Diff for /imach/src/imach.c between versions 1.5 and 1.86

version 1.5, 2001/05/02 17:42:45 version 1.86, 2003/06/17 20:04:08
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.86  2003/06/17 20:04:08  brouard
   individuals from different ages are interviewed on their health status    (Module): Change position of html and gnuplot routines and added
   or degree of  disability. At least a second wave of interviews    routine fileappend.
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.85  2003/06/17 13:12:43  brouard
   waves and are computed for each degree of severity of disability (number    * imach.c (Repository): Check when date of death was earlier that
   of life states). More degrees you consider, more time is necessary to    current date of interview. It may happen when the death was just
   reach the Maximum Likelihood of the parameters involved in the model.    prior to the death. In this case, dh was negative and likelihood
   The simplest model is the multinomial logistic model where pij is    was wrong (infinity). We still send an "Error" but patch by
   the probabibility to be observed in state j at the second wave conditional    assuming that the date of death was just one stepm after the
   to be observed in state i at the first wave. Therefore the model is:    interview.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Repository): Because some people have very long ID (first column)
   is a covariate. If you want to have a more complex model than "constant and    we changed int to long in num[] and we added a new lvector for
   age", you should modify the program where the markup    memory allocation. But we also truncated to 8 characters (left
     *Covariates have to be included here again* invites you to do it.    truncation)
   More covariates you add, less is the speed of the convergence.    (Repository): No more line truncation errors.
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.84  2003/06/13 21:44:43  brouard
   delay between waves is not identical for each individual, or if some    * imach.c (Repository): Replace "freqsummary" at a correct
   individual missed an interview, the information is not rounded or lost, but    place. It differs from routine "prevalence" which may be called
   taken into account using an interpolation or extrapolation.    many times. Probs is memory consuming and must be used with
   hPijx is the probability to be    parcimony.
   observed in state i at age x+h conditional to the observed state i at age    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.83  2003/06/10 13:39:11  lievre
   quarter trimester, semester or year) is model as a multinomial logistic.    *** empty log message ***
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.  */
    /*
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).     Interpolated Markov Chain
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Short summary of the programme:
   from the European Union.    
   It is copyrighted identically to a GNU software product, ie programme and    This program computes Healthy Life Expectancies from
   software can be distributed freely for non commercial use. Latest version    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   can be accessed at http://euroreves.ined.fr/imach .    first survey ("cross") where individuals from different ages are
   **********************************************************************/    interviewed on their health status or degree of disability (in the
      case of a health survey which is our main interest) -2- at least a
 #include <math.h>    second wave of interviews ("longitudinal") which measure each change
 #include <stdio.h>    (if any) in individual health status.  Health expectancies are
 #include <stdlib.h>    computed from the time spent in each health state according to a
 #include <unistd.h>    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 #define MAXLINE 256    simplest model is the multinomial logistic model where pij is the
 #define FILENAMELENGTH 80    probability to be observed in state j at the second wave
 /*#define DEBUG*/    conditional to be observed in state i at the first wave. Therefore
 #define windows    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    'age' is age and 'sex' is a covariate. If you want to have a more
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
     convergence.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define NINTERVMAX 8    identical for each individual. Also, if a individual missed an
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    intermediate interview, the information is lost, but taken into
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    account using an interpolation or extrapolation.  
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    hPijx is the probability to be observed in state i at age x+h
 #define YEARM 12. /* Number of months per year */    conditional to the observed state i at age x. The delay 'h' can be
 #define AGESUP 130    split into an exact number (nh*stepm) of unobserved intermediate
 #define AGEBASE 40    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 int nvar;    and the contribution of each individual to the likelihood is simply
 static int cptcov;    hPijx.
 int cptcovn;  
 int npar=NPARMAX;    Also this programme outputs the covariance matrix of the parameters but also
 int nlstate=2; /* Number of live states */    of the life expectancies. It also computes the stable prevalence. 
 int ndeath=1; /* Number of dead states */    
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 int *wav; /* Number of waves for this individuual 0 is possible */    This software have been partly granted by Euro-REVES, a concerted action
 int maxwav; /* Maxim number of waves */    from the European Union.
 int mle, weightopt;    It is copyrighted identically to a GNU software product, ie programme and
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    software can be distributed freely for non commercial use. Latest version
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    can be accessed at http://euroreves.ined.fr/imach .
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 FILE *ficgp, *fichtm;    
 FILE *ficreseij;    **********************************************************************/
   char filerese[FILENAMELENGTH];  /*
  FILE  *ficresvij;    main
   char fileresv[FILENAMELENGTH];    read parameterfile
  FILE  *ficresvpl;    read datafile
   char fileresvpl[FILENAMELENGTH];    concatwav
     freqsummary
     if (mle >= 1)
       mlikeli
     print results files
 #define NR_END 1    if mle==1 
 #define FREE_ARG char*       computes hessian
 #define FTOL 1.0e-10    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 #define NRANSI    open gnuplot file
 #define ITMAX 200    open html file
     stable prevalence
 #define TOL 2.0e-4     for age prevalim()
     h Pij x
 #define CGOLD 0.3819660    variance of p varprob
 #define ZEPS 1.0e-10    forecasting if prevfcast==1 prevforecast call prevalence()
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    health expectancies
     Variance-covariance of DFLE
 #define GOLD 1.618034    prevalence()
 #define GLIMIT 100.0     movingaverage()
 #define TINY 1.0e-20    varevsij() 
     if popbased==1 varevsij(,popbased)
 static double maxarg1,maxarg2;    total life expectancies
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Variance of stable prevalence
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))   end
    */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)  
   
 static double sqrarg;   
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #include <math.h>
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #include <stdio.h>
   #include <stdlib.h>
 int imx;  #include <unistd.h>
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  #include <sys/time.h>
   #include <time.h>
 int m,nb;  #include "timeval.h"
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define MAXLINE 256
 double **pmmij;  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 double *weight;  #define FILENAMELENGTH 132
 int **s; /* Status */  /*#define DEBUG*/
 double *agedc, **covar, idx;  /*#define windows*/
 int **nbcode, *Tcode, *Tvar, **codtab;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 static  int split( char *path, char *dirc, char *name )  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    char *s;                             /* pointer */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    int  l1, l2;                         /* length counters */  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
    l1 = strlen( path );                 /* length of path */  #define YEARM 12. /* Number of months per year */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define AGESUP 130
    s = strrchr( path, '\\' );           /* find last / */  #define AGEBASE 40
    if ( s == NULL ) {                   /* no directory, so use current */  #ifdef unix
 #if     defined(__bsd__)                /* get current working directory */  #define DIRSEPARATOR '/'
       extern char       *getwd( );  #define ODIRSEPARATOR '\\'
   #else
       if ( getwd( dirc ) == NULL ) {  #define DIRSEPARATOR '\\'
 #else  #define ODIRSEPARATOR '/'
       extern char       *getcwd( );  #endif
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /* $Id$ */
 #endif  /* $State$ */
          return( GLOCK_ERROR_GETCWD );  
       }  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
       strcpy( name, path );             /* we've got it */  char fullversion[]="$Revision$ $Date$"; 
    } else {                             /* strip direcotry from path */  int erreur; /* Error number */
       s++;                              /* after this, the filename */  int nvar;
       l2 = strlen( s );                 /* length of filename */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int npar=NPARMAX;
       strcpy( name, s );                /* save file name */  int nlstate=2; /* Number of live states */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int ndeath=1; /* Number of dead states */
       dirc[l1-l2] = 0;                  /* add zero */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    }  int popbased=0;
    l1 = strlen( dirc );                 /* length of directory */  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int *wav; /* Number of waves for this individuual 0 is possible */
    return( 0 );                         /* we're done */  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 /******************************************/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 void replace(char *s, char*t)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   int i;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   int lg=20;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   i=0;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   lg=strlen(t);  FILE *ficlog, *ficrespow;
   for(i=0; i<= lg; i++) {  int globpr; /* Global variable for printing or not */
     (s[i] = t[i]);  double fretone; /* Only one call to likelihood */
     if (t[i]== '\\') s[i]='/';  long ipmx; /* Number of contributions */
   }  double sw; /* Sum of weights */
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 int nbocc(char *s, char occ)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   int i,j=0;  FILE *fichtm; /* Html File */
   int lg=20;  FILE *ficreseij;
   i=0;  char filerese[FILENAMELENGTH];
   lg=strlen(s);  FILE  *ficresvij;
   for(i=0; i<= lg; i++) {  char fileresv[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  FILE  *ficresvpl;
   }  char fileresvpl[FILENAMELENGTH];
   return j;  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 void cutv(char *u,char *v, char*t, char occ)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int i,lg,j,p;  char filelog[FILENAMELENGTH]; /* Log file */
   i=0;  char filerest[FILENAMELENGTH];
   for(j=0; j<=strlen(t)-1; j++) {  char fileregp[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char popfile[FILENAMELENGTH];
   }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   lg=strlen(t);  
   for(j=0; j<p; j++) {  #define NR_END 1
     (u[j] = t[j]);  #define FREE_ARG char*
     u[p]='\0';  #define FTOL 1.0e-10
   }  
   #define NRANSI 
    for(j=0; j<= lg; j++) {  #define ITMAX 200 
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /********************** nrerror ********************/  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 void nrerror(char error_text[])  
 {  #define GOLD 1.618034 
   fprintf(stderr,"ERREUR ...\n");  #define GLIMIT 100.0 
   fprintf(stderr,"%s\n",error_text);  #define TINY 1.0e-20 
   exit(1);  
 }  static double maxarg1,maxarg2;
 /*********************** vector *******************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double *vector(int nl, int nh)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   double *v;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define rint(a) floor(a+0.5)
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  int imx; 
 {  int stepm;
   free((FREE_ARG)(v+nl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /************************ivector *******************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 int *ivector(long nl,long nh)  
 {  int m,nb;
   int *v;  long *num;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   if (!v) nrerror("allocation failure in ivector");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return v-nl+NR_END;  double **pmmij, ***probs;
 }  double dateintmean=0;
   
 /******************free ivector **************************/  double *weight;
 void free_ivector(int *v, long nl, long nh)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   free((FREE_ARG)(v+nl-NR_END));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /******************* imatrix *******************************/  double ftolhess; /* Tolerance for computing hessian */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  {
   int **m;    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    l1 = strlen(path );                   /* length of path */
   if (!m) nrerror("allocation failure 1 in matrix()");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m += NR_END;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m -= nrl;    if ( ss == NULL ) {                   /* no directory, so use current */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
          printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   /* allocate rows and set pointers to them */      /* get current working directory */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      /*    extern  char* getcwd ( char *buf , int len);*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl] += NR_END;        return( GLOCK_ERROR_GETCWD );
   m[nrl] -= ncl;      }
        strcpy( name, path );               /* we've got it */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    } else {                              /* strip direcotry from path */
        ss++;                               /* after this, the filename */
   /* return pointer to array of pointers to rows */      l2 = strlen( ss );                  /* length of filename */
   return m;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /****************** free_imatrix *************************/      dirc[l1-l2] = 0;                    /* add zero */
 void free_imatrix(m,nrl,nrh,ncl,nch)    }
       int **m;    l1 = strlen( dirc );                  /* length of directory */
       long nch,ncl,nrh,nrl;    /*#ifdef windows
      /* free an int matrix allocated by imatrix() */    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 {  #else
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   free((FREE_ARG) (m+nrl-NR_END));  #endif
 }    */
     ss = strrchr( name, '.' );            /* find last / */
 /******************* matrix *******************************/    ss++;
 double **matrix(long nrl, long nrh, long ncl, long nch)    strcpy(ext,ss);                       /* save extension */
 {    l1= strlen( name);
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    l2= strlen(ss)+1;
   double **m;    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return( 0 );                          /* we're done */
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  
   /******************************************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void replace(char *s, char*t)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    int i;
     int lg=20;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    i=0;
   return m;    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 /*************************free matrix ************************/      if (t[i]== '\\') s[i]='/';
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    }
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /******************* ma3x *******************************/    int lg=20;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    i=0;
 {    lg=strlen(s);
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    for(i=0; i<= lg; i++) {
   double ***m;    if  (s[i] == occ ) j++;
     }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return j;
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  void cutv(char *u,char *v, char*t, char occ)
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    /* cuts string t into u and v where u is ended by char occ excluding it
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m[nrl] += NR_END;       gives u="abcedf" and v="ghi2j" */
   m[nrl] -= ncl;    int i,lg,j,p=0;
     i=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    lg=strlen(t);
   m[nrl][ncl] -= nll;    for(j=0; j<p; j++) {
   for (j=ncl+1; j<=nch; j++)      (u[j] = t[j]);
     m[nrl][j]=m[nrl][j-1]+nlay;    }
         u[p]='\0';
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;     for(j=0; j<= lg; j++) {
     for (j=ncl+1; j<=nch; j++)      if (j>=(p+1))(v[j-p-1] = t[j]);
       m[i][j]=m[i][j-1]+nlay;    }
   }  }
   return m;  
 }  /********************** nrerror ********************/
   
 /*************************free ma3x ************************/  void nrerror(char error_text[])
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    fprintf(stderr,"ERREUR ...\n");
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    fprintf(stderr,"%s\n",error_text);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    exit(EXIT_FAILURE);
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /***************** f1dim *************************/  {
 extern int ncom;    double *v;
 extern double *pcom,*xicom;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 extern double (*nrfunc)(double []);    if (!v) nrerror("allocation failure in vector");
      return v-nl+NR_END;
 double f1dim(double x)  }
 {  
   int j;  /************************ free vector ******************/
   double f;  void free_vector(double*v, int nl, int nh)
   double *xt;  {
      free((FREE_ARG)(v+nl-NR_END));
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /************************ivector *******************************/
   free_vector(xt,1,ncom);  int *ivector(long nl,long nh)
   return f;  {
 }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 /*****************brent *************************/    if (!v) nrerror("allocation failure in ivector");
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    return v-nl+NR_END;
 {  }
   int iter;  
   double a,b,d,etemp;  /******************free ivector **************************/
   double fu,fv,fw,fx;  void free_ivector(int *v, long nl, long nh)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    free((FREE_ARG)(v+nl-NR_END));
   double e=0.0;  }
    
   a=(ax < cx ? ax : cx);  /************************lvector *******************************/
   b=(ax > cx ? ax : cx);  long *lvector(long nl,long nh)
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    long *v;
   for (iter=1;iter<=ITMAX;iter++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     xm=0.5*(a+b);    if (!v) nrerror("allocation failure in ivector");
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    return v-nl+NR_END;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
 #ifdef DEBUG  /******************free lvector **************************/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void free_lvector(long *v, long nl, long nh)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /******************* imatrix *******************************/
     }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     ftemp=fu;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     if (fabs(e) > tol1) {  { 
       r=(x-w)*(fx-fv);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       q=(x-v)*(fx-fw);    int **m; 
       p=(x-v)*q-(x-w)*r;    
       q=2.0*(q-r);    /* allocate pointers to rows */ 
       if (q > 0.0) p = -p;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       q=fabs(q);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       etemp=e;    m += NR_END; 
       e=d;    m -= nrl; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    
       else {    /* allocate rows and set pointers to them */ 
         d=p/q;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         u=x+d;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         if (u-a < tol2 || b-u < tol2)    m[nrl] += NR_END; 
           d=SIGN(tol1,xm-x);    m[nrl] -= ncl; 
       }    
     } else {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    
     }    /* return pointer to array of pointers to rows */ 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    return m; 
     fu=(*f)(u);  } 
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /****************** free_imatrix *************************/
       SHFT(v,w,x,u)  void free_imatrix(m,nrl,nrh,ncl,nch)
         SHFT(fv,fw,fx,fu)        int **m;
         } else {        long nch,ncl,nrh,nrl; 
           if (u < x) a=u; else b=u;       /* free an int matrix allocated by imatrix() */ 
           if (fu <= fw || w == x) {  { 
             v=w;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
             w=u;    free((FREE_ARG) (m+nrl-NR_END)); 
             fv=fw;  } 
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /******************* matrix *******************************/
             v=u;  double **matrix(long nrl, long nrh, long ncl, long nch)
             fv=fu;  {
           }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         }    double **m;
   }  
   nrerror("Too many iterations in brent");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *xmin=x;    if (!m) nrerror("allocation failure 1 in matrix()");
   return fx;    m += NR_END;
 }    m -= nrl;
   
 /****************** mnbrak ***********************/    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m[nrl] += NR_END;
             double (*func)(double))    m[nrl] -= ncl;
 {  
   double ulim,u,r,q, dum;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double fu;    return m;
      /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   *fa=(*func)(*ax);     */
   *fb=(*func)(*bx);  }
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /*************************free matrix ************************/
       SHFT(dum,*fb,*fa,dum)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   *fc=(*func)(*cx);    free((FREE_ARG)(m+nrl-NR_END));
   while (*fb > *fc) {  }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  /******************* ma3x *******************************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     if ((*bx-u)*(u-*cx) > 0.0) {    double ***m;
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()");
       if (fu < *fc) {    m += NR_END;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m -= nrl;
           SHFT(*fb,*fc,fu,(*func)(u))  
           }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       u=ulim;    m[nrl] += NR_END;
       fu=(*func)(u);    m[nrl] -= ncl;
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fu=(*func)(u);  
     }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     SHFT(*ax,*bx,*cx,u)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       SHFT(*fa,*fb,*fc,fu)    m[nrl][ncl] += NR_END;
       }    m[nrl][ncl] -= nll;
 }    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
 /*************** linmin ************************/    
     for (i=nrl+1; i<=nrh; i++) {
 int ncom;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 double *pcom,*xicom;      for (j=ncl+1; j<=nch; j++) 
 double (*nrfunc)(double []);        m[i][j]=m[i][j-1]+nlay;
      }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    return m; 
 {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double brent(double ax, double bx, double cx,             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                double (*f)(double), double tol, double *xmin);    */
   double f1dim(double x);  }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  /*************************free ma3x ************************/
   int j;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
   ncom=n;    free((FREE_ARG)(m+nrl-NR_END));
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  /***************** f1dim *************************/
   for (j=1;j<=n;j++) {  extern int ncom; 
     pcom[j]=p[j];  extern double *pcom,*xicom;
     xicom[j]=xi[j];  extern double (*nrfunc)(double []); 
   }   
   ax=0.0;  double f1dim(double x) 
   xx=1.0;  { 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int j; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    double f;
 #ifdef DEBUG    double *xt; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);   
 #endif    xt=vector(1,ncom); 
   for (j=1;j<=n;j++) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     xi[j] *= xmin;    f=(*nrfunc)(xt); 
     p[j] += xi[j];    free_vector(xt,1,ncom); 
   }    return f; 
   free_vector(xicom,1,n);  } 
   free_vector(pcom,1,n);  
 }  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /*************** powell ************************/  { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int iter; 
             double (*func)(double []))    double a,b,d,etemp;
 {    double fu,fv,fw,fx;
   void linmin(double p[], double xi[], int n, double *fret,    double ftemp;
               double (*func)(double []));    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   int i,ibig,j;    double e=0.0; 
   double del,t,*pt,*ptt,*xit;   
   double fp,fptt;    a=(ax < cx ? ax : cx); 
   double *xits;    b=(ax > cx ? ax : cx); 
   pt=vector(1,n);    x=w=v=bx; 
   ptt=vector(1,n);    fw=fv=fx=(*f)(x); 
   xit=vector(1,n);    for (iter=1;iter<=ITMAX;iter++) { 
   xits=vector(1,n);      xm=0.5*(a+b); 
   *fret=(*func)(p);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for (j=1;j<=n;j++) pt[j]=p[j];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (*iter=1;;++(*iter)) {      printf(".");fflush(stdout);
     fp=(*fret);      fprintf(ficlog,".");fflush(ficlog);
     ibig=0;  #ifdef DEBUG
     del=0.0;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (i=1;i<=n;i++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       printf(" %d %.12f",i, p[i]);  #endif
     printf("\n");      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for (i=1;i<=n;i++) {        *xmin=x; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        return fx; 
       fptt=(*fret);      } 
 #ifdef DEBUG      ftemp=fu;
       printf("fret=%lf \n",*fret);      if (fabs(e) > tol1) { 
 #endif        r=(x-w)*(fx-fv); 
       printf("%d",i);fflush(stdout);        q=(x-v)*(fx-fw); 
       linmin(p,xit,n,fret,func);        p=(x-v)*q-(x-w)*r; 
       if (fabs(fptt-(*fret)) > del) {        q=2.0*(q-r); 
         del=fabs(fptt-(*fret));        if (q > 0.0) p = -p; 
         ibig=i;        q=fabs(q); 
       }        etemp=e; 
 #ifdef DEBUG        e=d; 
       printf("%d %.12e",i,(*fret));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for (j=1;j<=n;j++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        else { 
         printf(" x(%d)=%.12e",j,xit[j]);          d=p/q; 
       }          u=x+d; 
       for(j=1;j<=n;j++)          if (u-a < tol2 || b-u < tol2) 
         printf(" p=%.12e",p[j]);            d=SIGN(tol1,xm-x); 
       printf("\n");        } 
 #endif      } else { 
     }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      } 
 #ifdef DEBUG      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       int k[2],l;      fu=(*f)(u); 
       k[0]=1;      if (fu <= fx) { 
       k[1]=-1;        if (u >= x) a=x; else b=x; 
       printf("Max: %.12e",(*func)(p));        SHFT(v,w,x,u) 
       for (j=1;j<=n;j++)          SHFT(fv,fw,fx,fu) 
         printf(" %.12e",p[j]);          } else { 
       printf("\n");            if (u < x) a=u; else b=u; 
       for(l=0;l<=1;l++) {            if (fu <= fw || w == x) { 
         for (j=1;j<=n;j++) {              v=w; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];              w=u; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);              fv=fw; 
         }              fw=fu; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            } else if (fu <= fv || v == x || v == w) { 
       }              v=u; 
 #endif              fv=fu; 
             } 
           } 
       free_vector(xit,1,n);    } 
       free_vector(xits,1,n);    nrerror("Too many iterations in brent"); 
       free_vector(ptt,1,n);    *xmin=x; 
       free_vector(pt,1,n);    return fx; 
       return;  } 
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /****************** mnbrak ***********************/
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       xit[j]=p[j]-pt[j];              double (*func)(double)) 
       pt[j]=p[j];  { 
     }    double ulim,u,r,q, dum;
     fptt=(*func)(ptt);    double fu; 
     if (fptt < fp) {   
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    *fa=(*func)(*ax); 
       if (t < 0.0) {    *fb=(*func)(*bx); 
         linmin(p,xit,n,fret,func);    if (*fb > *fa) { 
         for (j=1;j<=n;j++) {      SHFT(dum,*ax,*bx,dum) 
           xi[j][ibig]=xi[j][n];        SHFT(dum,*fb,*fa,dum) 
           xi[j][n]=xit[j];        } 
         }    *cx=(*bx)+GOLD*(*bx-*ax); 
 #ifdef DEBUG    *fc=(*func)(*cx); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    while (*fb > *fc) { 
         for(j=1;j<=n;j++)      r=(*bx-*ax)*(*fb-*fc); 
           printf(" %.12e",xit[j]);      q=(*bx-*cx)*(*fb-*fa); 
         printf("\n");      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 #endif        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     }      if ((*bx-u)*(u-*cx) > 0.0) { 
   }        fu=(*func)(u); 
 }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 /**** Prevalence limit ****************/        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)            SHFT(*fb,*fc,fu,(*func)(u)) 
 {            } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      matrix by transitions matrix until convergence is reached */        u=ulim; 
         fu=(*func)(u); 
   int i, ii,j,k;      } else { 
   double min, max, maxmin, maxmax,sumnew=0.;        u=(*cx)+GOLD*(*cx-*bx); 
   double **matprod2();        fu=(*func)(u); 
   double **out, cov[NCOVMAX], **pmij();      } 
   double **newm;      SHFT(*ax,*bx,*cx,u) 
   double agefin, delaymax=50 ; /* Max number of years to converge */        SHFT(*fa,*fb,*fc,fu) 
         } 
   for (ii=1;ii<=nlstate+ndeath;ii++)  } 
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*************** linmin ************************/
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int ncom; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  double *pcom,*xicom;
     newm=savm;  double (*nrfunc)(double []); 
     /* Covariates have to be included here again */   
     cov[1]=1.;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     cov[2]=agefin;  { 
     if (cptcovn>0){    double brent(double ax, double bx, double cx, 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}                 double (*f)(double), double tol, double *xmin); 
     }    double f1dim(double x); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
     savm=oldm;    int j; 
     oldm=newm;    double xx,xmin,bx,ax; 
     maxmax=0.;    double fx,fb,fa;
     for(j=1;j<=nlstate;j++){   
       min=1.;    ncom=n; 
       max=0.;    pcom=vector(1,n); 
       for(i=1; i<=nlstate; i++) {    xicom=vector(1,n); 
         sumnew=0;    nrfunc=func; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    for (j=1;j<=n;j++) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);      pcom[j]=p[j]; 
         max=FMAX(max,prlim[i][j]);      xicom[j]=xi[j]; 
         min=FMIN(min,prlim[i][j]);    } 
       }    ax=0.0; 
       maxmin=max-min;    xx=1.0; 
       maxmax=FMAX(maxmax,maxmin);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     if(maxmax < ftolpl){  #ifdef DEBUG
       return prlim;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }  #endif
 }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 /*************** transition probabilities **********/      p[j] += xi[j]; 
     } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    free_vector(xicom,1,n); 
 {    free_vector(pcom,1,n); 
   double s1, s2;  } 
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for(i=1; i<= nlstate; i++){              double (*func)(double [])) 
     for(j=1; j<i;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    void linmin(double p[], double xi[], int n, double *fret, 
         /*s2 += param[i][j][nc]*cov[nc];*/                double (*func)(double [])); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    int i,ibig,j; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double del,t,*pt,*ptt,*xit;
       }    double fp,fptt;
       ps[i][j]=s2;    double *xits;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    pt=vector(1,n); 
     }    ptt=vector(1,n); 
     for(j=i+1; j<=nlstate+ndeath;j++){    xit=vector(1,n); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    xits=vector(1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    *fret=(*func)(p); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
       ps[i][j]=s2;      fp=(*fret); 
     }      ibig=0; 
   }      del=0.0; 
   for(i=1; i<= nlstate; i++){      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
      s1=0;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     for(j=1; j<i; j++)      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       s1+=exp(ps[i][j]);      for (i=1;i<=n;i++) {
     for(j=i+1; j<=nlstate+ndeath; j++)        printf(" %d %.12f",i, p[i]);
       s1+=exp(ps[i][j]);        fprintf(ficlog," %d %.12lf",i, p[i]);
     ps[i][i]=1./(s1+1.);        fprintf(ficrespow," %.12lf", p[i]);
     for(j=1; j<i; j++)      }
       ps[i][j]= exp(ps[i][j])*ps[i][i];      printf("\n");
     for(j=i+1; j<=nlstate+ndeath; j++)      fprintf(ficlog,"\n");
       ps[i][j]= exp(ps[i][j])*ps[i][i];      fprintf(ficrespow,"\n");
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      for (i=1;i<=n;i++) { 
   } /* end i */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #ifdef DEBUG
     for(jj=1; jj<= nlstate+ndeath; jj++){        printf("fret=%lf \n",*fret);
       ps[ii][jj]=0;        fprintf(ficlog,"fret=%lf \n",*fret);
       ps[ii][ii]=1;  #endif
     }        printf("%d",i);fflush(stdout);
   }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        if (fabs(fptt-(*fret)) > del) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){          del=fabs(fptt-(*fret)); 
      printf("%lf ",ps[ii][jj]);          ibig=i; 
    }        } 
     printf("\n ");  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
     printf("\n ");printf("%lf ",cov[2]);*/        fprintf(ficlog,"%d %.12e",i,(*fret));
 /*        for (j=1;j<=n;j++) {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   goto end;*/          printf(" x(%d)=%.12e",j,xit[j]);
     return ps;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 }        }
         for(j=1;j<=n;j++) {
 /**************** Product of 2 matrices ******************/          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        }
 {        printf("\n");
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        fprintf(ficlog,"\n");
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  #endif
   /* in, b, out are matrice of pointers which should have been initialized      } 
      before: only the contents of out is modified. The function returns      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
      a pointer to pointers identical to out */  #ifdef DEBUG
   long i, j, k;        int k[2],l;
   for(i=nrl; i<= nrh; i++)        k[0]=1;
     for(k=ncolol; k<=ncoloh; k++)        k[1]=-1;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        printf("Max: %.12e",(*func)(p));
         out[i][k] +=in[i][j]*b[j][k];        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   return out;          printf(" %.12e",p[j]);
 }          fprintf(ficlog," %.12e",p[j]);
         }
         printf("\n");
 /************* Higher Matrix Product ***************/        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          for (j=1;j<=n;j++) {
 {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      duration (i.e. until            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      (typically every 2 years instead of every month which is too big).          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      Model is determined by parameters x and covariates have to be        }
      included manually here.  #endif
   
      */  
         free_vector(xit,1,n); 
   int i, j, d, h, k;        free_vector(xits,1,n); 
   double **out, cov[NCOVMAX];        free_vector(ptt,1,n); 
   double **newm;        free_vector(pt,1,n); 
         return; 
   /* Hstepm could be zero and should return the unit matrix */      } 
   for (i=1;i<=nlstate+ndeath;i++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=n;j++) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        ptt[j]=2.0*p[j]-pt[j]; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        xit[j]=p[j]-pt[j]; 
     }        pt[j]=p[j]; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } 
   for(h=1; h <=nhstepm; h++){      fptt=(*func)(ptt); 
     for(d=1; d <=hstepm; d++){      if (fptt < fp) { 
       newm=savm;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       /* Covariates have to be included here again */        if (t < 0.0) { 
       cov[1]=1.;          linmin(p,xit,n,fret,func); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          for (j=1;j<=n;j++) { 
       if (cptcovn>0){            xi[j][ibig]=xi[j][n]; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];            xi[j][n]=xit[j]; 
     }          }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #ifdef DEBUG
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          for(j=1;j<=n;j++){
       savm=oldm;            printf(" %.12e",xit[j]);
       oldm=newm;            fprintf(ficlog," %.12e",xit[j]);
     }          }
     for(i=1; i<=nlstate+ndeath; i++)          printf("\n");
       for(j=1;j<=nlstate+ndeath;j++) {          fprintf(ficlog,"\n");
         po[i][j][h]=newm[i][j];  #endif
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        }
          */      } 
       }    } 
   } /* end h */  } 
   return po;  
 }  /**** Prevalence limit (stable prevalence)  ****************/
   
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 /*************** log-likelihood *************/  {
 double func( double *x)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 {       matrix by transitions matrix until convergence is reached */
   int i, ii, j, k, mi, d;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    int i, ii,j,k;
   double **out;    double min, max, maxmin, maxmax,sumnew=0.;
   double sw; /* Sum of weights */    double **matprod2();
   double lli; /* Individual log likelihood */    double **out, cov[NCOVMAX], **pmij();
   long ipmx;    double **newm;
   /*extern weight */    double agefin, delaymax=50 ; /* Max number of years to converge */
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    for (ii=1;ii<=nlstate+ndeath;ii++)
   /*for(i=1;i<imx;i++)      for (j=1;j<=nlstate+ndeath;j++){
 printf(" %d\n",s[4][i]);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   */      }
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;     cov[1]=1.;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){   
        for(mi=1; mi<= wav[i]-1; mi++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (ii=1;ii<=nlstate+ndeath;ii++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      newm=savm;
             for(d=0; d<dh[mi][i]; d++){      /* Covariates have to be included here again */
         newm=savm;       cov[2]=agefin;
           cov[1]=1.;    
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for (k=1; k<=cptcovn;k++) {
           if (cptcovn>0){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
             }        }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for (k=1; k<=cptcovprod;k++)
           savm=oldm;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           oldm=newm;  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       } /* end mult */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
          out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      savm=oldm;
       ipmx +=1;      oldm=newm;
       sw += weight[i];      maxmax=0.;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(j=1;j<=nlstate;j++){
     } /* end of wave */        min=1.;
   } /* end of individual */        max=0.;
         for(i=1; i<=nlstate; i++) {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          sumnew=0;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          prlim[i][j]= newm[i][j]/(1-sumnew);
   return -l;          max=FMAX(max,prlim[i][j]);
 }          min=FMIN(min,prlim[i][j]);
         }
         maxmin=max-min;
 /*********** Maximum Likelihood Estimation ***************/        maxmax=FMAX(maxmax,maxmin);
       }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      if(maxmax < ftolpl){
 {        return prlim;
   int i,j, iter;      }
   double **xi,*delti;    }
   double fret;  }
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  /*************** transition probabilities ***************/ 
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   printf("Powell\n");  {
   powell(p,xi,npar,ftol,&iter,&fret,func);    double s1, s2;
     /*double t34;*/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    int i,j,j1, nc, ii, jj;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  
       for(i=1; i<= nlstate; i++){
 }      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 /**** Computes Hessian and covariance matrix ***/          /*s2 += param[i][j][nc]*cov[nc];*/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   double  **a,**y,*x,pd;        }
   double **hess;        ps[i][j]=s2;
   int i, j,jk;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   int *indx;      }
       for(j=i+1; j<=nlstate+ndeath;j++){
   double hessii(double p[], double delta, int theta, double delti[]);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double hessij(double p[], double delti[], int i, int j);          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   void lubksb(double **a, int npar, int *indx, double b[]) ;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }
         ps[i][j]=s2;
       }
   hess=matrix(1,npar,1,npar);    }
       /*ps[3][2]=1;*/
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){    for(i=1; i<= nlstate; i++){
     printf("%d",i);fflush(stdout);       s1=0;
     hess[i][i]=hessii(p,ftolhess,i,delti);      for(j=1; j<i; j++)
     /*printf(" %f ",p[i]);*/        s1+=exp(ps[i][j]);
   }      for(j=i+1; j<=nlstate+ndeath; j++)
         s1+=exp(ps[i][j]);
   for (i=1;i<=npar;i++) {      ps[i][i]=1./(s1+1.);
     for (j=1;j<=npar;j++)  {      for(j=1; j<i; j++)
       if (j>i) {        ps[i][j]= exp(ps[i][j])*ps[i][i];
         printf(".%d%d",i,j);fflush(stdout);      for(j=i+1; j<=nlstate+ndeath; j++)
         hess[i][j]=hessij(p,delti,i,j);        ps[i][j]= exp(ps[i][j])*ps[i][i];
         hess[j][i]=hess[i][j];      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       }    } /* end i */
     }  
   }    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   printf("\n");      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        ps[ii][ii]=1;
        }
   a=matrix(1,npar,1,npar);    }
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  
   indx=ivector(1,npar);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   for (i=1;i<=npar;i++)      for(jj=1; jj<= nlstate+ndeath; jj++){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];       printf("%lf ",ps[ii][jj]);
   ludcmp(a,npar,indx,&pd);     }
       printf("\n ");
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;      printf("\n ");printf("%lf ",cov[2]);*/
     x[j]=1;  /*
     lubksb(a,npar,indx,x);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for (i=1;i<=npar;i++){    goto end;*/
       matcov[i][j]=x[i];      return ps;
     }  }
   }  
   /**************** Product of 2 matrices ******************/
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for (j=1;j<=npar;j++) {  {
       printf("%.3e ",hess[i][j]);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     printf("\n");    /* in, b, out are matrice of pointers which should have been initialized 
   }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   /* Recompute Inverse */    long i, j, k;
   for (i=1;i<=npar;i++)    for(i=nrl; i<= nrh; i++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      for(k=ncolol; k<=ncoloh; k++)
   ludcmp(a,npar,indx,&pd);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   /*  printf("\n#Hessian matrix recomputed#\n");  
     return out;
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  
     lubksb(a,npar,indx,x);  /************* Higher Matrix Product ***************/
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       printf("%.3e ",y[i][j]);  {
     }    /* Computes the transition matrix starting at age 'age' over 
     printf("\n");       'nhstepm*hstepm*stepm' months (i.e. until
   }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   */       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   free_matrix(a,1,npar,1,npar);       (typically every 2 years instead of every month which is too big 
   free_matrix(y,1,npar,1,npar);       for the memory).
   free_vector(x,1,npar);       Model is determined by parameters x and covariates have to be 
   free_ivector(indx,1,npar);       included manually here. 
   free_matrix(hess,1,npar,1,npar);  
        */
   
 }    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
 /*************** hessian matrix ****************/    double **newm;
 double hessii( double x[], double delta, int theta, double delti[])  
 {    /* Hstepm could be zero and should return the unit matrix */
   int i;    for (i=1;i<=nlstate+ndeath;i++)
   int l=1, lmax=20;      for (j=1;j<=nlstate+ndeath;j++){
   double k1,k2;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double p2[NPARMAX+1];        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double res;      }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double fx;    for(h=1; h <=nhstepm; h++){
   int k=0,kmax=10;      for(d=1; d <=hstepm; d++){
   double l1;        newm=savm;
         /* Covariates have to be included here again */
   fx=func(x);        cov[1]=1.;
   for (i=1;i<=npar;i++) p2[i]=x[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   for(l=0 ; l <=lmax; l++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     l1=pow(10,l);        for (k=1; k<=cptcovage;k++)
     delts=delt;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(k=1 ; k <kmax; k=k+1){        for (k=1; k<=cptcovprod;k++)
       delt = delta*(l1*k);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       k2=func(p2)-fx;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       /*res= (k1-2.0*fx+k2)/delt/delt; */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
 #ifdef DEBUG        oldm=newm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
 #endif      for(i=1; i<=nlstate+ndeath; i++)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for(j=1;j<=nlstate+ndeath;j++) {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          po[i][j][h]=newm[i][j];
         k=kmax;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       }           */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        }
         k=kmax; l=lmax*10.;    } /* end h */
       }    return po;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  }
         delts=delt;  
       }  
     }  /*************** log-likelihood *************/
   }  double func( double *x)
   delti[theta]=delts;  {
   return res;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
 }    double **out;
     double sw; /* Sum of weights */
 double hessij( double x[], double delti[], int thetai,int thetaj)    double lli; /* Individual log likelihood */
 {    int s1, s2;
   int i;    double bbh, survp;
   int l=1, l1, lmax=20;    long ipmx;
   double k1,k2,k3,k4,res,fx;    /*extern weight */
   double p2[NPARMAX+1];    /* We are differentiating ll according to initial status */
   int k;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   fx=func(x);      printf(" %d\n",s[4][i]);
   for (k=1; k<=2; k++) {    */
     for (i=1;i<=npar;i++) p2[i]=x[i];    cov[1]=1.;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     k1=func(p2)-fx;  
      if(mle==1){
     p2[thetai]=x[thetai]+delti[thetai]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     k2=func(p2)-fx;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]-delti[thetai]/k;            for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k3=func(p2)-fx;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     p2[thetai]=x[thetai]-delti[thetai]/k;          for(d=0; d<dh[mi][i]; d++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            newm=savm;
     k4=func(p2)-fx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            for (kk=1; kk<=cptcovage;kk++) {
 #ifdef DEBUG              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            }
 #endif            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   return res;            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************** Inverse of matrix **************/        
 void ludcmp(double **a, int n, int *indx, double *d)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 {          /* But now since version 0.9 we anticipate for bias and large stepm.
   int i,imax,j,k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double big,dum,sum,temp;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double *vv;           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   vv=vector(1,n);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   *d=1.0;           * probability in order to take into account the bias as a fraction of the way
   for (i=1;i<=n;i++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     big=0.0;           * -stepm/2 to stepm/2 .
     for (j=1;j<=n;j++)           * For stepm=1 the results are the same as for previous versions of Imach.
       if ((temp=fabs(a[i][j])) > big) big=temp;           * For stepm > 1 the results are less biased than in previous versions. 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           */
     vv[i]=1.0/big;          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   for (j=1;j<=n;j++) {          bbh=(double)bh[mi][i]/(double)stepm; 
     for (i=1;i<j;i++) {          /* bias is positive if real duration
       sum=a[i][j];           * is higher than the multiple of stepm and negative otherwise.
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           */
       a[i][j]=sum;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          if( s2 > nlstate){ 
     big=0.0;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     for (i=j;i<=n;i++) {               to the likelihood is the probability to die between last step unit time and current 
       sum=a[i][j];               step unit time, which is also the differences between probability to die before dh 
       for (k=1;k<j;k++)               and probability to die before dh-stepm . 
         sum -= a[i][k]*a[k][j];               In version up to 0.92 likelihood was computed
       a[i][j]=sum;          as if date of death was unknown. Death was treated as any other
       if ( (dum=vv[i]*fabs(sum)) >= big) {          health state: the date of the interview describes the actual state
         big=dum;          and not the date of a change in health state. The former idea was
         imax=i;          to consider that at each interview the state was recorded
       }          (healthy, disable or death) and IMaCh was corrected; but when we
     }          introduced the exact date of death then we should have modified
     if (j != imax) {          the contribution of an exact death to the likelihood. This new
       for (k=1;k<=n;k++) {          contribution is smaller and very dependent of the step unit
         dum=a[imax][k];          stepm. It is no more the probability to die between last interview
         a[imax][k]=a[j][k];          and month of death but the probability to survive from last
         a[j][k]=dum;          interview up to one month before death multiplied by the
       }          probability to die within a month. Thanks to Chris
       *d = -(*d);          Jackson for correcting this bug.  Former versions increased
       vv[imax]=vv[j];          mortality artificially. The bad side is that we add another loop
     }          which slows down the processing. The difference can be up to 10%
     indx[j]=imax;          lower mortality.
     if (a[j][j] == 0.0) a[j][j]=TINY;            */
     if (j != n) {            lli=log(out[s1][s2] - savm[s1][s2]);
       dum=1.0/(a[j][j]);          }else{
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   }          } 
   free_vector(vv,1,n);  /* Doesn't work */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 ;          /*if(lli ==000.0)*/
 }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
 void lubksb(double **a, int n, int *indx, double b[])          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i,ii=0,ip,j;        } /* end of wave */
   double sum;      } /* end of individual */
      }  else if(mle==2){
   for (i=1;i<=n;i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     ip=indx[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     sum=b[ip];        for(mi=1; mi<= wav[i]-1; mi++){
     b[ip]=b[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (ii)            for (j=1;j<=nlstate+ndeath;j++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     else if (sum) ii=i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum;            }
   }          for(d=0; d<=dh[mi][i]; d++){
   for (i=n;i>=1;i--) {            newm=savm;
     sum=b[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            for (kk=1; kk<=cptcovage;kk++) {
     b[i]=sum/a[i][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************ Frequencies ********************/            savm=oldm;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)            oldm=newm;
 {  /* Some frequencies */          } /* end mult */
          
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double ***freq; /* Frequencies */          /* But now since version 0.9 we anticipate for bias and large stepm.
   double *pp;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double pos;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   FILE *ficresp;           * the nearest (and in case of equal distance, to the lowest) interval but now
   char fileresp[FILENAMELENGTH];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   pp=vector(1,nlstate);           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   strcpy(fileresp,"p");           * -stepm/2 to stepm/2 .
   strcat(fileresp,fileres);           * For stepm=1 the results are the same as for previous versions of Imach.
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * For stepm > 1 the results are less biased than in previous versions. 
     printf("Problem with prevalence resultfile: %s\n", fileresp);           */
     exit(0);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          bbh=(double)bh[mi][i]/(double)stepm; 
   j1=0;          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   j=cptcovn;           */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for(k1=1; k1<=j;k1++){          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
    for(i1=1; i1<=ncodemax[k1];i1++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
        j1++;          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for (i=-1; i<=nlstate+ndeath; i++)            ipmx +=1;
          for (jk=-1; jk<=nlstate+ndeath; jk++)            sw += weight[i];
            for(m=agemin; m <= agemax+3; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              freq[i][jk][m]=0;        } /* end of wave */
              } /* end of individual */
        for (i=1; i<=imx; i++) {    }  else if(mle==3){  /* exponential inter-extrapolation */
          bool=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for (z1=1; z1<=cptcovn; z1++)        for(mi=1; mi<= wav[i]-1; mi++){
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
          }            for (j=1;j<=nlstate+ndeath;j++){
           if (bool==1) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            for(m=firstpass; m<=lastpass-1; m++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              if(agev[m][i]==0) agev[m][i]=agemax+1;            }
              if(agev[m][i]==1) agev[m][i]=agemax+2;          for(d=0; d<dh[mi][i]; d++){
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            newm=savm;
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            }            for (kk=1; kk<=cptcovage;kk++) {
          }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        }            }
         if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          fprintf(ficresp, "\n#Variable");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);            savm=oldm;
        }            oldm=newm;
        fprintf(ficresp, "\n#");          } /* end mult */
        for(i=1; i<=nlstate;i++)        
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
        fprintf(ficresp, "\n");          /* But now since version 0.9 we anticipate for bias and large stepm.
                   * If stepm is larger than one month (smallest stepm) and if the exact delay 
   for(i=(int)agemin; i <= (int)agemax+3; i++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
     if(i==(int)agemax+3)           * the nearest (and in case of equal distance, to the lowest) interval but now
       printf("Total");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     else           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       printf("Age %d", i);           * probability in order to take into account the bias as a fraction of the way
     for(jk=1; jk <=nlstate ; jk++){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * -stepm/2 to stepm/2 .
         pp[jk] += freq[jk][m][i];           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
     for(jk=1; jk <=nlstate ; jk++){           */
       for(m=-1, pos=0; m <=0 ; m++)          s1=s[mw[mi][i]][i];
         pos += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
       if(pp[jk]>=1.e-10)          bbh=(double)bh[mi][i]/(double)stepm; 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          /* bias is positive if real duration
       else           * is higher than the multiple of stepm and negative otherwise.
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           */
     }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     for(jk=1; jk <=nlstate ; jk++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         pp[jk] += freq[jk][m][i];          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(jk=1,pos=0; jk <=nlstate ; jk++)          ipmx +=1;
       pos += pp[jk];          sw += weight[i];
     for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(pos>=1.e-5)        } /* end of wave */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } /* end of individual */
       else    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if( i <= (int) agemax){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(pos>=1.e-5)        for(mi=1; mi<= wav[i]-1; mi++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
       else            for (j=1;j<=nlstate+ndeath;j++){
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     for(jk=-1; jk <=nlstate+ndeath; jk++)          for(d=0; d<dh[mi][i]; d++){
       for(m=-1; m <=nlstate+ndeath; m++)            newm=savm;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if(i <= (int) agemax)            for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficresp,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("\n");            }
     }          
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   fclose(ficresp);            oldm=newm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } /* end mult */
   free_vector(pp,1,nlstate);        
           s1=s[mw[mi][i]][i];
 }  /* End of Freq */          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
 /************* Waves Concatenation ***************/            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 {          }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          ipmx +=1;
      Death is a valid wave (if date is known).          sw += weight[i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      and mw[mi+1][i]. dh depends on stepm.        } /* end of wave */
      */      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   int i, mi, m;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 float sum=0.;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=imx; i++){            for (j=1;j<=nlstate+ndeath;j++){
     mi=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     m=firstpass;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){            }
       if(s[m][i]>=1)          for(d=0; d<dh[mi][i]; d++){
         mw[++mi][i]=m;            newm=savm;
       if(m >=lastpass)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         break;            for (kk=1; kk<=cptcovage;kk++) {
       else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         m++;            }
     }/* end while */          
     if (s[m][i] > nlstate){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       mi++;     /* Death is another wave */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /* if(mi==0)  never been interviewed correctly before death */            savm=oldm;
          /* Only death is a correct wave */            oldm=newm;
       mw[mi][i]=m;          } /* end mult */
     }        
           s1=s[mw[mi][i]][i];
     wav[i]=mi;          s2=s[mw[mi+1][i]][i];
     if(mi==0)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=imx; i++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for(mi=1; mi<wav[i];mi++){        } /* end of wave */
       if (stepm <=0)      } /* end of individual */
         dh[mi][i]=1;    } /* End of if */
       else{    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         if (s[mw[mi+1][i]][i] > nlstate) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           if(j=0) j=1;  /* Survives at least one month after exam */    return -l;
         }  }
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  /*************** log-likelihood *************/
           k=k+1;  double funcone( double *x)
           if (j >= jmax) jmax=j;  {
           else if (j <= jmin)jmin=j;    int i, ii, j, k, mi, d, kk;
           sum=sum+j;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
         jk= j/stepm;    double lli; /* Individual log likelihood */
         jl= j -jk*stepm;    int s1, s2;
         ju= j -(jk+1)*stepm;    double bbh, survp;
         if(jl <= -ju)    /*extern weight */
           dh[mi][i]=jk;    /* We are differentiating ll according to initial status */
         else    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           dh[mi][i]=jk+1;    /*for(i=1;i<imx;i++) 
         if(dh[mi][i]==0)      printf(" %d\n",s[4][i]);
           dh[mi][i]=1; /* At least one step */    */
       }    cov[1]=1.;
     }  
   }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);  
 }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Tricode ****************************/      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void tricode(int *Tvar, int **nbcode, int imx)      for(mi=1; mi<= wav[i]-1; mi++){
 {        for (ii=1;ii<=nlstate+ndeath;ii++)
   int Ndum[80],ij, k, j, i;          for (j=1;j<=nlstate+ndeath;j++){
   int cptcode=0;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=0; k<79; k++) Ndum[k]=0;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=1; k<=7; k++) ncodemax[k]=0;          }
          for(d=0; d<dh[mi][i]; d++){
   for (j=1; j<=cptcovn; j++) {          newm=savm;
     for (i=1; i<=imx; i++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=(int)(covar[Tvar[j]][i]);          for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if (ij > cptcode) cptcode=ij;          }
     }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=0; i<=cptcode; i++) {          savm=oldm;
       if(Ndum[i]!=0) ncodemax[j]++;          oldm=newm;
     }        } /* end mult */
          
     ij=1;        s1=s[mw[mi][i]][i];
     for (i=1; i<=ncodemax[j]; i++) {        s2=s[mw[mi+1][i]][i];
       for (k=0; k<=79; k++) {        bbh=(double)bh[mi][i]/(double)stepm; 
         if (Ndum[k] != 0) {        /* bias is positive if real duration
           nbcode[Tvar[j]][ij]=k;         * is higher than the multiple of stepm and negative otherwise.
           ij++;         */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         if (ij > ncodemax[j]) break;          lli=log(out[s1][s2] - savm[s1][s2]);
       }          } else if (mle==1){
     }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }          } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 /*********** Health Expectancies ****************/        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 {          lli=log(out[s1][s2]); /* Original formula */
   /* Health expectancies */        } /* End of if */
   int i, j, nhstepm, hstepm, h;        ipmx +=1;
   double age, agelim,hf;        sw += weight[i];
   double ***p3mat;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficreseij,"# Health expectancies\n");        if(globpr){
   fprintf(ficreseij,"# Age");          fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   for(i=1; i<=nlstate;i++)   %10.6f %10.6f %10.6f ", \
     for(j=1; j<=nlstate;j++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       fprintf(ficreseij," %1d-%1d",i,j);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   fprintf(ficreseij,"\n");          for(k=1,l=0.; k<=nlstate; k++) 
             fprintf(ficresilk," %10.6f",ll[k]);
   hstepm=1*YEARM; /*  Every j years of age (in month) */          fprintf(ficresilk,"\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        }
       } /* end of wave */
   agelim=AGESUP;    } /* end of individual */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* nhstepm age range expressed in number of stepm */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     /* Typically if 20 years = 20*12/6=40 stepm */    return -l;
     if (stepm >= YEARM) hstepm=1;  }
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* This routine should help understanding what is done with the selection of individuals/waves and
        to check the exact contribution to the likelihood.
        Plotting could be done.
     for(i=1; i<=nlstate;i++)     */
       for(j=1; j<=nlstate;j++)    int k;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    if(globpr !=0){ /* Just counts and sums no printings */
           eij[i][j][(int)age] +=p3mat[i][j][h];      strcpy(fileresilk,"ilk"); 
         }      strcat(fileresilk,fileres);
          if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     hf=1;        printf("Problem with resultfile: %s\n", fileresilk);
     if (stepm >= YEARM) hf=stepm/YEARM;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fprintf(ficreseij,"%.0f",age );      }
     for(i=1; i<=nlstate;i++)      fprintf(ficresilk, "#individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state\n");
       for(j=1; j<=nlstate;j++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       }      for(k=1; k<=nlstate; k++) 
     fprintf(ficreseij,"\n");        fprintf(ficresilk," ll[%d]",k);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk,"\n");
   }    }
 }  
     *fretone=(*funcone)(p);
 /************ Variance ******************/    if(globpr !=0){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      fclose(ficresilk);
 {      if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   /* Variance of health expectancies */        printf("Problem with html file: %s\n", optionfilehtm);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   double **newm;        exit(0);
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm, h;      else{
   int k, cptcode;        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk);
    double *xp;        fclose(fichtm);
   double **gp, **gm;      }
   double ***gradg, ***trgradg;    }
   double ***p3mat;    return;
   double age,agelim;  }
   int theta;  
   /*********** Maximum Likelihood Estimation ***************/
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    int i,j, iter;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double **xi;
   fprintf(ficresvij,"\n");    double fret;
     double fretone; /* Only one call to likelihood */
   xp=vector(1,npar);    char filerespow[FILENAMELENGTH];
   dnewm=matrix(1,nlstate,1,npar);    xi=matrix(1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
   hstepm=1*YEARM; /* Every year of age */        xi[i][j]=(i==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   agelim = AGESUP;    strcpy(filerespow,"pow"); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcat(filerespow,fileres);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     if (stepm >= YEARM) hstepm=1;      printf("Problem with resultfile: %s\n", filerespow);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     gp=matrix(0,nhstepm,1,nlstate);    for (i=1;i<=nlstate;i++)
     gm=matrix(0,nhstepm,1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(theta=1; theta <=npar; theta++){    fprintf(ficrespow,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fclose(ficrespow);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(h=0; h<=nhstepm; h++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  }
         }  
       }  /**** Computes Hessian and covariance matrix ***/
      void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double  **a,**y,*x,pd;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **hess;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i, j,jk;
       for(j=1; j<= nlstate; j++){    int *indx;
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double hessii(double p[], double delta, int theta, double delti[]);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double hessij(double p[], double delti[], int i, int j);
         }    void lubksb(double **a, int npar, int *indx, double b[]) ;
       }    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){    hess=matrix(1,npar,1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    printf("\nCalculation of the hessian matrix. Wait...\n");
     } /* End theta */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     for(h=0; h<=nhstepm; h++)      hess[i][i]=hessii(p,ftolhess,i,delti);
       for(j=1; j<=nlstate;j++)      /*printf(" %f ",p[i]);*/
         for(theta=1; theta <=npar; theta++)      /*printf(" %lf ",hess[i][i]);*/
           trgradg[h][j][theta]=gradg[h][theta][j];    }
     
     for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++) {
       for(j=1;j<=nlstate;j++)      for (j=1;j<=npar;j++)  {
         vareij[i][j][(int)age] =0.;        if (j>i) { 
     for(h=0;h<=nhstepm;h++){          printf(".%d%d",i,j);fflush(stdout);
       for(k=0;k<=nhstepm;k++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          hess[i][j]=hessij(p,delti,i,j);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          hess[j][i]=hess[i][j];    
         for(i=1;i<=nlstate;i++)          /*printf(" %lf ",hess[i][j]);*/
           for(j=1;j<=nlstate;j++)        }
             vareij[i][j][(int)age] += doldm[i][j];      }
       }    }
     }    printf("\n");
     h=1;    fprintf(ficlog,"\n");
     if (stepm >= YEARM) h=stepm/YEARM;  
     fprintf(ficresvij,"%.0f ",age );    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<=nlstate;j++){    
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
     fprintf(ficresvij,"\n");    x=vector(1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate);    indx=ivector(1,npar);
     free_matrix(gm,0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    ludcmp(a,npar,indx,&pd);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
   free_vector(xp,1,npar);      x[j]=1;
   free_matrix(doldm,1,nlstate,1,npar);      lubksb(a,npar,indx,x);
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
 }      }
     }
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    printf("\n#Hessian matrix#\n");
 {    fprintf(ficlog,"\n#Hessian matrix#\n");
   /* Variance of prevalence limit */    for (i=1;i<=npar;i++) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++) { 
   double **newm;        printf("%.3e ",hess[i][j]);
   double **dnewm,**doldm;        fprintf(ficlog,"%.3e ",hess[i][j]);
   int i, j, nhstepm, hstepm;      }
   int k, cptcode;      printf("\n");
   double *xp;      fprintf(ficlog,"\n");
   double *gp, *gm;    }
   double **gradg, **trgradg;  
   double age,agelim;    /* Recompute Inverse */
   int theta;    for (i=1;i<=npar;i++)
          for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    ludcmp(a,npar,indx,&pd);
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   xp=vector(1,npar);      x[j]=1;
   dnewm=matrix(1,nlstate,1,npar);      lubksb(a,npar,indx,x);
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
   hstepm=1*YEARM; /* Every year of age */        printf("%.3e ",y[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        fprintf(ficlog,"%.3e ",y[i][j]);
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"\n");
     if (stepm >= YEARM) hstepm=1;    }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    */
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);    free_matrix(a,1,npar,1,npar);
     gm=vector(1,nlstate);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
     for(theta=1; theta <=npar; theta++){    free_ivector(indx,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_matrix(hess,1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  /*************** hessian matrix ****************/
      double hessii( double x[], double delta, int theta, double delti[])
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int l=1, lmax=20;
       for(i=1;i<=nlstate;i++)    double k1,k2;
         gm[i] = prlim[i][i];    double p2[NPARMAX+1];
     double res;
       for(i=1;i<=nlstate;i++)    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double fx;
     } /* End theta */    int k=0,kmax=10;
     double l1;
     trgradg =matrix(1,nlstate,1,npar);  
     fx=func(x);
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(theta=1; theta <=npar; theta++)    for(l=0 ; l <=lmax; l++){
         trgradg[j][theta]=gradg[theta][j];      l1=pow(10,l);
       delts=delt;
     for(i=1;i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
       varpl[i][(int)age] =0.;        delt = delta*(l1*k);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        p2[theta]=x[theta] +delt;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        k1=func(p2)-fx;
     for(i=1;i<=nlstate;i++)        p2[theta]=x[theta]-delt;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
     fprintf(ficresvpl,"%.0f ",age );        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     for(i=1; i<=nlstate;i++)        
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  #ifdef DEBUG
     fprintf(ficresvpl,"\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_vector(gp,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_vector(gm,1,nlstate);  #endif
     free_matrix(gradg,1,npar,1,nlstate);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     free_matrix(trgradg,1,nlstate,1,npar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   } /* End age */          k=kmax;
         }
   free_vector(xp,1,npar);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   free_matrix(doldm,1,nlstate,1,npar);          k=kmax; l=lmax*10.;
   free_matrix(dnewm,1,nlstate,1,nlstate);        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 }          delts=delt;
         }
       }
     }
 /***********************************************/    delti[theta]=delts;
 /**************** Main Program *****************/    return res; 
 /***********************************************/    
   }
 /*int main(int argc, char *argv[])*/  
 int main()  double hessij( double x[], double delti[], int thetai,int thetaj)
 {  {
     int i;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    int l=1, l1, lmax=20;
   double agedeb, agefin,hf;    double k1,k2,k3,k4,res,fx;
   double agemin=1.e20, agemax=-1.e20;    double p2[NPARMAX+1];
     int k;
   double fret;  
   double **xi,tmp,delta;    fx=func(x);
     for (k=1; k<=2; k++) {
   double dum; /* Dummy variable */      for (i=1;i<=npar;i++) p2[i]=x[i];
   double ***p3mat;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int *indx;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char line[MAXLINE], linepar[MAXLINE];      k1=func(p2)-fx;
   char title[MAXLINE];    
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      p2[thetai]=x[thetai]+delti[thetai]/k;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   char filerest[FILENAMELENGTH];      k2=func(p2)-fx;
   char fileregp[FILENAMELENGTH];    
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      p2[thetai]=x[thetai]-delti[thetai]/k;
   int firstobs=1, lastobs=10;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int sdeb, sfin; /* Status at beginning and end */      k3=func(p2)-fx;
   int c,  h , cpt,l;    
   int ju,jl, mi;      p2[thetai]=x[thetai]-delti[thetai]/k;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      k4=func(p2)-fx;
        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   int hstepm, nhstepm;  #ifdef DEBUG
   double bage, fage, age, agelim, agebase;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double ftolpl=FTOL;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **prlim;  #endif
   double *severity;    }
   double ***param; /* Matrix of parameters */    return res;
   double  *p;  }
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */  /************** Inverse of matrix **************/
   double *delti; /* Scale */  void ludcmp(double **a, int n, int *indx, double *d) 
   double ***eij, ***vareij;  { 
   double **varpl; /* Variances of prevalence limits by age */    int i,imax,j,k; 
   double *epj, vepp;    double big,dum,sum,temp; 
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    double *vv; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];   
     vv=vector(1,n); 
   char z[1]="c", occ;    *d=1.0; 
 #include <sys/time.h>    for (i=1;i<=n;i++) { 
 #include <time.h>      big=0.0; 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      for (j=1;j<=n;j++) 
   /* long total_usecs;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   struct timeval start_time, end_time;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        vv[i]=1.0/big; 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    } 
     for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
   printf("\nIMACH, Version 0.64a");        sum=a[i][j]; 
   printf("\nEnter the parameter file name: ");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 #ifdef windows      } 
   scanf("%s",pathtot);      big=0.0; 
   getcwd(pathcd, size);      for (i=j;i<=n;i++) { 
   /*cygwin_split_path(pathtot,path,optionfile);        sum=a[i][j]; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        for (k=1;k<j;k++) 
   /* cutv(path,optionfile,pathtot,'\\');*/          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 split(pathtot, path,optionfile);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   chdir(path);          big=dum; 
   replace(pathc,path);          imax=i; 
 #endif        } 
 #ifdef unix      } 
   scanf("%s",optionfile);      if (j != imax) { 
 #endif        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
 /*-------- arguments in the command line --------*/          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
   strcpy(fileres,"r");        } 
   strcat(fileres, optionfile);        *d = -(*d); 
         vv[imax]=vv[j]; 
   /*---------arguments file --------*/      } 
       indx[j]=imax; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      if (a[j][j] == 0.0) a[j][j]=TINY; 
     printf("Problem with optionfile %s\n",optionfile);      if (j != n) { 
     goto end;        dum=1.0/(a[j][j]); 
   }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   strcpy(filereso,"o");    } 
   strcat(filereso,fileres);    free_vector(vv,1,n);  /* Doesn't work */
   if((ficparo=fopen(filereso,"w"))==NULL) {  ;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  } 
   }  
   void lubksb(double **a, int n, int *indx, double b[]) 
   /* Reads comments: lines beginning with '#' */  { 
   while((c=getc(ficpar))=='#' && c!= EOF){    int i,ii=0,ip,j; 
     ungetc(c,ficpar);    double sum; 
     fgets(line, MAXLINE, ficpar);   
     puts(line);    for (i=1;i<=n;i++) { 
     fputs(line,ficparo);      ip=indx[i]; 
   }      sum=b[ip]; 
   ungetc(c,ficpar);      b[ip]=b[i]; 
       if (ii) 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      else if (sum) ii=i; 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      b[i]=sum; 
     } 
   covar=matrix(1,NCOVMAX,1,n);        for (i=n;i>=1;i--) { 
   if (strlen(model)<=1) cptcovn=0;      sum=b[i]; 
   else {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     j=0;      b[i]=sum/a[i][i]; 
     j=nbocc(model,'+');    } 
     cptcovn=j+1;  } 
   }  
   /************ Frequencies ********************/
   ncovmodel=2+cptcovn;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  {  /* Some frequencies */
      
   /* Read guess parameters */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   /* Reads comments: lines beginning with '#' */    int first;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***freq; /* Frequencies */
     ungetc(c,ficpar);    double *pp, **prop;
     fgets(line, MAXLINE, ficpar);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     puts(line);    FILE *ficresp;
     fputs(line,ficparo);    char fileresp[FILENAMELENGTH];
   }    
   ungetc(c,ficpar);    pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcpy(fileresp,"p");
     for(i=1; i <=nlstate; i++)    strcat(fileresp,fileres);
     for(j=1; j <=nlstate+ndeath-1; j++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       printf("%1d%1d",i,j);      exit(0);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar," %lf",&param[i][j][k]);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         printf(" %lf",param[i][j][k]);    j1=0;
         fprintf(ficparo," %lf",param[i][j][k]);    
       }    j=cptcoveff;
       fscanf(ficpar,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       printf("\n");  
       fprintf(ficparo,"\n");    first=1;
     }  
      for(k1=1; k1<=j;k1++){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(i1=1; i1<=ncodemax[k1];i1++){
   p=param[1][1];        j1++;
          /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   /* Reads comments: lines beginning with '#' */          scanf("%d", i);*/
   while((c=getc(ficpar))=='#' && c!= EOF){        for (i=-1; i<=nlstate+ndeath; i++)  
     ungetc(c,ficpar);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     fgets(line, MAXLINE, ficpar);            for(m=iagemin; m <= iagemax+3; m++)
     puts(line);              freq[i][jk][m]=0;
     fputs(line,ficparo);  
   }      for (i=1; i<=nlstate; i++)  
   ungetc(c,ficpar);        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        dateintsum=0;
   for(i=1; i <=nlstate; i++){        k2cpt=0;
     for(j=1; j <=nlstate+ndeath-1; j++){        for (i=1; i<=imx; i++) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);          bool=1;
       printf("%1d%1d",i,j);          if  (cptcovn>0) {
       fprintf(ficparo,"%1d%1d",i1,j1);            for (z1=1; z1<=cptcoveff; z1++) 
       for(k=1; k<=ncovmodel;k++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         fscanf(ficpar,"%le",&delti3[i][j][k]);                bool=0;
         printf(" %le",delti3[i][j][k]);          }
         fprintf(ficparo," %le",delti3[i][j][k]);          if (bool==1){
       }            for(m=firstpass; m<=lastpass; m++){
       fscanf(ficpar,"\n");              k2=anint[m][i]+(mint[m][i]/12.);
       printf("\n");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       fprintf(ficparo,"\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   delti=delti3[1][1];                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   /* Reads comments: lines beginning with '#' */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);                
     fgets(line, MAXLINE, ficpar);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     puts(line);                  dateintsum=dateintsum+k2;
     fputs(line,ficparo);                  k2cpt++;
   }                }
   ungetc(c,ficpar);                /*}*/
              }
   matcov=matrix(1,npar,1,npar);          }
   for(i=1; i <=npar; i++){        }
     fscanf(ficpar,"%s",&str);         
     printf("%s",str);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){        if  (cptcovn>0) {
       fscanf(ficpar," %le",&matcov[i][j]);          fprintf(ficresp, "\n#********** Variable "); 
       printf(" %.5le",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficparo," %.5le",matcov[i][j]);          fprintf(ficresp, "**********\n#");
     }        }
     fscanf(ficpar,"\n");        for(i=1; i<=nlstate;i++) 
     printf("\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficparo,"\n");        fprintf(ficresp, "\n");
   }        
   for(i=1; i <=npar; i++)        for(i=iagemin; i <= iagemax+3; i++){
     for(j=i+1;j<=npar;j++)          if(i==iagemax+3){
       matcov[i][j]=matcov[j][i];            fprintf(ficlog,"Total");
              }else{
   printf("\n");            if(first==1){
               first=0;
               printf("See log file for details...\n");
    if(mle==1){            }
     /*-------- data file ----------*/            fprintf(ficlog,"Age %d", i);
     if((ficres =fopen(fileres,"w"))==NULL) {          }
       printf("Problem with resultfile: %s\n", fileres);goto end;          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fprintf(ficres,"#%s\n",version);              pp[jk] += freq[jk][m][i]; 
              }
     if((fic=fopen(datafile,"r"))==NULL)    {          for(jk=1; jk <=nlstate ; jk++){
       printf("Problem with datafile: %s\n", datafile);goto end;            for(m=-1, pos=0; m <=0 ; m++)
     }              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
     n= lastobs;              if(first==1){
     severity = vector(1,maxwav);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     outcome=imatrix(1,maxwav+1,1,n);              }
     num=ivector(1,n);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     moisnais=vector(1,n);            }else{
     annais=vector(1,n);              if(first==1)
     moisdc=vector(1,n);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     andc=vector(1,n);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     agedc=vector(1,n);            }
     cod=ivector(1,n);          }
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          for(jk=1; jk <=nlstate ; jk++){
     mint=matrix(1,maxwav,1,n);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     anint=matrix(1,maxwav,1,n);              pp[jk] += freq[jk][m][i];
     s=imatrix(1,maxwav+1,1,n);          }       
     adl=imatrix(1,maxwav+1,1,n);              for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     tab=ivector(1,NCOVMAX);            pos += pp[jk];
     ncodemax=ivector(1,8);            posprop += prop[jk][i];
           }
     i=1;          for(jk=1; jk <=nlstate ; jk++){
     while (fgets(line, MAXLINE, fic) != NULL)    {            if(pos>=1.e-5){
       if ((i >= firstobs) && (i <=lastobs)) {              if(first==1)
                        printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         for (j=maxwav;j>=1;j--){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            }else{
           strcpy(line,stra);              if(first==1)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
                    if( i <= iagemax){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              if(pos>=1.e-5){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              }
               else
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         for (j=ncov;j>=1;j--){            }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }          
         num[i]=atol(stra);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/              if(freq[jk][m][i] !=0 ) {
               if(first==1)
         i=i+1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     }              }
           if(i <= iagemax)
     /*scanf("%d",i);*/            fprintf(ficresp,"\n");
   imx=i-1; /* Number of individuals */          if(first==1)
             printf("Others in log...\n");
   /* Calculation of the number of parameter from char model*/          fprintf(ficlog,"\n");
   Tvar=ivector(1,8);            }
          }
   if (strlen(model) >1){    }
     j=0;    dateintmean=dateintsum/k2cpt; 
     j=nbocc(model,'+');   
     cptcovn=j+1;    fclose(ficresp);
        free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     strcpy(modelsav,model);    free_vector(pp,1,nlstate);
     if (j==0) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);    /* End of Freq */
     }  }
     else {  
       for(i=j; i>=1;i--){  /************ Prevalence ********************/
         cutv(stra,strb,modelsav,'+');  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         if (strchr(strb,'*')) {  {  
           cutv(strd,strc,strb,'*');    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;       in each health status at the date of interview (if between dateprev1 and dateprev2).
           cutv(strb,strc,strd,'V');       We still use firstpass and lastpass as another selection.
           for (k=1; k<=lastobs;k++)    */
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   
         }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         else {cutv(strd,strc,strb,'V');    double ***freq; /* Frequencies */
         Tvar[i+1]=atoi(strc);    double *pp, **prop;
         }    double pos,posprop; 
         strcpy(modelsav,stra);      double  y2; /* in fractional years */
       }    int iagemin, iagemax;
       cutv(strd,strc,stra,'V');  
       Tvar[1]=atoi(strc);    iagemin= (int) agemin;
     }    iagemax= (int) agemax;
   }    /*pp=vector(1,nlstate);*/
   /*printf("tvar=%d ",Tvar[1]);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   scanf("%d ",i);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     fclose(fic);    j1=0;
     
     if (weightopt != 1) { /* Maximisation without weights*/    j=cptcoveff;
       for(i=1;i<=n;i++) weight[i]=1.0;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     }    
     /*-calculation of age at interview from date of interview and age at death -*/    for(k1=1; k1<=j;k1++){
     agev=matrix(1,maxwav,1,imx);      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
     for (i=1; i<=imx; i++)  {        
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for (i=1; i<=nlstate; i++)  
       for(m=1; (m<= maxwav); m++){          for(m=iagemin; m <= iagemax+3; m++)
         if(s[m][i] >0){            prop[i][m]=0.0;
           if (s[m][i] == nlstate+1) {       
             if(agedc[i]>0)        for (i=1; i<=imx; i++) { /* Each individual */
               if(moisdc[i]!=99 && andc[i]!=9999)          bool=1;
               agev[m][i]=agedc[i];          if  (cptcovn>0) {
             else{            for (z1=1; z1<=cptcoveff; z1++) 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
               agev[m][i]=-1;                bool=0;
             }          } 
           }          if (bool==1) { 
           else if(s[m][i] !=9){ /* Should no more exist */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             if(mint[m][i]==99 || anint[m][i]==9999)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               agev[m][i]=1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             else if(agev[m][i] <agemin){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               agemin=agev[m][i];                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             else if(agev[m][i] >agemax){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               agemax=agev[m][i];                  prop[s[m][i]][iagemax+3] += weight[i]; 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                } 
             }              }
             /*agev[m][i]=anint[m][i]-annais[i];*/            } /* end selection of waves */
             /*   agev[m][i] = age[i]+2*m;*/          }
           }        }
           else { /* =9 */        for(i=iagemin; i <= iagemax+3; i++){  
             agev[m][i]=1;          
             s[m][i]=-1;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           }            posprop += prop[jk][i]; 
         }          } 
         else /*= 0 Unknown */  
           agev[m][i]=1;          for(jk=1; jk <=nlstate ; jk++){     
       }            if( i <=  iagemax){ 
                  if(posprop>=1.e-5){ 
     }                probs[i][jk][j1]= prop[jk][i]/posprop;
     for (i=1; i<=imx; i++)  {              } 
       for(m=1; (m<= maxwav); m++){            } 
         if (s[m][i] > (nlstate+ndeath)) {          }/* end jk */ 
           printf("Error: Wrong value in nlstate or ndeath\n");          }/* end i */ 
           goto end;      } /* end i1 */
         }    } /* end k1 */
       }    
     }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);  /************* Waves Concatenation ***************/
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_matrix(mint,1,maxwav,1,n);  {
     free_matrix(anint,1,maxwav,1,n);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_vector(moisdc,1,n);       Death is a valid wave (if date is known).
     free_vector(andc,1,n);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           and mw[mi+1][i]. dh depends on stepm.
     wav=ivector(1,imx);       */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     /* Concatenates waves */       double sum=0., jmean=0.;*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    int first;
     int j, k=0,jk, ju, jl;
     double sum=0.;
 Tcode=ivector(1,100);    first=0;
    nbcode=imatrix(1,nvar,1,8);      jmin=1e+5;
    ncodemax[1]=1;    jmax=-1;
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);    jmean=0.;
      for(i=1; i<=imx; i++){
    codtab=imatrix(1,100,1,10);      mi=0;
    h=0;      m=firstpass;
    m=pow(2,cptcovn);      while(s[m][i] <= nlstate){
          if(s[m][i]>=1)
    for(k=1;k<=cptcovn; k++){          mw[++mi][i]=m;
      for(i=1; i <=(m/pow(2,k));i++){        if(m >=lastpass)
        for(j=1; j <= ncodemax[k]; j++){          break;
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){        else
            h++;          m++;
            if (h>m) h=1;codtab[h][k]=j;      }/* end while */
          }      if (s[m][i] > nlstate){
        }        mi++;     /* Death is another wave */
      }        /* if(mi==0)  never been interviewed correctly before death */
    }           /* Only death is a correct wave */
         mw[mi][i]=m;
    /*for(i=1; i <=m ;i++){      }
      for(k=1; k <=cptcovn; k++){  
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);      wav[i]=mi;
      }      if(mi==0){
      printf("\n");        if(first==0){
    }*/          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    /*scanf("%d",i);*/          first=1;
            }
    /* Calculates basic frequencies. Computes observed prevalence at single age        if(first==1){
        and prints on file fileres'p'. */          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);        }
       } /* end mi==0 */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } /* End individuals */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(i=1; i<=imx; i++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(mi=1; mi<wav[i];mi++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        if (stepm <=0)
              dh[mi][i]=1;
     /* For Powell, parameters are in a vector p[] starting at p[1]        else{
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            if (agedc[i] < 2*AGESUP) {
                  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
                    printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /*--------- results files --------------*/                j=1; /* Careful Patch */
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                    printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    jk=1;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
    fprintf(ficres,"# Parameters\n");              }
    printf("# Parameters\n");              k=k+1;
    for(i=1,jk=1; i <=nlstate; i++){              if (j >= jmax) jmax=j;
      for(k=1; k <=(nlstate+ndeath); k++){              if (j <= jmin) jmin=j;
        if (k != i)              sum=sum+j;
          {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
            printf("%d%d ",i,k);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
            fprintf(ficres,"%1d%1d ",i,k);            }
            for(j=1; j <=ncovmodel; j++){          }
              printf("%f ",p[jk]);          else{
              fprintf(ficres,"%f ",p[jk]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
              jk++;            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
            }            k=k+1;
            printf("\n");            if (j >= jmax) jmax=j;
            fprintf(ficres,"\n");            else if (j <= jmin)jmin=j;
          }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
    }            if(j<0){
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /* Computing hessian and covariance matrix */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     ftolhess=ftol; /* Usually correct */            }
     hesscov(matcov, p, npar, delti, ftolhess, func);            sum=sum+j;
     fprintf(ficres,"# Scales\n");          }
     printf("# Scales\n");          jk= j/stepm;
      for(i=1,jk=1; i <=nlstate; i++){          jl= j -jk*stepm;
       for(j=1; j <=nlstate+ndeath; j++){          ju= j -(jk+1)*stepm;
         if (j!=i) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           fprintf(ficres,"%1d%1d",i,j);            if(jl==0){
           printf("%1d%1d",i,j);              dh[mi][i]=jk;
           for(k=1; k<=ncovmodel;k++){              bh[mi][i]=0;
             printf(" %.5e",delti[jk]);            }else{ /* We want a negative bias in order to only have interpolation ie
             fprintf(ficres," %.5e",delti[jk]);                    * at the price of an extra matrix product in likelihood */
             jk++;              dh[mi][i]=jk+1;
           }              bh[mi][i]=ju;
           printf("\n");            }
           fprintf(ficres,"\n");          }else{
         }            if(jl <= -ju){
       }              dh[mi][i]=jk;
       }              bh[mi][i]=jl;       /* bias is positive if real duration
                                       * is higher than the multiple of stepm and negative otherwise.
     k=1;                                   */
     fprintf(ficres,"# Covariance\n");            }
     printf("# Covariance\n");            else{
     for(i=1;i<=npar;i++){              dh[mi][i]=jk+1;
       /*  if (k>nlstate) k=1;              bh[mi][i]=ju;
       i1=(i-1)/(ncovmodel*nlstate)+1;            }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            if(dh[mi][i]==0){
       printf("%s%d%d",alph[k],i1,tab[i]);*/              dh[mi][i]=1; /* At least one step */
       fprintf(ficres,"%3d",i);              bh[mi][i]=ju; /* At least one step */
       printf("%3d",i);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for(j=1; j<=i;j++){            }
         fprintf(ficres," %.5e",matcov[i][j]);          } /* end if mle */
         printf(" %.5e",matcov[i][j]);        }
       }      } /* end wave */
       fprintf(ficres,"\n");    }
       printf("\n");    jmean=sum/k;
       k++;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       }
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  /*********** Tricode ****************************/
       fgets(line, MAXLINE, ficpar);  void tricode(int *Tvar, int **nbcode, int imx)
       puts(line);  {
       fputs(line,ficparo);    
     }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     ungetc(c,ficpar);    int cptcode=0;
      cptcoveff=0; 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);   
        for (k=0; k<maxncov; k++) Ndum[k]=0;
     if (fage <= 2) {    for (k=1; k<=7; k++) ncodemax[k]=0;
       bage = agemin;  
       fage = agemax;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        Ndum[ij]++; /*store the modality */
 /*------------ gnuplot -------------*/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 chdir(pathcd);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   if((ficgp=fopen("graph.plt","w"))==NULL) {                                         Tvar[j]. If V=sex and male is 0 and 
     printf("Problem with file graph.gp");goto end;                                         female is 1, then  cptcode=1.*/
   }      }
 #ifdef windows  
   fprintf(ficgp,"cd \"%s\" \n",pathc);      for (i=0; i<=cptcode; i++) {
 #endif        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 m=pow(2,cptcovn);      }
    
  /* 1eme*/      ij=1; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {      for (i=1; i<=ncodemax[j]; i++) {
    for (k1=1; k1<= m ; k1 ++) {        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
 #ifdef windows            nbcode[Tvar[j]][ij]=k; 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 #endif            
 #ifdef unix            ij++;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);          }
 #endif          if (ij > ncodemax[j]) break; 
         }  
 for (i=1; i<= nlstate ; i ++) {      } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }   for (k=0; k< maxncov; k++) Ndum[k]=0;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {   for (i=1; i<=ncovmodel-2; i++) { 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");     ij=Tvar[i];
 }     Ndum[ij]++;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);   }
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   ij=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");   for (i=1; i<= maxncov; i++) {
 }       if((Ndum[i]!=0) && (i<=ncovcol)){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       Tvaraff[ij]=i; /*For printing */
 #ifdef unix       ij++;
 fprintf(ficgp,"\nset ter gif small size 400,300");     }
 #endif   }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);   
    }   cptcoveff=ij-1; /*Number of simple covariates*/
   }  }
   /*2 eme*/  
   /*********** Health Expectancies ****************/
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
      
     for (i=1; i<= nlstate+1 ; i ++) {  {
       k=2*i;    /* Health expectancies */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       for (j=1; j<= nlstate+1 ; j ++) {    double age, agelim, hf;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***p3mat,***varhe;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **dnewm,**doldm;
 }      double *xp;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    double **gp, **gm;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double ***gradg, ***trgradg;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    int theta;
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    xp=vector(1,npar);
 }      dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficgp,"\" t\"\" w l 0,");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficreseij,"# Health expectancies\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficreseij,"# Age");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficreseij,"\n");
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   /*3eme*/    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   for (k1=1; k1<= m ; k1 ++) {     * This is mainly to measure the difference between two models: for example
     for (cpt=1; cpt<= nlstate ; cpt ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
       k=2+nlstate*(cpt-1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);     * progression in between and thus overestimating or underestimating according
       for (i=1; i< nlstate ; i ++) {     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     * hypothesis. A more precise result, taking into account a more precise
     }     * curvature will be obtained if estepm is as small as stepm. */
   }  
      /* For example we decided to compute the life expectancy with the smallest unit */
   /* CV preval stat */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   for (k1=1; k1<= m ; k1 ++) {       nhstepm is the number of hstepm from age to agelim 
     for (cpt=1; cpt<nlstate ; cpt ++) {       nstepm is the number of stepm from age to agelin. 
       k=3;       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);       and note for a fixed period like estepm months */
       for (i=1; i< nlstate ; i ++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficgp,"+$%d",k+i+1);       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       means that if the survival funtion is printed only each two years of age and if
             you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       l=3+(nlstate+ndeath)*cpt;       results. So we changed our mind and took the option of the best precision.
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    */
       for (i=1; i< nlstate ; i ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);    agelim=AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        /* nhstepm age range expressed in number of stepm */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /* proba elementaires */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(i=1,jk=1; i <=nlstate; i++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     for(k=1; k <=(nlstate+ndeath); k++){      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       if (k != i) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
         for(j=1; j <=ncovmodel; j++){  
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           /*fprintf(ficgp,"%s",alph[1]);*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           jk++;   
           fprintf(ficgp,"\n");  
         }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       }  
     }      /* Computing Variances of health expectancies */
     }  
        for(theta=1; theta <=npar; theta++){
   for(jk=1; jk <=m; jk++) {        for(i=1; i<=npar; i++){ 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    i=1;        }
    for(k2=1; k2<=nlstate; k2++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      k3=i;    
      for(k=1; k<=(nlstate+ndeath); k++) {        cptj=0;
        if (k != k2){        for(j=1; j<= nlstate; j++){
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
         for(j=3; j <=ncovmodel; j++)            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
           fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         fprintf(ficgp,")/(1");            }
           }
         for(k1=1; k1 <=nlstate+1; k1=k1+2){          }
             fprintf(ficgp,"+exp(p%d+p%d*x",k1+k3-1,k1+k3);       
        
             for(j=3; j <=ncovmodel; j++)        for(i=1; i<=npar; i++) 
               fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             fprintf(ficgp,")");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }        
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        cptj=0;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for(j=1; j<= nlstate; j++){
     i=i+ncovmodel;          for(i=1;i<=nlstate;i++){
        }            cptj=cptj+1;
      }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    }  
   fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
    }            }
              }
   fclose(ficgp);        }
            for(j=1; j<= nlstate*nlstate; j++)
 chdir(path);          for(h=0; h<=nhstepm-1; h++){
     free_matrix(agev,1,maxwav,1,imx);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     free_ivector(wav,1,imx);          }
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       } 
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     
      /* End theta */
     free_imatrix(s,1,maxwav+1,1,n);  
           trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      
     free_ivector(num,1,n);       for(h=0; h<=nhstepm-1; h++)
     free_vector(agedc,1,n);        for(j=1; j<=nlstate*nlstate;j++)
     free_vector(weight,1,n);          for(theta=1; theta <=npar; theta++)
     /*free_matrix(covar,1,NCOVMAX,1,n);*/            trgradg[h][j][theta]=gradg[h][theta][j];
     fclose(ficparo);       
     fclose(ficres);  
    }       for(i=1;i<=nlstate*nlstate;i++)
            for(j=1;j<=nlstate*nlstate;j++)
    /*________fin mle=1_________*/          varhe[i][j][(int)age] =0.;
      
        printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     /* No more information from the sample is required now */       for(h=0;h<=nhstepm-1;h++){
   /* Reads comments: lines beginning with '#' */        for(k=0;k<=nhstepm-1;k++){
   while((c=getc(ficpar))=='#' && c!= EOF){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     ungetc(c,ficpar);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     fgets(line, MAXLINE, ficpar);          for(i=1;i<=nlstate*nlstate;i++)
     puts(line);            for(j=1;j<=nlstate*nlstate;j++)
     fputs(line,ficparo);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   }        }
   ungetc(c,ficpar);      }
        /* Computing expectancies */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      for(i=1; i<=nlstate;i++)
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        for(j=1; j<=nlstate;j++)
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 /*--------- index.htm --------*/            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   if((fichtm=fopen("index.htm","w"))==NULL)    {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     printf("Problem with index.htm \n");goto end;  
   }          }
   
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n      fprintf(ficreseij,"%3.0f",age );
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      cptj=0;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      for(i=1; i<=nlstate;i++)
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        for(j=1; j<=nlstate;j++){
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          cptj++;
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        }
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      fprintf(ficreseij,"\n");
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>     
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  fprintf(fichtm," <li>Graphs</li>\n<p>");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
  m=cptcovn;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    }
     printf("\n");
  j1=0;    fprintf(ficlog,"\n");
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    free_vector(xp,1,npar);
        j1++;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        if (cptcovn > 0) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
          fprintf(fichtm,"<hr>************ Results for covariates");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
          for (cpt=1; cpt<=cptcovn;cpt++)  }
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);  
          fprintf(fichtm," ************\n<hr>");  /************ Variance ******************/
        }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  {
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        /* Variance of health expectancies */
        for(cpt=1; cpt<nlstate;cpt++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    /* double **newm;*/
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    double **dnewm,**doldm;
        }    double **dnewmp,**doldmp;
     for(cpt=1; cpt<=nlstate;cpt++) {    int i, j, nhstepm, hstepm, h, nstepm ;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    int k, cptcode;
 interval) in state (%d): v%s%d%d.gif <br>    double *xp;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      double **gp, **gm;  /* for var eij */
      }    double ***gradg, ***trgradg; /*for var eij */
      for(cpt=1; cpt<=nlstate;cpt++) {    double **gradgp, **trgradgp; /* for var p point j */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    double *gpp, *gmp; /* for var p point j */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      }    double ***p3mat;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    double age,agelim, hf;
 health expectancies in states (1) and (2): e%s%d.gif<br>    double ***mobaverage;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    int theta;
 fprintf(fichtm,"\n</body>");    char digit[4];
    }    char digitp[25];
  }  
 fclose(fichtm);    char fileresprobmorprev[FILENAMELENGTH];
   
   /*--------------- Prevalence limit --------------*/    if(popbased==1){
        if(mobilav!=0)
   strcpy(filerespl,"pl");        strcpy(digitp,"-populbased-mobilav-");
   strcat(filerespl,fileres);      else strcpy(digitp,"-populbased-nomobil-");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    else 
   }      strcpy(digitp,"-stablbased-");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");    if (mobilav!=0) {
   fprintf(ficrespl,"#Age ");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(ficrespl,"\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   prlim=matrix(1,nlstate,1,nlstate);      }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(fileresprobmorprev,"prmorprev"); 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    sprintf(digit,"%-d",ij);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   k=0;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   agebase=agemin;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   agelim=agemax;    strcat(fileresprobmorprev,fileres);
   ftolpl=1.e-10;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   i1=cptcovn;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   if (cptcovn < 1){i1=1;}      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   for(cptcov=1;cptcov<=i1;cptcov++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         k=k+1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         fprintf(ficrespl,"\n#****** ");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         for(j=1;j<=cptcovn;j++)      fprintf(ficresprobmorprev," p.%-d SE",j);
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      for(i=1; i<=nlstate;i++)
         fprintf(ficrespl,"******\n");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
            }  
         for (age=agebase; age<=agelim; age++){    fprintf(ficresprobmorprev,"\n");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           fprintf(ficrespl,"%.0f",age );      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
           for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
           fprintf(ficrespl," %.5f", prlim[i][i]);      exit(0);
           fprintf(ficrespl,"\n");    }
         }    else{
       }      fprintf(ficgp,"\n# Routine varevsij");
     }    }
   fclose(ficrespl);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   /*------------- h Pij x at various ages ------------*/      printf("Problem with html file: %s\n", optionfilehtm);
        fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      exit(0);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    else{
   }      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   printf("Computing pij: result on file '%s' \n", filerespij);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (stepm<=24) stepsize=2;  
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   agelim=AGESUP;    fprintf(ficresvij,"# Age");
   hstepm=stepsize*YEARM; /* Every year of age */    for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   k=0;    fprintf(ficresvij,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    xp=vector(1,npar);
       k=k+1;    dnewm=matrix(1,nlstate,1,npar);
         fprintf(ficrespij,"\n#****** ");    doldm=matrix(1,nlstate,1,nlstate);
         for(j=1;j<=cptcovn;j++)    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrespij,"******\n");  
            gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    gpp=vector(nlstate+1,nlstate+ndeath);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    gmp=vector(nlstate+1,nlstate+ndeath);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    if(estepm < stepm){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficrespij,"# Age");    }
           for(i=1; i<=nlstate;i++)    else  hstepm=estepm;   
             for(j=1; j<=nlstate+ndeath;j++)    /* For example we decided to compute the life expectancy with the smallest unit */
               fprintf(ficrespij," %1d-%1d",i,j);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           fprintf(ficrespij,"\n");       nhstepm is the number of hstepm from age to agelim 
           for (h=0; h<=nhstepm; h++){       nstepm is the number of stepm from age to agelin. 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       Look at hpijx to understand the reason of that which relies in memory size
             for(i=1; i<=nlstate;i++)       and note for a fixed period like k years */
               for(j=1; j<=nlstate+ndeath;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       survival function given by stepm (the optimization length). Unfortunately it
             fprintf(ficrespij,"\n");       means that if the survival funtion is printed every two years of age and if
           }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
           fprintf(ficrespij,"\n");    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fclose(ficrespij);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------- Health expectancies and variances ------------*/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
   strcpy(filerest,"t");      gm=matrix(0,nhstepm,1,nlstate);
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcpy(filerese,"e");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {        if (popbased==1) {
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
  strcpy(fileresv,"v");            for(i=1; i<=nlstate;i++)
   strcat(fileresv,fileres);              prlim[i][i]=mobaverage[(int)age][i][ij];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        }
   }    
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   k=0;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
       k=k+1;        }
       fprintf(ficrest,"\n#****** ");        /* This for computing probability of death (h=1 means
       for(j=1;j<=cptcovn;j++)           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);           as a weighted average of prlim.
       fprintf(ficrest,"******\n");        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficreseij,"\n#****** ");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       for(j=1;j<=cptcovn;j++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        }    
       fprintf(ficreseij,"******\n");        /* end probability of death */
   
       fprintf(ficresvij,"\n#****** ");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       for(j=1;j<=cptcovn;j++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficresvij,"******\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        if (popbased==1) {
       oldm=oldms;savm=savms;          if(mobilav ==0){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);              for(i=1; i<=nlstate;i++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              prlim[i][i]=probs[(int)age][i][ij];
       oldm=oldms;savm=savms;          }else{ /* mobilav */ 
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for(i=1; i<=nlstate;i++)
                    prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        }
       fprintf(ficrest,"\n");  
                for(j=1; j<= nlstate; j++){
       hf=1;          for(h=0; h<=nhstepm; h++){
       if (stepm >= YEARM) hf=stepm/YEARM;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       epj=vector(1,nlstate+1);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(age=bage; age <=fage ;age++){          }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }
         fprintf(ficrest," %.0f",age);        /* This for computing probability of death (h=1 means
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){           computed over hstepm matrices product = hstepm*stepm months) 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {           as a weighted average of prlim.
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];        */
           }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           epj[nlstate+1] +=epj[j];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         for(i=1, vepp=0.;i <=nlstate;i++)        }    
           for(j=1;j <=nlstate;j++)        /* end probability of death */
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        for(j=1; j<= nlstate; j++) /* vareij */
         for(j=1;j <=nlstate;j++){          for(h=0; h<=nhstepm; h++){
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
         fprintf(ficrest,"\n");  
       }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   }        }
          
  fclose(ficreseij);      } /* End theta */
  fclose(ficresvij);  
   fclose(ficrest);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);      for(h=0; h<=nhstepm; h++) /* veij */
   /*  scanf("%d ",i); */        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   /*------- Variance limit prevalence------*/              trgradg[h][j][theta]=gradg[h][theta][j];
   
 strcpy(fileresvpl,"vpl");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   strcat(fileresvpl,fileres);        for(theta=1; theta <=npar; theta++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          trgradgp[j][theta]=gradgp[theta][j];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    
     exit(0);  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
  k=0;          vareij[i][j][(int)age] =0.;
  for(cptcov=1;cptcov<=i1;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(h=0;h<=nhstepm;h++){
      k=k+1;        for(k=0;k<=nhstepm;k++){
      fprintf(ficresvpl,"\n#****** ");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
      for(j=1;j<=cptcovn;j++)          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          for(i=1;i<=nlstate;i++)
      fprintf(ficresvpl,"******\n");            for(j=1;j<=nlstate;j++)
                    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        }
      oldm=oldms;savm=savms;      }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    
    }      /* pptj */
  }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   fclose(ficresvpl);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
   /*---------- End : free ----------------*/          varppt[j][i]=doldmp[j][i];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      /* end ppptj */
        /*  x centered again */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
        if (popbased==1) {
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        if(mobilav ==0){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          for(i=1; i<=nlstate;i++)
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            prlim[i][i]=probs[(int)age][i][ij];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
   free_matrix(matcov,1,npar,1,npar);            prlim[i][i]=mobaverage[(int)age][i][ij];
   free_vector(delti,1,npar);        }
        }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);               
       /* This for computing probability of death (h=1 means
   printf("End of Imach\n");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */         as a weighted average of prlim.
        */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   /*------ End -----------*/          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
  end:      /* end probability of death */
 #ifdef windows  
  chdir(pathcd);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 #endif      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  system("wgnuplot graph.plt");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
 #ifdef windows          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   while (z[0] != 'q') {        }
     chdir(pathcd);      } 
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      fprintf(ficresprobmorprev,"\n");
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");      fprintf(ficresvij,"%.0f ",age );
     else if (z[0] == 'e') {      for(i=1; i<=nlstate;i++)
       chdir(path);        for(j=1; j<=nlstate;j++){
       system("index.htm");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     }        }
     else if (z[0] == 'q') exit(0);      fprintf(ficresvij,"\n");
   }      free_matrix(gp,0,nhstepm,1,nlstate);
 #endif      free_matrix(gm,0,nhstepm,1,nlstate);
 }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
     fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fclose(ficgp);
     fclose(fichtm);
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
     }
     else{
       fprintf(ficgp,"\n# Routine varprob");
     }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
     }
     else{
       fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
   
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
     }
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fclose(ficgp);
     fclose(fichtm);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
     if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
       fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): e%s%d.png<br>\
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): v%s%d%d.png <br>\
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   fclose(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   
     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   m=pow(2,cptcoveff);
     
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfile)
   {
     if((fichier=fopen(optionfile,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfile);
       fprintf(ficlog,"Problem with file: %s\n", optionfile);
       return (1);
     }
   
   }
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a>\n\
    - Date and time at start: %s</ul>\n",\
             version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     fclose(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     if(fileappend(fichtm, optionfilehtm)){
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
       fclose(fichtm);
     }
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     if(fileappend(fichtm,optionfilehtm)){
       fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
       fclose(fichtm);
     }
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.5  
changed lines
  Added in v.1.86


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>