Diff for /imach/src/imach.c between versions 1.49 and 1.86

version 1.49, 2002/06/20 14:03:39 version 1.86, 2003/06/17 20:04:08
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.86  2003/06/17 20:04:08  brouard
      (Module): Change position of html and gnuplot routines and added
   This program computes Healthy Life Expectancies from    routine fileappend.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.85  2003/06/17 13:12:43  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Check when date of death was earlier that
   case of a health survey which is our main interest) -2- at least a    current date of interview. It may happen when the death was just
   second wave of interviews ("longitudinal") which measure each change    prior to the death. In this case, dh was negative and likelihood
   (if any) in individual health status.  Health expectancies are    was wrong (infinity). We still send an "Error" but patch by
   computed from the time spent in each health state according to a    assuming that the date of death was just one stepm after the
   model. More health states you consider, more time is necessary to reach the    interview.
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): Because some people have very long ID (first column)
   simplest model is the multinomial logistic model where pij is the    we changed int to long in num[] and we added a new lvector for
   probability to be observed in state j at the second wave    memory allocation. But we also truncated to 8 characters (left
   conditional to be observed in state i at the first wave. Therefore    truncation)
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Repository): No more line truncation errors.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.84  2003/06/13 21:44:43  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Replace "freqsummary" at a correct
   you to do it.  More covariates you add, slower the    place. It differs from routine "prevalence" which may be called
   convergence.    many times. Probs is memory consuming and must be used with
     parcimony.
   The advantage of this computer programme, compared to a simple    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.83  2003/06/10 13:39:11  lievre
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.82  2003/06/05 15:57:20  brouard
   hPijx is the probability to be observed in state i at age x+h    Add log in  imach.c and  fullversion number is now printed.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate  */
   states. This elementary transition (by month or quarter trimester,  /*
   semester or year) is model as a multinomial logistic.  The hPx     Interpolated Markov Chain
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Short summary of the programme:
   hPijx.    
     This program computes Healthy Life Expectancies from
   Also this programme outputs the covariance matrix of the parameters but also    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   of the life expectancies. It also computes the prevalence limits.    first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    case of a health survey which is our main interest) -2- at least a
            Institut national d'études démographiques, Paris.    second wave of interviews ("longitudinal") which measure each change
   This software have been partly granted by Euro-REVES, a concerted action    (if any) in individual health status.  Health expectancies are
   from the European Union.    computed from the time spent in each health state according to a
   It is copyrighted identically to a GNU software product, ie programme and    model. More health states you consider, more time is necessary to reach the
   software can be distributed freely for non commercial use. Latest version    Maximum Likelihood of the parameters involved in the model.  The
   can be accessed at http://euroreves.ined.fr/imach .    simplest model is the multinomial logistic model where pij is the
   **********************************************************************/    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
 #include <math.h>    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #include <stdio.h>    'age' is age and 'sex' is a covariate. If you want to have a more
 #include <stdlib.h>    complex model than "constant and age", you should modify the program
 #include <unistd.h>    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 #define MAXLINE 256    convergence.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    The advantage of this computer programme, compared to a simple
 #define FILENAMELENGTH 80    multinomial logistic model, is clear when the delay between waves is not
 /*#define DEBUG*/    identical for each individual. Also, if a individual missed an
 #define windows    intermediate interview, the information is lost, but taken into
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    account using an interpolation or extrapolation.  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     hPijx is the probability to be observed in state i at age x+h
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    conditional to the observed state i at age x. The delay 'h' can be
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 #define NINTERVMAX 8    semester or year) is modelled as a multinomial logistic.  The hPx
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    matrix is simply the matrix product of nh*stepm elementary matrices
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    and the contribution of each individual to the likelihood is simply
 #define NCOVMAX 8 /* Maximum number of covariates */    hPijx.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Also this programme outputs the covariance matrix of the parameters but also
 #define AGESUP 130    of the life expectancies. It also computes the stable prevalence. 
 #define AGEBASE 40    
 #ifdef windows    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define DIRSEPARATOR '\\'             Institut national d'études démographiques, Paris.
 #else    This software have been partly granted by Euro-REVES, a concerted action
 #define DIRSEPARATOR '/'    from the European Union.
 #endif    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    can be accessed at http://euroreves.ined.fr/imach .
 int erreur; /* Error number */  
 int nvar;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int npar=NPARMAX;    
 int nlstate=2; /* Number of live states */    **********************************************************************/
 int ndeath=1; /* Number of dead states */  /*
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    main
 int popbased=0;    read parameterfile
     read datafile
 int *wav; /* Number of waves for this individuual 0 is possible */    concatwav
 int maxwav; /* Maxim number of waves */    freqsummary
 int jmin, jmax; /* min, max spacing between 2 waves */    if (mle >= 1)
 int mle, weightopt;      mlikeli
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    print results files
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    if mle==1 
 double jmean; /* Mean space between 2 waves */       computes hessian
 double **oldm, **newm, **savm; /* Working pointers to matrices */    read end of parameter file: agemin, agemax, bage, fage, estepm
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */        begin-prev-date,...
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    open gnuplot file
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    open html file
 FILE *fichtm; /* Html File */    stable prevalence
 FILE *ficreseij;     for age prevalim()
 char filerese[FILENAMELENGTH];    h Pij x
 FILE  *ficresvij;    variance of p varprob
 char fileresv[FILENAMELENGTH];    forecasting if prevfcast==1 prevforecast call prevalence()
 FILE  *ficresvpl;    health expectancies
 char fileresvpl[FILENAMELENGTH];    Variance-covariance of DFLE
 char title[MAXLINE];    prevalence()
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];     movingaverage()
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    varevsij() 
     if popbased==1 varevsij(,popbased)
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    total life expectancies
     Variance of stable prevalence
 char filerest[FILENAMELENGTH];   end
 char fileregp[FILENAMELENGTH];  */
 char popfile[FILENAMELENGTH];  
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
    
 #define NR_END 1  #include <math.h>
 #define FREE_ARG char*  #include <stdio.h>
 #define FTOL 1.0e-10  #include <stdlib.h>
   #include <unistd.h>
 #define NRANSI  
 #define ITMAX 200  #include <sys/time.h>
   #include <time.h>
 #define TOL 2.0e-4  #include "timeval.h"
   
 #define CGOLD 0.3819660  #define MAXLINE 256
 #define ZEPS 1.0e-10  #define GNUPLOTPROGRAM "gnuplot"
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 #define GOLD 1.618034  /*#define DEBUG*/
 #define GLIMIT 100.0  /*#define windows*/
 #define TINY 1.0e-20  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define NINTERVMAX 8
 #define rint(a) floor(a+0.5)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 static double sqrarg;  #define NCOVMAX 8 /* Maximum number of covariates */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define MAXN 20000
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 int imx;  #define AGEBASE 40
 int stepm;  #ifdef unix
 /* Stepm, step in month: minimum step interpolation*/  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 int estepm;  #else
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 int m,nb;  #endif
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /* $Id$ */
 double **pmmij, ***probs, ***mobaverage;  /* $State$ */
 double dateintmean=0;  
   char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 double *weight;  char fullversion[]="$Revision$ $Date$"; 
 int **s; /* Status */  int erreur; /* Error number */
 double *agedc, **covar, idx;  int nvar;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int nlstate=2; /* Number of live states */
 double ftolhess; /* Tolerance for computing hessian */  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /**************** split *************************/  int popbased=0;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
    char *s;                             /* pointer */  int maxwav; /* Maxim number of waves */
    int  l1, l2;                         /* length counters */  int jmin, jmax; /* min, max spacing between 2 waves */
   int mle, weightopt;
    l1 = strlen( path );                 /* length of path */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    if ( s == NULL ) {                   /* no directory, so use current */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #if     defined(__bsd__)                /* get current working directory */  double jmean; /* Mean space between 2 waves */
       extern char       *getwd( );  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       if ( getwd( dirc ) == NULL ) {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #else  FILE *ficlog, *ficrespow;
       extern char       *getcwd( );  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  long ipmx; /* Number of contributions */
 #endif  double sw; /* Sum of weights */
          return( GLOCK_ERROR_GETCWD );  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       }  FILE *ficresilk;
       strcpy( name, path );             /* we've got it */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    } else {                             /* strip direcotry from path */  FILE *ficresprobmorprev;
       s++;                              /* after this, the filename */  FILE *fichtm; /* Html File */
       l2 = strlen( s );                 /* length of filename */  FILE *ficreseij;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  char filerese[FILENAMELENGTH];
       strcpy( name, s );                /* save file name */  FILE  *ficresvij;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  char fileresv[FILENAMELENGTH];
       dirc[l1-l2] = 0;                  /* add zero */  FILE  *ficresvpl;
    }  char fileresvpl[FILENAMELENGTH];
    l1 = strlen( dirc );                 /* length of directory */  char title[MAXLINE];
 #ifdef windows  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #endif  char filelog[FILENAMELENGTH]; /* Log file */
    s = strrchr( name, '.' );            /* find last / */  char filerest[FILENAMELENGTH];
    s++;  char fileregp[FILENAMELENGTH];
    strcpy(ext,s);                       /* save extension */  char popfile[FILENAMELENGTH];
    l1= strlen( name);  
    l2= strlen( s)+1;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  #define NR_END 1
    return( 0 );                         /* we're done */  #define FREE_ARG char*
 }  #define FTOL 1.0e-10
   
   #define NRANSI 
 /******************************************/  #define ITMAX 200 
   
 void replace(char *s, char*t)  #define TOL 2.0e-4 
 {  
   int i;  #define CGOLD 0.3819660 
   int lg=20;  #define ZEPS 1.0e-10 
   i=0;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  #define GOLD 1.618034 
     (s[i] = t[i]);  #define GLIMIT 100.0 
     if (t[i]== '\\') s[i]='/';  #define TINY 1.0e-20 
   }  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 int nbocc(char *s, char occ)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   int i,j=0;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   int lg=20;  #define rint(a) floor(a+0.5)
   i=0;  
   lg=strlen(s);  static double sqrarg;
   for(i=0; i<= lg; i++) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if  (s[i] == occ ) j++;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   }  
   return j;  int imx; 
 }  int stepm;
   /* Stepm, step in month: minimum step interpolation*/
 void cutv(char *u,char *v, char*t, char occ)  
 {  int estepm;
   int i,lg,j,p=0;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  int m,nb;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  long *num;
   }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   lg=strlen(t);  double **pmmij, ***probs;
   for(j=0; j<p; j++) {  double dateintmean=0;
     (u[j] = t[j]);  
   }  double *weight;
      u[p]='\0';  int **s; /* Status */
   double *agedc, **covar, idx;
    for(j=0; j<= lg; j++) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /********************** nrerror ********************/  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 void nrerror(char error_text[])  {
 {    char  *ss;                            /* pointer */
   fprintf(stderr,"ERREUR ...\n");    int   l1, l2;                         /* length counters */
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*********************** vector *******************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 double *vector(int nl, int nh)    if ( ss == NULL ) {                   /* no directory, so use current */
 {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double *v;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      /* get current working directory */
   if (!v) nrerror("allocation failure in vector");      /*    extern  char* getcwd ( char *buf , int len);*/
   return v-nl+NR_END;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /************************ free vector ******************/      strcpy( name, path );               /* we've got it */
 void free_vector(double*v, int nl, int nh)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   free((FREE_ARG)(v+nl-NR_END));      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /************************ivector *******************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 int *ivector(long nl,long nh)      dirc[l1-l2] = 0;                    /* add zero */
 {    }
   int *v;    l1 = strlen( dirc );                  /* length of directory */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    /*#ifdef windows
   if (!v) nrerror("allocation failure in ivector");    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   return v-nl+NR_END;  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
 /******************free ivector **************************/    */
 void free_ivector(int *v, long nl, long nh)    ss = strrchr( name, '.' );            /* find last / */
 {    ss++;
   free((FREE_ARG)(v+nl-NR_END));    strcpy(ext,ss);                       /* save extension */
 }    l1= strlen( name);
     l2= strlen(ss)+1;
 /******************* imatrix *******************************/    strncpy( finame, name, l1-l2);
 int **imatrix(long nrl, long nrh, long ncl, long nch)    finame[l1-l2]= 0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    return( 0 );                          /* we're done */
 {  }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  
    /******************************************/
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  void replace(char *s, char*t)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    int i;
   m -= nrl;    int lg=20;
      i=0;
      lg=strlen(t);
   /* allocate rows and set pointers to them */    for(i=0; i<= lg; i++) {
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      (s[i] = t[i]);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if (t[i]== '\\') s[i]='/';
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;  }
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int nbocc(char *s, char occ)
    {
   /* return pointer to array of pointers to rows */    int i,j=0;
   return m;    int lg=20;
 }    i=0;
     lg=strlen(s);
 /****************** free_imatrix *************************/    for(i=0; i<= lg; i++) {
 void free_imatrix(m,nrl,nrh,ncl,nch)    if  (s[i] == occ ) j++;
       int **m;    }
       long nch,ncl,nrh,nrl;    return j;
      /* free an int matrix allocated by imatrix() */  }
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  void cutv(char *u,char *v, char*t, char occ)
   free((FREE_ARG) (m+nrl-NR_END));  {
 }    /* cuts string t into u and v where u is ended by char occ excluding it
        and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 /******************* matrix *******************************/       gives u="abcedf" and v="ghi2j" */
 double **matrix(long nrl, long nrh, long ncl, long nch)    int i,lg,j,p=0;
 {    i=0;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    for(j=0; j<=strlen(t)-1; j++) {
   double **m;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    lg=strlen(t);
   m += NR_END;    for(j=0; j<p; j++) {
   m -= nrl;      (u[j] = t[j]);
     }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));       u[p]='\0';
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;     for(j=0; j<= lg; j++) {
   m[nrl] -= ncl;      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   return m;  
 }  /********************** nrerror ********************/
   
 /*************************free matrix ************************/  void nrerror(char error_text[])
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  {
 {    fprintf(stderr,"ERREUR ...\n");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    fprintf(stderr,"%s\n",error_text);
   free((FREE_ARG)(m+nrl-NR_END));    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /******************* ma3x *******************************/  double *vector(int nl, int nh)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  {
 {    double *v;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double ***m;    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /************************ free vector ******************/
   m -= nrl;  void free_vector(double*v, int nl, int nh)
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    free((FREE_ARG)(v+nl-NR_END));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     int *v;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    if (!v) nrerror("allocation failure in ivector");
   m[nrl][ncl] += NR_END;    return v-nl+NR_END;
   m[nrl][ncl] -= nll;  }
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  /******************free ivector **************************/
    void free_ivector(int *v, long nl, long nh)
   for (i=nrl+1; i<=nrh; i++) {  {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    free((FREE_ARG)(v+nl-NR_END));
     for (j=ncl+1; j<=nch; j++)  }
       m[i][j]=m[i][j-1]+nlay;  
   }  /************************lvector *******************************/
   return m;  long *lvector(long nl,long nh)
 }  {
     long *v;
 /*************************free ma3x ************************/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    if (!v) nrerror("allocation failure in ivector");
 {    return v-nl+NR_END;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /******************free lvector **************************/
 }  void free_lvector(long *v, long nl, long nh)
   {
 /***************** f1dim *************************/    free((FREE_ARG)(v+nl-NR_END));
 extern int ncom;  }
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  /******************* imatrix *******************************/
    int **imatrix(long nrl, long nrh, long ncl, long nch) 
 double f1dim(double x)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 {  { 
   int j;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double f;    int **m; 
   double *xt;    
      /* allocate pointers to rows */ 
   xt=vector(1,ncom);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if (!m) nrerror("allocation failure 1 in matrix()"); 
   f=(*nrfunc)(xt);    m += NR_END; 
   free_vector(xt,1,ncom);    m -= nrl; 
   return f;    
 }    
     /* allocate rows and set pointers to them */ 
 /*****************brent *************************/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 {    m[nrl] += NR_END; 
   int iter;    m[nrl] -= ncl; 
   double a,b,d,etemp;    
   double fu,fv,fw,fx;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double ftemp;    
   double p,q,r,tol1,tol2,u,v,w,x,xm;    /* return pointer to array of pointers to rows */ 
   double e=0.0;    return m; 
    } 
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /****************** free_imatrix *************************/
   x=w=v=bx;  void free_imatrix(m,nrl,nrh,ncl,nch)
   fw=fv=fx=(*f)(x);        int **m;
   for (iter=1;iter<=ITMAX;iter++) {        long nch,ncl,nrh,nrl; 
     xm=0.5*(a+b);       /* free an int matrix allocated by imatrix() */ 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  { 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     printf(".");fflush(stdout);    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /******************* matrix *******************************/
 #endif  double **matrix(long nrl, long nrh, long ncl, long nch)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       return fx;    double **m;
     }  
     ftemp=fu;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (fabs(e) > tol1) {    if (!m) nrerror("allocation failure 1 in matrix()");
       r=(x-w)*(fx-fv);    m += NR_END;
       q=(x-v)*(fx-fw);    m -= nrl;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (q > 0.0) p = -p;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       q=fabs(q);    m[nrl] += NR_END;
       etemp=e;    m[nrl] -= ncl;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    return m;
       else {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         d=p/q;     */
         u=x+d;  }
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  }
     fu=(*f)(u);  
     if (fu <= fx) {  /******************* ma3x *******************************/
       if (u >= x) a=x; else b=x;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         } else {    double ***m;
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             v=w;    if (!m) nrerror("allocation failure 1 in matrix()");
             w=u;    m += NR_END;
             fv=fw;    m -= nrl;
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             v=u;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             fv=fu;    m[nrl] += NR_END;
           }    m[nrl] -= ncl;
         }  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   nrerror("Too many iterations in brent");  
   *xmin=x;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   return fx;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 }    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
 /****************** mnbrak ***********************/    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    
             double (*func)(double))    for (i=nrl+1; i<=nrh; i++) {
 {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double ulim,u,r,q, dum;      for (j=ncl+1; j<=nch; j++) 
   double fu;        m[i][j]=m[i][j-1]+nlay;
      }
   *fa=(*func)(*ax);    return m; 
   *fb=(*func)(*bx);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   if (*fb > *fa) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     SHFT(dum,*ax,*bx,dum)    */
       SHFT(dum,*fb,*fa,dum)  }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  /*************************free ma3x ************************/
   *fc=(*func)(*cx);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     q=(*bx-*cx)*(*fb-*fa);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    free((FREE_ARG)(m+nrl-NR_END));
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /***************** f1dim *************************/
       fu=(*func)(u);  extern int ncom; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  extern double *pcom,*xicom;
       fu=(*func)(u);  extern double (*nrfunc)(double []); 
       if (fu < *fc) {   
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double f1dim(double x) 
           SHFT(*fb,*fc,fu,(*func)(u))  { 
           }    int j; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    double f;
       u=ulim;    double *xt; 
       fu=(*func)(u);   
     } else {    xt=vector(1,ncom); 
       u=(*cx)+GOLD*(*cx-*bx);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       fu=(*func)(u);    f=(*nrfunc)(xt); 
     }    free_vector(xt,1,ncom); 
     SHFT(*ax,*bx,*cx,u)    return f; 
       SHFT(*fa,*fb,*fc,fu)  } 
       }  
 }  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /*************** linmin ************************/  { 
     int iter; 
 int ncom;    double a,b,d,etemp;
 double *pcom,*xicom;    double fu,fv,fw,fx;
 double (*nrfunc)(double []);    double ftemp;
      double p,q,r,tol1,tol2,u,v,w,x,xm; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    double e=0.0; 
 {   
   double brent(double ax, double bx, double cx,    a=(ax < cx ? ax : cx); 
                double (*f)(double), double tol, double *xmin);    b=(ax > cx ? ax : cx); 
   double f1dim(double x);    x=w=v=bx; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    fw=fv=fx=(*f)(x); 
               double *fc, double (*func)(double));    for (iter=1;iter<=ITMAX;iter++) { 
   int j;      xm=0.5*(a+b); 
   double xx,xmin,bx,ax;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double fx,fb,fa;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
        printf(".");fflush(stdout);
   ncom=n;      fprintf(ficlog,".");fflush(ficlog);
   pcom=vector(1,n);  #ifdef DEBUG
   xicom=vector(1,n);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   nrfunc=func;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (j=1;j<=n;j++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     pcom[j]=p[j];  #endif
     xicom[j]=xi[j];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   }        *xmin=x; 
   ax=0.0;        return fx; 
   xx=1.0;      } 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      ftemp=fu;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      if (fabs(e) > tol1) { 
 #ifdef DEBUG        r=(x-w)*(fx-fv); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        q=(x-v)*(fx-fw); 
 #endif        p=(x-v)*q-(x-w)*r; 
   for (j=1;j<=n;j++) {        q=2.0*(q-r); 
     xi[j] *= xmin;        if (q > 0.0) p = -p; 
     p[j] += xi[j];        q=fabs(q); 
   }        etemp=e; 
   free_vector(xicom,1,n);        e=d; 
   free_vector(pcom,1,n);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 /*************** powell ************************/          d=p/q; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,          u=x+d; 
             double (*func)(double []))          if (u-a < tol2 || b-u < tol2) 
 {            d=SIGN(tol1,xm-x); 
   void linmin(double p[], double xi[], int n, double *fret,        } 
               double (*func)(double []));      } else { 
   int i,ibig,j;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double del,t,*pt,*ptt,*xit;      } 
   double fp,fptt;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double *xits;      fu=(*f)(u); 
   pt=vector(1,n);      if (fu <= fx) { 
   ptt=vector(1,n);        if (u >= x) a=x; else b=x; 
   xit=vector(1,n);        SHFT(v,w,x,u) 
   xits=vector(1,n);          SHFT(fv,fw,fx,fu) 
   *fret=(*func)(p);          } else { 
   for (j=1;j<=n;j++) pt[j]=p[j];            if (u < x) a=u; else b=u; 
   for (*iter=1;;++(*iter)) {            if (fu <= fw || w == x) { 
     fp=(*fret);              v=w; 
     ibig=0;              w=u; 
     del=0.0;              fv=fw; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);              fw=fu; 
     for (i=1;i<=n;i++)            } else if (fu <= fv || v == x || v == w) { 
       printf(" %d %.12f",i, p[i]);              v=u; 
     printf("\n");              fv=fu; 
     for (i=1;i<=n;i++) {            } 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];          } 
       fptt=(*fret);    } 
 #ifdef DEBUG    nrerror("Too many iterations in brent"); 
       printf("fret=%lf \n",*fret);    *xmin=x; 
 #endif    return fx; 
       printf("%d",i);fflush(stdout);  } 
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /****************** mnbrak ***********************/
         del=fabs(fptt-(*fret));  
         ibig=i;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       }              double (*func)(double)) 
 #ifdef DEBUG  { 
       printf("%d %.12e",i,(*fret));    double ulim,u,r,q, dum;
       for (j=1;j<=n;j++) {    double fu; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);   
         printf(" x(%d)=%.12e",j,xit[j]);    *fa=(*func)(*ax); 
       }    *fb=(*func)(*bx); 
       for(j=1;j<=n;j++)    if (*fb > *fa) { 
         printf(" p=%.12e",p[j]);      SHFT(dum,*ax,*bx,dum) 
       printf("\n");        SHFT(dum,*fb,*fa,dum) 
 #endif        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    *fc=(*func)(*cx); 
 #ifdef DEBUG    while (*fb > *fc) { 
       int k[2],l;      r=(*bx-*ax)*(*fb-*fc); 
       k[0]=1;      q=(*bx-*cx)*(*fb-*fa); 
       k[1]=-1;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       printf("Max: %.12e",(*func)(p));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       for (j=1;j<=n;j++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         printf(" %.12e",p[j]);      if ((*bx-u)*(u-*cx) > 0.0) { 
       printf("\n");        fu=(*func)(u); 
       for(l=0;l<=1;l++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         for (j=1;j<=n;j++) {        fu=(*func)(u); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        if (fu < *fc) { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         }            SHFT(*fb,*fc,fu,(*func)(u)) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            } 
       }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 #endif        u=ulim; 
         fu=(*func)(u); 
       } else { 
       free_vector(xit,1,n);        u=(*cx)+GOLD*(*cx-*bx); 
       free_vector(xits,1,n);        fu=(*func)(u); 
       free_vector(ptt,1,n);      } 
       free_vector(pt,1,n);      SHFT(*ax,*bx,*cx,u) 
       return;        SHFT(*fa,*fb,*fc,fu) 
     }        } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  } 
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /*************** linmin ************************/
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  int ncom; 
     }  double *pcom,*xicom;
     fptt=(*func)(ptt);  double (*nrfunc)(double []); 
     if (fptt < fp) {   
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       if (t < 0.0) {  { 
         linmin(p,xit,n,fret,func);    double brent(double ax, double bx, double cx, 
         for (j=1;j<=n;j++) {                 double (*f)(double), double tol, double *xmin); 
           xi[j][ibig]=xi[j][n];    double f1dim(double x); 
           xi[j][n]=xit[j];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         }                double *fc, double (*func)(double)); 
 #ifdef DEBUG    int j; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double xx,xmin,bx,ax; 
         for(j=1;j<=n;j++)    double fx,fb,fa;
           printf(" %.12e",xit[j]);   
         printf("\n");    ncom=n; 
 #endif    pcom=vector(1,n); 
       }    xicom=vector(1,n); 
     }    nrfunc=func; 
   }    for (j=1;j<=n;j++) { 
 }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 /**** Prevalence limit ****************/    } 
     ax=0.0; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    xx=1.0; 
 {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
      matrix by transitions matrix until convergence is reached */  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int i, ii,j,k;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double min, max, maxmin, maxmax,sumnew=0.;  #endif
   double **matprod2();    for (j=1;j<=n;j++) { 
   double **out, cov[NCOVMAX], **pmij();      xi[j] *= xmin; 
   double **newm;      p[j] += xi[j]; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    } 
     free_vector(xicom,1,n); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    free_vector(pcom,1,n); 
     for (j=1;j<=nlstate+ndeath;j++){  } 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
    cov[1]=1.;              double (*func)(double [])) 
    { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    void linmin(double p[], double xi[], int n, double *fret, 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){                double (*func)(double [])); 
     newm=savm;    int i,ibig,j; 
     /* Covariates have to be included here again */    double del,t,*pt,*ptt,*xit;
      cov[2]=agefin;    double fp,fptt;
      double *xits;
       for (k=1; k<=cptcovn;k++) {    pt=vector(1,n); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    ptt=vector(1,n); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    xit=vector(1,n); 
       }    xits=vector(1,n); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    *fret=(*func)(p); 
       for (k=1; k<=cptcovprod;k++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      ibig=0; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      del=0.0; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficrespow,"%d %.12f",*iter,*fret);
     savm=oldm;      for (i=1;i<=n;i++) {
     oldm=newm;        printf(" %d %.12f",i, p[i]);
     maxmax=0.;        fprintf(ficlog," %d %.12lf",i, p[i]);
     for(j=1;j<=nlstate;j++){        fprintf(ficrespow," %.12lf", p[i]);
       min=1.;      }
       max=0.;      printf("\n");
       for(i=1; i<=nlstate; i++) {      fprintf(ficlog,"\n");
         sumnew=0;      fprintf(ficrespow,"\n");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      for (i=1;i<=n;i++) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         max=FMAX(max,prlim[i][j]);        fptt=(*fret); 
         min=FMIN(min,prlim[i][j]);  #ifdef DEBUG
       }        printf("fret=%lf \n",*fret);
       maxmin=max-min;        fprintf(ficlog,"fret=%lf \n",*fret);
       maxmax=FMAX(maxmax,maxmin);  #endif
     }        printf("%d",i);fflush(stdout);
     if(maxmax < ftolpl){        fprintf(ficlog,"%d",i);fflush(ficlog);
       return prlim;        linmin(p,xit,n,fret,func); 
     }        if (fabs(fptt-(*fret)) > del) { 
   }          del=fabs(fptt-(*fret)); 
 }          ibig=i; 
         } 
 /*************** transition probabilities ***************/  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        fprintf(ficlog,"%d %.12e",i,(*fret));
 {        for (j=1;j<=n;j++) {
   double s1, s2;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /*double t34;*/          printf(" x(%d)=%.12e",j,xit[j]);
   int i,j,j1, nc, ii, jj;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
     for(i=1; i<= nlstate; i++){        for(j=1;j<=n;j++) {
     for(j=1; j<i;j++){          printf(" p=%.12e",p[j]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          fprintf(ficlog," p=%.12e",p[j]);
         /*s2 += param[i][j][nc]*cov[nc];*/        }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        printf("\n");
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        fprintf(ficlog,"\n");
       }  #endif
       ps[i][j]=s2;      } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     }  #ifdef DEBUG
     for(j=i+1; j<=nlstate+ndeath;j++){        int k[2],l;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        k[0]=1;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        k[1]=-1;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        printf("Max: %.12e",(*func)(p));
       }        fprintf(ficlog,"Max: %.12e",(*func)(p));
       ps[i][j]=s2;        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
     /*ps[3][2]=1;*/        }
         printf("\n");
   for(i=1; i<= nlstate; i++){        fprintf(ficlog,"\n");
      s1=0;        for(l=0;l<=1;l++) {
     for(j=1; j<i; j++)          for (j=1;j<=n;j++) {
       s1+=exp(ps[i][j]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for(j=i+1; j<=nlstate+ndeath; j++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       s1+=exp(ps[i][j]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     ps[i][i]=1./(s1+1.);          }
     for(j=1; j<i; j++)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       ps[i][j]= exp(ps[i][j])*ps[i][i];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(j=i+1; j<=nlstate+ndeath; j++)        }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #endif
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  
         free_vector(xit,1,n); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        free_vector(xits,1,n); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        free_vector(ptt,1,n); 
       ps[ii][jj]=0;        free_vector(pt,1,n); 
       ps[ii][ii]=1;        return; 
     }      } 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        xit[j]=p[j]-pt[j]; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        pt[j]=p[j]; 
      printf("%lf ",ps[ii][jj]);      } 
    }      fptt=(*func)(ptt); 
     printf("\n ");      if (fptt < fp) { 
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     printf("\n ");printf("%lf ",cov[2]);*/        if (t < 0.0) { 
 /*          linmin(p,xit,n,fret,func); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          for (j=1;j<=n;j++) { 
   goto end;*/            xi[j][ibig]=xi[j][n]; 
     return ps;            xi[j][n]=xit[j]; 
 }          }
   #ifdef DEBUG
 /**************** Product of 2 matrices ******************/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          for(j=1;j<=n;j++){
 {            printf(" %.12e",xit[j]);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times            fprintf(ficlog," %.12e",xit[j]);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          }
   /* in, b, out are matrice of pointers which should have been initialized          printf("\n");
      before: only the contents of out is modified. The function returns          fprintf(ficlog,"\n");
      a pointer to pointers identical to out */  #endif
   long i, j, k;        }
   for(i=nrl; i<= nrh; i++)      } 
     for(k=ncolol; k<=ncoloh; k++)    } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  } 
         out[i][k] +=in[i][j]*b[j][k];  
   /**** Prevalence limit (stable prevalence)  ****************/
   return out;  
 }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 /************* Higher Matrix Product ***************/       matrix by transitions matrix until convergence is reached */
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    int i, ii,j,k;
 {    double min, max, maxmin, maxmax,sumnew=0.;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double **matprod2();
      duration (i.e. until    double **out, cov[NCOVMAX], **pmij();
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double **newm;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double agefin, delaymax=50 ; /* Max number of years to converge */
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be    for (ii=1;ii<=nlstate+ndeath;ii++)
      included manually here.      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      */      }
   
   int i, j, d, h, k;     cov[1]=1.;
   double **out, cov[NCOVMAX];   
   double **newm;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   /* Hstepm could be zero and should return the unit matrix */      newm=savm;
   for (i=1;i<=nlstate+ndeath;i++)      /* Covariates have to be included here again */
     for (j=1;j<=nlstate+ndeath;j++){       cov[2]=agefin;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    
       po[i][j][0]=(i==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) {
     }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for(h=1; h <=nhstepm; h++){        }
     for(d=1; d <=hstepm; d++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       newm=savm;        for (k=1; k<=cptcovprod;k++)
       /* Covariates have to be included here again */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for (k=1; k<=cptcovage;k++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      savm=oldm;
       oldm=newm;
       maxmax=0.;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      for(j=1;j<=nlstate;j++){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        min=1.;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        max=0.;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        for(i=1; i<=nlstate; i++) {
       savm=oldm;          sumnew=0;
       oldm=newm;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     }          prlim[i][j]= newm[i][j]/(1-sumnew);
     for(i=1; i<=nlstate+ndeath; i++)          max=FMAX(max,prlim[i][j]);
       for(j=1;j<=nlstate+ndeath;j++) {          min=FMIN(min,prlim[i][j]);
         po[i][j][h]=newm[i][j];        }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        maxmin=max-min;
          */        maxmax=FMAX(maxmax,maxmin);
       }      }
   } /* end h */      if(maxmax < ftolpl){
   return po;        return prlim;
 }      }
     }
   }
 /*************** log-likelihood *************/  
 double func( double *x)  /*************** transition probabilities ***************/ 
 {  
   int i, ii, j, k, mi, d, kk;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    double s1, s2;
   double sw; /* Sum of weights */    /*double t34;*/
   double lli; /* Individual log likelihood */    int i,j,j1, nc, ii, jj;
   long ipmx;  
   /*extern weight */      for(i=1; i<= nlstate; i++){
   /* We are differentiating ll according to initial status */      for(j=1; j<i;j++){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   /*for(i=1;i<imx;i++)          /*s2 += param[i][j][nc]*cov[nc];*/
     printf(" %d\n",s[4][i]);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   */          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   cov[1]=1.;        }
         ps[i][j]=s2;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for(j=i+1; j<=nlstate+ndeath;j++){
     for(mi=1; mi<= wav[i]-1; mi++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (ii=1;ii<=nlstate+ndeath;ii++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       for(d=0; d<dh[mi][i]; d++){        }
         newm=savm;        ps[i][j]=s2;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      }
         for (kk=1; kk<=cptcovage;kk++) {    }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      /*ps[3][2]=1;*/
         }  
            for(i=1; i<= nlstate; i++){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       s1=0;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for(j=1; j<i; j++)
         savm=oldm;        s1+=exp(ps[i][j]);
         oldm=newm;      for(j=i+1; j<=nlstate+ndeath; j++)
                s1+=exp(ps[i][j]);
              ps[i][i]=1./(s1+1.);
       } /* end mult */      for(j=1; j<i; j++)
              ps[i][j]= exp(ps[i][j])*ps[i][i];
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      for(j=i+1; j<=nlstate+ndeath; j++)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        ps[i][j]= exp(ps[i][j])*ps[i][i];
       ipmx +=1;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       sw += weight[i];    } /* end i */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   } /* end of individual */      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        ps[ii][ii]=1;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    }
   return -l;  
 }  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
 /*********** Maximum Likelihood Estimation ***************/       printf("%lf ",ps[ii][jj]);
      }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      printf("\n ");
 {      }
   int i,j, iter;      printf("\n ");printf("%lf ",cov[2]);*/
   double **xi,*delti;  /*
   double fret;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   xi=matrix(1,npar,1,npar);    goto end;*/
   for (i=1;i<=npar;i++)      return ps;
     for (j=1;j<=npar;j++)  }
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  /**************** Product of 2 matrices ******************/
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 }    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
 /**** Computes Hessian and covariance matrix ***/       a pointer to pointers identical to out */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    long i, j, k;
 {    for(i=nrl; i<= nrh; i++)
   double  **a,**y,*x,pd;      for(k=ncolol; k<=ncoloh; k++)
   double **hess;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   int i, j,jk;          out[i][k] +=in[i][j]*b[j][k];
   int *indx;  
     return out;
   double hessii(double p[], double delta, int theta, double delti[]);  }
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /************* Higher Matrix Product ***************/
   
   hess=matrix(1,npar,1,npar);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* Computes the transition matrix starting at age 'age' over 
   for (i=1;i<=npar;i++){       'nhstepm*hstepm*stepm' months (i.e. until
     printf("%d",i);fflush(stdout);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     hess[i][i]=hessii(p,ftolhess,i,delti);       nhstepm*hstepm matrices. 
     /*printf(" %f ",p[i]);*/       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     /*printf(" %lf ",hess[i][i]);*/       (typically every 2 years instead of every month which is too big 
   }       for the memory).
         Model is determined by parameters x and covariates have to be 
   for (i=1;i<=npar;i++) {       included manually here. 
     for (j=1;j<=npar;j++)  {  
       if (j>i) {       */
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);    int i, j, d, h, k;
         hess[j][i]=hess[i][j];        double **out, cov[NCOVMAX];
         /*printf(" %lf ",hess[i][j]);*/    double **newm;
       }  
     }    /* Hstepm could be zero and should return the unit matrix */
   }    for (i=1;i<=nlstate+ndeath;i++)
   printf("\n");      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   a=matrix(1,npar,1,npar);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   y=matrix(1,npar,1,npar);    for(h=1; h <=nhstepm; h++){
   x=vector(1,npar);      for(d=1; d <=hstepm; d++){
   indx=ivector(1,npar);        newm=savm;
   for (i=1;i<=npar;i++)        /* Covariates have to be included here again */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        cov[1]=1.;
   ludcmp(a,npar,indx,&pd);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (j=1;j<=npar;j++) {        for (k=1; k<=cptcovage;k++)
     for (i=1;i<=npar;i++) x[i]=0;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     x[j]=1;        for (k=1; k<=cptcovprod;k++)
     lubksb(a,npar,indx,x);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  
     }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   printf("\n#Hessian matrix#\n");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=npar;i++) {        savm=oldm;
     for (j=1;j<=npar;j++) {        oldm=newm;
       printf("%.3e ",hess[i][j]);      }
     }      for(i=1; i<=nlstate+ndeath; i++)
     printf("\n");        for(j=1;j<=nlstate+ndeath;j++) {
   }          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   /* Recompute Inverse */           */
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    } /* end h */
   ludcmp(a,npar,indx,&pd);    return po;
   }
   /*  printf("\n#Hessian matrix recomputed#\n");  
   
   for (j=1;j<=npar;j++) {  /*************** log-likelihood *************/
     for (i=1;i<=npar;i++) x[i]=0;  double func( double *x)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    int i, ii, j, k, mi, d, kk;
     for (i=1;i<=npar;i++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       y[i][j]=x[i];    double **out;
       printf("%.3e ",y[i][j]);    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     printf("\n");    int s1, s2;
   }    double bbh, survp;
   */    long ipmx;
     /*extern weight */
   free_matrix(a,1,npar,1,npar);    /* We are differentiating ll according to initial status */
   free_matrix(y,1,npar,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_vector(x,1,npar);    /*for(i=1;i<imx;i++) 
   free_ivector(indx,1,npar);      printf(" %d\n",s[4][i]);
   free_matrix(hess,1,npar,1,npar);    */
     cov[1]=1.;
   
 }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /*************** hessian matrix ****************/    if(mle==1){
 double hessii( double x[], double delta, int theta, double delti[])      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i;        for(mi=1; mi<= wav[i]-1; mi++){
   int l=1, lmax=20;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double k1,k2;            for (j=1;j<=nlstate+ndeath;j++){
   double p2[NPARMAX+1];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double res;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            }
   double fx;          for(d=0; d<dh[mi][i]; d++){
   int k=0,kmax=10;            newm=savm;
   double l1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   fx=func(x);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (i=1;i<=npar;i++) p2[i]=x[i];            }
   for(l=0 ; l <=lmax; l++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     l1=pow(10,l);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     delts=delt;            savm=oldm;
     for(k=1 ; k <kmax; k=k+1){            oldm=newm;
       delt = delta*(l1*k);          } /* end mult */
       p2[theta]=x[theta] +delt;        
       k1=func(p2)-fx;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       p2[theta]=x[theta]-delt;          /* But now since version 0.9 we anticipate for bias and large stepm.
       k2=func(p2)-fx;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       /*res= (k1-2.0*fx+k2)/delt/delt; */           * (in months) between two waves is not a multiple of stepm, we rounded to 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           * the nearest (and in case of equal distance, to the lowest) interval but now
                 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 #ifdef DEBUG           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);           * probability in order to take into account the bias as a fraction of the way
 #endif           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */           * -stepm/2 to stepm/2 .
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){           * For stepm=1 the results are the same as for previous versions of Imach.
         k=kmax;           * For stepm > 1 the results are less biased than in previous versions. 
       }           */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          s1=s[mw[mi][i]][i];
         k=kmax; l=lmax*10.;          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          /* bias is positive if real duration
         delts=delt;           * is higher than the multiple of stepm and negative otherwise.
       }           */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   }          if( s2 > nlstate){ 
   delti[theta]=delts;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   return res;               to the likelihood is the probability to die between last step unit time and current 
                 step unit time, which is also the differences between probability to die before dh 
 }               and probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
 double hessij( double x[], double delti[], int thetai,int thetaj)          as if date of death was unknown. Death was treated as any other
 {          health state: the date of the interview describes the actual state
   int i;          and not the date of a change in health state. The former idea was
   int l=1, l1, lmax=20;          to consider that at each interview the state was recorded
   double k1,k2,k3,k4,res,fx;          (healthy, disable or death) and IMaCh was corrected; but when we
   double p2[NPARMAX+1];          introduced the exact date of death then we should have modified
   int k;          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
   fx=func(x);          stepm. It is no more the probability to die between last interview
   for (k=1; k<=2; k++) {          and month of death but the probability to survive from last
     for (i=1;i<=npar;i++) p2[i]=x[i];          interview up to one month before death multiplied by the
     p2[thetai]=x[thetai]+delti[thetai]/k;          probability to die within a month. Thanks to Chris
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          Jackson for correcting this bug.  Former versions increased
     k1=func(p2)-fx;          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
     p2[thetai]=x[thetai]+delti[thetai]/k;          lower mortality.
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            */
     k2=func(p2)-fx;            lli=log(out[s1][s2] - savm[s1][s2]);
            }else{
     p2[thetai]=x[thetai]-delti[thetai]/k;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     k3=func(p2)-fx;          } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*if(lli ==000.0)*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     k4=func(p2)-fx;          ipmx +=1;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          sw += weight[i];
 #ifdef DEBUG          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        } /* end of wave */
 #endif      } /* end of individual */
   }    }  else if(mle==2){
   return res;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************** Inverse of matrix **************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void ludcmp(double **a, int n, int *indx, double *d)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,imax,j,k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double big,dum,sum,temp;            }
   double *vv;          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
   vv=vector(1,n);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   *d=1.0;            for (kk=1; kk<=cptcovage;kk++) {
   for (i=1;i<=n;i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     big=0.0;            }
     for (j=1;j<=n;j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if ((temp=fabs(a[i][j])) > big) big=temp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            savm=oldm;
     vv[i]=1.0/big;            oldm=newm;
   }          } /* end mult */
   for (j=1;j<=n;j++) {        
     for (i=1;i<j;i++) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       sum=a[i][j];          /* But now since version 0.9 we anticipate for bias and large stepm.
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       a[i][j]=sum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
     big=0.0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (i=j;i<=n;i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       sum=a[i][j];           * probability in order to take into account the bias as a fraction of the way
       for (k=1;k<j;k++)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         sum -= a[i][k]*a[k][j];           * -stepm/2 to stepm/2 .
       a[i][j]=sum;           * For stepm=1 the results are the same as for previous versions of Imach.
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * For stepm > 1 the results are less biased than in previous versions. 
         big=dum;           */
         imax=i;          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     if (j != imax) {          /* bias is positive if real duration
       for (k=1;k<=n;k++) {           * is higher than the multiple of stepm and negative otherwise.
         dum=a[imax][k];           */
         a[imax][k]=a[j][k];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         a[j][k]=dum;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       *d = -(*d);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       vv[imax]=vv[j];          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     indx[j]=imax;          ipmx +=1;
     if (a[j][j] == 0.0) a[j][j]=TINY;          sw += weight[i];
     if (j != n) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       dum=1.0/(a[j][j]);        } /* end of wave */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      } /* end of individual */
     }    }  else if(mle==3){  /* exponential inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(vv,1,n);  /* Doesn't work */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 ;        for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 void lubksb(double **a, int n, int *indx, double b[])              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,ii=0,ip,j;            }
   double sum;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   for (i=1;i<=n;i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     ip=indx[i];            for (kk=1; kk<=cptcovage;kk++) {
     sum=b[ip];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     b[ip]=b[i];            }
     if (ii)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     else if (sum) ii=i;            savm=oldm;
     b[i]=sum;            oldm=newm;
   }          } /* end mult */
   for (i=n;i>=1;i--) {        
     sum=b[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          /* But now since version 0.9 we anticipate for bias and large stepm.
     b[i]=sum/a[i][i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
 }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
 /************ Frequencies ********************/           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)           * probability in order to take into account the bias as a fraction of the way
 {  /* Some frequencies */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * For stepm=1 the results are the same as for previous versions of Imach.
   double ***freq; /* Frequencies */           * For stepm > 1 the results are less biased than in previous versions. 
   double *pp;           */
   double pos, k2, dateintsum=0,k2cpt=0;          s1=s[mw[mi][i]][i];
   FILE *ficresp;          s2=s[mw[mi+1][i]][i];
   char fileresp[FILENAMELENGTH];          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
   pp=vector(1,nlstate);           * is higher than the multiple of stepm and negative otherwise.
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           */
   strcpy(fileresp,"p");          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   strcat(fileresp,fileres);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   if((ficresp=fopen(fileresp,"w"))==NULL) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     printf("Problem with prevalence resultfile: %s\n", fileresp);          /*if(lli ==000.0)*/
     exit(0);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }          ipmx +=1;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          sw += weight[i];
   j1=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   j=cptcoveff;      } /* end of individual */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){        for(mi=1; mi<= wav[i]-1; mi++){
       j1++;          for (ii=1;ii<=nlstate+ndeath;ii++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            for (j=1;j<=nlstate+ndeath;j++){
         scanf("%d", i);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (jk=-1; jk<=nlstate+ndeath; jk++)              }
           for(m=agemin; m <= agemax+3; m++)          for(d=0; d<dh[mi][i]; d++){
             freq[i][jk][m]=0;            newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       dateintsum=0;            for (kk=1; kk<=cptcovage;kk++) {
       k2cpt=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (i=1; i<=imx; i++) {            }
         bool=1;          
         if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for (z1=1; z1<=cptcoveff; z1++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            savm=oldm;
               bool=0;            oldm=newm;
         }          } /* end mult */
         if (bool==1) {        
           for(m=firstpass; m<=lastpass; m++){          s1=s[mw[mi][i]][i];
             k2=anint[m][i]+(mint[m][i]/12.);          s2=s[mw[mi+1][i]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          if( s2 > nlstate){ 
               if(agev[m][i]==0) agev[m][i]=agemax+1;            lli=log(out[s1][s2] - savm[s1][s2]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;          }else{
               if (m<lastpass) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          ipmx +=1;
               }          sw += weight[i];
                        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                 dateintsum=dateintsum+k2;        } /* end of wave */
                 k2cpt++;      } /* end of individual */
               }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if  (cptcovn>0) {            }
         fprintf(ficresp, "\n#********** Variable ");          for(d=0; d<dh[mi][i]; d++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            newm=savm;
         fprintf(ficresp, "**********\n#");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            }
       fprintf(ficresp, "\n");          
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=(int)agemin; i <= (int)agemax+3; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(i==(int)agemax+3)            savm=oldm;
           printf("Total");            oldm=newm;
         else          } /* end mult */
           printf("Age %d", i);        
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          s2=s[mw[mi+1][i]][i];
             pp[jk] += freq[jk][m][i];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          ipmx +=1;
         for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
           for(m=-1, pos=0; m <=0 ; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             pos += freq[jk][m][i];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           if(pp[jk]>=1.e-10)        } /* end of wave */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      } /* end of individual */
           else    } /* End of if */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(jk=1; jk <=nlstate ; jk++){    return -l;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  }
             pp[jk] += freq[jk][m][i];  
         }  /*************** log-likelihood *************/
   double funcone( double *x)
         for(jk=1,pos=0; jk <=nlstate ; jk++)  {
           pos += pp[jk];    int i, ii, j, k, mi, d, kk;
         for(jk=1; jk <=nlstate ; jk++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           if(pos>=1.e-5)    double **out;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double lli; /* Individual log likelihood */
           else    int s1, s2;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double bbh, survp;
           if( i <= (int) agemax){    /*extern weight */
             if(pos>=1.e-5){    /* We are differentiating ll according to initial status */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               probs[i][jk][j1]= pp[jk]/pos;    /*for(i=1;i<imx;i++) 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      printf(" %d\n",s[4][i]);
             }    */
             else    cov[1]=1.;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=-1; m <=nlstate+ndeath; m++)      for(mi=1; mi<= wav[i]-1; mi++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for (ii=1;ii<=nlstate+ndeath;ii++)
         if(i <= (int) agemax)          for (j=1;j<=nlstate+ndeath;j++){
           fprintf(ficresp,"\n");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf("\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
     }        for(d=0; d<dh[mi][i]; d++){
   }          newm=savm;
   dateintmean=dateintsum/k2cpt;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
   fclose(ficresp);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          }
   free_vector(pp,1,nlstate);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* End of Freq */          savm=oldm;
 }          oldm=newm;
         } /* end mult */
 /************ Prevalence ********************/        
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        s1=s[mw[mi][i]][i];
 {  /* Some frequencies */        s2=s[mw[mi+1][i]][i];
          bbh=(double)bh[mi][i]/(double)stepm; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        /* bias is positive if real duration
   double ***freq; /* Frequencies */         * is higher than the multiple of stepm and negative otherwise.
   double *pp;         */
   double pos, k2;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   pp=vector(1,nlstate);        } else if (mle==1){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          } else if(mle==2){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   j1=0;        } else if(mle==3){  /* exponential inter-extrapolation */
            lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   j=cptcoveff;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          lli=log(out[s1][s2]); /* Original formula */
          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   for(k1=1; k1<=j;k1++){          lli=log(out[s1][s2]); /* Original formula */
     for(i1=1; i1<=ncodemax[k1];i1++){        } /* End of if */
       j1++;        ipmx +=1;
              sw += weight[i];
       for (i=-1; i<=nlstate+ndeath; i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(m=agemin; m <= agemax+3; m++)        if(globpr){
             freq[i][jk][m]=0;          fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         %10.6f %10.6f %10.6f ", \
       for (i=1; i<=imx; i++) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         bool=1;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         if  (cptcovn>0) {          for(k=1,l=0.; k<=nlstate; k++) 
           for (z1=1; z1<=cptcoveff; z1++)            fprintf(ficresilk," %10.6f",ll[k]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          fprintf(ficresilk,"\n");
               bool=0;        }
         }      } /* end of wave */
         if (bool==1) {    } /* end of individual */
           for(m=firstpass; m<=lastpass; m++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             k2=anint[m][i]+(mint[m][i]/12.);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    return -l;
               if(agev[m][i]==1) agev[m][i]=agemax+2;  }
               if (m<lastpass) {  
                 if (calagedate>0)  
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
                 else  {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /* This routine should help understanding what is done with the selection of individuals/waves and
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];       to check the exact contribution to the likelihood.
               }       Plotting could be done.
             }     */
           }    int k;
         }    if(globpr !=0){ /* Just counts and sums no printings */
       }      strcpy(fileresilk,"ilk"); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){      strcat(fileresilk,fileres);
         for(jk=1; jk <=nlstate ; jk++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        printf("Problem with resultfile: %s\n", fileresilk);
             pp[jk] += freq[jk][m][i];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }      }
         for(jk=1; jk <=nlstate ; jk++){      fprintf(ficresilk, "#individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state\n");
           for(m=-1, pos=0; m <=0 ; m++)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
             pos += freq[jk][m][i];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         }      for(k=1; k<=nlstate; k++) 
                fprintf(ficresilk," ll[%d]",k);
         for(jk=1; jk <=nlstate ; jk++){      fprintf(ficresilk,"\n");
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }
             pp[jk] += freq[jk][m][i];  
         }    *fretone=(*funcone)(p);
            if(globpr !=0){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      fclose(ficresilk);
              if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
         for(jk=1; jk <=nlstate ; jk++){            printf("Problem with html file: %s\n", optionfilehtm);
           if( i <= (int) agemax){        fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
             if(pos>=1.e-5){        exit(0);
               probs[i][jk][j1]= pp[jk]/pos;      }
             }      else{
           }        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk);
         }        fclose(fichtm);
              }
       }    }
     }    return;
   }  }
   
    /*********** Maximum Likelihood Estimation ***************/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    {
 }  /* End of Freq */    int i,j, iter;
     double **xi;
 /************* Waves Concatenation ***************/    double fret;
     double fretone; /* Only one call to likelihood */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    char filerespow[FILENAMELENGTH];
 {    xi=matrix(1,npar,1,npar);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    for (i=1;i<=npar;i++)
      Death is a valid wave (if date is known).      for (j=1;j<=npar;j++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        xi[i][j]=(i==j ? 1.0 : 0.0);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      and mw[mi+1][i]. dh depends on stepm.    strcpy(filerespow,"pow"); 
      */    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int i, mi, m;      printf("Problem with resultfile: %s\n", filerespow);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      double sum=0., jmean=0.;*/    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int j, k=0,jk, ju, jl;    for (i=1;i<=nlstate;i++)
   double sum=0.;      for(j=1;j<=nlstate+ndeath;j++)
   jmin=1e+5;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   jmax=-1;    fprintf(ficrespow,"\n");
   jmean=0.;  
   for(i=1; i<=imx; i++){    powell(p,xi,npar,ftol,&iter,&fret,func);
     mi=0;  
     m=firstpass;    fclose(ficrespow);
     while(s[m][i] <= nlstate){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       if(s[m][i]>=1)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         mw[++mi][i]=m;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       if(m >=lastpass)  
         break;  }
       else  
         m++;  /**** Computes Hessian and covariance matrix ***/
     }/* end while */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     if (s[m][i] > nlstate){  {
       mi++;     /* Death is another wave */    double  **a,**y,*x,pd;
       /* if(mi==0)  never been interviewed correctly before death */    double **hess;
          /* Only death is a correct wave */    int i, j,jk;
       mw[mi][i]=m;    int *indx;
     }  
     double hessii(double p[], double delta, int theta, double delti[]);
     wav[i]=mi;    double hessij(double p[], double delti[], int i, int j);
     if(mi==0)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   }  
     hess=matrix(1,npar,1,npar);
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){    printf("\nCalculation of the hessian matrix. Wait...\n");
       if (stepm <=0)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         dh[mi][i]=1;    for (i=1;i<=npar;i++){
       else{      printf("%d",i);fflush(stdout);
         if (s[mw[mi+1][i]][i] > nlstate) {      fprintf(ficlog,"%d",i);fflush(ficlog);
           if (agedc[i] < 2*AGESUP) {      hess[i][i]=hessii(p,ftolhess,i,delti);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      /*printf(" %f ",p[i]);*/
           if(j==0) j=1;  /* Survives at least one month after exam */      /*printf(" %lf ",hess[i][i]);*/
           k=k+1;    }
           if (j >= jmax) jmax=j;    
           if (j <= jmin) jmin=j;    for (i=1;i<=npar;i++) {
           sum=sum+j;      for (j=1;j<=npar;j++)  {
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        if (j>i) { 
           }          printf(".%d%d",i,j);fflush(stdout);
         }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         else{          hess[i][j]=hessij(p,delti,i,j);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          hess[j][i]=hess[i][j];    
           k=k+1;          /*printf(" %lf ",hess[i][j]);*/
           if (j >= jmax) jmax=j;        }
           else if (j <= jmin)jmin=j;      }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    }
           sum=sum+j;    printf("\n");
         }    fprintf(ficlog,"\n");
         jk= j/stepm;  
         jl= j -jk*stepm;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         ju= j -(jk+1)*stepm;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         if(jl <= -ju)    
           dh[mi][i]=jk;    a=matrix(1,npar,1,npar);
         else    y=matrix(1,npar,1,npar);
           dh[mi][i]=jk+1;    x=vector(1,npar);
         if(dh[mi][i]==0)    indx=ivector(1,npar);
           dh[mi][i]=1; /* At least one step */    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     }    ludcmp(a,npar,indx,&pd);
   }  
   jmean=sum/k;    for (j=1;j<=npar;j++) {
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for (i=1;i<=npar;i++) x[i]=0;
  }      x[j]=1;
 /*********** Tricode ****************************/      lubksb(a,npar,indx,x);
 void tricode(int *Tvar, int **nbcode, int imx)      for (i=1;i<=npar;i++){ 
 {        matcov[i][j]=x[i];
   int Ndum[20],ij=1, k, j, i;      }
   int cptcode=0;    }
   cptcoveff=0;  
      printf("\n#Hessian matrix#\n");
   for (k=0; k<19; k++) Ndum[k]=0;    fprintf(ficlog,"\n#Hessian matrix#\n");
   for (k=1; k<=7; k++) ncodemax[k]=0;    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        printf("%.3e ",hess[i][j]);
     for (i=1; i<=imx; i++) {        fprintf(ficlog,"%.3e ",hess[i][j]);
       ij=(int)(covar[Tvar[j]][i]);      }
       Ndum[ij]++;      printf("\n");
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      fprintf(ficlog,"\n");
       if (ij > cptcode) cptcode=ij;    }
     }  
     /* Recompute Inverse */
     for (i=0; i<=cptcode; i++) {    for (i=1;i<=npar;i++)
       if(Ndum[i]!=0) ncodemax[j]++;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     }    ludcmp(a,npar,indx,&pd);
     ij=1;  
     /*  printf("\n#Hessian matrix recomputed#\n");
   
     for (i=1; i<=ncodemax[j]; i++) {    for (j=1;j<=npar;j++) {
       for (k=0; k<=19; k++) {      for (i=1;i<=npar;i++) x[i]=0;
         if (Ndum[k] != 0) {      x[j]=1;
           nbcode[Tvar[j]][ij]=k;      lubksb(a,npar,indx,x);
                for (i=1;i<=npar;i++){ 
           ij++;        y[i][j]=x[i];
         }        printf("%.3e ",y[i][j]);
         if (ij > ncodemax[j]) break;        fprintf(ficlog,"%.3e ",y[i][j]);
       }        }
     }      printf("\n");
   }        fprintf(ficlog,"\n");
     }
  for (k=0; k<19; k++) Ndum[k]=0;    */
   
  for (i=1; i<=ncovmodel-2; i++) {    free_matrix(a,1,npar,1,npar);
       ij=Tvar[i];    free_matrix(y,1,npar,1,npar);
       Ndum[ij]++;    free_vector(x,1,npar);
     }    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
  ij=1;  
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){  }
      Tvaraff[ij]=i;  
      ij++;  /*************** hessian matrix ****************/
    }  double hessii( double x[], double delta, int theta, double delti[])
  }  {
      int i;
     cptcoveff=ij-1;    int l=1, lmax=20;
 }    double k1,k2;
     double p2[NPARMAX+1];
 /*********** Health Expectancies ****************/    double res;
     double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    double fx;
     int k=0,kmax=10;
 {    double l1;
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    fx=func(x);
   double age, agelim, hf;    for (i=1;i<=npar;i++) p2[i]=x[i];
   double ***p3mat,***varhe;    for(l=0 ; l <=lmax; l++){
   double **dnewm,**doldm;      l1=pow(10,l);
   double *xp;      delts=delt;
   double **gp, **gm;      for(k=1 ; k <kmax; k=k+1){
   double ***gradg, ***trgradg;        delt = delta*(l1*k);
   int theta;        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        p2[theta]=x[theta]-delt;
   xp=vector(1,npar);        k2=func(p2)-fx;
   dnewm=matrix(1,nlstate*2,1,npar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   doldm=matrix(1,nlstate*2,1,nlstate*2);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          
   fprintf(ficreseij,"# Health expectancies\n");  #ifdef DEBUG
   fprintf(ficreseij,"# Age");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(j=1; j<=nlstate;j++)  #endif
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   fprintf(ficreseij,"\n");        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   if(estepm < stepm){        }
     printf ("Problem %d lower than %d\n",estepm, stepm);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   }          k=kmax; l=lmax*10.;
   else  hstepm=estepm;          }
   /* We compute the life expectancy from trapezoids spaced every estepm months        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
    * This is mainly to measure the difference between two models: for example          delts=delt;
    * if stepm=24 months pijx are given only every 2 years and by summing them        }
    * we are calculating an estimate of the Life Expectancy assuming a linear      }
    * progression inbetween and thus overestimating or underestimating according    }
    * to the curvature of the survival function. If, for the same date, we    delti[theta]=delts;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    return res; 
    * to compare the new estimate of Life expectancy with the same linear    
    * hypothesis. A more precise result, taking into account a more precise  }
    * curvature will be obtained if estepm is as small as stepm. */  
   double hessij( double x[], double delti[], int thetai,int thetaj)
   /* For example we decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int i;
      nhstepm is the number of hstepm from age to agelim    int l=1, l1, lmax=20;
      nstepm is the number of stepm from age to agelin.    double k1,k2,k3,k4,res,fx;
      Look at hpijx to understand the reason of that which relies in memory size    double p2[NPARMAX+1];
      and note for a fixed period like estepm months */    int k;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    fx=func(x);
      means that if the survival funtion is printed only each two years of age and if    for (k=1; k<=2; k++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (i=1;i<=npar;i++) p2[i]=x[i];
      results. So we changed our mind and took the option of the best precision.      p2[thetai]=x[thetai]+delti[thetai]/k;
   */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      k1=func(p2)-fx;
     
   agelim=AGESUP;      p2[thetai]=x[thetai]+delti[thetai]/k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     /* nhstepm age range expressed in number of stepm */      k2=func(p2)-fx;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      p2[thetai]=x[thetai]-delti[thetai]/k;
     /* if (stepm >= YEARM) hstepm=1;*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      k3=func(p2)-fx;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      p2[thetai]=x[thetai]-delti[thetai]/k;
     gp=matrix(0,nhstepm,1,nlstate*2);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     gm=matrix(0,nhstepm,1,nlstate*2);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  #ifdef DEBUG
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    #endif
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    return res;
   }
     /* Computing Variances of health expectancies */  
   /************** Inverse of matrix **************/
      for(theta=1; theta <=npar; theta++){  void ludcmp(double **a, int n, int *indx, double *d) 
       for(i=1; i<=npar; i++){  { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i,imax,j,k; 
       }    double big,dum,sum,temp; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double *vv; 
     
       cptj=0;    vv=vector(1,n); 
       for(j=1; j<= nlstate; j++){    *d=1.0; 
         for(i=1; i<=nlstate; i++){    for (i=1;i<=n;i++) { 
           cptj=cptj+1;      big=0.0; 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      for (j=1;j<=n;j++) 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        if ((temp=fabs(a[i][j])) > big) big=temp; 
           }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         }      vv[i]=1.0/big; 
       }    } 
          for (j=1;j<=n;j++) { 
            for (i=1;i<j;i++) { 
       for(i=1; i<=npar; i++)        sum=a[i][j]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          a[i][j]=sum; 
            } 
       cptj=0;      big=0.0; 
       for(j=1; j<= nlstate; j++){      for (i=j;i<=n;i++) { 
         for(i=1;i<=nlstate;i++){        sum=a[i][j]; 
           cptj=cptj+1;        for (k=1;k<j;k++) 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          sum -= a[i][k]*a[k][j]; 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        a[i][j]=sum; 
           }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         }          big=dum; 
       }          imax=i; 
       for(j=1; j<= nlstate*2; j++)        } 
         for(h=0; h<=nhstepm-1; h++){      } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      if (j != imax) { 
         }        for (k=1;k<=n;k++) { 
      }          dum=a[imax][k]; 
              a[imax][k]=a[j][k]; 
 /* End theta */          a[j][k]=dum; 
         } 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        *d = -(*d); 
         vv[imax]=vv[j]; 
      for(h=0; h<=nhstepm-1; h++)      } 
       for(j=1; j<=nlstate*2;j++)      indx[j]=imax; 
         for(theta=1; theta <=npar; theta++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
           trgradg[h][j][theta]=gradg[h][theta][j];      if (j != n) { 
              dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
      for(i=1;i<=nlstate*2;i++)      } 
       for(j=1;j<=nlstate*2;j++)    } 
         varhe[i][j][(int)age] =0.;    free_vector(vv,1,n);  /* Doesn't work */
   ;
      printf("%d|",(int)age);fflush(stdout);  } 
      for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){  void lubksb(double **a, int n, int *indx, double b[]) 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  { 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    int i,ii=0,ip,j; 
         for(i=1;i<=nlstate*2;i++)    double sum; 
           for(j=1;j<=nlstate*2;j++)   
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for (i=1;i<=n;i++) { 
       }      ip=indx[i]; 
     }      sum=b[ip]; 
     /* Computing expectancies */      b[ip]=b[i]; 
     for(i=1; i<=nlstate;i++)      if (ii) 
       for(j=1; j<=nlstate;j++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      else if (sum) ii=i; 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      b[i]=sum; 
              } 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (i=n;i>=1;i--) { 
       sum=b[i]; 
         }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     fprintf(ficreseij,"%3.0f",age );    } 
     cptj=0;  } 
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  /************ Frequencies ********************/
         cptj++;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  {  /* Some frequencies */
       }    
     fprintf(ficreseij,"\n");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
        int first;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double ***freq; /* Frequencies */
     free_matrix(gp,0,nhstepm,1,nlstate*2);    double *pp, **prop;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    FILE *ficresp;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char fileresp[FILENAMELENGTH];
   }    
   printf("\n");    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   free_vector(xp,1,npar);    strcpy(fileresp,"p");
   free_matrix(dnewm,1,nlstate*2,1,npar);    strcat(fileresp,fileres);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      printf("Problem with prevalence resultfile: %s\n", fileresp);
 }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
 /************ Variance ******************/    }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
 {    j1=0;
   /* Variance of health expectancies */    
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    j=cptcoveff;
   double **newm;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h, nstepm ;    first=1;
   int k, cptcode;  
   double *xp;    for(k1=1; k1<=j;k1++){
   double **gp, **gm;      for(i1=1; i1<=ncodemax[k1];i1++){
   double ***gradg, ***trgradg;        j1++;
   double ***p3mat;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double age,agelim, hf;          scanf("%d", i);*/
   int theta;        for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresvij,"# Age");              freq[i][jk][m]=0;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)      for (i=1; i<=nlstate; i++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresvij,"\n");          prop[i][m]=0;
         
   xp=vector(1,npar);        dateintsum=0;
   dnewm=matrix(1,nlstate,1,npar);        k2cpt=0;
   doldm=matrix(1,nlstate,1,nlstate);        for (i=1; i<=imx; i++) {
            bool=1;
   if(estepm < stepm){          if  (cptcovn>0) {
     printf ("Problem %d lower than %d\n",estepm, stepm);            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   else  hstepm=estepm;                  bool=0;
   /* For example we decided to compute the life expectancy with the smallest unit */          }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          if (bool==1){
      nhstepm is the number of hstepm from age to agelim            for(m=firstpass; m<=lastpass; m++){
      nstepm is the number of stepm from age to agelin.              k2=anint[m][i]+(mint[m][i]/12.);
      Look at hpijx to understand the reason of that which relies in memory size              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
      and note for a fixed period like k years */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      survival function given by stepm (the optimization length). Unfortunately it                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      means that if the survival funtion is printed only each two years of age and if                if (m<lastpass) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      results. So we changed our mind and took the option of the best precision.                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   */                }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                
   agelim = AGESUP;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                  dateintsum=dateintsum+k2;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                  k2cpt++;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                /*}*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            }
     gp=matrix(0,nhstepm,1,nlstate);          }
     gm=matrix(0,nhstepm,1,nlstate);        }
          
     for(theta=1; theta <=npar; theta++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if  (cptcovn>0) {
       }          fprintf(ficresp, "\n#********** Variable "); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficresp, "**********\n#");
         }
       if (popbased==1) {        for(i=1; i<=nlstate;i++) 
         for(i=1; i<=nlstate;i++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficresp, "\n");
       }        
          for(i=iagemin; i <= iagemax+3; i++){
       for(j=1; j<= nlstate; j++){          if(i==iagemax+3){
         for(h=0; h<=nhstepm; h++){            fprintf(ficlog,"Total");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          }else{
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            if(first==1){
         }              first=0;
       }              printf("See log file for details...\n");
                }
       for(i=1; i<=npar; i++) /* Computes gradient */            fprintf(ficlog,"Age %d", i);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(jk=1; jk <=nlstate ; jk++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                pp[jk] += freq[jk][m][i]; 
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
           prlim[i][i]=probs[(int)age][i][ij];            for(m=-1, pos=0; m <=0 ; m++)
       }              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
       for(j=1; j<= nlstate; j++){              if(first==1){
         for(h=0; h<=nhstepm; h++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         }            }else{
       }              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j<= nlstate; j++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for(h=0; h<=nhstepm; h++){            }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }  
     } /* End theta */          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);              pp[jk] += freq[jk][m][i];
           }       
     for(h=0; h<=nhstepm; h++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       for(j=1; j<=nlstate;j++)            pos += pp[jk];
         for(theta=1; theta <=npar; theta++)            posprop += prop[jk][i];
           trgradg[h][j][theta]=gradg[h][theta][j];          }
           for(jk=1; jk <=nlstate ; jk++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            if(pos>=1.e-5){
     for(i=1;i<=nlstate;i++)              if(first==1)
       for(j=1;j<=nlstate;j++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         vareij[i][j][(int)age] =0.;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
     for(h=0;h<=nhstepm;h++){              if(first==1)
       for(k=0;k<=nhstepm;k++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            }
         for(i=1;i<=nlstate;i++)            if( i <= iagemax){
           for(j=1;j<=nlstate;j++)              if(pos>=1.e-5){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       }                /*probs[i][jk][j1]= pp[jk]/pos;*/
     }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     fprintf(ficresvij,"%.0f ",age );              else
     for(i=1; i<=nlstate;i++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for(j=1; j<=nlstate;j++){            }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          }
       }          
     fprintf(ficresvij,"\n");          for(jk=-1; jk <=nlstate+ndeath; jk++)
     free_matrix(gp,0,nhstepm,1,nlstate);            for(m=-1; m <=nlstate+ndeath; m++)
     free_matrix(gm,0,nhstepm,1,nlstate);              if(freq[jk][m][i] !=0 ) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              if(first==1)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   } /* End age */              }
            if(i <= iagemax)
   free_vector(xp,1,npar);            fprintf(ficresp,"\n");
   free_matrix(doldm,1,nlstate,1,npar);          if(first==1)
   free_matrix(dnewm,1,nlstate,1,nlstate);            printf("Others in log...\n");
           fprintf(ficlog,"\n");
 }        }
       }
 /************ Variance of prevlim ******************/    }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    dateintmean=dateintsum/k2cpt; 
 {   
   /* Variance of prevalence limit */    fclose(ficresp);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   double **newm;    free_vector(pp,1,nlstate);
   double **dnewm,**doldm;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   int i, j, nhstepm, hstepm;    /* End of Freq */
   int k, cptcode;  }
   double *xp;  
   double *gp, *gm;  /************ Prevalence ********************/
   double **gradg, **trgradg;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   double age,agelim;  {  
   int theta;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           in each health status at the date of interview (if between dateprev1 and dateprev2).
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");       We still use firstpass and lastpass as another selection.
   fprintf(ficresvpl,"# Age");    */
   for(i=1; i<=nlstate;i++)   
       fprintf(ficresvpl," %1d-%1d",i,i);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   fprintf(ficresvpl,"\n");    double ***freq; /* Frequencies */
     double *pp, **prop;
   xp=vector(1,npar);    double pos,posprop; 
   dnewm=matrix(1,nlstate,1,npar);    double  y2; /* in fractional years */
   doldm=matrix(1,nlstate,1,nlstate);    int iagemin, iagemax;
    
   hstepm=1*YEARM; /* Every year of age */    iagemin= (int) agemin;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    iagemax= (int) agemax;
   agelim = AGESUP;    /*pp=vector(1,nlstate);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     if (stepm >= YEARM) hstepm=1;    j1=0;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    
     gradg=matrix(1,npar,1,nlstate);    j=cptcoveff;
     gp=vector(1,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     gm=vector(1,nlstate);    
     for(k1=1; k1<=j;k1++){
     for(theta=1; theta <=npar; theta++){      for(i1=1; i1<=ncodemax[k1];i1++){
       for(i=1; i<=npar; i++){ /* Computes gradient */        j1++;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        
       }        for (i=1; i<=nlstate; i++)  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(m=iagemin; m <= iagemax+3; m++)
       for(i=1;i<=nlstate;i++)            prop[i][m]=0.0;
         gp[i] = prlim[i][i];       
            for (i=1; i<=imx; i++) { /* Each individual */
       for(i=1; i<=npar; i++) /* Computes gradient */          bool=1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          if  (cptcovn>0) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (z1=1; z1<=cptcoveff; z1++) 
       for(i=1;i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         gm[i] = prlim[i][i];                bool=0;
           } 
       for(i=1;i<=nlstate;i++)          if (bool==1) { 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     } /* End theta */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     trgradg =matrix(1,nlstate,1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(j=1; j<=nlstate;j++)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       for(theta=1; theta <=npar; theta++)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         trgradg[j][theta]=gradg[theta][j];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(i=1;i<=nlstate;i++)                  prop[s[m][i]][iagemax+3] += weight[i]; 
       varpl[i][(int)age] =0.;                } 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            } /* end selection of waves */
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        }
         for(i=iagemin; i <= iagemax+3; i++){  
     fprintf(ficresvpl,"%.0f ",age );          
     for(i=1; i<=nlstate;i++)          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            posprop += prop[jk][i]; 
     fprintf(ficresvpl,"\n");          } 
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){     
     free_matrix(gradg,1,npar,1,nlstate);            if( i <=  iagemax){ 
     free_matrix(trgradg,1,nlstate,1,npar);              if(posprop>=1.e-5){ 
   } /* End age */                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
   free_vector(xp,1,npar);            } 
   free_matrix(doldm,1,nlstate,1,npar);          }/* end jk */ 
   free_matrix(dnewm,1,nlstate,1,nlstate);        }/* end i */ 
       } /* end i1 */
 }    } /* end k1 */
     
 /************ Variance of one-step probabilities  ******************/    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    /*free_vector(pp,1,nlstate);*/
 {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   int i, j=0,  i1, k1, l1, t, tj;  }  /* End of prevalence */
   int k2, l2, j1,  z1;  
   int k=0,l, cptcode;  /************* Waves Concatenation ***************/
   int first=1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   double **dnewm,**doldm;  {
   double *xp;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   double *gp, *gm;       Death is a valid wave (if date is known).
   double **gradg, **trgradg;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   double **mu;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   double age,agelim, cov[NCOVMAX];       and mw[mi+1][i]. dh depends on stepm.
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */       */
   int theta;  
   char fileresprob[FILENAMELENGTH];    int i, mi, m;
   char fileresprobcov[FILENAMELENGTH];    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   char fileresprobcor[FILENAMELENGTH];       double sum=0., jmean=0.;*/
     int first;
   double ***varpij;    int j, k=0,jk, ju, jl;
     double sum=0.;
   strcpy(fileresprob,"prob");    first=0;
   strcat(fileresprob,fileres);    jmin=1e+5;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    jmax=-1;
     printf("Problem with resultfile: %s\n", fileresprob);    jmean=0.;
   }    for(i=1; i<=imx; i++){
   strcpy(fileresprobcov,"probcov");      mi=0;
   strcat(fileresprobcov,fileres);      m=firstpass;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      while(s[m][i] <= nlstate){
     printf("Problem with resultfile: %s\n", fileresprobcov);        if(s[m][i]>=1)
   }          mw[++mi][i]=m;
   strcpy(fileresprobcor,"probcor");        if(m >=lastpass)
   strcat(fileresprobcor,fileres);          break;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        else
     printf("Problem with resultfile: %s\n", fileresprobcor);          m++;
   }      }/* end while */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      if (s[m][i] > nlstate){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        mi++;     /* Death is another wave */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        mw[mi][i]=m;
   fprintf(ficresprob,"# Age");      }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");      wav[i]=mi;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      if(mi==0){
   fprintf(ficresprobcov,"# Age");        if(first==0){
           printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   for(i=1; i<=nlstate;i++)        }
     for(j=1; j<=(nlstate+ndeath);j++){        if(first==1){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      } /* end mi==0 */
     }      } /* End individuals */
   fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");    for(i=1; i<=imx; i++){
   fprintf(ficresprobcor,"\n");      for(mi=1; mi<wav[i];mi++){
   xp=vector(1,npar);        if (stepm <=0)
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          dh[mi][i]=1;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        else{
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);            if (agedc[i] < 2*AGESUP) {
   first=1;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              if(j==0) j=1;  /* Survives at least one month after exam */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              else if(j<0){
     exit(0);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                j=1; /* Careful Patch */
   else{                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficgp,"\n# Routine varprob");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              }
     printf("Problem with html file: %s\n", optionfilehtm);              k=k+1;
     exit(0);              if (j >= jmax) jmax=j;
   }              if (j <= jmin) jmin=j;
   else{              sum=sum+j;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            }
           }
   }          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
              /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   cov[1]=1;            k=k+1;
   tj=cptcoveff;            if (j >= jmax) jmax=j;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}            else if (j <= jmin)jmin=j;
   j1=0;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   for(t=1; t<=tj;t++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(i1=1; i1<=ncodemax[t];i1++){            if(j<0){
       j1++;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if  (cptcovn>0) {            }
         fprintf(ficresprob, "\n#********** Variable ");            sum=sum+j;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficresprob, "**********\n#");          jk= j/stepm;
         fprintf(ficresprobcov, "\n#********** Variable ");          jl= j -jk*stepm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          ju= j -(jk+1)*stepm;
         fprintf(ficresprobcov, "**********\n#");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                    if(jl==0){
         fprintf(ficgp, "\n#********** Variable ");              dh[mi][i]=jk;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              bh[mi][i]=0;
         fprintf(ficgp, "**********\n#");            }else{ /* We want a negative bias in order to only have interpolation ie
                            * at the price of an extra matrix product in likelihood */
                      dh[mi][i]=jk+1;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");              bh[mi][i]=ju;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          }else{
                    if(jl <= -ju){
         fprintf(ficresprobcor, "\n#********** Variable ");                  dh[mi][i]=jk;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              bh[mi][i]=jl;       /* bias is positive if real duration
         fprintf(ficgp, "**********\n#");                                       * is higher than the multiple of stepm and negative otherwise.
       }                                   */
                  }
       for (age=bage; age<=fage; age ++){            else{
         cov[2]=age;              dh[mi][i]=jk+1;
         for (k=1; k<=cptcovn;k++) {              bh[mi][i]=ju;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            }
         }            if(dh[mi][i]==0){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              dh[mi][i]=1; /* At least one step */
         for (k=1; k<=cptcovprod;k++)              bh[mi][i]=ju; /* At least one step */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                    }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          } /* end if mle */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
         gp=vector(1,(nlstate)*(nlstate+ndeath));      } /* end wave */
         gm=vector(1,(nlstate)*(nlstate+ndeath));    }
        jmean=sum/k;
         for(theta=1; theta <=npar; theta++){    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           for(i=1; i<=npar; i++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);   }
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  /*********** Tricode ****************************/
            void tricode(int *Tvar, int **nbcode, int imx)
           k=0;  {
           for(i=1; i<= (nlstate); i++){    
             for(j=1; j<=(nlstate+ndeath);j++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
               k=k+1;    int cptcode=0;
               gp[k]=pmmij[i][j];    cptcoveff=0; 
             }   
           }    for (k=0; k<maxncov; k++) Ndum[k]=0;
              for (k=1; k<=7; k++) ncodemax[k]=0;
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
          for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                                 modality*/ 
           k=0;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           for(i=1; i<=(nlstate); i++){        Ndum[ij]++; /*store the modality */
             for(j=1; j<=(nlstate+ndeath);j++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
               k=k+1;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
               gm[k]=pmmij[i][j];                                         Tvar[j]. If V=sex and male is 0 and 
             }                                         female is 1, then  cptcode=1.*/
           }      }
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      for (i=0; i<=cptcode; i++) {
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         }      }
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      ij=1; 
           for(theta=1; theta <=npar; theta++)      for (i=1; i<=ncodemax[j]; i++) {
             trgradg[j][theta]=gradg[theta][j];        for (k=0; k<= maxncov; k++) {
                  if (Ndum[k] != 0) {
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            nbcode[Tvar[j]][ij]=k; 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                    
         pmij(pmmij,cov,ncovmodel,x,nlstate);            ij++;
                  }
         k=0;          if (ij > ncodemax[j]) break; 
         for(i=1; i<=(nlstate); i++){        }  
           for(j=1; j<=(nlstate+ndeath);j++){      } 
             k=k+1;    }  
             mu[k][(int) age]=pmmij[i][j];  
           }   for (k=0; k< maxncov; k++) Ndum[k]=0;
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)   for (i=1; i<=ncovmodel-2; i++) { 
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             varpij[i][j][(int)age] = doldm[i][j];     ij=Tvar[i];
      Ndum[ij]++;
         /*printf("\n%d ",(int)age);   }
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));   ij=1;
      }*/   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
         fprintf(ficresprob,"\n%d ",(int)age);       Tvaraff[ij]=i; /*For printing */
         fprintf(ficresprobcov,"\n%d ",(int)age);       ij++;
         fprintf(ficresprobcor,"\n%d ",(int)age);     }
    }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)   
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));   cptcoveff=ij-1; /*Number of simple covariates*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  /*********** Health Expectancies ****************/
         }  
         i=0;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){  {
             i=i++;    /* Health expectancies */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    double age, agelim, hf;
             for (j=1; j<=i;j++){    double ***p3mat,***varhe;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    double **dnewm,**doldm;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    double *xp;
             }    double **gp, **gm;
           }    double ***gradg, ***trgradg;
         }/* end of loop for state */    int theta;
       } /* end of loop for age */  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for (k1=1; k1<=(nlstate);k1++){    xp=vector(1,npar);
         for (l1=1; l1<=(nlstate+ndeath);l1++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
           if(l1==k1) continue;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           i=(k1-1)*(nlstate+ndeath)+l1;    
           for (k2=1; k2<=(nlstate);k2++){    fprintf(ficreseij,"# Health expectancies\n");
             for (l2=1; l2<=(nlstate+ndeath);l2++){    fprintf(ficreseij,"# Age");
               if(l2==k2) continue;    for(i=1; i<=nlstate;i++)
               j=(k2-1)*(nlstate+ndeath)+l2;      for(j=1; j<=nlstate;j++)
               if(j<=i) continue;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
               for (age=bage; age<=fage; age ++){    fprintf(ficreseij,"\n");
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    if(estepm < stepm){
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      printf ("Problem %d lower than %d\n",estepm, stepm);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    }
                   mu1=mu[i][(int) age]/stepm*YEARM ;    else  hstepm=estepm;   
                   mu2=mu[j][(int) age]/stepm*YEARM;    /* We compute the life expectancy from trapezoids spaced every estepm months
                   /* Computing eigen value of matrix of covariance */     * This is mainly to measure the difference between two models: for example
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));     * if stepm=24 months pijx are given only every 2 years and by summing them
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));     * we are calculating an estimate of the Life Expectancy assuming a linear 
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);     * progression in between and thus overestimating or underestimating according
                   /* Eigen vectors */     * to the curvature of the survival function. If, for the same date, we 
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   v21=sqrt(1.-v11*v11);     * to compare the new estimate of Life expectancy with the same linear 
                   v12=-v21;     * hypothesis. A more precise result, taking into account a more precise
                   v22=v11;     * curvature will be obtained if estepm is as small as stepm. */
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    /* For example we decided to compute the life expectancy with the smallest unit */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   if(first==1){       nhstepm is the number of hstepm from age to agelim 
                     first=0;       nstepm is the number of stepm from age to agelin. 
                     fprintf(ficgp,"\nset parametric;set nolabel");       Look at hpijx to understand the reason of that which relies in memory size
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);       and note for a fixed period like estepm months */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);       survival function given by stepm (the optimization length). Unfortunately it
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);       means that if the survival funtion is printed only each two years of age and if
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);       results. So we changed our mind and took the option of the best precision.
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    agelim=AGESUP;
                   }else{    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                     first=0;      /* nhstepm age range expressed in number of stepm */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      /* if (stepm >= YEARM) hstepm=1;*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   }/* if first */      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                 } /* age mod 5 */      gp=matrix(0,nhstepm,1,nlstate*nlstate);
               } /* end loop age */      gm=matrix(0,nhstepm,1,nlstate*nlstate);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);  
               first=1;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             } /*l12 */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           } /* k12 */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         } /*l1 */   
       }/* k1 */  
     } /* loop covariates */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      /* Computing Variances of health expectancies */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);       for(theta=1; theta <=npar; theta++){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(i=1; i<=npar; i++){ 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   free_vector(xp,1,npar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fclose(ficresprob);    
   fclose(ficresprobcov);        cptj=0;
   fclose(ficresprobcor);        for(j=1; j<= nlstate; j++){
   fclose(ficgp);          for(i=1; i<=nlstate; i++){
   fclose(fichtm);            cptj=cptj+1;
 }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
 /******************* Printing html file ***********/          }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        }
                   int lastpass, int stepm, int weightopt, char model[],\       
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\       
                   int popforecast, int estepm ,\        for(i=1; i<=npar; i++) 
                   double jprev1, double mprev1,double anprev1, \          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   double jprev2, double mprev2,double anprev2){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   int jj1, k1, i1, cpt;        
   /*char optionfilehtm[FILENAMELENGTH];*/        cptj=0;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        for(j=1; j<= nlstate; j++){
     printf("Problem with %s \n",optionfilehtm), exit(0);          for(i=1;i<=nlstate;i++){
   }            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n            }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          }
  - Life expectancies by age and initial health status (estepm=%2d months):        }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        for(j=1; j<= nlstate*nlstate; j++)
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n          }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n       } 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n     
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  /* End theta */
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
  if(popforecast==1) fprintf(fichtm,"\n          for(theta=1; theta <=npar; theta++)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            trgradg[h][j][theta]=gradg[h][theta][j];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       
         <br>",fileres,fileres,fileres,fileres);  
  else       for(i=1;i<=nlstate*nlstate;i++)
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        for(j=1;j<=nlstate*nlstate;j++)
 fprintf(fichtm," <li><b>Graphs</b></li><p>");          varhe[i][j][(int)age] =0.;
   
  m=cptcoveff;       printf("%d|",(int)age);fflush(stdout);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
  jj1=0;        for(k=0;k<=nhstepm-1;k++){
  for(k1=1; k1<=m;k1++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
    for(i1=1; i1<=ncodemax[k1];i1++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
      jj1++;          for(i=1;i<=nlstate*nlstate;i++)
      if (cptcovn > 0) {            for(j=1;j<=nlstate*nlstate;j++)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
        for (cpt=1; cpt<=cptcoveff;cpt++)        }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      /* Computing expectancies */
      }      for(i=1; i<=nlstate;i++)
      /* Pij */        for(j=1; j<=nlstate;j++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
      /* Quasi-incidences */            
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */          }
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      fprintf(ficreseij,"%3.0f",age );
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      cptj=0;
        }      for(i=1; i<=nlstate;i++)
     for(cpt=1; cpt<=nlstate;cpt++) {        for(j=1; j<=nlstate;j++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          cptj++;
 interval) in state (%d): v%s%d%d.png <br>          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }
      }      fprintf(ficreseij,"\n");
      for(cpt=1; cpt<=nlstate;cpt++) {     
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
      }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 health expectancies in states (1) and (2): e%s%d.png<br>      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    }
    }    printf("\n");
  }    fprintf(ficlog,"\n");
 fclose(fichtm);  
 }    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 /******************* Gnuplot file **************/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;  /************ Variance ******************/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     printf("Problem with file %s",optionfilegnuplot);  {
   }    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 #ifdef windows    /* double **newm;*/
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double **dnewm,**doldm;
 #endif    double **dnewmp,**doldmp;
 m=pow(2,cptcoveff);    int i, j, nhstepm, hstepm, h, nstepm ;
      int k, cptcode;
  /* 1eme*/    double *xp;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double **gp, **gm;  /* for var eij */
    for (k1=1; k1<= m ; k1 ++) {    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
 #ifdef windows    double *gpp, *gmp; /* for var p point j */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    double ***p3mat;
 #endif    double age,agelim, hf;
 #ifdef unix    double ***mobaverage;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    int theta;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    char digit[4];
 #endif    char digitp[25];
   
 for (i=1; i<= nlstate ; i ++) {    char fileresprobmorprev[FILENAMELENGTH];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if(popbased==1){
 }      if(mobilav!=0)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        strcpy(digitp,"-populbased-mobilav-");
     for (i=1; i<= nlstate ; i ++) {      else strcpy(digitp,"-populbased-nomobil-");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    else 
 }      strcpy(digitp,"-stablbased-");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    if (mobilav!=0) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 }          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 #ifdef unix      }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    }
 #endif  
    }    strcpy(fileresprobmorprev,"prmorprev"); 
   }    sprintf(digit,"%-d",ij);
   /*2 eme*/    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   for (k1=1; k1<= m ; k1 ++) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    strcat(fileresprobmorprev,fileres);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobmorprev);
     for (i=1; i<= nlstate+1 ; i ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       k=2*i;    }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      fprintf(ficresprobmorprev," p.%-d SE",j);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       for (j=1; j<= nlstate+1 ; j ++) {    }  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobmorprev,"\n");
         else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 }        printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      exit(0);
       for (j=1; j<= nlstate+1 ; j ++) {    }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficgp,"\n# Routine varevsij");
 }      }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       else fprintf(ficgp,"\" t\"\" w l 0,");      printf("Problem with html file: %s\n", optionfilehtm);
     }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   }      exit(0);
      }
   /*3eme*/    else{
       fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   for (k1=1; k1<= m ; k1 ++) {      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    }
       k=2+nlstate*(2*cpt-2);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fprintf(ficresvij,"# Age");
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    for(i=1; i<=nlstate;i++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      for(j=1; j<=nlstate;j++)
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fprintf(ficresvij,"\n");
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
     xp=vector(1,npar);
 */    dnewm=matrix(1,nlstate,1,npar);
       for (i=1; i< nlstate ; i ++) {    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }  
     }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   }    gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
   /* CV preval stat */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<nlstate ; cpt ++) {    if(estepm < stepm){
       k=3;      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
       for (i=1; i< nlstate ; i ++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficgp,"+$%d",k+i+1);       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       nstepm is the number of stepm from age to agelin. 
             Look at hpijx to understand the reason of that which relies in memory size
       l=3+(nlstate+ndeath)*cpt;       and note for a fixed period like k years */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for (i=1; i< nlstate ; i ++) {       survival function given by stepm (the optimization length). Unfortunately it
         l=3+(nlstate+ndeath)*cpt;       means that if the survival funtion is printed every two years of age and if
         fprintf(ficgp,"+$%d",l+i+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }      agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /* proba elementaires */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    for(i=1,jk=1; i <=nlstate; i++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(k=1; k <=(nlstate+ndeath); k++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if (k != i) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         for(j=1; j <=ncovmodel; j++){      gp=matrix(0,nhstepm,1,nlstate);
              gm=matrix(0,nhstepm,1,nlstate);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;  
           fprintf(ficgp,"\n");      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
    }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {        if (popbased==1) {
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          if(mobilav ==0){
        if (ng==2)            for(i=1; i<=nlstate;i++)
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");              prlim[i][i]=probs[(int)age][i][ij];
        else          }else{ /* mobilav */ 
          fprintf(ficgp,"\nset title \"Probability\"\n");            for(i=1; i<=nlstate;i++)
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
        i=1;          }
        for(k2=1; k2<=nlstate; k2++) {        }
          k3=i;    
          for(k=1; k<=(nlstate+ndeath); k++) {        for(j=1; j<= nlstate; j++){
            if (k != k2){          for(h=0; h<=nhstepm; h++){
              if(ng==2)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
              else          }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        }
              ij=1;        /* This for computing probability of death (h=1 means
              for(j=3; j <=ncovmodel; j++) {           computed over hstepm matrices product = hstepm*stepm months) 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {           as a weighted average of prlim.
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        */
                  ij++;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                else            gpp[j] += prlim[i][i]*p3mat[i][j][1];
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }    
              }        /* end probability of death */
              fprintf(ficgp,")/(1");  
                      for(i=1; i<=npar; i++) /* Computes gradient x - delta */
              for(k1=1; k1 <=nlstate; k1++){            xp[i] = x[i] - (i==theta ?delti[theta]:0);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                ij=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                for(j=3; j <=ncovmodel; j++){   
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        if (popbased==1) {
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          if(mobilav ==0){
                    ij++;            for(i=1; i<=nlstate;i++)
                  }              prlim[i][i]=probs[(int)age][i][ij];
                  else          }else{ /* mobilav */ 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(i=1; i<=nlstate;i++)
                }              prlim[i][i]=mobaverage[(int)age][i][ij];
                fprintf(ficgp,")");          }
              }        }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for(j=1; j<= nlstate; j++){
              i=i+ncovmodel;          for(h=0; h<=nhstepm; h++){
            }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
          }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
        }          }
      }        }
    }        /* This for computing probability of death (h=1 means
    fclose(ficgp);           computed over hstepm matrices product = hstepm*stepm months) 
 }  /* end gnuplot */           as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
 /*************** Moving average **************/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   int i, cpt, cptcod;        /* end probability of death */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)        for(j=1; j<= nlstate; j++) /* vareij */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          for(h=0; h<=nhstepm; h++){
           mobaverage[(int)agedeb][i][cptcod]=0.;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
              }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           for (cpt=0;cpt<=4;cpt++){        }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }      } /* End theta */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       }  
     }      for(h=0; h<=nhstepm; h++) /* veij */
            for(j=1; j<=nlstate;j++)
 }          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
 /************** Forecasting ******************/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double *popeffectif,*popcount;      for(i=1;i<=nlstate;i++)
   double ***p3mat;        for(j=1;j<=nlstate;j++)
   char fileresf[FILENAMELENGTH];          vareij[i][j][(int)age] =0.;
   
  agelim=AGESUP;      for(h=0;h<=nhstepm;h++){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
   strcpy(fileresf,"f");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcat(fileresf,fileres);        }
   if((ficresf=fopen(fileresf,"w"))==NULL) {      }
     printf("Problem with forecast resultfile: %s\n", fileresf);    
   }      /* pptj */
   printf("Computing forecasting: result on file '%s' \n", fileresf);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
   if (mobilav==1) {          varppt[j][i]=doldmp[j][i];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* end ppptj */
     movingaverage(agedeb, fage, ageminpar, mobaverage);      /*  x centered again */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   stepsize=(int) (stepm+YEARM-1)/YEARM;   
   if (stepm<=12) stepsize=1;      if (popbased==1) {
          if(mobilav ==0){
   agelim=AGESUP;          for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
   hstepm=1;        }else{ /* mobilav */ 
   hstepm=hstepm/stepm;          for(i=1; i<=nlstate;i++)
   yp1=modf(dateintmean,&yp);            prlim[i][i]=mobaverage[(int)age][i][ij];
   anprojmean=yp;        }
   yp2=modf((yp1*12),&yp);      }
   mprojmean=yp;               
   yp1=modf((yp2*30.5),&yp);      /* This for computing probability of death (h=1 means
   jprojmean=yp;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   if(jprojmean==0) jprojmean=1;         as a weighted average of prlim.
   if(mprojmean==0) jprojmean=1;      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   for(cptcov=1;cptcov<=i2;cptcov++){      }    
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      /* end probability of death */
       k=k+1;  
       fprintf(ficresf,"\n#******");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=1;j<=cptcoveff;j++) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       }        for(i=1; i<=nlstate;i++){
       fprintf(ficresf,"******\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       fprintf(ficresf,"# StartingAge FinalAge");        }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      } 
            fprintf(ficresprobmorprev,"\n");
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      fprintf(ficresvij,"%.0f ",age );
         fprintf(ficresf,"\n");      for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fprintf(ficresvij,"\n");
           nhstepm = nhstepm/hstepm;      free_matrix(gp,0,nhstepm,1,nlstate);
                free_matrix(gm,0,nhstepm,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           oldm=oldms;savm=savms;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            } /* End age */
           for (h=0; h<=nhstepm; h++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
               kk1=0.;kk2=0;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
               for(i=1; i<=nlstate;i++) {                  fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                 if (mobilav==1)  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                 else {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
                 }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
                    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
               }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
               if (h==(int)(calagedate+12*cpt)){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
                 fprintf(ficresf," %.3f", kk1);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                          */
               }    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
             }  
           }    free_vector(xp,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(doldm,1,nlstate,1,nlstate);
         }    free_matrix(dnewm,1,nlstate,1,npar);
       }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fclose(ficresprobmorprev);
     fclose(ficgp);
   fclose(ficresf);    fclose(fichtm);
 }  }  /* end varevsij */
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  {
   int *popage;    /* Variance of prevalence limit */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   double *popeffectif,*popcount;    double **newm;
   double ***p3mat,***tabpop,***tabpopprev;    double **dnewm,**doldm;
   char filerespop[FILENAMELENGTH];    int i, j, nhstepm, hstepm;
     int k, cptcode;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *xp;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *gp, *gm;
   agelim=AGESUP;    double **gradg, **trgradg;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    double age,agelim;
      int theta;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     
      fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
      fprintf(ficresvpl,"# Age");
   strcpy(filerespop,"pop");    for(i=1; i<=nlstate;i++)
   strcat(filerespop,fileres);        fprintf(ficresvpl," %1d-%1d",i,i);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fprintf(ficresvpl,"\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }    xp=vector(1,npar);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    
     hstepm=1*YEARM; /* Every year of age */
   if (mobilav==1) {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    agelim = AGESUP;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   if (stepm<=12) stepsize=1;      gradg=matrix(1,npar,1,nlstate);
        gp=vector(1,nlstate);
   agelim=AGESUP;      gm=vector(1,nlstate);
    
   hstepm=1;      for(theta=1; theta <=npar; theta++){
   hstepm=hstepm/stepm;        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (popforecast==1) {        }
     if((ficpop=fopen(popfile,"r"))==NULL) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("Problem with population file : %s\n",popfile);exit(0);        for(i=1;i<=nlstate;i++)
     }          gp[i] = prlim[i][i];
     popage=ivector(0,AGESUP);      
     popeffectif=vector(0,AGESUP);        for(i=1; i<=npar; i++) /* Computes gradient */
     popcount=vector(0,AGESUP);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     i=1;          for(i=1;i<=nlstate;i++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          gm[i] = prlim[i][i];
      
     imx=i;        for(i=1;i<=nlstate;i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   
   for(cptcov=1;cptcov<=i2;cptcov++){      trgradg =matrix(1,nlstate,1,npar);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;      for(j=1; j<=nlstate;j++)
       fprintf(ficrespop,"\n#******");        for(theta=1; theta <=npar; theta++)
       for(j=1;j<=cptcoveff;j++) {          trgradg[j][theta]=gradg[theta][j];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }      for(i=1;i<=nlstate;i++)
       fprintf(ficrespop,"******\n");        varpl[i][(int)age] =0.;
       fprintf(ficrespop,"# Age");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      for(i=1;i<=nlstate;i++)
              varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        fprintf(ficresvpl,"%.0f ",age );
              for(i=1; i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fprintf(ficresvpl,"\n");
           nhstepm = nhstepm/hstepm;      free_vector(gp,1,nlstate);
                free_vector(gm,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_matrix(gradg,1,npar,1,nlstate);
           oldm=oldms;savm=savms;      free_matrix(trgradg,1,nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      } /* End age */
          
           for (h=0; h<=nhstepm; h++){    free_vector(xp,1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_matrix(doldm,1,nlstate,1,npar);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    free_matrix(dnewm,1,nlstate,1,nlstate);
             }  
             for(j=1; j<=nlstate+ndeath;j++) {  }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                /************ Variance of one-step probabilities  ******************/
                 if (mobilav==1)  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  {
                 else {    int i, j=0,  i1, k1, l1, t, tj;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    int k2, l2, j1,  z1;
                 }    int k=0,l, cptcode;
               }    int first=1, first1;
               if (h==(int)(calagedate+12*cpt)){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    double **dnewm,**doldm;
                   /*fprintf(ficrespop," %.3f", kk1);    double *xp;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    double *gp, *gm;
               }    double **gradg, **trgradg;
             }    double **mu;
             for(i=1; i<=nlstate;i++){    double age,agelim, cov[NCOVMAX];
               kk1=0.;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                 for(j=1; j<=nlstate;j++){    int theta;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    char fileresprob[FILENAMELENGTH];
                 }    char fileresprobcov[FILENAMELENGTH];
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    char fileresprobcor[FILENAMELENGTH];
             }  
     double ***varpij;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    strcpy(fileresprob,"prob"); 
           }    strcat(fileresprob,fileres);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", fileresprob);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      }
   /******/    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        printf("Problem with resultfile: %s\n", fileresprobcov);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    strcpy(fileresprobcor,"probcor"); 
              strcat(fileresprobcor,fileres);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           oldm=oldms;savm=savms;      printf("Problem with resultfile: %s\n", fileresprobcor);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               kk1=0.;kk2=0;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               for(i=1; i<=nlstate;i++) {                  fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        
               }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(ficresprob,"# Age");
             }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           }    fprintf(ficresprobcov,"# Age");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         }    fprintf(ficresprobcov,"# Age");
       }  
    }  
   }    for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
   if (popforecast==1) {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     free_ivector(popage,0,AGESUP);      }  
     free_vector(popeffectif,0,AGESUP);   /* fprintf(ficresprob,"\n");
     free_vector(popcount,0,AGESUP);    fprintf(ficresprobcov,"\n");
   }    fprintf(ficresprobcor,"\n");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   xp=vector(1,npar);
   fclose(ficrespop);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 /***********************************************/    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 /**************** Main Program *****************/    first=1;
 /***********************************************/    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
 int main(int argc, char *argv[])      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 {      exit(0);
     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    else{
   double agedeb, agefin,hf;      fprintf(ficgp,"\n# Routine varprob");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   double fret;      printf("Problem with html file: %s\n", optionfilehtm);
   double **xi,tmp,delta;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
   double dum; /* Dummy variable */    }
   double ***p3mat;    else{
   int *indx;      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   char line[MAXLINE], linepar[MAXLINE];      fprintf(fichtm,"\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   int sdeb, sfin; /* Status at beginning and end */      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   int c,  h , cpt,l;      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;    cov[1]=1;
   int hstepm, nhstepm;    tj=cptcoveff;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
   double bage, fage, age, agelim, agebase;    for(t=1; t<=tj;t++){
   double ftolpl=FTOL;      for(i1=1; i1<=ncodemax[t];i1++){ 
   double **prlim;        j1++;
   double *severity;        if  (cptcovn>0) {
   double ***param; /* Matrix of parameters */          fprintf(ficresprob, "\n#********** Variable "); 
   double  *p;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double **matcov; /* Matrix of covariance */          fprintf(ficresprob, "**********\n#\n");
   double ***delti3; /* Scale */          fprintf(ficresprobcov, "\n#********** Variable "); 
   double *delti; /* Scale */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***eij, ***vareij;          fprintf(ficresprobcov, "**********\n#\n");
   double **varpl; /* Variances of prevalence limits by age */          
   double *epj, vepp;          fprintf(ficgp, "\n#********** Variable "); 
   double kk1, kk2;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          fprintf(ficgp, "**********\n#\n");
            
           
   char *alph[]={"a","a","b","c","d","e"}, str[4];          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   char z[1]="c", occ;          
 #include <sys/time.h>          fprintf(ficresprobcor, "\n#********** Variable ");    
 #include <time.h>          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          fprintf(ficresprobcor, "**********\n#");    
          }
   /* long total_usecs;        
   struct timeval start_time, end_time;        for (age=bage; age<=fage; age ++){ 
            cov[2]=age;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          for (k=1; k<=cptcovn;k++) {
   getcwd(pathcd, size);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   printf("\n%s",version);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   if(argc <=1){          for (k=1; k<=cptcovprod;k++)
     printf("\nEnter the parameter file name: ");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     scanf("%s",pathtot);          
   }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   else{          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     strcpy(pathtot,argv[1]);          gp=vector(1,(nlstate)*(nlstate+ndeath));
   }          gm=vector(1,(nlstate)*(nlstate+ndeath));
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      
   /*cygwin_split_path(pathtot,path,optionfile);          for(theta=1; theta <=npar; theta++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            for(i=1; i<=npar; i++)
   /* cutv(path,optionfile,pathtot,'\\');*/              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            
   chdir(path);            k=0;
   replace(pathc,path);            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
 /*-------- arguments in the command line --------*/                k=k+1;
                 gp[k]=pmmij[i][j];
   strcpy(fileres,"r");              }
   strcat(fileres, optionfilefiname);            }
   strcat(fileres,".txt");    /* Other files have txt extension */            
             for(i=1; i<=npar; i++)
   /*---------arguments file --------*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     printf("Problem with optionfile %s\n",optionfile);            k=0;
     goto end;            for(i=1; i<=(nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   strcpy(filereso,"o");                gm[k]=pmmij[i][j];
   strcat(filereso,fileres);              }
   if((ficparo=fopen(filereso,"w"))==NULL) {            }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;       
   }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     fgets(line, MAXLINE, ficpar);            for(theta=1; theta <=npar; theta++)
     puts(line);              trgradg[j][theta]=gradg[theta][j];
     fputs(line,ficparo);          
   }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   ungetc(c,ficpar);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          pmij(pmmij,cov,ncovmodel,x,nlstate);
     fgets(line, MAXLINE, ficpar);          
     puts(line);          k=0;
     fputs(line,ficparo);          for(i=1; i<=(nlstate); i++){
   }            for(j=1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);              k=k+1;
                mu[k][(int) age]=pmmij[i][j];
                }
   covar=matrix(0,NCOVMAX,1,n);          }
   cptcovn=0;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          /*printf("\n%d ",(int)age);
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /* Read guess parameters */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /* Reads comments: lines beginning with '#' */            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   while((c=getc(ficpar))=='#' && c!= EOF){            }*/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprob,"\n%d ",(int)age);
     puts(line);          fprintf(ficresprobcov,"\n%d ",(int)age);
     fputs(line,ficparo);          fprintf(ficresprobcor,"\n%d ",(int)age);
   }  
   ungetc(c,ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     for(i=1; i <=nlstate; i++)            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     for(j=1; j <=nlstate+ndeath-1; j++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }
       fprintf(ficparo,"%1d%1d",i1,j1);          i=0;
       printf("%1d%1d",i,j);          for (k=1; k<=(nlstate);k++){
       for(k=1; k<=ncovmodel;k++){            for (l=1; l<=(nlstate+ndeath);l++){ 
         fscanf(ficpar," %lf",&param[i][j][k]);              i=i++;
         printf(" %lf",param[i][j][k]);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         fprintf(ficparo," %lf",param[i][j][k]);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       }              for (j=1; j<=i;j++){
       fscanf(ficpar,"\n");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       printf("\n");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       fprintf(ficparo,"\n");              }
     }            }
            }/* end of loop for state */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        } /* end of loop for age */
   
   p=param[1][1];        /* Confidence intervalle of pij  */
          /*
   /* Reads comments: lines beginning with '#' */          fprintf(ficgp,"\nset noparametric;unset label");
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     ungetc(c,ficpar);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     fgets(line, MAXLINE, ficpar);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     puts(line);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     fputs(line,ficparo);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   ungetc(c,ficpar);        */
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        first1=1;
   for(i=1; i <=nlstate; i++){        for (k2=1; k2<=(nlstate);k2++){
     for(j=1; j <=nlstate+ndeath-1; j++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);            if(l2==k2) continue;
       printf("%1d%1d",i,j);            j=(k2-1)*(nlstate+ndeath)+l2;
       fprintf(ficparo,"%1d%1d",i1,j1);            for (k1=1; k1<=(nlstate);k1++){
       for(k=1; k<=ncovmodel;k++){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         fscanf(ficpar,"%le",&delti3[i][j][k]);                if(l1==k1) continue;
         printf(" %le",delti3[i][j][k]);                i=(k1-1)*(nlstate+ndeath)+l1;
         fprintf(ficparo," %le",delti3[i][j][k]);                if(i<=j) continue;
       }                for (age=bage; age<=fage; age ++){ 
       fscanf(ficpar,"\n");                  if ((int)age %5==0){
       printf("\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficparo,"\n");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    mu1=mu[i][(int) age]/stepm*YEARM ;
   delti=delti3[1][1];                    mu2=mu[j][(int) age]/stepm*YEARM;
                      c12=cv12/sqrt(v1*v2);
   /* Reads comments: lines beginning with '#' */                    /* Computing eigen value of matrix of covariance */
   while((c=getc(ficpar))=='#' && c!= EOF){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     ungetc(c,ficpar);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fgets(line, MAXLINE, ficpar);                    /* Eigen vectors */
     puts(line);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     fputs(line,ficparo);                    /*v21=sqrt(1.-v11*v11); *//* error */
   }                    v21=(lc1-v1)/cv12*v11;
   ungetc(c,ficpar);                    v12=-v21;
                      v22=v11;
   matcov=matrix(1,npar,1,npar);                    tnalp=v21/v11;
   for(i=1; i <=npar; i++){                    if(first1==1){
     fscanf(ficpar,"%s",&str);                      first1=0;
     printf("%s",str);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     fprintf(ficparo,"%s",str);                    }
     for(j=1; j <=i; j++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fscanf(ficpar," %le",&matcov[i][j]);                    /*printf(fignu*/
       printf(" %.5le",matcov[i][j]);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       fprintf(ficparo," %.5le",matcov[i][j]);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     }                    if(first==1){
     fscanf(ficpar,"\n");                      first=0;
     printf("\n");                      fprintf(ficgp,"\nset parametric;unset label");
     fprintf(ficparo,"\n");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   for(i=1; i <=npar; i++)                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
     for(j=i+1;j<=npar;j++)                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
       matcov[i][j]=matcov[j][i];                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                          fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
   printf("\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     /*-------- Rewriting paramater file ----------*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
      strcpy(rfileres,"r");    /* "Rparameterfile */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                    }else{
      strcat(rfileres,".");    /* */                      first=0;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
     if((ficres =fopen(rfileres,"w"))==NULL) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fprintf(ficres,"#%s\n",version);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                  mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     /*-------- data file ----------*/                    }/* if first */
     if((fic=fopen(datafile,"r"))==NULL)    {                  } /* age mod 5 */
       printf("Problem with datafile: %s\n", datafile);goto end;                } /* end loop age */
     }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
     n= lastobs;              } /*l12 */
     severity = vector(1,maxwav);            } /* k12 */
     outcome=imatrix(1,maxwav+1,1,n);          } /*l1 */
     num=ivector(1,n);        }/* k1 */
     moisnais=vector(1,n);      } /* loop covariates */
     annais=vector(1,n);    }
     moisdc=vector(1,n);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     andc=vector(1,n);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     agedc=vector(1,n);    free_vector(xp,1,npar);
     cod=ivector(1,n);    fclose(ficresprob);
     weight=vector(1,n);    fclose(ficresprobcov);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    fclose(ficresprobcor);
     mint=matrix(1,maxwav,1,n);    fclose(ficgp);
     anint=matrix(1,maxwav,1,n);    fclose(fichtm);
     s=imatrix(1,maxwav+1,1,n);  }
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     i=1;                    int lastpass, int stepm, int weightopt, char model[],\
     while (fgets(line, MAXLINE, fic) != NULL)    {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       if ((i >= firstobs) && (i <=lastobs)) {                    int popforecast, int estepm ,\
                            double jprev1, double mprev1,double anprev1, \
         for (j=maxwav;j>=1;j--){                    double jprev2, double mprev2,double anprev2){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    int jj1, k1, i1, cpt;
           strcpy(line,stra);    /*char optionfilehtm[FILENAMELENGTH];*/
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf("Problem with %s \n",optionfilehtm), exit(0);
         }      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
            }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
         for (j=ncovcol;j>=1;j--){    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
         num[i]=atol(stra);  
           m=cptcoveff;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
    jj1=0;
         i=i+1;   for(k1=1; k1<=m;k1++){
       }     for(i1=1; i1<=ncodemax[k1];i1++){
     }       jj1++;
     /* printf("ii=%d", ij);       if (cptcovn > 0) {
        scanf("%d",i);*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   imx=i-1; /* Number of individuals */         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /* for (i=1; i<=imx; i++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;       }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;       /* Pij */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
     }*/  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
    /*  for (i=1; i<=imx; i++){       /* Quasi-incidences */
      if (s[4][i]==9)  s[4][i]=-1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
    <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
           /* Stable prevalence in each health state */
   /* Calculation of the number of parameter from char model*/         for(cpt=1; cpt<nlstate;cpt++){
   Tvar=ivector(1,15);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   Tprod=ivector(1,15);  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   Tvaraff=ivector(1,15);         }
   Tvard=imatrix(1,15,1,2);       for(cpt=1; cpt<=nlstate;cpt++) {
   Tage=ivector(1,15);                fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
      <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   if (strlen(model) >1){       }
     j=0, j1=0, k1=1, k2=1;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     j=nbocc(model,'+');  health expectancies in states (1) and (2): e%s%d.png<br>\
     j1=nbocc(model,'*');  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
     cptcovn=j+1;     } /* end i1 */
     cptcovprod=j1;   }/* End k1 */
       fprintf(fichtm,"</ul>");
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
       goto end;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
     }   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
       - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
     for(i=(j+1); i>=1;i--){   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
       cutv(stra,strb,modelsav,'+');   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {  /*  if(popforecast==1) fprintf(fichtm,"\n */
         cutv(strd,strc,strb,'*');  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         if (strcmp(strc,"age")==0) {  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           cptcovprod--;  /*      <br>",fileres,fileres,fileres,fileres); */
           cutv(strb,stre,strd,'V');  /*  else  */
           Tvar[i]=atoi(stre);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           cptcovage++;  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/   m=cptcoveff;
         }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;   jj1=0;
           cutv(strb,stre,strc,'V');   for(k1=1; k1<=m;k1++){
           Tvar[i]=atoi(stre);     for(i1=1; i1<=ncodemax[k1];i1++){
           cptcovage++;       jj1++;
           Tage[cptcovage]=i;       if (cptcovn > 0) {
         }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         else {         for (cpt=1; cpt<=cptcoveff;cpt++) 
           cutv(strb,stre,strc,'V');           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           Tvar[i]=ncovcol+k1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           cutv(strb,strc,strd,'V');       }
           Tprod[k1]=i;       for(cpt=1; cpt<=nlstate;cpt++) {
           Tvard[k1][1]=atoi(strc);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
           Tvard[k1][2]=atoi(stre);  interval) in state (%d): v%s%d%d.png <br>\
           Tvar[cptcovn+k2]=Tvard[k1][1];  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       }
           for (k=1; k<=lastobs;k++)     } /* end i1 */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   }/* End k1 */
           k1++;   fprintf(fichtm,"</ul>");
           k2=k2+2;  fclose(fichtm);
         }  }
       }  
       else {  /******************* Gnuplot file **************/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       Tvar[i]=atoi(strc);    int ng;
       }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       strcpy(modelsav,stra);        printf("Problem with file %s",optionfilegnuplot);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
         scanf("%d",i);*/    }
     }  
 }    /*#ifdef windows */
        fprintf(ficgp,"cd \"%s\" \n",pathc);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      /*#endif */
   printf("cptcovprod=%d ", cptcovprod);  m=pow(2,cptcoveff);
   scanf("%d ",i);*/    
     fclose(fic);   /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
     /*  if(mle==1){*/     for (k1=1; k1<= m ; k1 ++) {
     if (weightopt != 1) { /* Maximisation without weights*/       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       for(i=1;i<=n;i++) weight[i]=1.0;       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
     }  
     /*-calculation of age at interview from date of interview and age at death -*/       for (i=1; i<= nlstate ; i ++) {
     agev=matrix(1,maxwav,1,imx);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for (i=1; i<=imx; i++) {       }
       for(m=2; (m<= maxwav); m++) {       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       for (i=1; i<= nlstate ; i ++) {
          anint[m][i]=9999;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          s[m][i]=-1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }       } 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
       }       for (i=1; i<= nlstate ; i ++) {
     }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for (i=1; i<=imx; i++)  {       }  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
       for(m=1; (m<= maxwav); m++){     }
         if(s[m][i] >0){    }
           if (s[m][i] >= nlstate+1) {    /*2 eme*/
             if(agedc[i]>0)    
               if(moisdc[i]!=99 && andc[i]!=9999)    for (k1=1; k1<= m ; k1 ++) { 
                 agev[m][i]=agedc[i];      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
            else {      
               if (andc[i]!=9999){      for (i=1; i<= nlstate+1 ; i ++) {
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        k=2*i;
               agev[m][i]=-1;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
               }        for (j=1; j<= nlstate+1 ; j ++) {
             }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           }          else fprintf(ficgp," \%%*lf (\%%*lf)");
           else if(s[m][i] !=9){ /* Should no more exist */        }   
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
             if(mint[m][i]==99 || anint[m][i]==9999)        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
               agev[m][i]=1;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
             else if(agev[m][i] <agemin){        for (j=1; j<= nlstate+1 ; j ++) {
               agemin=agev[m][i];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
             }        }   
             else if(agev[m][i] >agemax){        fprintf(ficgp,"\" t\"\" w l 0,");
               agemax=agev[m][i];        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        for (j=1; j<= nlstate+1 ; j ++) {
             }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             /*agev[m][i]=anint[m][i]-annais[i];*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
             /*   agev[m][i] = age[i]+2*m;*/        }   
           }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           else { /* =9 */        else fprintf(ficgp,"\" t\"\" w l 0,");
             agev[m][i]=1;      }
             s[m][i]=-1;    }
           }    
         }    /*3eme*/
         else /*= 0 Unknown */    
           agev[m][i]=1;    for (k1=1; k1<= m ; k1 ++) { 
       }      for (cpt=1; cpt<= nlstate ; cpt ++) {
            k=2+nlstate*(2*cpt-2);
     }        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     for (i=1; i<=imx; i++)  {        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
       for(m=1; (m<= maxwav); m++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         if (s[m][i] > (nlstate+ndeath)) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           printf("Error: Wrong value in nlstate or ndeath\n");            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           goto end;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     }          
         */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
     free_vector(severity,1,maxwav);          
     free_imatrix(outcome,1,maxwav+1,1,n);        } 
     free_vector(moisnais,1,n);      }
     free_vector(annais,1,n);    }
     /* free_matrix(mint,1,maxwav,1,n);    
        free_matrix(anint,1,maxwav,1,n);*/    /* CV preval stable (period) */
     free_vector(moisdc,1,n);    for (k1=1; k1<= m ; k1 ++) { 
     free_vector(andc,1,n);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
            fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     wav=ivector(1,imx);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for (i=1; i< nlstate ; i ++)
              fprintf(ficgp,"+$%d",k+i+1);
     /* Concatenates waves */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
       Tcode=ivector(1,100);        for (i=1; i< nlstate ; i ++) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          l=3+(nlstate+ndeath)*cpt;
       ncodemax[1]=1;          fprintf(ficgp,"+$%d",l+i+1);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        }
              fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
    codtab=imatrix(1,100,1,10);      } 
    h=0;    }  
    m=pow(2,cptcoveff);    
      /* proba elementaires */
    for(k=1;k<=cptcoveff; k++){    for(i=1,jk=1; i <=nlstate; i++){
      for(i=1; i <=(m/pow(2,k));i++){      for(k=1; k <=(nlstate+ndeath); k++){
        for(j=1; j <= ncodemax[k]; j++){        if (k != i) {
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          for(j=1; j <=ncovmodel; j++){
            h++;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            jk++; 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            fprintf(ficgp,"\n");
          }          }
        }        }
      }      }
    }     }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
    /* for(i=1; i <=m ;i++){       for(jk=1; jk <=m; jk++) {
       for(k=1; k <=cptcovn; k++){         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);         if (ng==2)
       }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       printf("\n");         else
       }           fprintf(ficgp,"\nset title \"Probability\"\n");
       scanf("%d",i);*/         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
             i=1;
    /* Calculates basic frequencies. Computes observed prevalence at single age         for(k2=1; k2<=nlstate; k2++) {
        and prints on file fileres'p'. */           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
                 if (k != k2){
                   if(ng==2)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               else
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               ij=1;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */               for(j=3; j <=ncovmodel; j++) {
                       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     /* For Powell, parameters are in a vector p[] starting at p[1]                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                   ij++;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                 }
                  else
     if(mle==1){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);               }
     }               fprintf(ficgp,")/(1");
                   
     /*--------- results files --------------*/               for(k1=1; k1 <=nlstate; k1++){   
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   ij=1;
                  for(j=3; j <=ncovmodel; j++){
    jk=1;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                     ij++;
    for(i=1,jk=1; i <=nlstate; i++){                   }
      for(k=1; k <=(nlstate+ndeath); k++){                   else
        if (k != i)                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
          {                 }
            printf("%d%d ",i,k);                 fprintf(ficgp,")");
            fprintf(ficres,"%1d%1d ",i,k);               }
            for(j=1; j <=ncovmodel; j++){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
              printf("%f ",p[jk]);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
              fprintf(ficres,"%f ",p[jk]);               i=i+ncovmodel;
              jk++;             }
            }           } /* end k */
            printf("\n");         } /* end k2 */
            fprintf(ficres,"\n");       } /* end jk */
          }     } /* end ng */
      }     fclose(ficgp); 
    }  }  /* end gnuplot */
  if(mle==1){  
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */  /*************** Moving average **************/
     hesscov(matcov, p, npar, delti, ftolhess, func);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
  }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    int i, cpt, cptcod;
     printf("# Scales (for hessian or gradient estimation)\n");    int modcovmax =1;
      for(i=1,jk=1; i <=nlstate; i++){    int mobilavrange, mob;
       for(j=1; j <=nlstate+ndeath; j++){    double age;
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           printf("%1d%1d",i,j);                             a covariate has 2 modalities */
           for(k=1; k<=ncovmodel;k++){    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             jk++;      if(mobilav==1) mobilavrange=5; /* default */
           }      else mobilavrange=mobilav;
           printf("\n");      for (age=bage; age<=fage; age++)
           fprintf(ficres,"\n");        for (i=1; i<=nlstate;i++)
         }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
      }      /* We keep the original values on the extreme ages bage, fage and for 
             fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     k=1;         we use a 5 terms etc. until the borders are no more concerned. 
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      */ 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for (mob=3;mob <=mobilavrange;mob=mob+2){
     for(i=1;i<=npar;i++){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       /*  if (k>nlstate) k=1;          for (i=1; i<=nlstate;i++){
       i1=(i-1)/(ncovmodel*nlstate)+1;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       printf("%s%d%d",alph[k],i1,tab[i]);*/                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       fprintf(ficres,"%3d",i);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       printf("%3d",i);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       for(j=1; j<=i;j++){                }
         fprintf(ficres," %.5e",matcov[i][j]);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         printf(" %.5e",matcov[i][j]);            }
       }          }
       fprintf(ficres,"\n");        }/* end age */
       printf("\n");      }/* end mob */
       k++;    }else return -1;
     }    return 0;
      }/* End movingaverage */
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);  /************** Forecasting ******************/
       puts(line);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       fputs(line,ficparo);    /* proj1, year, month, day of starting projection 
     }       agemin, agemax range of age
     ungetc(c,ficpar);       dateprev1 dateprev2 range of dates during which prevalence is computed
     estepm=0;       anproj2 year of en of projection (same day and month as proj1).
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    */
     if (estepm==0 || estepm < stepm) estepm=stepm;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     if (fage <= 2) {    int *popage;
       bage = ageminpar;    double agec; /* generic age */
       fage = agemaxpar;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     }    double *popeffectif,*popcount;
        double ***p3mat;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    double ***mobaverage;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    char fileresf[FILENAMELENGTH];
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
      agelim=AGESUP;
     while((c=getc(ficpar))=='#' && c!= EOF){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);    strcpy(fileresf,"f"); 
     puts(line);    strcat(fileresf,fileres);
     fputs(line,ficparo);    if((ficresf=fopen(fileresf,"w"))==NULL) {
   }      printf("Problem with forecast resultfile: %s\n", fileresf);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
      }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    printf("Computing forecasting: result on file '%s' \n", fileresf);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
          if (cptcoveff==0) ncodemax[cptcoveff]=1;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    if (mobilav!=0) {
     fgets(line, MAXLINE, ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     fputs(line,ficparo);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   ungetc(c,ficpar);      }
      }
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    stepsize=(int) (stepm+YEARM-1)/YEARM;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    if (stepm<=12) stepsize=1;
     if(estepm < stepm){
   fscanf(ficpar,"pop_based=%d\n",&popbased);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficparo,"pop_based=%d\n",popbased);      }
   fprintf(ficres,"pop_based=%d\n",popbased);      else  hstepm=estepm;   
    
   while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=hstepm/stepm; 
     ungetc(c,ficpar);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     fgets(line, MAXLINE, ficpar);                                 fractional in yp1 */
     puts(line);    anprojmean=yp;
     fputs(line,ficparo);    yp2=modf((yp1*12),&yp);
   }    mprojmean=yp;
   ungetc(c,ficpar);    yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    if(jprojmean==0) jprojmean=1;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    if(mprojmean==0) jprojmean=1;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
 while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     fgets(line, MAXLINE, ficpar);    
     puts(line);    fprintf(ficresf,"#****** Routine prevforecast **\n");
     fputs(line,ficparo);  
   }  /*            if (h==(int)(YEARM*yearp)){ */
   ungetc(c,ficpar);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        k=k+1;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        fprintf(ficresf,"\n#******");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
         fprintf(ficresf,"******\n");
 /*------------ gnuplot -------------*/        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   strcpy(optionfilegnuplot,optionfilefiname);        for(j=1; j<=nlstate+ndeath;j++){ 
   strcat(optionfilegnuplot,".gp");          for(i=1; i<=nlstate;i++)              
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            fprintf(ficresf," p%d%d",i,j);
     printf("Problem with file %s",optionfilegnuplot);          fprintf(ficresf," p.%d",j);
   }        }
   fclose(ficgp);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          fprintf(ficresf,"\n");
 /*--------- index.htm --------*/          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
   strcpy(optionfilehtm,optionfile);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   strcat(optionfilehtm,".htm");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            nhstepm = nhstepm/hstepm; 
     printf("Problem with %s \n",optionfilehtm), exit(0);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            for (h=0; h<=nhstepm; h++){
 \n              if (h*hstepm/YEARM*stepm ==yearp) {
 Total number of observations=%d <br>\n                fprintf(ficresf,"\n");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                for(j=1;j<=cptcoveff;j++) 
 <hr  size=\"2\" color=\"#EC5E5E\">                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  <ul><li><h4>Parameter files</h4>\n                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n              } 
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);              for(j=1; j<=nlstate+ndeath;j++) {
   fclose(fichtm);                ppij=0.;
                 for(i=1; i<=nlstate;i++) {
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                  if (mobilav==1) 
                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 /*------------ free_vector  -------------*/                  else {
  chdir(path);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                    }
  free_ivector(wav,1,imx);                  if (h*hstepm/YEARM*stepm== yearp) {
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                    }
  free_ivector(num,1,n);                } /* end i */
  free_vector(agedc,1,n);                if (h*hstepm/YEARM*stepm==yearp) {
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                  fprintf(ficresf," %.3f", ppij);
  fclose(ficparo);                }
  fclose(ficres);              }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*--------------- Prevalence limit --------------*/          } /* end agec */
          } /* end yearp */
   strcpy(filerespl,"pl");      } /* end cptcod */
   strcat(filerespl,fileres);    } /* end  cptcov */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {         
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    fclose(ficresf);
   fprintf(ficrespl,"#Prevalence limit\n");  }
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /************** Forecasting *****not tested NB*************/
   fprintf(ficrespl,"\n");  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
      
   prlim=matrix(1,nlstate,1,nlstate);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int *popage;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double calagedatem, agelim, kk1, kk2;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *popeffectif,*popcount;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***p3mat,***tabpop,***tabpopprev;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double ***mobaverage;
   k=0;    char filerespop[FILENAMELENGTH];
   agebase=ageminpar;  
   agelim=agemaxpar;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ftolpl=1.e-10;    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   i1=cptcoveff;    agelim=AGESUP;
   if (cptcovn < 1){i1=1;}    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
   for(cptcov=1;cptcov<=i1;cptcov++){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
         k=k+1;    
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    strcpy(filerespop,"pop"); 
         fprintf(ficrespl,"\n#******");    strcat(filerespop,fileres);
         for(j=1;j<=cptcoveff;j++)    if((ficrespop=fopen(filerespop,"w"))==NULL) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with forecast resultfile: %s\n", filerespop);
         fprintf(ficrespl,"******\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
            }
         for (age=agebase; age<=agelim; age++){    printf("Computing forecasting: result on file '%s' \n", filerespop);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");    if (mobilav!=0) {
         }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficrespl);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   /*------------- h Pij x at various ages ------------*/    }
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    if (stepm<=12) stepsize=1;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    
   }    agelim=AGESUP;
   printf("Computing pij: result on file '%s' \n", filerespij);    
      hstepm=1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    hstepm=hstepm/stepm; 
   /*if (stepm<=24) stepsize=2;*/    
     if (popforecast==1) {
   agelim=AGESUP;      if((ficpop=fopen(popfile,"r"))==NULL) {
   hstepm=stepsize*YEARM; /* Every year of age */        printf("Problem with population file : %s\n",popfile);exit(0);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
   /* hstepm=1;   aff par mois*/      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
   k=0;      popcount=vector(0,AGESUP);
   for(cptcov=1;cptcov<=i1;cptcov++){      
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      i=1;   
       k=k+1;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
         fprintf(ficrespij,"\n#****** ");     
         for(j=1;j<=cptcoveff;j++)      imx=i;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         fprintf(ficrespij,"******\n");    }
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        k=k+1;
         fprintf(ficrespop,"\n#******");
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        fprintf(ficrespop,"******\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficrespop,"# Age");
           fprintf(ficrespij,"# Age");        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           for(i=1; i<=nlstate;i++)        if (popforecast==1)  fprintf(ficrespop," [Population]");
             for(j=1; j<=nlstate+ndeath;j++)        
               fprintf(ficrespij," %1d-%1d",i,j);        for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespij,"\n");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
            for (h=0; h<=nhstepm; h++){          
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             for(i=1; i<=nlstate;i++)            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
               for(j=1; j<=nlstate+ndeath;j++)            nhstepm = nhstepm/hstepm; 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            
             fprintf(ficrespij,"\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              }            oldm=oldms;savm=savms;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"\n");          
         }            for (h=0; h<=nhstepm; h++){
     }              if (h==(int) (calagedatem+YEARM*cpt)) {
   }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
   fclose(ficrespij);                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   /*---------- Forecasting ------------------*/                  else {
   if((stepm == 1) && (strcmp(model,".")==0)){                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                  }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                }
   }                if (h==(int)(calagedatem+12*cpt)){
   else{                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     erreur=108;                    /*fprintf(ficrespop," %.3f", kk1);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   }                }
                }
               for(i=1; i<=nlstate;i++){
   /*---------- Health expectancies and variances ------------*/                kk1=0.;
                   for(j=1; j<=nlstate;j++){
   strcpy(filerest,"t");                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   strcat(filerest,fileres);                  }
   if((ficrest=fopen(filerest,"w"))==NULL) {                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              }
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
   strcpy(filerese,"e");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filerese,fileres);          }
   if((ficreseij=fopen(filerese,"w"))==NULL) {        }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   
   }    /******/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
  strcpy(fileresv,"v");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   strcat(fileresv,fileres);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            nhstepm = nhstepm/hstepm; 
   }            
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   calagedate=-1;            oldm=oldms;savm=savms;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
   k=0;              if (h==(int) (calagedatem+YEARM*cpt)) {
   for(cptcov=1;cptcov<=i1;cptcov++){                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              } 
       k=k+1;              for(j=1; j<=nlstate+ndeath;j++) {
       fprintf(ficrest,"\n#****** ");                kk1=0.;kk2=0;
       for(j=1;j<=cptcoveff;j++)                for(i=1; i<=nlstate;i++) {              
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       fprintf(ficrest,"******\n");                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
       fprintf(ficreseij,"\n#****** ");              }
       for(j=1;j<=cptcoveff;j++)            }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficreseij,"******\n");          }
         }
       fprintf(ficresvij,"\n#****** ");     } 
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
       fprintf(ficresvij,"******\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if (popforecast==1) {
       oldm=oldms;savm=savms;      free_ivector(popage,0,AGESUP);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        free_vector(popeffectif,0,AGESUP);
        free_vector(popcount,0,AGESUP);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fclose(ficrespop);
   } /* End of popforecast */
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  int fileappend(FILE *fichier, char *optionfile)
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  {
       fprintf(ficrest,"\n");    if((fichier=fopen(optionfile,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfile);
       epj=vector(1,nlstate+1);      fprintf(ficlog,"Problem with file: %s\n", optionfile);
       for(age=bage; age <=fage ;age++){      return (1);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)  }
             prlim[i][i]=probs[(int)age][i][k];  /***********************************************/
         }  /**************** Main Program *****************/
          /***********************************************/
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  int main(int argc, char *argv[])
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  {
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
           }    int jj;
           epj[nlstate+1] +=epj[j];    int numlinepar=0; /* Current linenumber of parameter file */
         }    double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    double fret;
             vepp += vareij[i][j][(int)age];    double **xi,tmp,delta;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    double dum; /* Dummy variable */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    double ***p3mat;
         }    double ***mobaverage;
         fprintf(ficrest,"\n");    int *indx;
       }    char line[MAXLINE], linepar[MAXLINE];
     }    char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
   }    int firstobs=1, lastobs=10;
 free_matrix(mint,1,maxwav,1,n);    int sdeb, sfin; /* Status at beginning and end */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    int c,  h , cpt,l;
     free_vector(weight,1,n);    int ju,jl, mi;
   fclose(ficreseij);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   fclose(ficresvij);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
   fclose(ficrest);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   fclose(ficpar);    int mobilav=0,popforecast=0;
   free_vector(epj,1,nlstate+1);    int hstepm, nhstepm;
      double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   /*------- Variance limit prevalence------*/      double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
   strcpy(fileresvpl,"vpl");    double bage, fage, age, agelim, agebase;
   strcat(fileresvpl,fileres);    double ftolpl=FTOL;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double **prlim;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double *severity;
     exit(0);    double ***param; /* Matrix of parameters */
   }    double  *p;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
   k=0;    double *delti; /* Scale */
   for(cptcov=1;cptcov<=i1;cptcov++){    double ***eij, ***vareij;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double **varpl; /* Variances of prevalence limits by age */
       k=k+1;    double *epj, vepp;
       fprintf(ficresvpl,"\n#****** ");    double kk1, kk2;
       for(j=1;j<=cptcoveff;j++)    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");    char *alph[]={"a","a","b","c","d","e"}, str[4];
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    char z[1]="c", occ;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
  }    char *strt, *strtend;
     char *stratrunc;
   fclose(ficresvpl);    int lstra;
   
   /*---------- End : free ----------------*/    long total_usecs;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    struct timeval start_time, end_time, curr_time;
      struct timezone tzp;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    extern int gettimeofday();
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    struct tm tmg, tm, *gmtime(), *localtime();
      long time_value;
      extern long time();
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    (void) gettimeofday(&start_time,&tzp);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    tm = *localtime(&start_time.tv_sec);
      tmg = *gmtime(&start_time.tv_sec);
   free_matrix(matcov,1,npar,1,npar);    strt=asctime(&tm);
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);  /*  printf("Localtime (at start)=%s",strt); */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   fprintf(fichtm,"\n</body>");  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   fclose(fichtm);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   fclose(ficgp);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
    /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   if(erreur >0)  /*   printf("Time(after) =%s",strt);  */
     printf("End of Imach with error or warning %d\n",erreur);  /*  (void) time (&time_value);
   else   printf("End of Imach\n");  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  *  tm = *localtime(&time_value);
    *  strt=asctime(&tm);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   /*printf("Total time was %d uSec.\n", total_usecs);*/  */
   /*------ End -----------*/  
     getcwd(pathcd, size);
   
  end:    printf("\n%s\n%s",version,fullversion);
 #ifdef windows    if(argc <=1){
   /* chdir(pathcd);*/      printf("\nEnter the parameter file name: ");
 #endif      scanf("%s",pathtot);
  /*system("wgnuplot graph.plt");*/    }
  /*system("../gp37mgw/wgnuplot graph.plt");*/    else{
  /*system("cd ../gp37mgw");*/      strcpy(pathtot,argv[1]);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    }
  strcpy(plotcmd,GNUPLOTPROGRAM);    /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
  strcat(plotcmd," ");    /*cygwin_split_path(pathtot,path,optionfile);
  strcat(plotcmd,optionfilegnuplot);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
  system(plotcmd);    /* cutv(path,optionfile,pathtot,'\\');*/
   
 #ifdef windows    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   while (z[0] != 'q') {    printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     /* chdir(path); */    chdir(path);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    replace(pathc,path);
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    /*-------- arguments in the command line --------*/
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    /* Log file */
     else if (z[0] == 'q') exit(0);    strcat(filelog, optionfilefiname);
   }    strcat(filelog,".log");    /* */
 #endif    if((ficlog=fopen(filelog,"w"))==NULL)    {
 }      printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a>\n\
    - Date and time at start: %s</ul>\n",\
             version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     fclose(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     if(fileappend(fichtm, optionfilehtm)){
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
       fclose(fichtm);
     }
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     if(fileappend(fichtm,optionfilehtm)){
       fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
       fclose(fichtm);
     }
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.49  
changed lines
  Added in v.1.86


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>