Diff for /imach/src/imach.c between versions 1.6 and 1.93

version 1.6, 2001/05/02 17:47:10 version 1.93, 2003/06/25 16:33:55
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.93  2003/06/25 16:33:55  brouard
   individuals from different ages are interviewed on their health status    (Module): On windows (cygwin) function asctime_r doesn't
   or degree of  disability. At least a second wave of interviews    exist so I changed back to asctime which exists.
   ("longitudinal") should  measure each new individual health status.    (Module): Version 0.96b
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.92  2003/06/25 16:30:45  brouard
   of life states). More degrees you consider, more time is necessary to    (Module): On windows (cygwin) function asctime_r doesn't
   reach the Maximum Likelihood of the parameters involved in the model.    exist so I changed back to asctime which exists.
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.91  2003/06/25 15:30:29  brouard
   to be observed in state i at the first wave. Therefore the model is:    * imach.c (Repository): Duplicated warning errors corrected.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Repository): Elapsed time after each iteration is now output. It
   is a covariate. If you want to have a more complex model than "constant and    helps to forecast when convergence will be reached. Elapsed time
   age", you should modify the program where the markup    is stamped in powell.  We created a new html file for the graphs
     *Covariates have to be included here again* invites you to do it.    concerning matrix of covariance. It has extension -cov.htm.
   More covariates you add, less is the speed of the convergence.  
     Revision 1.90  2003/06/24 12:34:15  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Some bugs corrected for windows. Also, when
   delay between waves is not identical for each individual, or if some    mle=-1 a template is output in file "or"mypar.txt with the design
   individual missed an interview, the information is not rounded or lost, but    of the covariance matrix to be input.
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.89  2003/06/24 12:30:52  brouard
   observed in state i at age x+h conditional to the observed state i at age    (Module): Some bugs corrected for windows. Also, when
   x. The delay 'h' can be split into an exact number (nh*stepm) of    mle=-1 a template is output in file "or"mypar.txt with the design
   unobserved intermediate  states. This elementary transition (by month or    of the covariance matrix to be input.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.88  2003/06/23 17:54:56  brouard
   and the contribution of each individual to the likelihood is simply hPijx.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.87  2003/06/18 12:26:01  brouard
   of the life expectancies. It also computes the prevalence limits.    Version 0.96
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.86  2003/06/17 20:04:08  brouard
            Institut national d'études démographiques, Paris.    (Module): Change position of html and gnuplot routines and added
   This software have been partly granted by Euro-REVES, a concerted action    routine fileappend.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.85  2003/06/17 13:12:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Check when date of death was earlier that
   can be accessed at http://euroreves.ined.fr/imach .    current date of interview. It may happen when the death was just
   **********************************************************************/    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
 #include <math.h>    assuming that the date of death was just one stepm after the
 #include <stdio.h>    interview.
 #include <stdlib.h>    (Repository): Because some people have very long ID (first column)
 #include <unistd.h>    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define MAXLINE 256    truncation)
 #define FILENAMELENGTH 80    (Repository): No more line truncation errors.
 /*#define DEBUG*/  
 #define windows    Revision 1.84  2003/06/13 21:44:43  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Repository): Replace "freqsummary" at a correct
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    parcimony.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 #define NINTERVMAX 8    Revision 1.83  2003/06/10 13:39:11  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    *** empty log message ***
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define MAXN 20000    Add log in  imach.c and  fullversion number is now printed.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130  */
 #define AGEBASE 40  /*
      Interpolated Markov Chain
   
 int nvar;    Short summary of the programme:
 static int cptcov;    
 int cptcovn, cptcovage=0;    This program computes Healthy Life Expectancies from
 int npar=NPARMAX;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int nlstate=2; /* Number of live states */    first survey ("cross") where individuals from different ages are
 int ndeath=1; /* Number of dead states */    interviewed on their health status or degree of disability (in the
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 int *wav; /* Number of waves for this individuual 0 is possible */    (if any) in individual health status.  Health expectancies are
 int maxwav; /* Maxim number of waves */    computed from the time spent in each health state according to a
 int mle, weightopt;    model. More health states you consider, more time is necessary to reach the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Maximum Likelihood of the parameters involved in the model.  The
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    simplest model is the multinomial logistic model where pij is the
 double **oldm, **newm, **savm; /* Working pointers to matrices */    probability to be observed in state j at the second wave
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    conditional to be observed in state i at the first wave. Therefore
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 FILE *ficgp, *fichtm;    'age' is age and 'sex' is a covariate. If you want to have a more
 FILE *ficreseij;    complex model than "constant and age", you should modify the program
   char filerese[FILENAMELENGTH];    where the markup *Covariates have to be included here again* invites
  FILE  *ficresvij;    you to do it.  More covariates you add, slower the
   char fileresv[FILENAMELENGTH];    convergence.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define NR_END 1    identical for each individual. Also, if a individual missed an
 #define FREE_ARG char*    intermediate interview, the information is lost, but taken into
 #define FTOL 1.0e-10    account using an interpolation or extrapolation.  
   
 #define NRANSI    hPijx is the probability to be observed in state i at age x+h
 #define ITMAX 200    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 #define TOL 2.0e-4    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define CGOLD 0.3819660    matrix is simply the matrix product of nh*stepm elementary matrices
 #define ZEPS 1.0e-10    and the contribution of each individual to the likelihood is simply
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    hPijx.
   
 #define GOLD 1.618034    Also this programme outputs the covariance matrix of the parameters but also
 #define GLIMIT 100.0    of the life expectancies. It also computes the stable prevalence. 
 #define TINY 1.0e-20    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 static double maxarg1,maxarg2;             Institut national d'études démographiques, Paris.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    This software have been partly granted by Euro-REVES, a concerted action
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    from the European Union.
      It is copyrighted identically to a GNU software product, ie programme and
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    software can be distributed freely for non commercial use. Latest version
 #define rint(a) floor(a+0.5)    can be accessed at http://euroreves.ined.fr/imach .
   
 static double sqrarg;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    
     **********************************************************************/
 int imx;  /*
 int stepm;    main
 /* Stepm, step in month: minimum step interpolation*/    read parameterfile
     read datafile
 int m,nb;    concatwav
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    freqsummary
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    if (mle >= 1)
 double **pmmij;      mlikeli
     print results files
 double *weight;    if mle==1 
 int **s; /* Status */       computes hessian
 double *agedc, **covar, idx;    read end of parameter file: agemin, agemax, bage, fage, estepm
 int **nbcode, *Tcode, *Tvar, **codtab;        begin-prev-date,...
     open gnuplot file
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    open html file
 double ftolhess; /* Tolerance for computing hessian */    stable prevalence
      for age prevalim()
     h Pij x
 static  int split( char *path, char *dirc, char *name )    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
    char *s;                             /* pointer */    health expectancies
    int  l1, l2;                         /* length counters */    Variance-covariance of DFLE
     prevalence()
    l1 = strlen( path );                 /* length of path */     movingaverage()
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    varevsij() 
    s = strrchr( path, '\\' );           /* find last / */    if popbased==1 varevsij(,popbased)
    if ( s == NULL ) {                   /* no directory, so use current */    total life expectancies
 #if     defined(__bsd__)                /* get current working directory */    Variance of stable prevalence
       extern char       *getwd( );   end
   */
       if ( getwd( dirc ) == NULL ) {  
 #else  
       extern char       *getcwd( );  
    
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #include <math.h>
 #endif  #include <stdio.h>
          return( GLOCK_ERROR_GETCWD );  #include <stdlib.h>
       }  #include <unistd.h>
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */  #include <sys/time.h>
       s++;                              /* after this, the filename */  #include <time.h>
       l2 = strlen( s );                 /* length of filename */  #include "timeval.h"
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  #define MAXLINE 256
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define GNUPLOTPROGRAM "gnuplot"
       dirc[l1-l2] = 0;                  /* add zero */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    }  #define FILENAMELENGTH 132
    l1 = strlen( dirc );                 /* length of directory */  /*#define DEBUG*/
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /*#define windows*/
    return( 0 );                         /* we're done */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /******************************************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 void replace(char *s, char*t)  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   int i;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int lg=20;  #define NCOVMAX 8 /* Maximum number of covariates */
   i=0;  #define MAXN 20000
   lg=strlen(t);  #define YEARM 12. /* Number of months per year */
   for(i=0; i<= lg; i++) {  #define AGESUP 130
     (s[i] = t[i]);  #define AGEBASE 40
     if (t[i]== '\\') s[i]='/';  #ifdef unix
   }  #define DIRSEPARATOR '/'
 }  #define ODIRSEPARATOR '\\'
   #else
 int nbocc(char *s, char occ)  #define DIRSEPARATOR '\\'
 {  #define ODIRSEPARATOR '/'
   int i,j=0;  #endif
   int lg=20;  
   i=0;  /* $Id$ */
   lg=strlen(s);  /* $State$ */
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
   }  char fullversion[]="$Revision$ $Date$"; 
   return j;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 void cutv(char *u,char *v, char*t, char occ)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   int i,lg,j,p=0;  int ndeath=1; /* Number of dead states */
   i=0;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   for(j=0; j<=strlen(t)-1; j++) {  int popbased=0;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   lg=strlen(t);  int jmin, jmax; /* min, max spacing between 2 waves */
   for(j=0; j<p; j++) {  int gipmx, gsw; /* Global variables on the number of contributions 
     (u[j] = t[j]);                     to the likelihood and the sum of weights (done by funcone)*/
   }  int mle, weightopt;
      u[p]='\0';  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    for(j=0; j<= lg; j++) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     if (j>=(p+1))(v[j-p-1] = t[j]);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   }  double jmean; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /********************** nrerror ********************/  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 void nrerror(char error_text[])  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   fprintf(stderr,"ERREUR ...\n");  long ipmx; /* Number of contributions */
   fprintf(stderr,"%s\n",error_text);  double sw; /* Sum of weights */
   exit(1);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
 /*********************** vector *******************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double *vector(int nl, int nh)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   double *v;  FILE *ficreseij;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char filerese[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in vector");  FILE  *ficresvij;
   return v-nl+NR_END;  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /************************ free vector ******************/  char title[MAXLINE];
 void free_vector(double*v, int nl, int nh)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char tmpout[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  char lfileres[FILENAMELENGTH];
   int *v;  char filelog[FILENAMELENGTH]; /* Log file */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char filerest[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  char fileregp[FILENAMELENGTH];
   return v-nl+NR_END;  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   free((FREE_ARG)(v+nl-NR_END));  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /******************* imatrix *******************************/  extern long time();
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char strcurr[80], strfor[80];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  #define NR_END 1
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define FREE_ARG char*
   int **m;  #define FTOL 1.0e-10
    
   /* allocate pointers to rows */  #define NRANSI 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define ITMAX 200 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define TOL 2.0e-4 
   m -= nrl;  
    #define CGOLD 0.3819660 
    #define ZEPS 1.0e-10 
   /* allocate rows and set pointers to them */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GOLD 1.618034 
   m[nrl] += NR_END;  #define GLIMIT 100.0 
   m[nrl] -= ncl;  #define TINY 1.0e-20 
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   /* return pointer to array of pointers to rows */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   return m;    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  static double sqrarg;
       int **m;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       long nch,ncl,nrh,nrl;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
      /* free an int matrix allocated by imatrix() */  
 {  int imx; 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int stepm;
   free((FREE_ARG) (m+nrl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /******************* matrix *******************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  int m,nb;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  long *num;
   double **m;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double **pmmij, ***probs;
   if (!m) nrerror("allocation failure 1 in matrix()");  double dateintmean=0;
   m += NR_END;  
   m -= nrl;  double *weight;
   int **s; /* Status */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double *agedc, **covar, idx;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /*************************free matrix ************************/    char  *ss;                            /* pointer */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    int   l1, l2;                         /* length counters */
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    l1 = strlen(path );                   /* length of path */
   free((FREE_ARG)(m+nrl-NR_END));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
 /******************* ma3x *******************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      /*    extern  char* getcwd ( char *buf , int len);*/
   double ***m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      }
   if (!m) nrerror("allocation failure 1 in matrix()");      strcpy( name, path );               /* we've got it */
   m += NR_END;    } else {                              /* strip direcotry from path */
   m -= nrl;      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      strcpy( name, ss );         /* save file name */
   m[nrl] += NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl] -= ncl;      dirc[l1-l2] = 0;                    /* add zero */
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #else
   m[nrl][ncl] += NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m[nrl][ncl] -= nll;  #endif
   for (j=ncl+1; j<=nch; j++)    */
     m[nrl][j]=m[nrl][j-1]+nlay;    ss = strrchr( name, '.' );            /* find last / */
      ss++;
   for (i=nrl+1; i<=nrh; i++) {    strcpy(ext,ss);                       /* save extension */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    l1= strlen( name);
     for (j=ncl+1; j<=nch; j++)    l2= strlen(ss)+1;
       m[i][j]=m[i][j-1]+nlay;    strncpy( finame, name, l1-l2);
   }    finame[l1-l2]= 0;
   return m;    return( 0 );                          /* we're done */
 }  }
   
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /******************************************/
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  void replace_back_to_slash(char *s, char*t)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    int i;
 }    int lg=0;
     i=0;
 /***************** f1dim *************************/    lg=strlen(t);
 extern int ncom;    for(i=0; i<= lg; i++) {
 extern double *pcom,*xicom;      (s[i] = t[i]);
 extern double (*nrfunc)(double []);      if (t[i]== '\\') s[i]='/';
      }
 double f1dim(double x)  }
 {  
   int j;  int nbocc(char *s, char occ)
   double f;  {
   double *xt;    int i,j=0;
      int lg=20;
   xt=vector(1,ncom);    i=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    lg=strlen(s);
   f=(*nrfunc)(xt);    for(i=0; i<= lg; i++) {
   free_vector(xt,1,ncom);    if  (s[i] == occ ) j++;
   return f;    }
 }    return j;
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   int iter;    /* cuts string t into u and v where u is ended by char occ excluding it
   double a,b,d,etemp;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   double fu,fv,fw,fx;       gives u="abcedf" and v="ghi2j" */
   double ftemp;    int i,lg,j,p=0;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    i=0;
   double e=0.0;    for(j=0; j<=strlen(t)-1; j++) {
        if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   a=(ax < cx ? ax : cx);    }
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    lg=strlen(t);
   fw=fv=fx=(*f)(x);    for(j=0; j<p; j++) {
   for (iter=1;iter<=ITMAX;iter++) {      (u[j] = t[j]);
     xm=0.5*(a+b);    }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);       u[p]='\0';
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);     for(j=0; j<= lg; j++) {
 #ifdef DEBUG      if (j>=(p+1))(v[j-p-1] = t[j]);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  }
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /********************** nrerror ********************/
       *xmin=x;  
       return fx;  void nrerror(char error_text[])
     }  {
     ftemp=fu;    fprintf(stderr,"ERREUR ...\n");
     if (fabs(e) > tol1) {    fprintf(stderr,"%s\n",error_text);
       r=(x-w)*(fx-fv);    exit(EXIT_FAILURE);
       q=(x-v)*(fx-fw);  }
       p=(x-v)*q-(x-w)*r;  /*********************** vector *******************/
       q=2.0*(q-r);  double *vector(int nl, int nh)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    double *v;
       etemp=e;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       e=d;    if (!v) nrerror("allocation failure in vector");
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    return v-nl+NR_END;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  /************************ free vector ******************/
         u=x+d;  void free_vector(double*v, int nl, int nh)
         if (u-a < tol2 || b-u < tol2)  {
           d=SIGN(tol1,xm-x);    free((FREE_ARG)(v+nl-NR_END));
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  {
     fu=(*f)(u);    int *v;
     if (fu <= fx) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       if (u >= x) a=x; else b=x;    if (!v) nrerror("allocation failure in ivector");
       SHFT(v,w,x,u)    return v-nl+NR_END;
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /******************free ivector **************************/
           if (fu <= fw || w == x) {  void free_ivector(int *v, long nl, long nh)
             v=w;  {
             w=u;    free((FREE_ARG)(v+nl-NR_END));
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /************************lvector *******************************/
             v=u;  long *lvector(long nl,long nh)
             fv=fu;  {
           }    long *v;
         }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
   nrerror("Too many iterations in brent");    return v-nl+NR_END;
   *xmin=x;  }
   return fx;  
 }  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
 /****************** mnbrak ***********************/  {
     free((FREE_ARG)(v+nl-NR_END));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  /******************* imatrix *******************************/
   double ulim,u,r,q, dum;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double fu;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
    { 
   *fa=(*func)(*ax);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   *fb=(*func)(*bx);    int **m; 
   if (*fb > *fa) {    
     SHFT(dum,*ax,*bx,dum)    /* allocate pointers to rows */ 
       SHFT(dum,*fb,*fa,dum)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   *cx=(*bx)+GOLD*(*bx-*ax);    m += NR_END; 
   *fc=(*func)(*cx);    m -= nrl; 
   while (*fb > *fc) {    
     r=(*bx-*ax)*(*fb-*fc);    
     q=(*bx-*cx)*(*fb-*fa);    /* allocate rows and set pointers to them */ 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl] += NR_END; 
     if ((*bx-u)*(u-*cx) > 0.0) {    m[nrl] -= ncl; 
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       fu=(*func)(u);    
       if (fu < *fc) {    /* return pointer to array of pointers to rows */ 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    return m; 
           SHFT(*fb,*fc,fu,(*func)(u))  } 
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /****************** free_imatrix *************************/
       u=ulim;  void free_imatrix(m,nrl,nrh,ncl,nch)
       fu=(*func)(u);        int **m;
     } else {        long nch,ncl,nrh,nrl; 
       u=(*cx)+GOLD*(*cx-*bx);       /* free an int matrix allocated by imatrix() */ 
       fu=(*func)(u);  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG) (m+nrl-NR_END)); 
       SHFT(*fa,*fb,*fc,fu)  } 
       }  
 }  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 /*************** linmin ************************/  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 int ncom;    double **m;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m += NR_END;
 {    m -= nrl;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double f1dim(double x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl] += NR_END;
               double *fc, double (*func)(double));    m[nrl] -= ncl;
   int j;  
   double xx,xmin,bx,ax;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double fx,fb,fa;    return m;
      /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   ncom=n;     */
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  /*************************free matrix ************************/
   for (j=1;j<=n;j++) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /******************* ma3x *******************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #endif    double ***m;
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     p[j] += xi[j];    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
   free_vector(xicom,1,n);    m -= nrl;
   free_vector(pcom,1,n);  
 }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /*************** powell ************************/    m[nrl] += NR_END;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl] -= ncl;
             double (*func)(double []))  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int i,ibig,j;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double del,t,*pt,*ptt,*xit;    m[nrl][ncl] += NR_END;
   double fp,fptt;    m[nrl][ncl] -= nll;
   double *xits;    for (j=ncl+1; j<=nch; j++) 
   pt=vector(1,n);      m[nrl][j]=m[nrl][j-1]+nlay;
   ptt=vector(1,n);    
   xit=vector(1,n);    for (i=nrl+1; i<=nrh; i++) {
   xits=vector(1,n);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   *fret=(*func)(p);      for (j=ncl+1; j<=nch; j++) 
   for (j=1;j<=n;j++) pt[j]=p[j];        m[i][j]=m[i][j-1]+nlay;
   for (*iter=1;;++(*iter)) {    }
     fp=(*fret);    return m; 
     ibig=0;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     del=0.0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    */
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /*************************free ma3x ************************/
     for (i=1;i<=n;i++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("fret=%lf \n",*fret);    free((FREE_ARG)(m+nrl-NR_END));
 #endif  }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /***************** f1dim *************************/
       if (fabs(fptt-(*fret)) > del) {  extern int ncom; 
         del=fabs(fptt-(*fret));  extern double *pcom,*xicom;
         ibig=i;  extern double (*nrfunc)(double []); 
       }   
 #ifdef DEBUG  double f1dim(double x) 
       printf("%d %.12e",i,(*fret));  { 
       for (j=1;j<=n;j++) {    int j; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    double f;
         printf(" x(%d)=%.12e",j,xit[j]);    double *xt; 
       }   
       for(j=1;j<=n;j++)    xt=vector(1,ncom); 
         printf(" p=%.12e",p[j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       printf("\n");    f=(*nrfunc)(xt); 
 #endif    free_vector(xt,1,ncom); 
     }    return f; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  } 
 #ifdef DEBUG  
       int k[2],l;  /*****************brent *************************/
       k[0]=1;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       k[1]=-1;  { 
       printf("Max: %.12e",(*func)(p));    int iter; 
       for (j=1;j<=n;j++)    double a,b,d,etemp;
         printf(" %.12e",p[j]);    double fu,fv,fw,fx;
       printf("\n");    double ftemp;
       for(l=0;l<=1;l++) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         for (j=1;j<=n;j++) {    double e=0.0; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];   
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    a=(ax < cx ? ax : cx); 
         }    b=(ax > cx ? ax : cx); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    x=w=v=bx; 
       }    fw=fv=fx=(*f)(x); 
 #endif    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       free_vector(xit,1,n);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       free_vector(xits,1,n);      printf(".");fflush(stdout);
       free_vector(ptt,1,n);      fprintf(ficlog,".");fflush(ficlog);
       free_vector(pt,1,n);  #ifdef DEBUG
       return;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for (j=1;j<=n;j++) {  #endif
       ptt[j]=2.0*p[j]-pt[j];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       xit[j]=p[j]-pt[j];        *xmin=x; 
       pt[j]=p[j];        return fx; 
     }      } 
     fptt=(*func)(ptt);      ftemp=fu;
     if (fptt < fp) {      if (fabs(e) > tol1) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        r=(x-w)*(fx-fv); 
       if (t < 0.0) {        q=(x-v)*(fx-fw); 
         linmin(p,xit,n,fret,func);        p=(x-v)*q-(x-w)*r; 
         for (j=1;j<=n;j++) {        q=2.0*(q-r); 
           xi[j][ibig]=xi[j][n];        if (q > 0.0) p = -p; 
           xi[j][n]=xit[j];        q=fabs(q); 
         }        etemp=e; 
 #ifdef DEBUG        e=d; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         for(j=1;j<=n;j++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           printf(" %.12e",xit[j]);        else { 
         printf("\n");          d=p/q; 
 #endif          u=x+d; 
       }          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
   }        } 
 }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /**** Prevalence limit ****************/      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      fu=(*f)(u); 
 {      if (fu <= fx) { 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        if (u >= x) a=x; else b=x; 
      matrix by transitions matrix until convergence is reached */        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   int i, ii,j,k;          } else { 
   double min, max, maxmin, maxmax,sumnew=0.;            if (u < x) a=u; else b=u; 
   double **matprod2();            if (fu <= fw || w == x) { 
   double **out, cov[NCOVMAX], **pmij();              v=w; 
   double **newm;              w=u; 
   double agefin, delaymax=50 ; /* Max number of years to converge */              fv=fw; 
               fw=fu; 
   for (ii=1;ii<=nlstate+ndeath;ii++)            } else if (fu <= fv || v == x || v == w) { 
     for (j=1;j<=nlstate+ndeath;j++){              v=u; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);              fv=fu; 
     }            } 
           } 
    cov[1]=1.;    } 
      nrerror("Too many iterations in brent"); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    *xmin=x; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    return fx; 
     newm=savm;  } 
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /****************** mnbrak ***********************/
    
       for (k=1; k<=cptcovn;k++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];              double (*func)(double)) 
   { 
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/    double ulim,u,r,q, dum;
       }    double fu; 
       for (k=1; k<=cptcovage;k++)   
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    *fa=(*func)(*ax); 
        *fb=(*func)(*bx); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
     savm=oldm;        SHFT(dum,*fb,*fa,dum) 
     oldm=newm;        } 
     maxmax=0.;    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(j=1;j<=nlstate;j++){    *fc=(*func)(*cx); 
       min=1.;    while (*fb > *fc) { 
       max=0.;      r=(*bx-*ax)*(*fb-*fc); 
       for(i=1; i<=nlstate; i++) {      q=(*bx-*cx)*(*fb-*fa); 
         sumnew=0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         max=FMAX(max,prlim[i][j]);      if ((*bx-u)*(u-*cx) > 0.0) { 
         min=FMIN(min,prlim[i][j]);        fu=(*func)(u); 
       }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       maxmin=max-min;        fu=(*func)(u); 
       maxmax=FMAX(maxmax,maxmin);        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     if(maxmax < ftolpl){            SHFT(*fb,*fc,fu,(*func)(u)) 
       return prlim;            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   }        u=ulim; 
 }        fu=(*func)(u); 
       } else { 
 /*************** transition probabilities **********/        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      } 
 {      SHFT(*ax,*bx,*cx,u) 
   double s1, s2;        SHFT(*fa,*fb,*fc,fu) 
   /*double t34;*/        } 
   int i,j,j1, nc, ii, jj;  } 
   
     for(i=1; i<= nlstate; i++){  /*************** linmin ************************/
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int ncom; 
         /*s2 += param[i][j][nc]*cov[nc];*/  double *pcom,*xicom;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double (*nrfunc)(double []); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/   
       }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       ps[i][j]=s2;  { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double brent(double ax, double bx, double cx, 
     }                 double (*f)(double), double tol, double *xmin); 
     for(j=i+1; j<=nlstate+ndeath;j++){    double f1dim(double x); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];                double *fc, double (*func)(double)); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    int j; 
       }    double xx,xmin,bx,ax; 
       ps[i][j]=s2;    double fx,fb,fa;
     }   
   }    ncom=n; 
   for(i=1; i<= nlstate; i++){    pcom=vector(1,n); 
      s1=0;    xicom=vector(1,n); 
     for(j=1; j<i; j++)    nrfunc=func; 
       s1+=exp(ps[i][j]);    for (j=1;j<=n;j++) { 
     for(j=i+1; j<=nlstate+ndeath; j++)      pcom[j]=p[j]; 
       s1+=exp(ps[i][j]);      xicom[j]=xi[j]; 
     ps[i][i]=1./(s1+1.);    } 
     for(j=1; j<i; j++)    ax=0.0; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    xx=1.0; 
     for(j=i+1; j<=nlstate+ndeath; j++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #ifdef DEBUG
   } /* end i */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #endif
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (j=1;j<=n;j++) { 
       ps[ii][jj]=0;      xi[j] *= xmin; 
       ps[ii][ii]=1;      p[j] += xi[j]; 
     }    } 
   }    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  char *asc_diff_time(long time_sec, char ascdiff[])
    }  {
     printf("\n ");    long sec_left, days, hours, minutes;
     }    days = (time_sec) / (60*60*24);
     printf("\n ");printf("%lf ",cov[2]);*/    sec_left = (time_sec) % (60*60*24);
 /*    hours = (sec_left) / (60*60) ;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    sec_left = (sec_left) %(60*60);
   goto end;*/    minutes = (sec_left) /60;
     return ps;    sec_left = (sec_left) % (60);
 }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 /**************** Product of 2 matrices ******************/  }
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*************** powell ************************/
 {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times              double (*func)(double [])) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  { 
   /* in, b, out are matrice of pointers which should have been initialized    void linmin(double p[], double xi[], int n, double *fret, 
      before: only the contents of out is modified. The function returns                double (*func)(double [])); 
      a pointer to pointers identical to out */    int i,ibig,j; 
   long i, j, k;    double del,t,*pt,*ptt,*xit;
   for(i=nrl; i<= nrh; i++)    double fp,fptt;
     for(k=ncolol; k<=ncoloh; k++)    double *xits;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    int niterf, itmp;
         out[i][k] +=in[i][j]*b[j][k];  
     pt=vector(1,n); 
   return out;    ptt=vector(1,n); 
 }    xit=vector(1,n); 
     xits=vector(1,n); 
     *fret=(*func)(p); 
 /************* Higher Matrix Product ***************/    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      fp=(*fret); 
 {      ibig=0; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      del=0.0; 
      duration (i.e. until      last_time=curr_time;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      (void) gettimeofday(&curr_time,&tzp);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
      (typically every 2 years instead of every month which is too big).      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
      Model is determined by parameters x and covariates have to be      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
      included manually here.      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
      */        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   int i, j, d, h, k;      }
   double **out, cov[NCOVMAX];      printf("\n");
   double **newm;      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   /* Hstepm could be zero and should return the unit matrix */      if(*iter <=3){
   for (i=1;i<=nlstate+ndeath;i++)        tm = *localtime(&curr_time.tv_sec);
     for (j=1;j<=nlstate+ndeath;j++){        strcpy(strcurr,asctime(&tmf));
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*       asctime_r(&tm,strcurr); */
       po[i][j][0]=(i==j ? 1.0 : 0.0);        forecast_time=curr_time;
     }        itmp = strlen(strcurr);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        if(strcurr[itmp-1]=='\n')
   for(h=1; h <=nhstepm; h++){          strcurr[itmp-1]='\0';
     for(d=1; d <=hstepm; d++){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       newm=savm;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       /* Covariates have to be included here again */        for(niterf=10;niterf<=30;niterf+=10){
       cov[1]=1.;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          tmf = *localtime(&forecast_time.tv_sec);
       if (cptcovn>0){  /*      asctime_r(&tmf,strfor); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];          strcpy(strfor,asctime(&tmf));
     }          itmp = strlen(strfor);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          if(strfor[itmp-1]=='\n')
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          strfor[itmp-1]='\0';
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       savm=oldm;        }
       oldm=newm;      }
     }      for (i=1;i<=n;i++) { 
     for(i=1; i<=nlstate+ndeath; i++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       for(j=1;j<=nlstate+ndeath;j++) {        fptt=(*fret); 
         po[i][j][h]=newm[i][j];  #ifdef DEBUG
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        printf("fret=%lf \n",*fret);
          */        fprintf(ficlog,"fret=%lf \n",*fret);
       }  #endif
   } /* end h */        printf("%d",i);fflush(stdout);
   return po;        fprintf(ficlog,"%d",i);fflush(ficlog);
 }        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 /*************** log-likelihood *************/          ibig=i; 
 double func( double *x)        } 
 {  #ifdef DEBUG
   int i, ii, j, k, mi, d, kk;        printf("%d %.12e",i,(*fret));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        fprintf(ficlog,"%d %.12e",i,(*fret));
   double **out;        for (j=1;j<=n;j++) {
   double sw; /* Sum of weights */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double lli; /* Individual log likelihood */          printf(" x(%d)=%.12e",j,xit[j]);
   long ipmx;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /*extern weight */        }
   /* We are differentiating ll according to initial status */        for(j=1;j<=n;j++) {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          printf(" p=%.12e",p[j]);
   /*for(i=1;i<imx;i++)          fprintf(ficlog," p=%.12e",p[j]);
 printf(" %d\n",s[4][i]);        }
   */        printf("\n");
   cov[1]=1.;        fprintf(ficlog,"\n");
   #endif
   for(k=1; k<=nlstate; k++) ll[k]=0.;      } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #ifdef DEBUG
        for(mi=1; mi<= wav[i]-1; mi++){        int k[2],l;
       for (ii=1;ii<=nlstate+ndeath;ii++)        k[0]=1;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        k[1]=-1;
             for(d=0; d<dh[mi][i]; d++){        printf("Max: %.12e",(*func)(p));
               newm=savm;        fprintf(ficlog,"Max: %.12e",(*func)(p));
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for (j=1;j<=n;j++) {
               for (kk=1; kk<=cptcovage;kk++) {          printf(" %.12e",p[j]);
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          fprintf(ficlog," %.12e",p[j]);
                  /*printf("%d %d",kk,Tage[kk]);*/        }
               }        printf("\n");
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/        fprintf(ficlog,"\n");
               /*cov[3]=pow(cov[2],2)/1000.;*/        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           savm=oldm;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           oldm=newm;          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       } /* end mult */        }
      #endif
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;        free_vector(xit,1,n); 
       sw += weight[i];        free_vector(xits,1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        free_vector(ptt,1,n); 
     } /* end of wave */        free_vector(pt,1,n); 
   } /* end of individual */        return; 
       } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for (j=1;j<=n;j++) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        ptt[j]=2.0*p[j]-pt[j]; 
   return -l;        xit[j]=p[j]-pt[j]; 
 }        pt[j]=p[j]; 
       } 
       fptt=(*func)(ptt); 
 /*********** Maximum Likelihood Estimation ***************/      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        if (t < 0.0) { 
 {          linmin(p,xit,n,fret,func); 
   int i,j, iter;          for (j=1;j<=n;j++) { 
   double **xi,*delti;            xi[j][ibig]=xi[j][n]; 
   double fret;            xi[j][n]=xit[j]; 
   xi=matrix(1,npar,1,npar);          }
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       xi[i][j]=(i==j ? 1.0 : 0.0);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   printf("Powell\n");          for(j=1;j<=n;j++){
   powell(p,xi,npar,ftol,&iter,&fret,func);            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));          printf("\n");
           fprintf(ficlog,"\n");
 }  #endif
         }
 /**** Computes Hessian and covariance matrix ***/      } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    } 
 {  } 
   double  **a,**y,*x,pd;  
   double **hess;  /**** Prevalence limit (stable prevalence)  ****************/
   int i, j,jk;  
   int *indx;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   double hessii(double p[], double delta, int theta, double delti[]);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double hessij(double p[], double delti[], int i, int j);       matrix by transitions matrix until convergence is reached */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   hess=matrix(1,npar,1,npar);    double **out, cov[NCOVMAX], **pmij();
     double **newm;
   printf("\nCalculation of the hessian matrix. Wait...\n");    double agefin, delaymax=50 ; /* Max number of years to converge */
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);    for (ii=1;ii<=nlstate+ndeath;ii++)
     hess[i][i]=hessii(p,ftolhess,i,delti);      for (j=1;j<=nlstate+ndeath;j++){
     /*printf(" %f ",p[i]);*/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }      }
   
   for (i=1;i<=npar;i++) {     cov[1]=1.;
     for (j=1;j<=npar;j++)  {   
       if (j>i) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         printf(".%d%d",i,j);fflush(stdout);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         hess[i][j]=hessij(p,delti,i,j);      newm=savm;
         hess[j][i]=hess[i][j];      /* Covariates have to be included here again */
       }       cov[2]=agefin;
     }    
   }        for (k=1; k<=cptcovn;k++) {
   printf("\n");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   a=matrix(1,npar,1,npar);        for (k=1; k<=cptcovprod;k++)
   y=matrix(1,npar,1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   x=vector(1,npar);  
   indx=ivector(1,npar);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   for (i=1;i<=npar;i++)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   ludcmp(a,npar,indx,&pd);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   for (j=1;j<=npar;j++) {      savm=oldm;
     for (i=1;i<=npar;i++) x[i]=0;      oldm=newm;
     x[j]=1;      maxmax=0.;
     lubksb(a,npar,indx,x);      for(j=1;j<=nlstate;j++){
     for (i=1;i<=npar;i++){        min=1.;
       matcov[i][j]=x[i];        max=0.;
     }        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   printf("\n#Hessian matrix#\n");          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (i=1;i<=npar;i++) {          max=FMAX(max,prlim[i][j]);
     for (j=1;j<=npar;j++) {          min=FMIN(min,prlim[i][j]);
       printf("%.3e ",hess[i][j]);        }
     }        maxmin=max-min;
     printf("\n");        maxmax=FMAX(maxmax,maxmin);
   }      }
       if(maxmax < ftolpl){
   /* Recompute Inverse */        return prlim;
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    }
   ludcmp(a,npar,indx,&pd);  }
   
   /*  printf("\n#Hessian matrix recomputed#\n");  /*************** transition probabilities ***************/ 
   
   for (j=1;j<=npar;j++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    double s1, s2;
     lubksb(a,npar,indx,x);    /*double t34;*/
     for (i=1;i<=npar;i++){    int i,j,j1, nc, ii, jj;
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);      for(i=1; i<= nlstate; i++){
     }      for(j=1; j<i;j++){
     printf("\n");        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }          /*s2 += param[i][j][nc]*cov[nc];*/
   */          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   free_matrix(a,1,npar,1,npar);        }
   free_matrix(y,1,npar,1,npar);        ps[i][j]=s2;
   free_vector(x,1,npar);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   free_ivector(indx,1,npar);      }
   free_matrix(hess,1,npar,1,npar);      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
 /*************** hessian matrix ****************/        ps[i][j]=s2;
 double hessii( double x[], double delta, int theta, double delti[])      }
 {    }
   int i;      /*ps[3][2]=1;*/
   int l=1, lmax=20;  
   double k1,k2;    for(i=1; i<= nlstate; i++){
   double p2[NPARMAX+1];       s1=0;
   double res;      for(j=1; j<i; j++)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        s1+=exp(ps[i][j]);
   double fx;      for(j=i+1; j<=nlstate+ndeath; j++)
   int k=0,kmax=10;        s1+=exp(ps[i][j]);
   double l1;      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
   fx=func(x);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=npar;i++) p2[i]=x[i];      for(j=i+1; j<=nlstate+ndeath; j++)
   for(l=0 ; l <=lmax; l++){        ps[i][j]= exp(ps[i][j])*ps[i][i];
     l1=pow(10,l);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     delts=delt;    } /* end i */
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       p2[theta]=x[theta] +delt;      for(jj=1; jj<= nlstate+ndeath; jj++){
       k1=func(p2)-fx;        ps[ii][jj]=0;
       p2[theta]=x[theta]-delt;        ps[ii][ii]=1;
       k2=func(p2)-fx;      }
       /*res= (k1-2.0*fx+k2)/delt/delt; */    }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        
 #ifdef DEBUG    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for(jj=1; jj<= nlstate+ndeath; jj++){
 #endif       printf("%lf ",ps[ii][jj]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */     }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      printf("\n ");
         k=kmax;      }
       }      printf("\n ");printf("%lf ",cov[2]);*/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /*
         k=kmax; l=lmax*10.;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       }    goto end;*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      return ps;
         delts=delt;  }
       }  
     }  /**************** Product of 2 matrices ******************/
   }  
   delti[theta]=delts;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   return res;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
 double hessij( double x[], double delti[], int thetai,int thetaj)       before: only the contents of out is modified. The function returns
 {       a pointer to pointers identical to out */
   int i;    long i, j, k;
   int l=1, l1, lmax=20;    for(i=nrl; i<= nrh; i++)
   double k1,k2,k3,k4,res,fx;      for(k=ncolol; k<=ncoloh; k++)
   double p2[NPARMAX+1];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   int k;          out[i][k] +=in[i][j]*b[j][k];
   
   fx=func(x);    return out;
   for (k=1; k<=2; k++) {  }
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /************* Higher Matrix Product ***************/
     k1=func(p2)-fx;  
    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* Computes the transition matrix starting at age 'age' over 
     k2=func(p2)-fx;       'nhstepm*hstepm*stepm' months (i.e. until
         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     p2[thetai]=x[thetai]-delti[thetai]/k;       nhstepm*hstepm matrices. 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     k3=func(p2)-fx;       (typically every 2 years instead of every month which is too big 
         for the memory).
     p2[thetai]=x[thetai]-delti[thetai]/k;       Model is determined by parameters x and covariates have to be 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       included manually here. 
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       */
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int i, j, d, h, k;
 #endif    double **out, cov[NCOVMAX];
   }    double **newm;
   return res;  
 }    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
 /************** Inverse of matrix **************/      for (j=1;j<=nlstate+ndeath;j++){
 void ludcmp(double **a, int n, int *indx, double *d)        oldm[i][j]=(i==j ? 1.0 : 0.0);
 {        po[i][j][0]=(i==j ? 1.0 : 0.0);
   int i,imax,j,k;      }
   double big,dum,sum,temp;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double *vv;    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
   vv=vector(1,n);        newm=savm;
   *d=1.0;        /* Covariates have to be included here again */
   for (i=1;i<=n;i++) {        cov[1]=1.;
     big=0.0;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (j=1;j<=n;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       if ((temp=fabs(a[i][j])) > big) big=temp;        for (k=1; k<=cptcovage;k++)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     vv[i]=1.0/big;        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  
       sum=a[i][j];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       a[i][j]=sum;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     big=0.0;        savm=oldm;
     for (i=j;i<=n;i++) {        oldm=newm;
       sum=a[i][j];      }
       for (k=1;k<j;k++)      for(i=1; i<=nlstate+ndeath; i++)
         sum -= a[i][k]*a[k][j];        for(j=1;j<=nlstate+ndeath;j++) {
       a[i][j]=sum;          po[i][j][h]=newm[i][j];
       if ( (dum=vv[i]*fabs(sum)) >= big) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         big=dum;           */
         imax=i;        }
       }    } /* end h */
     }    return po;
     if (j != imax) {  }
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /*************** log-likelihood *************/
         a[j][k]=dum;  double func( double *x)
       }  {
       *d = -(*d);    int i, ii, j, k, mi, d, kk;
       vv[imax]=vv[j];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
     indx[j]=imax;    double sw; /* Sum of weights */
     if (a[j][j] == 0.0) a[j][j]=TINY;    double lli; /* Individual log likelihood */
     if (j != n) {    int s1, s2;
       dum=1.0/(a[j][j]);    double bbh, survp;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    long ipmx;
     }    /*extern weight */
   }    /* We are differentiating ll according to initial status */
   free_vector(vv,1,n);  /* Doesn't work */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 ;    /*for(i=1;i<imx;i++) 
 }      printf(" %d\n",s[4][i]);
     */
 void lubksb(double **a, int n, int *indx, double b[])    cov[1]=1.;
 {  
   int i,ii=0,ip,j;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double sum;  
      if(mle==1){
   for (i=1;i<=n;i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     ip=indx[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     sum=b[ip];        for(mi=1; mi<= wav[i]-1; mi++){
     b[ip]=b[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (ii)            for (j=1;j<=nlstate+ndeath;j++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     else if (sum) ii=i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum;            }
   }          for(d=0; d<dh[mi][i]; d++){
   for (i=n;i>=1;i--) {            newm=savm;
     sum=b[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            for (kk=1; kk<=cptcovage;kk++) {
     b[i]=sum/a[i][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************ Frequencies ********************/            savm=oldm;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)            oldm=newm;
 {  /* Some frequencies */          } /* end mult */
          
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double ***freq; /* Frequencies */          /* But now since version 0.9 we anticipate for bias and large stepm.
   double *pp;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double pos;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   FILE *ficresp;           * the nearest (and in case of equal distance, to the lowest) interval but now
   char fileresp[FILENAMELENGTH];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   pp=vector(1,nlstate);           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   strcpy(fileresp,"p");           * -stepm/2 to stepm/2 .
   strcat(fileresp,fileres);           * For stepm=1 the results are the same as for previous versions of Imach.
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * For stepm > 1 the results are less biased than in previous versions. 
     printf("Problem with prevalence resultfile: %s\n", fileresp);           */
     exit(0);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          bbh=(double)bh[mi][i]/(double)stepm; 
   j1=0;          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   j=cptcovn;           */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   for(k1=1; k1<=j;k1++){            /* i.e. if s2 is a death state and if the date of death is known then the contribution
    for(i1=1; i1<=ncodemax[k1];i1++){               to the likelihood is the probability to die between last step unit time and current 
        j1++;               step unit time, which is also the differences between probability to die before dh 
                and probability to die before dh-stepm . 
         for (i=-1; i<=nlstate+ndeath; i++)                 In version up to 0.92 likelihood was computed
          for (jk=-1; jk<=nlstate+ndeath; jk++)            as if date of death was unknown. Death was treated as any other
            for(m=agemin; m <= agemax+3; m++)          health state: the date of the interview describes the actual state
              freq[i][jk][m]=0;          and not the date of a change in health state. The former idea was
                  to consider that at each interview the state was recorded
        for (i=1; i<=imx; i++) {          (healthy, disable or death) and IMaCh was corrected; but when we
          bool=1;          introduced the exact date of death then we should have modified
          if  (cptcovn>0) {          the contribution of an exact death to the likelihood. This new
            for (z1=1; z1<=cptcovn; z1++)          contribution is smaller and very dependent of the step unit
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          stepm. It is no more the probability to die between last interview
          }          and month of death but the probability to survive from last
           if (bool==1) {          interview up to one month before death multiplied by the
            for(m=firstpass; m<=lastpass-1; m++){          probability to die within a month. Thanks to Chris
              if(agev[m][i]==0) agev[m][i]=agemax+1;          Jackson for correcting this bug.  Former versions increased
              if(agev[m][i]==1) agev[m][i]=agemax+2;          mortality artificially. The bad side is that we add another loop
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          which slows down the processing. The difference can be up to 10%
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          lower mortality.
            }            */
          }            lli=log(out[s1][s2] - savm[s1][s2]);
        }          }else{
         if  (cptcovn>0) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          fprintf(ficresp, "\n#Variable");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          } 
        }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
        fprintf(ficresp, "\n#");          /*if(lli ==000.0)*/
        for(i=1; i<=nlstate;i++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ipmx +=1;
        fprintf(ficresp, "\n");          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=(int)agemin; i <= (int)agemax+3; i++){        } /* end of wave */
     if(i==(int)agemax+3)      } /* end of individual */
       printf("Total");    }  else if(mle==2){
     else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       printf("Age %d", i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(m=-1, pos=0; m <=0 ; m++)            }
         pos += freq[jk][m][i];          for(d=0; d<=dh[mi][i]; d++){
       if(pp[jk]>=1.e-10)            newm=savm;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else            for (kk=1; kk<=cptcovage;kk++) {
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
     for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         pp[jk] += freq[jk][m][i];            savm=oldm;
     }            oldm=newm;
     for(jk=1,pos=0; jk <=nlstate ; jk++)          } /* end mult */
       pos += pp[jk];        
     for(jk=1; jk <=nlstate ; jk++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       if(pos>=1.e-5)          /* But now since version 0.9 we anticipate for bias and large stepm.
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       else           * (in months) between two waves is not a multiple of stepm, we rounded to 
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * the nearest (and in case of equal distance, to the lowest) interval but now
       if( i <= (int) agemax){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         if(pos>=1.e-5)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           * probability in order to take into account the bias as a fraction of the way
       else           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
     for(jk=-1; jk <=nlstate+ndeath; jk++)           */
       for(m=-1; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          s2=s[mw[mi+1][i]][i];
     if(i <= (int) agemax)          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresp,"\n");          /* bias is positive if real duration
     printf("\n");           * is higher than the multiple of stepm and negative otherwise.
     }           */
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
            /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   fclose(ficresp);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          /*if(lli ==000.0)*/
   free_vector(pp,1,nlstate);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
 }  /* End of Freq */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /************* Waves Concatenation ***************/        } /* end of wave */
       } /* end of individual */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    }  else if(mle==3){  /* exponential inter-extrapolation */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      Death is a valid wave (if date is known).        for(mi=1; mi<= wav[i]-1; mi++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          for (ii=1;ii<=nlstate+ndeath;ii++)
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            for (j=1;j<=nlstate+ndeath;j++){
      and mw[mi+1][i]. dh depends on stepm.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   int i, mi, m;          for(d=0; d<dh[mi][i]; d++){
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            newm=savm;
 float sum=0.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   for(i=1; i<=imx; i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     mi=0;            }
     m=firstpass;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     while(s[m][i] <= nlstate){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(s[m][i]>=1)            savm=oldm;
         mw[++mi][i]=m;            oldm=newm;
       if(m >=lastpass)          } /* end mult */
         break;        
       else          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         m++;          /* But now since version 0.9 we anticipate for bias and large stepm.
     }/* end while */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     if (s[m][i] > nlstate){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       mi++;     /* Death is another wave */           * the nearest (and in case of equal distance, to the lowest) interval but now
       /* if(mi==0)  never been interviewed correctly before death */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          /* Only death is a correct wave */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       mw[mi][i]=m;           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
     wav[i]=mi;           * For stepm=1 the results are the same as for previous versions of Imach.
     if(mi==0)           * For stepm > 1 the results are less biased than in previous versions. 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);           */
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for(i=1; i<=imx; i++){          bbh=(double)bh[mi][i]/(double)stepm; 
     for(mi=1; mi<wav[i];mi++){          /* bias is positive if real duration
       if (stepm <=0)           * is higher than the multiple of stepm and negative otherwise.
         dh[mi][i]=1;           */
       else{          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         if (s[mw[mi+1][i]][i] > nlstate) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           if(j=0) j=1;  /* Survives at least one month after exam */          /*if(lli ==000.0)*/
         }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         else{          ipmx +=1;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          sw += weight[i];
           k=k+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (j >= jmax) jmax=j;        } /* end of wave */
           else if (j <= jmin)jmin=j;      } /* end of individual */
           sum=sum+j;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         jk= j/stepm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         jl= j -jk*stepm;        for(mi=1; mi<= wav[i]-1; mi++){
         ju= j -(jk+1)*stepm;          for (ii=1;ii<=nlstate+ndeath;ii++)
         if(jl <= -ju)            for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=jk;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=jk+1;            }
         if(dh[mi][i]==0)          for(d=0; d<dh[mi][i]; d++){
           dh[mi][i]=1; /* At least one step */            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);            }
 }          
 /*********** Tricode ****************************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void tricode(int *Tvar, int **nbcode, int imx)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   int Ndum[80],ij=1, k, j, i, Ntvar[20];            oldm=newm;
   int cptcode=0;          } /* end mult */
   for (k=0; k<79; k++) Ndum[k]=0;        
   for (k=1; k<=7; k++) ncodemax[k]=0;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for (j=1; j<=cptcovn; j++) {          if( s2 > nlstate){ 
     for (i=1; i<=imx; i++) {            lli=log(out[s1][s2] - savm[s1][s2]);
       ij=(int)(covar[Tvar[j]][i]);          }else{
       Ndum[ij]++;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if (ij > cptcode) cptcode=ij;          }
     }          ipmx +=1;
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          sw += weight[i];
     for (i=0; i<=cptcode; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(Ndum[i]!=0) ncodemax[j]++;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }        } /* end of wave */
        } /* end of individual */
     ij=1;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     for (i=1; i<=ncodemax[j]; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=0; k<=79; k++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (Ndum[k] != 0) {        for(mi=1; mi<= wav[i]-1; mi++){
           nbcode[Tvar[j]][ij]=k;          for (ii=1;ii<=nlstate+ndeath;ii++)
           ij++;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (ij > ncodemax[j]) break;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              }
     }          for(d=0; d<dh[mi][i]; d++){
   }              newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*********** Health Expectancies ****************/            }
           
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Health expectancies */            savm=oldm;
   int i, j, nhstepm, hstepm, h;            oldm=newm;
   double age, agelim,hf;          } /* end mult */
   double ***p3mat;        
            s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"# Health expectancies\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficreseij,"# Age");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for(i=1; i<=nlstate;i++)          ipmx +=1;
     for(j=1; j<=nlstate;j++)          sw += weight[i];
       fprintf(ficreseij," %1d-%1d",i,j);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficreseij,"\n");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
   hstepm=1*YEARM; /*  Every j years of age (in month) */      } /* end of individual */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   agelim=AGESUP;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     /* nhstepm age range expressed in number of stepm */    return -l;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  }
     /* Typically if 20 years = 20*12/6=40 stepm */  
     if (stepm >= YEARM) hstepm=1;  /*************** log-likelihood *************/
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  double funcone( double *x)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* Same as likeli but slower because of a lot of printf and if */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    int i, ii, j, k, mi, d, kk;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
     double lli; /* Individual log likelihood */
     for(i=1; i<=nlstate;i++)    double llt;
       for(j=1; j<=nlstate;j++)    int s1, s2;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    double bbh, survp;
           eij[i][j][(int)age] +=p3mat[i][j][h];    /*extern weight */
         }    /* We are differentiating ll according to initial status */
        /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     hf=1;    /*for(i=1;i<imx;i++) 
     if (stepm >= YEARM) hf=stepm/YEARM;      printf(" %d\n",s[4][i]);
     fprintf(ficreseij,"%.0f",age );    */
     for(i=1; i<=nlstate;i++)    cov[1]=1.;
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
     fprintf(ficreseij,"\n");    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }      for(mi=1; mi<= wav[i]-1; mi++){
 }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
 /************ Variance ******************/            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {          }
   /* Variance of health expectancies */        for(d=0; d<dh[mi][i]; d++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          newm=savm;
   double **newm;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **dnewm,**doldm;          for (kk=1; kk<=cptcovage;kk++) {
   int i, j, nhstepm, hstepm, h;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int k, cptcode;          }
    double *xp;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **gp, **gm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***gradg, ***trgradg;          savm=oldm;
   double ***p3mat;          oldm=newm;
   double age,agelim;        } /* end mult */
   int theta;        
         s1=s[mw[mi][i]][i];
    fprintf(ficresvij,"# Covariances of life expectancies\n");        s2=s[mw[mi+1][i]][i];
   fprintf(ficresvij,"# Age");        bbh=(double)bh[mi][i]/(double)stepm; 
   for(i=1; i<=nlstate;i++)        /* bias is positive if real duration
     for(j=1; j<=nlstate;j++)         * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);         */
   fprintf(ficresvij,"\n");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   xp=vector(1,npar);        } else if (mle==1){
   dnewm=matrix(1,nlstate,1,npar);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   doldm=matrix(1,nlstate,1,nlstate);        } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   hstepm=1*YEARM; /* Every year of age */        } else if(mle==3){  /* exponential inter-extrapolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   agelim = AGESUP;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          lli=log(out[s1][s2]); /* Original formula */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     if (stepm >= YEARM) hstepm=1;          lli=log(out[s1][s2]); /* Original formula */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        } /* End of if */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        ipmx +=1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        sw += weight[i];
     gp=matrix(0,nhstepm,1,nlstate);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gm=matrix(0,nhstepm,1,nlstate);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     for(theta=1; theta <=npar; theta++){          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       for(i=1; i<=npar; i++){ /* Computes gradient */   %10.6f %10.6f %10.6f ", \
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            llt +=ll[k]*gipmx/gsw;
       for(j=1; j<= nlstate; j++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        }
         }      } /* end of wave */
       }    } /* end of individual */
        for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(i=1; i<=npar; i++) /* Computes gradient */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      if(globpr==0){ /* First time we count the contributions and weights */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      gipmx=ipmx;
       for(j=1; j<= nlstate; j++){      gsw=sw;
         for(h=0; h<=nhstepm; h++){    }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    return -l;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  }
         }  
       }  char *subdirf(char fileres[])
       for(j=1; j<= nlstate; j++)  {
         for(h=0; h<=nhstepm; h++){    /* Caution optionfilefiname is hidden */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/"); /* Add to the right */
     } /* End theta */    strcat(tmpout,fileres);
     return tmpout;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  }
   
     for(h=0; h<=nhstepm; h++)  char *subdirf2(char fileres[], char *preop)
       for(j=1; j<=nlstate;j++)  {
         for(theta=1; theta <=npar; theta++)    
           trgradg[h][j][theta]=gradg[h][theta][j];    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     for(i=1;i<=nlstate;i++)    strcat(tmpout,preop);
       for(j=1;j<=nlstate;j++)    strcat(tmpout,fileres);
         vareij[i][j][(int)age] =0.;    return tmpout;
     for(h=0;h<=nhstepm;h++){  }
       for(k=0;k<=nhstepm;k++){  char *subdirf3(char fileres[], char *preop, char *preop2)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  {
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    
         for(i=1;i<=nlstate;i++)    strcpy(tmpout,optionfilefiname);
           for(j=1;j<=nlstate;j++)    strcat(tmpout,"/");
             vareij[i][j][(int)age] += doldm[i][j];    strcat(tmpout,preop);
       }    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
     h=1;    return tmpout;
     if (stepm >= YEARM) h=stepm/YEARM;  }
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       for(j=1; j<=nlstate;j++){  {
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    /* This routine should help understanding what is done with 
       }       the selection of individuals/waves and
     fprintf(ficresvij,"\n");       to check the exact contribution to the likelihood.
     free_matrix(gp,0,nhstepm,1,nlstate);       Plotting could be done.
     free_matrix(gm,0,nhstepm,1,nlstate);     */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    int k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(*globpri !=0){ /* Just counts and sums, no printings */
   } /* End age */      strcpy(fileresilk,"ilk"); 
        strcat(fileresilk,fileres);
   free_vector(xp,1,npar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   free_matrix(doldm,1,nlstate,1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
   free_matrix(dnewm,1,nlstate,1,nlstate);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
 }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 /************ Variance of prevlim ******************/      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for(k=1; k<=nlstate; k++) 
 {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   /* Variance of prevalence limit */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }
   double **newm;  
   double **dnewm,**doldm;    *fretone=(*funcone)(p);
   int i, j, nhstepm, hstepm;    if(*globpri !=0){
   int k, cptcode;      fclose(ficresilk);
   double *xp;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double *gp, *gm;      fflush(fichtm); 
   double **gradg, **trgradg;    } 
   double age,agelim;    return;
   int theta;  }
      
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");  /*********** Maximum Likelihood Estimation ***************/
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   fprintf(ficresvpl,"\n");  {
     int i,j, iter;
   xp=vector(1,npar);    double **xi;
   dnewm=matrix(1,nlstate,1,npar);    double fret;
   doldm=matrix(1,nlstate,1,nlstate);    double fretone; /* Only one call to likelihood */
      char filerespow[FILENAMELENGTH];
   hstepm=1*YEARM; /* Every year of age */    xi=matrix(1,npar,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for (i=1;i<=npar;i++)
   agelim = AGESUP;      for (j=1;j<=npar;j++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        xi[i][j]=(i==j ? 1.0 : 0.0);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     if (stepm >= YEARM) hstepm=1;    strcpy(filerespow,"pow"); 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    strcat(filerespow,fileres);
     gradg=matrix(1,npar,1,nlstate);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     gp=vector(1,nlstate);      printf("Problem with resultfile: %s\n", filerespow);
     gm=vector(1,nlstate);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     for(theta=1; theta <=npar; theta++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (i=1;i<=nlstate;i++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for(j=1;j<=nlstate+ndeath;j++)
       }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficrespow,"\n");
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    powell(p,xi,npar,ftol,&iter,&fret,func);
      
       for(i=1; i<=npar; i++) /* Computes gradient */    fclose(ficrespow);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(i=1;i<=nlstate;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         gm[i] = prlim[i][i];  
   }
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  /**** Computes Hessian and covariance matrix ***/
     } /* End theta */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     trgradg =matrix(1,nlstate,1,npar);    double  **a,**y,*x,pd;
     double **hess;
     for(j=1; j<=nlstate;j++)    int i, j,jk;
       for(theta=1; theta <=npar; theta++)    int *indx;
         trgradg[j][theta]=gradg[theta][j];  
     double hessii(double p[], double delta, int theta, double delti[]);
     for(i=1;i<=nlstate;i++)    double hessij(double p[], double delti[], int i, int j);
       varpl[i][(int)age] =0.;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
     printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficresvpl,"%.0f ",age );    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      printf("%d",i);fflush(stdout);
     fprintf(ficresvpl,"\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
     free_vector(gp,1,nlstate);      hess[i][i]=hessii(p,ftolhess,i,delti);
     free_vector(gm,1,nlstate);      /*printf(" %f ",p[i]);*/
     free_matrix(gradg,1,npar,1,nlstate);      /*printf(" %lf ",hess[i][i]);*/
     free_matrix(trgradg,1,nlstate,1,npar);    }
   } /* End age */    
     for (i=1;i<=npar;i++) {
   free_vector(xp,1,npar);      for (j=1;j<=npar;j++)  {
   free_matrix(doldm,1,nlstate,1,npar);        if (j>i) { 
   free_matrix(dnewm,1,nlstate,1,nlstate);          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 }          hess[i][j]=hessij(p,delti,i,j);
           hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
         }
 /***********************************************/      }
 /**************** Main Program *****************/    }
 /***********************************************/    printf("\n");
     fprintf(ficlog,"\n");
 /*int main(int argc, char *argv[])*/  
 int main()    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    a=matrix(1,npar,1,npar);
   double agedeb, agefin,hf;    y=matrix(1,npar,1,npar);
   double agemin=1.e20, agemax=-1.e20;    x=vector(1,npar);
     indx=ivector(1,npar);
   double fret;    for (i=1;i<=npar;i++)
   double **xi,tmp,delta;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   double dum; /* Dummy variable */  
   double ***p3mat;    for (j=1;j<=npar;j++) {
   int *indx;      for (i=1;i<=npar;i++) x[i]=0;
   char line[MAXLINE], linepar[MAXLINE];      x[j]=1;
   char title[MAXLINE];      lubksb(a,npar,indx,x);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      for (i=1;i<=npar;i++){ 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];        matcov[i][j]=x[i];
   char filerest[FILENAMELENGTH];      }
   char fileregp[FILENAMELENGTH];    }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;    printf("\n#Hessian matrix#\n");
   int sdeb, sfin; /* Status at beginning and end */    fprintf(ficlog,"\n#Hessian matrix#\n");
   int c,  h , cpt,l;    for (i=1;i<=npar;i++) { 
   int ju,jl, mi;      for (j=1;j<=npar;j++) { 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;        printf("%.3e ",hess[i][j]);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        fprintf(ficlog,"%.3e ",hess[i][j]);
        }
   int hstepm, nhstepm;      printf("\n");
   double bage, fage, age, agelim, agebase;      fprintf(ficlog,"\n");
   double ftolpl=FTOL;    }
   double **prlim;  
   double *severity;    /* Recompute Inverse */
   double ***param; /* Matrix of parameters */    for (i=1;i<=npar;i++)
   double  *p;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double **matcov; /* Matrix of covariance */    ludcmp(a,npar,indx,&pd);
   double ***delti3; /* Scale */  
   double *delti; /* Scale */    /*  printf("\n#Hessian matrix recomputed#\n");
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */    for (j=1;j<=npar;j++) {
   double *epj, vepp;      for (i=1;i<=npar;i++) x[i]=0;
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";      x[j]=1;
   char *alph[]={"a","a","b","c","d","e"}, str[4];      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   char z[1]="c", occ;        y[i][j]=x[i];
 #include <sys/time.h>        printf("%.3e ",y[i][j]);
 #include <time.h>        fprintf(ficlog,"%.3e ",y[i][j]);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      }
   /* long total_usecs;      printf("\n");
   struct timeval start_time, end_time;      fprintf(ficlog,"\n");
      }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    */
   
     free_matrix(a,1,npar,1,npar);
   printf("\nIMACH, Version 0.64a");    free_matrix(y,1,npar,1,npar);
   printf("\nEnter the parameter file name: ");    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
 #ifdef windows    free_matrix(hess,1,npar,1,npar);
   scanf("%s",pathtot);  
   getcwd(pathcd, size);  
   /*cygwin_split_path(pathtot,path,optionfile);  }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
 split(pathtot, path,optionfile);  {
   chdir(path);    int i;
   replace(pathc,path);    int l=1, lmax=20;
 #endif    double k1,k2;
 #ifdef unix    double p2[NPARMAX+1];
   scanf("%s",optionfile);    double res;
 #endif    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
 /*-------- arguments in the command line --------*/    int k=0,kmax=10;
     double l1;
   strcpy(fileres,"r");  
   strcat(fileres, optionfile);    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   /*---------arguments file --------*/    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      delts=delt;
     printf("Problem with optionfile %s\n",optionfile);      for(k=1 ; k <kmax; k=k+1){
     goto end;        delt = delta*(l1*k);
   }        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
   strcpy(filereso,"o");        p2[theta]=x[theta]-delt;
   strcat(filereso,fileres);        k2=func(p2)-fx;
   if((ficparo=fopen(filereso,"w"))==NULL) {        /*res= (k1-2.0*fx+k2)/delt/delt; */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   }        
   #ifdef DEBUG
   /* Reads comments: lines beginning with '#' */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     ungetc(c,ficpar);  #endif
     fgets(line, MAXLINE, ficpar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     puts(line);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     fputs(line,ficparo);          k=kmax;
   }        }
   ungetc(c,ficpar);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);          delts=delt;
         }
   covar=matrix(0,NCOVMAX,1,n);          }
   if (strlen(model)<=1) cptcovn=0;    }
   else {    delti[theta]=delts;
     j=0;    return res; 
     j=nbocc(model,'+');    
     cptcovn=j+1;  }
   }  
   double hessij( double x[], double delti[], int thetai,int thetaj)
   ncovmodel=2+cptcovn;  {
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int i;
      int l=1, l1, lmax=20;
   /* Read guess parameters */    double k1,k2,k3,k4,res,fx;
   /* Reads comments: lines beginning with '#' */    double p2[NPARMAX+1];
   while((c=getc(ficpar))=='#' && c!= EOF){    int k;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    fx=func(x);
     puts(line);    for (k=1; k<=2; k++) {
     fputs(line,ficparo);      for (i=1;i<=npar;i++) p2[i]=x[i];
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
   ungetc(c,ficpar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
     for(i=1; i <=nlstate; i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
     for(j=1; j <=nlstate+ndeath-1; j++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fscanf(ficpar,"%1d%1d",&i1,&j1);      k2=func(p2)-fx;
       fprintf(ficparo,"%1d%1d",i1,j1);    
       printf("%1d%1d",i,j);      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(k=1; k<=ncovmodel;k++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         fscanf(ficpar," %lf",&param[i][j][k]);      k3=func(p2)-fx;
         printf(" %lf",param[i][j][k]);    
         fprintf(ficparo," %lf",param[i][j][k]);      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fscanf(ficpar,"\n");      k4=func(p2)-fx;
       printf("\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       fprintf(ficparo,"\n");  #ifdef DEBUG
     }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  #endif
   p=param[1][1];    }
      return res;
   /* Reads comments: lines beginning with '#' */  }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************** Inverse of matrix **************/
     fgets(line, MAXLINE, ficpar);  void ludcmp(double **a, int n, int *indx, double *d) 
     puts(line);  { 
     fputs(line,ficparo);    int i,imax,j,k; 
   }    double big,dum,sum,temp; 
   ungetc(c,ficpar);    double *vv; 
    
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    vv=vector(1,n); 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    *d=1.0; 
   for(i=1; i <=nlstate; i++){    for (i=1;i<=n;i++) { 
     for(j=1; j <=nlstate+ndeath-1; j++){      big=0.0; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for (j=1;j<=n;j++) 
       printf("%1d%1d",i,j);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fprintf(ficparo,"%1d%1d",i1,j1);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(k=1; k<=ncovmodel;k++){      vv[i]=1.0/big; 
         fscanf(ficpar,"%le",&delti3[i][j][k]);    } 
         printf(" %le",delti3[i][j][k]);    for (j=1;j<=n;j++) { 
         fprintf(ficparo," %le",delti3[i][j][k]);      for (i=1;i<j;i++) { 
       }        sum=a[i][j]; 
       fscanf(ficpar,"\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       printf("\n");        a[i][j]=sum; 
       fprintf(ficparo,"\n");      } 
     }      big=0.0; 
   }      for (i=j;i<=n;i++) { 
   delti=delti3[1][1];        sum=a[i][j]; 
          for (k=1;k<j;k++) 
   /* Reads comments: lines beginning with '#' */          sum -= a[i][k]*a[k][j]; 
   while((c=getc(ficpar))=='#' && c!= EOF){        a[i][j]=sum; 
     ungetc(c,ficpar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     fgets(line, MAXLINE, ficpar);          big=dum; 
     puts(line);          imax=i; 
     fputs(line,ficparo);        } 
   }      } 
   ungetc(c,ficpar);      if (j != imax) { 
          for (k=1;k<=n;k++) { 
   matcov=matrix(1,npar,1,npar);          dum=a[imax][k]; 
   for(i=1; i <=npar; i++){          a[imax][k]=a[j][k]; 
     fscanf(ficpar,"%s",&str);          a[j][k]=dum; 
     printf("%s",str);        } 
     fprintf(ficparo,"%s",str);        *d = -(*d); 
     for(j=1; j <=i; j++){        vv[imax]=vv[j]; 
       fscanf(ficpar," %le",&matcov[i][j]);      } 
       printf(" %.5le",matcov[i][j]);      indx[j]=imax; 
       fprintf(ficparo," %.5le",matcov[i][j]);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     }      if (j != n) { 
     fscanf(ficpar,"\n");        dum=1.0/(a[j][j]); 
     printf("\n");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fprintf(ficparo,"\n");      } 
   }    } 
   for(i=1; i <=npar; i++)    free_vector(vv,1,n);  /* Doesn't work */
     for(j=i+1;j<=npar;j++)  ;
       matcov[i][j]=matcov[j][i];  } 
      
   printf("\n");  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     int i,ii=0,ip,j; 
     /*-------- data file ----------*/    double sum; 
     if((ficres =fopen(fileres,"w"))==NULL) {   
       printf("Problem with resultfile: %s\n", fileres);goto end;    for (i=1;i<=n;i++) { 
     }      ip=indx[i]; 
     fprintf(ficres,"#%s\n",version);      sum=b[ip]; 
          b[ip]=b[i]; 
     if((fic=fopen(datafile,"r"))==NULL)    {      if (ii) 
       printf("Problem with datafile: %s\n", datafile);goto end;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     }      else if (sum) ii=i; 
       b[i]=sum; 
     n= lastobs;    } 
     severity = vector(1,maxwav);    for (i=n;i>=1;i--) { 
     outcome=imatrix(1,maxwav+1,1,n);      sum=b[i]; 
     num=ivector(1,n);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     moisnais=vector(1,n);      b[i]=sum/a[i][i]; 
     annais=vector(1,n);    } 
     moisdc=vector(1,n);  } 
     andc=vector(1,n);  
     agedc=vector(1,n);  /************ Frequencies ********************/
     cod=ivector(1,n);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     weight=vector(1,n);  {  /* Some frequencies */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     anint=matrix(1,maxwav,1,n);    int first;
     s=imatrix(1,maxwav+1,1,n);    double ***freq; /* Frequencies */
     adl=imatrix(1,maxwav+1,1,n);        double *pp, **prop;
     tab=ivector(1,NCOVMAX);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     ncodemax=ivector(1,8);    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
     i=1;    
     while (fgets(line, MAXLINE, fic) != NULL)    {    pp=vector(1,nlstate);
       if ((i >= firstobs) && (i <=lastobs)) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
            strcpy(fileresp,"p");
         for (j=maxwav;j>=1;j--){    strcat(fileresp,fileres);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    if((ficresp=fopen(fileresp,"w"))==NULL) {
           strcpy(line,stra);      printf("Problem with prevalence resultfile: %s\n", fileresp);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      exit(0);
         }    }
            freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    j1=0;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    
     j=cptcoveff;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
     first=1;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncov;j>=1;j--){    for(k1=1; k1<=j;k1++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(i1=1; i1<=ncodemax[k1];i1++){
         }        j1++;
         num[i]=atol(stra);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
         i=i+1;            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
     }  
       for (i=1; i<=nlstate; i++)  
     /*scanf("%d",i);*/        for(m=iagemin; m <= iagemax+3; m++)
   imx=i-1; /* Number of individuals */          prop[i][m]=0;
         
   /* Calculation of the number of parameter from char model*/        dateintsum=0;
   Tvar=ivector(1,15);            k2cpt=0;
   Tage=ivector(1,15);              for (i=1; i<=imx; i++) {
              bool=1;
   if (strlen(model) >1){          if  (cptcovn>0) {
     j=0, j1=0;            for (z1=1; z1<=cptcoveff; z1++) 
     j=nbocc(model,'+');              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     j1=nbocc(model,'*');                bool=0;
     cptcovn=j+1;          }
              if (bool==1){
     strcpy(modelsav,model);            for(m=firstpass; m<=lastpass; m++){
     if (j==0) {              k2=anint[m][i]+(mint[m][i]/12.);
       if (j1==0){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
        cutv(stra,strb,modelsav,'V');                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        Tvar[1]=atoi(strb);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       else if (j1==1) {                if (m<lastpass) {
        cutv(stra,strb,modelsav,'*');                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
        Tage[1]=1; cptcovage++;                }
        if (strcmp(stra,"age")==0) {                
          cutv(strd,strc,strb,'V');                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
          Tvar[1]=atoi(strc);                  dateintsum=dateintsum+k2;
        }                  k2cpt++;
        else if (strcmp(strb,"age")==0) {                }
          cutv(strd,strc,stra,'V');                /*}*/
          Tvar[1]=atoi(strc);            }
        }          }
        else {printf("Error"); exit(0);}        }
       }         
     }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     else {  
       for(i=j; i>=1;i--){        if  (cptcovn>0) {
         cutv(stra,strb,modelsav,'+');          fprintf(ficresp, "\n#********** Variable "); 
         /*printf("%s %s %s\n", stra,strb,modelsav);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if (strchr(strb,'*')) {          fprintf(ficresp, "**********\n#");
           cutv(strd,strc,strb,'*');        }
           if (strcmp(strc,"age")==0) {        for(i=1; i<=nlstate;i++) 
             cutv(strb,stre,strd,'V');          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             Tvar[i+1]=atoi(stre);        fprintf(ficresp, "\n");
             cptcovage++;        
             Tage[cptcovage]=i+1;        for(i=iagemin; i <= iagemax+3; i++){
             printf("stre=%s ", stre);          if(i==iagemax+3){
           }            fprintf(ficlog,"Total");
           else if (strcmp(strd,"age")==0) {          }else{
             cutv(strb,stre,strc,'V');            if(first==1){
             Tvar[i+1]=atoi(stre);              first=0;
             cptcovage++;              printf("See log file for details...\n");
             Tage[cptcovage]=i+1;            }
           }            fprintf(ficlog,"Age %d", i);
           else {          }
             cutv(strb,stre,strc,'V');          for(jk=1; jk <=nlstate ; jk++){
             Tvar[i+1]=ncov+1;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             cutv(strb,strc,strd,'V');              pp[jk] += freq[jk][m][i]; 
             for (k=1; k<=lastobs;k++)          }
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pos=0; m <=0 ; m++)
         }              pos += freq[jk][m][i];
         else {            if(pp[jk]>=1.e-10){
           cutv(strd,strc,strb,'V');              if(first==1){
           /* printf("%s %s %s", strd,strc,strb);*/              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
         Tvar[i+1]=atoi(strc);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         }            }else{
         strcpy(modelsav,stra);                if(first==1)
       }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       cutv(strd,strc,stra,'V');              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       Tvar[1]=atoi(strc);            }
     }          }
   }  
           for(jk=1; jk <=nlstate ; jk++){
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
      scanf("%d ",i);*/              pp[jk] += freq[jk][m][i];
     fclose(fic);          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
    if(mle==1){            pos += pp[jk];
     if (weightopt != 1) { /* Maximisation without weights*/            posprop += prop[jk][i];
       for(i=1;i<=n;i++) weight[i]=1.0;          }
     }          for(jk=1; jk <=nlstate ; jk++){
     /*-calculation of age at interview from date of interview and age at death -*/            if(pos>=1.e-5){
     agev=matrix(1,maxwav,1,imx);              if(first==1)
                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for (i=1; i<=imx; i++)  {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            }else{
       for(m=1; (m<= maxwav); m++){              if(first==1)
         if(s[m][i] >0){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           if (s[m][i] == nlstate+1) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             if(agedc[i]>0)            }
               if(moisdc[i]!=99 && andc[i]!=9999)            if( i <= iagemax){
               agev[m][i]=agedc[i];              if(pos>=1.e-5){
             else{                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                /*probs[i][jk][j1]= pp[jk]/pos;*/
               agev[m][i]=-1;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             }              }
           }              else
           else if(s[m][i] !=9){ /* Should no more exist */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            }
             if(mint[m][i]==99 || anint[m][i]==9999)          }
               agev[m][i]=1;          
             else if(agev[m][i] <agemin){          for(jk=-1; jk <=nlstate+ndeath; jk++)
               agemin=agev[m][i];            for(m=-1; m <=nlstate+ndeath; m++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              if(freq[jk][m][i] !=0 ) {
             }              if(first==1)
             else if(agev[m][i] >agemax){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
               agemax=agev[m][i];                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              }
             }          if(i <= iagemax)
             /*agev[m][i]=anint[m][i]-annais[i];*/            fprintf(ficresp,"\n");
             /*   agev[m][i] = age[i]+2*m;*/          if(first==1)
           }            printf("Others in log...\n");
           else { /* =9 */          fprintf(ficlog,"\n");
             agev[m][i]=1;        }
             s[m][i]=-1;      }
           }    }
         }    dateintmean=dateintsum/k2cpt; 
         else /*= 0 Unknown */   
           agev[m][i]=1;    fclose(ficresp);
       }    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
        free_vector(pp,1,nlstate);
     }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     for (i=1; i<=imx; i++)  {    /* End of Freq */
       for(m=1; (m<= maxwav); m++){  }
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");    /************ Prevalence ********************/
           goto end;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         }  {  
       }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    */
    
     free_vector(severity,1,maxwav);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     free_imatrix(outcome,1,maxwav+1,1,n);    double ***freq; /* Frequencies */
     free_vector(moisnais,1,n);    double *pp, **prop;
     free_vector(annais,1,n);    double pos,posprop; 
     free_matrix(mint,1,maxwav,1,n);    double  y2; /* in fractional years */
     free_matrix(anint,1,maxwav,1,n);    int iagemin, iagemax;
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);    iagemin= (int) agemin;
     iagemax= (int) agemax;
        /*pp=vector(1,nlstate);*/
     wav=ivector(1,imx);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    j1=0;
        
     /* Concatenates waves */    j=cptcoveff;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     for(k1=1; k1<=j;k1++){
       Tcode=ivector(1,100);      for(i1=1; i1<=ncodemax[k1];i1++){
    nbcode=imatrix(1,nvar,1,8);          j1++;
    ncodemax[1]=1;        
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
    codtab=imatrix(1,100,1,10);            prop[i][m]=0.0;
    h=0;       
    m=pow(2,cptcovn);        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
    for(k=1;k<=cptcovn; k++){          if  (cptcovn>0) {
      for(i=1; i <=(m/pow(2,k));i++){            for (z1=1; z1<=cptcoveff; z1++) 
        for(j=1; j <= ncodemax[k]; j++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){                bool=0;
            h++;          } 
            if (h>m) h=1;codtab[h][k]=j;          if (bool==1) { 
          }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
        }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
    /* for(i=1; i <=m ;i++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      for(k=1; k <=cptcovn; k++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
      }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      printf("\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
    }                } 
    scanf("%d",i);*/              }
                } /* end selection of waves */
    /* Calculates basic frequencies. Computes observed prevalence at single age          }
        and prints on file fileres'p'. */        }
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);        for(i=iagemin; i <= iagemax+3; i++){  
           
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            posprop += prop[jk][i]; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          } 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
     /* For Powell, parameters are in a vector p[] starting at p[1]              if(posprop>=1.e-5){ 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                probs[i][jk][j1]= prop[jk][i]/posprop;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              } 
                } 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          }/* end jk */ 
         }/* end i */ 
          } /* end i1 */
     /*--------- results files --------------*/    } /* end k1 */
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    
        /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
    jk=1;    /*free_vector(pp,1,nlstate);*/
    fprintf(ficres,"# Parameters\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    printf("# Parameters\n");  }  /* End of prevalence */
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){  /************* Waves Concatenation ***************/
        if (k != i)  
          {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
            printf("%d%d ",i,k);  {
            fprintf(ficres,"%1d%1d ",i,k);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
            for(j=1; j <=ncovmodel; j++){       Death is a valid wave (if date is known).
              printf("%f ",p[jk]);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
              fprintf(ficres,"%f ",p[jk]);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
              jk++;       and mw[mi+1][i]. dh depends on stepm.
            }       */
            printf("\n");  
            fprintf(ficres,"\n");    int i, mi, m;
          }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
      }       double sum=0., jmean=0.;*/
    }    int first;
     int j, k=0,jk, ju, jl;
     /* Computing hessian and covariance matrix */    double sum=0.;
     ftolhess=ftol; /* Usually correct */    first=0;
     hesscov(matcov, p, npar, delti, ftolhess, func);    jmin=1e+5;
     fprintf(ficres,"# Scales\n");    jmax=-1;
     printf("# Scales\n");    jmean=0.;
      for(i=1,jk=1; i <=nlstate; i++){    for(i=1; i<=imx; i++){
       for(j=1; j <=nlstate+ndeath; j++){      mi=0;
         if (j!=i) {      m=firstpass;
           fprintf(ficres,"%1d%1d",i,j);      while(s[m][i] <= nlstate){
           printf("%1d%1d",i,j);        if(s[m][i]>=1)
           for(k=1; k<=ncovmodel;k++){          mw[++mi][i]=m;
             printf(" %.5e",delti[jk]);        if(m >=lastpass)
             fprintf(ficres," %.5e",delti[jk]);          break;
             jk++;        else
           }          m++;
           printf("\n");      }/* end while */
           fprintf(ficres,"\n");      if (s[m][i] > nlstate){
         }        mi++;     /* Death is another wave */
       }        /* if(mi==0)  never been interviewed correctly before death */
       }           /* Only death is a correct wave */
            mw[mi][i]=m;
     k=1;      }
     fprintf(ficres,"# Covariance\n");  
     printf("# Covariance\n");      wav[i]=mi;
     for(i=1;i<=npar;i++){      if(mi==0){
       /*  if (k>nlstate) k=1;        nbwarn++;
       i1=(i-1)/(ncovmodel*nlstate)+1;        if(first==0){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       printf("%s%d%d",alph[k],i1,tab[i]);*/          first=1;
       fprintf(ficres,"%3d",i);        }
       printf("%3d",i);        if(first==1){
       for(j=1; j<=i;j++){          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         fprintf(ficres," %.5e",matcov[i][j]);        }
         printf(" %.5e",matcov[i][j]);      } /* end mi==0 */
       }    } /* End individuals */
       fprintf(ficres,"\n");  
       printf("\n");    for(i=1; i<=imx; i++){
       k++;      for(mi=1; mi<wav[i];mi++){
     }        if (stepm <=0)
              dh[mi][i]=1;
     while((c=getc(ficpar))=='#' && c!= EOF){        else{
       ungetc(c,ficpar);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       fgets(line, MAXLINE, ficpar);            if (agedc[i] < 2*AGESUP) {
       puts(line);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       fputs(line,ficparo);              if(j==0) j=1;  /* Survives at least one month after exam */
     }              else if(j<0){
     ungetc(c,ficpar);                nberr++;
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);                j=1; /* Temporary Dangerous patch */
                    printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     if (fage <= 2) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       bage = agemin;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       fage = agemax;              }
     }              k=k+1;
               if (j >= jmax) jmax=j;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              if (j <= jmin) jmin=j;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);              sum=sum+j;
 /*------------ gnuplot -------------*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 chdir(pathcd);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if((ficgp=fopen("graph.plt","w"))==NULL) {            }
     printf("Problem with file graph.gp");goto end;          }
   }          else{
 #ifdef windows            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   fprintf(ficgp,"cd \"%s\" \n",pathc);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 #endif            k=k+1;
 m=pow(2,cptcovn);            if (j >= jmax) jmax=j;
              else if (j <= jmin)jmin=j;
  /* 1eme*/            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   for (cpt=1; cpt<= nlstate ; cpt ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
    for (k1=1; k1<= m ; k1 ++) {            if(j<0){
               nberr++;
 #ifdef windows              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #endif            }
 #ifdef unix            sum=sum+j;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);          }
 #endif          jk= j/stepm;
           jl= j -jk*stepm;
 for (i=1; i<= nlstate ; i ++) {          ju= j -(jk+1)*stepm;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(jl==0){
 }              dh[mi][i]=jk;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=0;
     for (i=1; i<= nlstate ; i ++) {            }else{ /* We want a negative bias in order to only have interpolation ie
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    * at the price of an extra matrix product in likelihood */
   else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=jk+1;
 }              bh[mi][i]=ju;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
      for (i=1; i<= nlstate ; i ++) {          }else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(jl <= -ju){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=jk;
 }                bh[mi][i]=jl;       /* bias is positive if real duration
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                                   * is higher than the multiple of stepm and negative otherwise.
 #ifdef unix                                   */
 fprintf(ficgp,"\nset ter gif small size 400,300");            }
 #endif            else{
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              dh[mi][i]=jk+1;
    }              bh[mi][i]=ju;
   }            }
   /*2 eme*/            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
   for (k1=1; k1<= m ; k1 ++) {              bh[mi][i]=ju; /* At least one step */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                }
     for (i=1; i<= nlstate+1 ; i ++) {          } /* end if mle */
       k=2*i;        }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      } /* end wave */
       for (j=1; j<= nlstate+1 ; j ++) {    }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    jmean=sum/k;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 }      fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");   }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  /*********** Tricode ****************************/
       for (j=1; j<= nlstate+1 ; j ++) {  void tricode(int *Tvar, int **nbcode, int imx)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  {
         else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      int Ndum[20],ij=1, k, j, i, maxncov=19;
       fprintf(ficgp,"\" t\"\" w l 0,");    int cptcode=0;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    cptcoveff=0; 
       for (j=1; j<= nlstate+1 ; j ++) {   
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (k=0; k<maxncov; k++) Ndum[k]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (k=1; k<=7; k++) ncodemax[k]=0;
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       else fprintf(ficgp,"\" t\"\" w l 0,");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     }                                 modality*/ 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   }        Ndum[ij]++; /*store the modality */
          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /*3eme*/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
   for (k1=1; k1<= m ; k1 ++) {                                         female is 1, then  cptcode=1.*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {      }
       k=2+nlstate*(cpt-1);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      for (i=0; i<=cptcode; i++) {
       for (i=1; i< nlstate ; i ++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      }
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      ij=1; 
     }      for (i=1; i<=ncodemax[j]; i++) {
   }        for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
   /* CV preval stat */            nbcode[Tvar[j]][ij]=k; 
   for (k1=1; k1<= m ; k1 ++) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     for (cpt=1; cpt<nlstate ; cpt ++) {            
       k=3;            ij++;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);          }
       for (i=1; i< nlstate ; i ++)          if (ij > ncodemax[j]) break; 
         fprintf(ficgp,"+$%d",k+i+1);        }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      } 
          }  
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;   for (i=1; i<=ncovmodel-2; i++) { 
         fprintf(ficgp,"+$%d",l+i+1);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       }     ij=Tvar[i];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       Ndum[ij]++;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);   }
     }  
   }   ij=1;
    for (i=1; i<= maxncov; i++) {
   /* proba elementaires */     if((Ndum[i]!=0) && (i<=ncovcol)){
    for(i=1,jk=1; i <=nlstate; i++){       Tvaraff[ij]=i; /*For printing */
     for(k=1; k <=(nlstate+ndeath); k++){       ij++;
       if (k != i) {     }
         for(j=1; j <=ncovmodel; j++){   }
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/   
           /*fprintf(ficgp,"%s",alph[1]);*/   cptcoveff=ij-1; /*Number of simple covariates*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  }
           jk++;  
           fprintf(ficgp,"\n");  /*********** Health Expectancies ****************/
         }  
       }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     }  
     }  {
     /* Health expectancies */
   for(jk=1; jk <=m; jk++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    double age, agelim, hf;
    i=1;    double ***p3mat,***varhe;
    for(k2=1; k2<=nlstate; k2++) {    double **dnewm,**doldm;
      k3=i;    double *xp;
      for(k=1; k<=(nlstate+ndeath); k++) {    double **gp, **gm;
        if (k != k2){    double ***gradg, ***trgradg;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    int theta;
   
         for(j=3; j <=ncovmodel; j++)    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    xp=vector(1,npar);
         fprintf(ficgp,")/(1");    dnewm=matrix(1,nlstate*nlstate,1,npar);
            doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         for(k1=1; k1 <=nlstate; k1++){      
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    fprintf(ficreseij,"# Health expectancies\n");
           for(j=3; j <=ncovmodel; j++)    fprintf(ficreseij,"# Age");
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for(i=1; i<=nlstate;i++)
           fprintf(ficgp,")");      for(j=1; j<=nlstate;j++)
         }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficreseij,"\n");
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;    if(estepm < stepm){
        }      printf ("Problem %d lower than %d\n",estepm, stepm);
      }    }
    }    else  hstepm=estepm;   
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    /* We compute the life expectancy from trapezoids spaced every estepm months
   }     * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
   fclose(ficgp);     * we are calculating an estimate of the Life Expectancy assuming a linear 
         * progression in between and thus overestimating or underestimating according
 chdir(path);     * to the curvature of the survival function. If, for the same date, we 
     free_matrix(agev,1,maxwav,1,imx);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     free_ivector(wav,1,imx);     * to compare the new estimate of Life expectancy with the same linear 
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);     * hypothesis. A more precise result, taking into account a more precise
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     * curvature will be obtained if estepm is as small as stepm. */
      
     free_imatrix(s,1,maxwav+1,1,n);    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
     free_ivector(num,1,n);       nstepm is the number of stepm from age to agelin. 
     free_vector(agedc,1,n);       Look at hpijx to understand the reason of that which relies in memory size
     free_vector(weight,1,n);       and note for a fixed period like estepm months */
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fclose(ficparo);       survival function given by stepm (the optimization length). Unfortunately it
     fclose(ficres);       means that if the survival funtion is printed only each two years of age and if
    }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
    /*________fin mle=1_________*/    */
        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
      agelim=AGESUP;
     /* No more information from the sample is required now */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /* Reads comments: lines beginning with '#' */      /* nhstepm age range expressed in number of stepm */
   while((c=getc(ficpar))=='#' && c!= EOF){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     ungetc(c,ficpar);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fgets(line, MAXLINE, ficpar);      /* if (stepm >= YEARM) hstepm=1;*/
     puts(line);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fputs(line,ficparo);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   ungetc(c,ficpar);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
        gm=matrix(0,nhstepm,1,nlstate*nlstate);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 /*--------- index.htm --------*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
   if((fichtm=fopen("index.htm","w"))==NULL)    {  
     printf("Problem with index.htm \n");goto end;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
       /* Computing Variances of health expectancies */
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n  
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       for(theta=1; theta <=npar; theta++){
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        for(i=1; i<=npar; i++){ 
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        }
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        cptj=0;
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        for(j=1; j<= nlstate; j++){
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
  fprintf(fichtm," <li>Graphs</li>\n<p>");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
  m=cptcovn;            }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          }
         }
  j1=0;       
  for(k1=1; k1<=m;k1++){       
    for(i1=1; i1<=ncodemax[k1];i1++){        for(i=1; i<=npar; i++) 
        j1++;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        if (cptcovn > 0) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          fprintf(fichtm,"<hr>************ Results for covariates");        
          for (cpt=1; cpt<=cptcovn;cpt++)        cptj=0;
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);        for(j=1; j<= nlstate; j++){
          fprintf(fichtm," ************\n<hr>");          for(i=1;i<=nlstate;i++){
        }            cptj=cptj+1;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          }
        }        }
     for(cpt=1; cpt<=nlstate;cpt++) {        for(j=1; j<= nlstate*nlstate; j++)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          for(h=0; h<=nhstepm-1; h++){
 interval) in state (%d): v%s%d%d.gif <br>            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            }
      }       } 
      for(cpt=1; cpt<=nlstate;cpt++) {     
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  /* End theta */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  
      }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.gif<br>       for(h=0; h<=nhstepm-1; h++)
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        for(j=1; j<=nlstate*nlstate;j++)
 fprintf(fichtm,"\n</body>");          for(theta=1; theta <=npar; theta++)
    }            trgradg[h][j][theta]=gradg[h][theta][j];
  }       
 fclose(fichtm);  
        for(i=1;i<=nlstate*nlstate;i++)
   /*--------------- Prevalence limit --------------*/        for(j=1;j<=nlstate*nlstate;j++)
            varhe[i][j][(int)age] =0.;
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);       printf("%d|",(int)age);fflush(stdout);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       for(h=0;h<=nhstepm-1;h++){
   }        for(k=0;k<=nhstepm-1;k++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   fprintf(ficrespl,"#Prevalence limit\n");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fprintf(ficrespl,"#Age ");          for(i=1;i<=nlstate*nlstate;i++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            for(j=1;j<=nlstate*nlstate;j++)
   fprintf(ficrespl,"\n");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   prlim=matrix(1,nlstate,1,nlstate);      }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Computing expectancies */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1; i<=nlstate;i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate;j++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   k=0;            
   agebase=agemin;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   agelim=agemax;  
   ftolpl=1.e-10;          }
   i1=cptcovn;  
   if (cptcovn < 1){i1=1;}      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
   for(cptcov=1;cptcov<=i1;cptcov++){      for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j<=nlstate;j++){
         k=k+1;          cptj++;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         fprintf(ficrespl,"\n#******");        }
         for(j=1;j<=cptcovn;j++)      fprintf(ficreseij,"\n");
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);     
         fprintf(ficrespl,"******\n");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
              free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         for (age=agebase; age<=agelim; age++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           fprintf(ficrespl,"%.0f",age );      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1; i<=nlstate;i++)    }
           fprintf(ficrespl," %.5f", prlim[i][i]);    printf("\n");
           fprintf(ficrespl,"\n");    fprintf(ficlog,"\n");
         }  
       }    free_vector(xp,1,npar);
     }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   fclose(ficrespl);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /*------------- h Pij x at various ages ------------*/    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  /************ Variance ******************/
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   }  {
   printf("Computing pij: result on file '%s' \n", filerespij);    /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* double **newm;*/
   if (stepm<=24) stepsize=2;    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   agelim=AGESUP;    int i, j, nhstepm, hstepm, h, nstepm ;
   hstepm=stepsize*YEARM; /* Every year of age */    int k, cptcode;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    double *xp;
      double **gp, **gm;  /* for var eij */
   k=0;    double ***gradg, ***trgradg; /*for var eij */
   for(cptcov=1;cptcov<=i1;cptcov++){    double **gradgp, **trgradgp; /* for var p point j */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double *gpp, *gmp; /* for var p point j */
       k=k+1;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         fprintf(ficrespij,"\n#****** ");    double ***p3mat;
         for(j=1;j<=cptcovn;j++)    double age,agelim, hf;
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    double ***mobaverage;
         fprintf(ficrespij,"******\n");    int theta;
            char digit[4];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    char digitp[25];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    char fileresprobmorprev[FILENAMELENGTH];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    if(popbased==1){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        if(mobilav!=0)
           fprintf(ficrespij,"# Age");        strcpy(digitp,"-populbased-mobilav-");
           for(i=1; i<=nlstate;i++)      else strcpy(digitp,"-populbased-nomobil-");
             for(j=1; j<=nlstate+ndeath;j++)    }
               fprintf(ficrespij," %1d-%1d",i,j);    else 
           fprintf(ficrespij,"\n");      strcpy(digitp,"-stablbased-");
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    if (mobilav!=0) {
             for(i=1; i<=nlstate;i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               for(j=1; j<=nlstate+ndeath;j++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             fprintf(ficrespij,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           fprintf(ficrespij,"\n");  
         }    strcpy(fileresprobmorprev,"prmorprev"); 
     }    sprintf(digit,"%-d",ij);
   }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   fclose(ficrespij);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   /*---------- Health expectancies and variances ------------*/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   strcpy(filerest,"t");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   strcat(filerest,fileres);    }
   if((ficrest=fopen(filerest,"w"))==NULL) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   strcpy(filerese,"e");      for(i=1; i<=nlstate;i++)
   strcat(filerese,fileres);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    }  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficresprobmorprev,"\n");
   }    fprintf(ficgp,"\n# Routine varevsij");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
  strcpy(fileresv,"v");  /*   } */
   strcat(fileresv,fileres);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   }    fprintf(ficresvij,"# Age");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   k=0;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresvij,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    xp=vector(1,npar);
       fprintf(ficrest,"\n#****** ");    dnewm=matrix(1,nlstate,1,npar);
       for(j=1;j<=cptcovn;j++)    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficrest,"******\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
       fprintf(ficreseij,"\n#****** ");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       for(j=1;j<=cptcovn;j++)    gpp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    gmp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficreseij,"******\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
       fprintf(ficresvij,"\n#****** ");    if(estepm < stepm){
       for(j=1;j<=cptcovn;j++)      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    }
       fprintf(ficresvij,"******\n");    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       oldm=oldms;savm=savms;       nhstepm is the number of hstepm from age to agelim 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);         nstepm is the number of stepm from age to agelin. 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       Look at hpijx to understand the reason of that which relies in memory size
       oldm=oldms;savm=savms;       and note for a fixed period like k years */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       means that if the survival funtion is printed every two years of age and if
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficrest,"\n");       results. So we changed our mind and took the option of the best precision.
            */
       hf=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       if (stepm >= YEARM) hf=stepm/YEARM;    agelim = AGESUP;
       epj=vector(1,nlstate+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(age=bage; age <=fage ;age++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficrest," %.0f",age);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      gp=matrix(0,nhstepm,1,nlstate);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      gm=matrix(0,nhstepm,1,nlstate);
           }  
           epj[nlstate+1] +=epj[j];  
         }      for(theta=1; theta <=npar; theta++){
         for(i=1, vepp=0.;i <=nlstate;i++)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           for(j=1;j <=nlstate;j++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             vepp += vareij[i][j][(int)age];        }
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for(j=1;j <=nlstate;j++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  
         }        if (popbased==1) {
         fprintf(ficrest,"\n");          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
                    for(i=1; i<=nlstate;i++)
  fclose(ficreseij);              prlim[i][i]=mobaverage[(int)age][i][ij];
  fclose(ficresvij);          }
   fclose(ficrest);        }
   fclose(ficpar);    
   free_vector(epj,1,nlstate+1);        for(j=1; j<= nlstate; j++){
   /*  scanf("%d ",i); */          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   /*------- Variance limit prevalence------*/                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 strcpy(fileresvpl,"vpl");        }
   strcat(fileresvpl,fileres);        /* This for computing probability of death (h=1 means
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {           computed over hstepm matrices product = hstepm*stepm months) 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);           as a weighted average of prlim.
     exit(0);        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
  k=0;        }    
  for(cptcov=1;cptcov<=i1;cptcov++){        /* end probability of death */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
      fprintf(ficresvpl,"\n#****** ");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      for(j=1;j<=cptcovn;j++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      fprintf(ficresvpl,"******\n");   
              if (popbased==1) {
      varpl=matrix(1,nlstate,(int) bage, (int) fage);          if(mobilav ==0){
      oldm=oldms;savm=savms;            for(i=1; i<=nlstate;i++)
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              prlim[i][i]=probs[(int)age][i][ij];
    }          }else{ /* mobilav */ 
  }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   fclose(ficresvpl);          }
         }
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        /* This for computing probability of death (h=1 means
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);           computed over hstepm matrices product = hstepm*stepm months) 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);           as a weighted average of prlim.
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_matrix(matcov,1,npar,1,npar);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   free_vector(delti,1,npar);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        /* end probability of death */
   
   printf("End of Imach\n");        for(j=1; j<= nlstate; j++) /* vareij */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          }
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
  end:        }
 #ifdef windows  
  chdir(pathcd);      } /* End theta */
 #endif  
  system("wgnuplot graph.plt");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
 #ifdef windows      for(h=0; h<=nhstepm; h++) /* veij */
   while (z[0] != 'q') {        for(j=1; j<=nlstate;j++)
     chdir(pathcd);          for(theta=1; theta <=npar; theta++)
     printf("\nType e to edit output files, c to start again, and q for exiting: ");            trgradg[h][j][theta]=gradg[h][theta][j];
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     else if (z[0] == 'e') {        for(theta=1; theta <=npar; theta++)
       chdir(path);          trgradgp[j][theta]=gradgp[theta][j];
       system("index.htm");    
     }  
     else if (z[0] == 'q') exit(0);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
 #endif        for(j=1;j<=nlstate;j++)
 }          vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.6  
changed lines
  Added in v.1.93


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>