL;  
   double **prlim;   jj1=0;
   double *severity;   for(k1=1; k1<=m;k1++){
   double ***param; /* Matrix of parameters */     for(i1=1; i1<=ncodemax[k1];i1++){
   double  *p;       jj1++;
   double **matcov; /* Matrix of covariance */       if (cptcovn > 0) {
   double ***delti3; /* Scale */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   double *delti; /* Scale */         for (cpt=1; cpt<=cptcoveff;cpt++) 
   double ***eij, ***vareij;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   double **varpl; /* Variances of prevalence limits by age */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   double *epj, vepp;       }
   double kk1, kk2;       for(cpt=1; cpt<=nlstate;cpt++) {
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
    interval) in state (%d): v%s%d%d.png <br>\
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   char *alph[]={"a","a","b","c","d","e"}, str[4];       }
      } /* end i1 */
    }/* End k1 */
   char z[1]="c", occ;   fprintf(fichtm,"</ul>");
 #include <sys/time.h>  fclose(fichtm);
 #include <time.h>  }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
    /******************* Gnuplot file **************/
   /* long total_usecs;  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   struct timeval start_time, end_time;  
      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int ng;
   getcwd(pathcd, size);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
   printf("\n%s",version);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
   if(argc <=1){    }
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);    /*#ifdef windows */
   }      fprintf(ficgp,"cd \"%s\" \n",pathc);
   else{      /*#endif */
     strcpy(pathtot,argv[1]);  m=pow(2,cptcoveff);
   }    
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/   /* 1eme*/
   /*cygwin_split_path(pathtot,path,optionfile);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/     for (k1=1; k1<= m ; k1 ++) {
   /* cutv(path,optionfile,pathtot,'\\');*/       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       for (i=1; i<= nlstate ; i ++) {
   chdir(path);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   replace(pathc,path);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
 /*-------- arguments in the command line --------*/       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   /* Log file */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   strcat(filelog, optionfilefiname);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(filelog,".log");    /* */       } 
   if((ficlog=fopen(filelog,"w"))==NULL)    {       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     printf("Problem with logfile %s\n",filelog);       for (i=1; i<= nlstate ; i ++) {
     goto end;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficlog,"Log filename:%s\n",filelog);       }  
   fprintf(ficlog,"\n%s",version);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
   fprintf(ficlog,"\nEnter the parameter file name: ");     }
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    }
   fflush(ficlog);    /*2 eme*/
     
   /* */    for (k1=1; k1<= m ; k1 ++) { 
   strcpy(fileres,"r");      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
   strcat(fileres, optionfilefiname);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   strcat(fileres,".txt");    /* Other files have txt extension */      
       for (i=1; i<= nlstate+1 ; i ++) {
   /*---------arguments file --------*/        k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for (j=1; j<= nlstate+1 ; j ++) {
     printf("Problem with optionfile %s\n",optionfile);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     goto end;        }   
   }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   strcpy(filereso,"o");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
   strcat(filereso,fileres);        for (j=1; j<= nlstate+1 ; j ++) {
   if((ficparo=fopen(filereso,"w"))==NULL) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with Output resultfile: %s\n", filereso);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        }   
     goto end;        fprintf(ficgp,"\" t\"\" w l 0,");
   }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   /* Reads comments: lines beginning with '#' */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     ungetc(c,ficpar);        }   
     fgets(line, MAXLINE, ficpar);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     puts(line);        else fprintf(ficgp,"\" t\"\" w l 0,");
     fputs(line,ficparo);      }
   }    }
   ungetc(c,ficpar);    
     /*3eme*/
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      for (cpt=1; cpt<= nlstate ; cpt ++) {
 while((c=getc(ficpar))=='#' && c!= EOF){        k=2+nlstate*(2*cpt-2);
     ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
     puts(line);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fputs(line,ficparo);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   ungetc(c,ficpar);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
              fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   covar=matrix(0,NCOVMAX,1,n);          
   cptcovn=0;        */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
   ncovmodel=2+cptcovn;          
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        } 
        }
   /* Read guess parameters */    }
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    /* CV preval stable (period) */
     ungetc(c,ficpar);    for (k1=1; k1<= m ; k1 ++) { 
     fgets(line, MAXLINE, ficpar);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     puts(line);        k=3;
     fputs(line,ficparo);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
   ungetc(c,ficpar);        
          for (i=1; i< nlstate ; i ++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp,"+$%d",k+i+1);
     for(i=1; i <=nlstate; i++)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     for(j=1; j <=nlstate+ndeath-1; j++){        
       fscanf(ficpar,"%1d%1d",&i1,&j1);        l=3+(nlstate+ndeath)*cpt;
       fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
       if(mle==1)        for (i=1; i< nlstate ; i ++) {
         printf("%1d%1d",i,j);          l=3+(nlstate+ndeath)*cpt;
       fprintf(ficlog,"%1d%1d",i,j);          fprintf(ficgp,"+$%d",l+i+1);
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar," %lf",&param[i][j][k]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
         if(mle==1){      } 
           printf(" %lf",param[i][j][k]);    }  
           fprintf(ficlog," %lf",param[i][j][k]);    
         }    /* proba elementaires */
         else    for(i=1,jk=1; i <=nlstate; i++){
           fprintf(ficlog," %lf",param[i][j][k]);      for(k=1; k <=(nlstate+ndeath); k++){
         fprintf(ficparo," %lf",param[i][j][k]);        if (k != i) {
       }          for(j=1; j <=ncovmodel; j++){
       fscanf(ficpar,"\n");            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       if(mle==1)            jk++; 
         printf("\n");            fprintf(ficgp,"\n");
       fprintf(ficlog,"\n");          }
       fprintf(ficparo,"\n");        }
     }      }
       }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   p=param[1][1];       for(jk=1; jk <=m; jk++) {
           fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
   /* Reads comments: lines beginning with '#' */         if (ng==2)
   while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     ungetc(c,ficpar);         else
     fgets(line, MAXLINE, ficpar);           fprintf(ficgp,"\nset title \"Probability\"\n");
     puts(line);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     fputs(line,ficparo);         i=1;
   }         for(k2=1; k2<=nlstate; k2++) {
   ungetc(c,ficpar);           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);             if (k != k2){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */               if(ng==2)
   for(i=1; i <=nlstate; i++){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     for(j=1; j <=nlstate+ndeath-1; j++){               else
       fscanf(ficpar,"%1d%1d",&i1,&j1);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       printf("%1d%1d",i,j);               ij=1;
       fprintf(ficparo,"%1d%1d",i1,j1);               for(j=3; j <=ncovmodel; j++) {
       for(k=1; k<=ncovmodel;k++){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         fscanf(ficpar,"%le",&delti3[i][j][k]);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         printf(" %le",delti3[i][j][k]);                   ij++;
         fprintf(ficparo," %le",delti3[i][j][k]);                 }
       }                 else
       fscanf(ficpar,"\n");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       printf("\n");               }
       fprintf(ficparo,"\n");               fprintf(ficgp,")/(1");
     }               
   }               for(k1=1; k1 <=nlstate; k1++){   
   delti=delti3[1][1];                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   ij=1;
   /* Reads comments: lines beginning with '#' */                 for(j=3; j <=ncovmodel; j++){
   while((c=getc(ficpar))=='#' && c!= EOF){                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     ungetc(c,ficpar);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     fgets(line, MAXLINE, ficpar);                     ij++;
     puts(line);                   }
     fputs(line,ficparo);                   else
   }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   ungetc(c,ficpar);                 }
                   fprintf(ficgp,")");
   matcov=matrix(1,npar,1,npar);               }
   for(i=1; i <=npar; i++){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     fscanf(ficpar,"%s",&str);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     if(mle==1)               i=i+ncovmodel;
       printf("%s",str);             }
     fprintf(ficlog,"%s",str);           } /* end k */
     fprintf(ficparo,"%s",str);         } /* end k2 */
     for(j=1; j <=i; j++){       } /* end jk */
       fscanf(ficpar," %le",&matcov[i][j]);     } /* end ng */
       if(mle==1){     fclose(ficgp); 
         printf(" %.5le",matcov[i][j]);  }  /* end gnuplot */
         fprintf(ficlog," %.5le",matcov[i][j]);  
       }  
       else  /*************** Moving average **************/
         fprintf(ficlog," %.5le",matcov[i][j]);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }    int i, cpt, cptcod;
     fscanf(ficpar,"\n");    int modcovmax =1;
     if(mle==1)    int mobilavrange, mob;
       printf("\n");    double age;
     fprintf(ficlog,"\n");  
     fprintf(ficparo,"\n");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   }                             a covariate has 2 modalities */
   for(i=1; i <=npar; i++)    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
          if(mobilav==1) mobilavrange=5; /* default */
   if(mle==1)      else mobilavrange=mobilav;
     printf("\n");      for (age=bage; age<=fage; age++)
   fprintf(ficlog,"\n");        for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     /*-------- Rewriting paramater file ----------*/      /* We keep the original values on the extreme ages bage, fage and for 
      strcpy(rfileres,"r");    /* "Rparameterfile */         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/         we use a 5 terms etc. until the borders are no more concerned. 
      strcat(rfileres,".");    /* */      */ 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      for (mob=3;mob <=mobilavrange;mob=mob+2){
     if((ficres =fopen(rfileres,"w"))==NULL) {        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          for (i=1; i<=nlstate;i++){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     fprintf(ficres,"#%s\n",version);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                      mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     /*-------- data file ----------*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     if((fic=fopen(datafile,"r"))==NULL)    {                }
       printf("Problem with datafile: %s\n", datafile);goto end;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            }
     }          }
         }/* end age */
     n= lastobs;      }/* end mob */
     severity = vector(1,maxwav);    }else return -1;
     outcome=imatrix(1,maxwav+1,1,n);    return 0;
     num=ivector(1,n);  }/* End movingaverage */
     moisnais=vector(1,n);  
     annais=vector(1,n);  
     moisdc=vector(1,n);  /************** Forecasting ******************/
     andc=vector(1,n);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     agedc=vector(1,n);    /* proj1, year, month, day of starting projection 
     cod=ivector(1,n);       agemin, agemax range of age
     weight=vector(1,n);       dateprev1 dateprev2 range of dates during which prevalence is computed
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       anproj2 year of en of projection (same day and month as proj1).
     mint=matrix(1,maxwav,1,n);    */
     anint=matrix(1,maxwav,1,n);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     s=imatrix(1,maxwav+1,1,n);    int *popage;
     adl=imatrix(1,maxwav+1,1,n);        double agec; /* generic age */
     tab=ivector(1,NCOVMAX);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     ncodemax=ivector(1,8);    double *popeffectif,*popcount;
     double ***p3mat;
     i=1;    double ***mobaverage;
     while (fgets(line, MAXLINE, fic) != NULL)    {    char fileresf[FILENAMELENGTH];
       if ((i >= firstobs) && (i <=lastobs)) {  
            agelim=AGESUP;
         for (j=maxwav;j>=1;j--){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);   
           strcpy(line,stra);    strcpy(fileresf,"f"); 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(fileresf,fileres);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    if((ficresf=fopen(fileresf,"w"))==NULL) {
         }      printf("Problem with forecast resultfile: %s\n", fileresf);
              fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    if (mobilav!=0) {
         for (j=ncovcol;j>=1;j--){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         num[i]=atol(stra);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
              }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
         i=i+1;    if (stepm<=12) stepsize=1;
       }    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
     /* printf("ii=%d", ij);    }
        scanf("%d",i);*/    else  hstepm=estepm;   
   imx=i-1; /* Number of individuals */  
     hstepm=hstepm/stepm; 
   /* for (i=1; i<=imx; i++){    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                                 fractional in yp1 */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    anprojmean=yp;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    yp2=modf((yp1*12),&yp);
     }*/    mprojmean=yp;
    /*  for (i=1; i<=imx; i++){    yp1=modf((yp2*30.5),&yp);
      if (s[4][i]==9)  s[4][i]=-1;    jprojmean=yp;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    if(jprojmean==0) jprojmean=1;
      if(mprojmean==0) jprojmean=1;
    
   /* Calculation of the number of parameter from char model*/    i1=cptcoveff;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    if (cptcovn < 1){i1=1;}
   Tprod=ivector(1,15);    
   Tvaraff=ivector(1,15);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   Tvard=imatrix(1,15,1,2);    
   Tage=ivector(1,15);          fprintf(ficresf,"#****** Routine prevforecast **\n");
      
   if (strlen(model) >1){  /*            if (h==(int)(YEARM*yearp)){ */
     j=0, j1=0, k1=1, k2=1;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     j=nbocc(model,'+');      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     j1=nbocc(model,'*');        k=k+1;
     cptcovn=j+1;        fprintf(ficresf,"\n#******");
     cptcovprod=j1;        for(j=1;j<=cptcoveff;j++) {
              fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     strcpy(modelsav,model);        }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        fprintf(ficresf,"******\n");
       printf("Error. Non available option model=%s ",model);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       fprintf(ficlog,"Error. Non available option model=%s ",model);        for(j=1; j<=nlstate+ndeath;j++){ 
       goto end;          for(i=1; i<=nlstate;i++)              
     }            fprintf(ficresf," p%d%d",i,j);
              fprintf(ficresf," p.%d",j);
     for(i=(j+1); i>=1;i--){        }
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */          fprintf(ficresf,"\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {  /* Model includes a product */          for (agec=fage; agec>=(ageminpar-1); agec--){ 
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
         if (strcmp(strc,"age")==0) { /* Vn*age */            nhstepm = nhstepm/hstepm; 
           cptcovprod--;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cutv(strb,stre,strd,'V');            oldm=oldms;savm=savms;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           cptcovage++;          
             Tage[cptcovage]=i;            for (h=0; h<=nhstepm; h++){
             /*printf("stre=%s ", stre);*/              if (h*hstepm/YEARM*stepm ==yearp) {
         }                fprintf(ficresf,"\n");
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                for(j=1;j<=cptcoveff;j++) 
           cptcovprod--;                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           cutv(strb,stre,strc,'V');                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
           Tvar[i]=atoi(stre);              } 
           cptcovage++;              for(j=1; j<=nlstate+ndeath;j++) {
           Tage[cptcovage]=i;                ppij=0.;
         }                for(i=1; i<=nlstate;i++) {
         else {  /* Age is not in the model */                  if (mobilav==1) 
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
           Tvar[i]=ncovcol+k1;                  else {
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
           Tprod[k1]=i;                  }
           Tvard[k1][1]=atoi(strc); /* m*/                  if (h*hstepm/YEARM*stepm== yearp) {
           Tvard[k1][2]=atoi(stre); /* n */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
           Tvar[cptcovn+k2]=Tvard[k1][1];                  }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                } /* end i */
           for (k=1; k<=lastobs;k++)                if (h*hstepm/YEARM*stepm==yearp) {
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                  fprintf(ficresf," %.3f", ppij);
           k1++;                }
           k2=k2+2;              }/* end j */
         }            } /* end h */
       }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       else { /* no more sum */          } /* end agec */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        } /* end yearp */
        /*  scanf("%d",i);*/      } /* end cptcod */
       cutv(strd,strc,strb,'V');    } /* end  cptcov */
       Tvar[i]=atoi(strc);         
       }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fclose(ficresf);
         scanf("%d",i);*/  }
     } /* end of loop + */  
   } /* end model */  /************** Forecasting *****not tested NB*************/
    populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    
   printf("cptcovprod=%d ", cptcovprod);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    int *popage;
   scanf("%d ",i);*/    double calagedatem, agelim, kk1, kk2;
     fclose(fic);    double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     /*  if(mle==1){*/    double ***mobaverage;
     if (weightopt != 1) { /* Maximisation without weights*/    char filerespop[FILENAMELENGTH];
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /*-calculation of age at interview from date of interview and age at death -*/    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agev=matrix(1,maxwav,1,imx);    agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     for (i=1; i<=imx; i++) {    
       for(m=2; (m<= maxwav); m++) {    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    
          anint[m][i]=9999;    
          s[m][i]=-1;    strcpy(filerespop,"pop"); 
        }    strcat(filerespop,fileres);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       }      printf("Problem with forecast resultfile: %s\n", filerespop);
     }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     for (i=1; i<=imx; i++)  {    printf("Computing forecasting: result on file '%s' \n", filerespop);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)    if (mobilav!=0) {
               if(moisdc[i]!=99 && andc[i]!=9999)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 agev[m][i]=agedc[i];      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            else {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               if (andc[i]!=9999){      }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    }
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;    stepsize=(int) (stepm+YEARM-1)/YEARM;
               }    if (stepm<=12) stepsize=1;
             }    
           }    agelim=AGESUP;
           else if(s[m][i] !=9){ /* Should no more exist */    
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    hstepm=1;
             if(mint[m][i]==99 || anint[m][i]==9999)    hstepm=hstepm/stepm; 
               agev[m][i]=1;    
             else if(agev[m][i] <agemin){    if (popforecast==1) {
               agemin=agev[m][i];      if((ficpop=fopen(popfile,"r"))==NULL) {
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        printf("Problem with population file : %s\n",popfile);exit(0);
             }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
             else if(agev[m][i] >agemax){      } 
               agemax=agev[m][i];      popage=ivector(0,AGESUP);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      popeffectif=vector(0,AGESUP);
             }      popcount=vector(0,AGESUP);
             /*agev[m][i]=anint[m][i]-annais[i];*/      
             /*   agev[m][i] = age[i]+2*m;*/      i=1;   
           }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
           else { /* =9 */     
             agev[m][i]=1;      imx=i;
             s[m][i]=-1;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
           }    }
         }  
         else /*= 0 Unknown */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
           agev[m][i]=1;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       }        k=k+1;
            fprintf(ficrespop,"\n#******");
     }        for(j=1;j<=cptcoveff;j++) {
     for (i=1; i<=imx; i++)  {          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(m=1; (m<= maxwav); m++){        }
         if (s[m][i] > (nlstate+ndeath)) {        fprintf(ficrespop,"******\n");
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          fprintf(ficrespop,"# Age");
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           goto end;        if (popforecast==1)  fprintf(ficrespop," [Population]");
         }        
       }        for (cpt=0; cpt<=0;cpt++) { 
     }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
     free_vector(severity,1,maxwav);            
     free_imatrix(outcome,1,maxwav+1,1,n);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(moisnais,1,n);            oldm=oldms;savm=savms;
     free_vector(annais,1,n);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     /* free_matrix(mint,1,maxwav,1,n);          
        free_matrix(anint,1,maxwav,1,n);*/            for (h=0; h<=nhstepm; h++){
     free_vector(moisdc,1,n);              if (h==(int) (calagedatem+YEARM*cpt)) {
     free_vector(andc,1,n);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
                  for(j=1; j<=nlstate+ndeath;j++) {
     wav=ivector(1,imx);                kk1=0.;kk2=0;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                for(i=1; i<=nlstate;i++) {              
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                  if (mobilav==1) 
                        kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     /* Concatenates waves */                  else {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
       Tcode=ivector(1,100);                if (h==(int)(calagedatem+12*cpt)){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
       ncodemax[1]=1;                    /*fprintf(ficrespop," %.3f", kk1);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                      }
    codtab=imatrix(1,100,1,10);              }
    h=0;              for(i=1; i<=nlstate;i++){
    m=pow(2,cptcoveff);                kk1=0.;
                    for(j=1; j<=nlstate;j++){
    for(k=1;k<=cptcoveff; k++){                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
      for(i=1; i <=(m/pow(2,k));i++){                  }
        for(j=1; j <= ncodemax[k]; j++){                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              }
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
          }            }
        }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }          }
    }        }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   
       codtab[1][2]=1;codtab[2][2]=2; */    /******/
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
       printf("\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       }            nhstepm = nhstepm/hstepm; 
       scanf("%d",i);*/            
                p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    /* Calculates basic frequencies. Computes observed prevalence at single age            oldm=oldms;savm=savms;
        and prints on file fileres'p'. */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
                  if (h==(int) (calagedatem+YEARM*cpt)) {
                    fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              } 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              for(j=1; j<=nlstate+ndeath;j++) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                kk1=0.;kk2=0;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                for(i=1; i<=nlstate;i++) {              
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                      }
     /* For Powell, parameters are in a vector p[] starting at p[1]                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if(mle==1){          }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        }
     }     } 
        }
     /*--------- results files --------------*/   
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    
     if (popforecast==1) {
    jk=1;      free_ivector(popage,0,AGESUP);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      free_vector(popeffectif,0,AGESUP);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      free_vector(popcount,0,AGESUP);
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
    for(i=1,jk=1; i <=nlstate; i++){    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      for(k=1; k <=(nlstate+ndeath); k++){    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (k != i)    fclose(ficrespop);
          {  } /* End of popforecast */
            printf("%d%d ",i,k);  
            fprintf(ficlog,"%d%d ",i,k);  /***********************************************/
            fprintf(ficres,"%1d%1d ",i,k);  /**************** Main Program *****************/
            for(j=1; j <=ncovmodel; j++){  /***********************************************/
              printf("%f ",p[jk]);  
              fprintf(ficlog,"%f ",p[jk]);  int main(int argc, char *argv[])
              fprintf(ficres,"%f ",p[jk]);  {
              jk++;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
            }    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
            printf("\n");    int jj;
            fprintf(ficlog,"\n");    int numlinepar=0; /* Current linenumber of parameter file */
            fprintf(ficres,"\n");    double agedeb, agefin,hf;
          }    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
      }  
    }    double fret;
    if(mle==1){    double **xi,tmp,delta;
      /* Computing hessian and covariance matrix */  
      ftolhess=ftol; /* Usually correct */    double dum; /* Dummy variable */
      hesscov(matcov, p, npar, delti, ftolhess, func);    double ***p3mat;
    }    double ***mobaverage;
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    int *indx;
    printf("# Scales (for hessian or gradient estimation)\n");    char line[MAXLINE], linepar[MAXLINE];
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
    for(i=1,jk=1; i <=nlstate; i++){    int firstobs=1, lastobs=10;
      for(j=1; j <=nlstate+ndeath; j++){    int sdeb, sfin; /* Status at beginning and end */
        if (j!=i) {    int c,  h , cpt,l;
          fprintf(ficres,"%1d%1d",i,j);    int ju,jl, mi;
          printf("%1d%1d",i,j);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
          fprintf(ficlog,"%1d%1d",i,j);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
          for(k=1; k<=ncovmodel;k++){    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
            printf(" %.5e",delti[jk]);    int mobilav=0,popforecast=0;
            fprintf(ficlog," %.5e",delti[jk]);    int hstepm, nhstepm;
            fprintf(ficres," %.5e",delti[jk]);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
            jk++;    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
          }  
          printf("\n");    double bage, fage, age, agelim, agebase;
          fprintf(ficlog,"\n");    double ftolpl=FTOL;
          fprintf(ficres,"\n");    double **prlim;
        }    double *severity;
      }    double ***param; /* Matrix of parameters */
    }    double  *p;
        double **matcov; /* Matrix of covariance */
    k=1;    double ***delti3; /* Scale */
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double *delti; /* Scale */
    if(mle==1)    double ***eij, ***vareij;
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double **varpl; /* Variances of prevalence limits by age */
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double *epj, vepp;
    for(i=1;i<=npar;i++){    double kk1, kk2;
      /*  if (k>nlstate) k=1;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
          i1=(i-1)/(ncovmodel*nlstate)+1;  
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    char *alph[]={"a","a","b","c","d","e"}, str[4];
          printf("%s%d%d",alph[k],i1,tab[i]);*/  
      fprintf(ficres,"%3d",i);  
      if(mle==1)    char z[1]="c", occ;
        printf("%3d",i);  #include <sys/time.h>
      fprintf(ficlog,"%3d",i);  #include <time.h>
      for(j=1; j<=i;j++){    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
        fprintf(ficres," %.5e",matcov[i][j]);    char *strt, *strtend;
        if(mle==1)    char *stratrunc;
          printf(" %.5e",matcov[i][j]);    int lstra;
        fprintf(ficlog," %.5e",matcov[i][j]);  
      }    long total_usecs;
      fprintf(ficres,"\n");    struct timeval start_time, end_time, curr_time;
      if(mle==1)    struct timezone tzp;
        printf("\n");    extern int gettimeofday();
      fprintf(ficlog,"\n");    struct tm tmg, tm, *gmtime(), *localtime();
      k++;    long time_value;
    }    extern long time();
       
    while((c=getc(ficpar))=='#' && c!= EOF){    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
      ungetc(c,ficpar);    (void) gettimeofday(&start_time,&tzp);
      fgets(line, MAXLINE, ficpar);    tm = *localtime(&start_time.tv_sec);
      puts(line);    tmg = *gmtime(&start_time.tv_sec);
      fputs(line,ficparo);    strt=asctime(&tm);
    }  /*  printf("Localtime (at start)=%s",strt); */
    ungetc(c,ficpar);  /*  tp.tv_sec = tp.tv_sec +86400; */
    estepm=0;  /*  tm = *localtime(&start_time.tv_sec); */
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
    if (estepm==0 || estepm < stepm) estepm=stepm;  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
    if (fage <= 2) {  /*   tmg.tm_hour=tmg.tm_hour + 1; */
      bage = ageminpar;  /*   tp.tv_sec = mktime(&tmg); */
      fage = agemaxpar;  /*   strt=asctime(&tmg); */
    }  /*   printf("Time(after) =%s",strt);  */
      /*  (void) time (&time_value);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  *  tm = *localtime(&time_value);
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  *  strt=asctime(&tm);
      *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
    while((c=getc(ficpar))=='#' && c!= EOF){  */
      ungetc(c,ficpar);  
      fgets(line, MAXLINE, ficpar);    getcwd(pathcd, size);
      puts(line);  
      fputs(line,ficparo);    printf("\n%s\n%s",version,fullversion);
    }    if(argc <=1){
    ungetc(c,ficpar);      printf("\nEnter the parameter file name: ");
        scanf("%s",pathtot);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    }
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    else{
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      strcpy(pathtot,argv[1]);
        }
    while((c=getc(ficpar))=='#' && c!= EOF){    /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
      ungetc(c,ficpar);    /*cygwin_split_path(pathtot,path,optionfile);
      fgets(line, MAXLINE, ficpar);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
      puts(line);    /* cutv(path,optionfile,pathtot,'\\');*/
      fputs(line,ficparo);  
    }    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
    ungetc(c,ficpar);    printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
      chdir(path);
     replace(pathc,path);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    /*-------- arguments in the command line --------*/
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);    /* Log file */
   fprintf(ficparo,"pop_based=%d\n",popbased);      strcat(filelog, optionfilefiname);
   fprintf(ficres,"pop_based=%d\n",popbased);      strcat(filelog,".log");    /* */
      if((ficlog=fopen(filelog,"w"))==NULL)    {
   while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with logfile %s\n",filelog);
     ungetc(c,ficpar);      goto end;
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    fprintf(ficlog,"Log filename:%s\n",filelog);
     fputs(line,ficparo);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   }    fprintf(ficlog,"\nEnter the parameter file name: ");
   ungetc(c,ficpar);    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("Localtime (at start)=%s",strt); 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    fprintf(ficlog,"Localtime (at start)=%s",strt); 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fflush(ficlog);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
     /* */
     strcpy(fileres,"r");
 while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileres, optionfilefiname);
     ungetc(c,ficpar);    strcat(fileres,".txt");    /* Other files have txt extension */
     fgets(line, MAXLINE, ficpar);  
     puts(line);    /*---------arguments file --------*/
     fputs(line,ficparo);  
   }    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   ungetc(c,ficpar);      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      fflush(ficlog);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      goto end;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    }
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    strcpy(filereso,"o");
     strcat(filereso,fileres);
 /*------------ gnuplot -------------*/    if((ficparo=fopen(filereso,"w"))==NULL) {
   strcpy(optionfilegnuplot,optionfilefiname);      printf("Problem with Output resultfile: %s\n", filereso);
   strcat(optionfilegnuplot,".gp");      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      fflush(ficlog);
     printf("Problem with file %s",optionfilegnuplot);      goto end;
   }    }
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    /* Reads comments: lines beginning with '#' */
 /*--------- index.htm --------*/    numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
   strcpy(optionfilehtm,optionfile);      ungetc(c,ficpar);
   strcat(optionfilehtm,".htm");      fgets(line, MAXLINE, ficpar);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      numlinepar++;
     printf("Problem with %s \n",optionfilehtm), exit(0);      puts(line);
   }      fputs(line,ficparo);
       fputs(line,ficlog);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    ungetc(c,ficpar);
 \n  
 Total number of observations=%d <br>\n    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    numlinepar++;
 <hr  size=\"2\" color=\"#EC5E5E\">    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
  <ul><li><h4>Parameter files</h4>\n    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    fflush(ficlog);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    while((c=getc(ficpar))=='#' && c!= EOF){
   fclose(fichtm);      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      numlinepar++;
        puts(line);
 /*------------ free_vector  -------------*/      fputs(line,ficparo);
  chdir(path);      fputs(line,ficlog);
      }
  free_ivector(wav,1,imx);    ungetc(c,ficpar);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       
  free_ivector(num,1,n);    covar=matrix(0,NCOVMAX,1,n); 
  free_vector(agedc,1,n);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
  fclose(ficparo);  
  fclose(ficres);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
   /*--------------- Prevalence limit --------------*/    /* Read guess parameters */
      /* Reads comments: lines beginning with '#' */
   strcpy(filerespl,"pl");    while((c=getc(ficpar))=='#' && c!= EOF){
   strcat(filerespl,fileres);      ungetc(c,ficpar);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      fgets(line, MAXLINE, ficpar);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      numlinepar++;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;      puts(line);
   }      fputs(line,ficparo);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      fputs(line,ficlog);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    }
   fprintf(ficrespl,"#Prevalence limit\n");    ungetc(c,ficpar);
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   fprintf(ficrespl,"\n");    for(i=1; i <=nlstate; i++){
        j=0;
   prlim=matrix(1,nlstate,1,nlstate);      for(jj=1; jj <=nlstate+ndeath; jj++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if(jj==i) continue;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        j++;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fscanf(ficpar,"%1d%1d",&i1,&j1);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if ((i1 != i) && (j1 != j)){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   k=0;          exit(1);
   agebase=ageminpar;        }
   agelim=agemaxpar;        fprintf(ficparo,"%1d%1d",i1,j1);
   ftolpl=1.e-10;        if(mle==1)
   i1=cptcoveff;          printf("%1d%1d",i,j);
   if (cptcovn < 1){i1=1;}        fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
   for(cptcov=1;cptcov<=i1;cptcov++){          fscanf(ficpar," %lf",&param[i][j][k]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if(mle==1){
         k=k+1;            printf(" %lf",param[i][j][k]);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            fprintf(ficlog," %lf",param[i][j][k]);
         fprintf(ficrespl,"\n#******");          }
         printf("\n#******");          else
         fprintf(ficlog,"\n#******");            fprintf(ficlog," %lf",param[i][j][k]);
         for(j=1;j<=cptcoveff;j++) {          fprintf(ficparo," %lf",param[i][j][k]);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fscanf(ficpar,"\n");
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        numlinepar++;
         }        if(mle==1)
         fprintf(ficrespl,"******\n");          printf("\n");
         printf("******\n");        fprintf(ficlog,"\n");
         fprintf(ficlog,"******\n");        fprintf(ficparo,"\n");
              }
         for (age=agebase; age<=agelim; age++){    }  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fflush(ficlog);
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");    p=param[1][1];
         }    
       }    /* Reads comments: lines beginning with '#' */
     }    while((c=getc(ficpar))=='#' && c!= EOF){
   fclose(ficrespl);      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
   /*------------- h Pij x at various ages ------------*/      numlinepar++;
        puts(line);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      fputs(line,ficparo);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      fputs(line,ficlog);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    }
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    ungetc(c,ficpar);
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
      for(i=1; i <=nlstate; i++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(j=1; j <=nlstate+ndeath-1; j++){
   /*if (stepm<=24) stepsize=2;*/        fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
   agelim=AGESUP;          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   hstepm=stepsize*YEARM; /* Every year of age */          exit(1);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        }
         printf("%1d%1d",i,j);
   /* hstepm=1;   aff par mois*/        fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
   k=0;        for(k=1; k<=ncovmodel;k++){
   for(cptcov=1;cptcov<=i1;cptcov++){          fscanf(ficpar,"%le",&delti3[i][j][k]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          printf(" %le",delti3[i][j][k]);
       k=k+1;          fprintf(ficparo," %le",delti3[i][j][k]);
         fprintf(ficrespij,"\n#****** ");          fprintf(ficlog," %le",delti3[i][j][k]);
         for(j=1;j<=cptcoveff;j++)        }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fscanf(ficpar,"\n");
         fprintf(ficrespij,"******\n");        numlinepar++;
                printf("\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficparo,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficlog,"\n");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     }
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    fflush(ficlog);
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    delti=delti3[1][1];
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");    /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
           for(i=1; i<=nlstate;i++)    
             for(j=1; j<=nlstate+ndeath;j++)    /* Reads comments: lines beginning with '#' */
               fprintf(ficrespij," %1d-%1d",i,j);    while((c=getc(ficpar))=='#' && c!= EOF){
           fprintf(ficrespij,"\n");      ungetc(c,ficpar);
            for (h=0; h<=nhstepm; h++){      fgets(line, MAXLINE, ficpar);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      numlinepar++;
             for(i=1; i<=nlstate;i++)      puts(line);
               for(j=1; j<=nlstate+ndeath;j++)      fputs(line,ficparo);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      fputs(line,ficlog);
             fprintf(ficrespij,"\n");    }
              }    ungetc(c,ficpar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           fprintf(ficrespij,"\n");    matcov=matrix(1,npar,1,npar);
         }    for(i=1; i <=npar; i++){
     }      fscanf(ficpar,"%s",&str);
   }      if(mle==1)
         printf("%s",str);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
   fclose(ficrespij);      for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
   /*---------- Forecasting ------------------*/          printf(" %.5le",matcov[i][j]);
   if((stepm == 1) && (strcmp(model,".")==0)){        }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        fprintf(ficlog," %.5le",matcov[i][j]);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        fprintf(ficparo," %.5le",matcov[i][j]);
   }      }
   else{      fscanf(ficpar,"\n");
     erreur=108;      numlinepar++;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      if(mle==1)
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        printf("\n");
   }      fprintf(ficlog,"\n");
        fprintf(ficparo,"\n");
     }
   /*---------- Health expectancies and variances ------------*/    for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
   strcpy(filerest,"t");        matcov[i][j]=matcov[j][i];
   strcat(filerest,fileres);     
   if((ficrest=fopen(filerest,"w"))==NULL) {    if(mle==1)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      printf("\n");
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(ficlog,"\n");
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fflush(ficlog);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);  
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
   strcpy(filerese,"e");    strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
   strcat(filerese,fileres);    strcat(rfileres,".");    /* */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    strcat(rfileres,optionfilext);    /* Other files have txt extension */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    if((ficres =fopen(rfileres,"w"))==NULL) {
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      printf("Problem writing new parameter file: %s\n", fileres);goto end;
   }      fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    }
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficres,"#%s\n",version);
       
   strcpy(fileresv,"v");    /*-------- data file ----------*/
   strcat(fileresv,fileres);    if((fic=fopen(datafile,"r"))==NULL)    {
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      printf("Problem with datafile: %s\n", datafile);goto end;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    }
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    n= lastobs;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    severity = vector(1,maxwav);
   calagedate=-1;    outcome=imatrix(1,maxwav+1,1,n);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    num=lvector(1,n);
     moisnais=vector(1,n);
   k=0;    annais=vector(1,n);
   for(cptcov=1;cptcov<=i1;cptcov++){    moisdc=vector(1,n);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    andc=vector(1,n);
       k=k+1;    agedc=vector(1,n);
       fprintf(ficrest,"\n#****** ");    cod=ivector(1,n);
       for(j=1;j<=cptcoveff;j++)    weight=vector(1,n);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
       fprintf(ficrest,"******\n");    mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
       fprintf(ficreseij,"\n#****** ");    s=imatrix(1,maxwav+1,1,n);
       for(j=1;j<=cptcoveff;j++)    tab=ivector(1,NCOVMAX);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    ncodemax=ivector(1,8);
       fprintf(ficreseij,"******\n");  
     i=1;
       fprintf(ficresvij,"\n#****** ");    while (fgets(line, MAXLINE, fic) != NULL)    {
       for(j=1;j<=cptcoveff;j++)      if ((i >= firstobs) && (i <=lastobs)) {
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       fprintf(ficresvij,"******\n");        for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          strcpy(line,stra);
       oldm=oldms;savm=savms;          cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
          }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          
       oldm=oldms;savm=savms;        cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);        cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
       if(popbased==1){  
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);        cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
        }        cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
          cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for (j=ncovcol;j>=1;j--){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
       fprintf(ficrest,"\n");        } 
         lstra=strlen(stra);
       epj=vector(1,nlstate+1);        if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
       for(age=bage; age <=fage ;age++){          stratrunc = &(stra[lstra-9]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          num[i]=atol(stratrunc);
         if (popbased==1) {        }
           for(i=1; i<=nlstate;i++)        else
             prlim[i][i]=probs[(int)age][i][k];          num[i]=atol(stra);
         }          
                /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         fprintf(ficrest," %4.0f",age);          printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        i=i+1;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    }
           }    /* printf("ii=%d", ij);
           epj[nlstate+1] +=epj[j];       scanf("%d",i);*/
         }    imx=i-1; /* Number of individuals */
   
         for(i=1, vepp=0.;i <=nlstate;i++)    /* for (i=1; i<=imx; i++){
           for(j=1;j <=nlstate;j++)      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
             vepp += vareij[i][j][(int)age];      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
         for(j=1;j <=nlstate;j++){      }*/
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));     /*  for (i=1; i<=imx; i++){
         }       if (s[4][i]==9)  s[4][i]=-1; 
         fprintf(ficrest,"\n");       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
       }    
     }   for (i=1; i<=imx; i++)
   }   
 free_matrix(mint,1,maxwav,1,n);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);       else weight[i]=1;*/
     free_vector(weight,1,n);  
   fclose(ficreseij);    /* Calculation of the number of parameter from char model*/
   fclose(ficresvij);    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
   fclose(ficrest);    Tprod=ivector(1,15); 
   fclose(ficpar);    Tvaraff=ivector(1,15); 
   free_vector(epj,1,nlstate+1);    Tvard=imatrix(1,15,1,2);
      Tage=ivector(1,15);      
   /*------- Variance limit prevalence------*/       
     if (strlen(model) >1){ /* If there is at least 1 covariate */
   strcpy(fileresvpl,"vpl");      j=0, j1=0, k1=1, k2=1;
   strcat(fileresvpl,fileres);      j=nbocc(model,'+'); /* j=Number of '+' */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      j1=nbocc(model,'*'); /* j1=Number of '*' */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      cptcovn=j+1; 
     exit(0);      cptcovprod=j1; /*Number of products */
   }      
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
   k=0;        printf("Error. Non available option model=%s ",model);
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficlog,"Error. Non available option model=%s ",model);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        goto end;
       k=k+1;      }
       fprintf(ficresvpl,"\n#****** ");      
       for(j=1;j<=cptcoveff;j++)      /* This loop fills the array Tvar from the string 'model'.*/
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");      for(i=(j+1); i>=1;i--){
              cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
       oldm=oldms;savm=savms;        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        /*scanf("%d",i);*/
     }        if (strchr(strb,'*')) {  /* Model includes a product */
  }          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
   fclose(ficresvpl);            cptcovprod--;
             cutv(strb,stre,strd,'V');
   /*---------- End : free ----------------*/            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            cptcovage++;
                Tage[cptcovage]=i;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              /*printf("stre=%s ", stre);*/
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
            else if (strcmp(strd,"age")==0) { /* or age*Vn */
              cptcovprod--;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            cutv(strb,stre,strc,'V');
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            Tvar[i]=atoi(stre);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            cptcovage++;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            Tage[cptcovage]=i;
            }
   free_matrix(matcov,1,npar,1,npar);          else {  /* Age is not in the model */
   free_vector(delti,1,npar);            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
   free_matrix(agev,1,maxwav,1,imx);            Tvar[i]=ncovcol+k1;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
   fprintf(fichtm,"\n</body>");            Tvard[k1][1]=atoi(strc); /* m*/
   fclose(fichtm);            Tvard[k1][2]=atoi(stre); /* n */
   fclose(ficgp);            Tvar[cptcovn+k2]=Tvard[k1][1];
              Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
   if(erreur >0){              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
     printf("End of Imach with error or warning %d\n",erreur);            k1++;
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);            k2=k2+2;
   }else{          }
    printf("End of Imach\n");        }
    fprintf(ficlog,"End of Imach\n");        else { /* no more sum */
   }          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
   printf("See log file on %s\n",filelog);         /*  scanf("%d",i);*/
   fclose(ficlog);        cutv(strd,strc,strb,'V');
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        Tvar[i]=atoi(strc);
          }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        strcpy(modelsav,stra);  
   /*printf("Total time was %d uSec.\n", total_usecs);*/        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
   /*------ End -----------*/          scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
  end:    
 #ifdef windows    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
   /* chdir(pathcd);*/      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 #endif  
  /*system("wgnuplot graph.plt");*/    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
  /*system("../gp37mgw/wgnuplot graph.plt");*/    printf("cptcovprod=%d ", cptcovprod);
  /*system("cd ../gp37mgw");*/    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);    scanf("%d ",i);
  strcat(plotcmd," ");    fclose(fic);*/
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);      /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
 #ifdef windows      for(i=1;i<=n;i++) weight[i]=1.0;
   while (z[0] != 'q') {    }
     /* chdir(path); */      /*-calculation of age at interview from date of interview and age at death -*/
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    agev=matrix(1,maxwav,1,imx);
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    for (i=1; i<=imx; i++) {
     else if (z[0] == 'e') system(optionfilehtm);      for(m=2; (m<= maxwav); m++) {
     else if (z[0] == 'g') system(plotcmd);        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
     else if (z[0] == 'q') exit(0);          anint[m][i]=9999;
   }          s[m][i]=-1;
 #endif        }
 }        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get ipmx number of contributions and sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",\
             version,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.52  
changed lines
  Added in v.1.85


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>