Diff for /imach/src/imach.c between versions 1.86 and 1.125

version 1.86, 2003/06/17 20:04:08 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): Change position of html and gnuplot routines and added    Errors in calculation of health expectancies. Age was not initialized.
   routine fileappend.    Forecasting file added.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.124  2006/03/22 17:13:53  lievre
   * imach.c (Repository): Check when date of death was earlier that    Parameters are printed with %lf instead of %f (more numbers after the comma).
   current date of interview. It may happen when the death was just    The log-likelihood is printed in the log file
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Revision 1.123  2006/03/20 10:52:43  brouard
   assuming that the date of death was just one stepm after the    * imach.c (Module): <title> changed, corresponds to .htm file
   interview.    name. <head> headers where missing.
   (Repository): Because some people have very long ID (first column)  
   we changed int to long in num[] and we added a new lvector for    * imach.c (Module): Weights can have a decimal point as for
   memory allocation. But we also truncated to 8 characters (left    English (a comma might work with a correct LC_NUMERIC environment,
   truncation)    otherwise the weight is truncated).
   (Repository): No more line truncation errors.    Modification of warning when the covariates values are not 0 or
     1.
   Revision 1.84  2003/06/13 21:44:43  brouard    Version 0.98g
   * imach.c (Repository): Replace "freqsummary" at a correct  
   place. It differs from routine "prevalence" which may be called    Revision 1.122  2006/03/20 09:45:41  brouard
   many times. Probs is memory consuming and must be used with    (Module): Weights can have a decimal point as for
   parcimony.    English (a comma might work with a correct LC_NUMERIC environment,
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.83  2003/06/10 13:39:11  lievre    1.
   *** empty log message ***    Version 0.98g
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.121  2006/03/16 17:45:01  lievre
   Add log in  imach.c and  fullversion number is now printed.    * imach.c (Module): Comments concerning covariates added
   
 */    * imach.c (Module): refinements in the computation of lli if
 /*    status=-2 in order to have more reliable computation if stepm is
    Interpolated Markov Chain    not 1 month. Version 0.98f
   
   Short summary of the programme:    Revision 1.120  2006/03/16 15:10:38  lievre
       (Module): refinements in the computation of lli if
   This program computes Healthy Life Expectancies from    status=-2 in order to have more reliable computation if stepm is
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    not 1 month. Version 0.98f
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.119  2006/03/15 17:42:26  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Bug if status = -2, the loglikelihood was
   second wave of interviews ("longitudinal") which measure each change    computed as likelihood omitting the logarithm. Version O.98e
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.118  2006/03/14 18:20:07  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): varevsij Comments added explaining the second
   Maximum Likelihood of the parameters involved in the model.  The    table of variances if popbased=1 .
   simplest model is the multinomial logistic model where pij is the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   probability to be observed in state j at the second wave    (Module): Function pstamp added
   conditional to be observed in state i at the first wave. Therefore    (Module): Version 0.98d
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.117  2006/03/14 17:16:22  brouard
   complex model than "constant and age", you should modify the program    (Module): varevsij Comments added explaining the second
   where the markup *Covariates have to be included here again* invites    table of variances if popbased=1 .
   you to do it.  More covariates you add, slower the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   convergence.    (Module): Function pstamp added
     (Module): Version 0.98d
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.116  2006/03/06 10:29:27  brouard
   identical for each individual. Also, if a individual missed an    (Module): Variance-covariance wrong links and
   intermediate interview, the information is lost, but taken into    varian-covariance of ej. is needed (Saito).
   account using an interpolation or extrapolation.    
     Revision 1.115  2006/02/27 12:17:45  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): One freematrix added in mlikeli! 0.98c
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.114  2006/02/26 12:57:58  brouard
   states. This elementary transition (by month, quarter,    (Module): Some improvements in processing parameter
   semester or year) is modelled as a multinomial logistic.  The hPx    filename with strsep.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.113  2006/02/24 14:20:24  brouard
   hPijx.    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   Also this programme outputs the covariance matrix of the parameters but also    allocation too.
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.112  2006/01/30 09:55:26  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Back to gnuplot.exe instead of wgnuplot.exe
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.111  2006/01/25 20:38:18  brouard
   from the European Union.    (Module): Lots of cleaning and bugs added (Gompertz)
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Comments can be added in data file. Missing date values
   software can be distributed freely for non commercial use. Latest version    can be a simple dot '.'.
   can be accessed at http://euroreves.ined.fr/imach .  
     Revision 1.110  2006/01/25 00:51:50  brouard
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    (Module): Lots of cleaning and bugs added (Gompertz)
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
       Revision 1.109  2006/01/24 19:37:15  brouard
   **********************************************************************/    (Module): Comments (lines starting with a #) are allowed in data.
 /*  
   main    Revision 1.108  2006/01/19 18:05:42  lievre
   read parameterfile    Gnuplot problem appeared...
   read datafile    To be fixed
   concatwav  
   freqsummary    Revision 1.107  2006/01/19 16:20:37  brouard
   if (mle >= 1)    Test existence of gnuplot in imach path
     mlikeli  
   print results files    Revision 1.106  2006/01/19 13:24:36  brouard
   if mle==1     Some cleaning and links added in html output
      computes hessian  
   read end of parameter file: agemin, agemax, bage, fage, estepm    Revision 1.105  2006/01/05 20:23:19  lievre
       begin-prev-date,...    *** empty log message ***
   open gnuplot file  
   open html file    Revision 1.104  2005/09/30 16:11:43  lievre
   stable prevalence    (Module): sump fixed, loop imx fixed, and simplifications.
    for age prevalim()    (Module): If the status is missing at the last wave but we know
   h Pij x    that the person is alive, then we can code his/her status as -2
   variance of p varprob    (instead of missing=-1 in earlier versions) and his/her
   forecasting if prevfcast==1 prevforecast call prevalence()    contributions to the likelihood is 1 - Prob of dying from last
   health expectancies    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   Variance-covariance of DFLE    the healthy state at last known wave). Version is 0.98
   prevalence()  
    movingaverage()    Revision 1.103  2005/09/30 15:54:49  lievre
   varevsij()     (Module): sump fixed, loop imx fixed, and simplifications.
   if popbased==1 varevsij(,popbased)  
   total life expectancies    Revision 1.102  2004/09/15 17:31:30  brouard
   Variance of stable prevalence    Add the possibility to read data file including tab characters.
  end  
 */    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   
     Revision 1.100  2004/07/12 18:29:06  brouard
      Add version for Mac OS X. Just define UNIX in Makefile
 #include <math.h>  
 #include <stdio.h>    Revision 1.99  2004/06/05 08:57:40  brouard
 #include <stdlib.h>    *** empty log message ***
 #include <unistd.h>  
     Revision 1.98  2004/05/16 15:05:56  brouard
 #include <sys/time.h>    New version 0.97 . First attempt to estimate force of mortality
 #include <time.h>    directly from the data i.e. without the need of knowing the health
 #include "timeval.h"    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 #define MAXLINE 256    other analysis, in order to test if the mortality estimated from the
 #define GNUPLOTPROGRAM "gnuplot"    cross-longitudinal survey is different from the mortality estimated
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    from other sources like vital statistic data.
 #define FILENAMELENGTH 132  
 /*#define DEBUG*/    The same imach parameter file can be used but the option for mle should be -3.
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Agnès, who wrote this part of the code, tried to keep most of the
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    former routines in order to include the new code within the former code.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    The output is very simple: only an estimate of the intercept and of
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    the slope with 95% confident intervals.
   
 #define NINTERVMAX 8    Current limitations:
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    A) Even if you enter covariates, i.e. with the
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define NCOVMAX 8 /* Maximum number of covariates */    B) There is no computation of Life Expectancy nor Life Table.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.97  2004/02/20 13:25:42  lievre
 #define AGESUP 130    Version 0.96d. Population forecasting command line is (temporarily)
 #define AGEBASE 40    suppressed.
 #ifdef unix  
 #define DIRSEPARATOR '/'    Revision 1.96  2003/07/15 15:38:55  brouard
 #define ODIRSEPARATOR '\\'    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #else    rewritten within the same printf. Workaround: many printfs.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.95  2003/07/08 07:54:34  brouard
 #endif    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 /* $Id$ */    matrix (cov(a12,c31) instead of numbers.
 /* $State$ */  
     Revision 1.94  2003/06/27 13:00:02  brouard
 char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";    Just cleaning
 char fullversion[]="$Revision$ $Date$";   
 int erreur; /* Error number */    Revision 1.93  2003/06/25 16:33:55  brouard
 int nvar;    (Module): On windows (cygwin) function asctime_r doesn't
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    exist so I changed back to asctime which exists.
 int npar=NPARMAX;    (Module): Version 0.96b
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.92  2003/06/25 16:30:45  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): On windows (cygwin) function asctime_r doesn't
 int popbased=0;    exist so I changed back to asctime which exists.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.91  2003/06/25 15:30:29  brouard
 int maxwav; /* Maxim number of waves */    * imach.c (Repository): Duplicated warning errors corrected.
 int jmin, jmax; /* min, max spacing between 2 waves */    (Repository): Elapsed time after each iteration is now output. It
 int mle, weightopt;    helps to forecast when convergence will be reached. Elapsed time
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    is stamped in powell.  We created a new html file for the graphs
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    concerning matrix of covariance. It has extension -cov.htm.
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    Revision 1.90  2003/06/24 12:34:15  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Some bugs corrected for windows. Also, when
 double **oldm, **newm, **savm; /* Working pointers to matrices */    mle=-1 a template is output in file "or"mypar.txt with the design
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    of the covariance matrix to be input.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;    Revision 1.89  2003/06/24 12:30:52  brouard
 int globpr; /* Global variable for printing or not */    (Module): Some bugs corrected for windows. Also, when
 double fretone; /* Only one call to likelihood */    mle=-1 a template is output in file "or"mypar.txt with the design
 long ipmx; /* Number of contributions */    of the covariance matrix to be input.
 double sw; /* Sum of weights */  
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    Revision 1.88  2003/06/23 17:54:56  brouard
 FILE *ficresilk;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Revision 1.87  2003/06/18 12:26:01  brouard
 FILE *fichtm; /* Html File */    Version 0.96
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.86  2003/06/17 20:04:08  brouard
 FILE  *ficresvij;    (Module): Change position of html and gnuplot routines and added
 char fileresv[FILENAMELENGTH];    routine fileappend.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.85  2003/06/17 13:12:43  brouard
 char title[MAXLINE];    * imach.c (Repository): Check when date of death was earlier that
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    current date of interview. It may happen when the death was just
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    assuming that the date of death was just one stepm after the
 char filelog[FILENAMELENGTH]; /* Log file */    interview.
 char filerest[FILENAMELENGTH];    (Repository): Because some people have very long ID (first column)
 char fileregp[FILENAMELENGTH];    we changed int to long in num[] and we added a new lvector for
 char popfile[FILENAMELENGTH];    memory allocation. But we also truncated to 8 characters (left
     truncation)
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Repository): No more line truncation errors.
   
 #define NR_END 1    Revision 1.84  2003/06/13 21:44:43  brouard
 #define FREE_ARG char*    * imach.c (Repository): Replace "freqsummary" at a correct
 #define FTOL 1.0e-10    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 #define NRANSI     parcimony.
 #define ITMAX 200     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 #define TOL 2.0e-4     Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define CGOLD 0.3819660   
 #define ZEPS 1.0e-10     Revision 1.82  2003/06/05 15:57:20  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     Add log in  imach.c and  fullversion number is now printed.
   
 #define GOLD 1.618034   */
 #define GLIMIT 100.0   /*
 #define TINY 1.0e-20      Interpolated Markov Chain
   
 static double maxarg1,maxarg2;    Short summary of the programme:
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))   
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    This program computes Healthy Life Expectancies from
       cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    first survey ("cross") where individuals from different ages are
 #define rint(a) floor(a+0.5)    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 static double sqrarg;    second wave of interviews ("longitudinal") which measure each change
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (if any) in individual health status.  Health expectancies are
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 int imx;     Maximum Likelihood of the parameters involved in the model.  The
 int stepm;    simplest model is the multinomial logistic model where pij is the
 /* Stepm, step in month: minimum step interpolation*/    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 int estepm;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 int m,nb;    where the markup *Covariates have to be included here again* invites
 long *num;    you to do it.  More covariates you add, slower the
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    convergence.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs;    The advantage of this computer programme, compared to a simple
 double dateintmean=0;    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 double *weight;    intermediate interview, the information is lost, but taken into
 int **s; /* Status */    account using an interpolation or extrapolation.  
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    split into an exact number (nh*stepm) of unobserved intermediate
 double ftolhess; /* Tolerance for computing hessian */    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /**************** split *************************/    matrix is simply the matrix product of nh*stepm elementary matrices
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    and the contribution of each individual to the likelihood is simply
 {    hPijx.
   char  *ss;                            /* pointer */  
   int   l1, l2;                         /* length counters */    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence.
   l1 = strlen(path );                   /* length of path */   
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */             Institut national d'études démographiques, Paris.
   if ( ss == NULL ) {                   /* no directory, so use current */    This software have been partly granted by Euro-REVES, a concerted action
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    from the European Union.
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    It is copyrighted identically to a GNU software product, ie programme and
     /* get current working directory */    software can be distributed freely for non commercial use. Latest version
     /*    extern  char* getcwd ( char *buf , int len);*/    can be accessed at http://euroreves.ined.fr/imach .
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
       return( GLOCK_ERROR_GETCWD );    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     strcpy( name, path );               /* we've got it */   
   } else {                              /* strip direcotry from path */    **********************************************************************/
     ss++;                               /* after this, the filename */  /*
     l2 = strlen( ss );                  /* length of filename */    main
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    read parameterfile
     strcpy( name, ss );         /* save file name */    read datafile
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    concatwav
     dirc[l1-l2] = 0;                    /* add zero */    freqsummary
   }    if (mle >= 1)
   l1 = strlen( dirc );                  /* length of directory */      mlikeli
   /*#ifdef windows    print results files
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    if mle==1
 #else       computes hessian
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    read end of parameter file: agemin, agemax, bage, fage, estepm
 #endif        begin-prev-date,...
   */    open gnuplot file
   ss = strrchr( name, '.' );            /* find last / */    open html file
   ss++;    period (stable) prevalence
   strcpy(ext,ss);                       /* save extension */     for age prevalim()
   l1= strlen( name);    h Pij x
   l2= strlen(ss)+1;    variance of p varprob
   strncpy( finame, name, l1-l2);    forecasting if prevfcast==1 prevforecast call prevalence()
   finame[l1-l2]= 0;    health expectancies
   return( 0 );                          /* we're done */    Variance-covariance of DFLE
 }    prevalence()
      movingaverage()
     varevsij()
 /******************************************/    if popbased==1 varevsij(,popbased)
     total life expectancies
 void replace(char *s, char*t)    Variance of period (stable) prevalence
 {   end
   int i;  */
   int lg=20;  
   i=0;  
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {   
     (s[i] = t[i]);  #include <math.h>
     if (t[i]== '\\') s[i]='/';  #include <stdio.h>
   }  #include <stdlib.h>
 }  #include <string.h>
   #include <unistd.h>
 int nbocc(char *s, char occ)  
 {  #include <limits.h>
   int i,j=0;  #include <sys/types.h>
   int lg=20;  #include <sys/stat.h>
   i=0;  #include <errno.h>
   lg=strlen(s);  extern int errno;
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  /* #include <sys/time.h> */
   }  #include <time.h>
   return j;  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 void cutv(char *u,char *v, char*t, char occ)  /* #define _(String) gettext (String) */
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it  #define MAXLINE 256
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */  #define GNUPLOTPROGRAM "gnuplot"
   int i,lg,j,p=0;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   i=0;  #define FILENAMELENGTH 132
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
   lg=strlen(t);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for(j=0; j<p; j++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     (u[j] = t[j]);  
   }  #define NINTERVMAX 8
      u[p]='\0';  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    for(j=0; j<= lg; j++) {  #define NCOVMAX 8 /* Maximum number of covariates */
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define MAXN 20000
   }  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
   #define AGEBASE 40
 /********************** nrerror ********************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 void nrerror(char error_text[])  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   fprintf(stderr,"ERREUR ...\n");  #define ODIRSEPARATOR '\\'
   fprintf(stderr,"%s\n",error_text);  #else
   exit(EXIT_FAILURE);  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
 /*********************** vector *******************/  #define ODIRSEPARATOR '/'
 double *vector(int nl, int nh)  #endif
 {  
   double *v;  /* $Id$ */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /* $State$ */
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 }  char fullversion[]="$Revision$ $Date$";
   char strstart[80];
 /************************ free vector ******************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   free((FREE_ARG)(v+nl-NR_END));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /************************ivector *******************************/  int ndeath=1; /* Number of dead states */
 int *ivector(long nl,long nh)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int *wav; /* Number of waves for this individuual 0 is possible */
   if (!v) nrerror("allocation failure in ivector");  int maxwav; /* Maxim number of waves */
   return v-nl+NR_END;  int jmin, jmax; /* min, max spacing between 2 waves */
 }  int ijmin, ijmax; /* Individuals having jmin and jmax */
   int gipmx, gsw; /* Global variables on the number of contributions
 /******************free ivector **************************/                     to the likelihood and the sum of weights (done by funcone)*/
 void free_ivector(int *v, long nl, long nh)  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free((FREE_ARG)(v+nl-NR_END));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /************************lvector *******************************/  double jmean; /* Mean space between 2 waves */
 long *lvector(long nl,long nh)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   long *v;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  FILE *ficlog, *ficrespow;
   if (!v) nrerror("allocation failure in ivector");  int globpr; /* Global variable for printing or not */
   return v-nl+NR_END;  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 /******************free lvector **************************/  char filerespow[FILENAMELENGTH];
 void free_lvector(long *v, long nl, long nh)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 /******************* imatrix *******************************/  FILE *ficreseij;
 int **imatrix(long nrl, long nrh, long ncl, long nch)   char filerese[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   FILE *ficresstdeij;
 {   char fileresstde[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   FILE *ficrescveij;
   int **m;   char filerescve[FILENAMELENGTH];
     FILE  *ficresvij;
   /* allocate pointers to rows */   char fileresv[FILENAMELENGTH];
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   FILE  *ficresvpl;
   if (!m) nrerror("allocation failure 1 in matrix()");   char fileresvpl[FILENAMELENGTH];
   m += NR_END;   char title[MAXLINE];
   m -= nrl;   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   /* allocate rows and set pointers to them */   char command[FILENAMELENGTH];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   int  outcmd=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   
   m[nrl] += NR_END;   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m[nrl] -= ncl;   
     char filelog[FILENAMELENGTH]; /* Log file */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   char filerest[FILENAMELENGTH];
     char fileregp[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */   char popfile[FILENAMELENGTH];
   return m;   
 }   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 /****************** free_imatrix *************************/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 void free_imatrix(m,nrl,nrh,ncl,nch)  struct timezone tzp;
       int **m;  extern int gettimeofday();
       long nch,ncl,nrh,nrl;   struct tm tmg, tm, tmf, *gmtime(), *localtime();
      /* free an int matrix allocated by imatrix() */   long time_value;
 {   extern long time();
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   char strcurr[80], strfor[80];
   free((FREE_ARG) (m+nrl-NR_END));   
 }   char *endptr;
   long lval;
 /******************* matrix *******************************/  double dval;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  #define NR_END 1
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define FREE_ARG char*
   double **m;  #define FTOL 1.0e-10
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NRANSI
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ITMAX 200
   m += NR_END;  
   m -= nrl;  #define TOL 2.0e-4
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define CGOLD 0.3819660
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define ZEPS 1.0e-10
   m[nrl] += NR_END;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   m[nrl] -= ncl;  
   #define GOLD 1.618034
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define GLIMIT 100.0
   return m;  #define TINY 1.0e-20
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   
    */  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /*************************free matrix ************************/   
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
 /******************* ma3x *******************************/  int agegomp= AGEGOMP;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  int imx;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int stepm=1;
   double ***m;  /* Stepm, step in month: minimum step interpolation*/
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int estepm;
   if (!m) nrerror("allocation failure 1 in matrix()");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m += NR_END;  
   m -= nrl;  int m,nb;
   long *num;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m[nrl] += NR_END;  double **pmmij, ***probs;
   m[nrl] -= ncl;  double *ageexmed,*agecens;
   double dateintmean=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   double *weight;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int **s; /* Status */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  double *agedc, **covar, idx;
   m[nrl][ncl] += NR_END;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl][ncl] -= nll;  double *lsurv, *lpop, *tpop;
   for (j=ncl+1; j<=nch; j++)   
     m[nrl][j]=m[nrl][j-1]+nlay;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     double ftolhess; /* Tolerance for computing hessian */
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /**************** split *************************/
     for (j=ncl+1; j<=nch; j++)   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       m[i][j]=m[i][j-1]+nlay;  {
   }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   return m;        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    */
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    char  *ss;                            /* pointer */
   */    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 /*************************free ma3x ************************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      strcpy( name, path );               /* we got the fullname name because no directory */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   free((FREE_ARG)(m+nrl-NR_END));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /***************** f1dim *************************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 extern int ncom;         return( GLOCK_ERROR_GETCWD );
 extern double *pcom,*xicom;      }
 extern double (*nrfunc)(double []);       /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
 double f1dim(double x)     } else {                              /* strip direcotry from path */
 {       ss++;                               /* after this, the filename */
   int j;       l2 = strlen( ss );                  /* length of filename */
   double f;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double *xt;       strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
   xt=vector(1,ncom);       dirc[l1-l2] = 0;                    /* add zero */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];       printf(" DIRC2 = %s \n",dirc);
   f=(*nrfunc)(xt);     }
   free_vector(xt,1,ncom);     /* We add a separator at the end of dirc if not exists */
   return f;     l1 = strlen( dirc );                  /* length of directory */
 }     if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /*****************brent *************************/      dirc[l1+1] = 0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)       printf(" DIRC3 = %s \n",dirc);
 {     }
   int iter;     ss = strrchr( name, '.' );            /* find last / */
   double a,b,d,etemp;    if (ss >0){
   double fu,fv,fw,fx;      ss++;
   double ftemp;      strcpy(ext,ss);                     /* save extension */
   double p,q,r,tol1,tol2,u,v,w,x,xm;       l1= strlen( name);
   double e=0.0;       l2= strlen(ss)+1;
        strncpy( finame, name, l1-l2);
   a=(ax < cx ? ax : cx);       finame[l1-l2]= 0;
   b=(ax > cx ? ax : cx);     }
   x=w=v=bx;   
   fw=fv=fx=(*f)(x);     return( 0 );                          /* we're done */
   for (iter=1;iter<=ITMAX;iter++) {   }
     xm=0.5*(a+b);   
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /******************************************/
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  void replace_back_to_slash(char *s, char*t)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int i;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int lg=0;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    i=0;
 #endif    lg=strlen(t);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     for(i=0; i<= lg; i++) {
       *xmin=x;       (s[i] = t[i]);
       return fx;       if (t[i]== '\\') s[i]='/';
     }     }
     ftemp=fu;  }
     if (fabs(e) > tol1) {   
       r=(x-w)*(fx-fv);   int nbocc(char *s, char occ)
       q=(x-v)*(fx-fw);   {
       p=(x-v)*q-(x-w)*r;     int i,j=0;
       q=2.0*(q-r);     int lg=20;
       if (q > 0.0) p = -p;     i=0;
       q=fabs(q);     lg=strlen(s);
       etemp=e;     for(i=0; i<= lg; i++) {
       e=d;     if  (s[i] == occ ) j++;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     return j;
       else {   }
         d=p/q;   
         u=x+d;   void cutv(char *u,char *v, char*t, char occ)
         if (u-a < tol2 || b-u < tol2)   {
           d=SIGN(tol1,xm-x);     /* cuts string t into u and v where u ends before first occurence of char 'occ'
       }        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     } else {        gives u="abcedf" and v="ghi2j" */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     int i,lg,j,p=0;
     }     i=0;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     for(j=0; j<=strlen(t)-1; j++) {
     fu=(*f)(u);       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     if (fu <= fx) {     }
       if (u >= x) a=x; else b=x;   
       SHFT(v,w,x,u)     lg=strlen(t);
         SHFT(fv,fw,fx,fu)     for(j=0; j<p; j++) {
         } else {       (u[j] = t[j]);
           if (u < x) a=u; else b=u;     }
           if (fu <= fw || w == x) {        u[p]='\0';
             v=w;   
             w=u;      for(j=0; j<= lg; j++) {
             fv=fw;       if (j>=(p+1))(v[j-p-1] = t[j]);
             fw=fu;     }
           } else if (fu <= fv || v == x || v == w) {   }
             v=u;   
             fv=fu;   /********************** nrerror ********************/
           }   
         }   void nrerror(char error_text[])
   }   {
   nrerror("Too many iterations in brent");     fprintf(stderr,"ERREUR ...\n");
   *xmin=x;     fprintf(stderr,"%s\n",error_text);
   return fx;     exit(EXIT_FAILURE);
 }   }
   /*********************** vector *******************/
 /****************** mnbrak ***********************/  double *vector(int nl, int nh)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     double *v;
             double (*func)(double))     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {     if (!v) nrerror("allocation failure in vector");
   double ulim,u,r,q, dum;    return v-nl+NR_END;
   double fu;   }
    
   *fa=(*func)(*ax);   /************************ free vector ******************/
   *fb=(*func)(*bx);   void free_vector(double*v, int nl, int nh)
   if (*fb > *fa) {   {
     SHFT(dum,*ax,*bx,dum)     free((FREE_ARG)(v+nl-NR_END));
       SHFT(dum,*fb,*fa,dum)   }
       }   
   *cx=(*bx)+GOLD*(*bx-*ax);   /************************ivector *******************************/
   *fc=(*func)(*cx);   int *ivector(long nl,long nh)
   while (*fb > *fc) {   {
     r=(*bx-*ax)*(*fb-*fc);     int *v;
     q=(*bx-*cx)*(*fb-*fa);     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     if (!v) nrerror("allocation failure in ivector");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     return v-nl+NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);   }
     if ((*bx-u)*(u-*cx) > 0.0) {   
       fu=(*func)(u);   /******************free ivector **************************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {   void free_ivector(int *v, long nl, long nh)
       fu=(*func)(u);   {
       if (fu < *fc) {     free((FREE_ARG)(v+nl-NR_END));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   }
           SHFT(*fb,*fc,fu,(*func)(u))   
           }   /************************lvector *******************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   long *lvector(long nl,long nh)
       u=ulim;   {
       fu=(*func)(u);     long *v;
     } else {     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       u=(*cx)+GOLD*(*cx-*bx);     if (!v) nrerror("allocation failure in ivector");
       fu=(*func)(u);     return v-nl+NR_END;
     }   }
     SHFT(*ax,*bx,*cx,u)   
       SHFT(*fa,*fb,*fc,fu)   /******************free lvector **************************/
       }   void free_lvector(long *v, long nl, long nh)
 }   {
     free((FREE_ARG)(v+nl-NR_END));
 /*************** linmin ************************/  }
   
 int ncom;   /******************* imatrix *******************************/
 double *pcom,*xicom;  int **imatrix(long nrl, long nrh, long ncl, long nch)
 double (*nrfunc)(double []);        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
 {     int **m;
   double brent(double ax, double bx, double cx,    
                double (*f)(double), double tol, double *xmin);     /* allocate pointers to rows */
   double f1dim(double x);     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     if (!m) nrerror("allocation failure 1 in matrix()");
               double *fc, double (*func)(double));     m += NR_END;
   int j;     m -= nrl;
   double xx,xmin,bx,ax;    
   double fx,fb,fa;   
      /* allocate rows and set pointers to them */
   ncom=n;     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   pcom=vector(1,n);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   xicom=vector(1,n);     m[nrl] += NR_END;
   nrfunc=func;     m[nrl] -= ncl;
   for (j=1;j<=n;j++) {    
     pcom[j]=p[j];     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
     xicom[j]=xi[j];    
   }     /* return pointer to array of pointers to rows */
   ax=0.0;     return m;
   xx=1.0;   }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   /****************** free_imatrix *************************/
 #ifdef DEBUG  void free_imatrix(m,nrl,nrh,ncl,nch)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        int **m;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        long nch,ncl,nrh,nrl;
 #endif       /* free an int matrix allocated by imatrix() */
   for (j=1;j<=n;j++) {   {
     xi[j] *= xmin;     free((FREE_ARG) (m[nrl]+ncl-NR_END));
     p[j] += xi[j];     free((FREE_ARG) (m+nrl-NR_END));
   }   }
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);   /******************* matrix *******************************/
 }   double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 /*************** powell ************************/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     double **m;
             double (*func)(double []))   
 {     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   void linmin(double p[], double xi[], int n, double *fret,     if (!m) nrerror("allocation failure 1 in matrix()");
               double (*func)(double []));     m += NR_END;
   int i,ibig,j;     m -= nrl;
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double *xits;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   pt=vector(1,n);     m[nrl] += NR_END;
   ptt=vector(1,n);     m[nrl] -= ncl;
   xit=vector(1,n);   
   xits=vector(1,n);     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   *fret=(*func)(p);     return m;
   for (j=1;j<=n;j++) pt[j]=p[j];     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   for (*iter=1;;++(*iter)) {      */
     fp=(*fret);   }
     ibig=0;   
     del=0.0;   /*************************free matrix ************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     fprintf(ficrespow,"%d %.12f",*iter,*fret);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (i=1;i<=n;i++) {    free((FREE_ARG)(m+nrl-NR_END));
       printf(" %d %.12f",i, p[i]);  }
       fprintf(ficlog," %d %.12lf",i, p[i]);  
       fprintf(ficrespow," %.12lf", p[i]);  /******************* ma3x *******************************/
     }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     printf("\n");  {
     fprintf(ficlog,"\n");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     fprintf(ficrespow,"\n");    double ***m;
     for (i=1;i<=n;i++) {   
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fptt=(*fret);     if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
       printf("fret=%lf \n",*fret);    m -= nrl;
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("%d",i);fflush(stdout);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fprintf(ficlog,"%d",i);fflush(ficlog);    m[nrl] += NR_END;
       linmin(p,xit,n,fret,func);     m[nrl] -= ncl;
       if (fabs(fptt-(*fret)) > del) {   
         del=fabs(fptt-(*fret));     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         ibig=i;   
       }     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       printf("%d %.12e",i,(*fret));    m[nrl][ncl] += NR_END;
       fprintf(ficlog,"%d %.12e",i,(*fret));    m[nrl][ncl] -= nll;
       for (j=1;j<=n;j++) {    for (j=ncl+1; j<=nch; j++)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      m[nrl][j]=m[nrl][j-1]+nlay;
         printf(" x(%d)=%.12e",j,xit[j]);   
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    for (i=nrl+1; i<=nrh; i++) {
       }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for(j=1;j<=n;j++) {      for (j=ncl+1; j<=nch; j++)
         printf(" p=%.12e",p[j]);        m[i][j]=m[i][j-1]+nlay;
         fprintf(ficlog," p=%.12e",p[j]);    }
       }    return m;
       printf("\n");    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       fprintf(ficlog,"\n");             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 #endif    */
     }   }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /*************************free ma3x ************************/
       int k[2],l;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       k[0]=1;  {
       k[1]=-1;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       printf("Max: %.12e",(*func)(p));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fprintf(ficlog,"Max: %.12e",(*func)(p));    free((FREE_ARG)(m+nrl-NR_END));
       for (j=1;j<=n;j++) {  }
         printf(" %.12e",p[j]);  
         fprintf(ficlog," %.12e",p[j]);  /*************** function subdirf ***********/
       }  char *subdirf(char fileres[])
       printf("\n");  {
       fprintf(ficlog,"\n");    /* Caution optionfilefiname is hidden */
       for(l=0;l<=1;l++) {    strcpy(tmpout,optionfilefiname);
         for (j=1;j<=n;j++) {    strcat(tmpout,"/"); /* Add to the right */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcat(tmpout,fileres);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return tmpout;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*************** function subdirf2 ***********/
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char *subdirf2(char fileres[], char *preop)
       }  {
 #endif   
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
       free_vector(xit,1,n);     strcat(tmpout,"/");
       free_vector(xits,1,n);     strcat(tmpout,preop);
       free_vector(ptt,1,n);     strcat(tmpout,fileres);
       free_vector(pt,1,n);     return tmpout;
       return;   }
     }   
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");   /*************** function subdirf3 ***********/
     for (j=1;j<=n;j++) {   char *subdirf3(char fileres[], char *preop, char *preop2)
       ptt[j]=2.0*p[j]-pt[j];   {
       xit[j]=p[j]-pt[j];    
       pt[j]=p[j];     /* Caution optionfilefiname is hidden */
     }     strcpy(tmpout,optionfilefiname);
     fptt=(*func)(ptt);     strcat(tmpout,"/");
     if (fptt < fp) {     strcat(tmpout,preop);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);     strcat(tmpout,preop2);
       if (t < 0.0) {     strcat(tmpout,fileres);
         linmin(p,xit,n,fret,func);     return tmpout;
         for (j=1;j<=n;j++) {   }
           xi[j][ibig]=xi[j][n];   
           xi[j][n]=xit[j];   /***************** f1dim *************************/
         }  extern int ncom;
 #ifdef DEBUG  extern double *pcom,*xicom;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  extern double (*nrfunc)(double []);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);   
         for(j=1;j<=n;j++){  double f1dim(double x)
           printf(" %.12e",xit[j]);  {
           fprintf(ficlog," %.12e",xit[j]);    int j;
         }    double f;
         printf("\n");    double *xt;
         fprintf(ficlog,"\n");   
 #endif    xt=vector(1,ncom);
       }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
     }     f=(*nrfunc)(xt);
   }     free_vector(xt,1,ncom);
 }     return f;
   }
 /**** Prevalence limit (stable prevalence)  ****************/  
   /*****************brent *************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    int iter;
      matrix by transitions matrix until convergence is reached */    double a,b,d,etemp;
     double fu,fv,fw,fx;
   int i, ii,j,k;    double ftemp;
   double min, max, maxmin, maxmax,sumnew=0.;    double p,q,r,tol1,tol2,u,v,w,x,xm;
   double **matprod2();    double e=0.0;
   double **out, cov[NCOVMAX], **pmij();   
   double **newm;    a=(ax < cx ? ax : cx);
   double agefin, delaymax=50 ; /* Max number of years to converge */    b=(ax > cx ? ax : cx);
     x=w=v=bx;
   for (ii=1;ii<=nlstate+ndeath;ii++)    fw=fv=fx=(*f)(x);
     for (j=1;j<=nlstate+ndeath;j++){    for (iter=1;iter<=ITMAX;iter++) {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      xm=0.5*(a+b);
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
    cov[1]=1.;      printf(".");fflush(stdout);
        fprintf(ficlog,".");fflush(ficlog);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #ifdef DEBUG
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     newm=savm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     /* Covariates have to be included here again */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      cov[2]=agefin;  #endif
         if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       for (k=1; k<=cptcovn;k++) {        *xmin=x;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        return fx;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      }
       }      ftemp=fu;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (fabs(e) > tol1) {
       for (k=1; k<=cptcovprod;k++)        r=(x-w)*(fx-fv);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        q=(x-v)*(fx-fw);
         p=(x-v)*q-(x-w)*r;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        q=2.0*(q-r);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        if (q > 0.0) p = -p;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        q=fabs(q);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        etemp=e;
         e=d;
     savm=oldm;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
     oldm=newm;          d=CGOLD*(e=(x >= xm ? a-x : b-x));
     maxmax=0.;        else {
     for(j=1;j<=nlstate;j++){          d=p/q;
       min=1.;          u=x+d;
       max=0.;          if (u-a < tol2 || b-u < tol2)
       for(i=1; i<=nlstate; i++) {            d=SIGN(tol1,xm-x);
         sumnew=0;        }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      } else {
         prlim[i][j]= newm[i][j]/(1-sumnew);        d=CGOLD*(e=(x >= xm ? a-x : b-x));
         max=FMAX(max,prlim[i][j]);      }
         min=FMIN(min,prlim[i][j]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       }      fu=(*f)(u);
       maxmin=max-min;      if (fu <= fx) {
       maxmax=FMAX(maxmax,maxmin);        if (u >= x) a=x; else b=x;
     }        SHFT(v,w,x,u)
     if(maxmax < ftolpl){          SHFT(fv,fw,fx,fu)
       return prlim;          } else {
     }            if (u < x) a=u; else b=u;
   }            if (fu <= fw || w == x) {
 }              v=w;
               w=u;
 /*************** transition probabilities ***************/               fv=fw;
               fw=fu;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            } else if (fu <= fv || v == x || v == w) {
 {              v=u;
   double s1, s2;              fv=fu;
   /*double t34;*/            }
   int i,j,j1, nc, ii, jj;          }
     }
     for(i=1; i<= nlstate; i++){    nrerror("Too many iterations in brent");
     for(j=1; j<i;j++){    *xmin=x;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return fx;
         /*s2 += param[i][j][nc]*cov[nc];*/  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /****************** mnbrak ***********************/
       }  
       ps[i][j]=s2;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/              double (*func)(double))
     }  {
     for(j=i+1; j<=nlstate+ndeath;j++){    double ulim,u,r,q, dum;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double fu;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];   
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    *fa=(*func)(*ax);
       }    *fb=(*func)(*bx);
       ps[i][j]=s2;    if (*fb > *fa) {
     }      SHFT(dum,*ax,*bx,dum)
   }        SHFT(dum,*fb,*fa,dum)
     /*ps[3][2]=1;*/        }
     *cx=(*bx)+GOLD*(*bx-*ax);
   for(i=1; i<= nlstate; i++){    *fc=(*func)(*cx);
      s1=0;    while (*fb > *fc) {
     for(j=1; j<i; j++)      r=(*bx-*ax)*(*fb-*fc);
       s1+=exp(ps[i][j]);      q=(*bx-*cx)*(*fb-*fa);
     for(j=i+1; j<=nlstate+ndeath; j++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
       s1+=exp(ps[i][j]);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
     ps[i][i]=1./(s1+1.);      ulim=(*bx)+GLIMIT*(*cx-*bx);
     for(j=1; j<i; j++)      if ((*bx-u)*(u-*cx) > 0.0) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fu=(*func)(u);
     for(j=i+1; j<=nlstate+ndeath; j++)      } else if ((*cx-u)*(u-ulim) > 0.0) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fu=(*func)(u);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        if (fu < *fc) {
   } /* end i */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
             SHFT(*fb,*fc,fu,(*func)(u))
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            }
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
       ps[ii][jj]=0;        u=ulim;
       ps[ii][ii]=1;        fu=(*func)(u);
     }      } else {
   }        u=(*cx)+GOLD*(*cx-*bx);
         fu=(*func)(u);
       }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      SHFT(*ax,*bx,*cx,u)
     for(jj=1; jj<= nlstate+ndeath; jj++){        SHFT(*fa,*fb,*fc,fu)
      printf("%lf ",ps[ii][jj]);        }
    }  }
     printf("\n ");  
     }  /*************** linmin ************************/
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  int ncom;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  double *pcom,*xicom;
   goto end;*/  double (*nrfunc)(double []);
     return ps;   
 }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   {
 /**************** Product of 2 matrices ******************/    double brent(double ax, double bx, double cx,
                  double (*f)(double), double tol, double *xmin);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double f1dim(double x);
 {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times                double *fc, double (*func)(double));
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    int j;
   /* in, b, out are matrice of pointers which should have been initialized     double xx,xmin,bx,ax;
      before: only the contents of out is modified. The function returns    double fx,fb,fa;
      a pointer to pointers identical to out */   
   long i, j, k;    ncom=n;
   for(i=nrl; i<= nrh; i++)    pcom=vector(1,n);
     for(k=ncolol; k<=ncoloh; k++)    xicom=vector(1,n);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    nrfunc=func;
         out[i][k] +=in[i][j]*b[j][k];    for (j=1;j<=n;j++) {
       pcom[j]=p[j];
   return out;      xicom[j]=xi[j];
 }    }
     ax=0.0;
     xx=1.0;
 /************* Higher Matrix Product ***************/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #ifdef DEBUG
 {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* Computes the transition matrix starting at age 'age' over     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      'nhstepm*hstepm*stepm' months (i.e. until  #endif
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     for (j=1;j<=n;j++) {
      nhstepm*hstepm matrices.       xi[j] *= xmin;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       p[j] += xi[j];
      (typically every 2 years instead of every month which is too big     }
      for the memory).    free_vector(xicom,1,n);
      Model is determined by parameters x and covariates have to be     free_vector(pcom,1,n);
      included manually here.   }
   
      */  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   int i, j, d, h, k;    long sec_left, days, hours, minutes;
   double **out, cov[NCOVMAX];    days = (time_sec) / (60*60*24);
   double **newm;    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
   /* Hstepm could be zero and should return the unit matrix */    sec_left = (sec_left) %(60*60);
   for (i=1;i<=nlstate+ndeath;i++)    minutes = (sec_left) /60;
     for (j=1;j<=nlstate+ndeath;j++){    sec_left = (sec_left) % (60);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);    return ascdiff;
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /*************** powell ************************/
     for(d=1; d <=hstepm; d++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       newm=savm;              double (*func)(double []))
       /* Covariates have to be included here again */  {
       cov[1]=1.;    void linmin(double p[], double xi[], int n, double *fret,
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;                double (*func)(double []));
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    int i,ibig,j;
       for (k=1; k<=cptcovage;k++)    double del,t,*pt,*ptt,*xit;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double fp,fptt;
       for (k=1; k<=cptcovprod;k++)    double *xits;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int niterf, itmp;
   
     pt=vector(1,n);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    ptt=vector(1,n);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    xit=vector(1,n);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,     xits=vector(1,n);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    *fret=(*func)(p);
       savm=oldm;    for (j=1;j<=n;j++) pt[j]=p[j];
       oldm=newm;    for (*iter=1;;++(*iter)) {
     }      fp=(*fret);
     for(i=1; i<=nlstate+ndeath; i++)      ibig=0;
       for(j=1;j<=nlstate+ndeath;j++) {      del=0.0;
         po[i][j][h]=newm[i][j];      last_time=curr_time;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      (void) gettimeofday(&curr_time,&tzp);
          */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   } /* end h */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   return po;     for (i=1;i<=n;i++) {
 }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 /*************** log-likelihood *************/      }
 double func( double *x)      printf("\n");
 {      fprintf(ficlog,"\n");
   int i, ii, j, k, mi, d, kk;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      if(*iter <=3){
   double **out;        tm = *localtime(&curr_time.tv_sec);
   double sw; /* Sum of weights */        strcpy(strcurr,asctime(&tm));
   double lli; /* Individual log likelihood */  /*       asctime_r(&tm,strcurr); */
   int s1, s2;        forecast_time=curr_time;
   double bbh, survp;        itmp = strlen(strcurr);
   long ipmx;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   /*extern weight */          strcurr[itmp-1]='\0';
   /* We are differentiating ll according to initial status */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /*for(i=1;i<imx;i++)         for(niterf=10;niterf<=30;niterf+=10){
     printf(" %d\n",s[4][i]);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   */          tmf = *localtime(&forecast_time.tv_sec);
   cov[1]=1.;  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
   for(k=1; k<=nlstate; k++) ll[k]=0.;          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   if(mle==1){          strfor[itmp-1]='\0';
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for(mi=1; mi<= wav[i]-1; mi++){        }
         for (ii=1;ii<=nlstate+ndeath;ii++)      }
           for (j=1;j<=nlstate+ndeath;j++){      for (i=1;i<=n;i++) {
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (j=1;j<=n;j++) xit[j]=xi[j][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        fptt=(*fret);
           }  #ifdef DEBUG
         for(d=0; d<dh[mi][i]; d++){        printf("fret=%lf \n",*fret);
           newm=savm;        fprintf(ficlog,"fret=%lf \n",*fret);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #endif
           for (kk=1; kk<=cptcovage;kk++) {        printf("%d",i);fflush(stdout);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fprintf(ficlog,"%d",i);fflush(ficlog);
           }        linmin(p,xit,n,fret,func);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        if (fabs(fptt-(*fret)) > del) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          del=fabs(fptt-(*fret));
           savm=oldm;          ibig=i;
           oldm=newm;        }
         } /* end mult */  #ifdef DEBUG
               printf("%d %.12e",i,(*fret));
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        fprintf(ficlog,"%d %.12e",i,(*fret));
         /* But now since version 0.9 we anticipate for bias and large stepm.        for (j=1;j<=n;j++) {
          * If stepm is larger than one month (smallest stepm) and if the exact delay           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
          * (in months) between two waves is not a multiple of stepm, we rounded to           printf(" x(%d)=%.12e",j,xit[j]);
          * the nearest (and in case of equal distance, to the lowest) interval but now          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        }
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        for(j=1;j<=n;j++) {
          * probability in order to take into account the bias as a fraction of the way          printf(" p=%.12e",p[j]);
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies          fprintf(ficlog," p=%.12e",p[j]);
          * -stepm/2 to stepm/2 .        }
          * For stepm=1 the results are the same as for previous versions of Imach.        printf("\n");
          * For stepm > 1 the results are less biased than in previous versions.         fprintf(ficlog,"\n");
          */  #endif
         s1=s[mw[mi][i]][i];      }
         s2=s[mw[mi+1][i]][i];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         bbh=(double)bh[mi][i]/(double)stepm;   #ifdef DEBUG
         /* bias is positive if real duration        int k[2],l;
          * is higher than the multiple of stepm and negative otherwise.        k[0]=1;
          */        k[1]=-1;
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        printf("Max: %.12e",(*func)(p));
         if( s2 > nlstate){         fprintf(ficlog,"Max: %.12e",(*func)(p));
           /* i.e. if s2 is a death state and if the date of death is known then the contribution        for (j=1;j<=n;j++) {
              to the likelihood is the probability to die between last step unit time and current           printf(" %.12e",p[j]);
              step unit time, which is also the differences between probability to die before dh           fprintf(ficlog," %.12e",p[j]);
              and probability to die before dh-stepm .         }
              In version up to 0.92 likelihood was computed        printf("\n");
         as if date of death was unknown. Death was treated as any other        fprintf(ficlog,"\n");
         health state: the date of the interview describes the actual state        for(l=0;l<=1;l++) {
         and not the date of a change in health state. The former idea was          for (j=1;j<=n;j++) {
         to consider that at each interview the state was recorded            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         (healthy, disable or death) and IMaCh was corrected; but when we            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         introduced the exact date of death then we should have modified            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         the contribution of an exact death to the likelihood. This new          }
         contribution is smaller and very dependent of the step unit          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         stepm. It is no more the probability to die between last interview          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         and month of death but the probability to survive from last        }
         interview up to one month before death multiplied by the  #endif
         probability to die within a month. Thanks to Chris  
         Jackson for correcting this bug.  Former versions increased  
         mortality artificially. The bad side is that we add another loop        free_vector(xit,1,n);
         which slows down the processing. The difference can be up to 10%        free_vector(xits,1,n);
         lower mortality.        free_vector(ptt,1,n);
           */        free_vector(pt,1,n);
           lli=log(out[s1][s2] - savm[s1][s2]);        return;
         }else{      }
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */      for (j=1;j<=n;j++) {
         }         ptt[j]=2.0*p[j]-pt[j];
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        xit[j]=p[j]-pt[j];
         /*if(lli ==000.0)*/        pt[j]=p[j];
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */      }
         ipmx +=1;      fptt=(*func)(ptt);
         sw += weight[i];      if (fptt < fp) {
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
       } /* end of wave */        if (t < 0.0) {
     } /* end of individual */          linmin(p,xit,n,fret,func);
   }  else if(mle==2){          for (j=1;j<=n;j++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            xi[j][ibig]=xi[j][n];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            xi[j][n]=xit[j];
       for(mi=1; mi<= wav[i]-1; mi++){          }
         for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
           for (j=1;j<=nlstate+ndeath;j++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          for(j=1;j<=n;j++){
           }            printf(" %.12e",xit[j]);
         for(d=0; d<=dh[mi][i]; d++){            fprintf(ficlog," %.12e",xit[j]);
           newm=savm;          }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          printf("\n");
           for (kk=1; kk<=cptcovage;kk++) {          fprintf(ficlog,"\n");
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #endif
           }        }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    }
           savm=oldm;  }
           oldm=newm;  
         } /* end mult */  /**** Prevalence limit (stable or period prevalence)  ****************/
         
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         /* But now since version 0.9 we anticipate for bias and large stepm.  {
          * If stepm is larger than one month (smallest stepm) and if the exact delay     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
          * (in months) between two waves is not a multiple of stepm, we rounded to        matrix by transitions matrix until convergence is reached */
          * the nearest (and in case of equal distance, to the lowest) interval but now  
          * we keep into memory the bias bh[mi][i] and also the previous matrix product    int i, ii,j,k;
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the    double min, max, maxmin, maxmax,sumnew=0.;
          * probability in order to take into account the bias as a fraction of the way    double **matprod2();
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies    double **out, cov[NCOVMAX], **pmij();
          * -stepm/2 to stepm/2 .    double **newm;
          * For stepm=1 the results are the same as for previous versions of Imach.    double agefin, delaymax=50 ; /* Max number of years to converge */
          * For stepm > 1 the results are less biased than in previous versions.   
          */    for (ii=1;ii<=nlstate+ndeath;ii++)
         s1=s[mw[mi][i]][i];      for (j=1;j<=nlstate+ndeath;j++){
         s2=s[mw[mi+1][i]][i];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         bbh=(double)bh[mi][i]/(double)stepm;       }
         /* bias is positive if real duration  
          * is higher than the multiple of stepm and negative otherwise.     cov[1]=1.;
          */   
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */      newm=savm;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/      /* Covariates have to be included here again */
         /*if(lli ==000.0)*/       cov[2]=agefin;
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */   
         ipmx +=1;        for (k=1; k<=cptcovn;k++) {
         sw += weight[i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       } /* end of wave */        }
     } /* end of individual */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }  else if(mle==3){  /* exponential inter-extrapolation */        for (k=1; k<=cptcovprod;k++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         for (ii=1;ii<=nlstate+ndeath;ii++)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           for (j=1;j<=nlstate+ndeath;j++){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }      savm=oldm;
         for(d=0; d<dh[mi][i]; d++){      oldm=newm;
           newm=savm;      maxmax=0.;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for(j=1;j<=nlstate;j++){
           for (kk=1; kk<=cptcovage;kk++) {        min=1.;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        max=0.;
           }        for(i=1; i<=nlstate; i++) {
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          sumnew=0;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           savm=oldm;          prlim[i][j]= newm[i][j]/(1-sumnew);
           oldm=newm;          max=FMAX(max,prlim[i][j]);
         } /* end mult */          min=FMIN(min,prlim[i][j]);
               }
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        maxmin=max-min;
         /* But now since version 0.9 we anticipate for bias and large stepm.        maxmax=FMAX(maxmax,maxmin);
          * If stepm is larger than one month (smallest stepm) and if the exact delay       }
          * (in months) between two waves is not a multiple of stepm, we rounded to       if(maxmax < ftolpl){
          * the nearest (and in case of equal distance, to the lowest) interval but now        return prlim;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product      }
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the    }
          * probability in order to take into account the bias as a fraction of the way  }
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies  
          * -stepm/2 to stepm/2 .  /*************** transition probabilities ***************/
          * For stepm=1 the results are the same as for previous versions of Imach.  
          * For stepm > 1 the results are less biased than in previous versions.   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          */  {
         s1=s[mw[mi][i]][i];    double s1, s2;
         s2=s[mw[mi+1][i]][i];    /*double t34;*/
         bbh=(double)bh[mi][i]/(double)stepm;     int i,j,j1, nc, ii, jj;
         /* bias is positive if real duration  
          * is higher than the multiple of stepm and negative otherwise.      for(i=1; i<= nlstate; i++){
          */        for(j=1; j<i;j++){
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            /*s2 += param[i][j][nc]*cov[nc];*/
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         /*if(lli ==000.0)*/  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          }
         ipmx +=1;          ps[i][j]=s2;
         sw += weight[i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        }
       } /* end of wave */        for(j=i+1; j<=nlstate+ndeath;j++){
     } /* end of individual */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }else if (mle==4){  /* ml=4 no inter-extrapolation */            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          }
       for(mi=1; mi<= wav[i]-1; mi++){          ps[i][j]=s2;
         for (ii=1;ii<=nlstate+ndeath;ii++)        }
           for (j=1;j<=nlstate+ndeath;j++){      }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      /*ps[3][2]=1;*/
             savm[ii][j]=(ii==j ? 1.0 : 0.0);     
           }      for(i=1; i<= nlstate; i++){
         for(d=0; d<dh[mi][i]; d++){        s1=0;
           newm=savm;        for(j=1; j<i; j++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          s1+=exp(ps[i][j]);
           for (kk=1; kk<=cptcovage;kk++) {        for(j=i+1; j<=nlstate+ndeath; j++)
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          s1+=exp(ps[i][j]);
           }        ps[i][i]=1./(s1+1.);
                 for(j=1; j<i; j++)
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          ps[i][j]= exp(ps[i][j])*ps[i][i];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for(j=i+1; j<=nlstate+ndeath; j++)
           savm=oldm;          ps[i][j]= exp(ps[i][j])*ps[i][i];
           oldm=newm;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         } /* end mult */      } /* end i */
            
         s1=s[mw[mi][i]][i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         s2=s[mw[mi+1][i]][i];        for(jj=1; jj<= nlstate+ndeath; jj++){
         if( s2 > nlstate){           ps[ii][jj]=0;
           lli=log(out[s1][s2] - savm[s1][s2]);          ps[ii][ii]=1;
         }else{        }
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */      }
         }     
         ipmx +=1;  
         sw += weight[i];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  /*         printf("ddd %lf ",ps[ii][jj]); */
       } /* end of wave */  /*       } */
     } /* end of individual */  /*       printf("\n "); */
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */  /*        } */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*        printf("\n ");printf("%lf ",cov[2]); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];         /*
       for(mi=1; mi<= wav[i]-1; mi++){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for (ii=1;ii<=nlstate+ndeath;ii++)        goto end;*/
           for (j=1;j<=nlstate+ndeath;j++){      return ps;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  /**************** Product of 2 matrices ******************/
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  {
           for (kk=1; kk<=cptcovage;kk++) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           }    /* in, b, out are matrice of pointers which should have been initialized
                before: only the contents of out is modified. The function returns
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       a pointer to pointers identical to out */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    long i, j, k;
           savm=oldm;    for(i=nrl; i<= nrh; i++)
           oldm=newm;      for(k=ncolol; k<=ncoloh; k++)
         } /* end mult */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
                 out[i][k] +=in[i][j]*b[j][k];
         s1=s[mw[mi][i]][i];  
         s2=s[mw[mi+1][i]][i];    return out;
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  }
         ipmx +=1;  
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /************* Higher Matrix Product ***************/
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  
       } /* end of wave */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     } /* end of individual */  {
   } /* End of if */    /* Computes the transition matrix starting at age 'age' over
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];       'nhstepm*hstepm*stepm' months (i.e. until
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */       nhstepm*hstepm matrices.
   return -l;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
 }       (typically every 2 years instead of every month which is too big
        for the memory).
 /*************** log-likelihood *************/       Model is determined by parameters x and covariates have to be
 double funcone( double *x)       included manually here.
 {  
   int i, ii, j, k, mi, d, kk;       */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;    int i, j, d, h, k;
   double lli; /* Individual log likelihood */    double **out, cov[NCOVMAX];
   int s1, s2;    double **newm;
   double bbh, survp;  
   /*extern weight */    /* Hstepm could be zero and should return the unit matrix */
   /* We are differentiating ll according to initial status */    for (i=1;i<=nlstate+ndeath;i++)
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for (j=1;j<=nlstate+ndeath;j++){
   /*for(i=1;i<imx;i++)         oldm[i][j]=(i==j ? 1.0 : 0.0);
     printf(" %d\n",s[4][i]);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   */      }
   cov[1]=1.;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;      for(d=1; d <=hstepm; d++){
         newm=savm;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        /* Covariates have to be included here again */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        cov[1]=1.;
     for(mi=1; mi<= wav[i]-1; mi++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for (ii=1;ii<=nlstate+ndeath;ii++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (j=1;j<=nlstate+ndeath;j++){        for (k=1; k<=cptcovage;k++)
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovprod;k++)
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         for (kk=1; kk<=cptcovage;kk++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        savm=oldm;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        oldm=newm;
         savm=oldm;      }
         oldm=newm;      for(i=1; i<=nlstate+ndeath; i++)
       } /* end mult */        for(j=1;j<=nlstate+ndeath;j++) {
                 po[i][j][h]=newm[i][j];
       s1=s[mw[mi][i]][i];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       s2=s[mw[mi+1][i]][i];           */
       bbh=(double)bh[mi][i]/(double)stepm;         }
       /* bias is positive if real duration    } /* end h */
        * is higher than the multiple of stepm and negative otherwise.    return po;
        */  }
       if( s2 > nlstate && (mle <5) ){  /* Jackson */  
         lli=log(out[s1][s2] - savm[s1][s2]);  
       } else if (mle==1){  /*************** log-likelihood *************/
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  double func( double *x)
       } else if(mle==2){  {
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */    int i, ii, j, k, mi, d, kk;
       } else if(mle==3){  /* exponential inter-extrapolation */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    double **out;
       } else if (mle==4){  /* mle=4 no inter-extrapolation */    double sw; /* Sum of weights */
         lli=log(out[s1][s2]); /* Original formula */    double lli; /* Individual log likelihood */
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */    int s1, s2;
         lli=log(out[s1][s2]); /* Original formula */    double bbh, survp;
       } /* End of if */    long ipmx;
       ipmx +=1;    /*extern weight */
       sw += weight[i];    /* We are differentiating ll according to initial status */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    /*for(i=1;i<imx;i++)
       if(globpr){      printf(" %d\n",s[4][i]);
         fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\    */
  %10.6f %10.6f %10.6f ", \    cov[1]=1.;
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],  
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
         for(k=1,l=0.; k<=nlstate; k++)   
           fprintf(ficresilk," %10.6f",ll[k]);    if(mle==1){
         fprintf(ficresilk,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     } /* end of wave */        for(mi=1; mi<= wav[i]-1; mi++){
   } /* end of individual */          for (ii=1;ii<=nlstate+ndeath;ii++)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            for (j=1;j<=nlstate+ndeath;j++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   return -l;            }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* This routine should help understanding what is done with the selection of individuals/waves and            }
      to check the exact contribution to the likelihood.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Plotting could be done.                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    */            savm=oldm;
   int k;            oldm=newm;
   if(globpr !=0){ /* Just counts and sums no printings */          } /* end mult */
     strcpy(fileresilk,"ilk");        
     strcat(fileresilk,fileres);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {          /* But now since version 0.9 we anticipate for bias at large stepm.
       printf("Problem with resultfile: %s\n", fileresilk);           * If stepm is larger than one month (smallest stepm) and if the exact delay
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);           * (in months) between two waves is not a multiple of stepm, we rounded to
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
     fprintf(ficresilk, "#individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */           * probability in order to take into account the bias as a fraction of the way
     for(k=1; k<=nlstate; k++)            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       fprintf(ficresilk," ll[%d]",k);           * -stepm/2 to stepm/2 .
     fprintf(ficresilk,"\n");           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions.
            */
   *fretone=(*funcone)(p);          s1=s[mw[mi][i]][i];
   if(globpr !=0){          s2=s[mw[mi+1][i]][i];
     fclose(ficresilk);          bbh=(double)bh[mi][i]/(double)stepm;
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          /* bias bh is positive if real duration
       printf("Problem with html file: %s\n", optionfilehtm);           * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);           */
       exit(0);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          if( s2 > nlstate){
     else{            /* i.e. if s2 is a death state and if the date of death is known
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk);               then the contribution to the likelihood is the probability to
       fclose(fichtm);               die between last step unit time and current  step unit time,
     }               which is also equal to probability to die before dh
   }               minus probability to die before dh-stepm .
   return;               In version up to 0.92 likelihood was computed
 }          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 /*********** Maximum Likelihood Estimation ***************/          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          (healthy, disable or death) and IMaCh was corrected; but when we
 {          introduced the exact date of death then we should have modified
   int i,j, iter;          the contribution of an exact death to the likelihood. This new
   double **xi;          contribution is smaller and very dependent of the step unit
   double fret;          stepm. It is no more the probability to die between last interview
   double fretone; /* Only one call to likelihood */          and month of death but the probability to survive from last
   char filerespow[FILENAMELENGTH];          interview up to one month before death multiplied by the
   xi=matrix(1,npar,1,npar);          probability to die within a month. Thanks to Chris
   for (i=1;i<=npar;i++)          Jackson for correcting this bug.  Former versions increased
     for (j=1;j<=npar;j++)          mortality artificially. The bad side is that we add another loop
       xi[i][j]=(i==j ? 1.0 : 0.0);          which slows down the processing. The difference can be up to 10%
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          lower mortality.
   strcpy(filerespow,"pow");             */
   strcat(filerespow,fileres);            lli=log(out[s1][s2] - savm[s1][s2]);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", filerespow);  
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          } else if  (s2==-2) {
   }            for (j=1,survp=0. ; j<=nlstate; j++)
   fprintf(ficrespow,"# Powell\n# iter -2*LL");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (i=1;i<=nlstate;i++)            /*survp += out[s1][j]; */
     for(j=1;j<=nlstate+ndeath;j++)            lli= log(survp);
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          }
   fprintf(ficrespow,"\n");         
           else if  (s2==-4) {
   powell(p,xi,npar,ftol,&iter,&fret,func);            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fclose(ficrespow);            lli= log(survp);
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          }
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          else if  (s2==-5) {
             for (j=1,survp=0. ; j<=2; j++)  
 }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp);
 /**** Computes Hessian and covariance matrix ***/          }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))         
 {          else{
   double  **a,**y,*x,pd;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double **hess;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   int i, j,jk;          }
   int *indx;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   double hessii(double p[], double delta, int theta, double delti[]);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   double hessij(double p[], double delti[], int i, int j);          ipmx +=1;
   void lubksb(double **a, int npar, int *indx, double b[]) ;          sw += weight[i];
   void ludcmp(double **a, int npar, int *indx, double *d) ;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   hess=matrix(1,npar,1,npar);      } /* end of individual */
     }  else if(mle==2){
   printf("\nCalculation of the hessian matrix. Wait...\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=npar;i++){        for(mi=1; mi<= wav[i]-1; mi++){
     printf("%d",i);fflush(stdout);          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficlog,"%d",i);fflush(ficlog);            for (j=1;j<=nlstate+ndeath;j++){
     hess[i][i]=hessii(p,ftolhess,i,delti);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /*printf(" %f ",p[i]);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /*printf(" %lf ",hess[i][i]);*/            }
   }          for(d=0; d<=dh[mi][i]; d++){
               newm=savm;
   for (i=1;i<=npar;i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (j=1;j<=npar;j++)  {            for (kk=1; kk<=cptcovage;kk++) {
       if (j>i) {               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         printf(".%d%d",i,j);fflush(stdout);            }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         hess[i][j]=hessij(p,delti,i,j);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         hess[j][i]=hess[i][j];                savm=oldm;
         /*printf(" %lf ",hess[i][j]);*/            oldm=newm;
       }          } /* end mult */
     }       
   }          s1=s[mw[mi][i]][i];
   printf("\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficlog,"\n");          bbh=(double)bh[mi][i]/(double)stepm;
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          ipmx +=1;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          sw += weight[i];
             ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   a=matrix(1,npar,1,npar);        } /* end of wave */
   y=matrix(1,npar,1,npar);      } /* end of individual */
   x=vector(1,npar);    }  else if(mle==3){  /* exponential inter-extrapolation */
   indx=ivector(1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
   ludcmp(a,npar,indx,&pd);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   for (j=1;j<=npar;j++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++) x[i]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     x[j]=1;            }
     lubksb(a,npar,indx,x);          for(d=0; d<dh[mi][i]; d++){
     for (i=1;i<=npar;i++){             newm=savm;
       matcov[i][j]=x[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   printf("\n#Hessian matrix#\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficlog,"\n#Hessian matrix#\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=npar;i++) {             savm=oldm;
     for (j=1;j<=npar;j++) {             oldm=newm;
       printf("%.3e ",hess[i][j]);          } /* end mult */
       fprintf(ficlog,"%.3e ",hess[i][j]);       
     }          s1=s[mw[mi][i]][i];
     printf("\n");          s2=s[mw[mi+1][i]][i];
     fprintf(ficlog,"\n");          bbh=(double)bh[mi][i]/(double)stepm;
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
   /* Recompute Inverse */          sw += weight[i];
   for (i=1;i<=npar;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        } /* end of wave */
   ludcmp(a,npar,indx,&pd);      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
   /*  printf("\n#Hessian matrix recomputed#\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (j=1;j<=npar;j++) {        for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1;i<=npar;i++) x[i]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
     x[j]=1;            for (j=1;j<=nlstate+ndeath;j++){
     lubksb(a,npar,indx,x);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++){               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       y[i][j]=x[i];            }
       printf("%.3e ",y[i][j]);          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficlog,"%.3e ",y[i][j]);            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("\n");            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficlog,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   */         
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(a,1,npar,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(y,1,npar,1,npar);            savm=oldm;
   free_vector(x,1,npar);            oldm=newm;
   free_ivector(indx,1,npar);          } /* end mult */
   free_matrix(hess,1,npar,1,npar);       
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 }          if( s2 > nlstate){
             lli=log(out[s1][s2] - savm[s1][s2]);
 /*************** hessian matrix ****************/          }else{
 double hessii( double x[], double delta, int theta, double delti[])            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 {          }
   int i;          ipmx +=1;
   int l=1, lmax=20;          sw += weight[i];
   double k1,k2;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double p2[NPARMAX+1];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double res;        } /* end of wave */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      } /* end of individual */
   double fx;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   int k=0,kmax=10;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double l1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   fx=func(x);          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=npar;i++) p2[i]=x[i];            for (j=1;j<=nlstate+ndeath;j++){
   for(l=0 ; l <=lmax; l++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     l1=pow(10,l);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     delts=delt;            }
     for(k=1 ; k <kmax; k=k+1){          for(d=0; d<dh[mi][i]; d++){
       delt = delta*(l1*k);            newm=savm;
       p2[theta]=x[theta] +delt;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       k1=func(p2)-fx;            for (kk=1; kk<=cptcovage;kk++) {
       p2[theta]=x[theta]-delt;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       k2=func(p2)-fx;            }
       /*res= (k1-2.0*fx+k2)/delt/delt; */         
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 #ifdef DEBUG            savm=oldm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            oldm=newm;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          } /* end mult */
 #endif       
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          s1=s[mw[mi][i]][i];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          s2=s[mw[mi+1][i]][i];
         k=kmax;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          sw += weight[i];
         k=kmax; l=lmax*10.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){         } /* end of wave */
         delts=delt;      } /* end of individual */
       }    } /* End of if */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   delti[theta]=delts;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   return res;     return -l;
     }
 }  
   /*************** log-likelihood *************/
 double hessij( double x[], double delti[], int thetai,int thetaj)  double funcone( double *x)
 {  {
   int i;    /* Same as likeli but slower because of a lot of printf and if */
   int l=1, l1, lmax=20;    int i, ii, j, k, mi, d, kk;
   double k1,k2,k3,k4,res,fx;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double p2[NPARMAX+1];    double **out;
   int k;    double lli; /* Individual log likelihood */
     double llt;
   fx=func(x);    int s1, s2;
   for (k=1; k<=2; k++) {    double bbh, survp;
     for (i=1;i<=npar;i++) p2[i]=x[i];    /*extern weight */
     p2[thetai]=x[thetai]+delti[thetai]/k;    /* We are differentiating ll according to initial status */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     k1=func(p2)-fx;    /*for(i=1;i<imx;i++)
         printf(" %d\n",s[4][i]);
     p2[thetai]=x[thetai]+delti[thetai]/k;    */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    cov[1]=1.;
     k2=func(p2)-fx;  
       for(k=1; k<=nlstate; k++) ll[k]=0.;
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     k3=func(p2)-fx;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          for (j=1;j<=nlstate+ndeath;j++){
     k4=func(p2)-fx;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef DEBUG          }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(d=0; d<dh[mi][i]; d++){
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          newm=savm;
 #endif          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }          for (kk=1; kk<=cptcovage;kk++) {
   return res;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************** Inverse of matrix **************/                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void ludcmp(double **a, int n, int *indx, double *d)           savm=oldm;
 {           oldm=newm;
   int i,imax,j,k;         } /* end mult */
   double big,dum,sum,temp;        
   double *vv;         s1=s[mw[mi][i]][i];
          s2=s[mw[mi+1][i]][i];
   vv=vector(1,n);         bbh=(double)bh[mi][i]/(double)stepm;
   *d=1.0;         /* bias is positive if real duration
   for (i=1;i<=n;i++) {          * is higher than the multiple of stepm and negative otherwise.
     big=0.0;          */
     for (j=1;j<=n;j++)         if( s2 > nlstate && (mle <5) ){  /* Jackson */
       if ((temp=fabs(a[i][j])) > big) big=temp;           lli=log(out[s1][s2] - savm[s1][s2]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");         } else if  (s2==-2) {
     vv[i]=1.0/big;           for (j=1,survp=0. ; j<=nlstate; j++)
   }             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (j=1;j<=n;j++) {           lli= log(survp);
     for (i=1;i<j;i++) {         }else if (mle==1){
       sum=a[i][j];           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];         } else if(mle==2){
       a[i][j]=sum;           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }         } else if(mle==3){  /* exponential inter-extrapolation */
     big=0.0;           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for (i=j;i<=n;i++) {         } else if (mle==4){  /* mle=4 no inter-extrapolation */
       sum=a[i][j];           lli=log(out[s1][s2]); /* Original formula */
       for (k=1;k<j;k++)         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         sum -= a[i][k]*a[k][j];           lli=log(out[s1][s2]); /* Original formula */
       a[i][j]=sum;         } /* End of if */
       if ( (dum=vv[i]*fabs(sum)) >= big) {         ipmx +=1;
         big=dum;         sw += weight[i];
         imax=i;         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }         if(globpr){
     if (j != imax) {           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for (k=1;k<=n;k++) {    %11.6f %11.6f %11.6f ", \
         dum=a[imax][k];                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         a[imax][k]=a[j][k];                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         a[j][k]=dum;           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       }             llt +=ll[k]*gipmx/gsw;
       *d = -(*d);             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       vv[imax]=vv[j];           }
     }           fprintf(ficresilk," %10.6f\n", -llt);
     indx[j]=imax;         }
     if (a[j][j] == 0.0) a[j][j]=TINY;       } /* end of wave */
     if (j != n) {     } /* end of individual */
       dum=1.0/(a[j][j]);     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }     if(globpr==0){ /* First time we count the contributions and weights */
   free_vector(vv,1,n);  /* Doesn't work */      gipmx=ipmx;
 ;      gsw=sw;
 }     }
     return -l;
 void lubksb(double **a, int n, int *indx, double b[])   }
 {   
   int i,ii=0,ip,j;   
   double sum;   /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   for (i=1;i<=n;i++) {   {
     ip=indx[i];     /* This routine should help understanding what is done with
     sum=b[ip];        the selection of individuals/waves and
     b[ip]=b[i];        to check the exact contribution to the likelihood.
     if (ii)        Plotting could be done.
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      */
     else if (sum) ii=i;     int k;
     b[i]=sum;   
   }     if(*globpri !=0){ /* Just counts and sums, no printings */
   for (i=n;i>=1;i--) {       strcpy(fileresilk,"ilk");
     sum=b[i];       strcat(fileresilk,fileres);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     b[i]=sum/a[i][i];         printf("Problem with resultfile: %s\n", fileresilk);
   }         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 }       }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 /************ Frequencies ********************/      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 {  /* Some frequencies */      for(k=1; k<=nlstate; k++)
           fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int first;    }
   double ***freq; /* Frequencies */  
   double *pp, **prop;    *fretone=(*funcone)(p);
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    if(*globpri !=0){
   FILE *ficresp;      fclose(ficresilk);
   char fileresp[FILENAMELENGTH];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         fflush(fichtm);
   pp=vector(1,nlstate);    }
   prop=matrix(1,nlstate,iagemin,iagemax+3);    return;
   strcpy(fileresp,"p");  }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);  /*********** Maximum Likelihood Estimation ***************/
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   }  {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);    int i,j, iter;
   j1=0;    double **xi;
       double fret;
   j=cptcoveff;    double fretone; /* Only one call to likelihood */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
   first=1;    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
   for(k1=1; k1<=j;k1++){        xi[i][j]=(i==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       j1++;    strcpy(filerespow,"pow");
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    strcat(filerespow,fileres);
         scanf("%d", i);*/    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for (i=-1; i<=nlstate+ndeath; i++)        printf("Problem with resultfile: %s\n", filerespow);
         for (jk=-1; jk<=nlstate+ndeath; jk++)        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           for(m=iagemin; m <= iagemax+3; m++)    }
             freq[i][jk][m]=0;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
     for (i=1; i<=nlstate; i++)        for(j=1;j<=nlstate+ndeath;j++)
       for(m=iagemin; m <= iagemax+3; m++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         prop[i][m]=0;    fprintf(ficrespow,"\n");
         
       dateintsum=0;    powell(p,xi,npar,ftol,&iter,&fret,func);
       k2cpt=0;  
       for (i=1; i<=imx; i++) {    free_matrix(xi,1,npar,1,npar);
         bool=1;    fclose(ficrespow);
         if  (cptcovn>0) {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           for (z1=1; z1<=cptcoveff; z1++)     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
               bool=0;  
         }  }
         if (bool==1){  
           for(m=firstpass; m<=lastpass; m++){  /**** Computes Hessian and covariance matrix ***/
             k2=anint[m][i]+(mint[m][i]/12.);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/  {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    double  **a,**y,*x,pd;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    double **hess;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    int i, j,jk;
               if (m<lastpass) {    int *indx;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
               }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
                   void lubksb(double **a, int npar, int *indx, double b[]) ;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    void ludcmp(double **a, int npar, int *indx, double *d) ;
                 dateintsum=dateintsum+k2;    double gompertz(double p[]);
                 k2cpt++;    hess=matrix(1,npar,1,npar);
               }  
               /*}*/    printf("\nCalculation of the hessian matrix. Wait...\n");
           }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         }    for (i=1;i<=npar;i++){
       }      printf("%d",i);fflush(stdout);
              fprintf(ficlog,"%d",i);fflush(ficlog);
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       if  (cptcovn>0) {     
         fprintf(ficresp, "\n#********** Variable ");       /*  printf(" %f ",p[i]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         fprintf(ficresp, "**********\n#");    }
       }   
       for(i=1; i<=nlstate;i++)     for (i=1;i<=npar;i++) {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      for (j=1;j<=npar;j++)  {
       fprintf(ficresp, "\n");        if (j>i) {
                 printf(".%d%d",i,j);fflush(stdout);
       for(i=iagemin; i <= iagemax+3; i++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         if(i==iagemax+3){          hess[i][j]=hessij(p,delti,i,j,func,npar);
           fprintf(ficlog,"Total");         
         }else{          hess[j][i]=hess[i][j];    
           if(first==1){          /*printf(" %lf ",hess[i][j]);*/
             first=0;        }
             printf("See log file for details...\n");      }
           }    }
           fprintf(ficlog,"Age %d", i);    printf("\n");
         }    fprintf(ficlog,"\n");
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
             pp[jk] += freq[jk][m][i];     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         }   
         for(jk=1; jk <=nlstate ; jk++){    a=matrix(1,npar,1,npar);
           for(m=-1, pos=0; m <=0 ; m++)    y=matrix(1,npar,1,npar);
             pos += freq[jk][m][i];    x=vector(1,npar);
           if(pp[jk]>=1.e-10){    indx=ivector(1,npar);
             if(first==1){    for (i=1;i<=npar;i++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             }    ludcmp(a,npar,indx,&pd);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           }else{    for (j=1;j<=npar;j++) {
             if(first==1)      for (i=1;i<=npar;i++) x[i]=0;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      x[j]=1;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      lubksb(a,npar,indx,x);
           }      for (i=1;i<=npar;i++){
         }        matcov[i][j]=x[i];
       }
         for(jk=1; jk <=nlstate ; jk++){    }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    printf("\n#Hessian matrix#\n");
         }           fprintf(ficlog,"\n#Hessian matrix#\n");
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++) {
           pos += pp[jk];      for (j=1;j<=npar;j++) {
           posprop += prop[jk][i];        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
         for(jk=1; jk <=nlstate ; jk++){      }
           if(pos>=1.e-5){      printf("\n");
             if(first==1)      fprintf(ficlog,"\n");
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           }else{    /* Recompute Inverse */
             if(first==1)    for (i=1;i<=npar;i++)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    ludcmp(a,npar,indx,&pd);
           }  
           if( i <= iagemax){    /*  printf("\n#Hessian matrix recomputed#\n");
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);    for (j=1;j<=npar;j++) {
               /*probs[i][jk][j1]= pp[jk]/pos;*/      for (i=1;i<=npar;i++) x[i]=0;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      x[j]=1;
             }      lubksb(a,npar,indx,x);
             else      for (i=1;i<=npar;i++){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);        y[i][j]=x[i];
           }        printf("%.3e ",y[i][j]);
         }        fprintf(ficlog,"%.3e ",y[i][j]);
               }
         for(jk=-1; jk <=nlstate+ndeath; jk++)      printf("\n");
           for(m=-1; m <=nlstate+ndeath; m++)      fprintf(ficlog,"\n");
             if(freq[jk][m][i] !=0 ) {    }
             if(first==1)    */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    free_matrix(a,1,npar,1,npar);
             }    free_matrix(y,1,npar,1,npar);
         if(i <= iagemax)    free_vector(x,1,npar);
           fprintf(ficresp,"\n");    free_ivector(indx,1,npar);
         if(first==1)    free_matrix(hess,1,npar,1,npar);
           printf("Others in log...\n");  
         fprintf(ficlog,"\n");  
       }  }
     }  
   }  /*************** hessian matrix ****************/
   dateintmean=dateintsum/k2cpt;   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    {
   fclose(ficresp);    int i;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);    int l=1, lmax=20;
   free_vector(pp,1,nlstate);    double k1,k2;
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    double p2[NPARMAX+1];
   /* End of Freq */    double res;
 }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
 /************ Prevalence ********************/    int k=0,kmax=10;
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)    double l1;
 {    
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    fx=func(x);
      in each health status at the date of interview (if between dateprev1 and dateprev2).    for (i=1;i<=npar;i++) p2[i]=x[i];
      We still use firstpass and lastpass as another selection.    for(l=0 ; l <=lmax; l++){
   */      l1=pow(10,l);
        delts=delt;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for(k=1 ; k <kmax; k=k+1){
   double ***freq; /* Frequencies */        delt = delta*(l1*k);
   double *pp, **prop;        p2[theta]=x[theta] +delt;
   double pos,posprop;         k1=func(p2)-fx;
   double  y2; /* in fractional years */        p2[theta]=x[theta]-delt;
   int iagemin, iagemax;        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
   iagemin= (int) agemin;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   iagemax= (int) agemax;       
   /*pp=vector(1,nlstate);*/  #ifdef DEBUG
   prop=matrix(1,nlstate,iagemin,iagemax+3);         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   j1=0;  #endif
           /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   j=cptcoveff;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          k=kmax;
           }
   for(k1=1; k1<=j;k1++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for(i1=1; i1<=ncodemax[k1];i1++){          k=kmax; l=lmax*10.;
       j1++;        }
               else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
       for (i=1; i<=nlstate; i++)            delts=delt;
         for(m=iagemin; m <= iagemax+3; m++)        }
           prop[i][m]=0.0;      }
          }
       for (i=1; i<=imx; i++) { /* Each individual */    delti[theta]=delts;
         bool=1;    return res;
         if  (cptcovn>0) {   
           for (z1=1; z1<=cptcoveff; z1++)   }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   
               bool=0;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         }   {
         if (bool==1) {     int i;
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/    int l=1, l1, lmax=20;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */    double k1,k2,k3,k4,res,fx;
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */    double p2[NPARMAX+1];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    int k;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);     fx=func(x);
               if (s[m][i]>0 && s[m][i]<=nlstate) {     for (k=1; k<=2; k++) {
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/      for (i=1;i<=npar;i++) p2[i]=x[i];
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];      p2[thetai]=x[thetai]+delti[thetai]/k;
                 prop[s[m][i]][iagemax+3] += weight[i];       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               }       k1=func(p2)-fx;
             }   
           } /* end selection of waves */      p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k2=func(p2)-fx;
       for(i=iagemin; i <= iagemax+3; i++){     
               p2[thetai]=x[thetai]-delti[thetai]/k;
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           posprop += prop[jk][i];       k3=func(p2)-fx;
         }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
         for(jk=1; jk <=nlstate ; jk++){           p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           if( i <=  iagemax){       k4=func(p2)-fx;
             if(posprop>=1.e-5){       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
               probs[i][jk][j1]= prop[jk][i]/posprop;  #ifdef DEBUG
             }       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           }       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }/* end jk */   #endif
       }/* end i */     }
     } /* end i1 */    return res;
   } /* end k1 */  }
     
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/  /************** Inverse of matrix **************/
   /*free_vector(pp,1,nlstate);*/  void ludcmp(double **a, int n, int *indx, double *d)
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);  {
 }  /* End of prevalence */    int i,imax,j,k;
     double big,dum,sum,temp;
 /************* Waves Concatenation ***************/    double *vv;
    
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    vv=vector(1,n);
 {    *d=1.0;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    for (i=1;i<=n;i++) {
      Death is a valid wave (if date is known).      big=0.0;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (j=1;j<=n;j++)
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]        if ((temp=fabs(a[i][j])) > big) big=temp;
      and mw[mi+1][i]. dh depends on stepm.      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
      */      vv[i]=1.0/big;
     }
   int i, mi, m;    for (j=1;j<=n;j++) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      for (i=1;i<j;i++) {
      double sum=0., jmean=0.;*/        sum=a[i][j];
   int first;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
   int j, k=0,jk, ju, jl;        a[i][j]=sum;
   double sum=0.;      }
   first=0;      big=0.0;
   jmin=1e+5;      for (i=j;i<=n;i++) {
   jmax=-1;        sum=a[i][j];
   jmean=0.;        for (k=1;k<j;k++)
   for(i=1; i<=imx; i++){          sum -= a[i][k]*a[k][j];
     mi=0;        a[i][j]=sum;
     m=firstpass;        if ( (dum=vv[i]*fabs(sum)) >= big) {
     while(s[m][i] <= nlstate){          big=dum;
       if(s[m][i]>=1)          imax=i;
         mw[++mi][i]=m;        }
       if(m >=lastpass)      }
         break;      if (j != imax) {
       else        for (k=1;k<=n;k++) {
         m++;          dum=a[imax][k];
     }/* end while */          a[imax][k]=a[j][k];
     if (s[m][i] > nlstate){          a[j][k]=dum;
       mi++;     /* Death is another wave */        }
       /* if(mi==0)  never been interviewed correctly before death */        *d = -(*d);
          /* Only death is a correct wave */        vv[imax]=vv[j];
       mw[mi][i]=m;      }
     }      indx[j]=imax;
       if (a[j][j] == 0.0) a[j][j]=TINY;
     wav[i]=mi;      if (j != n) {
     if(mi==0){        dum=1.0/(a[j][j]);
       if(first==0){        for (i=j+1;i<=n;i++) a[i][j] *= dum;
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);      }
         first=1;    }
       }    free_vector(vv,1,n);  /* Doesn't work */
       if(first==1){  ;
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);  }
       }  
     } /* end mi==0 */  void lubksb(double **a, int n, int *indx, double b[])
   } /* End individuals */  {
     int i,ii=0,ip,j;
   for(i=1; i<=imx; i++){    double sum;
     for(mi=1; mi<wav[i];mi++){   
       if (stepm <=0)    for (i=1;i<=n;i++) {
         dh[mi][i]=1;      ip=indx[i];
       else{      sum=b[ip];
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */      b[ip]=b[i];
           if (agedc[i] < 2*AGESUP) {      if (ii)
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
             if(j==0) j=1;  /* Survives at least one month after exam */      else if (sum) ii=i;
             else if(j<0){      b[i]=sum;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    }
               j=1; /* Careful Patch */    for (i=n;i>=1;i--) {
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);      sum=b[i];
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);      b[i]=sum/a[i][i];
             }    }
             k=k+1;  }
             if (j >= jmax) jmax=j;  
             if (j <= jmin) jmin=j;  void pstamp(FILE *fichier)
             sum=sum+j;  {
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/  }
           }  
         }  /************ Frequencies ********************/
         else{  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  {  /* Some frequencies */
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/   
           k=k+1;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           if (j >= jmax) jmax=j;    int first;
           else if (j <= jmin)jmin=j;    double ***freq; /* Frequencies */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    double *pp, **prop;
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           if(j<0){    char fileresp[FILENAMELENGTH];
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);   
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    pp=vector(1,nlstate);
           }    prop=matrix(1,nlstate,iagemin,iagemax+3);
           sum=sum+j;    strcpy(fileresp,"p");
         }    strcat(fileresp,fileres);
         jk= j/stepm;    if((ficresp=fopen(fileresp,"w"))==NULL) {
         jl= j -jk*stepm;      printf("Problem with prevalence resultfile: %s\n", fileresp);
         ju= j -(jk+1)*stepm;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */      exit(0);
           if(jl==0){    }
             dh[mi][i]=jk;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
             bh[mi][i]=0;    j1=0;
           }else{ /* We want a negative bias in order to only have interpolation ie   
                   * at the price of an extra matrix product in likelihood */    j=cptcoveff;
             dh[mi][i]=jk+1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             bh[mi][i]=ju;  
           }    first=1;
         }else{  
           if(jl <= -ju){    for(k1=1; k1<=j;k1++){
             dh[mi][i]=jk;      for(i1=1; i1<=ncodemax[k1];i1++){
             bh[mi][i]=jl;       /* bias is positive if real duration        j1++;
                                  * is higher than the multiple of stepm and negative otherwise.        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                                  */          scanf("%d", i);*/
           }        for (i=-5; i<=nlstate+ndeath; i++)  
           else{          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             dh[mi][i]=jk+1;            for(m=iagemin; m <= iagemax+3; m++)
             bh[mi][i]=ju;              freq[i][jk][m]=0;
           }  
           if(dh[mi][i]==0){      for (i=1; i<=nlstate; i++)  
             dh[mi][i]=1; /* At least one step */        for(m=iagemin; m <= iagemax+3; m++)
             bh[mi][i]=ju; /* At least one step */          prop[i][m]=0;
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/       
           }        dateintsum=0;
         } /* end if mle */        k2cpt=0;
       }        for (i=1; i<=imx; i++) {
     } /* end wave */          bool=1;
   }          if  (cptcovn>0) {
   jmean=sum/k;            for (z1=1; z1<=cptcoveff; z1++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);                bool=0;
  }          }
           if (bool==1){
 /*********** Tricode ****************************/            for(m=firstpass; m<=lastpass; m++){
 void tricode(int *Tvar, int **nbcode, int imx)              k2=anint[m][i]+(mint[m][i]/12.);
 {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int Ndum[20],ij=1, k, j, i, maxncov=19;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int cptcode=0;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   cptcoveff=0;                 if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   for (k=0; k<maxncov; k++) Ndum[k]=0;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   for (k=1; k<=7; k++) ncodemax[k]=0;                }
                
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum                   dateintsum=dateintsum+k2;
                                modality*/                   k2cpt++;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/                }
       Ndum[ij]++; /*store the modality */                /*}*/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            }
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable           }
                                        Tvar[j]. If V=sex and male is 0 and         }
                                        female is 1, then  cptcode=1.*/         
     }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
     for (i=0; i<=cptcode; i++) {        if  (cptcovn>0) {
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */          fprintf(ficresp, "\n#********** Variable ");
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
     ij=1;         }
     for (i=1; i<=ncodemax[j]; i++) {        for(i=1; i<=nlstate;i++)
       for (k=0; k<= maxncov; k++) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         if (Ndum[k] != 0) {        fprintf(ficresp, "\n");
           nbcode[Tvar[j]][ij]=k;        
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */        for(i=iagemin; i <= iagemax+3; i++){
                     if(i==iagemax+3){
           ij++;            fprintf(ficlog,"Total");
         }          }else{
         if (ij > ncodemax[j]) break;             if(first==1){
       }                first=0;
     }               printf("See log file for details...\n");
   }              }
             fprintf(ficlog,"Age %d", i);
  for (k=0; k< maxncov; k++) Ndum[k]=0;          }
           for(jk=1; jk <=nlstate ; jk++){
  for (i=1; i<=ncovmodel-2; i++) {             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/              pp[jk] += freq[jk][m][i];
    ij=Tvar[i];          }
    Ndum[ij]++;          for(jk=1; jk <=nlstate ; jk++){
  }            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
  ij=1;            if(pp[jk]>=1.e-10){
  for (i=1; i<= maxncov; i++) {              if(first==1){
    if((Ndum[i]!=0) && (i<=ncovcol)){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      Tvaraff[ij]=i; /*For printing */              }
      ij++;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    }            }else{
  }              if(first==1)
                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  cptcoveff=ij-1; /*Number of simple covariates*/              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }            }
           }
 /*********** Health Expectancies ****************/  
           for(jk=1; jk <=nlstate ; jk++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
 {          }      
   /* Health expectancies */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            pos += pp[jk];
   double age, agelim, hf;            posprop += prop[jk][i];
   double ***p3mat,***varhe;          }
   double **dnewm,**doldm;          for(jk=1; jk <=nlstate ; jk++){
   double *xp;            if(pos>=1.e-5){
   double **gp, **gm;              if(first==1)
   double ***gradg, ***trgradg;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   int theta;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);              if(first==1)
   xp=vector(1,npar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   dnewm=matrix(1,nlstate*nlstate,1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);            }
               if( i <= iagemax){
   fprintf(ficreseij,"# Health expectancies\n");              if(pos>=1.e-5){
   fprintf(ficreseij,"# Age");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   for(i=1; i<=nlstate;i++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
     for(j=1; j<=nlstate;j++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fprintf(ficreseij," %1d-%1d (SE)",i,j);              }
   fprintf(ficreseij,"\n");              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   if(estepm < stepm){            }
     printf ("Problem %d lower than %d\n",estepm, stepm);          }
   }         
   else  hstepm=estepm;             for(jk=-1; jk <=nlstate+ndeath; jk++)
   /* We compute the life expectancy from trapezoids spaced every estepm months            for(m=-1; m <=nlstate+ndeath; m++)
    * This is mainly to measure the difference between two models: for example              if(freq[jk][m][i] !=0 ) {
    * if stepm=24 months pijx are given only every 2 years and by summing them              if(first==1)
    * we are calculating an estimate of the Life Expectancy assuming a linear                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
    * progression in between and thus overestimating or underestimating according                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
    * to the curvature of the survival function. If, for the same date, we               }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          if(i <= iagemax)
    * to compare the new estimate of Life expectancy with the same linear             fprintf(ficresp,"\n");
    * hypothesis. A more precise result, taking into account a more precise          if(first==1)
    * curvature will be obtained if estepm is as small as stepm. */            printf("Others in log...\n");
           fprintf(ficlog,"\n");
   /* For example we decided to compute the life expectancy with the smallest unit */        }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       }
      nhstepm is the number of hstepm from age to agelim     }
      nstepm is the number of stepm from age to agelin.     dateintmean=dateintsum/k2cpt;
      Look at hpijx to understand the reason of that which relies in memory size   
      and note for a fixed period like estepm months */    fclose(ficresp);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      survival function given by stepm (the optimization length). Unfortunately it    free_vector(pp,1,nlstate);
      means that if the survival funtion is printed only each two years of age and if    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     /* End of Freq */
      results. So we changed our mind and took the option of the best precision.  }
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   agelim=AGESUP;  {  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     /* nhstepm age range expressed in number of stepm */       in each health status at the date of interview (if between dateprev1 and dateprev2).
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        We still use firstpass and lastpass as another selection.
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */     */
     /* if (stepm >= YEARM) hstepm=1;*/   
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***freq; /* Frequencies */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    double *pp, **prop;
     gp=matrix(0,nhstepm,1,nlstate*nlstate);    double pos,posprop;
     gm=matrix(0,nhstepm,1,nlstate*nlstate);    double  y2; /* in fractional years */
     int iagemin, iagemax;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    iagemin= (int) agemin;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      iagemax= (int) agemax;
      /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
     /* Computing Variances of health expectancies */   
     j=cptcoveff;
      for(theta=1; theta <=npar; theta++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(i=1; i<=npar; i++){    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          j1++;
          
       cptj=0;        for (i=1; i<=nlstate; i++)  
       for(j=1; j<= nlstate; j++){          for(m=iagemin; m <= iagemax+3; m++)
         for(i=1; i<=nlstate; i++){            prop[i][m]=0.0;
           cptj=cptj+1;       
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        for (i=1; i<=imx; i++) { /* Each individual */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          bool=1;
           }          if  (cptcovn>0) {
         }            for (z1=1; z1<=cptcoveff; z1++)
       }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
                      bool=0;
                }
       for(i=1; i<=npar; i++)           if (bool==1) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                     if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       cptj=0;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(j=1; j<= nlstate; j++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(i=1;i<=nlstate;i++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
           cptj=cptj+1;                if (s[m][i]>0 && s[m][i]<=nlstate) {
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                  prop[s[m][i]][iagemax+3] += weight[i];
           }                }
         }              }
       }            } /* end selection of waves */
       for(j=1; j<= nlstate*nlstate; j++)          }
         for(h=0; h<=nhstepm-1; h++){        }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for(i=iagemin; i <= iagemax+3; i++){  
         }         
      }           for(jk=1,posprop=0; jk <=nlstate ; jk++) {
                posprop += prop[jk][i];
 /* End theta */          }
   
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){    
             if( i <=  iagemax){
      for(h=0; h<=nhstepm-1; h++)              if(posprop>=1.e-5){
       for(j=1; j<=nlstate*nlstate;j++)                probs[i][jk][j1]= prop[jk][i]/posprop;
         for(theta=1; theta <=npar; theta++)              }
           trgradg[h][j][theta]=gradg[h][theta][j];            }
                }/* end jk */
         }/* end i */
      for(i=1;i<=nlstate*nlstate;i++)      } /* end i1 */
       for(j=1;j<=nlstate*nlstate;j++)    } /* end k1 */
         varhe[i][j][(int)age] =0.;   
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      printf("%d|",(int)age);fflush(stdout);    /*free_vector(pp,1,nlstate);*/
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      for(h=0;h<=nhstepm-1;h++){  }  /* End of prevalence */
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);  /************* Waves Concatenation ***************/
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);  
         for(i=1;i<=nlstate*nlstate;i++)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           for(j=1;j<=nlstate*nlstate;j++)  {
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
     }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     /* Computing expectancies */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     for(i=1; i<=nlstate;i++)       and mw[mi+1][i]. dh depends on stepm.
       for(j=1; j<=nlstate;j++)       */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    int i, mi, m;
               /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/       double sum=0., jmean=0.;*/
     int first;
         }    int j, k=0,jk, ju, jl;
     double sum=0.;
     fprintf(ficreseij,"%3.0f",age );    first=0;
     cptj=0;    jmin=1e+5;
     for(i=1; i<=nlstate;i++)    jmax=-1;
       for(j=1; j<=nlstate;j++){    jmean=0.;
         cptj++;    for(i=1; i<=imx; i++){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      mi=0;
       }      m=firstpass;
     fprintf(ficreseij,"\n");      while(s[m][i] <= nlstate){
            if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);          mw[++mi][i]=m;
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);        if(m >=lastpass)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);          break;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);        else
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          m++;
   }      }/* end while */
   printf("\n");      if (s[m][i] > nlstate){
   fprintf(ficlog,"\n");        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
   free_vector(xp,1,npar);           /* Only death is a correct wave */
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);        mw[mi][i]=m;
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);      }
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);  
 }      wav[i]=mi;
       if(mi==0){
 /************ Variance ******************/        nbwarn++;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)        if(first==0){
 {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   /* Variance of health expectancies */          first=1;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   /* double **newm;*/        if(first==1){
   double **dnewm,**doldm;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   double **dnewmp,**doldmp;        }
   int i, j, nhstepm, hstepm, h, nstepm ;      } /* end mi==0 */
   int k, cptcode;    } /* End individuals */
   double *xp;  
   double **gp, **gm;  /* for var eij */    for(i=1; i<=imx; i++){
   double ***gradg, ***trgradg; /*for var eij */      for(mi=1; mi<wav[i];mi++){
   double **gradgp, **trgradgp; /* for var p point j */        if (stepm <=0)
   double *gpp, *gmp; /* for var p point j */          dh[mi][i]=1;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        else{
   double ***p3mat;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   double age,agelim, hf;            if (agedc[i] < 2*AGESUP) {
   double ***mobaverage;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
   int theta;              if(j==0) j=1;  /* Survives at least one month after exam */
   char digit[4];              else if(j<0){
   char digitp[25];                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char fileresprobmorprev[FILENAMELENGTH];                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if(popbased==1){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     if(mobilav!=0)                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       strcpy(digitp,"-populbased-mobilav-");              }
     else strcpy(digitp,"-populbased-nomobil-");              k=k+1;
   }              if (j >= jmax){
   else                 jmax=j;
     strcpy(digitp,"-stablbased-");                ijmax=i;
               }
   if (mobilav!=0) {              if (j <= jmin){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                jmin=j;
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){                ijmin=i;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);              }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);              sum=sum+j;
     }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   strcpy(fileresprobmorprev,"prmorprev");           }
   sprintf(digit,"%-d",ij);          else{
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */  
   strcat(fileresprobmorprev,fileres);            k=k+1;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {            if (j >= jmax) {
     printf("Problem with resultfile: %s\n", fileresprobmorprev);              jmax=j;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);              ijmax=i;
   }            }
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            else if (j <= jmin){
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);              jmin=j;
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);              ijmin=i;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);            }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     fprintf(ficresprobmorprev," p.%-d SE",j);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(i=1; i<=nlstate;i++)            if(j<0){
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);              nberr++;
   }                printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficresprobmorprev,"\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            sum=sum+j;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          }
     exit(0);          jk= j/stepm;
   }          jl= j -jk*stepm;
   else{          ju= j -(jk+1)*stepm;
     fprintf(ficgp,"\n# Routine varevsij");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   }            if(jl==0){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              dh[mi][i]=jk;
     printf("Problem with html file: %s\n", optionfilehtm);              bh[mi][i]=0;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);            }else{ /* We want a negative bias in order to only have interpolation ie
     exit(0);                    * at the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
   else{              bh[mi][i]=ju;
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");            }
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);          }else{
   }            if(jl <= -ju){
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");                                   * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficresvij,"# Age");                                   */
   for(i=1; i<=nlstate;i++)            }
     for(j=1; j<=nlstate;j++)            else{
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);              dh[mi][i]=jk+1;
   fprintf(ficresvij,"\n");              bh[mi][i]=ju;
             }
   xp=vector(1,npar);            if(dh[mi][i]==0){
   dnewm=matrix(1,nlstate,1,npar);              dh[mi][i]=1; /* At least one step */
   doldm=matrix(1,nlstate,1,nlstate);              bh[mi][i]=ju; /* At least one step */
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            }
           } /* end if mle */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        }
   gpp=vector(nlstate+1,nlstate+ndeath);      } /* end wave */
   gmp=vector(nlstate+1,nlstate+ndeath);    }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    jmean=sum/k;
       printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   if(estepm < stepm){    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     printf ("Problem %d lower than %d\n",estepm, stepm);   }
   }  
   else  hstepm=estepm;     /*********** Tricode ****************************/
   /* For example we decided to compute the life expectancy with the smallest unit */  void tricode(int *Tvar, int **nbcode, int imx)
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   {
      nhstepm is the number of hstepm from age to agelim    
      nstepm is the number of stepm from age to agelin.     int Ndum[20],ij=1, k, j, i, maxncov=19;
      Look at hpijx to understand the reason of that which relies in memory size    int cptcode=0;
      and note for a fixed period like k years */    cptcoveff=0;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the   
      survival function given by stepm (the optimization length). Unfortunately it    for (k=0; k<maxncov; k++) Ndum[k]=0;
      means that if the survival funtion is printed every two years of age and if    for (k=1; k<=7; k++) ncodemax[k]=0;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                                  modality*/
   agelim = AGESUP;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        Ndum[ij]++; /*store the modality */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                                         Tvar[j]. If V=sex and male is 0 and
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                                         female is 1, then  cptcode=1.*/
     gp=matrix(0,nhstepm,1,nlstate);      }
     gm=matrix(0,nhstepm,1,nlstate);  
       for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      ij=1;
       }      for (i=1; i<=ncodemax[j]; i++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=0; k<= maxncov; k++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k;
       if (popbased==1) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         if(mobilav ==0){           
           for(i=1; i<=nlstate;i++)            ij++;
             prlim[i][i]=probs[(int)age][i][ij];          }
         }else{ /* mobilav */           if (ij > ncodemax[j]) break;
           for(i=1; i<=nlstate;i++)        }  
             prlim[i][i]=mobaverage[(int)age][i][ij];      }
         }    }  
       }  
      for (k=0; k< maxncov; k++) Ndum[k]=0;
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){   for (i=1; i<=ncovmodel-2; i++) {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];     ij=Tvar[i];
         }     Ndum[ij]++;
       }   }
       /* This for computing probability of death (h=1 means  
          computed over hstepm matrices product = hstepm*stepm months)    ij=1;
          as a weighted average of prlim.   for (i=1; i<= maxncov; i++) {
       */     if((Ndum[i]!=0) && (i<=ncovcol)){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){       Tvaraff[ij]=i; /*For printing */
         for(i=1,gpp[j]=0.; i<= nlstate; i++)       ij++;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];     }
       }       }
       /* end probability of death */   
    cptcoveff=ij-1; /*Number of simple covariates*/
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*********** Health Expectancies ****************/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
    void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       if (popbased==1) {  
         if(mobilav ==0){  {
           for(i=1; i<=nlstate;i++)    /* Health expectancies, no variances */
             prlim[i][i]=probs[(int)age][i][ij];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         }else{ /* mobilav */     double age, agelim, hf;
           for(i=1; i<=nlstate;i++)    double ***p3mat;
             prlim[i][i]=mobaverage[(int)age][i][ij];    double eip;
         }  
       }    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       for(j=1; j<= nlstate; j++){    fprintf(ficreseij,"# Age");
         for(h=0; h<=nhstepm; h++){    for(i=1; i<=nlstate;i++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for(j=1; j<=nlstate;j++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        fprintf(ficreseij," e%1d%1d ",i,j);
         }      }
       }      fprintf(ficreseij," e%1d. ",i);
       /* This for computing probability of death (h=1 means    }
          computed over hstepm matrices product = hstepm*stepm months)     fprintf(ficreseij,"\n");
          as a weighted average of prlim.  
       */   
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    if(estepm < stepm){
         for(i=1,gmp[j]=0.; i<= nlstate; i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    }
       }        else  hstepm=estepm;  
       /* end probability of death */    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
       for(j=1; j<= nlstate; j++) /* vareij */     * if stepm=24 months pijx are given only every 2 years and by summing them
         for(h=0; h<=nhstepm; h++){     * we are calculating an estimate of the Life Expectancy assuming a linear
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */     * to compare the new estimate of Life expectancy with the same linear
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];     * hypothesis. A more precise result, taking into account a more precise
       }     * curvature will be obtained if estepm is as small as stepm. */
   
     } /* End theta */    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */       nhstepm is the number of hstepm from age to agelim
        nstepm is the number of stepm from age to agelin.
     for(h=0; h<=nhstepm; h++) /* veij */       Look at hpijx to understand the reason of that which relies in memory size
       for(j=1; j<=nlstate;j++)       and note for a fixed period like estepm months */
         for(theta=1; theta <=npar; theta++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           trgradg[h][j][theta]=gradg[h][theta][j];       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */       you sum them up and add 1 year (area under the trapezoids) you won't get the same
       for(theta=1; theta <=npar; theta++)       results. So we changed our mind and took the option of the best precision.
         trgradgp[j][theta]=gradgp[theta][j];    */
       hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    agelim=AGESUP;
     for(i=1;i<=nlstate;i++)    /* If stepm=6 months */
       for(j=1;j<=nlstate;j++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         vareij[i][j][(int)age] =0.;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      
     for(h=0;h<=nhstepm;h++){  /* nhstepm age range expressed in number of stepm */
       for(k=0;k<=nhstepm;k++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /* if (stepm >= YEARM) hstepm=1;*/
         for(i=1;i<=nlstate;i++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           for(j=1;j<=nlstate;j++)    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }    for (age=bage; age<=fage; age ++){
     }  
     
     /* pptj */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);     
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)     
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      printf("%d|",(int)age);fflush(stdout);
         varppt[j][i]=doldmp[j][i];      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     /* end ppptj */     
     /*  x centered again */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        /* Computing expectancies */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
     if (popbased==1) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       if(mobilav ==0){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         for(i=1; i<=nlstate;i++)           
           prlim[i][i]=probs[(int)age][i][ij];            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       }else{ /* mobilav */   
         for(i=1; i<=nlstate;i++)          }
           prlim[i][i]=mobaverage[(int)age][i][ij];     
       }      fprintf(ficreseij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++){
                      eip=0;
     /* This for computing probability of death (h=1 means        for(j=1; j<=nlstate;j++){
        computed over hstepm (estepm) matrices product = hstepm*stepm months)           eip +=eij[i][j][(int)age];
        as a weighted average of prlim.          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     */        }
     for(j=nlstate+1;j<=nlstate+ndeath;j++){        fprintf(ficreseij,"%9.4f", eip );
       for(i=1,gmp[j]=0.;i<= nlstate; i++)       }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];       fprintf(ficreseij,"\n");
     }         
     /* end probability of death */    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    printf("\n");
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    fprintf(ficlog,"\n");
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));   
       for(i=1; i<=nlstate;i++){  }
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     }   
     fprintf(ficresprobmorprev,"\n");  {
     /* Covariances of health expectancies eij and of total life expectancies according
     fprintf(ficresvij,"%.0f ",age );     to initial status i, ei. .
     for(i=1; i<=nlstate;i++)    */
       for(j=1; j<=nlstate;j++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double age, agelim, hf;
       }    double ***p3matp, ***p3matm, ***varhe;
     fprintf(ficresvij,"\n");    double **dnewm,**doldm;
     free_matrix(gp,0,nhstepm,1,nlstate);    double *xp, *xm;
     free_matrix(gm,0,nhstepm,1,nlstate);    double **gp, **gm;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double ***gradg, ***trgradg;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    int theta;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    double eip, vip;
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    xp=vector(1,npar);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    xm=vector(1,npar);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    dnewm=matrix(1,nlstate*nlstate,1,npar);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");   
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    pstamp(ficresstdeij);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    fprintf(ficresstdeij,"# Age");
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);    for(i=1; i<=nlstate;i++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);      for(j=1; j<=nlstate;j++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);      fprintf(ficresstdeij," e%1d. ",i);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);    }
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    fprintf(ficresstdeij,"\n");
 */  
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   free_vector(xp,1,npar);    fprintf(ficrescveij,"# Age");
   free_matrix(doldm,1,nlstate,1,nlstate);    for(i=1; i<=nlstate;i++)
   free_matrix(dnewm,1,nlstate,1,npar);      for(j=1; j<=nlstate;j++){
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        cptj= (j-1)*nlstate+i;
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        for(i2=1; i2<=nlstate;i2++)
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for(j2=1; j2<=nlstate;j2++){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            cptj2= (j2-1)*nlstate+i2;
   fclose(ficresprobmorprev);            if(cptj2 <= cptj)
   fclose(ficgp);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   fclose(fichtm);          }
 }  /* end varevsij */      }
     fprintf(ficrescveij,"\n");
 /************ Variance of prevlim ******************/   
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    if(estepm < stepm){
 {      printf ("Problem %d lower than %d\n",estepm, stepm);
   /* Variance of prevalence limit */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    else  hstepm=estepm;  
   double **newm;    /* We compute the life expectancy from trapezoids spaced every estepm months
   double **dnewm,**doldm;     * This is mainly to measure the difference between two models: for example
   int i, j, nhstepm, hstepm;     * if stepm=24 months pijx are given only every 2 years and by summing them
   int k, cptcode;     * we are calculating an estimate of the Life Expectancy assuming a linear
   double *xp;     * progression in between and thus overestimating or underestimating according
   double *gp, *gm;     * to the curvature of the survival function. If, for the same date, we
   double **gradg, **trgradg;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double age,agelim;     * to compare the new estimate of Life expectancy with the same linear
   int theta;     * hypothesis. A more precise result, taking into account a more precise
         * curvature will be obtained if estepm is as small as stepm. */
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");  
   fprintf(ficresvpl,"# Age");    /* For example we decided to compute the life expectancy with the smallest unit */
   for(i=1; i<=nlstate;i++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
       fprintf(ficresvpl," %1d-%1d",i,i);       nhstepm is the number of hstepm from age to agelim
   fprintf(ficresvpl,"\n");       nstepm is the number of stepm from age to agelin.
        Look at hpijx to understand the reason of that which relies in memory size
   xp=vector(1,npar);       and note for a fixed period like estepm months */
   dnewm=matrix(1,nlstate,1,npar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   doldm=matrix(1,nlstate,1,nlstate);       survival function given by stepm (the optimization length). Unfortunately it
          means that if the survival funtion is printed only each two years of age and if
   hstepm=1*YEARM; /* Every year of age */       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        results. So we changed our mind and took the option of the best precision.
   agelim = AGESUP;    */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   
     if (stepm >= YEARM) hstepm=1;    /* If stepm=6 months */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* nhstepm age range expressed in number of stepm */
     gradg=matrix(1,npar,1,nlstate);    agelim=AGESUP;
     gp=vector(1,nlstate);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     gm=vector(1,nlstate);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* if (stepm >= YEARM) hstepm=1;*/
     for(theta=1; theta <=npar; theta++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(i=1; i<=npar; i++){ /* Computes gradient */   
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for(i=1;i<=nlstate;i++)    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         gp[i] = prlim[i][i];    gp=matrix(0,nhstepm,1,nlstate*nlstate);
         gm=matrix(0,nhstepm,1,nlstate*nlstate);
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (age=bage; age<=fage; age ++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         gm[i] = prlim[i][i];         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
       for(i=1;i<=nlstate;i++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     trgradg =matrix(1,nlstate,1,npar);         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
     for(j=1; j<=nlstate;j++)        for(i=1; i<=npar; i++){
       for(theta=1; theta <=npar; theta++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         trgradg[j][theta]=gradg[theta][j];          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
     for(i=1;i<=nlstate;i++)        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       varpl[i][(int)age] =0.;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);   
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        for(j=1; j<= nlstate; j++){
     for(i=1;i<=nlstate;i++)          for(i=1; i<=nlstate; i++){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     fprintf(ficresvpl,"%.0f ",age );              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          }
     fprintf(ficresvpl,"\n");        }
     free_vector(gp,1,nlstate);       
     free_vector(gm,1,nlstate);        for(ij=1; ij<= nlstate*nlstate; ij++)
     free_matrix(gradg,1,npar,1,nlstate);          for(h=0; h<=nhstepm-1; h++){
     free_matrix(trgradg,1,nlstate,1,npar);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   } /* End age */          }
       }/* End theta */
   free_vector(xp,1,npar);     
   free_matrix(doldm,1,nlstate,1,npar);     
   free_matrix(dnewm,1,nlstate,1,nlstate);      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
 }          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
 /************ Variance of one-step probabilities  ******************/     
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {       for(ij=1;ij<=nlstate*nlstate;ij++)
   int i, j=0,  i1, k1, l1, t, tj;        for(ji=1;ji<=nlstate*nlstate;ji++)
   int k2, l2, j1,  z1;          varhe[ij][ji][(int)age] =0.;
   int k=0,l, cptcode;  
   int first=1, first1;       printf("%d|",(int)age);fflush(stdout);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double **dnewm,**doldm;       for(h=0;h<=nhstepm-1;h++){
   double *xp;        for(k=0;k<=nhstepm-1;k++){
   double *gp, *gm;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   double **gradg, **trgradg;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   double **mu;          for(ij=1;ij<=nlstate*nlstate;ij++)
   double age,agelim, cov[NCOVMAX];            for(ji=1;ji<=nlstate*nlstate;ji++)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   int theta;        }
   char fileresprob[FILENAMELENGTH];      }
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];      /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double ***varpij;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   strcpy(fileresprob,"prob");           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   strcat(fileresprob,fileres);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {           
     printf("Problem with resultfile: %s\n", fileresprob);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }          }
   strcpy(fileresprobcov,"probcov");   
   strcat(fileresprobcov,fileres);      fprintf(ficresstdeij,"%3.0f",age );
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for(i=1; i<=nlstate;i++){
     printf("Problem with resultfile: %s\n", fileresprobcov);        eip=0.;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        vip=0.;
   }        for(j=1; j<=nlstate;j++){
   strcpy(fileresprobcor,"probcor");           eip += eij[i][j][(int)age];
   strcat(fileresprobcor,fileres);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     printf("Problem with resultfile: %s\n", fileresprobcor);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        }
   }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      fprintf(ficresstdeij,"\n");
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      fprintf(ficrescveij,"%3.0f",age );
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for(j=1; j<=nlstate;j++){
             cptj= (j-1)*nlstate+i;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          for(i2=1; i2<=nlstate;i2++)
   fprintf(ficresprob,"# Age");            for(j2=1; j2<=nlstate;j2++){
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");              cptj2= (j2-1)*nlstate+i2;
   fprintf(ficresprobcov,"# Age");              if(cptj2 <= cptj)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   fprintf(ficresprobcov,"# Age");            }
         }
       fprintf(ficrescveij,"\n");
   for(i=1; i<=nlstate;i++)     
     for(j=1; j<=(nlstate+ndeath);j++){    }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
  /* fprintf(ficresprob,"\n");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresprobcov,"\n");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresprobcor,"\n");    printf("\n");
  */    fprintf(ficlog,"\n");
  xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    free_vector(xm,1,npar);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    free_vector(xp,1,npar);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   first=1;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  /************ Variance ******************/
     exit(0);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   }  {
   else{    /* Variance of health expectancies */
     fprintf(ficgp,"\n# Routine varprob");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   }    /* double **newm;*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with html file: %s\n", optionfilehtm);    double **dnewmp,**doldmp;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    int i, j, nhstepm, hstepm, h, nstepm ;
     exit(0);    int k, cptcode;
   }    double *xp;
   else{    double **gp, **gm;  /* for var eij */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    double ***gradg, ***trgradg; /*for var eij */
     fprintf(fichtm,"\n");    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    double ***p3mat;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    double age,agelim, hf;
     double ***mobaverage;
   }    int theta;
     char digit[4];
   cov[1]=1;    char digitp[25];
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    char fileresprobmorprev[FILENAMELENGTH];
   j1=0;  
   for(t=1; t<=tj;t++){    if(popbased==1){
     for(i1=1; i1<=ncodemax[t];i1++){       if(mobilav!=0)
       j1++;        strcpy(digitp,"-populbased-mobilav-");
       if  (cptcovn>0) {      else strcpy(digitp,"-populbased-nomobil-");
         fprintf(ficresprob, "\n#********** Variable ");     }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    else
         fprintf(ficresprob, "**********\n#\n");      strcpy(digitp,"-stablbased-");
         fprintf(ficresprobcov, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    if (mobilav!=0) {
         fprintf(ficresprobcov, "**********\n#\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficgp, "\n#********** Variable ");         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficgp, "**********\n#\n");      }
             }
           
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     strcpy(fileresprobmorprev,"prmorprev");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    sprintf(digit,"%-d",ij);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
             strcat(fileresprobmorprev,digit); /* Tvar to be done */
         fprintf(ficresprobcor, "\n#********** Variable ");        strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    strcat(fileresprobmorprev,fileres);
         fprintf(ficresprobcor, "**********\n#");        if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
             fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       for (age=bage; age<=fage; age ++){     }
         cov[2]=age;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for (k=1; k<=cptcovn;k++) {   
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }    pstamp(ficresprobmorprev);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         for (k=1; k<=cptcovprod;k++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               fprintf(ficresprobmorprev," p.%-d SE",j);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      for(i=1; i<=nlstate;i++)
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         gp=vector(1,(nlstate)*(nlstate+ndeath));    }  
         gm=vector(1,(nlstate)*(nlstate+ndeath));    fprintf(ficresprobmorprev,"\n");
         fprintf(ficgp,"\n# Routine varevsij");
         for(theta=1; theta <=npar; theta++){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           for(i=1; i<=npar; i++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             /*   } */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               pstamp(ficresvij);
           k=0;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           for(i=1; i<= (nlstate); i++){    if(popbased==1)
             for(j=1; j<=(nlstate+ndeath);j++){      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
               k=k+1;    else
               gp[k]=pmmij[i][j];      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
             }    fprintf(ficresvij,"# Age");
           }    for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate;j++)
           for(i=1; i<=npar; i++)        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    fprintf(ficresvij,"\n");
       
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    xp=vector(1,npar);
           k=0;    dnewm=matrix(1,nlstate,1,npar);
           for(i=1; i<=(nlstate); i++){    doldm=matrix(1,nlstate,1,nlstate);
             for(j=1; j<=(nlstate+ndeath);j++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
               k=k+1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               gm[k]=pmmij[i][j];  
             }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           }    gpp=vector(nlstate+1,nlstate+ndeath);
          gmp=vector(nlstate+1,nlstate+ndeath);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];     
         }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    }
           for(theta=1; theta <=npar; theta++)    else  hstepm=estepm;  
             trgradg[j][theta]=gradg[theta][j];    /* For example we decided to compute the life expectancy with the smallest unit */
             /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        nhstepm is the number of hstepm from age to agelim
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);       nstepm is the number of stepm from age to agelin.
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));       Look at hpijx to understand the reason of that which relies in memory size
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));       and note for a fixed period like k years */
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
         pmij(pmmij,cov,ncovmodel,x,nlstate);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
                results. So we changed our mind and took the option of the best precision.
         k=0;    */
         for(i=1; i<=(nlstate); i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
           for(j=1; j<=(nlstate+ndeath);j++){    agelim = AGESUP;
             k=k+1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             mu[k][(int) age]=pmmij[i][j];      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
           }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      gp=matrix(0,nhstepm,1,nlstate);
             varpij[i][j][(int)age] = doldm[i][j];      gm=matrix(0,nhstepm,1,nlstate);
   
         /*printf("\n%d ",(int)age);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      for(theta=1; theta <=npar; theta++){
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           }*/        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficresprob,"\n%d ",(int)age);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);        if (popbased==1) {
           if(mobilav ==0){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            for(i=1; i<=nlstate;i++)
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              prlim[i][i]=probs[(int)age][i][ij];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }else{ /* mobilav */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            for(i=1; i<=nlstate;i++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              prlim[i][i]=mobaverage[(int)age][i][ij];
         }          }
         i=0;        }
         for (k=1; k<=(nlstate);k++){   
           for (l=1; l<=(nlstate+ndeath);l++){         for(j=1; j<= nlstate; j++){
             i=i++;          for(h=0; h<=nhstepm; h++){
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
             for (j=1; j<=i;j++){          }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        /* This for computing probability of death (h=1 means
             }           computed over hstepm matrices product = hstepm*stepm months)
           }           as a weighted average of prlim.
         }/* end of loop for state */        */
       } /* end of loop for age */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
       /* Confidence intervalle of pij  */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       /*        }    
         fprintf(ficgp,"\nset noparametric;unset label");        /* end probability of death */
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);   
       */        if (popbased==1) {
           if(mobilav ==0){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            for(i=1; i<=nlstate;i++)
       first1=1;              prlim[i][i]=probs[(int)age][i][ij];
       for (k2=1; k2<=(nlstate);k2++){          }else{ /* mobilav */
         for (l2=1; l2<=(nlstate+ndeath);l2++){             for(i=1; i<=nlstate;i++)
           if(l2==k2) continue;              prlim[i][i]=mobaverage[(int)age][i][ij];
           j=(k2-1)*(nlstate+ndeath)+l2;          }
           for (k1=1; k1<=(nlstate);k1++){        }
             for (l1=1; l1<=(nlstate+ndeath);l1++){   
               if(l1==k1) continue;        for(j=1; j<= nlstate; j++){
               i=(k1-1)*(nlstate+ndeath)+l1;          for(h=0; h<=nhstepm; h++){
               if(i<=j) continue;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               for (age=bage; age<=fage; age ++){               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                 if ((int)age %5==0){          }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        /* This for computing probability of death (h=1 means
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;           computed over hstepm matrices product = hstepm*stepm months)
                   mu1=mu[i][(int) age]/stepm*YEARM ;           as a weighted average of prlim.
                   mu2=mu[j][(int) age]/stepm*YEARM;        */
                   c12=cv12/sqrt(v1*v2);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   /* Computing eigen value of matrix of covariance */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        }    
                   /* Eigen vectors */        /* end probability of death */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   /*v21=sqrt(1.-v11*v11); *//* error */        for(j=1; j<= nlstate; j++) /* vareij */
                   v21=(lc1-v1)/cv12*v11;          for(h=0; h<=nhstepm; h++){
                   v12=-v21;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   v22=v11;          }
                   tnalp=v21/v11;  
                   if(first1==1){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                     first1=0;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        }
                   }  
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      } /* End theta */
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */  
                   if(first==1){      for(h=0; h<=nhstepm; h++) /* veij */
                     first=0;        for(j=1; j<=nlstate;j++)
                     fprintf(ficgp,"\nset parametric;unset label");          for(theta=1; theta <=npar; theta++)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);            trgradg[h][j][theta]=gradg[h][theta][j];
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);        for(theta=1; theta <=npar; theta++)
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);          trgradgp[j][theta]=gradgp[theta][j];
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);   
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      for(i=1;i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        for(j=1;j<=nlstate;j++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          vareij[i][j][(int)age] =0.;
                   }else{  
                     first=0;      for(h=0;h<=nhstepm;h++){
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);        for(k=0;k<=nhstepm;k++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for(i=1;i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            for(j=1;j<=nlstate;j++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   }/* if first */        }
                 } /* age mod 5 */      }
               } /* end loop age */   
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);      /* pptj */
               first=1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             } /*l12 */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           } /* k12 */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         } /*l1 */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       }/* k1 */          varppt[j][i]=doldmp[j][i];
     } /* loop covariates */      /* end ppptj */
   }      /*  x centered again */
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   free_vector(xp,1,npar);   
   fclose(ficresprob);      if (popbased==1) {
   fclose(ficresprobcov);        if(mobilav ==0){
   fclose(ficresprobcor);          for(i=1; i<=nlstate;i++)
   fclose(ficgp);            prlim[i][i]=probs[(int)age][i][ij];
   fclose(fichtm);        }else{ /* mobilav */
 }          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
 /******************* Printing html file ***********/      }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \               
                   int lastpass, int stepm, int weightopt, char model[],\      /* This for computing probability of death (h=1 means
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\         computed over hstepm (estepm) matrices product = hstepm*stepm months)
                   int popforecast, int estepm ,\         as a weighted average of prlim.
                   double jprev1, double mprev1,double anprev1, \      */
                   double jprev2, double mprev2,double anprev2){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   int jj1, k1, i1, cpt;        for(i=1,gmp[j]=0.;i<= nlstate; i++)
   /*char optionfilehtm[FILENAMELENGTH];*/          gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      }    
     printf("Problem with %s \n",optionfilehtm), exit(0);      /* end probability of death */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);  
   }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \        for(i=1; i<=nlstate;i++){
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \        }
  - Life expectancies by age and initial health status (estepm=%2d months): \      }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      fprintf(ficresprobmorprev,"\n");
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
       fprintf(ficresvij,"%.0f ",age );
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
  m=cptcoveff;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
       fprintf(ficresvij,"\n");
  jj1=0;      free_matrix(gp,0,nhstepm,1,nlstate);
  for(k1=1; k1<=m;k1++){      free_matrix(gm,0,nhstepm,1,nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
      jj1++;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
      if (cptcovn > 0) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    } /* End age */
        for (cpt=1; cpt<=cptcoveff;cpt++)     free_vector(gpp,nlstate+1,nlstate+ndeath);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    free_vector(gmp,nlstate+1,nlstate+ndeath);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      /* Pij */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      /* Quasi-incidences */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
        /* Stable prevalence in each health state */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
        for(cpt=1; cpt<nlstate;cpt++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      for(cpt=1; cpt<=nlstate;cpt++) {  */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    free_vector(xp,1,npar);
 health expectancies in states (1) and (2): e%s%d.png<br>\    free_matrix(doldm,1,nlstate,1,nlstate);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    free_matrix(dnewm,1,nlstate,1,npar);
    } /* end i1 */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  }/* End k1 */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
  fprintf(fichtm,"</ul>");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\    fflush(ficgp);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\    fflush(fichtm);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\  }  /* end varevsij */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\  
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\  /************ Variance of prevlim ******************/
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\  {
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 /*  if(popforecast==1) fprintf(fichtm,"\n */    double **newm;
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    double **dnewm,**doldm;
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    int i, j, nhstepm, hstepm;
 /*      <br>",fileres,fileres,fileres,fileres); */    int k, cptcode;
 /*  else  */    double *xp;
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    double *gp, *gm;
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    double **gradg, **trgradg;
     double age,agelim;
  m=cptcoveff;    int theta;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   
     pstamp(ficresvpl);
  jj1=0;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
  for(k1=1; k1<=m;k1++){    fprintf(ficresvpl,"# Age");
    for(i1=1; i1<=ncodemax[k1];i1++){    for(i=1; i<=nlstate;i++)
      jj1++;        fprintf(ficresvpl," %1d-%1d",i,i);
      if (cptcovn > 0) {    fprintf(ficresvpl,"\n");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)     xp=vector(1,npar);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    dnewm=matrix(1,nlstate,1,npar);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    doldm=matrix(1,nlstate,1,nlstate);
      }   
      for(cpt=1; cpt<=nlstate;cpt++) {    hstepm=1*YEARM; /* Every year of age */
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
 interval) in state (%d): v%s%d%d.png <br>\    agelim = AGESUP;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
    } /* end i1 */      if (stepm >= YEARM) hstepm=1;
  }/* End k1 */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
  fprintf(fichtm,"</ul>");      gradg=matrix(1,npar,1,nlstate);
 fclose(fichtm);      gp=vector(1,nlstate);
 }      gm=vector(1,nlstate);
   
 /******************* Gnuplot file **************/      for(theta=1; theta <=npar; theta++){
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        }
   int ng;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for(i=1;i<=nlstate;i++)
     printf("Problem with file %s",optionfilegnuplot);          gp[i] = prlim[i][i];
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);     
   }        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /*#ifdef windows */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficgp,"cd \"%s\" \n",pathc);        for(i=1;i<=nlstate;i++)
     /*#endif */          gm[i] = prlim[i][i];
 m=pow(2,cptcoveff);  
           for(i=1;i<=nlstate;i++)
  /* 1eme*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   for (cpt=1; cpt<= nlstate ; cpt ++) {      } /* End theta */
    for (k1=1; k1<= m ; k1 ++) {  
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      trgradg =matrix(1,nlstate,1,npar);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
       for(j=1; j<=nlstate;j++)
      for (i=1; i<= nlstate ; i ++) {        for(theta=1; theta <=npar; theta++)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          trgradg[j][theta]=gradg[theta][j];
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }      for(i=1;i<=nlstate;i++)
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);        varpl[i][(int)age] =0.;
      for (i=1; i<= nlstate ; i ++) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
        else fprintf(ficgp," \%%*lf (\%%*lf)");      for(i=1;i<=nlstate;i++)
      }         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1);   
      for (i=1; i<= nlstate ; i ++) {      fprintf(ficresvpl,"%.0f ",age );
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(i=1; i<=nlstate;i++)
        else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
      }        fprintf(ficresvpl,"\n");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      free_vector(gp,1,nlstate);
    }      free_vector(gm,1,nlstate);
   }      free_matrix(gradg,1,npar,1,nlstate);
   /*2 eme*/      free_matrix(trgradg,1,nlstate,1,npar);
       } /* End age */
   for (k1=1; k1<= m ; k1 ++) {   
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    free_vector(xp,1,npar);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    free_matrix(doldm,1,nlstate,1,npar);
         free_matrix(dnewm,1,nlstate,1,nlstate);
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;  }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  /************ Variance of one-step probabilities  ******************/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         else fprintf(ficgp," \%%*lf (\%%*lf)");  {
       }       int i, j=0,  i1, k1, l1, t, tj;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int k2, l2, j1,  z1;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    int k=0,l, cptcode;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    int first=1, first1;
       for (j=1; j<= nlstate+1 ; j ++) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **dnewm,**doldm;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp;
       }       double *gp, *gm;
       fprintf(ficgp,"\" t\"\" w l 0,");    double **gradg, **trgradg;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double **mu;
       for (j=1; j<= nlstate+1 ; j ++) {    double age,agelim, cov[NCOVMAX];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int theta;
       }       char fileresprob[FILENAMELENGTH];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    char fileresprobcov[FILENAMELENGTH];
       else fprintf(ficgp,"\" t\"\" w l 0,");    char fileresprobcor[FILENAMELENGTH];
     }  
   }    double ***varpij;
     
   /*3eme*/    strcpy(fileresprob,"prob");
       strcat(fileresprob,fileres);
   for (k1=1; k1<= m ; k1 ++) {     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     for (cpt=1; cpt<= nlstate ; cpt ++) {      printf("Problem with resultfile: %s\n", fileresprob);
       k=2+nlstate*(2*cpt-2);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    strcpy(fileresprobcov,"probcov");
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    strcat(fileresprobcov,fileres);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      printf("Problem with resultfile: %s\n", fileresprobcov);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    }
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    strcpy(fileresprobcor,"probcor");
             strcat(fileresprobcor,fileres);
       */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       for (i=1; i< nlstate ; i ++) {      printf("Problem with resultfile: %s\n", fileresprobcor);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             }
       }     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /* CV preval stable (period) */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   for (k1=1; k1<= m ; k1 ++) {     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for (cpt=1; cpt<=nlstate ; cpt ++) {    pstamp(ficresprob);
       k=3;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficresprob,"# Age");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    pstamp(ficresprobcov);
           fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       for (i=1; i< nlstate ; i ++)    fprintf(ficresprobcov,"# Age");
         fprintf(ficgp,"+$%d",k+i+1);    pstamp(ficresprobcor);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           fprintf(ficresprobcor,"# Age");
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    for(i=1; i<=nlstate;i++)
         l=3+(nlstate+ndeath)*cpt;      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficgp,"+$%d",l+i+1);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);           fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }       }  
   }     /* fprintf(ficresprob,"\n");
       fprintf(ficresprobcov,"\n");
   /* proba elementaires */    fprintf(ficresprobcor,"\n");
   for(i=1,jk=1; i <=nlstate; i++){   */
     for(k=1; k <=(nlstate+ndeath); k++){   xp=vector(1,npar);
       if (k != i) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         for(j=1; j <=ncovmodel; j++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           jk++;     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           fprintf(ficgp,"\n");    first=1;
         }    fprintf(ficgp,"\n# Routine varprob");
       }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     }    fprintf(fichtm,"\n");
    }  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
      for(jk=1; jk <=m; jk++) {    file %s<br>\n",optionfilehtmcov);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
        if (ng==2)  and drawn. It helps understanding how is the covariance between two incidences.\
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
        else    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
          fprintf(ficgp,"\nset title \"Probability\"\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
        i=1;  standard deviations wide on each axis. <br>\
        for(k2=1; k2<=nlstate; k2++) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
          k3=i;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
          for(k=1; k<=(nlstate+ndeath); k++) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
            if (k != k2){  
              if(ng==2)    cov[1]=1;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    tj=cptcoveff;
              else    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    j1=0;
              ij=1;    for(t=1; t<=tj;t++){
              for(j=3; j <=ncovmodel; j++) {      for(i1=1; i1<=ncodemax[t];i1++){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        j1++;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        if  (cptcovn>0) {
                  ij++;          fprintf(ficresprob, "\n#********** Variable ");
                }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                else          fprintf(ficresprob, "**********\n#\n");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(ficresprobcov, "\n#********** Variable ");
              }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficgp,")/(1");          fprintf(ficresprobcov, "**********\n#\n");
                       
              for(k1=1; k1 <=nlstate; k1++){             fprintf(ficgp, "\n#********** Variable ");
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                ij=1;          fprintf(ficgp, "**********\n#\n");
                for(j=3; j <=ncovmodel; j++){         
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {         
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
                    ij++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                  else         
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(ficresprobcor, "\n#********** Variable ");    
                }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                fprintf(ficgp,")");          fprintf(ficresprobcor, "**********\n#");    
              }        }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);       
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for (age=bage; age<=fage; age ++){
              i=i+ncovmodel;          cov[2]=age;
            }          for (k=1; k<=cptcovn;k++) {
          } /* end k */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
        } /* end k2 */          }
      } /* end jk */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    } /* end ng */          for (k=1; k<=cptcovprod;k++)
    fclose(ficgp);             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }  /* end gnuplot */         
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 /*************** Moving average **************/          gp=vector(1,(nlstate)*(nlstate+ndeath));
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){          gm=vector(1,(nlstate)*(nlstate+ndeath));
      
   int i, cpt, cptcod;          for(theta=1; theta <=npar; theta++){
   int modcovmax =1;            for(i=1; i<=npar; i++)
   int mobilavrange, mob;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   double age;           
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose            
                            a covariate has 2 modalities */            k=0;
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){                k=k+1;
     if(mobilav==1) mobilavrange=5; /* default */                gp[k]=pmmij[i][j];
     else mobilavrange=mobilav;              }
     for (age=bage; age<=fage; age++)            }
       for (i=1; i<=nlstate;i++)           
         for (cptcod=1;cptcod<=modcovmax;cptcod++)            for(i=1; i<=npar; i++)
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     /* We keep the original values on the extreme ages bage, fage and for      
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        we use a 5 terms etc. until the borders are no more concerned.             k=0;
     */             for(i=1; i<=(nlstate); i++){
     for (mob=3;mob <=mobilavrange;mob=mob+2){              for(j=1; j<=(nlstate+ndeath);j++){
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){                k=k+1;
         for (i=1; i<=nlstate;i++){                gm[k]=pmmij[i][j];
           for (cptcod=1;cptcod<=modcovmax;cptcod++){              }
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];            }
               for (cpt=1;cpt<=(mob-1)/2;cpt++){       
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
               }          }
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;  
           }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         }            for(theta=1; theta <=npar; theta++)
       }/* end age */              trgradg[j][theta]=gradg[theta][j];
     }/* end mob */         
   }else return -1;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
   return 0;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 }/* End movingaverage */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 /************** Forecasting ******************/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  
   /* proj1, year, month, day of starting projection           pmij(pmmij,cov,ncovmodel,x,nlstate);
      agemin, agemax range of age         
      dateprev1 dateprev2 range of dates during which prevalence is computed          k=0;
      anproj2 year of en of projection (same day and month as proj1).          for(i=1; i<=(nlstate); i++){
   */            for(j=1; j<=(nlstate+ndeath);j++){
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;              k=k+1;
   int *popage;              mu[k][(int) age]=pmmij[i][j];
   double agec; /* generic age */            }
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }
   double *popeffectif,*popcount;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   double ***p3mat;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   double ***mobaverage;              varpij[i][j][(int)age] = doldm[i][j];
   char fileresf[FILENAMELENGTH];  
           /*printf("\n%d ",(int)age);
   agelim=AGESUP;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcpy(fileresf,"f");             }*/
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {          fprintf(ficresprob,"\n%d ",(int)age);
     printf("Problem with forecast resultfile: %s\n", fileresf);          fprintf(ficresprobcov,"\n%d ",(int)age);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);          fprintf(ficresprobcor,"\n%d ",(int)age);
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   if (mobilav!=0) {          }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          i=0;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){          for (k=1; k<=(nlstate);k++){
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            for (l=1; l<=(nlstate+ndeath);l++){
       printf(" Error in movingaverage mobilav=%d\n",mobilav);              i=i++;
     }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   if (stepm<=12) stepsize=1;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   if(estepm < stepm){              }
     printf ("Problem %d lower than %d\n",estepm, stepm);            }
   }          }/* end of loop for state */
   else  hstepm=estepm;           } /* end of loop for age */
   
   hstepm=hstepm/stepm;         /* Confidence intervalle of pij  */
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and        /*
                                fractional in yp1 */          fprintf(ficgp,"\nset noparametric;unset label");
   anprojmean=yp;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   yp2=modf((yp1*12),&yp);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   mprojmean=yp;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   yp1=modf((yp2*30.5),&yp);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   jprojmean=yp;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   if(jprojmean==0) jprojmean=1;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   if(mprojmean==0) jprojmean=1;        */
   
   i1=cptcoveff;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   if (cptcovn < 1){i1=1;}        first1=1;
           for (k2=1; k2<=(nlstate);k2++){
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);           for (l2=1; l2<=(nlstate+ndeath);l2++){
               if(l2==k2) continue;
   fprintf(ficresf,"#****** Routine prevforecast **\n");            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
 /*            if (h==(int)(YEARM*yearp)){ */              for (l1=1; l1<=(nlstate+ndeath);l1++){
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){                if(l1==k1) continue;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                i=(k1-1)*(nlstate+ndeath)+l1;
       k=k+1;                if(i<=j) continue;
       fprintf(ficresf,"\n#******");                for (age=bage; age<=fage; age ++){
       for(j=1;j<=cptcoveff;j++) {                  if ((int)age %5==0){
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficresf,"******\n");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");                    mu1=mu[i][(int) age]/stepm*YEARM ;
       for(j=1; j<=nlstate+ndeath;j++){                     mu2=mu[j][(int) age]/stepm*YEARM;
         for(i=1; i<=nlstate;i++)                                  c12=cv12/sqrt(v1*v2);
           fprintf(ficresf," p%d%d",i,j);                    /* Computing eigen value of matrix of covariance */
         fprintf(ficresf," p.%d",j);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {                     /* Eigen vectors */
         fprintf(ficresf,"\n");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);                       /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
         for (agec=fage; agec>=(ageminpar-1); agec--){                     v12=-v21;
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);                     v22=v11;
           nhstepm = nhstepm/hstepm;                     tnalp=v21/v11;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    if(first1==1){
           oldm=oldms;savm=savms;                      first1=0;
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);                        printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                             }
           for (h=0; h<=nhstepm; h++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             if (h*hstepm/YEARM*stepm ==yearp) {                    /*printf(fignu*/
               fprintf(ficresf,"\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
               for(j=1;j<=cptcoveff;j++)                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    if(first==1){
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);                      first=0;
             }                       fprintf(ficgp,"\nset parametric;unset label");
             for(j=1; j<=nlstate+ndeath;j++) {                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
               ppij=0.;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
               for(i=1; i<=nlstate;i++) {                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                 if (mobilav==1)    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                 else {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 if (h*hstepm/YEARM*stepm== yearp) {                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               } /* end i */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               if (h*hstepm/YEARM*stepm==yearp) {                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                 fprintf(ficresf," %.3f", ppij);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             }/* end j */                    }else{
           } /* end h */                      first=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         } /* end agec */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       } /* end yearp */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     } /* end cptcod */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   } /* end  cptcov */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                      mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    }/* if first */
                   } /* age mod 5 */
   fclose(ficresf);                } /* end loop age */
 }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
 /************** Forecasting *****not tested NB*************/              } /*l12 */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            } /* k12 */
             } /*l1 */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }/* k1 */
   int *popage;      } /* loop covariates */
   double calagedatem, agelim, kk1, kk2;    }
   double *popeffectif,*popcount;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   double ***p3mat,***tabpop,***tabpopprev;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   double ***mobaverage;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   char filerespop[FILENAMELENGTH];    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fclose(ficresprob);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fclose(ficresprobcov);
   agelim=AGESUP;    fclose(ficresprobcor);
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    fflush(ficgp);
       fflush(fichtmcov);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  }
     
     
   strcpy(filerespop,"pop");   /******************* Printing html file ***********/
   strcat(filerespop,fileres);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   if((ficrespop=fopen(filerespop,"w"))==NULL) {                    int lastpass, int stepm, int weightopt, char model[],\
     printf("Problem with forecast resultfile: %s\n", filerespop);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);                    int popforecast, int estepm ,\
   }                    double jprev1, double mprev1,double anprev1, \
   printf("Computing forecasting: result on file '%s' \n", filerespop);                    double jprev2, double mprev2,double anprev2){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    int jj1, k1, i1, cpt;
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   if (mobilav!=0) {  </ul>");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       printf(" Error in movingaverage mobilav=%d\n",mobilav);     fprintf(fichtm,"\
     }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
   stepsize=(int) (stepm+YEARM-1)/YEARM;   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   if (stepm<=12) stepsize=1;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
        fprintf(fichtm,"\
   agelim=AGESUP;   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
        <a href=\"%s\">%s</a> <br>\n",
   hstepm=1;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   hstepm=hstepm/stepm;      fprintf(fichtm,"\
      - Population projections by age and states: \
   if (popforecast==1) {     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }    m=cptcoveff;
     popage=ivector(0,AGESUP);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);   jj1=0;
        for(k1=1; k1<=m;k1++){
     i=1;        for(i1=1; i1<=ncodemax[k1];i1++){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;       jj1++;
           if (cptcovn > 0) {
     imx=i;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];         for (cpt=1; cpt<=cptcoveff;cpt++)
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){       }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       /* Pij */
       k=k+1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
       fprintf(ficrespop,"\n#******");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
       for(j=1;j<=cptcoveff;j++) {       /* Quasi-incidences */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
       fprintf(ficrespop,"******\n");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
       fprintf(ficrespop,"# Age");         /* Period (stable) prevalence in each health state */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);         for(cpt=1; cpt<nlstate;cpt++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
         <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       for (cpt=0; cpt<=0;cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(cpt=1; cpt<=nlstate;cpt++) {
                   fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }
           nhstepm = nhstepm/hstepm;      } /* end i1 */
              }/* End k1 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   fprintf(fichtm,"</ul>");
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            fprintf(fichtm,"\
           for (h=0; h<=nhstepm; h++){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
             if (h==(int) (calagedatem+YEARM*cpt)) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             for(j=1; j<=nlstate+ndeath;j++) {           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
               kk1=0.;kk2=0;   fprintf(fichtm,"\
               for(i=1; i<=nlstate;i++) {                 - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                 if (mobilav==1)            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {   fprintf(fichtm,"\
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                 }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
               }   fprintf(fichtm,"\
               if (h==(int)(calagedatem+12*cpt)){   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;     <a href=\"%s\">%s</a> <br>\n</li>",
                   /*fprintf(ficrespop," %.3f", kk1);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/   fprintf(fichtm,"\
               }   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
             }     <a href=\"%s\">%s</a> <br>\n</li>",
             for(i=1; i<=nlstate;i++){             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
               kk1=0.;   fprintf(fichtm,"\
                 for(j=1; j<=nlstate;j++){   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
                 }   fprintf(fichtm,"\
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
             }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*  if(popforecast==1) fprintf(fichtm,"\n */
         }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
    /*      <br>",fileres,fileres,fileres,fileres); */
   /******/  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fflush(fichtm);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    m=cptcoveff;
           nhstepm = nhstepm/hstepm;    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   jj1=0;
           oldm=oldms;savm=savms;   for(k1=1; k1<=m;k1++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       for(i1=1; i1<=ncodemax[k1];i1++){
           for (h=0; h<=nhstepm; h++){       jj1++;
             if (h==(int) (calagedatem+YEARM*cpt)) {       if (cptcovn > 0) {
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             }          for (cpt=1; cpt<=cptcoveff;cpt++)
             for(j=1; j<=nlstate+ndeath;j++) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               kk1=0.;kk2=0;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               for(i=1; i<=nlstate;i++) {                     }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           for(cpt=1; cpt<=nlstate;cpt++) {
               }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);          prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
             }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
           }       }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         }  health expectancies in states (1) and (2): %s%d.png<br>\
       }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
    }      } /* end i1 */
   }   }/* End k1 */
     fprintf(fichtm,"</ul>");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   fflush(fichtm);
   }
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);  /******************* Gnuplot file **************/
     free_vector(popeffectif,0,AGESUP);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     free_vector(popcount,0,AGESUP);  
   }    char dirfileres[132],optfileres[132];
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int ng;
   fclose(ficrespop);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 } /* End of popforecast */  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 int fileappend(FILE *fichier, char *optionfile)  /*   } */
 {  
   if((fichier=fopen(optionfile,"a"))==NULL) {    /*#ifdef windows */
     printf("Problem with file: %s\n", optionfile);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     fprintf(ficlog,"Problem with file: %s\n", optionfile);      /*#endif */
     return (1);    m=pow(2,cptcoveff);
   }  
     strcpy(dirfileres,optionfilefiname);
 }    strcpy(optfileres,"vpl");
 /***********************************************/   /* 1eme*/
 /**************** Main Program *****************/    for (cpt=1; cpt<= nlstate ; cpt ++) {
 /***********************************************/     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 int main(int argc, char *argv[])       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 {       fprintf(ficgp,"set xlabel \"Age\" \n\
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  set ylabel \"Probability\" \n\
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;  set ter png small\n\
   int jj;  set size 0.65,0.65\n\
   int numlinepar=0; /* Current linenumber of parameter file */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   double fret;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   double **xi,tmp,delta;       }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   double dum; /* Dummy variable */       for (i=1; i<= nlstate ; i ++) {
   double ***p3mat;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   double ***mobaverage;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   int *indx;       }
   char line[MAXLINE], linepar[MAXLINE];       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   char path[132],pathc[132],pathcd[132],pathtot[132],model[132];       for (i=1; i<= nlstate ; i ++) {
   int firstobs=1, lastobs=10;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   int sdeb, sfin; /* Status at beginning and end */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   int c,  h , cpt,l;       }  
   int ju,jl, mi;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;     }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;     }
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    /*2 eme*/
   int mobilav=0,popforecast=0;   
   int hstepm, nhstepm;    for (k1=1; k1<= m ; k1 ++) {
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
      
   double bage, fage, age, agelim, agebase;      for (i=1; i<= nlstate+1 ; i ++) {
   double ftolpl=FTOL;        k=2*i;
   double **prlim;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   double *severity;        for (j=1; j<= nlstate+1 ; j ++) {
   double ***param; /* Matrix of parameters */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   double  *p;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   double **matcov; /* Matrix of covariance */        }  
   double ***delti3; /* Scale */        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   double *delti; /* Scale */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   double ***eij, ***vareij;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   double **varpl; /* Variances of prevalence limits by age */        for (j=1; j<= nlstate+1 ; j ++) {
   double *epj, vepp;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   double kk1, kk2;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;        }  
         fprintf(ficgp,"\" t\"\" w l 0,");
   char *alph[]={"a","a","b","c","d","e"}, str[4];        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   char z[1]="c", occ;          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   char *strt, *strtend;        else fprintf(ficgp,"\" t\"\" w l 0,");
   char *stratrunc;      }
   int lstra;    }
    
   long total_usecs;    /*3eme*/
   struct timeval start_time, end_time, curr_time;   
   struct timezone tzp;    for (k1=1; k1<= m ; k1 ++) {
   extern int gettimeofday();      for (cpt=1; cpt<= nlstate ; cpt ++) {
   struct tm tmg, tm, *gmtime(), *localtime();        /*       k=2+nlstate*(2*cpt-2); */
   long time_value;        k=2+(nlstate+1)*(cpt-1);
   extern long time();        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
          fprintf(ficgp,"set ter png small\n\
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  set size 0.65,0.65\n\
   (void) gettimeofday(&start_time,&tzp);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   tm = *localtime(&start_time.tv_sec);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   tmg = *gmtime(&start_time.tv_sec);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   strt=asctime(&tm);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 /*  printf("Localtime (at start)=%s",strt); */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 /*  tp.tv_sec = tp.tv_sec +86400; */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 /*  tm = *localtime(&start_time.tv_sec); */         
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */        */
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */        for (i=1; i< nlstate ; i ++) {
 /*   tmg.tm_hour=tmg.tm_hour + 1; */          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 /*   tp.tv_sec = mktime(&tmg); */          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 /*   strt=asctime(&tmg); */         
 /*   printf("Time(after) =%s",strt);  */        }
 /*  (void) time (&time_value);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);      }
 *  tm = *localtime(&time_value);    }
 *  strt=asctime(&tm);   
 *  printf("tim_value=%d,asctime=%s\n",time_value,strt);     /* CV preval stable (period) */
 */    for (k1=1; k1<= m ; k1 ++) {
       for (cpt=1; cpt<=nlstate ; cpt ++) {
   getcwd(pathcd, size);        k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   printf("\n%s\n%s",version,fullversion);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   if(argc <=1){  set ter png small\nset size 0.65,0.65\n\
     printf("\nEnter the parameter file name: ");  unset log y\n\
     scanf("%s",pathtot);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   }       
   else{        for (i=1; i< nlstate ; i ++)
     strcpy(pathtot,argv[1]);          fprintf(ficgp,"+$%d",k+i+1);
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/       
   /*cygwin_split_path(pathtot,path,optionfile);        l=3+(nlstate+ndeath)*cpt;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   /* cutv(path,optionfile,pathtot,'\\');*/        for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          fprintf(ficgp,"+$%d",l+i+1);
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        }
   chdir(path);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   replace(pathc,path);      }
     }  
   /*-------- arguments in the command line --------*/   
     /* proba elementaires */
   /* Log file */    for(i=1,jk=1; i <=nlstate; i++){
   strcat(filelog, optionfilefiname);      for(k=1; k <=(nlstate+ndeath); k++){
   strcat(filelog,".log");    /* */        if (k != i) {
   if((ficlog=fopen(filelog,"w"))==NULL)    {          for(j=1; j <=ncovmodel; j++){
     printf("Problem with logfile %s\n",filelog);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     goto end;            jk++;
   }            fprintf(ficgp,"\n");
   fprintf(ficlog,"Log filename:%s\n",filelog);          }
   fprintf(ficlog,"\n%s\n%s",version,fullversion);        }
   fprintf(ficlog,"\nEnter the parameter file name: ");      }
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     }
   
   printf("Localtime (at start)=%s",strt);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   fprintf(ficlog,"Localtime (at start)=%s",strt);       for(jk=1; jk <=m; jk++) {
   fflush(ficlog);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
          if (ng==2)
   /* */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   strcpy(fileres,"r");         else
   strcat(fileres, optionfilefiname);           fprintf(ficgp,"\nset title \"Probability\"\n");
   strcat(fileres,".txt");    /* Other files have txt extension */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
   /*---------arguments file --------*/         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {           for(k=1; k<=(nlstate+ndeath); k++) {
     printf("Problem with optionfile %s\n",optionfile);             if (k != k2){
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);               if(ng==2)
     fflush(ficlog);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     goto end;               else
   }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
   strcpy(filereso,"o");               for(j=3; j <=ncovmodel; j++) {
   strcat(filereso,fileres);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   if((ficparo=fopen(filereso,"w"))==NULL) {                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     printf("Problem with Output resultfile: %s\n", filereso);                   ij++;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);                 }
     fflush(ficlog);                 else
     goto end;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }               }
                fprintf(ficgp,")/(1");
   /* Reads comments: lines beginning with '#' */               
   numlinepar=0;               for(k1=1; k1 <=nlstate; k1++){  
   while((c=getc(ficpar))=='#' && c!= EOF){                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     ungetc(c,ficpar);                 ij=1;
     fgets(line, MAXLINE, ficpar);                 for(j=3; j <=ncovmodel; j++){
     numlinepar++;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     puts(line);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     fputs(line,ficparo);                     ij++;
     fputs(line,ficlog);                   }
   }                   else
   ungetc(c,ficpar);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                 fprintf(ficgp,")");
   numlinepar++;               }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);               i=i+ncovmodel;
   fflush(ficlog);             }
   while((c=getc(ficpar))=='#' && c!= EOF){           } /* end k */
     ungetc(c,ficpar);         } /* end k2 */
     fgets(line, MAXLINE, ficpar);       } /* end jk */
     numlinepar++;     } /* end ng */
     puts(line);     fflush(ficgp);
     fputs(line,ficparo);  }  /* end gnuplot */
     fputs(line,ficlog);  
   }  
   ungetc(c,ficpar);  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
      
   covar=matrix(0,NCOVMAX,1,n);     int i, cpt, cptcod;
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    int modcovmax =1;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    int mobilavrange, mob;
     double age;
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
                                a covariate has 2 modalities */
   /* Read guess parameters */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     ungetc(c,ficpar);      if(mobilav==1) mobilavrange=5; /* default */
     fgets(line, MAXLINE, ficpar);      else mobilavrange=mobilav;
     numlinepar++;      for (age=bage; age<=fage; age++)
     puts(line);        for (i=1; i<=nlstate;i++)
     fputs(line,ficparo);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     fputs(line,ficlog);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   }      /* We keep the original values on the extreme ages bage, fage and for
   ungetc(c,ficpar);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned.
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      */
   for(i=1; i <=nlstate; i++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
     j=0;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     for(jj=1; jj <=nlstate+ndeath; jj++){          for (i=1; i<=nlstate;i++){
       if(jj==i) continue;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       j++;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       fscanf(ficpar,"%1d%1d",&i1,&j1);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       if ((i1 != i) && (j1 != j)){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         exit(1);                }
       }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       fprintf(ficparo,"%1d%1d",i1,j1);            }
       if(mle==1)          }
         printf("%1d%1d",i,j);        }/* end age */
       fprintf(ficlog,"%1d%1d",i,j);      }/* end mob */
       for(k=1; k<=ncovmodel;k++){    }else return -1;
         fscanf(ficpar," %lf",&param[i][j][k]);    return 0;
         if(mle==1){  }/* End movingaverage */
           printf(" %lf",param[i][j][k]);  
           fprintf(ficlog," %lf",param[i][j][k]);  
         }  /************** Forecasting ******************/
         else  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           fprintf(ficlog," %lf",param[i][j][k]);    /* proj1, year, month, day of starting projection
         fprintf(ficparo," %lf",param[i][j][k]);       agemin, agemax range of age
       }       dateprev1 dateprev2 range of dates during which prevalence is computed
       fscanf(ficpar,"\n");       anproj2 year of en of projection (same day and month as proj1).
       numlinepar++;    */
       if(mle==1)    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
         printf("\n");    int *popage;
       fprintf(ficlog,"\n");    double agec; /* generic age */
       fprintf(ficparo,"\n");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     }    double *popeffectif,*popcount;
   }      double ***p3mat;
   fflush(ficlog);    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  
     agelim=AGESUP;
   p=param[1][1];    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
      
   /* Reads comments: lines beginning with '#' */    strcpy(fileresf,"f");
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresf,fileres);
     ungetc(c,ficpar);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with forecast resultfile: %s\n", fileresf);
     numlinepar++;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     puts(line);    }
     fputs(line,ficparo);    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fputs(line,ficlog);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   }  
   ungetc(c,ficpar);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if (mobilav!=0) {
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(i=1; i <=nlstate; i++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     for(j=1; j <=nlstate+ndeath-1; j++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       if ((i1-i)*(j1-j)!=0){      }
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    }
         exit(1);  
       }    stepsize=(int) (stepm+YEARM-1)/YEARM;
       printf("%1d%1d",i,j);    if (stepm<=12) stepsize=1;
       fprintf(ficparo,"%1d%1d",i1,j1);    if(estepm < stepm){
       fprintf(ficlog,"%1d%1d",i1,j1);      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar,"%le",&delti3[i][j][k]);    else  hstepm=estepm;  
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    hstepm=hstepm/stepm;
         fprintf(ficlog," %le",delti3[i][j][k]);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       }                                 fractional in yp1 */
       fscanf(ficpar,"\n");    anprojmean=yp;
       numlinepar++;    yp2=modf((yp1*12),&yp);
       printf("\n");    mprojmean=yp;
       fprintf(ficparo,"\n");    yp1=modf((yp2*30.5),&yp);
       fprintf(ficlog,"\n");    jprojmean=yp;
     }    if(jprojmean==0) jprojmean=1;
   }    if(mprojmean==0) jprojmean=1;
   fflush(ficlog);  
     i1=cptcoveff;
   delti=delti3[1][1];    if (cptcovn < 1){i1=1;}
    
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */   
       fprintf(ficresf,"#****** Routine prevforecast **\n");
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /*            if (h==(int)(YEARM*yearp)){ */
     ungetc(c,ficpar);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     fgets(line, MAXLINE, ficpar);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     numlinepar++;        k=k+1;
     puts(line);        fprintf(ficresf,"\n#******");
     fputs(line,ficparo);        for(j=1;j<=cptcoveff;j++) {
     fputs(line,ficlog);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }        }
   ungetc(c,ficpar);        fprintf(ficresf,"******\n");
           fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   matcov=matrix(1,npar,1,npar);        for(j=1; j<=nlstate+ndeath;j++){
   for(i=1; i <=npar; i++){          for(i=1; i<=nlstate;i++)              
     fscanf(ficpar,"%s",&str);            fprintf(ficresf," p%d%d",i,j);
     if(mle==1)          fprintf(ficresf," p.%d",j);
       printf("%s",str);        }
     fprintf(ficlog,"%s",str);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
     fprintf(ficparo,"%s",str);          fprintf(ficresf,"\n");
     for(j=1; j <=i; j++){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
       fscanf(ficpar," %le",&matcov[i][j]);  
       if(mle==1){          for (agec=fage; agec>=(ageminpar-1); agec--){
         printf(" %.5le",matcov[i][j]);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
       }            nhstepm = nhstepm/hstepm;
       fprintf(ficlog," %.5le",matcov[i][j]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficparo," %.5le",matcov[i][j]);            oldm=oldms;savm=savms;
     }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fscanf(ficpar,"\n");         
     numlinepar++;            for (h=0; h<=nhstepm; h++){
     if(mle==1)              if (h*hstepm/YEARM*stepm ==yearp) {
       printf("\n");                fprintf(ficresf,"\n");
     fprintf(ficlog,"\n");                for(j=1;j<=cptcoveff;j++)
     fprintf(ficparo,"\n");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   for(i=1; i <=npar; i++)              }
     for(j=i+1;j<=npar;j++)              for(j=1; j<=nlstate+ndeath;j++) {
       matcov[i][j]=matcov[j][i];                ppij=0.;
                    for(i=1; i<=nlstate;i++) {
   if(mle==1)                  if (mobilav==1)
     printf("\n");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   fprintf(ficlog,"\n");                  else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   fflush(ficlog);                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
   /*-------- Rewriting paramater file ----------*/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   strcpy(rfileres,"r");    /* "Rparameterfile */                  }
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                } /* end i */
   strcat(rfileres,".");    /* */                if (h*hstepm/YEARM*stepm==yearp) {
   strcat(rfileres,optionfilext);    /* Other files have txt extension */                  fprintf(ficresf," %.3f", ppij);
   if((ficres =fopen(rfileres,"w"))==NULL) {                }
     printf("Problem writing new parameter file: %s\n", fileres);goto end;              }/* end j */
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;            } /* end h */
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficres,"#%s\n",version);          } /* end agec */
             } /* end yearp */
   /*-------- data file ----------*/      } /* end cptcod */
   if((fic=fopen(datafile,"r"))==NULL)    {    } /* end  cptcov */
     printf("Problem with datafile: %s\n", datafile);goto end;         
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
     fclose(ficresf);
   n= lastobs;  }
   severity = vector(1,maxwav);  
   outcome=imatrix(1,maxwav+1,1,n);  /************** Forecasting *****not tested NB*************/
   num=lvector(1,n);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   moisnais=vector(1,n);   
   annais=vector(1,n);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   moisdc=vector(1,n);    int *popage;
   andc=vector(1,n);    double calagedatem, agelim, kk1, kk2;
   agedc=vector(1,n);    double *popeffectif,*popcount;
   cod=ivector(1,n);    double ***p3mat,***tabpop,***tabpopprev;
   weight=vector(1,n);    double ***mobaverage;
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    char filerespop[FILENAMELENGTH];
   mint=matrix(1,maxwav,1,n);  
   anint=matrix(1,maxwav,1,n);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   s=imatrix(1,maxwav+1,1,n);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   tab=ivector(1,NCOVMAX);    agelim=AGESUP;
   ncodemax=ivector(1,8);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
    
   i=1;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   while (fgets(line, MAXLINE, fic) != NULL)    {   
     if ((i >= firstobs) && (i <=lastobs)) {   
             strcpy(filerespop,"pop");
       for (j=maxwav;j>=1;j--){    strcat(filerespop,fileres);
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);     if((ficrespop=fopen(filerespop,"w"))==NULL) {
         strcpy(line,stra);      printf("Problem with forecast resultfile: %s\n", filerespop);
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
       }    printf("Computing forecasting: result on file '%s' \n", filerespop);
             fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    if (mobilav!=0) {
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       for (j=ncovcol;j>=1;j--){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
       }     }
       lstra=strlen(stra);  
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */    stepsize=(int) (stepm+YEARM-1)/YEARM;
         stratrunc = &(stra[lstra-9]);    if (stepm<=12) stepsize=1;
         num[i]=atol(stratrunc);   
       }    agelim=AGESUP;
       else   
         num[i]=atol(stra);    hstepm=1;
             hstepm=hstepm/stepm;
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){   
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
       i=i+1;        printf("Problem with population file : %s\n",popfile);exit(0);
     }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   }      }
   /* printf("ii=%d", ij);      popage=ivector(0,AGESUP);
      scanf("%d",i);*/      popeffectif=vector(0,AGESUP);
   imx=i-1; /* Number of individuals */      popcount=vector(0,AGESUP);
      
   /* for (i=1; i<=imx; i++){      i=1;  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;     
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      imx=i;
     }*/      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
    /*  for (i=1; i<=imx; i++){    }
      if (s[4][i]==9)  s[4][i]=-1;   
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
        for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
  for (i=1; i<=imx; i++)        k=k+1;
          fprintf(ficrespop,"\n#******");
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;        for(j=1;j<=cptcoveff;j++) {
      else weight[i]=1;*/          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
   /* Calculation of the number of parameter from char model*/        fprintf(ficrespop,"******\n");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        fprintf(ficrespop,"# Age");
   Tprod=ivector(1,15);         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   Tvaraff=ivector(1,15);         if (popforecast==1)  fprintf(ficrespop," [Population]");
   Tvard=imatrix(1,15,1,2);       
   Tage=ivector(1,15);              for (cpt=0; cpt<=0;cpt++) {
              fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   if (strlen(model) >1){ /* If there is at least 1 covariate */         
     j=0, j1=0, k1=1, k2=1;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
     j=nbocc(model,'+'); /* j=Number of '+' */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
     j1=nbocc(model,'*'); /* j1=Number of '*' */            nhstepm = nhstepm/hstepm;
     cptcovn=j+1;            
     cptcovprod=j1; /*Number of products */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 oldm=oldms;savm=savms;
     strcpy(modelsav,model);             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){         
       printf("Error. Non available option model=%s ",model);            for (h=0; h<=nhstepm; h++){
       fprintf(ficlog,"Error. Non available option model=%s ",model);              if (h==(int) (calagedatem+YEARM*cpt)) {
       goto end;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     }              }
                   for(j=1; j<=nlstate+ndeath;j++) {
     /* This loop fills the array Tvar from the string 'model'.*/                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
     for(i=(j+1); i>=1;i--){                  if (mobilav==1)
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */                  else {
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
       /*scanf("%d",i);*/                  }
       if (strchr(strb,'*')) {  /* Model includes a product */                }
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                if (h==(int)(calagedatem+12*cpt)){
         if (strcmp(strc,"age")==0) { /* Vn*age */                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
           cptcovprod--;                    /*fprintf(ficrespop," %.3f", kk1);
           cutv(strb,stre,strd,'V');                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                }
           cptcovage++;              }
             Tage[cptcovage]=i;              for(i=1; i<=nlstate;i++){
             /*printf("stre=%s ", stre);*/                kk1=0.;
         }                  for(j=1; j<=nlstate;j++){
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
           cptcovprod--;                  }
           cutv(strb,stre,strc,'V');                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
           Tvar[i]=atoi(stre);              }
           cptcovage++;  
           Tage[cptcovage]=i;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
         }                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
         else {  /* Age is not in the model */            }
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvar[i]=ncovcol+k1;          }
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        }
           Tprod[k1]=i;   
           Tvard[k1][1]=atoi(strc); /* m*/    /******/
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           for (k=1; k<=lastobs;k++)           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
           k1++;            nhstepm = nhstepm/hstepm;
           k2=k2+2;           
         }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }            oldm=oldms;savm=savms;
       else { /* no more sum */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            for (h=0; h<=nhstepm; h++){
        /*  scanf("%d",i);*/              if (h==(int) (calagedatem+YEARM*cpt)) {
       cutv(strd,strc,strb,'V');                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       Tvar[i]=atoi(strc);              }
       }              for(j=1; j<=nlstate+ndeath;j++) {
       strcpy(modelsav,stra);                  kk1=0.;kk2=0;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                for(i=1; i<=nlstate;i++) {              
         scanf("%d",i);*/                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     } /* end of loop + */                }
   } /* end model */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
                 }
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.            }
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        }
   printf("cptcovprod=%d ", cptcovprod);     }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    }
    
   scanf("%d ",i);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(fic);*/  
     if (popforecast==1) {
     /*  if(mle==1){*/      free_ivector(popage,0,AGESUP);
   if (weightopt != 1) { /* Maximisation without weights*/      free_vector(popeffectif,0,AGESUP);
     for(i=1;i<=n;i++) weight[i]=1.0;      free_vector(popcount,0,AGESUP);
   }    }
     /*-calculation of age at interview from date of interview and age at death -*/    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   agev=matrix(1,maxwav,1,imx);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   for (i=1; i<=imx; i++) {  } /* End of popforecast */
     for(m=2; (m<= maxwav); m++) {  
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  int fileappend(FILE *fichier, char *optionfich)
         anint[m][i]=9999;  {
         s[m][i]=-1;    if((fichier=fopen(optionfich,"a"))==NULL) {
       }      printf("Problem with file: %s\n", optionfich);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){      fprintf(ficlog,"Problem with file: %s\n", optionfich);
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      return (0);
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    }
         s[m][i]=-1;    fflush(fichier);
       }    return (1);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){  }
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);   
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);   
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */  /**************** function prwizard **********************/
       }  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
     }  {
   }  
     /* Wizard to print covariance matrix template */
   for (i=1; i<=imx; i++)  {  
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    char ca[32], cb[32], cc[32];
     for(m=firstpass; (m<= lastpass); m++){    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
       if(s[m][i] >0){    int numlinepar;
         if (s[m][i] >= nlstate+1) {  
           if(agedc[i]>0)    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
               agev[m][i]=agedc[i];    for(i=1; i <=nlstate; i++){
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      jj=0;
             else {      for(j=1; j <=nlstate+ndeath; j++){
               if ((int)andc[i]!=9999){        if(j==i) continue;
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);        jj++;
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
                 agev[m][i]=-1;        printf("%1d%1d",i,j);
               }        fprintf(ficparo,"%1d%1d",i,j);
             }        for(k=1; k<=ncovmodel;k++){
         }          /*        printf(" %lf",param[i][j][k]); */
         else if(s[m][i] !=9){ /* Standard case, age in fractional          /*        fprintf(ficparo," %lf",param[i][j][k]); */
                                  years but with the precision of a          printf(" 0.");
                                  month */          fprintf(ficparo," 0.");
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)        printf("\n");
             agev[m][i]=1;        fprintf(ficparo,"\n");
           else if(agev[m][i] <agemin){       }
             agemin=agev[m][i];    }
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    printf("# Scales (for hessian or gradient estimation)\n");
           }    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
           else if(agev[m][i] >agemax){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
             agemax=agev[m][i];    for(i=1; i <=nlstate; i++){
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      jj=0;
           }      for(j=1; j <=nlstate+ndeath; j++){
           /*agev[m][i]=anint[m][i]-annais[i];*/        if(j==i) continue;
           /*     agev[m][i] = age[i]+2*m;*/        jj++;
         }        fprintf(ficparo,"%1d%1d",i,j);
         else { /* =9 */        printf("%1d%1d",i,j);
           agev[m][i]=1;        fflush(stdout);
           s[m][i]=-1;        for(k=1; k<=ncovmodel;k++){
         }          /*      printf(" %le",delti3[i][j][k]); */
       }          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
       else /*= 0 Unknown */          printf(" 0.");
         agev[m][i]=1;          fprintf(ficparo," 0.");
     }        }
             numlinepar++;
   }        printf("\n");
   for (i=1; i<=imx; i++)  {        fprintf(ficparo,"\n");
     for(m=firstpass; (m<=lastpass); m++){      }
       if (s[m][i] > (nlstate+ndeath)) {    }
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         printf("# Covariance matrix\n");
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);       /* # 121 Var(a12)\n\ */
         goto end;  /* # 122 Cov(b12,a12) Var(b12)\n\ */
       }  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     }  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   }  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /*for (i=1; i<=imx; i++){  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   for (m=firstpass; (m<lastpass); m++){  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    fflush(stdout);
 }    fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
 }*/    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    
     for(itimes=1;itimes<=2;itimes++){
   free_vector(severity,1,maxwav);      jj=0;
   free_imatrix(outcome,1,maxwav+1,1,n);      for(i=1; i <=nlstate; i++){
   free_vector(moisnais,1,n);        for(j=1; j <=nlstate+ndeath; j++){
   free_vector(annais,1,n);          if(j==i) continue;
   /* free_matrix(mint,1,maxwav,1,n);          for(k=1; k<=ncovmodel;k++){
      free_matrix(anint,1,maxwav,1,n);*/            jj++;
   free_vector(moisdc,1,n);            ca[0]= k+'a'-1;ca[1]='\0';
   free_vector(andc,1,n);            if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
                  fprintf(ficparo,"#%1d%1d%d",i,j,k);
   wav=ivector(1,imx);            }else{
   dh=imatrix(1,lastpass-firstpass+1,1,imx);              printf("%1d%1d%d",i,j,k);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);              fprintf(ficparo,"%1d%1d%d",i,j,k);
   mw=imatrix(1,lastpass-firstpass+1,1,imx);              /*  printf(" %.5le",matcov[i][j]); */
                }
   /* Concatenates waves */            ll=0;
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */                if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
   Tcode=ivector(1,100);                  ll++;
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                   if(ll<=jj){
   ncodemax[1]=1;                    cb[0]= lk +'a'-1;cb[1]='\0';
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);                    if(ll<jj){
                             if(itimes==1){
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                                  the estimations*/                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   h=0;                      }else{
   m=pow(2,cptcoveff);                        printf(" 0.");
                          fprintf(ficparo," 0.");
   for(k=1;k<=cptcoveff; k++){                      }
     for(i=1; i <=(m/pow(2,k));i++){                    }else{
       for(j=1; j <= ncodemax[k]; j++){                      if(itimes==1){
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                        printf(" Var(%s%1d%1d)",ca,i,j);
           h++;                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                      }else{
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                        printf(" 0.");
         }                         fprintf(ficparo," 0.");
       }                      }
     }                    }
   }                   }
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                 } /* end lk */
      codtab[1][2]=1;codtab[2][2]=2; */              } /* end lj */
   /* for(i=1; i <=m ;i++){             } /* end li */
      for(k=1; k <=cptcovn; k++){            printf("\n");
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            fprintf(ficparo,"\n");
      }            numlinepar++;
      printf("\n");          } /* end k*/
      }        } /*end j */
      scanf("%d",i);*/      } /* end i */
         } /* end itimes */
   /*------------ gnuplot -------------*/  
   strcpy(optionfilegnuplot,optionfilefiname);  } /* end of prwizard */
   strcat(optionfilegnuplot,".gp");  /******************* Gompertz Likelihood ******************************/
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  double gompertz(double x[])
     printf("Problem with file %s",optionfilegnuplot);  {
   }    double A,B,L=0.0,sump=0.,num=0.;
   else{    int i,n=0; /* n is the size of the sample */
     fprintf(ficgp,"\n# %s\n", version);   
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     for (i=0;i<=imx-1 ; i++) {
     fprintf(ficgp,"set missing 'NaNq'\n");      sump=sump+weight[i];
   }      /*    sump=sump+1;*/
   fclose(ficgp);      num=num+1;
   /*--------- index.htm --------*/    }
    
   strcpy(optionfilehtm,optionfile);   
   strcat(optionfilehtm,".htm");    /* for (i=0; i<=imx; i++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    for (i=1;i<=imx ; i++)
       {
   fprintf(fichtm,"<body> <font size=\"2\">%s <br> %s</font> \        if (cens[i] == 1 && wav[i]>1)
 <hr size=\"2\" color=\"#EC5E5E\"> \n\          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\       
 \n\        if (cens[i] == 0 && wav[i]>1)
 <hr  size=\"2\" color=\"#EC5E5E\">\          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
  <ul><li><h4>Parameter files</h4>\n\               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\       
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
  - Gnuplot file name: <a href=\"%s\">%s</a>\n\        if (wav[i] > 1 ) { /* ??? */
  - Date and time at start: %s</ul>\n",\          L=L+A*weight[i];
           version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
           model,fileres,fileres,\        }
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);      }
   fclose(fichtm);  
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   /* Calculates basic frequencies. Computes observed prevalence at single age   
      and prints on file fileres'p'. */    return -2*L*num/sump;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);  }
   
   if(fileappend(fichtm, optionfilehtm)){  /******************* Printing html file ***********/
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\                    int lastpass, int stepm, int weightopt, char model[],\
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\                    int imx,  double p[],double **matcov,double agemortsup){
         imx,agemin,agemax,jmin,jmax,jmean);    int i,k;
     fclose(fichtm);  
   }    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (i=1;i<=2;i++)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(fichtm,"</ul>");
       
      fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   /* For Powell, parameters are in a vector p[] starting at p[1]  
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
    for (k=agegomp;k<(agemortsup-2);k++)
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);   
   for (k=1; k<=npar;k++)    fflush(fichtm);
     printf(" %d %8.5f",k,p[k]);  }
   printf("\n");  
   globpr=1; /* to print the contributions */  /******************* Gnuplot file **************/
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);  
   for (k=1; k<=npar;k++)    char dirfileres[132],optfileres[132];
     printf(" %d %8.5f",k,p[k]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   printf("\n");    int ng;
   if(mle>=1){ /* Could be 1 or 2 */  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
   }    /*#ifdef windows */
         fprintf(ficgp,"cd \"%s\" \n",pathc);
   /*--------- results files --------------*/      /*#endif */
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
     
     strcpy(dirfileres,optionfilefiname);
   jk=1;    strcpy(optfileres,"vpl");
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficgp,"set out \"graphmort.png\"\n ");
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficgp, "set ter png small\n set log y\n");
   for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficgp, "set size 0.65,0.65\n");
     for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
       if (k != i)   
         {  }
           printf("%d%d ",i,k);  
           fprintf(ficlog,"%d%d ",i,k);  
           fprintf(ficres,"%1d%1d ",i,k);  
           for(j=1; j <=ncovmodel; j++){  
             printf("%f ",p[jk]);  
             fprintf(ficlog,"%f ",p[jk]);  /***********************************************/
             fprintf(ficres,"%f ",p[jk]);  /**************** Main Program *****************/
             jk++;   /***********************************************/
           }  
           printf("\n");  int main(int argc, char *argv[])
           fprintf(ficlog,"\n");  {
           fprintf(ficres,"\n");    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
         }    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     }    int linei, month, year,iout;
   }    int jj, ll, li, lj, lk, imk;
   if(mle!=0){    int numlinepar=0; /* Current linenumber of parameter file */
     /* Computing hessian and covariance matrix */    int itimes;
     ftolhess=ftol; /* Usually correct */    int NDIM=2;
     hesscov(matcov, p, npar, delti, ftolhess, func);  
   }    char ca[32], cb[32], cc[32];
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    char dummy[]="                         ";
   printf("# Scales (for hessian or gradient estimation)\n");    /*  FILE *fichtm; *//* Html File */
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    /* FILE *ficgp;*/ /*Gnuplot File */
   for(i=1,jk=1; i <=nlstate; i++){    struct stat info;
     for(j=1; j <=nlstate+ndeath; j++){    double agedeb, agefin,hf;
       if (j!=i) {    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         fprintf(ficres,"%1d%1d",i,j);  
         printf("%1d%1d",i,j);    double fret;
         fprintf(ficlog,"%1d%1d",i,j);    double **xi,tmp,delta;
         for(k=1; k<=ncovmodel;k++){  
           printf(" %.5e",delti[jk]);    double dum; /* Dummy variable */
           fprintf(ficlog," %.5e",delti[jk]);    double ***p3mat;
           fprintf(ficres," %.5e",delti[jk]);    double ***mobaverage;
           jk++;    int *indx;
         }    char line[MAXLINE], linepar[MAXLINE];
         printf("\n");    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
         fprintf(ficlog,"\n");    char pathr[MAXLINE], pathimach[MAXLINE];
         fprintf(ficres,"\n");    char **bp, *tok, *val; /* pathtot */
       }    int firstobs=1, lastobs=10;
     }    int sdeb, sfin; /* Status at beginning and end */
   }    int c,  h , cpt,l;
        int ju,jl, mi;
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   if(mle==1)    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    int mobilav=0,popforecast=0;
   for(i=1,k=1;i<=npar;i++){    int hstepm, nhstepm;
     /*  if (k>nlstate) k=1;    int agemortsup;
         i1=(i-1)/(ncovmodel*nlstate)+1;     float  sumlpop=0.;
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         printf("%s%d%d",alph[k],i1,tab[i]);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     */  
     fprintf(ficres,"%3d",i);    double bage, fage, age, agelim, agebase;
     if(mle==1)    double ftolpl=FTOL;
       printf("%3d",i);    double **prlim;
     fprintf(ficlog,"%3d",i);    double *severity;
     for(j=1; j<=i;j++){    double ***param; /* Matrix of parameters */
       fprintf(ficres," %.5e",matcov[i][j]);    double  *p;
       if(mle==1)    double **matcov; /* Matrix of covariance */
         printf(" %.5e",matcov[i][j]);    double ***delti3; /* Scale */
       fprintf(ficlog," %.5e",matcov[i][j]);    double *delti; /* Scale */
     }    double ***eij, ***vareij;
     fprintf(ficres,"\n");    double **varpl; /* Variances of prevalence limits by age */
     if(mle==1)    double *epj, vepp;
       printf("\n");    double kk1, kk2;
     fprintf(ficlog,"\n");    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     k++;    double **ximort;
   }    char *alph[]={"a","a","b","c","d","e"}, str[4];
        int *dcwave;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    char z[1]="c", occ;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     fputs(line,ficparo);    char  *strt, strtend[80];
   }    char *stratrunc;
   ungetc(c,ficpar);    int lstra;
   
   estepm=0;    long total_usecs;
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   
   if (estepm==0 || estepm < stepm) estepm=stepm;  /*   setlocale (LC_ALL, ""); */
   if (fage <= 2) {  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
     bage = ageminpar;  /*   textdomain (PACKAGE); */
     fage = agemaxpar;  /*   setlocale (LC_CTYPE, ""); */
   }  /*   setlocale (LC_MESSAGES, ""); */
      
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    (void) gettimeofday(&start_time,&tzp);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    curr_time=start_time;
        tm = *localtime(&start_time.tv_sec);
   while((c=getc(ficpar))=='#' && c!= EOF){    tmg = *gmtime(&start_time.tv_sec);
     ungetc(c,ficpar);    strcpy(strstart,asctime(&tm));
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /*  printf("Localtime (at start)=%s",strstart); */
     fputs(line,ficparo);  /*  tp.tv_sec = tp.tv_sec +86400; */
   }  /*  tm = *localtime(&start_time.tv_sec); */
   ungetc(c,ficpar);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  /*   tp.tv_sec = mktime(&tmg); */
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  /*   strt=asctime(&tmg); */
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  /*   printf("Time(after) =%s",strstart);  */
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  /*  (void) time (&time_value);
      *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   while((c=getc(ficpar))=='#' && c!= EOF){  *  tm = *localtime(&time_value);
     ungetc(c,ficpar);  *  strstart=asctime(&tm);
     fgets(line, MAXLINE, ficpar);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
     puts(line);  */
     fputs(line,ficparo);  
   }    nberr=0; /* Number of errors and warnings */
   ungetc(c,ficpar);    nbwarn=0;
      getcwd(pathcd, size);
   
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;    printf("\n%s\n%s",version,fullversion);
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;    if(argc <=1){
       printf("\nEnter the parameter file name: ");
   fscanf(ficpar,"pop_based=%d\n",&popbased);      fgets(pathr,FILENAMELENGTH,stdin);
   fprintf(ficparo,"pop_based=%d\n",popbased);         i=strlen(pathr);
   fprintf(ficres,"pop_based=%d\n",popbased);         if(pathr[i-1]=='\n')
           pathr[i-1]='\0';
   while((c=getc(ficpar))=='#' && c!= EOF){     for (tok = pathr; tok != NULL; ){
     ungetc(c,ficpar);        printf("Pathr |%s|\n",pathr);
     fgets(line, MAXLINE, ficpar);        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
     puts(line);        printf("val= |%s| pathr=%s\n",val,pathr);
     fputs(line,ficparo);        strcpy (pathtot, val);
   }        if(pathr[0] == '\0') break; /* Dirty */
   ungetc(c,ficpar);      }
     }
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);    else{
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      strcpy(pathtot,argv[1]);
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    }
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    /*cygwin_split_path(pathtot,path,optionfile);
   /* day and month of proj2 are not used but only year anproj2.*/      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    /* Split argv[0], imach program to get pathimach */
     fgets(line, MAXLINE, ficpar);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     puts(line);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     fputs(line,ficparo);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   }   /*   strcpy(pathimach,argv[0]); */
   ungetc(c,ficpar);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    chdir(path); /* Can be a relative path */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/    strcpy(command,"mkdir ");
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
   printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      /* fclose(ficlog); */
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\  /*     exit(1); */
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    }
    /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*------------ free_vector  -------------*/  /*     perror("mkdir"); */
   chdir(path);  /*   } */
    
   free_ivector(wav,1,imx);    /*-------- arguments in the command line --------*/
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);    /* Log file */
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       strcat(filelog, optionfilefiname);
   free_lvector(num,1,n);    strcat(filelog,".log");    /* */
   free_vector(agedc,1,n);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   /*free_matrix(covar,0,NCOVMAX,1,n);*/      printf("Problem with logfile %s\n",filelog);
   /*free_matrix(covar,1,NCOVMAX,1,n);*/      goto end;
   fclose(ficparo);    }
   fclose(ficres);    fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
   /*--------------- Prevalence limit  (stable prevalence) --------------*/    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
      path=%s \n\
   strcpy(filerespl,"pl");   optionfile=%s\n\
   strcat(filerespl,fileres);   optionfilext=%s\n\
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;  
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    printf("Local time (at start):%s",strstart);
   }    fprintf(ficlog,"Local time (at start): %s",strstart);
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);    fflush(ficlog);
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);  /*   (void) gettimeofday(&curr_time,&tzp); */
   fprintf(ficrespl,"#Stable prevalence \n");  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    /* */
   fprintf(ficrespl,"\n");    strcpy(fileres,"r");
       strcat(fileres, optionfilefiname);
   prlim=matrix(1,nlstate,1,nlstate);    strcat(fileres,".txt");    /* Other files have txt extension */
   
   agebase=ageminpar;    /*---------arguments file --------*/
   agelim=agemaxpar;  
   ftolpl=1.e-10;    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   i1=cptcoveff;      printf("Problem with optionfile %s\n",optionfile);
   if (cptcovn < 1){i1=1;}      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      goto end;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;  
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
       fprintf(ficrespl,"\n#******");  
       printf("\n#******");    strcpy(filereso,"o");
       fprintf(ficlog,"\n#******");    strcat(filereso,fileres);
       for(j=1;j<=cptcoveff;j++) {    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with Output resultfile: %s\n", filereso);
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fflush(ficlog);
       }      goto end;
       fprintf(ficrespl,"******\n");    }
       printf("******\n");  
       fprintf(ficlog,"******\n");    /* Reads comments: lines beginning with '#' */
             numlinepar=0;
       for (age=agebase; age<=agelim; age++){    while((c=getc(ficpar))=='#' && c!= EOF){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      ungetc(c,ficpar);
         fprintf(ficrespl,"%.0f ",age );      fgets(line, MAXLINE, ficpar);
         for(j=1;j<=cptcoveff;j++)      numlinepar++;
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      puts(line);
         for(i=1; i<=nlstate;i++)      fputs(line,ficparo);
           fprintf(ficrespl," %.5f", prlim[i][i]);      fputs(line,ficlog);
         fprintf(ficrespl,"\n");    }
       }    ungetc(c,ficpar);
     }  
   }    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   fclose(ficrespl);    numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   /*------------- h Pij x at various ages ------------*/    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fflush(ficlog);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    while((c=getc(ficpar))=='#' && c!= EOF){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      ungetc(c,ficpar);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      fgets(line, MAXLINE, ficpar);
   }      numlinepar++;
   printf("Computing pij: result on file '%s' \n", filerespij);      puts(line);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      fputs(line,ficparo);
         fputs(line,ficlog);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   /*if (stepm<=24) stepsize=2;*/    ungetc(c,ficpar);
   
   agelim=AGESUP;     
   hstepm=stepsize*YEARM; /* Every year of age */    covar=matrix(0,NCOVMAX,1,n);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   /* hstepm=1;   aff par mois*/  
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       fprintf(ficrespij,"\n#****** ");    delti=delti3[1][1];
       for(j=1;j<=cptcoveff;j++)     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       fprintf(ficrespij,"******\n");      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
               printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fclose (ficparo);
       fclose (ficlog);
         /*        nhstepm=nhstepm*YEARM; aff par mois*/      goto end;
       exit(0);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         oldm=oldms;savm=savms;    else if(mle==-3) {
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         for(i=1; i<=nlstate;i++)      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           for(j=1; j<=nlstate+ndeath;j++)      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
             fprintf(ficrespij," %1d-%1d",i,j);      matcov=matrix(1,npar,1,npar);
         fprintf(ficrespij,"\n");    }
         for (h=0; h<=nhstepm; h++){    else{
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      /* Read guess parameters */
           for(i=1; i<=nlstate;i++)      /* Reads comments: lines beginning with '#' */
             for(j=1; j<=nlstate+ndeath;j++)      while((c=getc(ficpar))=='#' && c!= EOF){
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);        ungetc(c,ficpar);
           fprintf(ficrespij,"\n");        fgets(line, MAXLINE, ficpar);
         }        numlinepar++;
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        puts(line);
         fprintf(ficrespij,"\n");        fputs(line,ficparo);
       }        fputs(line,ficlog);
     }      }
   }      ungetc(c,ficpar);
      
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
   fclose(ficrespij);        j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(jj==i) continue;
           j++;
   /*---------- Forecasting ------------------*/          fscanf(ficpar,"%1d%1d",&i1,&j1);
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/          if ((i1 != i) && (j1 != j)){
   if(prevfcast==1){            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
     /*    if(stepm ==1){*/  It might be a problem of design; if ncovcol and the model are correct\n \
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/            exit(1);
 /*      }  */          }
 /*      else{ */          fprintf(ficparo,"%1d%1d",i1,j1);
 /*        erreur=108; */          if(mle==1)
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */            printf("%1d%1d",i,j);
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */          fprintf(ficlog,"%1d%1d",i,j);
 /*      } */          for(k=1; k<=ncovmodel;k++){
   }            fscanf(ficpar," %lf",&param[i][j][k]);
               if(mle==1){
               printf(" %lf",param[i][j][k]);
   /*---------- Health expectancies and variances ------------*/              fprintf(ficlog," %lf",param[i][j][k]);
             }
   strcpy(filerest,"t");            else
   strcat(filerest,fileres);              fprintf(ficlog," %lf",param[i][j][k]);
   if((ficrest=fopen(filerest,"w"))==NULL) {            fprintf(ficparo," %lf",param[i][j][k]);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          fscanf(ficpar,"\n");
   }          numlinepar++;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);           if(mle==1)
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
   strcpy(filerese,"e");        }
   strcat(filerese,fileres);      }  
   if((ficreseij=fopen(filerese,"w"))==NULL) {      fflush(ficlog);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      p=param[1][1];
   }     
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      /* Reads comments: lines beginning with '#' */
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
   strcpy(fileresv,"v");        fgets(line, MAXLINE, ficpar);
   strcat(fileresv,fileres);        numlinepar++;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        puts(line);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        fputs(line,ficparo);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        fputs(line,ficlog);
   }      }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      ungetc(c,ficpar);
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
       for(i=1; i <=nlstate; i++){
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */        for(j=1; j <=nlstate+ndeath-1; j++){
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          fscanf(ficpar,"%1d%1d",&i1,&j1);
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\          if ((i1-i)*(j1-j)!=0){
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   */            exit(1);
           }
   if (mobilav!=0) {          printf("%1d%1d",i,j);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficparo,"%1d%1d",i1,j1);
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){          fprintf(ficlog,"%1d%1d",i1,j1);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          for(k=1; k<=ncovmodel;k++){
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            fscanf(ficpar,"%le",&delti3[i][j][k]);
     }            printf(" %le",delti3[i][j][k]);
   }            fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fscanf(ficpar,"\n");
       k=k+1;           numlinepar++;
       fprintf(ficrest,"\n#****** ");          printf("\n");
       for(j=1;j<=cptcoveff;j++)           fprintf(ficparo,"\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficlog,"\n");
       fprintf(ficrest,"******\n");        }
       }
       fprintf(ficreseij,"\n#****** ");      fflush(ficlog);
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      delti=delti3[1][1];
       fprintf(ficreseij,"******\n");  
   
       fprintf(ficresvij,"\n#****** ");      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* Reads comments: lines beginning with '#' */
       fprintf(ficresvij,"******\n");      while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fgets(line, MAXLINE, ficpar);
       oldm=oldms;savm=savms;        numlinepar++;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          puts(line);
          fputs(line,ficparo);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fputs(line,ficlog);
       oldm=oldms;savm=savms;      }
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);      ungetc(c,ficpar);
       if(popbased==1){   
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);      matcov=matrix(1,npar,1,npar);
       }      for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
          if(mle==1)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          printf("%s",str);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        fprintf(ficlog,"%s",str);
       fprintf(ficrest,"\n");        fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
       epj=vector(1,nlstate+1);          fscanf(ficpar," %le",&matcov[i][j]);
       for(age=bage; age <=fage ;age++){          if(mle==1){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            printf(" %.5le",matcov[i][j]);
         if (popbased==1) {          }
           if(mobilav ==0){          fprintf(ficlog," %.5le",matcov[i][j]);
             for(i=1; i<=nlstate;i++)          fprintf(ficparo," %.5le",matcov[i][j]);
               prlim[i][i]=probs[(int)age][i][k];        }
           }else{ /* mobilav */         fscanf(ficpar,"\n");
             for(i=1; i<=nlstate;i++)        numlinepar++;
               prlim[i][i]=mobaverage[(int)age][i][k];        if(mle==1)
           }          printf("\n");
         }        fprintf(ficlog,"\n");
                 fprintf(ficparo,"\n");
         fprintf(ficrest," %4.0f",age);      }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      for(i=1; i <=npar; i++)
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        for(j=i+1;j<=npar;j++)
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          matcov[i][j]=matcov[j][i];
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     
           }      if(mle==1)
           epj[nlstate+1] +=epj[j];        printf("\n");
         }      fprintf(ficlog,"\n");
      
         for(i=1, vepp=0.;i <=nlstate;i++)      fflush(ficlog);
           for(j=1;j <=nlstate;j++)     
             vepp += vareij[i][j][(int)age];      /*-------- Rewriting parameter file ----------*/
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      strcpy(rfileres,"r");    /* "Rparameterfile */
         for(j=1;j <=nlstate;j++){      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      strcat(rfileres,".");    /* */
         }      strcat(rfileres,optionfilext);    /* Other files have txt extension */
         fprintf(ficrest,"\n");      if((ficres =fopen(rfileres,"w"))==NULL) {
       }        printf("Problem writing new parameter file: %s\n", fileres);goto end;
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      }
       free_vector(epj,1,nlstate+1);      fprintf(ficres,"#%s\n",version);
     }    }    /* End of mle != -3 */
   }  
   free_vector(weight,1,n);    /*-------- data file ----------*/
   free_imatrix(Tvard,1,15,1,2);    if((fic=fopen(datafile,"r"))==NULL)    {
   free_imatrix(s,1,maxwav+1,1,n);      printf("Problem while opening datafile: %s\n", datafile);goto end;
   free_matrix(anint,1,maxwav,1,n);       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   free_matrix(mint,1,maxwav,1,n);    }
   free_ivector(cod,1,n);  
   free_ivector(tab,1,NCOVMAX);    n= lastobs;
   fclose(ficreseij);    severity = vector(1,maxwav);
   fclose(ficresvij);    outcome=imatrix(1,maxwav+1,1,n);
   fclose(ficrest);    num=lvector(1,n);
   fclose(ficpar);    moisnais=vector(1,n);
       annais=vector(1,n);
   /*------- Variance of stable prevalence------*/       moisdc=vector(1,n);
     andc=vector(1,n);
   strcpy(fileresvpl,"vpl");    agedc=vector(1,n);
   strcat(fileresvpl,fileres);    cod=ivector(1,n);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    weight=vector(1,n);
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     exit(0);    mint=matrix(1,maxwav,1,n);
   }    anint=matrix(1,maxwav,1,n);
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);    s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    ncodemax=ivector(1,8);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    i=1;
       fprintf(ficresvpl,"\n#****** ");    linei=0;
       for(j=1;j<=cptcoveff;j++)     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      linei=linei+1;
       fprintf(ficresvpl,"******\n");      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
               if(line[j] == '\t')
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          line[j] = ' ';
       oldm=oldms;savm=savms;      }
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        ;
     }      };
   }      line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
   fclose(ficresvpl);        fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
   /*---------- End : free ----------------*/        continue;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      for (j=maxwav;j>=1;j--){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        cutv(stra, strb,line,' ');
           errno=0;
   free_matrix(covar,0,NCOVMAX,1,n);        lval=strtol(strb,&endptr,10);
   free_matrix(matcov,1,npar,1,npar);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
   /*free_vector(delti,1,npar);*/        if( strb[0]=='\0' || (*endptr != '\0')){
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
   free_matrix(agev,1,maxwav,1,imx);          exit(1);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        s[j][i]=lval;
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       
         strcpy(line,stra);
   free_ivector(ncodemax,1,8);        cutv(stra, strb,line,' ');
   free_ivector(Tvar,1,15);        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   free_ivector(Tprod,1,15);        }
   free_ivector(Tvaraff,1,15);        else  if(iout=sscanf(strb,"%s.") != 0){
   free_ivector(Tage,1,15);          month=99;
   free_ivector(Tcode,1,100);          year=9999;
         }else{
   /*  fclose(fichtm);*/          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   /*  fclose(ficgp);*/ /* ALready done */          exit(1);
           }
         anint[j][i]= (double) year;
   if(erreur >0){        mint[j][i]= (double)month;
     printf("End of Imach with error or warning %d\n",erreur);        strcpy(line,stra);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      } /* ENd Waves */
   }else{     
    printf("End of Imach\n");      cutv(stra, strb,line,' ');
    fprintf(ficlog,"End of Imach\n");      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   }      }
   printf("See log file on %s\n",filelog);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   fclose(ficlog);        month=99;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        year=9999;
   (void) gettimeofday(&end_time,&tzp);      }else{
   tm = *localtime(&end_time.tv_sec);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   tmg = *gmtime(&end_time.tv_sec);        exit(1);
   strtend=asctime(&tm);      }
   printf("Localtime at start %s and at end=%s",strt, strtend);       andc[i]=(double) year;
   fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend);       moisdc[i]=(double) month;
   /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/      strcpy(line,stra);
      
   printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);      cutv(stra, strb,line,' ');
   fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      }
   if(fileappend(fichtm,optionfilehtm)){      else  if(iout=sscanf(strb,"%s.") != 0){
     fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);        month=99;
     fclose(fichtm);        year=9999;
   }      }else{
   /*------ End -----------*/        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
   end:      }
 #ifdef windows      annais[i]=(double)(year);
   /* chdir(pathcd);*/      moisnais[i]=(double)(month);
 #endif       strcpy(line,stra);
  /*system("wgnuplot graph.plt");*/     
  /*system("../gp37mgw/wgnuplot graph.plt");*/      cutv(stra, strb,line,' ');
  /*system("cd ../gp37mgw");*/      errno=0;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      dval=strtod(strb,&endptr);
   strcpy(plotcmd,GNUPLOTPROGRAM);      if( strb[0]=='\0' || (*endptr != '\0')){
   strcat(plotcmd," ");        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   strcat(plotcmd,optionfilegnuplot);        exit(1);
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);      }
   system(plotcmd);      weight[i]=dval;
   printf(" Wait...");      strcpy(line,stra);
      
  /*#ifdef windows*/      for (j=ncovcol;j>=1;j--){
   while (z[0] != 'q') {        cutv(stra, strb,line,' ');
     /* chdir(path); */        errno=0;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        lval=strtol(strb,&endptr,10);
     scanf("%s",z);        if( strb[0]=='\0' || (*endptr != '\0')){
     if (z[0] == 'c') system("./imach");          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
     else if (z[0] == 'e') system(optionfilehtm);          exit(1);
     else if (z[0] == 'g') system(plotcmd);        }
     else if (z[0] == 'q') exit(0);        if(lval <-1 || lval >1){
   }          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   /*#endif */   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 }   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }
       lstra=strlen(stra);
      
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
      
       strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
      
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for (k=1; k<=lastobs;k++)
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
    
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
      
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.86  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>