Diff for /imach/src/imach.c between versions 1.93 and 1.125

version 1.93, 2003/06/25 16:33:55 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): On windows (cygwin) function asctime_r doesn't    Errors in calculation of health expectancies. Age was not initialized.
   exist so I changed back to asctime which exists.    Forecasting file added.
   (Module): Version 0.96b  
     Revision 1.124  2006/03/22 17:13:53  lievre
   Revision 1.92  2003/06/25 16:30:45  brouard    Parameters are printed with %lf instead of %f (more numbers after the comma).
   (Module): On windows (cygwin) function asctime_r doesn't    The log-likelihood is printed in the log file
   exist so I changed back to asctime which exists.  
     Revision 1.123  2006/03/20 10:52:43  brouard
   Revision 1.91  2003/06/25 15:30:29  brouard    * imach.c (Module): <title> changed, corresponds to .htm file
   * imach.c (Repository): Duplicated warning errors corrected.    name. <head> headers where missing.
   (Repository): Elapsed time after each iteration is now output. It  
   helps to forecast when convergence will be reached. Elapsed time    * imach.c (Module): Weights can have a decimal point as for
   is stamped in powell.  We created a new html file for the graphs    English (a comma might work with a correct LC_NUMERIC environment,
   concerning matrix of covariance. It has extension -cov.htm.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.90  2003/06/24 12:34:15  brouard    1.
   (Module): Some bugs corrected for windows. Also, when    Version 0.98g
   mle=-1 a template is output in file "or"mypar.txt with the design  
   of the covariance matrix to be input.    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   Revision 1.89  2003/06/24 12:30:52  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   (Module): Some bugs corrected for windows. Also, when    otherwise the weight is truncated).
   mle=-1 a template is output in file "or"mypar.txt with the design    Modification of warning when the covariates values are not 0 or
   of the covariance matrix to be input.    1.
     Version 0.98g
   Revision 1.88  2003/06/23 17:54:56  brouard  
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
   Revision 1.87  2003/06/18 12:26:01  brouard  
   Version 0.96    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Revision 1.86  2003/06/17 20:04:08  brouard    not 1 month. Version 0.98f
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   Revision 1.85  2003/06/17 13:12:43  brouard    status=-2 in order to have more reliable computation if stepm is
   * imach.c (Repository): Check when date of death was earlier that    not 1 month. Version 0.98f
   current date of interview. It may happen when the death was just  
   prior to the death. In this case, dh was negative and likelihood    Revision 1.119  2006/03/15 17:42:26  brouard
   was wrong (infinity). We still send an "Error" but patch by    (Module): Bug if status = -2, the loglikelihood was
   assuming that the date of death was just one stepm after the    computed as likelihood omitting the logarithm. Version O.98e
   interview.  
   (Repository): Because some people have very long ID (first column)    Revision 1.118  2006/03/14 18:20:07  brouard
   we changed int to long in num[] and we added a new lvector for    (Module): varevsij Comments added explaining the second
   memory allocation. But we also truncated to 8 characters (left    table of variances if popbased=1 .
   truncation)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Repository): No more line truncation errors.    (Module): Function pstamp added
     (Module): Version 0.98d
   Revision 1.84  2003/06/13 21:44:43  brouard  
   * imach.c (Repository): Replace "freqsummary" at a correct    Revision 1.117  2006/03/14 17:16:22  brouard
   place. It differs from routine "prevalence" which may be called    (Module): varevsij Comments added explaining the second
   many times. Probs is memory consuming and must be used with    table of variances if popbased=1 .
   parcimony.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    (Module): Function pstamp added
     (Module): Version 0.98d
   Revision 1.83  2003/06/10 13:39:11  lievre  
   *** empty log message ***    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
   Revision 1.82  2003/06/05 15:57:20  brouard    varian-covariance of ej. is needed (Saito).
   Add log in  imach.c and  fullversion number is now printed.  
     Revision 1.115  2006/02/27 12:17:45  brouard
 */    (Module): One freematrix added in mlikeli! 0.98c
 /*  
    Interpolated Markov Chain    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
   Short summary of the programme:    filename with strsep.
     
   This program computes Healthy Life Expectancies from    Revision 1.113  2006/02/24 14:20:24  brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Memory leaks checks with valgrind and:
   first survey ("cross") where individuals from different ages are    datafile was not closed, some imatrix were not freed and on matrix
   interviewed on their health status or degree of disability (in the    allocation too.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.112  2006/01/30 09:55:26  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.111  2006/01/25 20:38:18  brouard
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Lots of cleaning and bugs added (Gompertz)
   simplest model is the multinomial logistic model where pij is the    (Module): Comments can be added in data file. Missing date values
   probability to be observed in state j at the second wave    can be a simple dot '.'.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.110  2006/01/25 00:51:50  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Lots of cleaning and bugs added (Gompertz)
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.109  2006/01/24 19:37:15  brouard
   you to do it.  More covariates you add, slower the    (Module): Comments (lines starting with a #) are allowed in data.
   convergence.  
     Revision 1.108  2006/01/19 18:05:42  lievre
   The advantage of this computer programme, compared to a simple    Gnuplot problem appeared...
   multinomial logistic model, is clear when the delay between waves is not    To be fixed
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.107  2006/01/19 16:20:37  brouard
   account using an interpolation or extrapolation.      Test existence of gnuplot in imach path
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.106  2006/01/19 13:24:36  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Some cleaning and links added in html output
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.105  2006/01/05 20:23:19  lievre
   semester or year) is modelled as a multinomial logistic.  The hPx    *** empty log message ***
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.104  2005/09/30 16:11:43  lievre
   hPijx.    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   Also this programme outputs the covariance matrix of the parameters but also    that the person is alive, then we can code his/her status as -2
   of the life expectancies. It also computes the stable prevalence.     (instead of missing=-1 in earlier versions) and his/her
       contributions to the likelihood is 1 - Prob of dying from last
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    health status (= 1-p13= p11+p12 in the easiest case of somebody in
            Institut national d'études démographiques, Paris.    the healthy state at last known wave). Version is 0.98
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.103  2005/09/30 15:54:49  lievre
   It is copyrighted identically to a GNU software product, ie programme and    (Module): sump fixed, loop imx fixed, and simplifications.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach  
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    Revision 1.101  2004/09/15 10:38:38  brouard
       Fix on curr_time
   **********************************************************************/  
 /*    Revision 1.100  2004/07/12 18:29:06  brouard
   main    Add version for Mac OS X. Just define UNIX in Makefile
   read parameterfile  
   read datafile    Revision 1.99  2004/06/05 08:57:40  brouard
   concatwav    *** empty log message ***
   freqsummary  
   if (mle >= 1)    Revision 1.98  2004/05/16 15:05:56  brouard
     mlikeli    New version 0.97 . First attempt to estimate force of mortality
   print results files    directly from the data i.e. without the need of knowing the health
   if mle==1     state at each age, but using a Gompertz model: log u =a + b*age .
      computes hessian    This is the basic analysis of mortality and should be done before any
   read end of parameter file: agemin, agemax, bage, fage, estepm    other analysis, in order to test if the mortality estimated from the
       begin-prev-date,...    cross-longitudinal survey is different from the mortality estimated
   open gnuplot file    from other sources like vital statistic data.
   open html file  
   stable prevalence    The same imach parameter file can be used but the option for mle should be -3.
    for age prevalim()  
   h Pij x    Agnès, who wrote this part of the code, tried to keep most of the
   variance of p varprob    former routines in order to include the new code within the former code.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    The output is very simple: only an estimate of the intercept and of
   Variance-covariance of DFLE    the slope with 95% confident intervals.
   prevalence()  
    movingaverage()    Current limitations:
   varevsij()     A) Even if you enter covariates, i.e. with the
   if popbased==1 varevsij(,popbased)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   total life expectancies    B) There is no computation of Life Expectancy nor Life Table.
   Variance of stable prevalence  
  end    Revision 1.97  2004/02/20 13:25:42  lievre
 */    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   
     Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #include <math.h>    rewritten within the same printf. Workaround: many printfs.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.95  2003/07/08 07:54:34  brouard
 #include <unistd.h>    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 #include <sys/time.h>    matrix (cov(a12,c31) instead of numbers.
 #include <time.h>  
 #include "timeval.h"    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.93  2003/06/25 16:33:55  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): On windows (cygwin) function asctime_r doesn't
 #define FILENAMELENGTH 132    exist so I changed back to asctime which exists.
 /*#define DEBUG*/    (Module): Version 0.96b
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.92  2003/06/25 16:30:45  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 #define NINTERVMAX 8    (Repository): Elapsed time after each iteration is now output. It
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    helps to forecast when convergence will be reached. Elapsed time
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    is stamped in powell.  We created a new html file for the graphs
 #define NCOVMAX 8 /* Maximum number of covariates */    concerning matrix of covariance. It has extension -cov.htm.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.90  2003/06/24 12:34:15  brouard
 #define AGESUP 130    (Module): Some bugs corrected for windows. Also, when
 #define AGEBASE 40    mle=-1 a template is output in file "or"mypar.txt with the design
 #ifdef unix    of the covariance matrix to be input.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.89  2003/06/24 12:30:52  brouard
 #else    (Module): Some bugs corrected for windows. Also, when
 #define DIRSEPARATOR '\\'    mle=-1 a template is output in file "or"mypar.txt with the design
 #define ODIRSEPARATOR '/'    of the covariance matrix to be input.
 #endif  
     Revision 1.88  2003/06/23 17:54:56  brouard
 /* $Id$ */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /* $State$ */  
     Revision 1.87  2003/06/18 12:26:01  brouard
 char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";    Version 0.96
 char fullversion[]="$Revision$ $Date$";   
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    Revision 1.86  2003/06/17 20:04:08  brouard
 int nvar;    (Module): Change position of html and gnuplot routines and added
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    routine fileappend.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.85  2003/06/17 13:12:43  brouard
 int ndeath=1; /* Number of dead states */    * imach.c (Repository): Check when date of death was earlier that
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    current date of interview. It may happen when the death was just
 int popbased=0;    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 int *wav; /* Number of waves for this individuual 0 is possible */    assuming that the date of death was just one stepm after the
 int maxwav; /* Maxim number of waves */    interview.
 int jmin, jmax; /* min, max spacing between 2 waves */    (Repository): Because some people have very long ID (first column)
 int gipmx, gsw; /* Global variables on the number of contributions     we changed int to long in num[] and we added a new lvector for
                    to the likelihood and the sum of weights (done by funcone)*/    memory allocation. But we also truncated to 8 characters (left
 int mle, weightopt;    truncation)
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Repository): No more line truncation errors.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    Revision 1.84  2003/06/13 21:44:43  brouard
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    * imach.c (Repository): Replace "freqsummary" at a correct
 double jmean; /* Mean space between 2 waves */    place. It differs from routine "prevalence" which may be called
 double **oldm, **newm, **savm; /* Working pointers to matrices */    many times. Probs is memory consuming and must be used with
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    parcimony.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 FILE *ficlog, *ficrespow;  
 int globpr; /* Global variable for printing or not */    Revision 1.83  2003/06/10 13:39:11  lievre
 double fretone; /* Only one call to likelihood */    *** empty log message ***
 long ipmx; /* Number of contributions */  
 double sw; /* Sum of weights */    Revision 1.82  2003/06/05 15:57:20  brouard
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    Add log in  imach.c and  fullversion number is now printed.
 FILE *ficresilk;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  */
 FILE *ficresprobmorprev;  /*
 FILE *fichtm, *fichtmcov; /* Html File */     Interpolated Markov Chain
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Short summary of the programme:
 FILE  *ficresvij;   
 char fileresv[FILENAMELENGTH];    This program computes Healthy Life Expectancies from
 FILE  *ficresvpl;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 char fileresvpl[FILENAMELENGTH];    first survey ("cross") where individuals from different ages are
 char title[MAXLINE];    interviewed on their health status or degree of disability (in the
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    case of a health survey which is our main interest) -2- at least a
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    second wave of interviews ("longitudinal") which measure each change
 char tmpout[FILENAMELENGTH];     (if any) in individual health status.  Health expectancies are
 char command[FILENAMELENGTH];    computed from the time spent in each health state according to a
 int  outcmd=0;    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    simplest model is the multinomial logistic model where pij is the
 char lfileres[FILENAMELENGTH];    probability to be observed in state j at the second wave
 char filelog[FILENAMELENGTH]; /* Log file */    conditional to be observed in state i at the first wave. Therefore
 char filerest[FILENAMELENGTH];    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 char fileregp[FILENAMELENGTH];    'age' is age and 'sex' is a covariate. If you want to have a more
 char popfile[FILENAMELENGTH];    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;    you to do it.  More covariates you add, slower the
     convergence.
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  
 struct timezone tzp;    The advantage of this computer programme, compared to a simple
 extern int gettimeofday();    multinomial logistic model, is clear when the delay between waves is not
 struct tm tmg, tm, tmf, *gmtime(), *localtime();    identical for each individual. Also, if a individual missed an
 long time_value;    intermediate interview, the information is lost, but taken into
 extern long time();    account using an interpolation or extrapolation.  
 char strcurr[80], strfor[80];  
     hPijx is the probability to be observed in state i at age x+h
 #define NR_END 1    conditional to the observed state i at age x. The delay 'h' can be
 #define FREE_ARG char*    split into an exact number (nh*stepm) of unobserved intermediate
 #define FTOL 1.0e-10    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define NRANSI     matrix is simply the matrix product of nh*stepm elementary matrices
 #define ITMAX 200     and the contribution of each individual to the likelihood is simply
     hPijx.
 #define TOL 2.0e-4   
     Also this programme outputs the covariance matrix of the parameters but also
 #define CGOLD 0.3819660     of the life expectancies. It also computes the period (stable) prevalence.
 #define ZEPS 1.0e-10    
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 #define GOLD 1.618034     This software have been partly granted by Euro-REVES, a concerted action
 #define GLIMIT 100.0     from the European Union.
 #define TINY 1.0e-20     It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 static double maxarg1,maxarg2;    can be accessed at http://euroreves.ined.fr/imach .
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))   
 #define rint(a) floor(a+0.5)    **********************************************************************/
   /*
 static double sqrarg;    main
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    read parameterfile
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     read datafile
     concatwav
 int imx;     freqsummary
 int stepm;    if (mle >= 1)
 /* Stepm, step in month: minimum step interpolation*/      mlikeli
     print results files
 int estepm;    if mle==1
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 int m,nb;        begin-prev-date,...
 long *num;    open gnuplot file
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    open html file
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    period (stable) prevalence
 double **pmmij, ***probs;     for age prevalim()
 double dateintmean=0;    h Pij x
     variance of p varprob
 double *weight;    forecasting if prevfcast==1 prevforecast call prevalence()
 int **s; /* Status */    health expectancies
 double *agedc, **covar, idx;    Variance-covariance of DFLE
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    prevalence()
      movingaverage()
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    varevsij()
 double ftolhess; /* Tolerance for computing hessian */    if popbased==1 varevsij(,popbased)
     total life expectancies
 /**************** split *************************/    Variance of period (stable) prevalence
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )   end
 {  */
   char  *ss;                            /* pointer */  
   int   l1, l2;                         /* length counters */  
   
   l1 = strlen(path );                   /* length of path */   
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #include <math.h>
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  #include <stdio.h>
   if ( ss == NULL ) {                   /* no directory, so use current */  #include <stdlib.h>
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  #include <string.h>
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #include <unistd.h>
     /* get current working directory */  
     /*    extern  char* getcwd ( char *buf , int len);*/  #include <limits.h>
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #include <sys/types.h>
       return( GLOCK_ERROR_GETCWD );  #include <sys/stat.h>
     }  #include <errno.h>
     strcpy( name, path );               /* we've got it */  extern int errno;
   } else {                              /* strip direcotry from path */  
     ss++;                               /* after this, the filename */  /* #include <sys/time.h> */
     l2 = strlen( ss );                  /* length of filename */  #include <time.h>
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #include "timeval.h"
     strcpy( name, ss );         /* save file name */  
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  /* #include <libintl.h> */
     dirc[l1-l2] = 0;                    /* add zero */  /* #define _(String) gettext (String) */
   }  
   l1 = strlen( dirc );                  /* length of directory */  #define MAXLINE 256
   /*#ifdef windows  
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define GNUPLOTPROGRAM "gnuplot"
 #else  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define FILENAMELENGTH 132
 #endif  
   */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   ss = strrchr( name, '.' );            /* find last / */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   ss++;  
   strcpy(ext,ss);                       /* save extension */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   l1= strlen( name);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   l2= strlen(ss)+1;  
   strncpy( finame, name, l1-l2);  #define NINTERVMAX 8
   finame[l1-l2]= 0;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   return( 0 );                          /* we're done */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /******************************************/  #define AGESUP 130
   #define AGEBASE 40
 void replace_back_to_slash(char *s, char*t)  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   int i;  #define DIRSEPARATOR '/'
   int lg=0;  #define CHARSEPARATOR "/"
   i=0;  #define ODIRSEPARATOR '\\'
   lg=strlen(t);  #else
   for(i=0; i<= lg; i++) {  #define DIRSEPARATOR '\\'
     (s[i] = t[i]);  #define CHARSEPARATOR "\\"
     if (t[i]== '\\') s[i]='/';  #define ODIRSEPARATOR '/'
   }  #endif
 }  
   /* $Id$ */
 int nbocc(char *s, char occ)  /* $State$ */
 {  
   int i,j=0;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   int lg=20;  char fullversion[]="$Revision$ $Date$";
   i=0;  char strstart[80];
   lg=strlen(s);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   if  (s[i] == occ ) j++;  int nvar;
   }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   return j;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 void cutv(char *u,char *v, char*t, char occ)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  int *wav; /* Number of waves for this individuual 0 is possible */
      gives u="abcedf" and v="ghi2j" */  int maxwav; /* Maxim number of waves */
   int i,lg,j,p=0;  int jmin, jmax; /* min, max spacing between 2 waves */
   i=0;  int ijmin, ijmax; /* Individuals having jmin and jmax */
   for(j=0; j<=strlen(t)-1; j++) {  int gipmx, gsw; /* Global variables on the number of contributions
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;                     to the likelihood and the sum of weights (done by funcone)*/
   }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   lg=strlen(t);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for(j=0; j<p; j++) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     (u[j] = t[j]);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   }  double jmean; /* Mean space between 2 waves */
      u[p]='\0';  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    for(j=0; j<= lg; j++) {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     if (j>=(p+1))(v[j-p-1] = t[j]);  FILE *ficlog, *ficrespow;
   }  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /********************** nrerror ********************/  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 void nrerror(char error_text[])  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   fprintf(stderr,"ERREUR ...\n");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   fprintf(stderr,"%s\n",error_text);  FILE *ficresprobmorprev;
   exit(EXIT_FAILURE);  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
 /*********************** vector *******************/  char filerese[FILENAMELENGTH];
 double *vector(int nl, int nh)  FILE *ficresstdeij;
 {  char fileresstde[FILENAMELENGTH];
   double *v;  FILE *ficrescveij;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char filerescve[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in vector");  FILE  *ficresvij;
   return v-nl+NR_END;  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /************************ free vector ******************/  char title[MAXLINE];
 void free_vector(double*v, int nl, int nh)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   int *v;  char filelog[FILENAMELENGTH]; /* Log file */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char filerest[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  char fileregp[FILENAMELENGTH];
   return v-nl+NR_END;  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   free((FREE_ARG)(v+nl-NR_END));  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /************************lvector *******************************/  extern long time();
 long *lvector(long nl,long nh)  char strcurr[80], strfor[80];
 {  
   long *v;  char *endptr;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  long lval;
   if (!v) nrerror("allocation failure in ivector");  double dval;
   return v-nl+NR_END;  
 }  #define NR_END 1
   #define FREE_ARG char*
 /******************free lvector **************************/  #define FTOL 1.0e-10
 void free_lvector(long *v, long nl, long nh)  
 {  #define NRANSI
   free((FREE_ARG)(v+nl-NR_END));  #define ITMAX 200
 }  
   #define TOL 2.0e-4
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)   #define CGOLD 0.3819660
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   #define ZEPS 1.0e-10
 {   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   
   int **m;   #define GOLD 1.618034
     #define GLIMIT 100.0
   /* allocate pointers to rows */   #define TINY 1.0e-20
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   
   if (!m) nrerror("allocation failure 1 in matrix()");   static double maxarg1,maxarg2;
   m += NR_END;   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m -= nrl;   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
     #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   /* allocate rows and set pointers to them */   #define rint(a) floor(a+0.5)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   static double sqrarg;
   m[nrl] += NR_END;   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl] -= ncl;   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
     int agegomp= AGEGOMP;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   
     int imx;
   /* return pointer to array of pointers to rows */   int stepm=1;
   return m;   /* Stepm, step in month: minimum step interpolation*/
 }   
   int estepm;
 /****************** free_imatrix *************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  int m,nb;
       long nch,ncl,nrh,nrl;   long *num;
      /* free an int matrix allocated by imatrix() */   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   double **pmmij, ***probs;
   free((FREE_ARG) (m+nrl-NR_END));   double *ageexmed,*agecens;
 }   double dateintmean=0;
   
 /******************* matrix *******************************/  double *weight;
 double **matrix(long nrl, long nrh, long ncl, long nch)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double **m;  double *lsurv, *lpop, *tpop;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (!m) nrerror("allocation failure 1 in matrix()");  double ftolhess; /* Tolerance for computing hessian */
   m += NR_END;  
   m -= nrl;  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   m[nrl] += NR_END;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m[nrl] -= ncl;    */
     char  *ss;                            /* pointer */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int   l1, l2;                         /* length counters */
   return m;  
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])     l1 = strlen(path );                   /* length of path */
    */    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
 /*************************free matrix ************************/      strcpy( name, path );               /* we got the fullname name because no directory */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      /* get current working directory */
   free((FREE_ARG)(m+nrl-NR_END));      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /******************* ma3x *******************************/      }
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      /* got dirc from getcwd*/
 {      printf(" DIRC = %s \n",dirc);
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    } else {                              /* strip direcotry from path */
   double ***m;      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m) nrerror("allocation failure 1 in matrix()");      strcpy( name, ss );         /* save file name */
   m += NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m -= nrl;      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    /* We add a separator at the end of dirc if not exists */
   m[nrl] += NR_END;    l1 = strlen( dirc );                  /* length of directory */
   m[nrl] -= ncl;    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      dirc[l1+1] = 0;
       printf(" DIRC3 = %s \n",dirc);
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    ss = strrchr( name, '.' );            /* find last / */
   m[nrl][ncl] += NR_END;    if (ss >0){
   m[nrl][ncl] -= nll;      ss++;
   for (j=ncl+1; j<=nch; j++)       strcpy(ext,ss);                     /* save extension */
     m[nrl][j]=m[nrl][j-1]+nlay;      l1= strlen( name);
         l2= strlen(ss)+1;
   for (i=nrl+1; i<=nrh; i++) {      strncpy( finame, name, l1-l2);
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      finame[l1-l2]= 0;
     for (j=ncl+1; j<=nch; j++)     }
       m[i][j]=m[i][j-1]+nlay;  
   }    return( 0 );                          /* we're done */
   return m;   }
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  
   */  /******************************************/
 }  
   void replace_back_to_slash(char *s, char*t)
 /*************************free ma3x ************************/  {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    int i;
 {    int lg=0;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    i=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(t);
   free((FREE_ARG)(m+nrl-NR_END));    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /***************** f1dim *************************/    }
 extern int ncom;   }
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);   int nbocc(char *s, char occ)
    {
 double f1dim(double x)     int i,j=0;
 {     int lg=20;
   int j;     i=0;
   double f;    lg=strlen(s);
   double *xt;     for(i=0; i<= lg; i++) {
      if  (s[i] == occ ) j++;
   xt=vector(1,ncom);     }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     return j;
   f=(*nrfunc)(xt);   }
   free_vector(xt,1,ncom);   
   return f;   void cutv(char *u,char *v, char*t, char occ)
 }   {
     /* cuts string t into u and v where u ends before first occurence of char 'occ'
 /*****************brent *************************/       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)        gives u="abcedf" and v="ghi2j" */
 {     int i,lg,j,p=0;
   int iter;     i=0;
   double a,b,d,etemp;    for(j=0; j<=strlen(t)-1; j++) {
   double fu,fv,fw,fx;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;   
   double e=0.0;     lg=strlen(t);
      for(j=0; j<p; j++) {
   a=(ax < cx ? ax : cx);       (u[j] = t[j]);
   b=(ax > cx ? ax : cx);     }
   x=w=v=bx;        u[p]='\0';
   fw=fv=fx=(*f)(x);   
   for (iter=1;iter<=ITMAX;iter++) {      for(j=0; j<= lg; j++) {
     xm=0.5*(a+b);       if (j>=(p+1))(v[j-p-1] = t[j]);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  /********************** nrerror ********************/
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void nrerror(char error_text[])
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    fprintf(stderr,"ERREUR ...\n");
 #endif    fprintf(stderr,"%s\n",error_text);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     exit(EXIT_FAILURE);
       *xmin=x;   }
       return fx;   /*********************** vector *******************/
     }   double *vector(int nl, int nh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {     double *v;
       r=(x-w)*(fx-fv);     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       q=(x-v)*(fx-fw);     if (!v) nrerror("allocation failure in vector");
       p=(x-v)*q-(x-w)*r;     return v-nl+NR_END;
       q=2.0*(q-r);   }
       if (q > 0.0) p = -p;   
       q=fabs(q);   /************************ free vector ******************/
       etemp=e;   void free_vector(double*v, int nl, int nh)
       e=d;   {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     free((FREE_ARG)(v+nl-NR_END));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));   }
       else {   
         d=p/q;   /************************ivector *******************************/
         u=x+d;   int *ivector(long nl,long nh)
         if (u-a < tol2 || b-u < tol2)   {
           d=SIGN(tol1,xm-x);     int *v;
       }     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     } else {     if (!v) nrerror("allocation failure in ivector");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     return v-nl+NR_END;
     }   }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   
     fu=(*f)(u);   /******************free ivector **************************/
     if (fu <= fx) {   void free_ivector(int *v, long nl, long nh)
       if (u >= x) a=x; else b=x;   {
       SHFT(v,w,x,u)     free((FREE_ARG)(v+nl-NR_END));
         SHFT(fv,fw,fx,fu)   }
         } else {   
           if (u < x) a=u; else b=u;   /************************lvector *******************************/
           if (fu <= fw || w == x) {   long *lvector(long nl,long nh)
             v=w;   {
             w=u;     long *v;
             fv=fw;     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
             fw=fu;     if (!v) nrerror("allocation failure in ivector");
           } else if (fu <= fv || v == x || v == w) {     return v-nl+NR_END;
             v=u;   }
             fv=fu;   
           }   /******************free lvector **************************/
         }   void free_lvector(long *v, long nl, long nh)
   }   {
   nrerror("Too many iterations in brent");     free((FREE_ARG)(v+nl-NR_END));
   *xmin=x;   }
   return fx;   
 }   /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch)
 /****************** mnbrak ***********************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
             double (*func)(double))     int **m;
 {    
   double ulim,u,r,q, dum;    /* allocate pointers to rows */
   double fu;     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
   *fa=(*func)(*ax);     m += NR_END;
   *fb=(*func)(*bx);     m -= nrl;
   if (*fb > *fa) {    
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)     /* allocate rows and set pointers to them */
       }     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   *cx=(*bx)+GOLD*(*bx-*ax);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fc=(*func)(*cx);     m[nrl] += NR_END;
   while (*fb > *fc) {     m[nrl] -= ncl;
     r=(*bx-*ax)*(*fb-*fc);    
     q=(*bx-*cx)*(*fb-*fa);     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     /* return pointer to array of pointers to rows */
     ulim=(*bx)+GLIMIT*(*cx-*bx);     return m;
     if ((*bx-u)*(u-*cx) > 0.0) {   }
       fu=(*func)(u);   
     } else if ((*cx-u)*(u-ulim) > 0.0) {   /****************** free_imatrix *************************/
       fu=(*func)(u);   void free_imatrix(m,nrl,nrh,ncl,nch)
       if (fu < *fc) {         int **m;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))         long nch,ncl,nrh,nrl;
           SHFT(*fb,*fc,fu,(*func)(u))        /* free an int matrix allocated by imatrix() */
           }   {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     free((FREE_ARG) (m[nrl]+ncl-NR_END));
       u=ulim;     free((FREE_ARG) (m+nrl-NR_END));
       fu=(*func)(u);   }
     } else {   
       u=(*cx)+GOLD*(*cx-*bx);   /******************* matrix *******************************/
       fu=(*func)(u);   double **matrix(long nrl, long nrh, long ncl, long nch)
     }   {
     SHFT(*ax,*bx,*cx,u)     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       SHFT(*fa,*fb,*fc,fu)     double **m;
       }   
 }     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** linmin ************************/    m += NR_END;
     m -= nrl;
 int ncom;   
 double *pcom,*xicom;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 double (*nrfunc)(double []);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     m[nrl] -= ncl;
 {   
   double brent(double ax, double bx, double cx,     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                double (*f)(double), double tol, double *xmin);     return m;
   double f1dim(double x);     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      */
               double *fc, double (*func)(double));   }
   int j;   
   double xx,xmin,bx,ax;   /*************************free matrix ************************/
   double fx,fb,fa;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
    {
   ncom=n;     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   pcom=vector(1,n);     free((FREE_ARG)(m+nrl-NR_END));
   xicom=vector(1,n);   }
   nrfunc=func;   
   for (j=1;j<=n;j++) {   /******************* ma3x *******************************/
     pcom[j]=p[j];   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     xicom[j]=xi[j];   {
   }     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   ax=0.0;     double ***m;
   xx=1.0;   
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m -= nrl;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) {     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     xi[j] *= xmin;     m[nrl] += NR_END;
     p[j] += xi[j];     m[nrl] -= ncl;
   }   
   free_vector(xicom,1,n);     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   free_vector(pcom,1,n);   
 }     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 char *asc_diff_time(long time_sec, char ascdiff[])    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   long sec_left, days, hours, minutes;    for (j=ncl+1; j<=nch; j++)
   days = (time_sec) / (60*60*24);      m[nrl][j]=m[nrl][j-1]+nlay;
   sec_left = (time_sec) % (60*60*24);   
   hours = (sec_left) / (60*60) ;    for (i=nrl+1; i<=nrh; i++) {
   sec_left = (sec_left) %(60*60);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   minutes = (sec_left) /60;      for (j=ncl+1; j<=nch; j++)
   sec_left = (sec_left) % (60);        m[i][j]=m[i][j-1]+nlay;
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);      }
   return ascdiff;    return m;
 }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 /*************** powell ************************/    */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   }
             double (*func)(double []))   
 {   /*************************free ma3x ************************/
   void linmin(double p[], double xi[], int n, double *fret,   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
               double (*func)(double []));   {
   int i,ibig,j;     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double del,t,*pt,*ptt,*xit;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double fp,fptt;    free((FREE_ARG)(m+nrl-NR_END));
   double *xits;  }
   int niterf, itmp;  
   /*************** function subdirf ***********/
   pt=vector(1,n);   char *subdirf(char fileres[])
   ptt=vector(1,n);   {
   xit=vector(1,n);     /* Caution optionfilefiname is hidden */
   xits=vector(1,n);     strcpy(tmpout,optionfilefiname);
   *fret=(*func)(p);     strcat(tmpout,"/"); /* Add to the right */
   for (j=1;j<=n;j++) pt[j]=p[j];     strcat(tmpout,fileres);
   for (*iter=1;;++(*iter)) {     return tmpout;
     fp=(*fret);   }
     ibig=0;   
     del=0.0;   /*************** function subdirf2 ***********/
     last_time=curr_time;  char *subdirf2(char fileres[], char *preop)
     (void) gettimeofday(&curr_time,&tzp);  {
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);   
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);    /* Caution optionfilefiname is hidden */
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);    strcpy(tmpout,optionfilefiname);
     for (i=1;i<=n;i++) {    strcat(tmpout,"/");
       printf(" %d %.12f",i, p[i]);    strcat(tmpout,preop);
       fprintf(ficlog," %d %.12lf",i, p[i]);    strcat(tmpout,fileres);
       fprintf(ficrespow," %.12lf", p[i]);    return tmpout;
     }  }
     printf("\n");  
     fprintf(ficlog,"\n");  /*************** function subdirf3 ***********/
     fprintf(ficrespow,"\n");fflush(ficrespow);  char *subdirf3(char fileres[], char *preop, char *preop2)
     if(*iter <=3){  {
       tm = *localtime(&curr_time.tv_sec);   
       strcpy(strcurr,asctime(&tmf));    /* Caution optionfilefiname is hidden */
 /*       asctime_r(&tm,strcurr); */    strcpy(tmpout,optionfilefiname);
       forecast_time=curr_time;    strcat(tmpout,"/");
       itmp = strlen(strcurr);    strcat(tmpout,preop);
       if(strcurr[itmp-1]=='\n')    strcat(tmpout,preop2);
         strcurr[itmp-1]='\0';    strcat(tmpout,fileres);
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    return tmpout;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  }
       for(niterf=10;niterf<=30;niterf+=10){  
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);  /***************** f1dim *************************/
         tmf = *localtime(&forecast_time.tv_sec);  extern int ncom;
 /*      asctime_r(&tmf,strfor); */  extern double *pcom,*xicom;
         strcpy(strfor,asctime(&tmf));  extern double (*nrfunc)(double []);
         itmp = strlen(strfor);   
         if(strfor[itmp-1]=='\n')  double f1dim(double x)
         strfor[itmp-1]='\0';  {
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    int j;
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    double f;
       }    double *xt;
     }   
     for (i=1;i<=n;i++) {     xt=vector(1,ncom);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
       fptt=(*fret);     f=(*nrfunc)(xt);
 #ifdef DEBUG    free_vector(xt,1,ncom);
       printf("fret=%lf \n",*fret);    return f;
       fprintf(ficlog,"fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /*****************brent *************************/
       fprintf(ficlog,"%d",i);fflush(ficlog);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
       linmin(p,xit,n,fret,func);   {
       if (fabs(fptt-(*fret)) > del) {     int iter;
         del=fabs(fptt-(*fret));     double a,b,d,etemp;
         ibig=i;     double fu,fv,fw,fx;
       }     double ftemp;
 #ifdef DEBUG    double p,q,r,tol1,tol2,u,v,w,x,xm;
       printf("%d %.12e",i,(*fret));    double e=0.0;
       fprintf(ficlog,"%d %.12e",i,(*fret));   
       for (j=1;j<=n;j++) {    a=(ax < cx ? ax : cx);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    b=(ax > cx ? ax : cx);
         printf(" x(%d)=%.12e",j,xit[j]);    x=w=v=bx;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    fw=fv=fx=(*f)(x);
       }    for (iter=1;iter<=ITMAX;iter++) {
       for(j=1;j<=n;j++) {      xm=0.5*(a+b);
         printf(" p=%.12e",p[j]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
         fprintf(ficlog," p=%.12e",p[j]);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       }      printf(".");fflush(stdout);
       printf("\n");      fprintf(ficlog,".");fflush(ficlog);
       fprintf(ficlog,"\n");  #ifdef DEBUG
 #endif      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 #ifdef DEBUG  #endif
       int k[2],l;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       k[0]=1;        *xmin=x;
       k[1]=-1;        return fx;
       printf("Max: %.12e",(*func)(p));      }
       fprintf(ficlog,"Max: %.12e",(*func)(p));      ftemp=fu;
       for (j=1;j<=n;j++) {      if (fabs(e) > tol1) {
         printf(" %.12e",p[j]);        r=(x-w)*(fx-fv);
         fprintf(ficlog," %.12e",p[j]);        q=(x-v)*(fx-fw);
       }        p=(x-v)*q-(x-w)*r;
       printf("\n");        q=2.0*(q-r);
       fprintf(ficlog,"\n");        if (q > 0.0) p = -p;
       for(l=0;l<=1;l++) {        q=fabs(q);
         for (j=1;j<=n;j++) {        etemp=e;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        e=d;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          d=CGOLD*(e=(x >= xm ? a-x : b-x));
         }        else {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          d=p/q;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          u=x+d;
       }          if (u-a < tol2 || b-u < tol2)
 #endif            d=SIGN(tol1,xm-x);
         }
       } else {
       free_vector(xit,1,n);         d=CGOLD*(e=(x >= xm ? a-x : b-x));
       free_vector(xits,1,n);       }
       free_vector(ptt,1,n);       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       free_vector(pt,1,n);       fu=(*f)(u);
       return;       if (fu <= fx) {
     }         if (u >= x) a=x; else b=x;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");         SHFT(v,w,x,u)
     for (j=1;j<=n;j++) {           SHFT(fv,fw,fx,fu)
       ptt[j]=2.0*p[j]-pt[j];           } else {
       xit[j]=p[j]-pt[j];             if (u < x) a=u; else b=u;
       pt[j]=p[j];             if (fu <= fw || w == x) {
     }               v=w;
     fptt=(*func)(ptt);               w=u;
     if (fptt < fp) {               fv=fw;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);               fw=fu;
       if (t < 0.0) {             } else if (fu <= fv || v == x || v == w) {
         linmin(p,xit,n,fret,func);               v=u;
         for (j=1;j<=n;j++) {               fv=fu;
           xi[j][ibig]=xi[j][n];             }
           xi[j][n]=xit[j];           }
         }    }
 #ifdef DEBUG    nrerror("Too many iterations in brent");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    *xmin=x;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return fx;
         for(j=1;j<=n;j++){  }
           printf(" %.12e",xit[j]);  
           fprintf(ficlog," %.12e",xit[j]);  /****************** mnbrak ***********************/
         }  
         printf("\n");  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
         fprintf(ficlog,"\n");              double (*func)(double))
 #endif  {
       }    double ulim,u,r,q, dum;
     }     double fu;
   }    
 }     *fa=(*func)(*ax);
     *fb=(*func)(*bx);
 /**** Prevalence limit (stable prevalence)  ****************/    if (*fb > *fa) {
       SHFT(dum,*ax,*bx,dum)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        SHFT(dum,*fb,*fa,dum)
 {        }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    *cx=(*bx)+GOLD*(*bx-*ax);
      matrix by transitions matrix until convergence is reached */    *fc=(*func)(*cx);
     while (*fb > *fc) {
   int i, ii,j,k;      r=(*bx-*ax)*(*fb-*fc);
   double min, max, maxmin, maxmax,sumnew=0.;      q=(*bx-*cx)*(*fb-*fa);
   double **matprod2();      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   double **out, cov[NCOVMAX], **pmij();        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   double **newm;      ulim=(*bx)+GLIMIT*(*cx-*bx);
   double agefin, delaymax=50 ; /* Max number of years to converge */      if ((*bx-u)*(u-*cx) > 0.0) {
         fu=(*func)(u);
   for (ii=1;ii<=nlstate+ndeath;ii++)      } else if ((*cx-u)*(u-ulim) > 0.0) {
     for (j=1;j<=nlstate+ndeath;j++){        fu=(*func)(u);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        if (fu < *fc) {
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
             SHFT(*fb,*fc,fu,(*func)(u))
    cov[1]=1.;            }
        } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        u=ulim;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        fu=(*func)(u);
     newm=savm;      } else {
     /* Covariates have to be included here again */        u=(*cx)+GOLD*(*cx-*bx);
      cov[2]=agefin;        fu=(*func)(u);
         }
       for (k=1; k<=cptcovn;k++) {      SHFT(*ax,*bx,*cx,u)
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        SHFT(*fa,*fb,*fc,fu)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        }
       }  }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*************** linmin ************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   int ncom;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  double *pcom,*xicom;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double (*nrfunc)(double []);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/   
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   {
     savm=oldm;    double brent(double ax, double bx, double cx,
     oldm=newm;                 double (*f)(double), double tol, double *xmin);
     maxmax=0.;    double f1dim(double x);
     for(j=1;j<=nlstate;j++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       min=1.;                double *fc, double (*func)(double));
       max=0.;    int j;
       for(i=1; i<=nlstate; i++) {    double xx,xmin,bx,ax;
         sumnew=0;    double fx,fb,fa;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];   
         prlim[i][j]= newm[i][j]/(1-sumnew);    ncom=n;
         max=FMAX(max,prlim[i][j]);    pcom=vector(1,n);
         min=FMIN(min,prlim[i][j]);    xicom=vector(1,n);
       }    nrfunc=func;
       maxmin=max-min;    for (j=1;j<=n;j++) {
       maxmax=FMAX(maxmax,maxmin);      pcom[j]=p[j];
     }      xicom[j]=xi[j];
     if(maxmax < ftolpl){    }
       return prlim;    ax=0.0;
     }    xx=1.0;
   }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
 }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   #ifdef DEBUG
 /*************** transition probabilities ***************/     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #endif
 {    for (j=1;j<=n;j++) {
   double s1, s2;      xi[j] *= xmin;
   /*double t34;*/      p[j] += xi[j];
   int i,j,j1, nc, ii, jj;    }
     free_vector(xicom,1,n);
     for(i=1; i<= nlstate; i++){    free_vector(pcom,1,n);
     for(j=1; j<i;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  char *asc_diff_time(long time_sec, char ascdiff[])
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    long sec_left, days, hours, minutes;
       }    days = (time_sec) / (60*60*24);
       ps[i][j]=s2;    sec_left = (time_sec) % (60*60*24);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    hours = (sec_left) / (60*60) ;
     }    sec_left = (sec_left) %(60*60);
     for(j=i+1; j<=nlstate+ndeath;j++){    minutes = (sec_left) /60;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    sec_left = (sec_left) % (60);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    return ascdiff;
       }  }
       ps[i][j]=s2;  
     }  /*************** powell ************************/
   }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
     /*ps[3][2]=1;*/              double (*func)(double []))
   {
   for(i=1; i<= nlstate; i++){    void linmin(double p[], double xi[], int n, double *fret,
      s1=0;                double (*func)(double []));
     for(j=1; j<i; j++)    int i,ibig,j;
       s1+=exp(ps[i][j]);    double del,t,*pt,*ptt,*xit;
     for(j=i+1; j<=nlstate+ndeath; j++)    double fp,fptt;
       s1+=exp(ps[i][j]);    double *xits;
     ps[i][i]=1./(s1+1.);    int niterf, itmp;
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    pt=vector(1,n);
     for(j=i+1; j<=nlstate+ndeath; j++)    ptt=vector(1,n);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    xit=vector(1,n);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    xits=vector(1,n);
   } /* end i */    *fret=(*func)(p);
     for (j=1;j<=n;j++) pt[j]=p[j];
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    for (*iter=1;;++(*iter)) {
     for(jj=1; jj<= nlstate+ndeath; jj++){      fp=(*fret);
       ps[ii][jj]=0;      ibig=0;
       ps[ii][ii]=1;      del=0.0;
     }      last_time=curr_time;
   }      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     for(jj=1; jj<= nlstate+ndeath; jj++){     for (i=1;i<=n;i++) {
      printf("%lf ",ps[ii][jj]);        printf(" %d %.12f",i, p[i]);
    }        fprintf(ficlog," %d %.12lf",i, p[i]);
     printf("\n ");        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     printf("\n ");printf("%lf ",cov[2]);*/      printf("\n");
 /*      fprintf(ficlog,"\n");
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      fprintf(ficrespow,"\n");fflush(ficrespow);
   goto end;*/      if(*iter <=3){
     return ps;        tm = *localtime(&curr_time.tv_sec);
 }        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
 /**************** Product of 2 matrices ******************/        forecast_time=curr_time;
         itmp = strlen(strcurr);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 {          strcurr[itmp-1]='\0';
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /* in, b, out are matrice of pointers which should have been initialized         for(niterf=10;niterf<=30;niterf+=10){
      before: only the contents of out is modified. The function returns          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
      a pointer to pointers identical to out */          tmf = *localtime(&forecast_time.tv_sec);
   long i, j, k;  /*      asctime_r(&tmf,strfor); */
   for(i=nrl; i<= nrh; i++)          strcpy(strfor,asctime(&tmf));
     for(k=ncolol; k<=ncoloh; k++)          itmp = strlen(strfor);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          if(strfor[itmp-1]=='\n')
         out[i][k] +=in[i][j]*b[j][k];          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   return out;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 }        }
       }
       for (i=1;i<=n;i++) {
 /************* Higher Matrix Product ***************/        for (j=1;j<=n;j++) xit[j]=xi[j][i];
         fptt=(*fret);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #ifdef DEBUG
 {        printf("fret=%lf \n",*fret);
   /* Computes the transition matrix starting at age 'age' over         fprintf(ficlog,"fret=%lf \n",*fret);
      'nhstepm*hstepm*stepm' months (i.e. until  #endif
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying         printf("%d",i);fflush(stdout);
      nhstepm*hstepm matrices.         fprintf(ficlog,"%d",i);fflush(ficlog);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step         linmin(p,xit,n,fret,func);
      (typically every 2 years instead of every month which is too big         if (fabs(fptt-(*fret)) > del) {
      for the memory).          del=fabs(fptt-(*fret));
      Model is determined by parameters x and covariates have to be           ibig=i;
      included manually here.         }
   #ifdef DEBUG
      */        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   int i, j, d, h, k;        for (j=1;j<=n;j++) {
   double **out, cov[NCOVMAX];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double **newm;          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /* Hstepm could be zero and should return the unit matrix */        }
   for (i=1;i<=nlstate+ndeath;i++)        for(j=1;j<=n;j++) {
     for (j=1;j<=nlstate+ndeath;j++){          printf(" p=%.12e",p[j]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);          fprintf(ficlog," p=%.12e",p[j]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        }
     }        printf("\n");
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fprintf(ficlog,"\n");
   for(h=1; h <=nhstepm; h++){  #endif
     for(d=1; d <=hstepm; d++){      }
       newm=savm;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       /* Covariates have to be included here again */  #ifdef DEBUG
       cov[1]=1.;        int k[2],l;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        k[0]=1;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        k[1]=-1;
       for (k=1; k<=cptcovage;k++)        printf("Max: %.12e",(*func)(p));
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (k=1; k<=cptcovprod;k++)        for (j=1;j<=n;j++) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
         }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        printf("\n");
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        fprintf(ficlog,"\n");
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         for(l=0;l<=1;l++) {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          for (j=1;j<=n;j++) {
       savm=oldm;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       oldm=newm;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(i=1; i<=nlstate+ndeath; i++)          }
       for(j=1;j<=nlstate+ndeath;j++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         po[i][j][h]=newm[i][j];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        }
          */  #endif
       }  
   } /* end h */  
   return po;        free_vector(xit,1,n);
 }        free_vector(xits,1,n);
         free_vector(ptt,1,n);
         free_vector(pt,1,n);
 /*************** log-likelihood *************/        return;
 double func( double *x)      }
 {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
   int i, ii, j, k, mi, d, kk;      for (j=1;j<=n;j++) {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        ptt[j]=2.0*p[j]-pt[j];
   double **out;        xit[j]=p[j]-pt[j];
   double sw; /* Sum of weights */        pt[j]=p[j];
   double lli; /* Individual log likelihood */      }
   int s1, s2;      fptt=(*func)(ptt);
   double bbh, survp;      if (fptt < fp) {
   long ipmx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
   /*extern weight */        if (t < 0.0) {
   /* We are differentiating ll according to initial status */          linmin(p,xit,n,fret,func);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          for (j=1;j<=n;j++) {
   /*for(i=1;i<imx;i++)             xi[j][ibig]=xi[j][n];
     printf(" %d\n",s[4][i]);            xi[j][n]=xit[j];
   */          }
   cov[1]=1.;  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(k=1; k<=nlstate; k++) ll[k]=0.;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   if(mle==1){            printf(" %.12e",xit[j]);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            fprintf(ficlog," %.12e",xit[j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          }
       for(mi=1; mi<= wav[i]-1; mi++){          printf("\n");
         for (ii=1;ii<=nlstate+ndeath;ii++)          fprintf(ficlog,"\n");
           for (j=1;j<=nlstate+ndeath;j++){  #endif
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      }
           }    }
         for(d=0; d<dh[mi][i]; d++){  }
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /**** Prevalence limit (stable or period prevalence)  ****************/
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           }  {
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       matrix by transitions matrix until convergence is reached */
           savm=oldm;  
           oldm=newm;    int i, ii,j,k;
         } /* end mult */    double min, max, maxmin, maxmax,sumnew=0.;
           double **matprod2();
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */    double **out, cov[NCOVMAX], **pmij();
         /* But now since version 0.9 we anticipate for bias and large stepm.    double **newm;
          * If stepm is larger than one month (smallest stepm) and if the exact delay     double agefin, delaymax=50 ; /* Max number of years to converge */
          * (in months) between two waves is not a multiple of stepm, we rounded to   
          * the nearest (and in case of equal distance, to the lowest) interval but now    for (ii=1;ii<=nlstate+ndeath;ii++)
          * we keep into memory the bias bh[mi][i] and also the previous matrix product      for (j=1;j<=nlstate+ndeath;j++){
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          * probability in order to take into account the bias as a fraction of the way      }
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies  
          * -stepm/2 to stepm/2 .     cov[1]=1.;
          * For stepm=1 the results are the same as for previous versions of Imach.   
          * For stepm > 1 the results are less biased than in previous versions.    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         s1=s[mw[mi][i]][i];      newm=savm;
         s2=s[mw[mi+1][i]][i];      /* Covariates have to be included here again */
         bbh=(double)bh[mi][i]/(double)stepm;        cov[2]=agefin;
         /* bias is positive if real duration   
          * is higher than the multiple of stepm and negative otherwise.        for (k=1; k<=cptcovn;k++) {
          */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         if( s2 > nlstate){         }
           /* i.e. if s2 is a death state and if the date of death is known then the contribution        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              to the likelihood is the probability to die between last step unit time and current         for (k=1; k<=cptcovprod;k++)
              step unit time, which is also the differences between probability to die before dh           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              and probability to die before dh-stepm .   
              In version up to 0.92 likelihood was computed        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         as if date of death was unknown. Death was treated as any other        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         health state: the date of the interview describes the actual state        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         and not the date of a change in health state. The former idea was      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         to consider that at each interview the state was recorded  
         (healthy, disable or death) and IMaCh was corrected; but when we      savm=oldm;
         introduced the exact date of death then we should have modified      oldm=newm;
         the contribution of an exact death to the likelihood. This new      maxmax=0.;
         contribution is smaller and very dependent of the step unit      for(j=1;j<=nlstate;j++){
         stepm. It is no more the probability to die between last interview        min=1.;
         and month of death but the probability to survive from last        max=0.;
         interview up to one month before death multiplied by the        for(i=1; i<=nlstate; i++) {
         probability to die within a month. Thanks to Chris          sumnew=0;
         Jackson for correcting this bug.  Former versions increased          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         mortality artificially. The bad side is that we add another loop          prlim[i][j]= newm[i][j]/(1-sumnew);
         which slows down the processing. The difference can be up to 10%          max=FMAX(max,prlim[i][j]);
         lower mortality.          min=FMIN(min,prlim[i][j]);
           */        }
           lli=log(out[s1][s2] - savm[s1][s2]);        maxmin=max-min;
         }else{        maxmax=FMAX(maxmax,maxmin);
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      }
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */      if(maxmax < ftolpl){
         }         return prlim;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/      }
         /*if(lli ==000.0)*/    }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */  }
         ipmx +=1;  
         sw += weight[i];  /*************** transition probabilities ***************/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
       } /* end of wave */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     } /* end of individual */  {
   }  else if(mle==2){    double s1, s2;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    /*double t34;*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    int i,j,j1, nc, ii, jj;
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)      for(i=1; i<= nlstate; i++){
           for (j=1;j<=nlstate+ndeath;j++){        for(j=1; j<i;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            /*s2 += param[i][j][nc]*cov[nc];*/
           }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         for(d=0; d<=dh[mi][i]; d++){  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           newm=savm;          }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          ps[i][j]=s2;
           for (kk=1; kk<=cptcovage;kk++) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        }
           }        for(j=i+1; j<=nlstate+ndeath;j++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           savm=oldm;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           oldm=newm;          }
         } /* end mult */          ps[i][j]=s2;
               }
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      }
         /* But now since version 0.9 we anticipate for bias and large stepm.      /*ps[3][2]=1;*/
          * If stepm is larger than one month (smallest stepm) and if the exact delay      
          * (in months) between two waves is not a multiple of stepm, we rounded to       for(i=1; i<= nlstate; i++){
          * the nearest (and in case of equal distance, to the lowest) interval but now        s1=0;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        for(j=1; j<i; j++)
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the          s1+=exp(ps[i][j]);
          * probability in order to take into account the bias as a fraction of the way        for(j=i+1; j<=nlstate+ndeath; j++)
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies          s1+=exp(ps[i][j]);
          * -stepm/2 to stepm/2 .        ps[i][i]=1./(s1+1.);
          * For stepm=1 the results are the same as for previous versions of Imach.        for(j=1; j<i; j++)
          * For stepm > 1 the results are less biased than in previous versions.           ps[i][j]= exp(ps[i][j])*ps[i][i];
          */        for(j=i+1; j<=nlstate+ndeath; j++)
         s1=s[mw[mi][i]][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         s2=s[mw[mi+1][i]][i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         bbh=(double)bh[mi][i]/(double)stepm;       } /* end i */
         /* bias is positive if real duration     
          * is higher than the multiple of stepm and negative otherwise.      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          */        for(jj=1; jj<= nlstate+ndeath; jj++){
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          ps[ii][jj]=0;
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          ps[ii][ii]=1;
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */        }
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/      }
         /*if(lli ==000.0)*/     
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */  
         ipmx +=1;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         sw += weight[i];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*         printf("ddd %lf ",ps[ii][jj]); */
       } /* end of wave */  /*       } */
     } /* end of individual */  /*       printf("\n "); */
   }  else if(mle==3){  /* exponential inter-extrapolation */  /*        } */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*        printf("\n ");printf("%lf ",cov[2]); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];         /*
       for(mi=1; mi<= wav[i]-1; mi++){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for (ii=1;ii<=nlstate+ndeath;ii++)        goto end;*/
           for (j=1;j<=nlstate+ndeath;j++){      return ps;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  /**************** Product of 2 matrices ******************/
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  {
           for (kk=1; kk<=cptcovage;kk++) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           }    /* in, b, out are matrice of pointers which should have been initialized
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       before: only the contents of out is modified. The function returns
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       a pointer to pointers identical to out */
           savm=oldm;    long i, j, k;
           oldm=newm;    for(i=nrl; i<= nrh; i++)
         } /* end mult */      for(k=ncolol; k<=ncoloh; k++)
               for(j=ncl,out[i][k]=0.; j<=nch; j++)
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          out[i][k] +=in[i][j]*b[j][k];
         /* But now since version 0.9 we anticipate for bias and large stepm.  
          * If stepm is larger than one month (smallest stepm) and if the exact delay     return out;
          * (in months) between two waves is not a multiple of stepm, we rounded to   }
          * the nearest (and in case of equal distance, to the lowest) interval but now  
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the  /************* Higher Matrix Product ***************/
          * probability in order to take into account the bias as a fraction of the way  
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
          * -stepm/2 to stepm/2 .  {
          * For stepm=1 the results are the same as for previous versions of Imach.    /* Computes the transition matrix starting at age 'age' over
          * For stepm > 1 the results are less biased than in previous versions.        'nhstepm*hstepm*stepm' months (i.e. until
          */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         s1=s[mw[mi][i]][i];       nhstepm*hstepm matrices.
         s2=s[mw[mi+1][i]][i];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
         bbh=(double)bh[mi][i]/(double)stepm;        (typically every 2 years instead of every month which is too big
         /* bias is positive if real duration       for the memory).
          * is higher than the multiple of stepm and negative otherwise.       Model is determined by parameters x and covariates have to be
          */       included manually here.
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */  
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */       */
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/  
         /*if(lli ==000.0)*/    int i, j, d, h, k;
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */    double **out, cov[NCOVMAX];
         ipmx +=1;    double **newm;
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* Hstepm could be zero and should return the unit matrix */
       } /* end of wave */    for (i=1;i<=nlstate+ndeath;i++)
     } /* end of individual */      for (j=1;j<=nlstate+ndeath;j++){
   }else if (mle==4){  /* ml=4 no inter-extrapolation */        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
       for(mi=1; mi<= wav[i]-1; mi++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for (ii=1;ii<=nlstate+ndeath;ii++)    for(h=1; h <=nhstepm; h++){
           for (j=1;j<=nlstate+ndeath;j++){      for(d=1; d <=hstepm; d++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        newm=savm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        /* Covariates have to be included here again */
           }        cov[1]=1.;
         for(d=0; d<dh[mi][i]; d++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           newm=savm;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for (k=1; k<=cptcovage;k++)
           for (kk=1; kk<=cptcovage;kk++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (k=1; k<=cptcovprod;k++)
           }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           savm=oldm;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           oldm=newm;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         } /* end mult */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
               savm=oldm;
         s1=s[mw[mi][i]][i];        oldm=newm;
         s2=s[mw[mi+1][i]][i];      }
         if( s2 > nlstate){       for(i=1; i<=nlstate+ndeath; i++)
           lli=log(out[s1][s2] - savm[s1][s2]);        for(j=1;j<=nlstate+ndeath;j++) {
         }else{          po[i][j][h]=newm[i][j];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         }           */
         ipmx +=1;        }
         sw += weight[i];    } /* end h */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    return po;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  }
       } /* end of wave */  
     } /* end of individual */  
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */  /*************** log-likelihood *************/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  double func( double *x)
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  {
       for(mi=1; mi<= wav[i]-1; mi++){    int i, ii, j, k, mi, d, kk;
         for (ii=1;ii<=nlstate+ndeath;ii++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           for (j=1;j<=nlstate+ndeath;j++){    double **out;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double sw; /* Sum of weights */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    double lli; /* Individual log likelihood */
           }    int s1, s2;
         for(d=0; d<dh[mi][i]; d++){    double bbh, survp;
           newm=savm;    long ipmx;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /*extern weight */
           for (kk=1; kk<=cptcovage;kk++) {    /* We are differentiating ll according to initial status */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           }    /*for(i=1;i<imx;i++)
               printf(" %d\n",s[4][i]);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    cov[1]=1.;
           savm=oldm;  
           oldm=newm;    for(k=1; k<=nlstate; k++) ll[k]=0.;
         } /* end mult */  
           if(mle==1){
         s1=s[mw[mi][i]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         s2=s[mw[mi+1][i]][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        for(mi=1; mi<= wav[i]-1; mi++){
         ipmx +=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
         sw += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       } /* end of wave */            }
     } /* end of individual */          for(d=0; d<dh[mi][i]; d++){
   } /* End of if */            newm=savm;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            for (kk=1; kk<=cptcovage;kk++) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   return -l;            }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*************** log-likelihood *************/            savm=oldm;
 double funcone( double *x)            oldm=newm;
 {          } /* end mult */
   /* Same as likeli but slower because of a lot of printf and if */       
   int i, ii, j, k, mi, d, kk;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          /* But now since version 0.9 we anticipate for bias at large stepm.
   double **out;           * If stepm is larger than one month (smallest stepm) and if the exact delay
   double lli; /* Individual log likelihood */           * (in months) between two waves is not a multiple of stepm, we rounded to
   double llt;           * the nearest (and in case of equal distance, to the lowest) interval but now
   int s1, s2;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double bbh, survp;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   /*extern weight */           * probability in order to take into account the bias as a fraction of the way
   /* We are differentiating ll according to initial status */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/           * -stepm/2 to stepm/2 .
   /*for(i=1;i<imx;i++)            * For stepm=1 the results are the same as for previous versions of Imach.
     printf(" %d\n",s[4][i]);           * For stepm > 1 the results are less biased than in previous versions.
   */           */
   cov[1]=1.;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for(k=1; k<=nlstate; k++) ll[k]=0.;          bbh=(double)bh[mi][i]/(double)stepm;
           /* bias bh is positive if real duration
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){           * is higher than the multiple of stepm and negative otherwise.
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];           */
     for(mi=1; mi<= wav[i]-1; mi++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (ii=1;ii<=nlstate+ndeath;ii++)          if( s2 > nlstate){
         for (j=1;j<=nlstate+ndeath;j++){            /* i.e. if s2 is a death state and if the date of death is known
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);               then the contribution to the likelihood is the probability to
           savm[ii][j]=(ii==j ? 1.0 : 0.0);               die between last step unit time and current  step unit time,
         }               which is also equal to probability to die before dh
       for(d=0; d<dh[mi][i]; d++){               minus probability to die before dh-stepm .
         newm=savm;               In version up to 0.92 likelihood was computed
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          as if date of death was unknown. Death was treated as any other
         for (kk=1; kk<=cptcovage;kk++) {          health state: the date of the interview describes the actual state
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          (healthy, disable or death) and IMaCh was corrected; but when we
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          introduced the exact date of death then we should have modified
         savm=oldm;          the contribution of an exact death to the likelihood. This new
         oldm=newm;          contribution is smaller and very dependent of the step unit
       } /* end mult */          stepm. It is no more the probability to die between last interview
                 and month of death but the probability to survive from last
       s1=s[mw[mi][i]][i];          interview up to one month before death multiplied by the
       s2=s[mw[mi+1][i]][i];          probability to die within a month. Thanks to Chris
       bbh=(double)bh[mi][i]/(double)stepm;           Jackson for correcting this bug.  Former versions increased
       /* bias is positive if real duration          mortality artificially. The bad side is that we add another loop
        * is higher than the multiple of stepm and negative otherwise.          which slows down the processing. The difference can be up to 10%
        */          lower mortality.
       if( s2 > nlstate && (mle <5) ){  /* Jackson */            */
         lli=log(out[s1][s2] - savm[s1][s2]);            lli=log(out[s1][s2] - savm[s1][s2]);
       } else if (mle==1){  
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  
       } else if(mle==2){          } else if  (s2==-2) {
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */            for (j=1,survp=0. ; j<=nlstate; j++)
       } else if(mle==3){  /* exponential inter-extrapolation */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            /*survp += out[s1][j]; */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */            lli= log(survp);
         lli=log(out[s1][s2]); /* Original formula */          }
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */         
         lli=log(out[s1][s2]); /* Original formula */          else if  (s2==-4) {
       } /* End of if */            for (j=3,survp=0. ; j<=nlstate; j++)  
       ipmx +=1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       sw += weight[i];            lli= log(survp);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          }
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  
       if(globpr){          else if  (s2==-5) {
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\            for (j=1,survp=0. ; j<=2; j++)  
  %10.6f %10.6f %10.6f ", \              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],            lli= log(survp);
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          }
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){         
           llt +=ll[k]*gipmx/gsw;          else{
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         fprintf(ficresilk," %10.6f\n", -llt);          }
       }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     } /* end of wave */          /*if(lli ==000.0)*/
   } /* end of individual */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          ipmx +=1;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          sw += weight[i];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if(globpr==0){ /* First time we count the contributions and weights */        } /* end of wave */
     gipmx=ipmx;      } /* end of individual */
     gsw=sw;    }  else if(mle==2){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   return -l;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 char *subdirf(char fileres[])            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Caution optionfilefiname is hidden */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(tmpout,optionfilefiname);            }
   strcat(tmpout,"/"); /* Add to the right */          for(d=0; d<=dh[mi][i]; d++){
   strcat(tmpout,fileres);            newm=savm;
   return tmpout;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 char *subdirf2(char fileres[], char *preop)            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                            1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcpy(tmpout,optionfilefiname);            savm=oldm;
   strcat(tmpout,"/");            oldm=newm;
   strcat(tmpout,preop);          } /* end mult */
   strcat(tmpout,fileres);       
   return tmpout;          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
 char *subdirf3(char fileres[], char *preop, char *preop2)          bbh=(double)bh[mi][i]/(double)stepm;
 {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             ipmx +=1;
   strcpy(tmpout,optionfilefiname);          sw += weight[i];
   strcat(tmpout,"/");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcat(tmpout,preop);        } /* end of wave */
   strcat(tmpout,preop2);      } /* end of individual */
   strcat(tmpout,fileres);    }  else if(mle==3){  /* exponential inter-extrapolation */
   return tmpout;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* This routine should help understanding what is done with               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      the selection of individuals/waves and              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      to check the exact contribution to the likelihood.            }
      Plotting could be done.          for(d=0; d<dh[mi][i]; d++){
    */            newm=savm;
   int k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   if(*globpri !=0){ /* Just counts and sums, no printings */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     strcpy(fileresilk,"ilk");             }
     strcat(fileresilk,fileres);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("Problem with resultfile: %s\n", fileresilk);            savm=oldm;
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);            oldm=newm;
     }          } /* end mult */
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");       
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");          s1=s[mw[mi][i]][i];
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          s2=s[mw[mi+1][i]][i];
     for(k=1; k<=nlstate; k++)           bbh=(double)bh[mi][i]/(double)stepm;
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   *fretone=(*funcone)(p);        } /* end of wave */
   if(*globpri !=0){      } /* end of individual */
     fclose(ficresilk);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fflush(fichtm);         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }         for(mi=1; mi<= wav[i]-1; mi++){
   return;          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Maximum Likelihood Estimation ***************/            }
           for(d=0; d<dh[mi][i]; d++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            newm=savm;
 {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i,j, iter;            for (kk=1; kk<=cptcovage;kk++) {
   double **xi;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double fret;            }
   double fretone; /* Only one call to likelihood */         
   char filerespow[FILENAMELENGTH];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   xi=matrix(1,npar,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=npar;i++)            savm=oldm;
     for (j=1;j<=npar;j++)            oldm=newm;
       xi[i][j]=(i==j ? 1.0 : 0.0);          } /* end mult */
   printf("Powell\n");  fprintf(ficlog,"Powell\n");       
   strcpy(filerespow,"pow");           s1=s[mw[mi][i]][i];
   strcat(filerespow,fileres);          s2=s[mw[mi+1][i]][i];
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          if( s2 > nlstate){
     printf("Problem with resultfile: %s\n", filerespow);            lli=log(out[s1][s2] - savm[s1][s2]);
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          }else{
   }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          }
   for (i=1;i<=nlstate;i++)          ipmx +=1;
     for(j=1;j<=nlstate+ndeath;j++)          sw += weight[i];
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficrespow,"\n");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
   powell(p,xi,npar,ftol,&iter,&fret,func);      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fclose(ficrespow);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /**** Computes Hessian and covariance matrix ***/            }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   double  **a,**y,*x,pd;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **hess;            for (kk=1; kk<=cptcovage;kk++) {
   int i, j,jk;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int *indx;            }
          
   double hessii(double p[], double delta, int theta, double delti[]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double hessij(double p[], double delti[], int i, int j);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   void lubksb(double **a, int npar, int *indx, double b[]) ;            savm=oldm;
   void ludcmp(double **a, int npar, int *indx, double *d) ;            oldm=newm;
           } /* end mult */
   hess=matrix(1,npar,1,npar);       
           s1=s[mw[mi][i]][i];
   printf("\nCalculation of the hessian matrix. Wait...\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for (i=1;i<=npar;i++){          ipmx +=1;
     printf("%d",i);fflush(stdout);          sw += weight[i];
     fprintf(ficlog,"%d",i);fflush(ficlog);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     hess[i][i]=hessii(p,ftolhess,i,delti);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     /*printf(" %f ",p[i]);*/        } /* end of wave */
     /*printf(" %lf ",hess[i][i]);*/      } /* end of individual */
   }    } /* End of if */
       for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for (i=1;i<=npar;i++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for (j=1;j<=npar;j++)  {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if (j>i) {     return -l;
         printf(".%d%d",i,j);fflush(stdout);  }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  
         hess[i][j]=hessij(p,delti,i,j);  /*************** log-likelihood *************/
         hess[j][i]=hess[i][j];      double funcone( double *x)
         /*printf(" %lf ",hess[i][j]);*/  {
       }    /* Same as likeli but slower because of a lot of printf and if */
     }    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   printf("\n");    double **out;
   fprintf(ficlog,"\n");    double lli; /* Individual log likelihood */
     double llt;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    int s1, s2;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    double bbh, survp;
       /*extern weight */
   a=matrix(1,npar,1,npar);    /* We are differentiating ll according to initial status */
   y=matrix(1,npar,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   x=vector(1,npar);    /*for(i=1;i<imx;i++)
   indx=ivector(1,npar);      printf(" %d\n",s[4][i]);
   for (i=1;i<=npar;i++)    */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    cov[1]=1.;
   ludcmp(a,npar,indx,&pd);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     x[j]=1;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     lubksb(a,npar,indx,x);      for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1;i<=npar;i++){         for (ii=1;ii<=nlstate+ndeath;ii++)
       matcov[i][j]=x[i];          for (j=1;j<=nlstate+ndeath;j++){
     }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   printf("\n#Hessian matrix#\n");        for(d=0; d<dh[mi][i]; d++){
   fprintf(ficlog,"\n#Hessian matrix#\n");          newm=savm;
   for (i=1;i<=npar;i++) {           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (j=1;j<=npar;j++) {           for (kk=1; kk<=cptcovage;kk++) {
       printf("%.3e ",hess[i][j]);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficlog,"%.3e ",hess[i][j]);          }
     }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("\n");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficlog,"\n");          savm=oldm;
   }          oldm=newm;
         } /* end mult */
   /* Recompute Inverse */       
   for (i=1;i<=npar;i++)        s1=s[mw[mi][i]][i];
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        s2=s[mw[mi+1][i]][i];
   ludcmp(a,npar,indx,&pd);        bbh=(double)bh[mi][i]/(double)stepm;
         /* bias is positive if real duration
   /*  printf("\n#Hessian matrix recomputed#\n");         * is higher than the multiple of stepm and negative otherwise.
          */
   for (j=1;j<=npar;j++) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     for (i=1;i<=npar;i++) x[i]=0;          lli=log(out[s1][s2] - savm[s1][s2]);
     x[j]=1;        } else if  (s2==-2) {
     lubksb(a,npar,indx,x);          for (j=1,survp=0. ; j<=nlstate; j++)
     for (i=1;i<=npar;i++){             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       y[i][j]=x[i];          lli= log(survp);
       printf("%.3e ",y[i][j]);        }else if (mle==1){
       fprintf(ficlog,"%.3e ",y[i][j]);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }        } else if(mle==2){
     printf("\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     fprintf(ficlog,"\n");        } else if(mle==3){  /* exponential inter-extrapolation */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
   free_matrix(a,1,npar,1,npar);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   free_matrix(y,1,npar,1,npar);          lli=log(out[s1][s2]); /* Original formula */
   free_vector(x,1,npar);        } /* End of if */
   free_ivector(indx,1,npar);        ipmx +=1;
   free_matrix(hess,1,npar,1,npar);        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 }        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 /*************** hessian matrix ****************/   %11.6f %11.6f %11.6f ", \
 double hessii( double x[], double delta, int theta, double delti[])                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 {                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   int i;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   int l=1, lmax=20;            llt +=ll[k]*gipmx/gsw;
   double k1,k2;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double p2[NPARMAX+1];          }
   double res;          fprintf(ficresilk," %10.6f\n", -llt);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        }
   double fx;      } /* end of wave */
   int k=0,kmax=10;    } /* end of individual */
   double l1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fx=func(x);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (i=1;i<=npar;i++) p2[i]=x[i];    if(globpr==0){ /* First time we count the contributions and weights */
   for(l=0 ; l <=lmax; l++){      gipmx=ipmx;
     l1=pow(10,l);      gsw=sw;
     delts=delt;    }
     for(k=1 ; k <kmax; k=k+1){    return -l;
       delt = delta*(l1*k);  }
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  /*************** function likelione ***********/
       k2=func(p2)-fx;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       /*res= (k1-2.0*fx+k2)/delt/delt; */  {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    /* This routine should help understanding what is done with
              the selection of individuals/waves and
 #ifdef DEBUG       to check the exact contribution to the likelihood.
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);       Plotting could be done.
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);     */
 #endif    int k;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    if(*globpri !=0){ /* Just counts and sums, no printings */
         k=kmax;      strcpy(fileresilk,"ilk");
       }      strcat(fileresilk,fileres);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         k=kmax; l=lmax*10.;        printf("Problem with resultfile: %s\n", fileresilk);
       }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){       }
         delts=delt;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   }      for(k=1; k<=nlstate; k++)
   delti[theta]=delts;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   return res;       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       }
 }  
     *fretone=(*funcone)(p);
 double hessij( double x[], double delti[], int thetai,int thetaj)    if(*globpri !=0){
 {      fclose(ficresilk);
   int i;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   int l=1, l1, lmax=20;      fflush(fichtm);
   double k1,k2,k3,k4,res,fx;    }
   double p2[NPARMAX+1];    return;
   int k;  }
   
   fx=func(x);  
   for (k=1; k<=2; k++) {  /*********** Maximum Likelihood Estimation ***************/
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  {
     k1=func(p2)-fx;    int i,j, iter;
       double **xi;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double fret;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double fretone; /* Only one call to likelihood */
     k2=func(p2)-fx;    /*  char filerespow[FILENAMELENGTH];*/
       xi=matrix(1,npar,1,npar);
     p2[thetai]=x[thetai]-delti[thetai]/k;    for (i=1;i<=npar;i++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (j=1;j<=npar;j++)
     k3=func(p2)-fx;        xi[i][j]=(i==j ? 1.0 : 0.0);
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;    strcpy(filerespow,"pow");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    strcat(filerespow,fileres);
     k4=func(p2)-fx;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      printf("Problem with resultfile: %s\n", filerespow);
 #ifdef DEBUG      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    }
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 #endif    for (i=1;i<=nlstate;i++)
   }      for(j=1;j<=nlstate+ndeath;j++)
   return res;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 }    fprintf(ficrespow,"\n");
   
 /************** Inverse of matrix **************/    powell(p,xi,npar,ftol,&iter,&fret,func);
 void ludcmp(double **a, int n, int *indx, double *d)   
 {     free_matrix(xi,1,npar,1,npar);
   int i,imax,j,k;     fclose(ficrespow);
   double big,dum,sum,temp;     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double *vv;     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   vv=vector(1,n);   
   *d=1.0;   }
   for (i=1;i<=n;i++) {   
     big=0.0;   /**** Computes Hessian and covariance matrix ***/
     for (j=1;j<=n;j++)   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       if ((temp=fabs(a[i][j])) > big) big=temp;   {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     double  **a,**y,*x,pd;
     vv[i]=1.0/big;     double **hess;
   }     int i, j,jk;
   for (j=1;j<=n;j++) {     int *indx;
     for (i=1;i<j;i++) {   
       sum=a[i][j];     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       a[i][j]=sum;     void lubksb(double **a, int npar, int *indx, double b[]) ;
     }     void ludcmp(double **a, int npar, int *indx, double *d) ;
     big=0.0;     double gompertz(double p[]);
     for (i=j;i<=n;i++) {     hess=matrix(1,npar,1,npar);
       sum=a[i][j];   
       for (k=1;k<j;k++)     printf("\nCalculation of the hessian matrix. Wait...\n");
         sum -= a[i][k]*a[k][j];     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       a[i][j]=sum;     for (i=1;i<=npar;i++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {       printf("%d",i);fflush(stdout);
         big=dum;       fprintf(ficlog,"%d",i);fflush(ficlog);
         imax=i;      
       }        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     }      
     if (j != imax) {       /*  printf(" %f ",p[i]);
       for (k=1;k<=n;k++) {           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         dum=a[imax][k];     }
         a[imax][k]=a[j][k];    
         a[j][k]=dum;     for (i=1;i<=npar;i++) {
       }       for (j=1;j<=npar;j++)  {
       *d = -(*d);         if (j>i) {
       vv[imax]=vv[j];           printf(".%d%d",i,j);fflush(stdout);
     }           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     indx[j]=imax;           hess[i][j]=hessij(p,delti,i,j,func,npar);
     if (a[j][j] == 0.0) a[j][j]=TINY;          
     if (j != n) {           hess[j][i]=hess[i][j];    
       dum=1.0/(a[j][j]);           /*printf(" %lf ",hess[i][j]);*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;         }
     }       }
   }     }
   free_vector(vv,1,n);  /* Doesn't work */    printf("\n");
 ;    fprintf(ficlog,"\n");
 }   
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 void lubksb(double **a, int n, int *indx, double b[])     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    
   int i,ii=0,ip,j;     a=matrix(1,npar,1,npar);
   double sum;     y=matrix(1,npar,1,npar);
      x=vector(1,npar);
   for (i=1;i<=n;i++) {     indx=ivector(1,npar);
     ip=indx[i];     for (i=1;i<=npar;i++)
     sum=b[ip];       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     b[ip]=b[i];     ludcmp(a,npar,indx,&pd);
     if (ii)   
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     for (j=1;j<=npar;j++) {
     else if (sum) ii=i;       for (i=1;i<=npar;i++) x[i]=0;
     b[i]=sum;       x[j]=1;
   }       lubksb(a,npar,indx,x);
   for (i=n;i>=1;i--) {       for (i=1;i<=npar;i++){
     sum=b[i];         matcov[i][j]=x[i];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       }
     b[i]=sum/a[i][i];     }
   }   
 }     printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
 /************ Frequencies ********************/    for (i=1;i<=npar;i++) {
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)      for (j=1;j<=npar;j++) {
 {  /* Some frequencies */        printf("%.3e ",hess[i][j]);
           fprintf(ficlog,"%.3e ",hess[i][j]);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      }
   int first;      printf("\n");
   double ***freq; /* Frequencies */      fprintf(ficlog,"\n");
   double *pp, **prop;    }
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;    /* Recompute Inverse */
   char fileresp[FILENAMELENGTH];    for (i=1;i<=npar;i++)
         for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   pp=vector(1,nlstate);    ludcmp(a,npar,indx,&pd);
   prop=matrix(1,nlstate,iagemin,iagemax+3);  
   strcpy(fileresp,"p");    /*  printf("\n#Hessian matrix recomputed#\n");
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {    for (j=1;j<=npar;j++) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);      for (i=1;i<=npar;i++) x[i]=0;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      x[j]=1;
     exit(0);      lubksb(a,npar,indx,x);
   }      for (i=1;i<=npar;i++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);        y[i][j]=x[i];
   j1=0;        printf("%.3e ",y[i][j]);
           fprintf(ficlog,"%.3e ",y[i][j]);
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      printf("\n");
       fprintf(ficlog,"\n");
   first=1;    }
     */
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    free_matrix(a,1,npar,1,npar);
       j1++;    free_matrix(y,1,npar,1,npar);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    free_vector(x,1,npar);
         scanf("%d", i);*/    free_ivector(indx,1,npar);
       for (i=-1; i<=nlstate+ndeath; i++)      free_matrix(hess,1,npar,1,npar);
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=iagemin; m <= iagemax+3; m++)  
             freq[i][jk][m]=0;  }
   
     for (i=1; i<=nlstate; i++)    /*************** hessian matrix ****************/
       for(m=iagemin; m <= iagemax+3; m++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         prop[i][m]=0;  {
           int i;
       dateintsum=0;    int l=1, lmax=20;
       k2cpt=0;    double k1,k2;
       for (i=1; i<=imx; i++) {    double p2[NPARMAX+1];
         bool=1;    double res;
         if  (cptcovn>0) {    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           for (z1=1; z1<=cptcoveff; z1++)     double fx;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     int k=0,kmax=10;
               bool=0;    double l1;
         }  
         if (bool==1){    fx=func(x);
           for(m=firstpass; m<=lastpass; m++){    for (i=1;i<=npar;i++) p2[i]=x[i];
             k2=anint[m][i]+(mint[m][i]/12.);    for(l=0 ; l <=lmax; l++){
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      l1=pow(10,l);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      delts=delt;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      for(k=1 ; k <kmax; k=k+1){
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];        delt = delta*(l1*k);
               if (m<lastpass) {        p2[theta]=x[theta] +delt;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        k1=func(p2)-fx;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];        p2[theta]=x[theta]-delt;
               }        k2=func(p2)-fx;
                       /*res= (k1-2.0*fx+k2)/delt/delt; */
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
                 dateintsum=dateintsum+k2;       
                 k2cpt++;  #ifdef DEBUG
               }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
               /*}*/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           }  #endif
         }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                  k=kmax;
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       if  (cptcovn>0) {          k=kmax; l=lmax*10.;
         fprintf(ficresp, "\n#********** Variable ");         }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
         fprintf(ficresp, "**********\n#");          delts=delt;
       }        }
       for(i=1; i<=nlstate;i++)       }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    }
       fprintf(ficresp, "\n");    delti[theta]=delts;
           return res;
       for(i=iagemin; i <= iagemax+3; i++){   
         if(i==iagemax+3){  }
           fprintf(ficlog,"Total");  
         }else{  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           if(first==1){  {
             first=0;    int i;
             printf("See log file for details...\n");    int l=1, l1, lmax=20;
           }    double k1,k2,k3,k4,res,fx;
           fprintf(ficlog,"Age %d", i);    double p2[NPARMAX+1];
         }    int k;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    fx=func(x);
             pp[jk] += freq[jk][m][i];     for (k=1; k<=2; k++) {
         }      for (i=1;i<=npar;i++) p2[i]=x[i];
         for(jk=1; jk <=nlstate ; jk++){      p2[thetai]=x[thetai]+delti[thetai]/k;
           for(m=-1, pos=0; m <=0 ; m++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             pos += freq[jk][m][i];      k1=func(p2)-fx;
           if(pp[jk]>=1.e-10){   
             if(first==1){      p2[thetai]=x[thetai]+delti[thetai]/k;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             }      k2=func(p2)-fx;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);   
           }else{      p2[thetai]=x[thetai]-delti[thetai]/k;
             if(first==1)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      k3=func(p2)-fx;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);   
           }      p2[thetai]=x[thetai]-delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
         for(jk=1; jk <=nlstate ; jk++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  #ifdef DEBUG
             pp[jk] += freq[jk][m][i];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }             fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){  #endif
           pos += pp[jk];    }
           posprop += prop[jk][i];    return res;
         }  }
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5){  /************** Inverse of matrix **************/
             if(first==1)  void ludcmp(double **a, int n, int *indx, double *d)
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  {
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    int i,imax,j,k;
           }else{    double big,dum,sum,temp;
             if(first==1)    double *vv;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);   
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    vv=vector(1,n);
           }    *d=1.0;
           if( i <= iagemax){    for (i=1;i<=n;i++) {
             if(pos>=1.e-5){      big=0.0;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);      for (j=1;j<=n;j++)
               /*probs[i][jk][j1]= pp[jk]/pos;*/        if ((temp=fabs(a[i][j])) > big) big=temp;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
             }      vv[i]=1.0/big;
             else    }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);    for (j=1;j<=n;j++) {
           }      for (i=1;i<j;i++) {
         }        sum=a[i][j];
                 for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
         for(jk=-1; jk <=nlstate+ndeath; jk++)        a[i][j]=sum;
           for(m=-1; m <=nlstate+ndeath; m++)      }
             if(freq[jk][m][i] !=0 ) {      big=0.0;
             if(first==1)      for (i=j;i<=n;i++) {
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        sum=a[i][j];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        for (k=1;k<j;k++)
             }          sum -= a[i][k]*a[k][j];
         if(i <= iagemax)        a[i][j]=sum;
           fprintf(ficresp,"\n");        if ( (dum=vv[i]*fabs(sum)) >= big) {
         if(first==1)          big=dum;
           printf("Others in log...\n");          imax=i;
         fprintf(ficlog,"\n");        }
       }      }
     }      if (j != imax) {
   }        for (k=1;k<=n;k++) {
   dateintmean=dateintsum/k2cpt;           dum=a[imax][k];
            a[imax][k]=a[j][k];
   fclose(ficresp);          a[j][k]=dum;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);        }
   free_vector(pp,1,nlstate);        *d = -(*d);
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);        vv[imax]=vv[j];
   /* End of Freq */      }
 }      indx[j]=imax;
       if (a[j][j] == 0.0) a[j][j]=TINY;
 /************ Prevalence ********************/      if (j != n) {
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)        dum=1.0/(a[j][j]);
 {          for (i=j+1;i<=n;i++) a[i][j] *= dum;
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people      }
      in each health status at the date of interview (if between dateprev1 and dateprev2).    }
      We still use firstpass and lastpass as another selection.    free_vector(vv,1,n);  /* Doesn't work */
   */  ;
    }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  void lubksb(double **a, int n, int *indx, double b[])
   double *pp, **prop;  {
   double pos,posprop;     int i,ii=0,ip,j;
   double  y2; /* in fractional years */    double sum;
   int iagemin, iagemax;   
     for (i=1;i<=n;i++) {
   iagemin= (int) agemin;      ip=indx[i];
   iagemax= (int) agemax;      sum=b[ip];
   /*pp=vector(1,nlstate);*/      b[ip]=b[i];
   prop=matrix(1,nlstate,iagemin,iagemax+3);       if (ii)
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
   j1=0;      else if (sum) ii=i;
         b[i]=sum;
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (i=n;i>=1;i--) {
         sum=b[i];
   for(k1=1; k1<=j;k1++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
     for(i1=1; i1<=ncodemax[k1];i1++){      b[i]=sum/a[i][i];
       j1++;    }
         }
       for (i=1; i<=nlstate; i++)    
         for(m=iagemin; m <= iagemax+3; m++)  void pstamp(FILE *fichier)
           prop[i][m]=0.0;  {
          fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       for (i=1; i<=imx; i++) { /* Each individual */  }
         bool=1;  
         if  (cptcovn>0) {  /************ Frequencies ********************/
           for (z1=1; z1<=cptcoveff; z1++)   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   {  /* Some frequencies */
               bool=0;   
         }     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         if (bool==1) {     int first;
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/    double ***freq; /* Frequencies */
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */    double *pp, **prop;
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    char fileresp[FILENAMELENGTH];
               if(agev[m][i]==1) agev[m][i]=iagemax+2;   
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);     pp=vector(1,nlstate);
               if (s[m][i]>0 && s[m][i]<=nlstate) {     prop=matrix(1,nlstate,iagemin,iagemax+3);
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/    strcpy(fileresp,"p");
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];    strcat(fileresp,fileres);
                 prop[s[m][i]][iagemax+3] += weight[i];     if((ficresp=fopen(fileresp,"w"))==NULL) {
               }       printf("Problem with prevalence resultfile: %s\n", fileresp);
             }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           } /* end selection of waves */      exit(0);
         }    }
       }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       for(i=iagemin; i <= iagemax+3; i++){      j1=0;
            
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {     j=cptcoveff;
           posprop += prop[jk][i];     if (cptcovn<1) {j=1;ncodemax[1]=1;}
         }   
     first=1;
         for(jk=1; jk <=nlstate ; jk++){       
           if( i <=  iagemax){     for(k1=1; k1<=j;k1++){
             if(posprop>=1.e-5){       for(i1=1; i1<=ncodemax[k1];i1++){
               probs[i][jk][j1]= prop[jk][i]/posprop;        j1++;
             }         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           }           scanf("%d", i);*/
         }/* end jk */         for (i=-5; i<=nlstate+ndeath; i++)  
       }/* end i */           for (jk=-5; jk<=nlstate+ndeath; jk++)  
     } /* end i1 */            for(m=iagemin; m <= iagemax+3; m++)
   } /* end k1 */              freq[i][jk][m]=0;
     
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/      for (i=1; i<=nlstate; i++)  
   /*free_vector(pp,1,nlstate);*/        for(m=iagemin; m <= iagemax+3; m++)
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);          prop[i][m]=0;
 }  /* End of prevalence */       
         dateintsum=0;
 /************* Waves Concatenation ***************/        k2cpt=0;
         for (i=1; i<=imx; i++) {
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          bool=1;
 {          if  (cptcovn>0) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            for (z1=1; z1<=cptcoveff; z1++)
      Death is a valid wave (if date is known).              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i                bool=0;
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]          }
      and mw[mi+1][i]. dh depends on stepm.          if (bool==1){
      */            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
   int i, mi, m;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      double sum=0., jmean=0.;*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int first;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int j, k=0,jk, ju, jl;                if (m<lastpass) {
   double sum=0.;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   first=0;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   jmin=1e+5;                }
   jmax=-1;               
   jmean=0.;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   for(i=1; i<=imx; i++){                  dateintsum=dateintsum+k2;
     mi=0;                  k2cpt++;
     m=firstpass;                }
     while(s[m][i] <= nlstate){                /*}*/
       if(s[m][i]>=1)            }
         mw[++mi][i]=m;          }
       if(m >=lastpass)        }
         break;         
       else        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         m++;        pstamp(ficresp);
     }/* end while */        if  (cptcovn>0) {
     if (s[m][i] > nlstate){          fprintf(ficresp, "\n#********** Variable ");
       mi++;     /* Death is another wave */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       /* if(mi==0)  never been interviewed correctly before death */          fprintf(ficresp, "**********\n#");
          /* Only death is a correct wave */        }
       mw[mi][i]=m;        for(i=1; i<=nlstate;i++)
     }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
     wav[i]=mi;       
     if(mi==0){        for(i=iagemin; i <= iagemax+3; i++){
       nbwarn++;          if(i==iagemax+3){
       if(first==0){            fprintf(ficlog,"Total");
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);          }else{
         first=1;            if(first==1){
       }              first=0;
       if(first==1){              printf("See log file for details...\n");
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);            }
       }            fprintf(ficlog,"Age %d", i);
     } /* end mi==0 */          }
   } /* End individuals */          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   for(i=1; i<=imx; i++){              pp[jk] += freq[jk][m][i];
     for(mi=1; mi<wav[i];mi++){          }
       if (stepm <=0)          for(jk=1; jk <=nlstate ; jk++){
         dh[mi][i]=1;            for(m=-1, pos=0; m <=0 ; m++)
       else{              pos += freq[jk][m][i];
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */            if(pp[jk]>=1.e-10){
           if (agedc[i] < 2*AGESUP) {              if(first==1){
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             if(j==0) j=1;  /* Survives at least one month after exam */              }
             else if(j<0){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               nberr++;            }else{
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              if(first==1)
               j=1; /* Temporary Dangerous patch */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            }
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);          }
             }  
             k=k+1;          for(jk=1; jk <=nlstate ; jk++){
             if (j >= jmax) jmax=j;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             if (j <= jmin) jmin=j;              pp[jk] += freq[jk][m][i];
             sum=sum+j;          }      
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/            pos += pp[jk];
           }            posprop += prop[jk][i];
         }          }
         else{          for(jk=1; jk <=nlstate ; jk++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            if(pos>=1.e-5){
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              if(first==1)
           k=k+1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           if (j >= jmax) jmax=j;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           else if (j <= jmin)jmin=j;            }else{
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              if(first==1)
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           if(j<0){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             nberr++;            }
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            if( i <= iagemax){
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              if(pos>=1.e-5){
           }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           sum=sum+j;                /*probs[i][jk][j1]= pp[jk]/pos;*/
         }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         jk= j/stepm;              }
         jl= j -jk*stepm;              else
         ju= j -(jk+1)*stepm;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */            }
           if(jl==0){          }
             dh[mi][i]=jk;         
             bh[mi][i]=0;          for(jk=-1; jk <=nlstate+ndeath; jk++)
           }else{ /* We want a negative bias in order to only have interpolation ie            for(m=-1; m <=nlstate+ndeath; m++)
                   * at the price of an extra matrix product in likelihood */              if(freq[jk][m][i] !=0 ) {
             dh[mi][i]=jk+1;              if(first==1)
             bh[mi][i]=ju;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         }else{              }
           if(jl <= -ju){          if(i <= iagemax)
             dh[mi][i]=jk;            fprintf(ficresp,"\n");
             bh[mi][i]=jl;       /* bias is positive if real duration          if(first==1)
                                  * is higher than the multiple of stepm and negative otherwise.            printf("Others in log...\n");
                                  */          fprintf(ficlog,"\n");
           }        }
           else{      }
             dh[mi][i]=jk+1;    }
             bh[mi][i]=ju;    dateintmean=dateintsum/k2cpt;
           }   
           if(dh[mi][i]==0){    fclose(ficresp);
             dh[mi][i]=1; /* At least one step */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             bh[mi][i]=ju; /* At least one step */    free_vector(pp,1,nlstate);
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           }    /* End of Freq */
         } /* end if mle */  }
       }  
     } /* end wave */  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   jmean=sum/k;  {  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);       in each health status at the date of interview (if between dateprev1 and dateprev2).
  }       We still use firstpass and lastpass as another selection.
     */
 /*********** Tricode ****************************/   
 void tricode(int *Tvar, int **nbcode, int imx)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 {    double ***freq; /* Frequencies */
       double *pp, **prop;
   int Ndum[20],ij=1, k, j, i, maxncov=19;    double pos,posprop;
   int cptcode=0;    double  y2; /* in fractional years */
   cptcoveff=0;     int iagemin, iagemax;
    
   for (k=0; k<maxncov; k++) Ndum[k]=0;    iagemin= (int) agemin;
   for (k=1; k<=7; k++) ncodemax[k]=0;    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                                modality*/     j1=0;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/   
       Ndum[ij]++; /*store the modality */    j=cptcoveff;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable    
                                        Tvar[j]. If V=sex and male is 0 and     for(k1=1; k1<=j;k1++){
                                        female is 1, then  cptcode=1.*/      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
        
     for (i=0; i<=cptcode; i++) {        for (i=1; i<=nlstate; i++)  
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */          for(m=iagemin; m <= iagemax+3; m++)
     }            prop[i][m]=0.0;
        
     ij=1;         for (i=1; i<=imx; i++) { /* Each individual */
     for (i=1; i<=ncodemax[j]; i++) {          bool=1;
       for (k=0; k<= maxncov; k++) {          if  (cptcovn>0) {
         if (Ndum[k] != 0) {            for (z1=1; z1<=cptcoveff; z1++)
           nbcode[Tvar[j]][ij]=k;               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */                bool=0;
                     }
           ij++;          if (bool==1) {
         }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         if (ij > ncodemax[j]) break;               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       }                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     }                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
  for (k=0; k< maxncov; k++) Ndum[k]=0;                if (s[m][i]>0 && s[m][i]<=nlstate) {
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  for (i=1; i<=ncovmodel-2; i++) {                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/                  prop[s[m][i]][iagemax+3] += weight[i];
    ij=Tvar[i];                }
    Ndum[ij]++;              }
  }            } /* end selection of waves */
           }
  ij=1;        }
  for (i=1; i<= maxncov; i++) {        for(i=iagemin; i <= iagemax+3; i++){  
    if((Ndum[i]!=0) && (i<=ncovcol)){         
      Tvaraff[ij]=i; /*For printing */          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
      ij++;            posprop += prop[jk][i];
    }          }
  }  
            for(jk=1; jk <=nlstate ; jk++){    
  cptcoveff=ij-1; /*Number of simple covariates*/            if( i <=  iagemax){
 }              if(posprop>=1.e-5){
                 probs[i][jk][j1]= prop[jk][i]/posprop;
 /*********** Health Expectancies ****************/              }
             }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          }/* end jk */
         }/* end i */
 {      } /* end i1 */
   /* Health expectancies */    } /* end k1 */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;   
   double age, agelim, hf;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double ***p3mat,***varhe;    /*free_vector(pp,1,nlstate);*/
   double **dnewm,**doldm;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   double *xp;  }  /* End of prevalence */
   double **gp, **gm;  
   double ***gradg, ***trgradg;  /************* Waves Concatenation ***************/
   int theta;  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);  {
   xp=vector(1,npar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   dnewm=matrix(1,nlstate*nlstate,1,npar);       Death is a valid wave (if date is known).
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
          dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   fprintf(ficreseij,"# Health expectancies\n");       and mw[mi+1][i]. dh depends on stepm.
   fprintf(ficreseij,"# Age");       */
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    int i, mi, m;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fprintf(ficreseij,"\n");       double sum=0., jmean=0.;*/
     int first;
   if(estepm < stepm){    int j, k=0,jk, ju, jl;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double sum=0.;
   }    first=0;
   else  hstepm=estepm;       jmin=1e+5;
   /* We compute the life expectancy from trapezoids spaced every estepm months    jmax=-1;
    * This is mainly to measure the difference between two models: for example    jmean=0.;
    * if stepm=24 months pijx are given only every 2 years and by summing them    for(i=1; i<=imx; i++){
    * we are calculating an estimate of the Life Expectancy assuming a linear       mi=0;
    * progression in between and thus overestimating or underestimating according      m=firstpass;
    * to the curvature of the survival function. If, for the same date, we       while(s[m][i] <= nlstate){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
    * to compare the new estimate of Life expectancy with the same linear           mw[++mi][i]=m;
    * hypothesis. A more precise result, taking into account a more precise        if(m >=lastpass)
    * curvature will be obtained if estepm is as small as stepm. */          break;
         else
   /* For example we decided to compute the life expectancy with the smallest unit */          m++;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       }/* end while */
      nhstepm is the number of hstepm from age to agelim       if (s[m][i] > nlstate){
      nstepm is the number of stepm from age to agelin.         mi++;     /* Death is another wave */
      Look at hpijx to understand the reason of that which relies in memory size        /* if(mi==0)  never been interviewed correctly before death */
      and note for a fixed period like estepm months */           /* Only death is a correct wave */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        mw[mi][i]=m;
      survival function given by stepm (the optimization length). Unfortunately it      }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       wav[i]=mi;
      results. So we changed our mind and took the option of the best precision.      if(mi==0){
   */        nbwarn++;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */         if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   agelim=AGESUP;          first=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     /* nhstepm age range expressed in number of stepm */        if(first==1){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */         }
     /* if (stepm >= YEARM) hstepm=1;*/      } /* end mi==0 */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    } /* End individuals */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    for(i=1; i<=imx; i++){
     gp=matrix(0,nhstepm,1,nlstate*nlstate);      for(mi=1; mi<wav[i];mi++){
     gm=matrix(0,nhstepm,1,nlstate*nlstate);        if (stepm <=0)
           dh[mi][i]=1;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        else{
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              if (agedc[i] < 2*AGESUP) {
                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
               if(j==0) j=1;  /* Survives at least one month after exam */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              else if(j<0){
                 nberr++;
     /* Computing Variances of health expectancies */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
      for(theta=1; theta <=npar; theta++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(i=1; i<=npar; i++){                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       }              }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                k=k+1;
                 if (j >= jmax){
       cptj=0;                jmax=j;
       for(j=1; j<= nlstate; j++){                ijmax=i;
         for(i=1; i<=nlstate; i++){              }
           cptj=cptj+1;              if (j <= jmin){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){                jmin=j;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                ijmin=i;
           }              }
         }              sum=sum+j;
       }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                    /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                  }
       for(i=1; i<=npar; i++)           }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          else{
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       cptj=0;  
       for(j=1; j<= nlstate; j++){            k=k+1;
         for(i=1;i<=nlstate;i++){            if (j >= jmax) {
           cptj=cptj+1;              jmax=j;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){              ijmax=i;
             }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            else if (j <= jmin){
           }              jmin=j;
         }              ijmin=i;
       }            }
       for(j=1; j<= nlstate*nlstate; j++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for(h=0; h<=nhstepm-1; h++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            if(j<0){
         }              nberr++;
      }               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 /* End theta */            }
             sum=sum+j;
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);          }
           jk= j/stepm;
      for(h=0; h<=nhstepm-1; h++)          jl= j -jk*stepm;
       for(j=1; j<=nlstate*nlstate;j++)          ju= j -(jk+1)*stepm;
         for(theta=1; theta <=npar; theta++)          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           trgradg[h][j][theta]=gradg[h][theta][j];            if(jl==0){
                    dh[mi][i]=jk;
               bh[mi][i]=0;
      for(i=1;i<=nlstate*nlstate;i++)            }else{ /* We want a negative bias in order to only have interpolation ie
       for(j=1;j<=nlstate*nlstate;j++)                    * at the price of an extra matrix product in likelihood */
         varhe[i][j][(int)age] =0.;              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
      printf("%d|",(int)age);fflush(stdout);            }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          }else{
      for(h=0;h<=nhstepm-1;h++){            if(jl <= -ju){
       for(k=0;k<=nhstepm-1;k++){              dh[mi][i]=jk;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);              bh[mi][i]=jl;       /* bias is positive if real duration
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);                                   * is higher than the multiple of stepm and negative otherwise.
         for(i=1;i<=nlstate*nlstate;i++)                                   */
           for(j=1;j<=nlstate*nlstate;j++)            }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;            else{
       }              dh[mi][i]=jk+1;
     }              bh[mi][i]=ju;
     /* Computing expectancies */            }
     for(i=1; i<=nlstate;i++)            if(dh[mi][i]==0){
       for(j=1; j<=nlstate;j++)              dh[mi][i]=1; /* At least one step */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              bh[mi][i]=ju; /* At least one step */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                       }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          } /* end if mle */
         }
         }      } /* end wave */
     }
     fprintf(ficreseij,"%3.0f",age );    jmean=sum/k;
     cptj=0;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       for(j=1; j<=nlstate;j++){   }
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  /*********** Tricode ****************************/
       }  void tricode(int *Tvar, int **nbcode, int imx)
     fprintf(ficreseij,"\n");  {
       
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);    int cptcode=0;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);    cptcoveff=0;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);   
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   }    for (k=1; k<=7; k++) ncodemax[k]=0;
   printf("\n");  
   fprintf(ficlog,"\n");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   free_vector(xp,1,npar);                                 modality*/
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);        Ndum[ij]++; /*store the modality */
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
                                          Tvar[j]. If V=sex and male is 0 and
 /************ Variance ******************/                                         female is 1, then  cptcode=1.*/
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)      }
 {  
   /* Variance of health expectancies */      for (i=0; i<=cptcode; i++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   /* double **newm;*/      }
   double **dnewm,**doldm;  
   double **dnewmp,**doldmp;      ij=1;
   int i, j, nhstepm, hstepm, h, nstepm ;      for (i=1; i<=ncodemax[j]; i++) {
   int k, cptcode;        for (k=0; k<= maxncov; k++) {
   double *xp;          if (Ndum[k] != 0) {
   double **gp, **gm;  /* for var eij */            nbcode[Tvar[j]][ij]=k;
   double ***gradg, ***trgradg; /*for var eij */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   double **gradgp, **trgradgp; /* for var p point j */           
   double *gpp, *gmp; /* for var p point j */            ij++;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          }
   double ***p3mat;          if (ij > ncodemax[j]) break;
   double age,agelim, hf;        }  
   double ***mobaverage;      }
   int theta;    }  
   char digit[4];  
   char digitp[25];   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
   char fileresprobmorprev[FILENAMELENGTH];   for (i=1; i<=ncovmodel-2; i++) {
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   if(popbased==1){     ij=Tvar[i];
     if(mobilav!=0)     Ndum[ij]++;
       strcpy(digitp,"-populbased-mobilav-");   }
     else strcpy(digitp,"-populbased-nomobil-");  
   }   ij=1;
   else    for (i=1; i<= maxncov; i++) {
     strcpy(digitp,"-stablbased-");     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
   if (mobilav!=0) {       ij++;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     }
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){   }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   
       printf(" Error in movingaverage mobilav=%d\n",mobilav);   cptcoveff=ij-1; /*Number of simple covariates*/
     }  }
   }  
   /*********** Health Expectancies ****************/
   strcpy(fileresprobmorprev,"prmorprev");   
   sprintf(digit,"%-d",ij);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  {
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    /* Health expectancies, no variances */
   strcat(fileresprobmorprev,fileres);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    double age, agelim, hf;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    double ***p3mat;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    double eip;
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    pstamp(ficreseij);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    fprintf(ficreseij,"# Age");
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    for(i=1; i<=nlstate;i++){
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      for(j=1; j<=nlstate;j++){
     fprintf(ficresprobmorprev," p.%-d SE",j);        fprintf(ficreseij," e%1d%1d ",i,j);
     for(i=1; i<=nlstate;i++)      }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      fprintf(ficreseij," e%1d. ",i);
   }      }
   fprintf(ficresprobmorprev,"\n");    fprintf(ficreseij,"\n");
   fprintf(ficgp,"\n# Routine varevsij");  
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");   
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    if(estepm < stepm){
 /*   } */      printf ("Problem %d lower than %d\n",estepm, stepm);
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    }
     else  hstepm=estepm;  
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
   fprintf(ficresvij,"# Age");     * This is mainly to measure the difference between two models: for example
   for(i=1; i<=nlstate;i++)     * if stepm=24 months pijx are given only every 2 years and by summing them
     for(j=1; j<=nlstate;j++)     * we are calculating an estimate of the Life Expectancy assuming a linear
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);     * progression in between and thus overestimating or underestimating according
   fprintf(ficresvij,"\n");     * to the curvature of the survival function. If, for the same date, we
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   xp=vector(1,npar);     * to compare the new estimate of Life expectancy with the same linear
   dnewm=matrix(1,nlstate,1,npar);     * hypothesis. A more precise result, taking into account a more precise
   doldm=matrix(1,nlstate,1,nlstate);     * curvature will be obtained if estepm is as small as stepm. */
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);       nhstepm is the number of hstepm from age to agelim
   gpp=vector(nlstate+1,nlstate+ndeath);       nstepm is the number of stepm from age to agelin.
   gmp=vector(nlstate+1,nlstate+ndeath);       Look at hpijx to understand the reason of that which relies in memory size
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/       and note for a fixed period like estepm months */
       /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if(estepm < stepm){       survival function given by stepm (the optimization length). Unfortunately it
     printf ("Problem %d lower than %d\n",estepm, stepm);       means that if the survival funtion is printed only each two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   else  hstepm=estepm;          results. So we changed our mind and took the option of the best precision.
   /* For example we decided to compute the life expectancy with the smallest unit */    */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.     agelim=AGESUP;
      Look at hpijx to understand the reason of that which relies in memory size    /* If stepm=6 months */
      and note for a fixed period like k years */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      survival function given by stepm (the optimization length). Unfortunately it     
      means that if the survival funtion is printed every two years of age and if  /* nhstepm age range expressed in number of stepm */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     nstepm=(int) rint((agelim-bage)*YEARM/stepm);
      results. So we changed our mind and took the option of the best precision.    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   */    /* if (stepm >= YEARM) hstepm=1;*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   agelim = AGESUP;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     for (age=bage; age<=fage; age ++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     gp=matrix(0,nhstepm,1,nlstate);     
     gm=matrix(0,nhstepm,1,nlstate);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
       printf("%d|",(int)age);fflush(stdout);
     for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/     
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }      /* Computing expectancies */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(i=1; i<=nlstate;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       if (popbased==1) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         if(mobilav ==0){           
           for(i=1; i<=nlstate;i++)            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             prlim[i][i]=probs[(int)age][i][ij];  
         }else{ /* mobilav */           }
           for(i=1; i<=nlstate;i++)     
             prlim[i][i]=mobaverage[(int)age][i][ij];      fprintf(ficreseij,"%3.0f",age );
         }      for(i=1; i<=nlstate;i++){
       }        eip=0;
           for(j=1; j<=nlstate;j++){
       for(j=1; j<= nlstate; j++){          eip +=eij[i][j][(int)age];
         for(h=0; h<=nhstepm; h++){          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        fprintf(ficreseij,"%9.4f", eip );
         }      }
       }      fprintf(ficreseij,"\n");
       /* This for computing probability of death (h=1 means     
          computed over hstepm matrices product = hstepm*stepm months)     }
          as a weighted average of prlim.    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       */    printf("\n");
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    fprintf(ficlog,"\n");
         for(i=1,gpp[j]=0.; i<= nlstate; i++)   
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  }
       }      
       /* end probability of death */  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Covariances of health expectancies eij and of total life expectancies according
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       to initial status i, ei. .
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       if (popbased==1) {    double age, agelim, hf;
         if(mobilav ==0){    double ***p3matp, ***p3matm, ***varhe;
           for(i=1; i<=nlstate;i++)    double **dnewm,**doldm;
             prlim[i][i]=probs[(int)age][i][ij];    double *xp, *xm;
         }else{ /* mobilav */     double **gp, **gm;
           for(i=1; i<=nlstate;i++)    double ***gradg, ***trgradg;
             prlim[i][i]=mobaverage[(int)age][i][ij];    int theta;
         }  
       }    double eip, vip;
   
       for(j=1; j<= nlstate; j++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         for(h=0; h<=nhstepm; h++){    xp=vector(1,npar);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    xm=vector(1,npar);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    dnewm=matrix(1,nlstate*nlstate,1,npar);
         }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       }   
       /* This for computing probability of death (h=1 means    pstamp(ficresstdeij);
          computed over hstepm matrices product = hstepm*stepm months)     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
          as a weighted average of prlim.    fprintf(ficresstdeij,"# Age");
       */    for(i=1; i<=nlstate;i++){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){      for(j=1; j<=nlstate;j++)
         for(i=1,gmp[j]=0.; i<= nlstate; i++)        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
          gmp[j] += prlim[i][i]*p3mat[i][j][1];      fprintf(ficresstdeij," e%1d. ",i);
       }        }
       /* end probability of death */    fprintf(ficresstdeij,"\n");
   
       for(j=1; j<= nlstate; j++) /* vareij */    pstamp(ficrescveij);
         for(h=0; h<=nhstepm; h++){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficrescveij,"# Age");
         }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        cptj= (j-1)*nlstate+i;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        for(i2=1; i2<=nlstate;i2++)
       }          for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
     } /* End theta */            if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          }
       }
     for(h=0; h<=nhstepm; h++) /* veij */    fprintf(ficrescveij,"\n");
       for(j=1; j<=nlstate;j++)   
         for(theta=1; theta <=npar; theta++)    if(estepm < stepm){
           trgradg[h][j][theta]=gradg[h][theta][j];      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    else  hstepm=estepm;  
       for(theta=1; theta <=npar; theta++)    /* We compute the life expectancy from trapezoids spaced every estepm months
         trgradgp[j][theta]=gradgp[theta][j];     * This is mainly to measure the difference between two models: for example
        * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */     * progression in between and thus overestimating or underestimating according
     for(i=1;i<=nlstate;i++)     * to the curvature of the survival function. If, for the same date, we
       for(j=1;j<=nlstate;j++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         vareij[i][j][(int)age] =0.;     * to compare the new estimate of Life expectancy with the same linear
      * hypothesis. A more precise result, taking into account a more precise
     for(h=0;h<=nhstepm;h++){     * curvature will be obtained if estepm is as small as stepm. */
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    /* For example we decided to compute the life expectancy with the smallest unit */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         for(i=1;i<=nlstate;i++)       nhstepm is the number of hstepm from age to agelim
           for(j=1;j<=nlstate;j++)       nstepm is the number of stepm from age to agelin.
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
          survival function given by stepm (the optimization length). Unfortunately it
     /* pptj */       means that if the survival funtion is printed only each two years of age and if
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);       results. So we changed our mind and took the option of the best precision.
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         varppt[j][i]=doldmp[j][i];  
     /* end ppptj */    /* If stepm=6 months */
     /*  x centered again */    /* nhstepm age range expressed in number of stepm */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      agelim=AGESUP;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
      /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     if (popbased==1) {    /* if (stepm >= YEARM) hstepm=1;*/
       if(mobilav ==0){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for(i=1; i<=nlstate;i++)   
           prlim[i][i]=probs[(int)age][i][ij];    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }else{ /* mobilav */     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(i=1; i<=nlstate;i++)    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           prlim[i][i]=mobaverage[(int)age][i][ij];    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
                
     /* This for computing probability of death (h=1 means    for (age=bage; age<=fage; age ++){
        computed over hstepm (estepm) matrices product = hstepm*stepm months)   
        as a weighted average of prlim.      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     for(j=nlstate+1;j<=nlstate+ndeath;j++){   
       for(i=1,gmp[j]=0.;i<= nlstate; i++)       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   
     }          /* Computing  Variances of health expectancies */
     /* end probability of death */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      for(theta=1; theta <=npar; theta++){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        for(i=1; i<=npar; i++){
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(i=1; i<=nlstate;i++){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        }
       }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     }         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     fprintf(ficresprobmorprev,"\n");   
         for(j=1; j<= nlstate; j++){
     fprintf(ficresvij,"%.0f ",age );          for(i=1; i<=nlstate; i++){
     for(i=1; i<=nlstate;i++)            for(h=0; h<=nhstepm-1; h++){
       for(j=1; j<=nlstate;j++){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       }            }
     fprintf(ficresvij,"\n");          }
     free_matrix(gp,0,nhstepm,1,nlstate);        }
     free_matrix(gm,0,nhstepm,1,nlstate);       
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        for(ij=1; ij<= nlstate*nlstate; ij++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          for(h=0; h<=nhstepm-1; h++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   } /* End age */          }
   free_vector(gpp,nlstate+1,nlstate+ndeath);      }/* End theta */
   free_vector(gmp,nlstate+1,nlstate+ndeath);     
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);     
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      for(h=0; h<=nhstepm-1; h++)
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        for(j=1; j<=nlstate*nlstate;j++)
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          for(theta=1; theta <=npar; theta++)
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            trgradg[h][j][theta]=gradg[h][theta][j];
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */     
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */       for(ij=1;ij<=nlstate*nlstate;ij++)
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));        for(ji=1;ji<=nlstate*nlstate;ji++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));          varhe[ij][ji][(int)age] =0.;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));       printf("%d|",(int)age);fflush(stdout);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);       for(h=0;h<=nhstepm-1;h++){
 */        for(k=0;k<=nhstepm-1;k++){
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
   free_vector(xp,1,npar);            for(ji=1;ji<=nlstate*nlstate;ji++)
   free_matrix(doldm,1,nlstate,1,nlstate);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   free_matrix(dnewm,1,nlstate,1,npar);        }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      /* Computing expectancies */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fclose(ficresprobmorprev);      for(i=1; i<=nlstate;i++)
   fflush(ficgp);        for(j=1; j<=nlstate;j++)
   fflush(fichtm);           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 }  /* end varevsij */            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
            
 /************ Variance of prevlim ******************/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {          }
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/      fprintf(ficresstdeij,"%3.0f",age );
   double **newm;      for(i=1; i<=nlstate;i++){
   double **dnewm,**doldm;        eip=0.;
   int i, j, nhstepm, hstepm;        vip=0.;
   int k, cptcode;        for(j=1; j<=nlstate;j++){
   double *xp;          eip += eij[i][j][(int)age];
   double *gp, *gm;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   double **gradg, **trgradg;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   double age,agelim;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   int theta;        }
            fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");      }
   fprintf(ficresvpl,"# Age");      fprintf(ficresstdeij,"\n");
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);      fprintf(ficrescveij,"%3.0f",age );
   fprintf(ficresvpl,"\n");      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   xp=vector(1,npar);          cptj= (j-1)*nlstate+i;
   dnewm=matrix(1,nlstate,1,npar);          for(i2=1; i2<=nlstate;i2++)
   doldm=matrix(1,nlstate,1,nlstate);            for(j2=1; j2<=nlstate;j2++){
                 cptj2= (j2-1)*nlstate+i2;
   hstepm=1*YEARM; /* Every year of age */              if(cptj2 <= cptj)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   agelim = AGESUP;            }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       fprintf(ficrescveij,"\n");
     if (stepm >= YEARM) hstepm=1;     
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
     gradg=matrix(1,npar,1,nlstate);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     gp=vector(1,nlstate);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     gm=vector(1,nlstate);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     for(theta=1; theta <=npar; theta++){    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\n");
       }    fprintf(ficlog,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    free_vector(xm,1,npar);
         gp[i] = prlim[i][i];    free_vector(xp,1,npar);
         free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       for(i=1;i<=nlstate;i++)  {
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    /* Variance of health expectancies */
     } /* End theta */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     trgradg =matrix(1,nlstate,1,npar);    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     for(j=1; j<=nlstate;j++)    int i, j, nhstepm, hstepm, h, nstepm ;
       for(theta=1; theta <=npar; theta++)    int k, cptcode;
         trgradg[j][theta]=gradg[theta][j];    double *xp;
     double **gp, **gm;  /* for var eij */
     for(i=1;i<=nlstate;i++)    double ***gradg, ***trgradg; /*for var eij */
       varpl[i][(int)age] =0.;    double **gradgp, **trgradgp; /* for var p point j */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double *gpp, *gmp; /* for var p point j */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     for(i=1;i<=nlstate;i++)    double ***p3mat;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double age,agelim, hf;
     double ***mobaverage;
     fprintf(ficresvpl,"%.0f ",age );    int theta;
     for(i=1; i<=nlstate;i++)    char digit[4];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    char digitp[25];
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    char fileresprobmorprev[FILENAMELENGTH];
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);    if(popbased==1){
     free_matrix(trgradg,1,nlstate,1,npar);      if(mobilav!=0)
   } /* End age */        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
   free_vector(xp,1,npar);    }
   free_matrix(doldm,1,nlstate,1,npar);    else
   free_matrix(dnewm,1,nlstate,1,nlstate);      strcpy(digitp,"-stablbased-");
   
 }    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /************ Variance of one-step probabilities  ******************/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   int i, j=0,  i1, k1, l1, t, tj;      }
   int k2, l2, j1,  z1;    }
   int k=0,l, cptcode;  
   int first=1, first1;    strcpy(fileresprobmorprev,"prmorprev");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    sprintf(digit,"%-d",ij);
   double **dnewm,**doldm;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   double *xp;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   double *gp, *gm;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   double **gradg, **trgradg;    strcat(fileresprobmorprev,fileres);
   double **mu;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   double age,agelim, cov[NCOVMAX];      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   int theta;    }
   char fileresprob[FILENAMELENGTH];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   char fileresprobcov[FILENAMELENGTH];   
   char fileresprobcor[FILENAMELENGTH];    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
   double ***varpij;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   strcpy(fileresprob,"prob");     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcat(fileresprob,fileres);      fprintf(ficresprobmorprev," p.%-d SE",j);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with resultfile: %s\n", fileresprob);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    }  
   }    fprintf(ficresprobmorprev,"\n");
   strcpy(fileresprobcov,"probcov");     fprintf(ficgp,"\n# Routine varevsij");
   strcat(fileresprobcov,fileres);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     printf("Problem with resultfile: %s\n", fileresprobcov);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  /*   } */
   }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(fileresprobcor,"probcor");     pstamp(ficresvij);
   strcat(fileresprobcor,fileres);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    if(popbased==1)
     printf("Problem with resultfile: %s\n", fileresprobcor);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    else
   }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    fprintf(ficresvij,"# Age");
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    for(i=1; i<=nlstate;i++)
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for(j=1; j<=nlstate;j++)
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    fprintf(ficresvij,"\n");
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
       xp=vector(1,npar);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    dnewm=matrix(1,nlstate,1,npar);
   fprintf(ficresprob,"# Age");    doldm=matrix(1,nlstate,1,nlstate);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   fprintf(ficresprobcov,"# Age");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   for(i=1; i<=nlstate;i++)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for(j=1; j<=(nlstate+ndeath);j++){   
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    if(estepm < stepm){
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    }
     }      else  hstepm=estepm;  
  /* fprintf(ficresprob,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficresprobcov,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   fprintf(ficresprobcor,"\n");       nhstepm is the number of hstepm from age to agelim
  */       nstepm is the number of stepm from age to agelin.
  xp=vector(1,npar);       Look at hpijx to understand the reason of that which relies in memory size
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       and note for a fixed period like k years */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);       survival function given by stepm (the optimization length). Unfortunately it
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);       means that if the survival funtion is printed every two years of age and if
   first=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   fprintf(ficgp,"\n# Routine varprob");       results. So we changed our mind and took the option of the best precision.
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    */
   fprintf(fichtm,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     agelim = AGESUP;
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   file %s<br>\n",optionfilehtmcov);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 and drawn. It helps understanding how is the covariance between two incidences.\      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      gp=matrix(0,nhstepm,1,nlstate);
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \      gm=matrix(0,nhstepm,1,nlstate);
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \  
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \  
 standard deviations wide on each axis. <br>\      for(theta=1; theta <=npar; theta++){
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   cov[1]=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        if (popbased==1) {
   j1=0;          if(mobilav ==0){
   for(t=1; t<=tj;t++){            for(i=1; i<=nlstate;i++)
     for(i1=1; i1<=ncodemax[t];i1++){               prlim[i][i]=probs[(int)age][i][ij];
       j1++;          }else{ /* mobilav */
       if  (cptcovn>0) {            for(i=1; i<=nlstate;i++)
         fprintf(ficresprob, "\n#********** Variable ");               prlim[i][i]=mobaverage[(int)age][i][ij];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficresprob, "**********\n#\n");        }
         fprintf(ficresprobcov, "\n#********** Variable ");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<= nlstate; j++){
         fprintf(ficresprobcov, "**********\n#\n");          for(h=0; h<=nhstepm; h++){
                     for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         fprintf(ficgp, "\n#********** Variable ");               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficgp, "**********\n#\n");        }
                 /* This for computing probability of death (h=1 means
                    computed over hstepm matrices product = hstepm*stepm months)
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            as a weighted average of prlim.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        */
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   for(i=1,gpp[j]=0.; i<= nlstate; i++)
         fprintf(ficresprobcor, "\n#********** Variable ");                gpp[j] += prlim[i][i]*p3mat[i][j][1];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }    
         fprintf(ficresprobcor, "**********\n#");            /* end probability of death */
       }  
               for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       for (age=bage; age<=fage; age ++){           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         cov[2]=age;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (k=1; k<=cptcovn;k++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];   
         }        if (popbased==1) {
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          if(mobilav ==0){
         for (k=1; k<=cptcovprod;k++)            for(i=1; i<=nlstate;i++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              prlim[i][i]=probs[(int)age][i][ij];
                   }else{ /* mobilav */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));            for(i=1; i<=nlstate;i++)
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              prlim[i][i]=mobaverage[(int)age][i][ij];
         gp=vector(1,(nlstate)*(nlstate+ndeath));          }
         gm=vector(1,(nlstate)*(nlstate+ndeath));        }
       
         for(theta=1; theta <=npar; theta++){        for(j=1; j<= nlstate; j++){
           for(i=1; i<=npar; i++)          for(h=0; h<=nhstepm; h++){
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                         gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          }
                   }
           k=0;        /* This for computing probability of death (h=1 means
           for(i=1; i<= (nlstate); i++){           computed over hstepm matrices product = hstepm*stepm months)
             for(j=1; j<=(nlstate+ndeath);j++){           as a weighted average of prlim.
               k=k+1;        */
               gp[k]=pmmij[i][j];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   }    
           for(i=1; i<=npar; i++)        /* end probability of death */
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);  
             for(j=1; j<= nlstate; j++) /* vareij */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(h=0; h<=nhstepm; h++){
           k=0;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           for(i=1; i<=(nlstate); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               gm[k]=pmmij[i][j];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             }        }
           }  
            } /* End theta */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)   
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         }  
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)          for(theta=1; theta <=npar; theta++)
             trgradg[j][theta]=gradg[theta][j];            trgradg[h][j][theta]=gradg[h][theta][j];
           
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        for(theta=1; theta <=npar; theta++)
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          trgradgp[j][theta]=gradgp[theta][j];
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));   
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);        for(j=1;j<=nlstate;j++)
                   vareij[i][j][(int)age] =0.;
         k=0;  
         for(i=1; i<=(nlstate); i++){      for(h=0;h<=nhstepm;h++){
           for(j=1; j<=(nlstate+ndeath);j++){        for(k=0;k<=nhstepm;k++){
             k=k+1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             mu[k][(int) age]=pmmij[i][j];          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           }          for(i=1;i<=nlstate;i++)
         }            for(j=1;j<=nlstate;j++)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        }
             varpij[i][j][(int)age] = doldm[i][j];      }
    
         /*printf("\n%d ",(int)age);      /* pptj */
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           }*/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
         fprintf(ficresprob,"\n%d ",(int)age);      /* end ppptj */
         fprintf(ficresprobcov,"\n%d ",(int)age);      /*  x centered again */
         fprintf(ficresprobcor,"\n%d ",(int)age);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)   
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      if (popbased==1) {
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        if(mobilav ==0){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          for(i=1; i<=nlstate;i++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            prlim[i][i]=probs[(int)age][i][ij];
         }        }else{ /* mobilav */
         i=0;          for(i=1; i<=nlstate;i++)
         for (k=1; k<=(nlstate);k++){            prlim[i][i]=mobaverage[(int)age][i][ij];
           for (l=1; l<=(nlstate+ndeath);l++){         }
             i=i++;      }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);               
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      /* This for computing probability of death (h=1 means
             for (j=1; j<=i;j++){         computed over hstepm (estepm) matrices product = hstepm*stepm months)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);         as a weighted average of prlim.
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      */
             }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           }        for(i=1,gmp[j]=0.;i<= nlstate; i++)
         }/* end of loop for state */          gmp[j] += prlim[i][i]*p3mat[i][j][1];
       } /* end of loop for age */      }    
       /* end probability of death */
       /* Confidence intervalle of pij  */  
       /*      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         fprintf(ficgp,"\nset noparametric;unset label");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(i=1; i<=nlstate;i++){
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        }
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);      }
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      fprintf(ficresprobmorprev,"\n");
       */  
       fprintf(ficresvij,"%.0f ",age );
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      for(i=1; i<=nlstate;i++)
       first1=1;        for(j=1; j<=nlstate;j++){
       for (k2=1; k2<=(nlstate);k2++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         for (l2=1; l2<=(nlstate+ndeath);l2++){         }
           if(l2==k2) continue;      fprintf(ficresvij,"\n");
           j=(k2-1)*(nlstate+ndeath)+l2;      free_matrix(gp,0,nhstepm,1,nlstate);
           for (k1=1; k1<=(nlstate);k1++){      free_matrix(gm,0,nhstepm,1,nlstate);
             for (l1=1; l1<=(nlstate+ndeath);l1++){       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
               if(l1==k1) continue;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
               i=(k1-1)*(nlstate+ndeath)+l1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               if(i<=j) continue;    } /* End age */
               for (age=bage; age<=fage; age ++){     free_vector(gpp,nlstate+1,nlstate+ndeath);
                 if ((int)age %5==0){    free_vector(gmp,nlstate+1,nlstate+ndeath);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                   mu1=mu[i][(int) age]/stepm*YEARM ;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   mu2=mu[j][(int) age]/stepm*YEARM;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                   c12=cv12/sqrt(v1*v2);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   /* Computing eigen value of matrix of covariance */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                   /* Eigen vectors */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                   /*v21=sqrt(1.-v11*v11); *//* error */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   v21=(lc1-v1)/cv12*v11;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                   v12=-v21;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                   v22=v11;  */
                   tnalp=v21/v11;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                   if(first1==1){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                     first1=0;  
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    free_vector(xp,1,npar);
                   }    free_matrix(doldm,1,nlstate,1,nlstate);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    free_matrix(dnewm,1,nlstate,1,npar);
                   /*printf(fignu*/    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   if(first==1){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     first=0;    fclose(ficresprobmorprev);
                     fprintf(ficgp,"\nset parametric;unset label");    fflush(ficgp);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    fflush(fichtm);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  }  /* end varevsij */
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\  
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\  /************ Variance of prevlim ******************/
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\  {
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    /* Variance of prevalence limit */
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    double **newm;
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    double **dnewm,**doldm;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    int i, j, nhstepm, hstepm;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    int k, cptcode;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    double *xp;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    double *gp, *gm;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double **gradg, **trgradg;
                   }else{    double age,agelim;
                     first=0;    int theta;
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);   
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    pstamp(ficresvpl);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficresvpl,"# Age");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    for(i=1; i<=nlstate;i++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        fprintf(ficresvpl," %1d-%1d",i,i);
                   }/* if first */    fprintf(ficresvpl,"\n");
                 } /* age mod 5 */  
               } /* end loop age */    xp=vector(1,npar);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    dnewm=matrix(1,nlstate,1,npar);
               first=1;    doldm=matrix(1,nlstate,1,nlstate);
             } /*l12 */   
           } /* k12 */    hstepm=1*YEARM; /* Every year of age */
         } /*l1 */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
       }/* k1 */    agelim = AGESUP;
     } /* loop covariates */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      if (stepm >= YEARM) hstepm=1;
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   free_vector(xp,1,npar);      gradg=matrix(1,npar,1,nlstate);
   fclose(ficresprob);      gp=vector(1,nlstate);
   fclose(ficresprobcov);      gm=vector(1,nlstate);
   fclose(ficresprobcor);  
   fflush(ficgp);      for(theta=1; theta <=npar; theta++){
   fflush(fichtmcov);        for(i=1; i<=npar; i++){ /* Computes gradient */
 }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /******************* Printing html file ***********/        for(i=1;i<=nlstate;i++)
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          gp[i] = prlim[i][i];
                   int lastpass, int stepm, int weightopt, char model[],\     
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        for(i=1; i<=npar; i++) /* Computes gradient */
                   int popforecast, int estepm ,\          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   double jprev1, double mprev1,double anprev1, \        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   double jprev2, double mprev2,double anprev2){        for(i=1;i<=nlstate;i++)
   int jj1, k1, i1, cpt;          gm[i] = prlim[i][i];
   /*char optionfilehtm[FILENAMELENGTH];*/  
 /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */        for(i=1;i<=nlstate;i++)
 /*     printf("Problem with %s \n",optionfilehtm), exit(0); */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */      } /* End theta */
 /*   } */  
       trgradg =matrix(1,nlstate,1,npar);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \      for(j=1; j<=nlstate;j++)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \        for(theta=1; theta <=npar; theta++)
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \          trgradg[j][theta]=gradg[theta][j];
  - Life expectancies by age and initial health status (estepm=%2d months): \  
    <a href=\"%s\">%s</a> <br>\n</li>", \      for(i=1;i<=nlstate;i++)
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\        varpl[i][(int)age] =0.;
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  
       fprintf(ficresvpl,"%.0f ",age );
  m=cptcoveff;      for(i=1; i<=nlstate;i++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
  jj1=0;      free_vector(gp,1,nlstate);
  for(k1=1; k1<=m;k1++){      free_vector(gm,1,nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){      free_matrix(gradg,1,npar,1,nlstate);
      jj1++;      free_matrix(trgradg,1,nlstate,1,npar);
      if (cptcovn > 0) {    } /* End age */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)     free_vector(xp,1,npar);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    free_matrix(doldm,1,nlstate,1,npar);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_matrix(dnewm,1,nlstate,1,nlstate);
      }  
      /* Pij */  }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \  
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);       /************ Variance of one-step probabilities  ******************/
      /* Quasi-incidences */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\  {
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \    int i, j=0,  i1, k1, l1, t, tj;
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     int k2, l2, j1,  z1;
        /* Stable prevalence in each health state */    int k=0,l, cptcode;
        for(cpt=1; cpt<nlstate;cpt++){    int first=1, first1;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    double **dnewm,**doldm;
        }    double *xp;
      for(cpt=1; cpt<=nlstate;cpt++) {    double *gp, *gm;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    double **gradg, **trgradg;
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);    double **mu;
      }    double age,agelim, cov[NCOVMAX];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 health expectancies in states (1) and (2): %s%d.png<br>\    int theta;
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);    char fileresprob[FILENAMELENGTH];
    } /* end i1 */    char fileresprobcov[FILENAMELENGTH];
  }/* End k1 */    char fileresprobcor[FILENAMELENGTH];
  fprintf(fichtm,"</ul>");  
     double ***varpij;
   
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\    strcpy(fileresprob,"prob");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\    strcat(fileresprob,fileres);
  - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\      printf("Problem with resultfile: %s\n", fileresprob);
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\    }
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\    strcpy(fileresprobcov,"probcov");
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\    strcat(fileresprobcov,fileres);
          rfileres,rfileres,\    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\      printf("Problem with resultfile: %s\n", fileresprobcov);
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\    }
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\    strcpy(fileresprobcor,"probcor");
          subdirf2(fileres,"t"),subdirf2(fileres,"t"),\    strcat(fileresprobcor,fileres);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
 /*  if(popforecast==1) fprintf(fichtm,"\n */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    }
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 /*      <br>",fileres,fileres,fileres,fileres); */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 /*  else  */    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  m=cptcoveff;    pstamp(ficresprob);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
  jj1=0;    pstamp(ficresprobcov);
  for(k1=1; k1<=m;k1++){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
    for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(ficresprobcov,"# Age");
      jj1++;    pstamp(ficresprobcor);
      if (cptcovn > 0) {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(ficresprobcor,"# Age");
        for (cpt=1; cpt<=cptcoveff;cpt++)   
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    for(i=1; i<=nlstate;i++)
      }      for(j=1; j<=(nlstate+ndeath);j++){
      for(cpt=1; cpt<=nlstate;cpt++) {        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\        fprintf(ficresprobcov," p%1d-%1d ",i,j);
 interval) in state (%d): %s%d%d.png <br>\        fprintf(ficresprobcor," p%1d-%1d ",i,j);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);        }  
      }   /* fprintf(ficresprob,"\n");
    } /* end i1 */    fprintf(ficresprobcov,"\n");
  }/* End k1 */    fprintf(ficresprobcor,"\n");
  fprintf(fichtm,"</ul>");   */
  fflush(fichtm);   xp=vector(1,npar);
 }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 /******************* Gnuplot file **************/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   char dirfileres[132],optfileres[132];    fprintf(ficgp,"\n# Routine varprob");
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   int ng;    fprintf(fichtm,"\n");
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */  
 /*     printf("Problem with file %s",optionfilegnuplot); */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 /*   } */    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   /*#ifdef windows */  and drawn. It helps understanding how is the covariance between two incidences.\
   fprintf(ficgp,"cd \"%s\" \n",pathc);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     /*#endif */    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   m=pow(2,cptcoveff);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   strcpy(dirfileres,optionfilefiname);  standard deviations wide on each axis. <br>\
   strcpy(optfileres,"vpl");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
  /* 1eme*/   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   for (cpt=1; cpt<= nlstate ; cpt ++) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    for (k1=1; k1<= m ; k1 ++) {  
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);    cov[1]=1;
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);    tj=cptcoveff;
      fprintf(ficgp,"set xlabel \"Age\" \n\    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 set ylabel \"Probability\" \n\    j1=0;
 set ter png small\n\    for(t=1; t<=tj;t++){
 set size 0.65,0.65\n\      for(i1=1; i1<=ncodemax[t];i1++){
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);        j1++;
         if  (cptcovn>0) {
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficresprob, "\n#********** Variable ");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresprob, "**********\n#\n");
      }          fprintf(ficresprobcov, "\n#********** Variable ");
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficresprobcov, "**********\n#\n");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");         
        else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficgp, "\n#********** Variable ");
      }           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);           fprintf(ficgp, "**********\n#\n");
      for (i=1; i<= nlstate ; i ++) {         
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");         
        else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
      }            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
    }         
   }          fprintf(ficresprobcor, "\n#********** Variable ");    
   /*2 eme*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficresprobcor, "**********\n#");    
   for (k1=1; k1<= m ; k1 ++) {         }
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);       
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        for (age=bage; age<=fage; age ++){
               cov[2]=age;
     for (i=1; i<= nlstate+1 ; i ++) {          for (k=1; k<=cptcovn;k++) {
       k=2*i;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for (k=1; k<=cptcovprod;k++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }            
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          gp=vector(1,(nlstate)*(nlstate+ndeath));
       for (j=1; j<= nlstate+1 ; j ++) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(theta=1; theta <=npar; theta++){
       }               for(i=1; i<=npar; i++)
       fprintf(ficgp,"\" t\"\" w l 0,");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);           
       for (j=1; j<= nlstate+1 ; j ++) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");           
         else fprintf(ficgp," \%%*lf (\%%*lf)");            k=0;
       }               for(i=1; i<= (nlstate); i++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              for(j=1; j<=(nlstate+ndeath);j++){
       else fprintf(ficgp,"\" t\"\" w l 0,");                k=k+1;
     }                gp[k]=pmmij[i][j];
   }              }
               }
   /*3eme*/           
               for(i=1; i<=npar; i++)
   for (k1=1; k1<= m ; k1 ++) {               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     for (cpt=1; cpt<= nlstate ; cpt ++) {     
       k=2+nlstate*(2*cpt-2);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);            k=0;
       fprintf(ficgp,"set ter png small\n\            for(i=1; i<=(nlstate); i++){
 set size 0.65,0.65\n\              for(j=1; j<=(nlstate+ndeath);j++){
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);                k=k+1;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                gm[k]=pmmij[i][j];
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              }
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                   }
       */  
       for (i=1; i< nlstate ; i ++) {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);            for(theta=1; theta <=npar; theta++)
                       trgradg[j][theta]=gradg[theta][j];
       }          
     }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
             free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   /* CV preval stable (period) */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   for (k1=1; k1<= m ; k1 ++) {           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     for (cpt=1; cpt<=nlstate ; cpt ++) {          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       k=3;  
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);          pmij(pmmij,cov,ncovmodel,x,nlstate);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\         
 set ter png small\nset size 0.65,0.65\n\          k=0;
 unset log y\n\          for(i=1; i<=(nlstate); i++){
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);            for(j=1; j<=(nlstate+ndeath);j++){
                     k=k+1;
       for (i=1; i< nlstate ; i ++)              mu[k][(int) age]=pmmij[i][j];
         fprintf(ficgp,"+$%d",k+i+1);            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          }
                 for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       l=3+(nlstate+ndeath)*cpt;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);              varpij[i][j][(int)age] = doldm[i][j];
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;          /*printf("\n%d ",(int)age);
         fprintf(ficgp,"+$%d",l+i+1);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);               fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }             }*/
   }    
             fprintf(ficresprob,"\n%d ",(int)age);
   /* proba elementaires */          fprintf(ficresprobcov,"\n%d ",(int)age);
   for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficresprobcor,"\n%d ",(int)age);
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         for(j=1; j <=ncovmodel; j++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           jk++;             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           fprintf(ficgp,"\n");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         }          }
       }          i=0;
     }          for (k=1; k<=(nlstate);k++){
    }            for (l=1; l<=(nlstate+ndeath);l++){
               i=i++;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
      for(jk=1; jk <=m; jk++) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);               for (j=1; j<=i;j++){
        if (ng==2)                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
        else              }
          fprintf(ficgp,"\nset title \"Probability\"\n");            }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          }/* end of loop for state */
        i=1;        } /* end of loop for age */
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;        /* Confidence intervalle of pij  */
          for(k=1; k<=(nlstate+ndeath); k++) {        /*
            if (k != k2){          fprintf(ficgp,"\nset noparametric;unset label");
              if(ng==2)          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
              else          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
              ij=1;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              for(j=3; j <=ncovmodel; j++) {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                }        first1=1;
                else        for (k2=1; k2<=(nlstate);k2++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for (l2=1; l2<=(nlstate+ndeath);l2++){
              }            if(l2==k2) continue;
              fprintf(ficgp,")/(1");            j=(k2-1)*(nlstate+ndeath)+l2;
                          for (k1=1; k1<=(nlstate);k1++){
              for(k1=1; k1 <=nlstate; k1++){                 for (l1=1; l1<=(nlstate+ndeath);l1++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                if(l1==k1) continue;
                ij=1;                i=(k1-1)*(nlstate+ndeath)+l1;
                for(j=3; j <=ncovmodel; j++){                if(i<=j) continue;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                for (age=bage; age<=fage; age ++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                  if ((int)age %5==0){
                    ij++;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                  }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                  else                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                }                    mu2=mu[j][(int) age]/stepm*YEARM;
                fprintf(ficgp,")");                    c12=cv12/sqrt(v1*v2);
              }                    /* Computing eigen value of matrix of covariance */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
              i=i+ncovmodel;                    /* Eigen vectors */
            }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
          } /* end k */                    /*v21=sqrt(1.-v11*v11); *//* error */
        } /* end k2 */                    v21=(lc1-v1)/cv12*v11;
      } /* end jk */                    v12=-v21;
    } /* end ng */                    v22=v11;
    fflush(ficgp);                     tnalp=v21/v11;
 }  /* end gnuplot */                    if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 /*************** Moving average **************/                    }
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   int i, cpt, cptcod;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   int modcovmax =1;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   int mobilavrange, mob;                    if(first==1){
   double age;                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                            a covariate has 2 modalities */                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     if(mobilav==1) mobilavrange=5; /* default */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     else mobilavrange=mobilav;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     for (age=bage; age<=fage; age++)                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for (i=1; i<=nlstate;i++)                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     /* We keep the original values on the extreme ages bage, fage and for                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
        we use a 5 terms etc. until the borders are no more concerned.                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     */                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     for (mob=3;mob <=mobilavrange;mob=mob+2){                    }else{
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){                      first=0;
         for (i=1; i<=nlstate;i++){                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
               }                    }/* if first */
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;                  } /* age mod 5 */
           }                } /* end loop age */
         }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }/* end age */                first=1;
     }/* end mob */              } /*l12 */
   }else return -1;            } /* k12 */
   return 0;          } /*l1 */
 }/* End movingaverage */        }/* k1 */
       } /* loop covariates */
     }
 /************** Forecasting ******************/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   /* proj1, year, month, day of starting projection     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      agemin, agemax range of age    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
      dateprev1 dateprev2 range of dates during which prevalence is computed    free_vector(xp,1,npar);
      anproj2 year of en of projection (same day and month as proj1).    fclose(ficresprob);
   */    fclose(ficresprobcov);
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;    fclose(ficresprobcor);
   int *popage;    fflush(ficgp);
   double agec; /* generic age */    fflush(fichtmcov);
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  }
   double *popeffectif,*popcount;  
   double ***p3mat;  
   double ***mobaverage;  /******************* Printing html file ***********/
   char fileresf[FILENAMELENGTH];  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   agelim=AGESUP;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                    int popforecast, int estepm ,\
                      double jprev1, double mprev1,double anprev1, \
   strcpy(fileresf,"f");                     double jprev2, double mprev2,double anprev2){
   strcat(fileresf,fileres);    int jj1, k1, i1, cpt;
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   }  </ul>");
   printf("Computing forecasting: result on file '%s' \n", fileresf);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   if (mobilav!=0) {             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     fprintf(fichtm,"\
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       printf(" Error in movingaverage mobilav=%d\n",mobilav);     fprintf(fichtm,"\
     }   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   stepsize=(int) (stepm+YEARM-1)/YEARM;     fprintf(fichtm,"\
   if (stepm<=12) stepsize=1;   - Population projections by age and states: \
   if(estepm < stepm){     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   else  hstepm=estepm;     
    m=cptcoveff;
   hstepm=hstepm/stepm;    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and  
                                fractional in yp1 */   jj1=0;
   anprojmean=yp;   for(k1=1; k1<=m;k1++){
   yp2=modf((yp1*12),&yp);     for(i1=1; i1<=ncodemax[k1];i1++){
   mprojmean=yp;       jj1++;
   yp1=modf((yp2*30.5),&yp);       if (cptcovn > 0) {
   jprojmean=yp;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   if(jprojmean==0) jprojmean=1;         for (cpt=1; cpt<=cptcoveff;cpt++)
   if(mprojmean==0) jprojmean=1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   i1=cptcoveff;       }
   if (cptcovn < 1){i1=1;}       /* Pij */
          fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
          /* Quasi-incidences */
   fprintf(ficresf,"#****** Routine prevforecast **\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
 /*            if (h==(int)(YEARM*yearp)){ */  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){         /* Period (stable) prevalence in each health state */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){         for(cpt=1; cpt<nlstate;cpt++){
       k=k+1;           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
       fprintf(ficresf,"\n#******");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       for(j=1;j<=cptcoveff;j++) {         }
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for(cpt=1; cpt<=nlstate;cpt++) {
       }          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
       fprintf(ficresf,"******\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");       }
       for(j=1; j<=nlstate+ndeath;j++){      } /* end i1 */
         for(i=1; i<=nlstate;i++)                 }/* End k1 */
           fprintf(ficresf," p%d%d",i,j);   fprintf(fichtm,"</ul>");
         fprintf(ficresf," p.%d",j);  
       }  
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {    fprintf(fichtm,"\
         fprintf(ficresf,"\n");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
         for (agec=fage; agec>=(ageminpar-1); agec--){    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
           nhstepm = nhstepm/hstepm;    fprintf(fichtm,"\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           oldm=oldms;savm=savms;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);    
            fprintf(fichtm,"\
           for (h=0; h<=nhstepm; h++){   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             if (h*hstepm/YEARM*stepm ==yearp) {           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
               fprintf(ficresf,"\n");   fprintf(fichtm,"\
               for(j=1;j<=cptcoveff;j++)    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     <a href=\"%s\">%s</a> <br>\n</li>",
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
             }    fprintf(fichtm,"\
             for(j=1; j<=nlstate+ndeath;j++) {   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
               ppij=0.;     <a href=\"%s\">%s</a> <br>\n</li>",
               for(i=1; i<=nlstate;i++) {             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
                 if (mobilav==1)    fprintf(fichtm,"\
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                 else {           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];   fprintf(fichtm,"\
                 }   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
                 if (h*hstepm/YEARM*stepm== yearp) {           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);   fprintf(fichtm,"\
                 }   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
               } /* end i */           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
               if (h*hstepm/YEARM*stepm==yearp) {  
                 fprintf(ficresf," %.3f", ppij);  /*  if(popforecast==1) fprintf(fichtm,"\n */
               }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
             }/* end j */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           } /* end h */  /*      <br>",fileres,fileres,fileres,fileres); */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*  else  */
         } /* end agec */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       } /* end yearp */   fflush(fichtm);
     } /* end cptcod */   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   } /* end  cptcov */  
           m=cptcoveff;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   fclose(ficresf);   jj1=0;
 }   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
 /************** Forecasting *****not tested NB*************/       jj1++;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       if (cptcovn > 0) {
            fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;         for (cpt=1; cpt<=cptcoveff;cpt++)
   int *popage;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   double calagedatem, agelim, kk1, kk2;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   double *popeffectif,*popcount;       }
   double ***p3mat,***tabpop,***tabpopprev;       for(cpt=1; cpt<=nlstate;cpt++) {
   double ***mobaverage;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   char filerespop[FILENAMELENGTH];  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   agelim=AGESUP;  health expectancies in states (1) and (2): %s%d.png<br>\
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
        } /* end i1 */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);   }/* End k1 */
      fprintf(fichtm,"</ul>");
      fflush(fichtm);
   strcpy(filerespop,"pop");   }
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  /******************* Gnuplot file **************/
     printf("Problem with forecast resultfile: %s\n", filerespop);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }    char dirfileres[132],optfileres[132];
   printf("Computing forecasting: result on file '%s' \n", filerespop);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   if (mobilav!=0) {  /*   } */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    /*#ifdef windows */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      /*#endif */
     }    m=pow(2,cptcoveff);
   }  
     strcpy(dirfileres,optionfilefiname);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    strcpy(optfileres,"vpl");
   if (stepm<=12) stepsize=1;   /* 1eme*/
       for (cpt=1; cpt<= nlstate ; cpt ++) {
   agelim=AGESUP;     for (k1=1; k1<= m ; k1 ++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   hstepm=1;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   hstepm=hstepm/stepm;        fprintf(ficgp,"set xlabel \"Age\" \n\
     set ylabel \"Probability\" \n\
   if (popforecast==1) {  set ter png small\n\
     if((ficpop=fopen(popfile,"r"))==NULL) {  set size 0.65,0.65\n\
       printf("Problem with population file : %s\n",popfile);exit(0);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }        for (i=1; i<= nlstate ; i ++) {
     popage=ivector(0,AGESUP);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     popeffectif=vector(0,AGESUP);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     popcount=vector(0,AGESUP);       }
            fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     i=1;          for (i=1; i<= nlstate ; i ++) {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
     imx=i;       }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   }       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       }  
       k=k+1;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       fprintf(ficrespop,"\n#******");     }
       for(j=1;j<=cptcoveff;j++) {    }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*2 eme*/
       }   
       fprintf(ficrespop,"******\n");    for (k1=1; k1<= m ; k1 ++) {
       fprintf(ficrespop,"# Age");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       if (popforecast==1)  fprintf(ficrespop," [Population]");     
             for (i=1; i<= nlstate+1 ; i ++) {
       for (cpt=0; cpt<=0;cpt++) {         k=2*i;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                 for (j=1; j<= nlstate+1 ; j ++) {
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           else fprintf(ficgp," \%%*lf (\%%*lf)");
           nhstepm = nhstepm/hstepm;         }  
                   if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
           oldm=oldms;savm=savms;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for (j=1; j<= nlstate+1 ; j ++) {
                   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           for (h=0; h<=nhstepm; h++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
             if (h==(int) (calagedatem+YEARM*cpt)) {        }  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        fprintf(ficgp,"\" t\"\" w l 0,");
             }         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
             for(j=1; j<=nlstate+ndeath;j++) {        for (j=1; j<= nlstate+1 ; j ++) {
               kk1=0.;kk2=0;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               for(i=1; i<=nlstate;i++) {                        else fprintf(ficgp," \%%*lf (\%%*lf)");
                 if (mobilav==1)         }  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
                 else {        else fprintf(ficgp,"\" t\"\" w l 0,");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      }
                 }    }
               }   
               if (h==(int)(calagedatem+12*cpt)){    /*3eme*/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;   
                   /*fprintf(ficrespop," %.3f", kk1);    for (k1=1; k1<= m ; k1 ++) {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      for (cpt=1; cpt<= nlstate ; cpt ++) {
               }        /*       k=2+nlstate*(2*cpt-2); */
             }        k=2+(nlstate+1)*(cpt-1);
             for(i=1; i<=nlstate;i++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
               kk1=0.;        fprintf(ficgp,"set ter png small\n\
                 for(j=1; j<=nlstate;j++){  set size 0.65,0.65\n\
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
                 }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           }         
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        */
         }        for (i=1; i< nlstate ; i ++) {
       }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
            /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   /******/         
         }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         }
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){     }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;     /* CV preval stable (period) */
               for (k1=1; k1<= m ; k1 ++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (cpt=1; cpt<=nlstate ; cpt ++) {
           oldm=oldms;savm=savms;        k=3;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
           for (h=0; h<=nhstepm; h++){        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
             if (h==(int) (calagedatem+YEARM*cpt)) {  set ter png small\nset size 0.65,0.65\n\
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  unset log y\n\
             }   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
             for(j=1; j<=nlstate+ndeath;j++) {       
               kk1=0.;kk2=0;        for (i=1; i< nlstate ; i ++)
               for(i=1; i<=nlstate;i++) {                        fprintf(ficgp,"+$%d",k+i+1);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
               }       
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                l=3+(nlstate+ndeath)*cpt;
             }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
           }        for (i=1; i< nlstate ; i ++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          l=3+(nlstate+ndeath)*cpt;
         }          fprintf(ficgp,"+$%d",l+i+1);
       }        }
    }         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   }      }
      }  
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
     /* proba elementaires */
   if (popforecast==1) {    for(i=1,jk=1; i <=nlstate; i++){
     free_ivector(popage,0,AGESUP);      for(k=1; k <=(nlstate+ndeath); k++){
     free_vector(popeffectif,0,AGESUP);        if (k != i) {
     free_vector(popcount,0,AGESUP);          for(j=1; j <=ncovmodel; j++){
   }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            jk++;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficgp,"\n");
   fclose(ficrespop);          }
 } /* End of popforecast */        }
       }
 int fileappend(FILE *fichier, char *optionfich)     }
 {  
   if((fichier=fopen(optionfich,"a"))==NULL) {     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     printf("Problem with file: %s\n", optionfich);       for(jk=1; jk <=m; jk++) {
     fprintf(ficlog,"Problem with file: %s\n", optionfich);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
     return (0);         if (ng==2)
   }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fflush(fichier);         else
   return (1);           fprintf(ficgp,"\nset title \"Probability\"\n");
 }         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)         i=1;
 {         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
   char ca[32], cb[32], cc[32];           for(k=1; k<=(nlstate+ndeath); k++) {
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;             if (k != k2){
   int numlinepar;               if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");               else
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   for(i=1; i <=nlstate; i++){               ij=1;
     jj=0;               for(j=3; j <=ncovmodel; j++) {
     for(j=1; j <=nlstate+ndeath; j++){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       if(j==i) continue;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       jj++;                   ij++;
       /*ca[0]= k+'a'-1;ca[1]='\0';*/                 }
       printf("%1d%1d",i,j);                 else
       fprintf(ficparo,"%1d%1d",i,j);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       for(k=1; k<=ncovmodel;k++){               }
         /*        printf(" %lf",param[i][j][k]); */               fprintf(ficgp,")/(1");
         /*        fprintf(ficparo," %lf",param[i][j][k]); */               
         printf(" 0.");               for(k1=1; k1 <=nlstate; k1++){  
         fprintf(ficparo," 0.");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       }                 ij=1;
       printf("\n");                 for(j=3; j <=ncovmodel; j++){
       fprintf(ficparo,"\n");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   }                     ij++;
   printf("# Scales (for hessian or gradient estimation)\n");                   }
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");                   else
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   for(i=1; i <=nlstate; i++){                 }
     jj=0;                 fprintf(ficgp,")");
     for(j=1; j <=nlstate+ndeath; j++){               }
       if(j==i) continue;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       jj++;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       fprintf(ficparo,"%1d%1d",i,j);               i=i+ncovmodel;
       printf("%1d%1d",i,j);             }
       fflush(stdout);           } /* end k */
       for(k=1; k<=ncovmodel;k++){         } /* end k2 */
         /*      printf(" %le",delti3[i][j][k]); */       } /* end jk */
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */     } /* end ng */
         printf(" 0.");     fflush(ficgp);
         fprintf(ficparo," 0.");  }  /* end gnuplot */
       }  
       numlinepar++;  
       printf("\n");  /*************** Moving average **************/
       fprintf(ficparo,"\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     }  
   }    int i, cpt, cptcod;
   printf("# Covariance matrix\n");    int modcovmax =1;
 /* # 121 Var(a12)\n\ */    int mobilavrange, mob;
 /* # 122 Cov(b12,a12) Var(b12)\n\ */    double age;
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */  
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */                             a covariate has 2 modalities */
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */  
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   fflush(stdout);      if(mobilav==1) mobilavrange=5; /* default */
   fprintf(ficparo,"# Covariance matrix\n");      else mobilavrange=mobilav;
   /* # 121 Var(a12)\n\ */      for (age=bage; age<=fage; age++)
   /* # 122 Cov(b12,a12) Var(b12)\n\ */        for (i=1; i<=nlstate;i++)
   /* #   ...\n\ */          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         /* We keep the original values on the extreme ages bage, fage and for
   for(itimes=1;itimes<=2;itimes++){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     jj=0;         we use a 5 terms etc. until the borders are no more concerned.
     for(i=1; i <=nlstate; i++){      */
       for(j=1; j <=nlstate+ndeath; j++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
         if(j==i) continue;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         for(k=1; k<=ncovmodel;k++){          for (i=1; i<=nlstate;i++){
           jj++;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           ca[0]= k+'a'-1;ca[1]='\0';              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           if(itimes==1){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
             printf("#%1d%1d%d",i,j,k);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
             fprintf(ficparo,"#%1d%1d%d",i,j,k);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           }else{                }
             printf("%1d%1d%d",i,j,k);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             fprintf(ficparo,"%1d%1d%d",i,j,k);            }
             /*  printf(" %.5le",matcov[i][j]); */          }
           }        }/* end age */
           ll=0;      }/* end mob */
           for(li=1;li <=nlstate; li++){    }else return -1;
             for(lj=1;lj <=nlstate+ndeath; lj++){    return 0;
               if(lj==li) continue;  }/* End movingaverage */
               for(lk=1;lk<=ncovmodel;lk++){  
                 ll++;  
                 if(ll<=jj){  /************** Forecasting ******************/
                   cb[0]= lk +'a'-1;cb[1]='\0';  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
                   if(ll<jj){    /* proj1, year, month, day of starting projection
                     if(itimes==1){       agemin, agemax range of age
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);       dateprev1 dateprev2 range of dates during which prevalence is computed
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);       anproj2 year of en of projection (same day and month as proj1).
                     }else{    */
                       printf(" 0.");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
                       fprintf(ficparo," 0.");    int *popage;
                     }    double agec; /* generic age */
                   }else{    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
                     if(itimes==1){    double *popeffectif,*popcount;
                       printf(" Var(%s%1d%1d)",ca,i,j);    double ***p3mat;
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    double ***mobaverage;
                     }else{    char fileresf[FILENAMELENGTH];
                       printf(" 0.");  
                       fprintf(ficparo," 0.");    agelim=AGESUP;
                     }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   }   
                 }    strcpy(fileresf,"f");
               } /* end lk */    strcat(fileresf,fileres);
             } /* end lj */    if((ficresf=fopen(fileresf,"w"))==NULL) {
           } /* end li */      printf("Problem with forecast resultfile: %s\n", fileresf);
           printf("\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficparo,"\n");    }
           numlinepar++;    printf("Computing forecasting: result on file '%s' \n", fileresf);
         } /* end k*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       } /*end j */  
     } /* end i */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   }  
     if (mobilav!=0) {
 } /* end of prwizard */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 /***********************************************/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 /**************** Main Program *****************/      }
 /***********************************************/    }
   
 int main(int argc, char *argv[])    stepsize=(int) (stepm+YEARM-1)/YEARM;
 {    if (stepm<=12) stepsize=1;
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    if(estepm < stepm){
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;      printf ("Problem %d lower than %d\n",estepm, stepm);
   int jj, imk;    }
   int numlinepar=0; /* Current linenumber of parameter file */    else  hstepm=estepm;  
   /*  FILE *fichtm; *//* Html File */  
   /* FILE *ficgp;*/ /*Gnuplot File */    hstepm=hstepm/stepm;
   double agedeb, agefin,hf;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                                 fractional in yp1 */
     anprojmean=yp;
   double fret;    yp2=modf((yp1*12),&yp);
   double **xi,tmp,delta;    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   double dum; /* Dummy variable */    jprojmean=yp;
   double ***p3mat;    if(jprojmean==0) jprojmean=1;
   double ***mobaverage;    if(mprojmean==0) jprojmean=1;
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    i1=cptcoveff;
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    if (cptcovn < 1){i1=1;}
   char pathr[MAXLINE];    
   int firstobs=1, lastobs=10;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   int sdeb, sfin; /* Status at beginning and end */   
   int c,  h , cpt,l;    fprintf(ficresf,"#****** Routine prevforecast **\n");
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  /*            if (h==(int)(YEARM*yearp)){ */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   int mobilav=0,popforecast=0;        k=k+1;
   int hstepm, nhstepm;        fprintf(ficresf,"\n#******");
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;        for(j=1;j<=cptcoveff;j++) {
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
   double bage, fage, age, agelim, agebase;        fprintf(ficresf,"******\n");
   double ftolpl=FTOL;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   double **prlim;        for(j=1; j<=nlstate+ndeath;j++){
   double *severity;          for(i=1; i<=nlstate;i++)              
   double ***param; /* Matrix of parameters */            fprintf(ficresf," p%d%d",i,j);
   double  *p;          fprintf(ficresf," p.%d",j);
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   double *delti; /* Scale */          fprintf(ficresf,"\n");
   double ***eij, ***vareij;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;          for (agec=fage; agec>=(ageminpar-1); agec--){
   double kk1, kk2;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;            nhstepm = nhstepm/hstepm;
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char *alph[]={"a","a","b","c","d","e"}, str[4];            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
          
   char z[1]="c", occ;            for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                fprintf(ficresf,"\n");
   char strstart[80], *strt, strtend[80];                for(j=1;j<=cptcoveff;j++)
   char *stratrunc;                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   int lstra;                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               }
   long total_usecs;              for(j=1; j<=nlstate+ndeath;j++) {
                  ppij=0.;
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                for(i=1; i<=nlstate;i++) {
   (void) gettimeofday(&start_time,&tzp);                  if (mobilav==1)
   curr_time=start_time;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   tm = *localtime(&start_time.tv_sec);                  else {
   tmg = *gmtime(&start_time.tv_sec);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   strcpy(strstart,asctime(&tm));                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
 /*  printf("Localtime (at start)=%s",strstart); */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
 /*  tp.tv_sec = tp.tv_sec +86400; */                  }
 /*  tm = *localtime(&start_time.tv_sec); */                } /* end i */
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */                if (h*hstepm/YEARM*stepm==yearp) {
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */                  fprintf(ficresf," %.3f", ppij);
 /*   tmg.tm_hour=tmg.tm_hour + 1; */                }
 /*   tp.tv_sec = mktime(&tmg); */              }/* end j */
 /*   strt=asctime(&tmg); */            } /* end h */
 /*   printf("Time(after) =%s",strstart);  */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*  (void) time (&time_value);          } /* end agec */
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);        } /* end yearp */
 *  tm = *localtime(&time_value);      } /* end cptcod */
 *  strstart=asctime(&tm);    } /* end  cptcov */
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);          
 */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   nberr=0; /* Number of errors and warnings */    fclose(ficresf);
   nbwarn=0;  }
   getcwd(pathcd, size);  
   /************** Forecasting *****not tested NB*************/
   printf("\n%s\n%s",version,fullversion);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   if(argc <=1){   
     printf("\nEnter the parameter file name: ");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     scanf("%s",pathtot);    int *popage;
   }    double calagedatem, agelim, kk1, kk2;
   else{    double *popeffectif,*popcount;
     strcpy(pathtot,argv[1]);    double ***p3mat,***tabpop,***tabpopprev;
   }    double ***mobaverage;
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    char filerespop[FILENAMELENGTH];
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* cutv(path,optionfile,pathtot,'\\');*/    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);   
   chdir(path);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   strcpy(command,"mkdir ");   
   strcat(command,optionfilefiname);   
   if((outcmd=system(command)) != 0){    strcpy(filerespop,"pop");
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    strcat(filerespop,fileres);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     /* fclose(ficlog); */      printf("Problem with forecast resultfile: %s\n", filerespop);
 /*     exit(1); */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   }    }
 /*   if((imk=mkdir(optionfilefiname))<0){ */    printf("Computing forecasting: result on file '%s' \n", filerespop);
 /*     perror("mkdir"); */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 /*   } */  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   /*-------- arguments in the command line --------*/  
     if (mobilav!=0) {
   /* Log file */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(filelog, optionfilefiname);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   strcat(filelog,".log");    /* */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if((ficlog=fopen(filelog,"w"))==NULL)    {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with logfile %s\n",filelog);      }
     goto end;    }
   }  
   fprintf(ficlog,"Log filename:%s\n",filelog);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    if (stepm<=12) stepsize=1;
   fprintf(ficlog,"\nEnter the parameter file name: ");   
   fprintf(ficlog,"pathtot=%s\n\    agelim=AGESUP;
  path=%s \n\   
  optionfile=%s\n\    hstepm=1;
  optionfilext=%s\n\    hstepm=hstepm/stepm;
  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);   
     if (popforecast==1) {
   printf("Localtime (at start):%s",strstart);      if((ficpop=fopen(popfile,"r"))==NULL) {
   fprintf(ficlog,"Localtime (at start): %s",strstart);        printf("Problem with population file : %s\n",popfile);exit(0);
   fflush(ficlog);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 /*   (void) gettimeofday(&curr_time,&tzp); */      }
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
   /* */      popcount=vector(0,AGESUP);
   strcpy(fileres,"r");     
   strcat(fileres, optionfilefiname);      i=1;  
   strcat(fileres,".txt");    /* Other files have txt extension */      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
   /*---------arguments file --------*/      imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     fflush(ficlog);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     goto end;        k=k+1;
   }        fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
   strcpy(filereso,"o");        fprintf(ficrespop,"******\n");
   strcat(filereso,fileres);        fprintf(ficrespop,"# Age");
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     printf("Problem with Output resultfile: %s\n", filereso);        if (popforecast==1)  fprintf(ficrespop," [Population]");
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);       
     fflush(ficlog);        for (cpt=0; cpt<=0;cpt++) {
     goto end;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   }         
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   /* Reads comments: lines beginning with '#' */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   numlinepar=0;            nhstepm = nhstepm/hstepm;
   while((c=getc(ficpar))=='#' && c!= EOF){           
     ungetc(c,ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);            oldm=oldms;savm=savms;
     numlinepar++;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     puts(line);         
     fputs(line,ficparo);            for (h=0; h<=nhstepm; h++){
     fputs(line,ficlog);              if (h==(int) (calagedatem+YEARM*cpt)) {
   }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   ungetc(c,ficpar);              }
               for(j=1; j<=nlstate+ndeath;j++) {
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                kk1=0.;kk2=0;
   numlinepar++;                for(i=1; i<=nlstate;i++) {              
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                  if (mobilav==1)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                  else {
   fflush(ficlog);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   while((c=getc(ficpar))=='#' && c!= EOF){                  }
     ungetc(c,ficpar);                }
     fgets(line, MAXLINE, ficpar);                if (h==(int)(calagedatem+12*cpt)){
     numlinepar++;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     puts(line);                    /*fprintf(ficrespop," %.3f", kk1);
     fputs(line,ficparo);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     fputs(line,ficlog);                }
   }              }
   ungetc(c,ficpar);              for(i=1; i<=nlstate;i++){
                 kk1=0.;
                      for(j=1; j<=nlstate;j++){
   covar=matrix(0,NCOVMAX,1,n);                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/                  }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
                  fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */            }
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);          }
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);        }
     fclose (ficparo);   
     fclose (ficlog);    /******/
     exit(0);  
   }        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   /* Read guess parameters */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   /* Reads comments: lines beginning with '#' */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   while((c=getc(ficpar))=='#' && c!= EOF){            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
     ungetc(c,ficpar);            nhstepm = nhstepm/hstepm;
     fgets(line, MAXLINE, ficpar);           
     numlinepar++;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);            oldm=oldms;savm=savms;
     fputs(line,ficparo);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fputs(line,ficlog);            for (h=0; h<=nhstepm; h++){
   }              if (h==(int) (calagedatem+YEARM*cpt)) {
   ungetc(c,ficpar);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              for(j=1; j<=nlstate+ndeath;j++) {
   for(i=1; i <=nlstate; i++){                kk1=0.;kk2=0;
     j=0;                for(i=1; i<=nlstate;i++) {              
     for(jj=1; jj <=nlstate+ndeath; jj++){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       if(jj==i) continue;                }
       j++;                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
       fscanf(ficpar,"%1d%1d",&i1,&j1);              }
       if ((i1 != i) && (j1 != j)){            }
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         exit(1);          }
       }        }
       fprintf(ficparo,"%1d%1d",i1,j1);     }
       if(mle==1)    }
         printf("%1d%1d",i,j);   
       fprintf(ficlog,"%1d%1d",i,j);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    if (popforecast==1) {
         if(mle==1){      free_ivector(popage,0,AGESUP);
           printf(" %lf",param[i][j][k]);      free_vector(popeffectif,0,AGESUP);
           fprintf(ficlog," %lf",param[i][j][k]);      free_vector(popcount,0,AGESUP);
         }    }
         else    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficlog," %lf",param[i][j][k]);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficparo," %lf",param[i][j][k]);    fclose(ficrespop);
       }  } /* End of popforecast */
       fscanf(ficpar,"\n");  
       numlinepar++;  int fileappend(FILE *fichier, char *optionfich)
       if(mle==1)  {
         printf("\n");    if((fichier=fopen(optionfich,"a"))==NULL) {
       fprintf(ficlog,"\n");      printf("Problem with file: %s\n", optionfich);
       fprintf(ficparo,"\n");      fprintf(ficlog,"Problem with file: %s\n", optionfich);
     }      return (0);
   }      }
   fflush(ficlog);    fflush(fichier);
     return (1);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  }
   
   p=param[1][1];  
     /**************** function prwizard **********************/
   /* Reads comments: lines beginning with '#' */  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    /* Wizard to print covariance matrix template */
     numlinepar++;  
     puts(line);    char ca[32], cb[32], cc[32];
     fputs(line,ficparo);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     fputs(line,ficlog);    int numlinepar;
   }  
   ungetc(c,ficpar);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for(i=1; i <=nlstate; i++){
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */      jj=0;
   for(i=1; i <=nlstate; i++){      for(j=1; j <=nlstate+ndeath; j++){
     for(j=1; j <=nlstate+ndeath-1; j++){        if(j==i) continue;
       fscanf(ficpar,"%1d%1d",&i1,&j1);        jj++;
       if ((i1-i)*(j1-j)!=0){        /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        printf("%1d%1d",i,j);
         exit(1);        fprintf(ficparo,"%1d%1d",i,j);
       }        for(k=1; k<=ncovmodel;k++){
       printf("%1d%1d",i,j);          /*        printf(" %lf",param[i][j][k]); */
       fprintf(ficparo,"%1d%1d",i1,j1);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
       fprintf(ficlog,"%1d%1d",i1,j1);          printf(" 0.");
       for(k=1; k<=ncovmodel;k++){          fprintf(ficparo," 0.");
         fscanf(ficpar,"%le",&delti3[i][j][k]);        }
         printf(" %le",delti3[i][j][k]);        printf("\n");
         fprintf(ficparo," %le",delti3[i][j][k]);        fprintf(ficparo,"\n");
         fprintf(ficlog," %le",delti3[i][j][k]);      }
       }    }
       fscanf(ficpar,"\n");    printf("# Scales (for hessian or gradient estimation)\n");
       numlinepar++;    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
       printf("\n");    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       fprintf(ficparo,"\n");    for(i=1; i <=nlstate; i++){
       fprintf(ficlog,"\n");      jj=0;
     }      for(j=1; j <=nlstate+ndeath; j++){
   }        if(j==i) continue;
   fflush(ficlog);        jj++;
         fprintf(ficparo,"%1d%1d",i,j);
   delti=delti3[1][1];        printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */          /*      printf(" %le",delti3[i][j][k]); */
             /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   /* Reads comments: lines beginning with '#' */          printf(" 0.");
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficparo," 0.");
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        numlinepar++;
     numlinepar++;        printf("\n");
     puts(line);        fprintf(ficparo,"\n");
     fputs(line,ficparo);      }
     fputs(line,ficlog);    }
   }    printf("# Covariance matrix\n");
   ungetc(c,ficpar);  /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
   matcov=matrix(1,npar,1,npar);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   for(i=1; i <=npar; i++){  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     fscanf(ficpar,"%s",&str);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
     if(mle==1)  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       printf("%s",str);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     fprintf(ficlog,"%s",str);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fprintf(ficparo,"%s",str);    fflush(stdout);
     for(j=1; j <=i; j++){    fprintf(ficparo,"# Covariance matrix\n");
       fscanf(ficpar," %le",&matcov[i][j]);    /* # 121 Var(a12)\n\ */
       if(mle==1){    /* # 122 Cov(b12,a12) Var(b12)\n\ */
         printf(" %.5le",matcov[i][j]);    /* #   ...\n\ */
       }    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
       fprintf(ficlog," %.5le",matcov[i][j]);   
       fprintf(ficparo," %.5le",matcov[i][j]);    for(itimes=1;itimes<=2;itimes++){
     }      jj=0;
     fscanf(ficpar,"\n");      for(i=1; i <=nlstate; i++){
     numlinepar++;        for(j=1; j <=nlstate+ndeath; j++){
     if(mle==1)          if(j==i) continue;
       printf("\n");          for(k=1; k<=ncovmodel;k++){
     fprintf(ficlog,"\n");            jj++;
     fprintf(ficparo,"\n");            ca[0]= k+'a'-1;ca[1]='\0';
   }            if(itimes==1){
   for(i=1; i <=npar; i++)              printf("#%1d%1d%d",i,j,k);
     for(j=i+1;j<=npar;j++)              fprintf(ficparo,"#%1d%1d%d",i,j,k);
       matcov[i][j]=matcov[j][i];            }else{
                  printf("%1d%1d%d",i,j,k);
   if(mle==1)              fprintf(ficparo,"%1d%1d%d",i,j,k);
     printf("\n");              /*  printf(" %.5le",matcov[i][j]); */
   fprintf(ficlog,"\n");            }
             ll=0;
   fflush(ficlog);            for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
   /*-------- Rewriting paramater file ----------*/                if(lj==li) continue;
   strcpy(rfileres,"r");    /* "Rparameterfile */                for(lk=1;lk<=ncovmodel;lk++){
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                  ll++;
   strcat(rfileres,".");    /* */                  if(ll<=jj){
   strcat(rfileres,optionfilext);    /* Other files have txt extension */                    cb[0]= lk +'a'-1;cb[1]='\0';
   if((ficres =fopen(rfileres,"w"))==NULL) {                    if(ll<jj){
     printf("Problem writing new parameter file: %s\n", fileres);goto end;                      if(itimes==1){
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   }                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   fprintf(ficres,"#%s\n",version);                      }else{
                             printf(" 0.");
   /*-------- data file ----------*/                        fprintf(ficparo," 0.");
   if((fic=fopen(datafile,"r"))==NULL)    {                      }
     printf("Problem with datafile: %s\n", datafile);goto end;                    }else{
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;                      if(itimes==1){
   }                        printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   n= lastobs;                      }else{
   severity = vector(1,maxwav);                        printf(" 0.");
   outcome=imatrix(1,maxwav+1,1,n);                        fprintf(ficparo," 0.");
   num=lvector(1,n);                      }
   moisnais=vector(1,n);                    }
   annais=vector(1,n);                  }
   moisdc=vector(1,n);                } /* end lk */
   andc=vector(1,n);              } /* end lj */
   agedc=vector(1,n);            } /* end li */
   cod=ivector(1,n);            printf("\n");
   weight=vector(1,n);            fprintf(ficparo,"\n");
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            numlinepar++;
   mint=matrix(1,maxwav,1,n);          } /* end k*/
   anint=matrix(1,maxwav,1,n);        } /*end j */
   s=imatrix(1,maxwav+1,1,n);      } /* end i */
   tab=ivector(1,NCOVMAX);    } /* end itimes */
   ncodemax=ivector(1,8);  
   } /* end of prwizard */
   i=1;  /******************* Gompertz Likelihood ******************************/
   while (fgets(line, MAXLINE, fic) != NULL)    {  double gompertz(double x[])
     if ((i >= firstobs) && (i <=lastobs)) {  {
             double A,B,L=0.0,sump=0.,num=0.;
       for (j=maxwav;j>=1;j--){    int i,n=0; /* n is the size of the sample */
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);   
         strcpy(line,stra);    for (i=0;i<=imx-1 ; i++) {
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      sump=sump+weight[i];
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /*    sump=sump+1;*/
       }      num=num+1;
             }
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);   
     /* for (i=0; i<=imx; i++)
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
     for (i=1;i<=imx ; i++)
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      {
       for (j=ncovcol;j>=1;j--){        if (cens[i] == 1 && wav[i]>1)
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
       }        
       lstra=strlen(stra);        if (cens[i] == 0 && wav[i]>1)
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
         stratrunc = &(stra[lstra-9]);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         num[i]=atol(stratrunc);       
       }        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
       else        if (wav[i] > 1 ) { /* ??? */
         num[i]=atol(stra);          L=L+A*weight[i];
                   /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      }
   
       i=i+1;   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     }   
   }    return -2*L*num/sump;
   /* printf("ii=%d", ij);  }
      scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   /* for (i=1; i<=imx; i++){                    int lastpass, int stepm, int weightopt, char model[],\
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                    int imx,  double p[],double **matcov,double agemortsup){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int i,k;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
    /*  for (i=1; i<=imx; i++){    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
      if (s[4][i]==9)  s[4][i]=-1;     for (i=1;i<=2;i++)
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
  for (i=1; i<=imx; i++)    fprintf(fichtm,"</ul>");
    
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
      else weight[i]=1;*/  
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */   for (k=agegomp;k<(agemortsup-2);k++)
   Tprod=ivector(1,15);      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   Tvaraff=ivector(1,15);   
   Tvard=imatrix(1,15,1,2);   
   Tage=ivector(1,15);          fflush(fichtm);
      }
   if (strlen(model) >1){ /* If there is at least 1 covariate */  
     j=0, j1=0, k1=1, k2=1;  /******************* Gnuplot file **************/
     j=nbocc(model,'+'); /* j=Number of '+' */  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     j1=nbocc(model,'*'); /* j1=Number of '*' */  
     cptcovn=j+1;     char dirfileres[132],optfileres[132];
     cptcovprod=j1; /*Number of products */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         int ng;
     strcpy(modelsav,model);   
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);    /*#ifdef windows */
       fprintf(ficlog,"Error. Non available option model=%s ",model);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       goto end;      /*#endif */
     }  
       
     /* This loop fills the array Tvar from the string 'model'.*/    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     for(i=(j+1); i>=1;i--){    fprintf(ficgp,"set out \"graphmort.png\"\n ");
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */    fprintf(ficgp, "set ter png small\n set log y\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fprintf(ficgp, "set size 0.65,0.65\n");
       /*scanf("%d",i);*/    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
       if (strchr(strb,'*')) {  /* Model includes a product */  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  }
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;  
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  
           cptcovage++;  
             Tage[cptcovage]=i;  /***********************************************/
             /*printf("stre=%s ", stre);*/  /**************** Main Program *****************/
         }  /***********************************************/
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  
           cptcovprod--;  int main(int argc, char *argv[])
           cutv(strb,stre,strc,'V');  {
           Tvar[i]=atoi(stre);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           cptcovage++;    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
           Tage[cptcovage]=i;    int linei, month, year,iout;
         }    int jj, ll, li, lj, lk, imk;
         else {  /* Age is not in the model */    int numlinepar=0; /* Current linenumber of parameter file */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    int itimes;
           Tvar[i]=ncovcol+k1;    int NDIM=2;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */  
           Tprod[k1]=i;    char ca[32], cb[32], cc[32];
           Tvard[k1][1]=atoi(strc); /* m*/    char dummy[]="                         ";
           Tvard[k1][2]=atoi(stre); /* n */    /*  FILE *fichtm; *//* Html File */
           Tvar[cptcovn+k2]=Tvard[k1][1];    /* FILE *ficgp;*/ /*Gnuplot File */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     struct stat info;
           for (k=1; k<=lastobs;k++)     double agedeb, agefin,hf;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           k1++;  
           k2=k2+2;    double fret;
         }    double **xi,tmp,delta;
       }  
       else { /* no more sum */    double dum; /* Dummy variable */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double ***p3mat;
        /*  scanf("%d",i);*/    double ***mobaverage;
       cutv(strd,strc,strb,'V');    int *indx;
       Tvar[i]=atoi(strc);    char line[MAXLINE], linepar[MAXLINE];
       }    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       strcpy(modelsav,stra);      char pathr[MAXLINE], pathimach[MAXLINE];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    char **bp, *tok, *val; /* pathtot */
         scanf("%d",i);*/    int firstobs=1, lastobs=10;
     } /* end of loop + */    int sdeb, sfin; /* Status at beginning and end */
   } /* end model */    int c,  h , cpt,l;
       int ju,jl, mi;
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    int mobilav=0,popforecast=0;
   printf("cptcovprod=%d ", cptcovprod);    int hstepm, nhstepm;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    int agemortsup;
     float  sumlpop=0.;
   scanf("%d ",i);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   fclose(fic);*/    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     /*  if(mle==1){*/    double bage, fage, age, agelim, agebase;
   if (weightopt != 1) { /* Maximisation without weights*/    double ftolpl=FTOL;
     for(i=1;i<=n;i++) weight[i]=1.0;    double **prlim;
   }    double *severity;
     /*-calculation of age at interview from date of interview and age at death -*/    double ***param; /* Matrix of parameters */
   agev=matrix(1,maxwav,1,imx);    double  *p;
     double **matcov; /* Matrix of covariance */
   for (i=1; i<=imx; i++) {    double ***delti3; /* Scale */
     for(m=2; (m<= maxwav); m++) {    double *delti; /* Scale */
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    double ***eij, ***vareij;
         anint[m][i]=9999;    double **varpl; /* Variances of prevalence limits by age */
         s[m][i]=-1;    double *epj, vepp;
       }    double kk1, kk2;
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
         nberr++;    double **ximort;
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    char *alph[]={"a","a","b","c","d","e"}, str[4];
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    int *dcwave;
         s[m][i]=-1;  
       }    char z[1]="c", occ;
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){  
         nberr++;    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     char  *strt, strtend[80];
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     char *stratrunc;
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    int lstra;
       }  
     }    long total_usecs;
   }   
   /*   setlocale (LC_ALL, ""); */
   for (i=1; i<=imx; i++)  {  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  /*   textdomain (PACKAGE); */
     for(m=firstpass; (m<= lastpass); m++){  /*   setlocale (LC_CTYPE, ""); */
       if(s[m][i] >0){  /*   setlocale (LC_MESSAGES, ""); */
         if (s[m][i] >= nlstate+1) {  
           if(agedc[i]>0)    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    (void) gettimeofday(&start_time,&tzp);
               agev[m][i]=agedc[i];    curr_time=start_time;
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    tm = *localtime(&start_time.tv_sec);
             else {    tmg = *gmtime(&start_time.tv_sec);
               if ((int)andc[i]!=9999){    strcpy(strstart,asctime(&tm));
                 nbwarn++;  
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);  /*  printf("Localtime (at start)=%s",strstart); */
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);  /*  tp.tv_sec = tp.tv_sec +86400; */
                 agev[m][i]=-1;  /*  tm = *localtime(&start_time.tv_sec); */
               }  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
             }  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
         }  /*   tmg.tm_hour=tmg.tm_hour + 1; */
         else if(s[m][i] !=9){ /* Standard case, age in fractional  /*   tp.tv_sec = mktime(&tmg); */
                                  years but with the precision of a  /*   strt=asctime(&tmg); */
                                  month */  /*   printf("Time(after) =%s",strstart);  */
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  /*  (void) time (&time_value);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
             agev[m][i]=1;  *  tm = *localtime(&time_value);
           else if(agev[m][i] <agemin){   *  strstart=asctime(&tm);
             agemin=agev[m][i];  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  */
           }  
           else if(agev[m][i] >agemax){    nberr=0; /* Number of errors and warnings */
             agemax=agev[m][i];    nbwarn=0;
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    getcwd(pathcd, size);
           }  
           /*agev[m][i]=anint[m][i]-annais[i];*/    printf("\n%s\n%s",version,fullversion);
           /*     agev[m][i] = age[i]+2*m;*/    if(argc <=1){
         }      printf("\nEnter the parameter file name: ");
         else { /* =9 */      fgets(pathr,FILENAMELENGTH,stdin);
           agev[m][i]=1;      i=strlen(pathr);
           s[m][i]=-1;      if(pathr[i-1]=='\n')
         }        pathr[i-1]='\0';
       }     for (tok = pathr; tok != NULL; ){
       else /*= 0 Unknown */        printf("Pathr |%s|\n",pathr);
         agev[m][i]=1;        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
     }        printf("val= |%s| pathr=%s\n",val,pathr);
             strcpy (pathtot, val);
   }        if(pathr[0] == '\0') break; /* Dirty */
   for (i=1; i<=imx; i++)  {      }
     for(m=firstpass; (m<=lastpass); m++){    }
       if (s[m][i] > (nlstate+ndeath)) {    else{
         nberr++;      strcpy(pathtot,argv[1]);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         }
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
         goto end;    /*cygwin_split_path(pathtot,path,optionfile);
       }      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     }    /* cutv(path,optionfile,pathtot,'\\');*/
   }  
     /* Split argv[0], imach program to get pathimach */
   /*for (i=1; i<=imx; i++){    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   for (m=firstpass; (m<lastpass); m++){    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 }   /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 }*/    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    chdir(path); /* Can be a relative path */
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
   free_vector(severity,1,maxwav);    strcpy(command,"mkdir ");
   free_imatrix(outcome,1,maxwav+1,1,n);    strcat(command,optionfilefiname);
   free_vector(moisnais,1,n);    if((outcmd=system(command)) != 0){
   free_vector(annais,1,n);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   /* free_matrix(mint,1,maxwav,1,n);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
      free_matrix(anint,1,maxwav,1,n);*/      /* fclose(ficlog); */
   free_vector(moisdc,1,n);  /*     exit(1); */
   free_vector(andc,1,n);    }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
      /*     perror("mkdir"); */
   wav=ivector(1,imx);  /*   } */
   dh=imatrix(1,lastpass-firstpass+1,1,imx);  
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    /*-------- arguments in the command line --------*/
   mw=imatrix(1,lastpass-firstpass+1,1,imx);  
        /* Log file */
   /* Concatenates waves */    strcat(filelog, optionfilefiname);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */      printf("Problem with logfile %s\n",filelog);
       goto end;
   Tcode=ivector(1,100);    }
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     fprintf(ficlog,"Log filename:%s\n",filelog);
   ncodemax[1]=1;    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    fprintf(ficlog,"\nEnter the parameter file name: \n");
           fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of    path=%s \n\
                                  the estimations*/   optionfile=%s\n\
   h=0;   optionfilext=%s\n\
   m=pow(2,cptcoveff);   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
    
   for(k=1;k<=cptcoveff; k++){    printf("Local time (at start):%s",strstart);
     for(i=1; i <=(m/pow(2,k));i++){    fprintf(ficlog,"Local time (at start): %s",strstart);
       for(j=1; j <= ncodemax[k]; j++){    fflush(ficlog);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /*   (void) gettimeofday(&curr_time,&tzp); */
           h++;  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    /* */
         }     strcpy(fileres,"r");
       }    strcat(fileres, optionfilefiname);
     }    strcat(fileres,".txt");    /* Other files have txt extension */
   }   
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     /*---------arguments file --------*/
      codtab[1][2]=1;codtab[2][2]=2; */  
   /* for(i=1; i <=m ;i++){     if((ficpar=fopen(optionfile,"r"))==NULL)    {
      for(k=1; k <=cptcovn; k++){      printf("Problem with optionfile %s\n",optionfile);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
      }      fflush(ficlog);
      printf("\n");      goto end;
      }    }
      scanf("%d",i);*/  
       
   /*------------ gnuplot -------------*/  
   strcpy(optionfilegnuplot,optionfilefiname);    strcpy(filereso,"o");
   strcat(optionfilegnuplot,".gp");    strcat(filereso,fileres);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
     printf("Problem with file %s",optionfilegnuplot);      printf("Problem with Output resultfile: %s\n", filereso);
   }      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   else{      fflush(ficlog);
     fprintf(ficgp,"\n# %s\n", version);       goto end;
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     }
     fprintf(ficgp,"set missing 'NaNq'\n");  
   }    /* Reads comments: lines beginning with '#' */
   /*  fclose(ficgp);*/    numlinepar=0;
   /*--------- index.htm --------*/    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */      fgets(line, MAXLINE, ficpar);
   strcat(optionfilehtm,".htm");      numlinepar++;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      puts(line);
     printf("Problem with %s \n",optionfilehtm), exit(0);      fputs(line,ficparo);
   }      fputs(line,ficlog);
     }
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    ungetc(c,ficpar);
   strcat(optionfilehtmcov,"-cov.htm");  
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    numlinepar++;
   }    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   else{    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    fflush(ficlog);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    while((c=getc(ficpar))=='#' && c!= EOF){
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);      ungetc(c,ficpar);
   }      fgets(line, MAXLINE, ficpar);
       numlinepar++;
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \      puts(line);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      fputs(line,ficparo);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\      fputs(line,ficlog);
 \n\    }
 <hr  size=\"2\" color=\"#EC5E5E\">\    ungetc(c,ficpar);
  <ul><li><h4>Parameter files</h4>\n\  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\     
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    covar=matrix(0,NCOVMAX,1,n);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
  - Date and time at start: %s</ul>\n",\    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\  
           fileres,fileres,\    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   fflush(fichtm);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
   strcpy(pathr,path);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   strcat(pathr,optionfilefiname);    delti=delti3[1][1];
   chdir(optionfilefiname); /* Move to directory named optionfile */    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   strcpy(lfileres,fileres);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   strcat(lfileres,"/");      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   strcat(lfileres,optionfilefiname);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   /* Calculates basic frequencies. Computes observed prevalence at single age      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
      and prints on file fileres'p'. */      fclose (ficparo);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);      fclose (ficlog);
       goto end;
   fprintf(fichtm,"\n");      exit(0);
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\    }
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\    else if(mle==-3) {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           imx,agemin,agemax,jmin,jmax,jmean);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matcov=matrix(1,npar,1,npar);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    else{
           /* Read guess parameters */
          /* Reads comments: lines beginning with '#' */
   /* For Powell, parameters are in a vector p[] starting at p[1]      while((c=getc(ficpar))=='#' && c!= EOF){
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        ungetc(c,ficpar);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */        fgets(line, MAXLINE, ficpar);
         numlinepar++;
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/        puts(line);
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        fputs(line,ficparo);
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        fputs(line,ficlog);
   for (k=1; k<=npar;k++)      }
     printf(" %d %8.5f",k,p[k]);      ungetc(c,ficpar);
   printf("\n");     
   globpr=1; /* to print the contributions */      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      for(i=1; i <=nlstate; i++){
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        j=0;
   for (k=1; k<=npar;k++)        for(jj=1; jj <=nlstate+ndeath; jj++){
     printf(" %d %8.5f",k,p[k]);          if(jj==i) continue;
   printf("\n");          j++;
   if(mle>=1){ /* Could be 1 or 2 */          fscanf(ficpar,"%1d%1d",&i1,&j1);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          if ((i1 != i) && (j1 != j)){
   }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
       It might be a problem of design; if ncovcol and the model are correct\n \
   /*--------- results files --------------*/  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            exit(1);
             }
           fprintf(ficparo,"%1d%1d",i1,j1);
   jk=1;          if(mle==1)
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            printf("%1d%1d",i,j);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(ficlog,"%1d%1d",i,j);
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for(k=1; k<=ncovmodel;k++){
   for(i=1,jk=1; i <=nlstate; i++){            fscanf(ficpar," %lf",&param[i][j][k]);
     for(k=1; k <=(nlstate+ndeath); k++){            if(mle==1){
       if (k != i)               printf(" %lf",param[i][j][k]);
         {              fprintf(ficlog," %lf",param[i][j][k]);
           printf("%d%d ",i,k);            }
           fprintf(ficlog,"%d%d ",i,k);            else
           fprintf(ficres,"%1d%1d ",i,k);              fprintf(ficlog," %lf",param[i][j][k]);
           for(j=1; j <=ncovmodel; j++){            fprintf(ficparo," %lf",param[i][j][k]);
             printf("%f ",p[jk]);          }
             fprintf(ficlog,"%f ",p[jk]);          fscanf(ficpar,"\n");
             fprintf(ficres,"%f ",p[jk]);          numlinepar++;
             jk++;           if(mle==1)
           }            printf("\n");
           printf("\n");          fprintf(ficlog,"\n");
           fprintf(ficlog,"\n");          fprintf(ficparo,"\n");
           fprintf(ficres,"\n");        }
         }      }  
     }      fflush(ficlog);
   }  
   if(mle!=0){      p=param[1][1];
     /* Computing hessian and covariance matrix */     
     ftolhess=ftol; /* Usually correct */      /* Reads comments: lines beginning with '#' */
     hesscov(matcov, p, npar, delti, ftolhess, func);      while((c=getc(ficpar))=='#' && c!= EOF){
   }        ungetc(c,ficpar);
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        fgets(line, MAXLINE, ficpar);
   printf("# Scales (for hessian or gradient estimation)\n");        numlinepar++;
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        puts(line);
   for(i=1,jk=1; i <=nlstate; i++){        fputs(line,ficparo);
     for(j=1; j <=nlstate+ndeath; j++){        fputs(line,ficlog);
       if (j!=i) {      }
         fprintf(ficres,"%1d%1d",i,j);      ungetc(c,ficpar);
         printf("%1d%1d",i,j);  
         fprintf(ficlog,"%1d%1d",i,j);      for(i=1; i <=nlstate; i++){
         for(k=1; k<=ncovmodel;k++){        for(j=1; j <=nlstate+ndeath-1; j++){
           printf(" %.5e",delti[jk]);          fscanf(ficpar,"%1d%1d",&i1,&j1);
           fprintf(ficlog," %.5e",delti[jk]);          if ((i1-i)*(j1-j)!=0){
           fprintf(ficres," %.5e",delti[jk]);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           jk++;            exit(1);
         }          }
         printf("\n");          printf("%1d%1d",i,j);
         fprintf(ficlog,"\n");          fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficres,"\n");          fprintf(ficlog,"%1d%1d",i1,j1);
       }          for(k=1; k<=ncovmodel;k++){
     }            fscanf(ficpar,"%le",&delti3[i][j][k]);
   }            printf(" %le",delti3[i][j][k]);
                fprintf(ficparo," %le",delti3[i][j][k]);
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            fprintf(ficlog," %le",delti3[i][j][k]);
   if(mle==1)          }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fscanf(ficpar,"\n");
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          numlinepar++;
   for(i=1,k=1;i<=npar;i++){          printf("\n");
     /*  if (k>nlstate) k=1;          fprintf(ficparo,"\n");
         i1=(i-1)/(ncovmodel*nlstate)+1;           fprintf(ficlog,"\n");
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        }
         printf("%s%d%d",alph[k],i1,tab[i]);      }
     */      fflush(ficlog);
     fprintf(ficres,"%3d",i);  
     if(mle==1)      delti=delti3[1][1];
       printf("%3d",i);  
     fprintf(ficlog,"%3d",i);  
     for(j=1; j<=i;j++){      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
       fprintf(ficres," %.5e",matcov[i][j]);   
       if(mle==1)      /* Reads comments: lines beginning with '#' */
         printf(" %.5e",matcov[i][j]);      while((c=getc(ficpar))=='#' && c!= EOF){
       fprintf(ficlog," %.5e",matcov[i][j]);        ungetc(c,ficpar);
     }        fgets(line, MAXLINE, ficpar);
     fprintf(ficres,"\n");        numlinepar++;
     if(mle==1)        puts(line);
       printf("\n");        fputs(line,ficparo);
     fprintf(ficlog,"\n");        fputs(line,ficlog);
     k++;      }
   }      ungetc(c,ficpar);
       
   while((c=getc(ficpar))=='#' && c!= EOF){      matcov=matrix(1,npar,1,npar);
     ungetc(c,ficpar);      for(i=1; i <=npar; i++){
     fgets(line, MAXLINE, ficpar);        fscanf(ficpar,"%s",&str);
     puts(line);        if(mle==1)
     fputs(line,ficparo);          printf("%s",str);
   }        fprintf(ficlog,"%s",str);
   ungetc(c,ficpar);        fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
   estepm=0;          fscanf(ficpar," %le",&matcov[i][j]);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          if(mle==1){
   if (estepm==0 || estepm < stepm) estepm=stepm;            printf(" %.5le",matcov[i][j]);
   if (fage <= 2) {          }
     bage = ageminpar;          fprintf(ficlog," %.5le",matcov[i][j]);
     fage = agemaxpar;          fprintf(ficparo," %.5le",matcov[i][j]);
   }        }
            fscanf(ficpar,"\n");
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        numlinepar++;
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        if(mle==1)
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          printf("\n");
            fprintf(ficlog,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficparo,"\n");
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);      for(i=1; i <=npar; i++)
     puts(line);        for(j=i+1;j<=npar;j++)
     fputs(line,ficparo);          matcov[i][j]=matcov[j][i];
   }     
   ungetc(c,ficpar);      if(mle==1)
           printf("\n");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      fprintf(ficlog,"\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);     
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      fflush(ficlog);
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);     
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      /*-------- Rewriting parameter file ----------*/
          strcpy(rfileres,"r");    /* "Rparameterfile */
   while((c=getc(ficpar))=='#' && c!= EOF){      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     ungetc(c,ficpar);      strcat(rfileres,".");    /* */
     fgets(line, MAXLINE, ficpar);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
     puts(line);      if((ficres =fopen(rfileres,"w"))==NULL) {
     fputs(line,ficparo);        printf("Problem writing new parameter file: %s\n", fileres);goto end;
   }        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   ungetc(c,ficpar);      }
        fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;  
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;    /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
   fscanf(ficpar,"pop_based=%d\n",&popbased);      printf("Problem while opening datafile: %s\n", datafile);goto end;
   fprintf(ficparo,"pop_based=%d\n",popbased);         fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   fprintf(ficres,"pop_based=%d\n",popbased);       }
     
   while((c=getc(ficpar))=='#' && c!= EOF){    n= lastobs;
     ungetc(c,ficpar);    severity = vector(1,maxwav);
     fgets(line, MAXLINE, ficpar);    outcome=imatrix(1,maxwav+1,1,n);
     puts(line);    num=lvector(1,n);
     fputs(line,ficparo);    moisnais=vector(1,n);
   }    annais=vector(1,n);
   ungetc(c,ficpar);    moisdc=vector(1,n);
     andc=vector(1,n);
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);    agedc=vector(1,n);
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    cod=ivector(1,n);
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    weight=vector(1,n);
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    mint=matrix(1,maxwav,1,n);
   /* day and month of proj2 are not used but only year anproj2.*/    anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
   while((c=getc(ficpar))=='#' && c!= EOF){    tab=ivector(1,NCOVMAX);
     ungetc(c,ficpar);    ncodemax=ivector(1,8);
     fgets(line, MAXLINE, ficpar);  
     puts(line);    i=1;
     fputs(line,ficparo);    linei=0;
   }    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
   ungetc(c,ficpar);      linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        if(line[j] == '\t')
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          line[j] = ' ';
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/        ;
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      };
       line[j+1]=0;  /* Trims blanks at end of line */
   replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      if(line[0]=='#'){
   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);        fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\        continue;
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      }
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
        for (j=maxwav;j>=1;j--){
   /*------------ free_vector  -------------*/        cutv(stra, strb,line,' ');
   /*  chdir(path); */        errno=0;
          lval=strtol(strb,&endptr,10);
   free_ivector(wav,1,imx);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        if( strb[0]=='\0' || (*endptr != '\0')){
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);             exit(1);
   free_lvector(num,1,n);        }
   free_vector(agedc,1,n);        s[j][i]=lval;
   /*free_matrix(covar,0,NCOVMAX,1,n);*/       
   /*free_matrix(covar,1,NCOVMAX,1,n);*/        strcpy(line,stra);
   fclose(ficparo);        cutv(stra, strb,line,' ');
   fclose(ficres);        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
   /*--------------- Prevalence limit  (stable prevalence) --------------*/          month=99;
             year=9999;
   strcpy(filerespl,"pl");        }else{
   strcat(filerespl,fileres);          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          exit(1);
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        }
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        anint[j][i]= (double) year;
   }        mint[j][i]= (double)month;
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);        strcpy(line,stra);
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);      } /* ENd Waves */
   fprintf(ficrespl,"#Stable prevalence \n");     
   fprintf(ficrespl,"#Age ");      cutv(stra, strb,line,' ');
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   fprintf(ficrespl,"\n");      }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   prlim=matrix(1,nlstate,1,nlstate);        month=99;
         year=9999;
   agebase=ageminpar;      }else{
   agelim=agemaxpar;        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   ftolpl=1.e-10;        exit(1);
   i1=cptcoveff;      }
   if (cptcovn < 1){i1=1;}      andc[i]=(double) year;
       moisdc[i]=(double) month;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      strcpy(line,stra);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
       k=k+1;      cutv(stra, strb,line,' ');
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       fprintf(ficrespl,"\n#******");      }
       printf("\n#******");      else  if(iout=sscanf(strb,"%s.") != 0){
       fprintf(ficlog,"\n#******");        month=99;
       for(j=1;j<=cptcoveff;j++) {        year=9999;
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }else{
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        exit(1);
       }      }
       fprintf(ficrespl,"******\n");      annais[i]=(double)(year);
       printf("******\n");      moisnais[i]=(double)(month);
       fprintf(ficlog,"******\n");      strcpy(line,stra);
              
       for (age=agebase; age<=agelim; age++){      cutv(stra, strb,line,' ');
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      errno=0;
         fprintf(ficrespl,"%.0f ",age );      dval=strtod(strb,&endptr);
         for(j=1;j<=cptcoveff;j++)      if( strb[0]=='\0' || (*endptr != '\0')){
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         for(i=1; i<=nlstate;i++)        exit(1);
           fprintf(ficrespl," %.5f", prlim[i][i]);      }
         fprintf(ficrespl,"\n");      weight[i]=dval;
       }      strcpy(line,stra);
     }     
   }      for (j=ncovcol;j>=1;j--){
   fclose(ficrespl);        cutv(stra, strb,line,' ');
         errno=0;
   /*------------- h Pij x at various ages ------------*/        lval=strtol(strb,&endptr,10);
           if( strb[0]=='\0' || (*endptr != '\0')){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          exit(1);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        }
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;        if(lval <-1 || lval >1){
   }          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   printf("Computing pij: result on file '%s' \n", filerespij);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
      For example, for multinomial values like 1, 2 and 3,\n \
   stepsize=(int) (stepm+YEARM-1)/YEARM;   build V1=0 V2=0 for the reference value (1),\n \
   /*if (stepm<=24) stepsize=2;*/          V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   agelim=AGESUP;   output of IMaCh is often meaningless.\n \
   hstepm=stepsize*YEARM; /* Every year of age */   Exiting.\n",lval,linei, i,line,j);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */           exit(1);
         }
   /* hstepm=1;   aff par mois*/        covar[j][i]=(double)(lval);
         strcpy(line,stra);
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      }
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      lstra=strlen(stra);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
       k=k+1;      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
       fprintf(ficrespij,"\n#****** ");        stratrunc = &(stra[lstra-9]);
       for(j=1;j<=cptcoveff;j++)         num[i]=atol(stratrunc);
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       fprintf(ficrespij,"******\n");      else
                 num[i]=atol(stra);
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     
       i=i+1;
         /*        nhstepm=nhstepm*YEARM; aff par mois*/    } /* End loop reading  data */
     fclose(fic);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* printf("ii=%d", ij);
         oldm=oldms;savm=savms;       scanf("%d",i);*/
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      imx=i-1; /* Number of individuals */
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");  
         for(i=1; i<=nlstate;i++)    /* for (i=1; i<=imx; i++){
           for(j=1; j<=nlstate+ndeath;j++)      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
             fprintf(ficrespij," %1d-%1d",i,j);      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
         fprintf(ficrespij,"\n");      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
         for (h=0; h<=nhstepm; h++){      }*/
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );     /*  for (i=1; i<=imx; i++){
           for(i=1; i<=nlstate;i++)       if (s[4][i]==9)  s[4][i]=-1;
             for(j=1; j<=nlstate+ndeath;j++)       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);   
           fprintf(ficrespij,"\n");    /* for (i=1; i<=imx; i++) */
         }   
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
         fprintf(ficrespij,"\n");       else weight[i]=1;*/
       }  
     }    /* Calculation of the number of parameters from char model */
   }    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);    Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
   fclose(ficrespij);    Tage=ivector(1,15);      
      
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
   /*---------- Forecasting ------------------*/      j=nbocc(model,'+'); /* j=Number of '+' */
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/      j1=nbocc(model,'*'); /* j1=Number of '*' */
   if(prevfcast==1){      cptcovn=j+1;
     /*    if(stepm ==1){*/      cptcovprod=j1; /*Number of products */
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);     
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      strcpy(modelsav,model);
 /*      }  */      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 /*      else{ */        printf("Error. Non available option model=%s ",model);
 /*        erreur=108; */        fprintf(ficlog,"Error. Non available option model=%s ",model);
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */        goto end;
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      }
 /*      } */     
   }      /* This loop fills the array Tvar from the string 'model'.*/
     
       for(i=(j+1); i>=1;i--){
   /*---------- Health expectancies and variances ------------*/        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
   strcpy(filerest,"t");        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   strcat(filerest,fileres);        /*scanf("%d",i);*/
   if((ficrest=fopen(filerest,"w"))==NULL) {        if (strchr(strb,'*')) {  /* Model includes a product */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          if (strcmp(strc,"age")==0) { /* Vn*age */
   }            cptcovprod--;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);             cutv(strb,stre,strd,'V');
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
   strcpy(filerese,"e");              /*printf("stre=%s ", stre);*/
   strcat(filerese,fileres);          }
   if((ficreseij=fopen(filerese,"w"))==NULL) {          else if (strcmp(strd,"age")==0) { /* or age*Vn */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            cptcovprod--;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            cutv(strb,stre,strc,'V');
   }            Tvar[i]=atoi(stre);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            cptcovage++;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);            Tage[cptcovage]=i;
           }
   strcpy(fileresv,"v");          else {  /* Age is not in the model */
   strcat(fileresv,fileres);            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            Tvar[i]=ncovcol+k1;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);            Tprod[k1]=i;
   }            Tvard[k1][1]=atoi(strc); /* m*/
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            Tvard[k1][2]=atoi(stre); /* n */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */            for (k=1; k<=lastobs;k++)
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\            k1++;
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);            k2=k2+2;
   */          }
         }
   if (mobilav!=0) {        else { /* no more sum */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){         /*  scanf("%d",i);*/
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        cutv(strd,strc,strb,'V');
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        Tvar[i]=atoi(strc);
     }        }
   }        strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){          scanf("%d",i);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } /* end of loop + */
       k=k+1;     } /* end model */
       fprintf(ficrest,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       fprintf(ficrest,"******\n");  
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
       fprintf(ficreseij,"\n#****** ");    printf("cptcovprod=%d ", cptcovprod);
       for(j=1;j<=cptcoveff;j++)     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");    scanf("%d ",i);*/
   
       fprintf(ficresvij,"\n#****** ");      /*  if(mle==1){*/
       for(j=1;j<=cptcoveff;j++)     if (weightopt != 1) { /* Maximisation without weights*/
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1;i<=n;i++) weight[i]=1.0;
       fprintf(ficresvij,"******\n");    }
       /*-calculation of age at interview from date of interview and age at death -*/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    agev=matrix(1,maxwav,1,imx);
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      for (i=1; i<=imx; i++) {
        for(m=2; (m<= maxwav); m++) {
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
       oldm=oldms;savm=savms;          anint[m][i]=9999;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);          s[m][i]=-1;
       if(popbased==1){        }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
       }          nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
            fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          s[m][i]=-1;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        }
       fprintf(ficrest,"\n");        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
       epj=vector(1,nlstate+1);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
       for(age=bage; age <=fage ;age++){          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         if (popbased==1) {        }
           if(mobilav ==0){      }
             for(i=1; i<=nlstate;i++)    }
               prlim[i][i]=probs[(int)age][i][k];  
           }else{ /* mobilav */     for (i=1; i<=imx; i++)  {
             for(i=1; i<=nlstate;i++)      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
               prlim[i][i]=mobaverage[(int)age][i][k];      for(m=firstpass; (m<= lastpass); m++){
           }        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
         }          if (s[m][i] >= nlstate+1) {
                     if(agedc[i]>0)
         fprintf(ficrest," %4.0f",age);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                agev[m][i]=agedc[i];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
             epj[j] += prlim[i][i]*eij[i][j][(int)age];              else {
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                if ((int)andc[i]!=9999){
           }                  nbwarn++;
           epj[nlstate+1] +=epj[j];                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
         }                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
         for(i=1, vepp=0.;i <=nlstate;i++)                }
           for(j=1;j <=nlstate;j++)              }
             vepp += vareij[i][j][(int)age];          }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          else if(s[m][i] !=9){ /* Standard case, age in fractional
         for(j=1;j <=nlstate;j++){                                   years but with the precision of a month */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
         }            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
         fprintf(ficrest,"\n");              agev[m][i]=1;
       }            else if(agev[m][i] <agemin){
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              agemin=agev[m][i];
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
       free_vector(epj,1,nlstate+1);            }
     }            else if(agev[m][i] >agemax){
   }              agemax=agev[m][i];
   free_vector(weight,1,n);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
   free_imatrix(Tvard,1,15,1,2);            }
   free_imatrix(s,1,maxwav+1,1,n);            /*agev[m][i]=anint[m][i]-annais[i];*/
   free_matrix(anint,1,maxwav,1,n);             /*     agev[m][i] = age[i]+2*m;*/
   free_matrix(mint,1,maxwav,1,n);          }
   free_ivector(cod,1,n);          else { /* =9 */
   free_ivector(tab,1,NCOVMAX);            agev[m][i]=1;
   fclose(ficreseij);            s[m][i]=-1;
   fclose(ficresvij);          }
   fclose(ficrest);        }
   fclose(ficpar);        else /*= 0 Unknown */
             agev[m][i]=1;
   /*------- Variance of stable prevalence------*/         }
      
   strcpy(fileresvpl,"vpl");    }
   strcat(fileresvpl,fileres);    for (i=1; i<=imx; i++)  {
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for(m=firstpass; (m<=lastpass); m++){
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);        if (s[m][i] > (nlstate+ndeath)) {
     exit(0);          nberr++;
   }          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;    }
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)     /*for (i=1; i<=imx; i++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (m=firstpass; (m<lastpass); m++){
       fprintf(ficresvpl,"******\n");       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
         }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  }*/
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
     }    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   }    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
   fclose(ficresvpl);    agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
   /*---------- End : free ----------------*/    free_imatrix(outcome,1,maxwav+1,1,n);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    free_vector(moisnais,1,n);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_vector(annais,1,n);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* free_matrix(mint,1,maxwav,1,n);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       free_matrix(anint,1,maxwav,1,n);*/
       free_vector(moisdc,1,n);
   free_matrix(covar,0,NCOVMAX,1,n);    free_vector(andc,1,n);
   free_matrix(matcov,1,npar,1,npar);  
   /*free_vector(delti,1,npar);*/     
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     wav=ivector(1,imx);
   free_matrix(agev,1,maxwav,1,imx);    dh=imatrix(1,lastpass-firstpass+1,1,imx);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    bh=imatrix(1,lastpass-firstpass+1,1,imx);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);     
     /* Concatenates waves */
   free_ivector(ncodemax,1,8);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   free_ivector(Tvar,1,15);  
   free_ivector(Tprod,1,15);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   free_ivector(Tvaraff,1,15);  
   free_ivector(Tage,1,15);    Tcode=ivector(1,100);
   free_ivector(Tcode,1,100);    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
   fflush(fichtm);    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
   fflush(ficgp);       
       codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
   if((nberr >0) || (nbwarn>0)){    h=0;
     printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);    m=pow(2,cptcoveff);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);   
   }else{    for(k=1;k<=cptcoveff; k++){
     printf("End of Imach\n");      for(i=1; i <=(m/pow(2,k));i++){
     fprintf(ficlog,"End of Imach\n");        for(j=1; j <= ncodemax[k]; j++){
   }          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
   printf("See log file on %s\n",filelog);            h++;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
   (void) gettimeofday(&end_time,&tzp);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
   tm = *localtime(&end_time.tv_sec);          }
   tmg = *gmtime(&end_time.tv_sec);        }
   strcpy(strtend,asctime(&tm));      }
   printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend);     }
   fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend);     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));       codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);       for(k=1; k <=cptcovn; k++){
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);       }
   /*  printf("Total time was %d uSec.\n", total_usecs);*/       printf("\n");
 /*   if(fileappend(fichtm,optionfilehtm)){ */       }
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);       scanf("%d",i);*/
   fclose(fichtm);     
   fclose(fichtmcov);    /*------------ gnuplot -------------*/
   fclose(ficgp);    strcpy(optionfilegnuplot,optionfilefiname);
   fclose(ficlog);    if(mle==-3)
   /*------ End -----------*/      strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   chdir(path);  
   strcpy(plotcmd,GNUPLOTPROGRAM);    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
   strcat(plotcmd," ");      printf("Problem with file %s",optionfilegnuplot);
   strcat(plotcmd,optionfilegnuplot);    }
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);    else{
   if((outcmd=system(plotcmd)) != 0){      fprintf(ficgp,"\n# %s\n", version);
     printf(" Problem with gnuplot\n");      fprintf(ficgp,"# %s\n", optionfilegnuplot);
   }      fprintf(ficgp,"set missing 'NaNq'\n");
   printf(" Wait...");    }
   while (z[0] != 'q') {    /*  fclose(ficgp);*/
     /* chdir(path); */    /*--------- index.htm --------*/
     printf("\nType e to edit output files, g to graph again and q for exiting: ");  
     scanf("%s",z);    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 /*     if (z[0] == 'c') system("./imach"); */    if(mle==-3)
     if (z[0] == 'e') system(optionfilehtm);      strcat(optionfilehtm,"-mort");
     else if (z[0] == 'g') system(plotcmd);    strcat(optionfilehtm,".htm");
     else if (z[0] == 'q') exit(0);    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
   }      printf("Problem with %s \n",optionfilehtm), exit(0);
   end:    }
   while (z[0] != 'q') {  
     printf("\nType  q for exiting: ");    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     scanf("%s",z);    strcat(optionfilehtmcov,"-cov.htm");
   }    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 }      printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.93  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>