Diff for /imach/src/imach.c between versions 1.52 and 1.96

version 1.52, 2002/07/19 18:49:30 version 1.96, 2003/07/15 15:38:55
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   This program computes Healthy Life Expectancies from    rewritten within the same printf. Workaround: many printfs.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.95  2003/07/08 07:54:34  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository):
   case of a health survey which is our main interest) -2- at least a    (Repository): Using imachwizard code to output a more meaningful covariance
   second wave of interviews ("longitudinal") which measure each change    matrix (cov(a12,c31) instead of numbers.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.94  2003/06/27 13:00:02  brouard
   model. More health states you consider, more time is necessary to reach the    Just cleaning
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.93  2003/06/25 16:33:55  brouard
   probability to be observed in state j at the second wave    (Module): On windows (cygwin) function asctime_r doesn't
   conditional to be observed in state i at the first wave. Therefore    exist so I changed back to asctime which exists.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Version 0.96b
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.92  2003/06/25 16:30:45  brouard
   where the markup *Covariates have to be included here again* invites    (Module): On windows (cygwin) function asctime_r doesn't
   you to do it.  More covariates you add, slower the    exist so I changed back to asctime which exists.
   convergence.  
     Revision 1.91  2003/06/25 15:30:29  brouard
   The advantage of this computer programme, compared to a simple    * imach.c (Repository): Duplicated warning errors corrected.
   multinomial logistic model, is clear when the delay between waves is not    (Repository): Elapsed time after each iteration is now output. It
   identical for each individual. Also, if a individual missed an    helps to forecast when convergence will be reached. Elapsed time
   intermediate interview, the information is lost, but taken into    is stamped in powell.  We created a new html file for the graphs
   account using an interpolation or extrapolation.      concerning matrix of covariance. It has extension -cov.htm.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.90  2003/06/24 12:34:15  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Some bugs corrected for windows. Also, when
   split into an exact number (nh*stepm) of unobserved intermediate    mle=-1 a template is output in file "or"mypar.txt with the design
   states. This elementary transition (by month or quarter trimester,    of the covariance matrix to be input.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.89  2003/06/24 12:30:52  brouard
   and the contribution of each individual to the likelihood is simply    (Module): Some bugs corrected for windows. Also, when
   hPijx.    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.88  2003/06/23 17:54:56  brouard
      * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.87  2003/06/18 12:26:01  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Version 0.96
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.86  2003/06/17 20:04:08  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): Change position of html and gnuplot routines and added
   can be accessed at http://euroreves.ined.fr/imach .    routine fileappend.
   **********************************************************************/  
      Revision 1.85  2003/06/17 13:12:43  brouard
 #include <math.h>    * imach.c (Repository): Check when date of death was earlier that
 #include <stdio.h>    current date of interview. It may happen when the death was just
 #include <stdlib.h>    prior to the death. In this case, dh was negative and likelihood
 #include <unistd.h>    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 #define MAXLINE 256    interview.
 #define GNUPLOTPROGRAM "gnuplot"    (Repository): Because some people have very long ID (first column)
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    we changed int to long in num[] and we added a new lvector for
 #define FILENAMELENGTH 80    memory allocation. But we also truncated to 8 characters (left
 /*#define DEBUG*/    truncation)
 #define windows    (Repository): No more line truncation errors.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    place. It differs from routine "prevalence" which may be called
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    many times. Probs is memory consuming and must be used with
     parcimony.
 #define NINTERVMAX 8    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.83  2003/06/10 13:39:11  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    *** empty log message ***
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define AGESUP 130    Add log in  imach.c and  fullversion number is now printed.
 #define AGEBASE 40  
 #ifdef windows  */
 #define DIRSEPARATOR '\\'  /*
 #define ODIRSEPARATOR '/'     Interpolated Markov Chain
 #else  
 #define DIRSEPARATOR '/'    Short summary of the programme:
 #define ODIRSEPARATOR '\\'    
 #endif    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    first survey ("cross") where individuals from different ages are
 int erreur; /* Error number */    interviewed on their health status or degree of disability (in the
 int nvar;    case of a health survey which is our main interest) -2- at least a
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    second wave of interviews ("longitudinal") which measure each change
 int npar=NPARMAX;    (if any) in individual health status.  Health expectancies are
 int nlstate=2; /* Number of live states */    computed from the time spent in each health state according to a
 int ndeath=1; /* Number of dead states */    model. More health states you consider, more time is necessary to reach the
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Maximum Likelihood of the parameters involved in the model.  The
 int popbased=0;    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 int *wav; /* Number of waves for this individuual 0 is possible */    conditional to be observed in state i at the first wave. Therefore
 int maxwav; /* Maxim number of waves */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int jmin, jmax; /* min, max spacing between 2 waves */    'age' is age and 'sex' is a covariate. If you want to have a more
 int mle, weightopt;    complex model than "constant and age", you should modify the program
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    where the markup *Covariates have to be included here again* invites
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    you to do it.  More covariates you add, slower the
 double jmean; /* Mean space between 2 waves */    convergence.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    The advantage of this computer programme, compared to a simple
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    multinomial logistic model, is clear when the delay between waves is not
 FILE *ficlog;    identical for each individual. Also, if a individual missed an
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    intermediate interview, the information is lost, but taken into
 FILE *ficresprobmorprev;    account using an interpolation or extrapolation.  
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    hPijx is the probability to be observed in state i at age x+h
 char filerese[FILENAMELENGTH];    conditional to the observed state i at age x. The delay 'h' can be
 FILE  *ficresvij;    split into an exact number (nh*stepm) of unobserved intermediate
 char fileresv[FILENAMELENGTH];    states. This elementary transition (by month, quarter,
 FILE  *ficresvpl;    semester or year) is modelled as a multinomial logistic.  The hPx
 char fileresvpl[FILENAMELENGTH];    matrix is simply the matrix product of nh*stepm elementary matrices
 char title[MAXLINE];    and the contribution of each individual to the likelihood is simply
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    hPijx.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Also this programme outputs the covariance matrix of the parameters but also
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    of the life expectancies. It also computes the stable prevalence. 
 char filelog[FILENAMELENGTH]; /* Log file */    
 char filerest[FILENAMELENGTH];    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 char fileregp[FILENAMELENGTH];             Institut national d'études démographiques, Paris.
 char popfile[FILENAMELENGTH];    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define NR_END 1    can be accessed at http://euroreves.ined.fr/imach .
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define NRANSI    
 #define ITMAX 200    **********************************************************************/
   /*
 #define TOL 2.0e-4    main
     read parameterfile
 #define CGOLD 0.3819660    read datafile
 #define ZEPS 1.0e-10    concatwav
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    freqsummary
     if (mle >= 1)
 #define GOLD 1.618034      mlikeli
 #define GLIMIT 100.0    print results files
 #define TINY 1.0e-20    if mle==1 
        computes hessian
 static double maxarg1,maxarg2;    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))        begin-prev-date,...
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    open gnuplot file
      open html file
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    stable prevalence
 #define rint(a) floor(a+0.5)     for age prevalim()
     h Pij x
 static double sqrarg;    variance of p varprob
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    forecasting if prevfcast==1 prevforecast call prevalence()
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    health expectancies
     Variance-covariance of DFLE
 int imx;    prevalence()
 int stepm;     movingaverage()
 /* Stepm, step in month: minimum step interpolation*/    varevsij() 
     if popbased==1 varevsij(,popbased)
 int estepm;    total life expectancies
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Variance of stable prevalence
    end
 int m,nb;  */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;   
   #include <math.h>
 double *weight;  #include <stdio.h>
 int **s; /* Status */  #include <stdlib.h>
 double *agedc, **covar, idx;  #include <unistd.h>
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   #include <sys/time.h>
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #include <time.h>
 double ftolhess; /* Tolerance for computing hessian */  #include "timeval.h"
   
 /**************** split *************************/  /* #include <libintl.h> */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  /* #define _(String) gettext (String) */
 {  
    char *s;                             /* pointer */  #define MAXLINE 256
    int  l1, l2;                         /* length counters */  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    l1 = strlen( path );                 /* length of path */  #define FILENAMELENGTH 132
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  /*#define DEBUG*/
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  /*#define windows*/
    if ( s == NULL ) {                   /* no directory, so use current */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
       extern char       *getwd( );  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
       if ( getwd( dirc ) == NULL ) {  #define NINTERVMAX 8
 #else  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       extern char       *getcwd( );  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define MAXN 20000
 #endif  #define YEARM 12. /* Number of months per year */
          return( GLOCK_ERROR_GETCWD );  #define AGESUP 130
       }  #define AGEBASE 40
       strcpy( name, path );             /* we've got it */  #ifdef unix
    } else {                             /* strip direcotry from path */  #define DIRSEPARATOR '/'
       s++;                              /* after this, the filename */  #define ODIRSEPARATOR '\\'
       l2 = strlen( s );                 /* length of filename */  #else
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define DIRSEPARATOR '\\'
       strcpy( name, s );                /* save file name */  #define ODIRSEPARATOR '/'
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #endif
       dirc[l1-l2] = 0;                  /* add zero */  
    }  /* $Id$ */
    l1 = strlen( dirc );                 /* length of directory */  /* $State$ */
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char version[]="Imach version 0.96c, July 2003, INED-EUROREVES ";
 #else  char fullversion[]="$Revision$ $Date$"; 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 #endif  int nvar;
    s = strrchr( name, '.' );            /* find last / */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    s++;  int npar=NPARMAX;
    strcpy(ext,s);                       /* save extension */  int nlstate=2; /* Number of live states */
    l1= strlen( name);  int ndeath=1; /* Number of dead states */
    l2= strlen( s)+1;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    strncpy( finame, name, l1-l2);  int popbased=0;
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
 /******************************************/                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 void replace(char *s, char*t)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int i;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   int lg=20;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   i=0;  double jmean; /* Mean space between 2 waves */
   lg=strlen(t);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   for(i=0; i<= lg; i++) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     (s[i] = t[i]);  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     if (t[i]== '\\') s[i]='/';  FILE *ficlog, *ficrespow;
   }  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 int nbocc(char *s, char occ)  double sw; /* Sum of weights */
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   int i,j=0;  FILE *ficresilk;
   int lg=20;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   i=0;  FILE *ficresprobmorprev;
   lg=strlen(s);  FILE *fichtm, *fichtmcov; /* Html File */
   for(i=0; i<= lg; i++) {  FILE *ficreseij;
   if  (s[i] == occ ) j++;  char filerese[FILENAMELENGTH];
   }  FILE  *ficresvij;
   return j;  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 void cutv(char *u,char *v, char*t, char occ)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   /* cuts string t into u and v where u is ended by char occ excluding it  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
      gives u="abcedf" and v="ghi2j" */  char command[FILENAMELENGTH];
   int i,lg,j,p=0;  int  outcmd=0;
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
   lg=strlen(t);  char fileregp[FILENAMELENGTH];
   for(j=0; j<p; j++) {  char popfile[FILENAMELENGTH];
     (u[j] = t[j]);  
   }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
      u[p]='\0';  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    for(j=0; j<= lg; j++) {  struct timezone tzp;
     if (j>=(p+1))(v[j-p-1] = t[j]);  extern int gettimeofday();
   }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /********************** nrerror ********************/  char strcurr[80], strfor[80];
   
 void nrerror(char error_text[])  #define NR_END 1
 {  #define FREE_ARG char*
   fprintf(stderr,"ERREUR ...\n");  #define FTOL 1.0e-10
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  #define NRANSI 
 }  #define ITMAX 200 
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define TOL 2.0e-4 
 {  
   double *v;  #define CGOLD 0.3819660 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define ZEPS 1.0e-10 
   if (!v) nrerror("allocation failure in vector");  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   return v-nl+NR_END;  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /************************ free vector ******************/  #define TINY 1.0e-20 
 void free_vector(double*v, int nl, int nh)  
 {  static double maxarg1,maxarg2;
   free((FREE_ARG)(v+nl-NR_END));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /************************ivector *******************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 int *ivector(long nl,long nh)  #define rint(a) floor(a+0.5)
 {  
   int *v;  static double sqrarg;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!v) nrerror("allocation failure in ivector");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   return v-nl+NR_END;  
 }  int imx; 
   int stepm;
 /******************free ivector **************************/  /* Stepm, step in month: minimum step interpolation*/
 void free_ivector(int *v, long nl, long nh)  
 {  int estepm;
   free((FREE_ARG)(v+nl-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /******************* imatrix *******************************/  long *num;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double dateintmean=0;
   int **m;  
    double *weight;
   /* allocate pointers to rows */  int **s; /* Status */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double *agedc, **covar, idx;
   if (!m) nrerror("allocation failure 1 in matrix()");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m += NR_END;  
   m -= nrl;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    double ftolhess; /* Tolerance for computing hessian */
    
   /* allocate rows and set pointers to them */  /**************** split *************************/
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    char  *ss;                            /* pointer */
   m[nrl] -= ncl;    int   l1, l2;                         /* length counters */
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* return pointer to array of pointers to rows */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return m;    if ( ss == NULL ) {                   /* no directory, so use current */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /****************** free_imatrix *************************/      /* get current working directory */
 void free_imatrix(m,nrl,nrh,ncl,nch)      /*    extern  char* getcwd ( char *buf , int len);*/
       int **m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       long nch,ncl,nrh,nrl;        return( GLOCK_ERROR_GETCWD );
      /* free an int matrix allocated by imatrix() */      }
 {      strcpy( name, path );               /* we've got it */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    } else {                              /* strip direcotry from path */
   free((FREE_ARG) (m+nrl-NR_END));      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /******************* matrix *******************************/      strcpy( name, ss );         /* save file name */
 double **matrix(long nrl, long nrh, long ncl, long nch)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    }
   double **m;    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!m) nrerror("allocation failure 1 in matrix()");  #else
   m += NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m -= nrl;  #endif
     */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    ss = strrchr( name, '.' );            /* find last / */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    ss++;
   m[nrl] += NR_END;    strcpy(ext,ss);                       /* save extension */
   m[nrl] -= ncl;    l1= strlen( name);
     l2= strlen(ss)+1;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    strncpy( finame, name, l1-l2);
   return m;    finame[l1-l2]= 0;
 }    return( 0 );                          /* we're done */
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  /******************************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  void replace_back_to_slash(char *s, char*t)
 }  {
     int i;
 /******************* ma3x *******************************/    int lg=0;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    i=0;
 {    lg=strlen(t);
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    for(i=0; i<= lg; i++) {
   double ***m;      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  int nbocc(char *s, char occ)
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int i,j=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int lg=20;
   m[nrl] += NR_END;    i=0;
   m[nrl] -= ncl;    lg=strlen(s);
     for(i=0; i<= lg; i++) {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if  (s[i] == occ ) j++;
     }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    return j;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  void cutv(char *u,char *v, char*t, char occ)
   for (j=ncl+1; j<=nch; j++)  {
     m[nrl][j]=m[nrl][j-1]+nlay;    /* cuts string t into u and v where u is ended by char occ excluding it
         and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   for (i=nrl+1; i<=nrh; i++) {       gives u="abcedf" and v="ghi2j" */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    int i,lg,j,p=0;
     for (j=ncl+1; j<=nch; j++)    i=0;
       m[i][j]=m[i][j-1]+nlay;    for(j=0; j<=strlen(t)-1; j++) {
   }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   return m;    }
 }  
     lg=strlen(t);
 /*************************free ma3x ************************/    for(j=0; j<p; j++) {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      (u[j] = t[j]);
 {    }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));       u[p]='\0';
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));     for(j=0; j<= lg; j++) {
 }      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
 /***************** f1dim *************************/  }
 extern int ncom;  
 extern double *pcom,*xicom;  /********************** nrerror ********************/
 extern double (*nrfunc)(double []);  
    void nrerror(char error_text[])
 double f1dim(double x)  {
 {    fprintf(stderr,"ERREUR ...\n");
   int j;    fprintf(stderr,"%s\n",error_text);
   double f;    exit(EXIT_FAILURE);
   double *xt;  }
    /*********************** vector *******************/
   xt=vector(1,ncom);  double *vector(int nl, int nh)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  {
   f=(*nrfunc)(xt);    double *v;
   free_vector(xt,1,ncom);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   return f;    if (!v) nrerror("allocation failure in vector");
 }    return v-nl+NR_END;
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /************************ free vector ******************/
 {  void free_vector(double*v, int nl, int nh)
   int iter;  {
   double a,b,d,etemp;    free((FREE_ARG)(v+nl-NR_END));
   double fu,fv,fw,fx;  }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /************************ivector *******************************/
   double e=0.0;  int *ivector(long nl,long nh)
    {
   a=(ax < cx ? ax : cx);    int *v;
   b=(ax > cx ? ax : cx);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   x=w=v=bx;    if (!v) nrerror("allocation failure in ivector");
   fw=fv=fx=(*f)(x);    return v-nl+NR_END;
   for (iter=1;iter<=ITMAX;iter++) {  }
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /******************free ivector **************************/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  void free_ivector(int *v, long nl, long nh)
     printf(".");fflush(stdout);  {
     fprintf(ficlog,".");fflush(ficlog);    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /************************lvector *******************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  long *lvector(long nl,long nh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    long *v;
       *xmin=x;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       return fx;    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /******************free lvector **************************/
       q=(x-v)*(fx-fw);  void free_lvector(long *v, long nl, long nh)
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    free((FREE_ARG)(v+nl-NR_END));
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /******************* imatrix *******************************/
       e=d;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  { 
       else {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         d=p/q;    int **m; 
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)    /* allocate pointers to rows */ 
           d=SIGN(tol1,xm-x);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     } else {    m += NR_END; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m -= nrl; 
     }    
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    
     fu=(*f)(u);    /* allocate rows and set pointers to them */ 
     if (fu <= fx) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       if (u >= x) a=x; else b=x;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       SHFT(v,w,x,u)    m[nrl] += NR_END; 
         SHFT(fv,fw,fx,fu)    m[nrl] -= ncl; 
         } else {    
           if (u < x) a=u; else b=u;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           if (fu <= fw || w == x) {    
             v=w;    /* return pointer to array of pointers to rows */ 
             w=u;    return m; 
             fv=fw;  } 
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /****************** free_imatrix *************************/
             v=u;  void free_imatrix(m,nrl,nrh,ncl,nch)
             fv=fu;        int **m;
           }        long nch,ncl,nrh,nrl; 
         }       /* free an int matrix allocated by imatrix() */ 
   }  { 
   nrerror("Too many iterations in brent");    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   *xmin=x;    free((FREE_ARG) (m+nrl-NR_END)); 
   return fx;  } 
 }  
   /******************* matrix *******************************/
 /****************** mnbrak ***********************/  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             double (*func)(double))    double **m;
 {  
   double ulim,u,r,q, dum;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double fu;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   *fa=(*func)(*ax);    m -= nrl;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     SHFT(dum,*ax,*bx,dum)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       SHFT(dum,*fb,*fa,dum)    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   while (*fb > *fc) {    return m;
     r=(*bx-*ax)*(*fb-*fc);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     q=(*bx-*cx)*(*fb-*fa);     */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /*************************free matrix ************************/
     if ((*bx-u)*(u-*cx) > 0.0) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       fu=(*func)(u);  {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m+nrl-NR_END));
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /******************* ma3x *******************************/
           }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       fu=(*func)(u);    double ***m;
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     SHFT(*ax,*bx,*cx,u)    m -= nrl;
       SHFT(*fa,*fb,*fc,fu)  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************** linmin ************************/    m[nrl] -= ncl;
   
 int ncom;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   double brent(double ax, double bx, double cx,    for (j=ncl+1; j<=nch; j++) 
                double (*f)(double), double tol, double *xmin);      m[nrl][j]=m[nrl][j-1]+nlay;
   double f1dim(double x);    
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    for (i=nrl+1; i<=nrh; i++) {
               double *fc, double (*func)(double));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   int j;      for (j=ncl+1; j<=nch; j++) 
   double xx,xmin,bx,ax;        m[i][j]=m[i][j-1]+nlay;
   double fx,fb,fa;    }
      return m; 
   ncom=n;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   pcom=vector(1,n);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   xicom=vector(1,n);    */
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /*************************free ma3x ************************/
     xicom[j]=xi[j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   }  {
   ax=0.0;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   xx=1.0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    free((FREE_ARG)(m+nrl-NR_END));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /*************** function subdirf ***********/
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char *subdirf(char fileres[])
 #endif  {
   for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
     xi[j] *= xmin;    strcpy(tmpout,optionfilefiname);
     p[j] += xi[j];    strcat(tmpout,"/"); /* Add to the right */
   }    strcat(tmpout,fileres);
   free_vector(xicom,1,n);    return tmpout;
   free_vector(pcom,1,n);  }
 }  
   /*************** function subdirf2 ***********/
 /*************** powell ************************/  char *subdirf2(char fileres[], char *preop)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    
 {    /* Caution optionfilefiname is hidden */
   void linmin(double p[], double xi[], int n, double *fret,    strcpy(tmpout,optionfilefiname);
               double (*func)(double []));    strcat(tmpout,"/");
   int i,ibig,j;    strcat(tmpout,preop);
   double del,t,*pt,*ptt,*xit;    strcat(tmpout,fileres);
   double fp,fptt;    return tmpout;
   double *xits;  }
   pt=vector(1,n);  
   ptt=vector(1,n);  /*************** function subdirf3 ***********/
   xit=vector(1,n);  char *subdirf3(char fileres[], char *preop, char *preop2)
   xits=vector(1,n);  {
   *fret=(*func)(p);    
   for (j=1;j<=n;j++) pt[j]=p[j];    /* Caution optionfilefiname is hidden */
   for (*iter=1;;++(*iter)) {    strcpy(tmpout,optionfilefiname);
     fp=(*fret);    strcat(tmpout,"/");
     ibig=0;    strcat(tmpout,preop);
     del=0.0;    strcat(tmpout,preop2);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    strcat(tmpout,fileres);
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    return tmpout;
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     fprintf(ficlog," %d %.12f",i, p[i]);  /***************** f1dim *************************/
     printf("\n");  extern int ncom; 
     fprintf(ficlog,"\n");  extern double *pcom,*xicom;
     for (i=1;i<=n;i++) {  extern double (*nrfunc)(double []); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   
       fptt=(*fret);  double f1dim(double x) 
 #ifdef DEBUG  { 
       printf("fret=%lf \n",*fret);    int j; 
       fprintf(ficlog,"fret=%lf \n",*fret);    double f;
 #endif    double *xt; 
       printf("%d",i);fflush(stdout);   
       fprintf(ficlog,"%d",i);fflush(ficlog);    xt=vector(1,ncom); 
       linmin(p,xit,n,fret,func);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       if (fabs(fptt-(*fret)) > del) {    f=(*nrfunc)(xt); 
         del=fabs(fptt-(*fret));    free_vector(xt,1,ncom); 
         ibig=i;    return f; 
       }  } 
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /*****************brent *************************/
       fprintf(ficlog,"%d %.12e",i,(*fret));  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       for (j=1;j<=n;j++) {  { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    int iter; 
         printf(" x(%d)=%.12e",j,xit[j]);    double a,b,d,etemp;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    double fu,fv,fw,fx;
       }    double ftemp;
       for(j=1;j<=n;j++) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         printf(" p=%.12e",p[j]);    double e=0.0; 
         fprintf(ficlog," p=%.12e",p[j]);   
       }    a=(ax < cx ? ax : cx); 
       printf("\n");    b=(ax > cx ? ax : cx); 
       fprintf(ficlog,"\n");    x=w=v=bx; 
 #endif    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      xm=0.5*(a+b); 
 #ifdef DEBUG      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       int k[2],l;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       k[0]=1;      printf(".");fflush(stdout);
       k[1]=-1;      fprintf(ficlog,".");fflush(ficlog);
       printf("Max: %.12e",(*func)(p));  #ifdef DEBUG
       fprintf(ficlog,"Max: %.12e",(*func)(p));      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (j=1;j<=n;j++) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         printf(" %.12e",p[j]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         fprintf(ficlog," %.12e",p[j]);  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       printf("\n");        *xmin=x; 
       fprintf(ficlog,"\n");        return fx; 
       for(l=0;l<=1;l++) {      } 
         for (j=1;j<=n;j++) {      ftemp=fu;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      if (fabs(e) > tol1) { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        r=(x-w)*(fx-fv); 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        q=(x-v)*(fx-fw); 
         }        p=(x-v)*q-(x-w)*r; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        q=2.0*(q-r); 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
 #endif        etemp=e; 
         e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       free_vector(xit,1,n);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       free_vector(xits,1,n);        else { 
       free_vector(ptt,1,n);          d=p/q; 
       free_vector(pt,1,n);          u=x+d; 
       return;          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        } 
     for (j=1;j<=n;j++) {      } else { 
       ptt[j]=2.0*p[j]-pt[j];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       xit[j]=p[j]-pt[j];      } 
       pt[j]=p[j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
     fptt=(*func)(ptt);      if (fu <= fx) { 
     if (fptt < fp) {        if (u >= x) a=x; else b=x; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        SHFT(v,w,x,u) 
       if (t < 0.0) {          SHFT(fv,fw,fx,fu) 
         linmin(p,xit,n,fret,func);          } else { 
         for (j=1;j<=n;j++) {            if (u < x) a=u; else b=u; 
           xi[j][ibig]=xi[j][n];            if (fu <= fw || w == x) { 
           xi[j][n]=xit[j];              v=w; 
         }              w=u; 
 #ifdef DEBUG              fv=fw; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);              fw=fu; 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);            } else if (fu <= fv || v == x || v == w) { 
         for(j=1;j<=n;j++){              v=u; 
           printf(" %.12e",xit[j]);              fv=fu; 
           fprintf(ficlog," %.12e",xit[j]);            } 
         }          } 
         printf("\n");    } 
         fprintf(ficlog,"\n");    nrerror("Too many iterations in brent"); 
 #endif    *xmin=x; 
       }    return fx; 
     }  } 
   }  
 }  /****************** mnbrak ***********************/
   
 /**** Prevalence limit ****************/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  { 
 {    double ulim,u,r,q, dum;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double fu; 
      matrix by transitions matrix until convergence is reached */   
     *fa=(*func)(*ax); 
   int i, ii,j,k;    *fb=(*func)(*bx); 
   double min, max, maxmin, maxmax,sumnew=0.;    if (*fb > *fa) { 
   double **matprod2();      SHFT(dum,*ax,*bx,dum) 
   double **out, cov[NCOVMAX], **pmij();        SHFT(dum,*fb,*fa,dum) 
   double **newm;        } 
   double agefin, delaymax=50 ; /* Max number of years to converge */    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    while (*fb > *fc) { 
     for (j=1;j<=nlstate+ndeath;j++){      r=(*bx-*ax)*(*fb-*fc); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
    cov[1]=1.;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
        if ((*bx-u)*(u-*cx) > 0.0) { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fu=(*func)(u); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     newm=savm;        fu=(*func)(u); 
     /* Covariates have to be included here again */        if (fu < *fc) { 
      cov[2]=agefin;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
              SHFT(*fb,*fc,fu,(*func)(u)) 
       for (k=1; k<=cptcovn;k++) {            } 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        u=ulim; 
       }        fu=(*func)(u); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } else { 
       for (k=1; k<=cptcovprod;k++)        u=(*cx)+GOLD*(*cx-*bx); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fu=(*func)(u); 
       } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      SHFT(*ax,*bx,*cx,u) 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        SHFT(*fa,*fb,*fc,fu) 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  } 
   
     savm=oldm;  /*************** linmin ************************/
     oldm=newm;  
     maxmax=0.;  int ncom; 
     for(j=1;j<=nlstate;j++){  double *pcom,*xicom;
       min=1.;  double (*nrfunc)(double []); 
       max=0.;   
       for(i=1; i<=nlstate; i++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         sumnew=0;  { 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double brent(double ax, double bx, double cx, 
         prlim[i][j]= newm[i][j]/(1-sumnew);                 double (*f)(double), double tol, double *xmin); 
         max=FMAX(max,prlim[i][j]);    double f1dim(double x); 
         min=FMIN(min,prlim[i][j]);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       }                double *fc, double (*func)(double)); 
       maxmin=max-min;    int j; 
       maxmax=FMAX(maxmax,maxmin);    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
     if(maxmax < ftolpl){   
       return prlim;    ncom=n; 
     }    pcom=vector(1,n); 
   }    xicom=vector(1,n); 
 }    nrfunc=func; 
     for (j=1;j<=n;j++) { 
 /*************** transition probabilities ***************/      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    } 
 {    ax=0.0; 
   double s1, s2;    xx=1.0; 
   /*double t34;*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   int i,j,j1, nc, ii, jj;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
     for(i=1; i<= nlstate; i++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(j=1; j<i;j++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
         /*s2 += param[i][j][nc]*cov[nc];*/    for (j=1;j<=n;j++) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      xi[j] *= xmin; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      p[j] += xi[j]; 
       }    } 
       ps[i][j]=s2;    free_vector(xicom,1,n); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    free_vector(pcom,1,n); 
     }  } 
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char *asc_diff_time(long time_sec, char ascdiff[])
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    long sec_left, days, hours, minutes;
       }    days = (time_sec) / (60*60*24);
       ps[i][j]=s2;    sec_left = (time_sec) % (60*60*24);
     }    hours = (sec_left) / (60*60) ;
   }    sec_left = (sec_left) %(60*60);
     /*ps[3][2]=1;*/    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
   for(i=1; i<= nlstate; i++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
      s1=0;    return ascdiff;
     for(j=1; j<i; j++)  }
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /*************** powell ************************/
       s1+=exp(ps[i][j]);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     ps[i][i]=1./(s1+1.);              double (*func)(double [])) 
     for(j=1; j<i; j++)  { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    void linmin(double p[], double xi[], int n, double *fret, 
     for(j=i+1; j<=nlstate+ndeath; j++)                double (*func)(double [])); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    int i,ibig,j; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    double del,t,*pt,*ptt,*xit;
   } /* end i */    double fp,fptt;
     double *xits;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    int niterf, itmp;
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;    pt=vector(1,n); 
       ps[ii][ii]=1;    ptt=vector(1,n); 
     }    xit=vector(1,n); 
   }    xits=vector(1,n); 
     *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    for (*iter=1;;++(*iter)) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){      fp=(*fret); 
      printf("%lf ",ps[ii][jj]);      ibig=0; 
    }      del=0.0; 
     printf("\n ");      last_time=curr_time;
     }      (void) gettimeofday(&curr_time,&tzp);
     printf("\n ");printf("%lf ",cov[2]);*/      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 /*      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   goto end;*/      for (i=1;i<=n;i++) {
     return ps;        printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 /**************** Product of 2 matrices ******************/      }
       printf("\n");
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      fprintf(ficlog,"\n");
 {      fprintf(ficrespow,"\n");fflush(ficrespow);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      if(*iter <=3){
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        tm = *localtime(&curr_time.tv_sec);
   /* in, b, out are matrice of pointers which should have been initialized        strcpy(strcurr,asctime(&tmf));
      before: only the contents of out is modified. The function returns  /*       asctime_r(&tm,strcurr); */
      a pointer to pointers identical to out */        forecast_time=curr_time;
   long i, j, k;        itmp = strlen(strcurr);
   for(i=nrl; i<= nrh; i++)        if(strcurr[itmp-1]=='\n')
     for(k=ncolol; k<=ncoloh; k++)          strcurr[itmp-1]='\0';
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         out[i][k] +=in[i][j]*b[j][k];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
   return out;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 }          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
 /************* Higher Matrix Product ***************/          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          strfor[itmp-1]='\0';
 {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
      duration (i.e. until        }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      for (i=1;i<=n;i++) { 
      (typically every 2 years instead of every month which is too big).        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
      Model is determined by parameters x and covariates have to be        fptt=(*fret); 
      included manually here.  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
      */        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   int i, j, d, h, k;        printf("%d",i);fflush(stdout);
   double **out, cov[NCOVMAX];        fprintf(ficlog,"%d",i);fflush(ficlog);
   double **newm;        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   /* Hstepm could be zero and should return the unit matrix */          del=fabs(fptt-(*fret)); 
   for (i=1;i<=nlstate+ndeath;i++)          ibig=i; 
     for (j=1;j<=nlstate+ndeath;j++){        } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
       po[i][j][0]=(i==j ? 1.0 : 0.0);        printf("%d %.12e",i,(*fret));
     }        fprintf(ficlog,"%d %.12e",i,(*fret));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for (j=1;j<=n;j++) {
   for(h=1; h <=nhstepm; h++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for(d=1; d <=hstepm; d++){          printf(" x(%d)=%.12e",j,xit[j]);
       newm=savm;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       /* Covariates have to be included here again */        }
       cov[1]=1.;        for(j=1;j<=n;j++) {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          printf(" p=%.12e",p[j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          fprintf(ficlog," p=%.12e",p[j]);
       for (k=1; k<=cptcovage;k++)        }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        printf("\n");
       for (k=1; k<=cptcovprod;k++)        fprintf(ficlog,"\n");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #endif
       } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #ifdef DEBUG
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        int k[2],l;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        k[0]=1;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        k[1]=-1;
       savm=oldm;        printf("Max: %.12e",(*func)(p));
       oldm=newm;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
     for(i=1; i<=nlstate+ndeath; i++)          printf(" %.12e",p[j]);
       for(j=1;j<=nlstate+ndeath;j++) {          fprintf(ficlog," %.12e",p[j]);
         po[i][j][h]=newm[i][j];        }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        printf("\n");
          */        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
   } /* end h */          for (j=1;j<=n;j++) {
   return po;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
 /*************** log-likelihood *************/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 double func( double *x)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   int i, ii, j, k, mi, d, kk;  #endif
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  
   double sw; /* Sum of weights */        free_vector(xit,1,n); 
   double lli; /* Individual log likelihood */        free_vector(xits,1,n); 
   long ipmx;        free_vector(ptt,1,n); 
   /*extern weight */        free_vector(pt,1,n); 
   /* We are differentiating ll according to initial status */        return; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } 
   /*for(i=1;i<imx;i++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     printf(" %d\n",s[4][i]);      for (j=1;j<=n;j++) { 
   */        ptt[j]=2.0*p[j]-pt[j]; 
   cov[1]=1.;        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      fptt=(*func)(ptt); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      if (fptt < fp) { 
     for(mi=1; mi<= wav[i]-1; mi++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       for (ii=1;ii<=nlstate+ndeath;ii++)        if (t < 0.0) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          linmin(p,xit,n,fret,func); 
       for(d=0; d<dh[mi][i]; d++){          for (j=1;j<=n;j++) { 
         newm=savm;            xi[j][ibig]=xi[j][n]; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            xi[j][n]=xit[j]; 
         for (kk=1; kk<=cptcovage;kk++) {          }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #ifdef DEBUG
         }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                  fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for(j=1;j<=n;j++){
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            printf(" %.12e",xit[j]);
         savm=oldm;            fprintf(ficlog," %.12e",xit[j]);
         oldm=newm;          }
                  printf("\n");
                  fprintf(ficlog,"\n");
       } /* end mult */  #endif
              }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    } 
       ipmx +=1;  } 
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /**** Prevalence limit (stable prevalence)  ****************/
     } /* end of wave */  
   } /* end of individual */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       matrix by transitions matrix until convergence is reached */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;    int i, ii,j,k;
 }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
 /*********** Maximum Likelihood Estimation ***************/    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {    for (ii=1;ii<=nlstate+ndeath;ii++)
   int i,j, iter;      for (j=1;j<=nlstate+ndeath;j++){
   double **xi,*delti;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fret;      }
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)     cov[1]=1.;
     for (j=1;j<=npar;j++)   
       xi[i][j]=(i==j ? 1.0 : 0.0);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   powell(p,xi,npar,ftol,&iter,&fret,func);      newm=savm;
       /* Covariates have to be included here again */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       cov[2]=agefin;
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
 /**** Computes Hessian and covariance matrix ***/        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double  **a,**y,*x,pd;  
   double **hess;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int i, j,jk;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int *indx;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);      savm=oldm;
   void lubksb(double **a, int npar, int *indx, double b[]) ;      oldm=newm;
   void ludcmp(double **a, int npar, int *indx, double *d) ;      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   hess=matrix(1,npar,1,npar);        min=1.;
         max=0.;
   printf("\nCalculation of the hessian matrix. Wait...\n");        for(i=1; i<=nlstate; i++) {
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          sumnew=0;
   for (i=1;i<=npar;i++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     printf("%d",i);fflush(stdout);          prlim[i][j]= newm[i][j]/(1-sumnew);
     fprintf(ficlog,"%d",i);fflush(ficlog);          max=FMAX(max,prlim[i][j]);
     hess[i][i]=hessii(p,ftolhess,i,delti);          min=FMIN(min,prlim[i][j]);
     /*printf(" %f ",p[i]);*/        }
     /*printf(" %lf ",hess[i][i]);*/        maxmin=max-min;
   }        maxmax=FMAX(maxmax,maxmin);
        }
   for (i=1;i<=npar;i++) {      if(maxmax < ftolpl){
     for (j=1;j<=npar;j++)  {        return prlim;
       if (j>i) {      }
         printf(".%d%d",i,j);fflush(stdout);    }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  }
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      /*************** transition probabilities ***************/ 
         /*printf(" %lf ",hess[i][j]);*/  
       }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     }  {
   }    double s1, s2;
   printf("\n");    /*double t34;*/
   fprintf(ficlog,"\n");    int i,j,j1, nc, ii, jj;
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      for(i=1; i<= nlstate; i++){
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      for(j=1; j<i;j++){
          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   a=matrix(1,npar,1,npar);          /*s2 += param[i][j][nc]*cov[nc];*/
   y=matrix(1,npar,1,npar);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   x=vector(1,npar);          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   indx=ivector(1,npar);        }
   for (i=1;i<=npar;i++)        ps[i][j]=s2;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   ludcmp(a,npar,indx,&pd);      }
       for(j=i+1; j<=nlstate+ndeath;j++){
   for (j=1;j<=npar;j++) {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (i=1;i<=npar;i++) x[i]=0;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     x[j]=1;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){        ps[i][j]=s2;
       matcov[i][j]=x[i];      }
     }    }
   }      /*ps[3][2]=1;*/
   
   printf("\n#Hessian matrix#\n");    for(i=1; i<= nlstate; i++){
   fprintf(ficlog,"\n#Hessian matrix#\n");       s1=0;
   for (i=1;i<=npar;i++) {      for(j=1; j<i; j++)
     for (j=1;j<=npar;j++) {        s1+=exp(ps[i][j]);
       printf("%.3e ",hess[i][j]);      for(j=i+1; j<=nlstate+ndeath; j++)
       fprintf(ficlog,"%.3e ",hess[i][j]);        s1+=exp(ps[i][j]);
     }      ps[i][i]=1./(s1+1.);
     printf("\n");      for(j=1; j<i; j++)
     fprintf(ficlog,"\n");        ps[i][j]= exp(ps[i][j])*ps[i][i];
   }      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   /* Recompute Inverse */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for (i=1;i<=npar;i++)    } /* end i */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
   /*  printf("\n#Hessian matrix recomputed#\n");        ps[ii][jj]=0;
         ps[ii][ii]=1;
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;    }
     x[j]=1;  
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       y[i][j]=x[i];      for(jj=1; jj<= nlstate+ndeath; jj++){
       printf("%.3e ",y[i][j]);       printf("%lf ",ps[ii][jj]);
       fprintf(ficlog,"%.3e ",y[i][j]);     }
     }      printf("\n ");
     printf("\n");      }
     fprintf(ficlog,"\n");      printf("\n ");printf("%lf ",cov[2]);*/
   }  /*
   */    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     goto end;*/
   free_matrix(a,1,npar,1,npar);      return ps;
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /**************** Product of 2 matrices ******************/
   free_matrix(hess,1,npar,1,npar);  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
 }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 /*************** hessian matrix ****************/    /* in, b, out are matrice of pointers which should have been initialized 
 double hessii( double x[], double delta, int theta, double delti[])       before: only the contents of out is modified. The function returns
 {       a pointer to pointers identical to out */
   int i;    long i, j, k;
   int l=1, lmax=20;    for(i=nrl; i<= nrh; i++)
   double k1,k2;      for(k=ncolol; k<=ncoloh; k++)
   double p2[NPARMAX+1];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double res;          out[i][k] +=in[i][j]*b[j][k];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;    return out;
   int k=0,kmax=10;  }
   double l1;  
   
   fx=func(x);  /************* Higher Matrix Product ***************/
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     l1=pow(10,l);  {
     delts=delt;    /* Computes the transition matrix starting at age 'age' over 
     for(k=1 ; k <kmax; k=k+1){       'nhstepm*hstepm*stepm' months (i.e. until
       delt = delta*(l1*k);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       p2[theta]=x[theta] +delt;       nhstepm*hstepm matrices. 
       k1=func(p2)-fx;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       p2[theta]=x[theta]-delt;       (typically every 2 years instead of every month which is too big 
       k2=func(p2)-fx;       for the memory).
       /*res= (k1-2.0*fx+k2)/delt/delt; */       Model is determined by parameters x and covariates have to be 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */       included manually here. 
        
 #ifdef DEBUG       */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    int i, j, d, h, k;
 #endif    double **out, cov[NCOVMAX];
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double **newm;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    /* Hstepm could be zero and should return the unit matrix */
       }    for (i=1;i<=nlstate+ndeath;i++)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for (j=1;j<=nlstate+ndeath;j++){
         k=kmax; l=lmax*10.;        oldm[i][j]=(i==j ? 1.0 : 0.0);
       }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      }
         delts=delt;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
   }        newm=savm;
   delti[theta]=delts;        /* Covariates have to be included here again */
   return res;        cov[1]=1.;
          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
 double hessij( double x[], double delti[], int thetai,int thetaj)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   int i;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   int k;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   fx=func(x);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (k=1; k<=2; k++) {        savm=oldm;
     for (i=1;i<=npar;i++) p2[i]=x[i];        oldm=newm;
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(i=1; i<=nlstate+ndeath; i++)
     k1=func(p2)-fx;        for(j=1;j<=nlstate+ndeath;j++) {
            po[i][j][h]=newm[i][j];
     p2[thetai]=x[thetai]+delti[thetai]/k;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           */
     k2=func(p2)-fx;        }
      } /* end h */
     p2[thetai]=x[thetai]-delti[thetai]/k;    return po;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k3=func(p2)-fx;  
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*************** log-likelihood *************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double func( double *x)
     k4=func(p2)-fx;  {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    int i, ii, j, k, mi, d, kk;
 #ifdef DEBUG    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double **out;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double sw; /* Sum of weights */
 #endif    double lli; /* Individual log likelihood */
   }    int s1, s2;
   return res;    double bbh, survp;
 }    long ipmx;
     /*extern weight */
 /************** Inverse of matrix **************/    /* We are differentiating ll according to initial status */
 void ludcmp(double **a, int n, int *indx, double *d)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 {    /*for(i=1;i<imx;i++) 
   int i,imax,j,k;      printf(" %d\n",s[4][i]);
   double big,dum,sum,temp;    */
   double *vv;    cov[1]=1.;
    
   vv=vector(1,n);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   *d=1.0;  
   for (i=1;i<=n;i++) {    if(mle==1){
     big=0.0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (j=1;j<=n;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(mi=1; mi<= wav[i]-1; mi++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          for (ii=1;ii<=nlstate+ndeath;ii++)
     vv[i]=1.0/big;            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1;j<=n;j++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<j;i++) {            }
       sum=a[i][j];          for(d=0; d<dh[mi][i]; d++){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            newm=savm;
       a[i][j]=sum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
     big=0.0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=j;i<=n;i++) {            }
       sum=a[i][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (k=1;k<j;k++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         sum -= a[i][k]*a[k][j];            savm=oldm;
       a[i][j]=sum;            oldm=newm;
       if ( (dum=vv[i]*fabs(sum)) >= big) {          } /* end mult */
         big=dum;        
         imax=i;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     if (j != imax) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for (k=1;k<=n;k++) {           * the nearest (and in case of equal distance, to the lowest) interval but now
         dum=a[imax][k];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         a[imax][k]=a[j][k];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         a[j][k]=dum;           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       *d = -(*d);           * -stepm/2 to stepm/2 .
       vv[imax]=vv[j];           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
     indx[j]=imax;           */
     if (a[j][j] == 0.0) a[j][j]=TINY;          s1=s[mw[mi][i]][i];
     if (j != n) {          s2=s[mw[mi+1][i]][i];
       dum=1.0/(a[j][j]);          bbh=(double)bh[mi][i]/(double)stepm; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /* bias is positive if real duration
     }           * is higher than the multiple of stepm and negative otherwise.
   }           */
   free_vector(vv,1,n);  /* Doesn't work */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 ;          if( s2 > nlstate){ 
 }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                to the likelihood is the probability to die between last step unit time and current 
 void lubksb(double **a, int n, int *indx, double b[])               step unit time, which is also the differences between probability to die before dh 
 {               and probability to die before dh-stepm . 
   int i,ii=0,ip,j;               In version up to 0.92 likelihood was computed
   double sum;          as if date of death was unknown. Death was treated as any other
            health state: the date of the interview describes the actual state
   for (i=1;i<=n;i++) {          and not the date of a change in health state. The former idea was
     ip=indx[i];          to consider that at each interview the state was recorded
     sum=b[ip];          (healthy, disable or death) and IMaCh was corrected; but when we
     b[ip]=b[i];          introduced the exact date of death then we should have modified
     if (ii)          the contribution of an exact death to the likelihood. This new
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          contribution is smaller and very dependent of the step unit
     else if (sum) ii=i;          stepm. It is no more the probability to die between last interview
     b[i]=sum;          and month of death but the probability to survive from last
   }          interview up to one month before death multiplied by the
   for (i=n;i>=1;i--) {          probability to die within a month. Thanks to Chris
     sum=b[i];          Jackson for correcting this bug.  Former versions increased
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          mortality artificially. The bad side is that we add another loop
     b[i]=sum/a[i][i];          which slows down the processing. The difference can be up to 10%
   }          lower mortality.
 }            */
             lli=log(out[s1][s2] - savm[s1][s2]);
 /************ Frequencies ********************/          }else{
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 {  /* Some frequencies */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            } 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int first;          /*if(lli ==000.0)*/
   double ***freq; /* Frequencies */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   double *pp;          ipmx +=1;
   double pos, k2, dateintsum=0,k2cpt=0;          sw += weight[i];
   FILE *ficresp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char fileresp[FILENAMELENGTH];        } /* end of wave */
        } /* end of individual */
   pp=vector(1,nlstate);    }  else if(mle==2){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   strcpy(fileresp,"p");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   strcat(fileresp,fileres);        for(mi=1; mi<= wav[i]-1; mi++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     exit(0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for(d=0; d<=dh[mi][i]; d++){
   j1=0;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j=cptcoveff;            for (kk=1; kk<=cptcovage;kk++) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   first=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){            savm=oldm;
     for(i1=1; i1<=ncodemax[k1];i1++){            oldm=newm;
       j1++;          } /* end mult */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        
         scanf("%d", i);*/          s1=s[mw[mi][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)            s2=s[mw[mi+1][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=agemin; m <= agemax+3; m++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             freq[i][jk][m]=0;          ipmx +=1;
                sw += weight[i];
       dateintsum=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       k2cpt=0;        } /* end of wave */
       for (i=1; i<=imx; i++) {      } /* end of individual */
         bool=1;    }  else if(mle==3){  /* exponential inter-extrapolation */
         if  (cptcovn>0) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (z1=1; z1<=cptcoveff; z1++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(mi=1; mi<= wav[i]-1; mi++){
               bool=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         if (bool==1) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=firstpass; m<=lastpass; m++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             k2=anint[m][i]+(mint[m][i]/12.);            }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          for(d=0; d<dh[mi][i]; d++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;            newm=savm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if (m<lastpass) {            for (kk=1; kk<=cptcovage;kk++) {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            }
               }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            savm=oldm;
                 dateintsum=dateintsum+k2;            oldm=newm;
                 k2cpt++;          } /* end mult */
               }        
             }          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
       }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                  ipmx +=1;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if  (cptcovn>0) {        } /* end of wave */
         fprintf(ficresp, "\n#********** Variable ");      } /* end of individual */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         fprintf(ficresp, "**********\n#");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficresp, "\n");            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=(int)agemin; i <= (int)agemax+3; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(i==(int)agemax+3){            }
           fprintf(ficlog,"Total");          for(d=0; d<dh[mi][i]; d++){
         }else{            newm=savm;
           if(first==1){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             first=0;            for (kk=1; kk<=cptcovage;kk++) {
             printf("See log file for details...\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
           fprintf(ficlog,"Age %d", i);          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=-1, pos=0; m <=0 ; m++)          s1=s[mw[mi][i]][i];
             pos += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
           if(pp[jk]>=1.e-10){          if( s2 > nlstate){ 
             if(first==1){            lli=log(out[s1][s2] - savm[s1][s2]);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          }else{
             }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          }
           }else{          ipmx +=1;
             if(first==1)          sw += weight[i];
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           }        } /* end of wave */
         }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           pos += pp[jk];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){            }
           if(pos>=1.e-5){          for(d=0; d<dh[mi][i]; d++){
             if(first==1)            newm=savm;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (kk=1; kk<=cptcovage;kk++) {
           }else{              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if(first==1)            }
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if( i <= (int) agemax){            savm=oldm;
             if(pos>=1.e-5){            oldm=newm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          } /* end mult */
               probs[i][jk][j1]= pp[jk]/pos;        
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
             else          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                  /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for(jk=-1; jk <=nlstate+ndeath; jk++)        } /* end of wave */
           for(m=-1; m <=nlstate+ndeath; m++)      } /* end of individual */
             if(freq[jk][m][i] !=0 ) {    } /* End of if */
             if(first==1)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             }    return -l;
         if(i <= (int) agemax)  }
           fprintf(ficresp,"\n");  
         if(first==1)  /*************** log-likelihood *************/
           printf("Others in log...\n");  double funcone( double *x)
         fprintf(ficlog,"\n");  {
       }    /* Same as likeli but slower because of a lot of printf and if */
     }    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   dateintmean=dateintsum/k2cpt;    double **out;
      double lli; /* Individual log likelihood */
   fclose(ficresp);    double llt;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    int s1, s2;
   free_vector(pp,1,nlstate);    double bbh, survp;
      /*extern weight */
   /* End of Freq */    /* We are differentiating ll according to initial status */
 }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
 /************ Prevalence ********************/      printf(" %d\n",s[4][i]);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    */
 {  /* Some frequencies */    cov[1]=1.;
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double ***freq; /* Frequencies */  
   double *pp;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double pos, k2;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   pp=vector(1,nlstate);        for (ii=1;ii<=nlstate+ndeath;ii++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   j1=0;          }
          for(d=0; d<dh[mi][i]; d++){
   j=cptcoveff;          newm=savm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
   for(k1=1; k1<=j;k1++){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i1=1; i1<=ncodemax[k1];i1++){          }
       j1++;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=-1; i<=nlstate+ndeath; i++)            savm=oldm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            oldm=newm;
           for(m=agemin; m <= agemax+3; m++)        } /* end mult */
             freq[i][jk][m]=0;        
              s1=s[mw[mi][i]][i];
       for (i=1; i<=imx; i++) {        s2=s[mw[mi+1][i]][i];
         bool=1;        bbh=(double)bh[mi][i]/(double)stepm; 
         if  (cptcovn>0) {        /* bias is positive if real duration
           for (z1=1; z1<=cptcoveff; z1++)         * is higher than the multiple of stepm and negative otherwise.
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         */
               bool=0;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         }          lli=log(out[s1][s2] - savm[s1][s2]);
         if (bool==1) {        } else if (mle==1){
           for(m=firstpass; m<=lastpass; m++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             k2=anint[m][i]+(mint[m][i]/12.);        } else if(mle==2){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } else if(mle==3){  /* exponential inter-extrapolation */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               if (m<lastpass) {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
                 if (calagedate>0)          lli=log(out[s1][s2]); /* Original formula */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
                 else          lli=log(out[s1][s2]); /* Original formula */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        } /* End of if */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        ipmx +=1;
               }        sw += weight[i];
             }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        if(globpr){
       }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       for(i=(int)agemin; i <= (int)agemax+3; i++){   %10.6f %10.6f %10.6f ", \
         for(jk=1; jk <=nlstate ; jk++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
             pp[jk] += freq[jk][m][i];          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         }            llt +=ll[k]*gipmx/gsw;
         for(jk=1; jk <=nlstate ; jk++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           for(m=-1, pos=0; m <=0 ; m++)          }
             pos += freq[jk][m][i];          fprintf(ficresilk," %10.6f\n", -llt);
         }        }
              } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){    } /* end of individual */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             pp[jk] += freq[jk][m][i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
            if(globpr==0){ /* First time we count the contributions and weights */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      gipmx=ipmx;
              gsw=sw;
         for(jk=1; jk <=nlstate ; jk++){        }
           if( i <= (int) agemax){    return -l;
             if(pos>=1.e-5){  }
               probs[i][jk][j1]= pp[jk]/pos;  
             }  
           }  /*************** function likelione ***********/
         }/* end jk */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       }/* end i */  {
     } /* end i1 */    /* This routine should help understanding what is done with 
   } /* end k1 */       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
         Plotting could be done.
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);     */
   free_vector(pp,1,nlstate);    int k;
    
 }  /* End of Freq */    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
 /************* Waves Concatenation ***************/      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        printf("Problem with resultfile: %s\n", fileresilk);
 {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      }
      Death is a valid wave (if date is known).      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      and mw[mi+1][i]. dh depends on stepm.      for(k=1; k<=nlstate; k++) 
      */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int i, mi, m;    }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/    *fretone=(*funcone)(p);
   int first;    if(*globpri !=0){
   int j, k=0,jk, ju, jl;      fclose(ficresilk);
   double sum=0.;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   first=0;      fflush(fichtm); 
   jmin=1e+5;    } 
   jmax=-1;    return;
   jmean=0.;  }
   for(i=1; i<=imx; i++){  
     mi=0;  
     m=firstpass;  /*********** Maximum Likelihood Estimation ***************/
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         mw[++mi][i]=m;  {
       if(m >=lastpass)    int i,j, iter;
         break;    double **xi;
       else    double fret;
         m++;    double fretone; /* Only one call to likelihood */
     }/* end while */    char filerespow[FILENAMELENGTH];
     if (s[m][i] > nlstate){    xi=matrix(1,npar,1,npar);
       mi++;     /* Death is another wave */    for (i=1;i<=npar;i++)
       /* if(mi==0)  never been interviewed correctly before death */      for (j=1;j<=npar;j++)
          /* Only death is a correct wave */        xi[i][j]=(i==j ? 1.0 : 0.0);
       mw[mi][i]=m;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     }    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
     wav[i]=mi;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     if(mi==0){      printf("Problem with resultfile: %s\n", filerespow);
       if(first==0){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    }
         first=1;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       }    for (i=1;i<=nlstate;i++)
       if(first==1){      for(j=1;j<=nlstate+ndeath;j++)
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       }    fprintf(ficrespow,"\n");
     } /* end mi==0 */  
   }    powell(p,xi,npar,ftol,&iter,&fret,func);
   
   for(i=1; i<=imx; i++){    fclose(ficrespow);
     for(mi=1; mi<wav[i];mi++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       if (stepm <=0)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         dh[mi][i]=1;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {  }
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  /**** Computes Hessian and covariance matrix ***/
           if(j==0) j=1;  /* Survives at least one month after exam */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           k=k+1;  {
           if (j >= jmax) jmax=j;    double  **a,**y,*x,pd;
           if (j <= jmin) jmin=j;    double **hess;
           sum=sum+j;    int i, j,jk;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    int *indx;
           }  
         }    double hessii(double p[], double delta, int theta, double delti[]);
         else{    double hessij(double p[], double delti[], int i, int j);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    void lubksb(double **a, int npar, int *indx, double b[]) ;
           k=k+1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;    hess=matrix(1,npar,1,npar);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;    printf("\nCalculation of the hessian matrix. Wait...\n");
         }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         jk= j/stepm;    for (i=1;i<=npar;i++){
         jl= j -jk*stepm;      printf("%d",i);fflush(stdout);
         ju= j -(jk+1)*stepm;      fprintf(ficlog,"%d",i);fflush(ficlog);
         if(jl <= -ju)      hess[i][i]=hessii(p,ftolhess,i,delti);
           dh[mi][i]=jk;      /*printf(" %f ",p[i]);*/
         else      /*printf(" %lf ",hess[i][i]);*/
           dh[mi][i]=jk+1;    }
         if(dh[mi][i]==0)    
           dh[mi][i]=1; /* At least one step */    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++)  {
     }        if (j>i) { 
   }          printf(".%d%d",i,j);fflush(stdout);
   jmean=sum/k;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          hess[i][j]=hessij(p,delti,i,j);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          hess[j][i]=hess[i][j];    
  }          /*printf(" %lf ",hess[i][j]);*/
         }
 /*********** Tricode ****************************/      }
 void tricode(int *Tvar, int **nbcode, int imx)    }
 {    printf("\n");
   int Ndum[20],ij=1, k, j, i;    fprintf(ficlog,"\n");
   int cptcode=0;  
   cptcoveff=0;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (k=0; k<19; k++) Ndum[k]=0;    
   for (k=1; k<=7; k++) ncodemax[k]=0;    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    x=vector(1,npar);
     for (i=1; i<=imx; i++) {    indx=ivector(1,npar);
       ij=(int)(covar[Tvar[j]][i]);    for (i=1;i<=npar;i++)
       Ndum[ij]++;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    ludcmp(a,npar,indx,&pd);
       if (ij > cptcode) cptcode=ij;  
     }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     for (i=0; i<=cptcode; i++) {      x[j]=1;
       if(Ndum[i]!=0) ncodemax[j]++;      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
     ij=1;        matcov[i][j]=x[i];
       }
     }
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {    printf("\n#Hessian matrix#\n");
         if (Ndum[k] != 0) {    fprintf(ficlog,"\n#Hessian matrix#\n");
           nbcode[Tvar[j]][ij]=k;    for (i=1;i<=npar;i++) { 
                for (j=1;j<=npar;j++) { 
           ij++;        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
         if (ij > ncodemax[j]) break;      }
       }        printf("\n");
     }      fprintf(ficlog,"\n");
   }      }
   
  for (k=0; k<19; k++) Ndum[k]=0;    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
  for (i=1; i<=ncovmodel-2; i++) {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
    ij=Tvar[i];    ludcmp(a,npar,indx,&pd);
    Ndum[ij]++;  
  }    /*  printf("\n#Hessian matrix recomputed#\n");
   
  ij=1;    for (j=1;j<=npar;j++) {
  for (i=1; i<=10; i++) {      for (i=1;i<=npar;i++) x[i]=0;
    if((Ndum[i]!=0) && (i<=ncovcol)){      x[j]=1;
      Tvaraff[ij]=i;      lubksb(a,npar,indx,x);
      ij++;      for (i=1;i<=npar;i++){ 
    }        y[i][j]=x[i];
  }        printf("%.3e ",y[i][j]);
          fprintf(ficlog,"%.3e ",y[i][j]);
  cptcoveff=ij-1;      }
 }      printf("\n");
       fprintf(ficlog,"\n");
 /*********** Health Expectancies ****************/    }
     */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
     free_matrix(a,1,npar,1,npar);
 {    free_matrix(y,1,npar,1,npar);
   /* Health expectancies */    free_vector(x,1,npar);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    free_ivector(indx,1,npar);
   double age, agelim, hf;    free_matrix(hess,1,npar,1,npar);
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;  
   double *xp;  }
   double **gp, **gm;  
   double ***gradg, ***trgradg;  /*************** hessian matrix ****************/
   int theta;  double hessii( double x[], double delta, int theta, double delti[])
   {
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    int i;
   xp=vector(1,npar);    int l=1, lmax=20;
   dnewm=matrix(1,nlstate*2,1,npar);    double k1,k2;
   doldm=matrix(1,nlstate*2,1,nlstate*2);    double p2[NPARMAX+1];
      double res;
   fprintf(ficreseij,"# Health expectancies\n");    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   fprintf(ficreseij,"# Age");    double fx;
   for(i=1; i<=nlstate;i++)    int k=0,kmax=10;
     for(j=1; j<=nlstate;j++)    double l1;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   if(estepm < stepm){    for(l=0 ; l <=lmax; l++){
     printf ("Problem %d lower than %d\n",estepm, stepm);      l1=pow(10,l);
   }      delts=delt;
   else  hstepm=estepm;        for(k=1 ; k <kmax; k=k+1){
   /* We compute the life expectancy from trapezoids spaced every estepm months        delt = delta*(l1*k);
    * This is mainly to measure the difference between two models: for example        p2[theta]=x[theta] +delt;
    * if stepm=24 months pijx are given only every 2 years and by summing them        k1=func(p2)-fx;
    * we are calculating an estimate of the Life Expectancy assuming a linear        p2[theta]=x[theta]-delt;
    * progression inbetween and thus overestimating or underestimating according        k2=func(p2)-fx;
    * to the curvature of the survival function. If, for the same date, we        /*res= (k1-2.0*fx+k2)/delt/delt; */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
    * to compare the new estimate of Life expectancy with the same linear        
    * hypothesis. A more precise result, taking into account a more precise  #ifdef DEBUG
    * curvature will be obtained if estepm is as small as stepm. */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* For example we decided to compute the life expectancy with the smallest unit */  #endif
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      nhstepm is the number of hstepm from age to agelim        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
      nstepm is the number of stepm from age to agelin.          k=kmax;
      Look at hpijx to understand the reason of that which relies in memory size        }
      and note for a fixed period like estepm months */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          k=kmax; l=lmax*10.;
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed only each two years of age and if        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          delts=delt;
      results. So we changed our mind and took the option of the best precision.        }
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    }
     delti[theta]=delts;
   agelim=AGESUP;    return res; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     /* nhstepm age range expressed in number of stepm */  }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  double hessij( double x[], double delti[], int thetai,int thetaj)
     /* if (stepm >= YEARM) hstepm=1;*/  {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int i;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int l=1, l1, lmax=20;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    double k1,k2,k3,k4,res,fx;
     gp=matrix(0,nhstepm,1,nlstate*2);    double p2[NPARMAX+1];
     gm=matrix(0,nhstepm,1,nlstate*2);    int k;
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    fx=func(x);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for (k=1; k<=2; k++) {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      k1=func(p2)-fx;
     
     /* Computing Variances of health expectancies */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      for(theta=1; theta <=npar; theta++){      k2=func(p2)-fx;
       for(i=1; i<=npar; i++){    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        k3=func(p2)-fx;
      
       cptj=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1; j<= nlstate; j++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(i=1; i<=nlstate; i++){      k4=func(p2)-fx;
           cptj=cptj+1;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  #ifdef DEBUG
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }  #endif
       }    }
          return res;
        }
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /************** Inverse of matrix **************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void ludcmp(double **a, int n, int *indx, double *d) 
        { 
       cptj=0;    int i,imax,j,k; 
       for(j=1; j<= nlstate; j++){    double big,dum,sum,temp; 
         for(i=1;i<=nlstate;i++){    double *vv; 
           cptj=cptj+1;   
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    vv=vector(1,n); 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    *d=1.0; 
           }    for (i=1;i<=n;i++) { 
         }      big=0.0; 
       }      for (j=1;j<=n;j++) 
       for(j=1; j<= nlstate*2; j++)        if ((temp=fabs(a[i][j])) > big) big=temp; 
         for(h=0; h<=nhstepm-1; h++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      vv[i]=1.0/big; 
         }    } 
      }    for (j=1;j<=n;j++) { 
          for (i=1;i<j;i++) { 
 /* End theta */        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        a[i][j]=sum; 
       } 
      for(h=0; h<=nhstepm-1; h++)      big=0.0; 
       for(j=1; j<=nlstate*2;j++)      for (i=j;i<=n;i++) { 
         for(theta=1; theta <=npar; theta++)        sum=a[i][j]; 
           trgradg[h][j][theta]=gradg[h][theta][j];        for (k=1;k<j;k++) 
                sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
      for(i=1;i<=nlstate*2;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       for(j=1;j<=nlstate*2;j++)          big=dum; 
         varhe[i][j][(int)age] =0.;          imax=i; 
         } 
      printf("%d|",(int)age);fflush(stdout);      } 
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      if (j != imax) { 
      for(h=0;h<=nhstepm-1;h++){        for (k=1;k<=n;k++) { 
       for(k=0;k<=nhstepm-1;k++){          dum=a[imax][k]; 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          a[imax][k]=a[j][k]; 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          a[j][k]=dum; 
         for(i=1;i<=nlstate*2;i++)        } 
           for(j=1;j<=nlstate*2;j++)        *d = -(*d); 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        vv[imax]=vv[j]; 
       }      } 
     }      indx[j]=imax; 
     /* Computing expectancies */      if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(i=1; i<=nlstate;i++)      if (j != n) { 
       for(j=1; j<=nlstate;j++)        dum=1.0/(a[j][j]); 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      } 
              } 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    free_vector(vv,1,n);  /* Doesn't work */
   ;
         }  } 
   
     fprintf(ficreseij,"%3.0f",age );  void lubksb(double **a, int n, int *indx, double b[]) 
     cptj=0;  { 
     for(i=1; i<=nlstate;i++)    int i,ii=0,ip,j; 
       for(j=1; j<=nlstate;j++){    double sum; 
         cptj++;   
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for (i=1;i<=n;i++) { 
       }      ip=indx[i]; 
     fprintf(ficreseij,"\n");      sum=b[ip]; 
          b[ip]=b[i]; 
     free_matrix(gm,0,nhstepm,1,nlstate*2);      if (ii) 
     free_matrix(gp,0,nhstepm,1,nlstate*2);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      else if (sum) ii=i; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      b[i]=sum; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
   }    for (i=n;i>=1;i--) { 
   printf("\n");      sum=b[i]; 
   fprintf(ficlog,"\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
   free_vector(xp,1,npar);    } 
   free_matrix(dnewm,1,nlstate*2,1,npar);  } 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  /************ Frequencies ********************/
 }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
 /************ Variance ******************/    
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 {    int first;
   /* Variance of health expectancies */    double ***freq; /* Frequencies */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double *pp, **prop;
   /* double **newm;*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double **dnewm,**doldm;    FILE *ficresp;
   double **dnewmp,**doldmp;    char fileresp[FILENAMELENGTH];
   int i, j, nhstepm, hstepm, h, nstepm ;    
   int k, cptcode;    pp=vector(1,nlstate);
   double *xp;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double **gp, **gm;  /* for var eij */    strcpy(fileresp,"p");
   double ***gradg, ***trgradg; /*for var eij */    strcat(fileresp,fileres);
   double **gradgp, **trgradgp; /* for var p point j */    if((ficresp=fopen(fileresp,"w"))==NULL) {
   double *gpp, *gmp; /* for var p point j */      printf("Problem with prevalence resultfile: %s\n", fileresp);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   double ***p3mat;      exit(0);
   double age,agelim, hf;    }
   int theta;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   char digit[4];    j1=0;
   char digitp[16];    
     j=cptcoveff;
   char fileresprobmorprev[FILENAMELENGTH];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   if(popbased==1)    first=1;
     strcpy(digitp,"-populbased-");  
   else    for(k1=1; k1<=j;k1++){
     strcpy(digitp,"-stablbased-");      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   strcpy(fileresprobmorprev,"prmorprev");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   sprintf(digit,"%-d",ij);          scanf("%d", i);*/
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        for (i=-1; i<=nlstate+ndeath; i++)  
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   strcat(fileresprobmorprev,digitp); /* Popbased or not */            for(m=iagemin; m <= iagemax+3; m++)
   strcat(fileresprobmorprev,fileres);              freq[i][jk][m]=0;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      for (i=1; i<=nlstate; i++)  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        for(m=iagemin; m <= iagemax+3; m++)
   }          prop[i][m]=0;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        dateintsum=0;
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        k2cpt=0;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);        for (i=1; i<=imx; i++) {
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          bool=1;
     fprintf(ficresprobmorprev," p.%-d SE",j);          if  (cptcovn>0) {
     for(i=1; i<=nlstate;i++)            for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   }                  bool=0;
   fprintf(ficresprobmorprev,"\n");          }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          if (bool==1){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            for(m=firstpass; m<=lastpass; m++){
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              k2=anint[m][i]+(mint[m][i]/12.);
     exit(0);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   else{                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficgp,"\n# Routine varevsij");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     printf("Problem with html file: %s\n", optionfilehtm);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);                }
     exit(0);                
   }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   else{                  dateintsum=dateintsum+k2;
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");                  k2cpt++;
   }                }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                /*}*/
             }
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          }
   fprintf(ficresvij,"# Age");        }
   for(i=1; i<=nlstate;i++)         
     for(j=1; j<=nlstate;j++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
   xp=vector(1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   dnewm=matrix(1,nlstate,1,npar);          fprintf(ficresp, "**********\n#");
   doldm=matrix(1,nlstate,1,nlstate);        }
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        for(i=1; i<=nlstate;i++) 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        
   gpp=vector(nlstate+1,nlstate+ndeath);        for(i=iagemin; i <= iagemax+3; i++){
   gmp=vector(nlstate+1,nlstate+ndeath);          if(i==iagemax+3){
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            fprintf(ficlog,"Total");
            }else{
   if(estepm < stepm){            if(first==1){
     printf ("Problem %d lower than %d\n",estepm, stepm);              first=0;
   }              printf("See log file for details...\n");
   else  hstepm=estepm;              }
   /* For example we decided to compute the life expectancy with the smallest unit */            fprintf(ficlog,"Age %d", i);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          }
      nhstepm is the number of hstepm from age to agelim          for(jk=1; jk <=nlstate ; jk++){
      nstepm is the number of stepm from age to agelin.            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
      Look at hpijx to understand the reason of that which relies in memory size              pp[jk] += freq[jk][m][i]; 
      and note for a fixed period like k years */          }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          for(jk=1; jk <=nlstate ; jk++){
      survival function given by stepm (the optimization length). Unfortunately it            for(m=-1, pos=0; m <=0 ; m++)
      means that if the survival funtion is printed only each two years of age and if              pos += freq[jk][m][i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            if(pp[jk]>=1.e-10){
      results. So we changed our mind and took the option of the best precision.              if(first==1){
   */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */              }
   agelim = AGESUP;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }else{
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              if(first==1)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            }
     gp=matrix(0,nhstepm,1,nlstate);          }
     gm=matrix(0,nhstepm,1,nlstate);  
           for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for(theta=1; theta <=npar; theta++){              pp[jk] += freq[jk][m][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */          }       
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       }            pos += pp[jk];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              posprop += prop[jk][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
           for(jk=1; jk <=nlstate ; jk++){
       if (popbased==1) {            if(pos>=1.e-5){
         for(i=1; i<=nlstate;i++)              if(first==1)
           prlim[i][i]=probs[(int)age][i][ij];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              }else{
       for(j=1; j<= nlstate; j++){              if(first==1)
         for(h=0; h<=nhstepm; h++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            }
         }            if( i <= iagemax){
       }              if(pos>=1.e-5){
       /* This for computing forces of mortality (h=1)as a weighted average */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
         for(i=1; i<= nlstate; i++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           gpp[j] += prlim[i][i]*p3mat[i][j][1];              }
       }                  else
       /* end force of mortality */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(jk=-1; jk <=nlstate+ndeath; jk++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(m=-1; m <=nlstate+ndeath; m++)
                if(freq[jk][m][i] !=0 ) {
       if (popbased==1) {              if(first==1)
         for(i=1; i<=nlstate;i++)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           prlim[i][i]=probs[(int)age][i][ij];                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       }              }
           if(i <= iagemax)
       for(j=1; j<= nlstate; j++){            fprintf(ficresp,"\n");
         for(h=0; h<=nhstepm; h++){          if(first==1)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            printf("Others in log...\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          fprintf(ficlog,"\n");
         }        }
       }      }
       /* This for computing force of mortality (h=1)as a weighted average */    }
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    dateintmean=dateintsum/k2cpt; 
         for(i=1; i<= nlstate; i++)   
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    fclose(ficresp);
       }        free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       /* end force of mortality */    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       for(j=1; j<= nlstate; j++) /* vareij */    /* End of Freq */
         for(h=0; h<=nhstepm; h++){  }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  /************ Prevalence ********************/
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  {  
       }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
     } /* End theta */       We still use firstpass and lastpass as another selection.
     */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     for(h=0; h<=nhstepm; h++) /* veij */    double ***freq; /* Frequencies */
       for(j=1; j<=nlstate;j++)    double *pp, **prop;
         for(theta=1; theta <=npar; theta++)    double pos,posprop; 
           trgradg[h][j][theta]=gradg[h][theta][j];    double  y2; /* in fractional years */
     int iagemin, iagemax;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  
       for(theta=1; theta <=npar; theta++)    iagemin= (int) agemin;
         trgradgp[j][theta]=gradgp[theta][j];    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     for(i=1;i<=nlstate;i++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for(j=1;j<=nlstate;j++)    j1=0;
         vareij[i][j][(int)age] =0.;    
     j=cptcoveff;
     for(h=0;h<=nhstepm;h++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(k=0;k<=nhstepm;k++){    
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for(k1=1; k1<=j;k1++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for(i1=1; i1<=ncodemax[k1];i1++){
         for(i=1;i<=nlstate;i++)        j1++;
           for(j=1;j<=nlstate;j++)        
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        for (i=1; i<=nlstate; i++)  
       }          for(m=iagemin; m <= iagemax+3; m++)
     }            prop[i][m]=0.0;
        
     /* pptj */        for (i=1; i<=imx; i++) { /* Each individual */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          bool=1;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          if  (cptcovn>0) {
     for(j=nlstate+1;j<=nlstate+ndeath;j++)            for (z1=1; z1<=cptcoveff; z1++) 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         varppt[j][i]=doldmp[j][i];                bool=0;
     /* end ppptj */          } 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            if (bool==1) { 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     if (popbased==1) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       for(i=1; i<=nlstate;i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         prlim[i][i]=probs[(int)age][i][ij];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                    if (s[m][i]>0 && s[m][i]<=nlstate) { 
     /* This for computing force of mortality (h=1)as a weighted average */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=1; i<= nlstate; i++)                  prop[s[m][i]][iagemax+3] += weight[i]; 
         gmp[j] += prlim[i][i]*p3mat[i][j][1];                } 
     }                  }
     /* end force of mortality */            } /* end selection of waves */
           }
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        }
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        for(i=iagemin; i <= iagemax+3; i++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          
       for(i=1; i<=nlstate;i++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            posprop += prop[jk][i]; 
       }          } 
     }  
     fprintf(ficresprobmorprev,"\n");          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
     fprintf(ficresvij,"%.0f ",age );              if(posprop>=1.e-5){ 
     for(i=1; i<=nlstate;i++)                probs[i][jk][j1]= prop[jk][i]/posprop;
       for(j=1; j<=nlstate;j++){              } 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            } 
       }          }/* end jk */ 
     fprintf(ficresvij,"\n");        }/* end i */ 
     free_matrix(gp,0,nhstepm,1,nlstate);      } /* end i1 */
     free_matrix(gm,0,nhstepm,1,nlstate);    } /* end k1 */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*free_vector(pp,1,nlstate);*/
   } /* End age */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   free_vector(gpp,nlstate+1,nlstate+ndeath);  }  /* End of prevalence */
   free_vector(gmp,nlstate+1,nlstate+ndeath);  
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  /************* Waves Concatenation ***************/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  {
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);       Death is a valid wave (if date is known).
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);       and mw[mi+1][i]. dh depends on stepm.
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);       */
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  
 */    int i, mi, m;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
   free_vector(xp,1,npar);    int first;
   free_matrix(doldm,1,nlstate,1,nlstate);    int j, k=0,jk, ju, jl;
   free_matrix(dnewm,1,nlstate,1,npar);    double sum=0.;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    first=0;
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    jmin=1e+5;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    jmax=-1;
   fclose(ficresprobmorprev);    jmean=0.;
   fclose(ficgp);    for(i=1; i<=imx; i++){
   fclose(fichtm);      mi=0;
       m=firstpass;
 }      while(s[m][i] <= nlstate){
         if(s[m][i]>=1)
 /************ Variance of prevlim ******************/          mw[++mi][i]=m;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        if(m >=lastpass)
 {          break;
   /* Variance of prevalence limit */        else
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          m++;
   double **newm;      }/* end while */
   double **dnewm,**doldm;      if (s[m][i] > nlstate){
   int i, j, nhstepm, hstepm;        mi++;     /* Death is another wave */
   int k, cptcode;        /* if(mi==0)  never been interviewed correctly before death */
   double *xp;           /* Only death is a correct wave */
   double *gp, *gm;        mw[mi][i]=m;
   double **gradg, **trgradg;      }
   double age,agelim;  
   int theta;      wav[i]=mi;
          if(mi==0){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        nbwarn++;
   fprintf(ficresvpl,"# Age");        if(first==0){
   for(i=1; i<=nlstate;i++)          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fprintf(ficresvpl," %1d-%1d",i,i);          first=1;
   fprintf(ficresvpl,"\n");        }
         if(first==1){
   xp=vector(1,npar);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);      } /* end mi==0 */
      } /* End individuals */
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for(i=1; i<=imx; i++){
   agelim = AGESUP;      for(mi=1; mi<wav[i];mi++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if (stepm <=0)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          dh[mi][i]=1;
     if (stepm >= YEARM) hstepm=1;        else{
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     gradg=matrix(1,npar,1,nlstate);            if (agedc[i] < 2*AGESUP) {
     gp=vector(1,nlstate);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     gm=vector(1,nlstate);              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
     for(theta=1; theta <=npar; theta++){                nberr++;
       for(i=1; i<=npar; i++){ /* Computes gradient */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                j=1; /* Temporary Dangerous patch */
       }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(i=1;i<=nlstate;i++)                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         gp[i] = prlim[i][i];              }
                  k=k+1;
       for(i=1; i<=npar; i++) /* Computes gradient */              if (j >= jmax) jmax=j;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              if (j <= jmin) jmin=j;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              sum=sum+j;
       for(i=1;i<=nlstate;i++)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         gm[i] = prlim[i][i];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
       for(i=1;i<=nlstate;i++)          }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          else{
     } /* End theta */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     trgradg =matrix(1,nlstate,1,npar);            k=k+1;
             if (j >= jmax) jmax=j;
     for(j=1; j<=nlstate;j++)            else if (j <= jmin)jmin=j;
       for(theta=1; theta <=npar; theta++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         trgradg[j][theta]=gradg[theta][j];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
     for(i=1;i<=nlstate;i++)              nberr++;
       varpl[i][(int)age] =0.;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            }
     for(i=1;i<=nlstate;i++)            sum=sum+j;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          }
           jk= j/stepm;
     fprintf(ficresvpl,"%.0f ",age );          jl= j -jk*stepm;
     for(i=1; i<=nlstate;i++)          ju= j -(jk+1)*stepm;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     fprintf(ficresvpl,"\n");            if(jl==0){
     free_vector(gp,1,nlstate);              dh[mi][i]=jk;
     free_vector(gm,1,nlstate);              bh[mi][i]=0;
     free_matrix(gradg,1,npar,1,nlstate);            }else{ /* We want a negative bias in order to only have interpolation ie
     free_matrix(trgradg,1,nlstate,1,npar);                    * at the price of an extra matrix product in likelihood */
   } /* End age */              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   free_vector(xp,1,npar);            }
   free_matrix(doldm,1,nlstate,1,npar);          }else{
   free_matrix(dnewm,1,nlstate,1,nlstate);            if(jl <= -ju){
               dh[mi][i]=jk;
 }              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
 /************ Variance of one-step probabilities  ******************/                                   */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            }
 {            else{
   int i, j=0,  i1, k1, l1, t, tj;              dh[mi][i]=jk+1;
   int k2, l2, j1,  z1;              bh[mi][i]=ju;
   int k=0,l, cptcode;            }
   int first=1, first1;            if(dh[mi][i]==0){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;              dh[mi][i]=1; /* At least one step */
   double **dnewm,**doldm;              bh[mi][i]=ju; /* At least one step */
   double *xp;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   double *gp, *gm;            }
   double **gradg, **trgradg;          } /* end if mle */
   double **mu;        }
   double age,agelim, cov[NCOVMAX];      } /* end wave */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    }
   int theta;    jmean=sum/k;
   char fileresprob[FILENAMELENGTH];    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   char fileresprobcov[FILENAMELENGTH];    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   char fileresprobcor[FILENAMELENGTH];   }
   
   double ***varpij;  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   strcpy(fileresprob,"prob");  {
   strcat(fileresprob,fileres);    
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
     printf("Problem with resultfile: %s\n", fileresprob);    int cptcode=0;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    cptcoveff=0; 
   }   
   strcpy(fileresprobcov,"probcov");    for (k=0; k<maxncov; k++) Ndum[k]=0;
   strcat(fileresprobcov,fileres);    for (k=1; k<=7; k++) ncodemax[k]=0;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcov);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   }                                 modality*/ 
   strcpy(fileresprobcor,"probcor");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   strcat(fileresprobcor,fileres);        Ndum[ij]++; /*store the modality */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     printf("Problem with resultfile: %s\n", fileresprobcor);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);                                         Tvar[j]. If V=sex and male is 0 and 
   }                                         female is 1, then  cptcode=1.*/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for (i=0; i<=cptcode; i++) {
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      }
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
        ij=1; 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      for (i=1; i<=ncodemax[j]; i++) {
   fprintf(ficresprob,"# Age");        for (k=0; k<= maxncov; k++) {
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          if (Ndum[k] != 0) {
   fprintf(ficresprobcov,"# Age");            nbcode[Tvar[j]][ij]=k; 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fprintf(ficresprobcov,"# Age");            
             ij++;
           }
   for(i=1; i<=nlstate;i++)          if (ij > ncodemax[j]) break; 
     for(j=1; j<=(nlstate+ndeath);j++){        }  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      } 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    }  
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }     for (k=0; k< maxncov; k++) Ndum[k]=0;
   fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");   for (i=1; i<=ncovmodel-2; i++) { 
   fprintf(ficresprobcor,"\n");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   xp=vector(1,npar);     ij=Tvar[i];
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);     Ndum[ij]++;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));   }
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);   ij=1;
   first=1;   for (i=1; i<= maxncov; i++) {
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);       Tvaraff[ij]=i; /*For printing */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);       ij++;
     exit(0);     }
   }   }
   else{   
     fprintf(ficgp,"\n# Routine varprob");   cptcoveff=ij-1; /*Number of simple covariates*/
   }  }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);  /*********** Health Expectancies ****************/
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   }  
   else{  {
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    /* Health expectancies */
     fprintf(fichtm,"\n");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     double age, agelim, hf;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    double ***p3mat,***varhe;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    double **dnewm,**doldm;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    double *xp;
     double **gp, **gm;
   }    double ***gradg, ***trgradg;
     int theta;
    
   cov[1]=1;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   tj=cptcoveff;    xp=vector(1,npar);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    dnewm=matrix(1,nlstate*nlstate,1,npar);
   j1=0;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   for(t=1; t<=tj;t++){    
     for(i1=1; i1<=ncodemax[t];i1++){    fprintf(ficreseij,"# Health expectancies\n");
       j1++;    fprintf(ficreseij,"# Age");
          for(i=1; i<=nlstate;i++)
       if  (cptcovn>0) {      for(j=1; j<=nlstate;j++)
         fprintf(ficresprob, "\n#********** Variable ");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficreseij,"\n");
         fprintf(ficresprob, "**********\n#");  
         fprintf(ficresprobcov, "\n#********** Variable ");    if(estepm < stepm){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficresprobcov, "**********\n#");    }
            else  hstepm=estepm;   
         fprintf(ficgp, "\n#********** Variable ");    /* We compute the life expectancy from trapezoids spaced every estepm months
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     * This is mainly to measure the difference between two models: for example
         fprintf(ficgp, "**********\n#");     * if stepm=24 months pijx are given only every 2 years and by summing them
             * we are calculating an estimate of the Life Expectancy assuming a linear 
             * progression in between and thus overestimating or underestimating according
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     * to the curvature of the survival function. If, for the same date, we 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");     * to compare the new estimate of Life expectancy with the same linear 
             * hypothesis. A more precise result, taking into account a more precise
         fprintf(ficresprobcor, "\n#********** Variable ");         * curvature will be obtained if estepm is as small as stepm. */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficgp, "**********\n#");        /* For example we decided to compute the life expectancy with the smallest unit */
       }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             nhstepm is the number of hstepm from age to agelim 
       for (age=bage; age<=fage; age ++){       nstepm is the number of stepm from age to agelin. 
         cov[2]=age;       Look at hpijx to understand the reason of that which relies in memory size
         for (k=1; k<=cptcovn;k++) {       and note for a fixed period like estepm months */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       means that if the survival funtion is printed only each two years of age and if
         for (k=1; k<=cptcovprod;k++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       results. So we changed our mind and took the option of the best precision.
            */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
         gp=vector(1,(nlstate)*(nlstate+ndeath));    agelim=AGESUP;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          /* nhstepm age range expressed in number of stepm */
         for(theta=1; theta <=npar; theta++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           for(i=1; i<=npar; i++)      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      /* if (stepm >= YEARM) hstepm=1;*/
                nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           k=0;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           for(i=1; i<= (nlstate); i++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               gp[k]=pmmij[i][j];         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
             }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           }   
            
           for(i=1; i<=npar; i++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
          /* Computing  Variances of health expectancies */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;       for(theta=1; theta <=npar; theta++){
           for(i=1; i<=(nlstate); i++){        for(i=1; i<=npar; i++){ 
             for(j=1; j<=(nlstate+ndeath);j++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               k=k+1;        }
               gm[k]=pmmij[i][j];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             }    
           }        cptj=0;
              for(j=1; j<= nlstate; j++){
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          for(i=1; i<=nlstate; i++){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              cptj=cptj+1;
         }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            }
           for(theta=1; theta <=npar; theta++)          }
             trgradg[j][theta]=gradg[theta][j];        }
               
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);       
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        for(i=1; i<=npar; i++) 
                  xp[i] = x[i] - (i==theta ?delti[theta]:0);
         pmij(pmmij,cov,ncovmodel,x,nlstate);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                
         k=0;        cptj=0;
         for(i=1; i<=(nlstate); i++){        for(j=1; j<= nlstate; j++){
           for(j=1; j<=(nlstate+ndeath);j++){          for(i=1;i<=nlstate;i++){
             k=k+1;            cptj=cptj+1;
             mu[k][(int) age]=pmmij[i][j];            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
           }  
         }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          }
             varpij[i][j][(int)age] = doldm[i][j];        }
         for(j=1; j<= nlstate*nlstate; j++)
         /*printf("\n%d ",(int)age);          for(h=0; h<=nhstepm-1; h++){
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       } 
      }*/     
   /* End theta */
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficresprobcor,"\n%d ",(int)age);  
        for(h=0; h<=nhstepm-1; h++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        for(j=1; j<=nlstate*nlstate;j++)
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          for(theta=1; theta <=npar; theta++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            trgradg[h][j][theta]=gradg[h][theta][j];
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);       
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }       for(i=1;i<=nlstate*nlstate;i++)
         i=0;        for(j=1;j<=nlstate*nlstate;j++)
         for (k=1; k<=(nlstate);k++){          varhe[i][j][(int)age] =0.;
           for (l=1; l<=(nlstate+ndeath);l++){  
             i=i++;       printf("%d|",(int)age);fflush(stdout);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);       for(h=0;h<=nhstepm-1;h++){
             for (j=1; j<=i;j++){        for(k=0;k<=nhstepm-1;k++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             }          for(i=1;i<=nlstate*nlstate;i++)
           }            for(j=1;j<=nlstate*nlstate;j++)
         }/* end of loop for state */              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       } /* end of loop for age */        }
       }
       /* Confidence intervalle of pij  */      /* Computing expectancies */
       /*      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\nset noparametric;unset label");        for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);            
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          }
       */  
       fprintf(ficreseij,"%3.0f",age );
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      cptj=0;
       first1=1;      for(i=1; i<=nlstate;i++)
       for (k2=1; k2<=(nlstate);k2++){        for(j=1; j<=nlstate;j++){
         for (l2=1; l2<=(nlstate+ndeath);l2++){          cptj++;
           if(l2==k2) continue;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
           j=(k2-1)*(nlstate+ndeath)+l2;        }
           for (k1=1; k1<=(nlstate);k1++){      fprintf(ficreseij,"\n");
             for (l1=1; l1<=(nlstate+ndeath);l1++){     
               if(l1==k1) continue;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
               i=(k1-1)*(nlstate+ndeath)+l1;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
               if(i<=j) continue;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
               for (age=bage; age<=fage; age ++){      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                 if ((int)age %5==0){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    printf("\n");
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficlog,"\n");
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;    free_vector(xp,1,npar);
                   c12=cv12/sqrt(v1*v2);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   /* Computing eigen value of matrix of covariance */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  }
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  /************ Variance ******************/
                   /*v21=sqrt(1.-v11*v11); *//* error */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                   v21=(lc1-v1)/cv12*v11;  {
                   v12=-v21;    /* Variance of health expectancies */
                   v22=v11;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   tnalp=v21/v11;    /* double **newm;*/
                   if(first1==1){    double **dnewm,**doldm;
                     first1=0;    double **dnewmp,**doldmp;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    int i, j, nhstepm, hstepm, h, nstepm ;
                   }    int k, cptcode;
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    double *xp;
                   /*printf(fignu*/    double **gp, **gm;  /* for var eij */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    double ***gradg, ***trgradg; /*for var eij */
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    double **gradgp, **trgradgp; /* for var p point j */
                   if(first==1){    double *gpp, *gmp; /* for var p point j */
                     first=0;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                     fprintf(ficgp,"\nset parametric;unset label");    double ***p3mat;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    double age,agelim, hf;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double ***mobaverage;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    int theta;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    char digit[4];
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    char digitp[25];
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    char fileresprobmorprev[FILENAMELENGTH];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    if(popbased==1){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      if(mobilav!=0)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        strcpy(digitp,"-populbased-mobilav-");
                   }else{      else strcpy(digitp,"-populbased-nomobil-");
                     first=0;    }
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);    else 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      strcpy(digitp,"-stablbased-");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    if (mobilav!=0) {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   }/* if first */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                 } /* age mod 5 */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               } /* end loop age */      }
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    }
               first=1;  
             } /*l12 */    strcpy(fileresprobmorprev,"prmorprev"); 
           } /* k12 */    sprintf(digit,"%-d",ij);
         } /*l1 */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       }/* k1 */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     } /* loop covariates */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    strcat(fileresprobmorprev,fileres);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   free_vector(xp,1,npar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   fclose(ficresprob);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fclose(ficresprobcov);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fclose(ficresprobcor);      fprintf(ficresprobmorprev," p.%-d SE",j);
   fclose(ficgp);      for(i=1; i<=nlstate;i++)
   fclose(fichtm);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 }    }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
 /******************* Printing html file ***********/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                   int lastpass, int stepm, int weightopt, char model[],\  /*   } */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   int popforecast, int estepm ,\  
                   double jprev1, double mprev1,double anprev1, \    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                   double jprev2, double mprev2,double anprev2){    fprintf(ficresvij,"# Age");
   int jj1, k1, i1, cpt;    for(i=1; i<=nlstate;i++)
   /*char optionfilehtm[FILENAMELENGTH];*/      for(j=1; j<=nlstate;j++)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     printf("Problem with %s \n",optionfilehtm), exit(0);    fprintf(ficresvij,"\n");
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);  
   }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    doldm=matrix(1,nlstate,1,nlstate);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months):    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    gpp=vector(nlstate+1,nlstate+ndeath);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    
     if(estepm < stepm){
  m=cptcoveff;      printf ("Problem %d lower than %d\n",estepm, stepm);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    }
     else  hstepm=estepm;   
  jj1=0;    /* For example we decided to compute the life expectancy with the smallest unit */
  for(k1=1; k1<=m;k1++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    for(i1=1; i1<=ncodemax[k1];i1++){       nhstepm is the number of hstepm from age to agelim 
      jj1++;       nstepm is the number of stepm from age to agelin. 
      if (cptcovn > 0) {       Look at hpijx to understand the reason of that which relies in memory size
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       and note for a fixed period like k years */
        for (cpt=1; cpt<=cptcoveff;cpt++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       survival function given by stepm (the optimization length). Unfortunately it
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       means that if the survival funtion is printed every two years of age and if
      }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      /* Pij */       results. So we changed our mind and took the option of the best precision.
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      /* Quasi-incidences */    agelim = AGESUP;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        /* Stable prevalence in each health state */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        for(cpt=1; cpt<nlstate;cpt++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      gp=matrix(0,nhstepm,1,nlstate);
        }      gm=matrix(0,nhstepm,1,nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for(theta=1; theta <=npar; theta++){
      }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 health expectancies in states (1) and (2): e%s%d.png<br>        }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    } /* end i1 */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  }/* End k1 */  
  fprintf(fichtm,"</ul>");        if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n              prlim[i][i]=probs[(int)age][i][ij];
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          }else{ /* mobilav */ 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            for(i=1; i<=nlstate;i++)
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n              prlim[i][i]=mobaverage[(int)age][i][ij];
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
  if(popforecast==1) fprintf(fichtm,"\n            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          }
         <br>",fileres,fileres,fileres,fileres);        }
  else        /* This for computing probability of death (h=1 means
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);           computed over hstepm matrices product = hstepm*stepm months) 
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");           as a weighted average of prlim.
         */
  m=cptcoveff;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
  jj1=0;        }    
  for(k1=1; k1<=m;k1++){        /* end probability of death */
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
      if (cptcovn > 0) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        for (cpt=1; cpt<=cptcoveff;cpt++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);   
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        if (popbased==1) {
      }          if(mobilav ==0){
      for(cpt=1; cpt<=nlstate;cpt++) {            for(i=1; i<=nlstate;i++)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              prlim[i][i]=probs[(int)age][i][ij];
 interval) in state (%d): v%s%d%d.png <br>          }else{ /* mobilav */ 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              for(i=1; i<=nlstate;i++)
      }              prlim[i][i]=mobaverage[(int)age][i][ij];
    } /* end i1 */          }
  }/* End k1 */        }
  fprintf(fichtm,"</ul>");  
 fclose(fichtm);        for(j=1; j<= nlstate; j++){
 }          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 /******************* Gnuplot file **************/              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          }
         }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        /* This for computing probability of death (h=1 means
   int ng;           computed over hstepm matrices product = hstepm*stepm months) 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {           as a weighted average of prlim.
     printf("Problem with file %s",optionfilegnuplot);        */
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
 #ifdef windows        }    
     fprintf(ficgp,"cd \"%s\" \n",pathc);        /* end probability of death */
 #endif  
 m=pow(2,cptcoveff);        for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
  /* 1eme*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   for (cpt=1; cpt<= nlstate ; cpt ++) {          }
    for (k1=1; k1<= m ; k1 ++) {  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 #ifdef windows          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif      } /* End theta */
 #ifdef unix  
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  
 #endif      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
 for (i=1; i<= nlstate ; i ++) {          for(theta=1; theta <=npar; theta++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            trgradg[h][j][theta]=gradg[h][theta][j];
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(theta=1; theta <=npar; theta++)
     for (i=1; i<= nlstate ; i ++) {          trgradgp[j][theta]=gradgp[theta][j];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      for(i=1;i<=nlstate;i++)
      for (i=1; i<= nlstate ; i ++) {        for(j=1;j<=nlstate;j++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          vareij[i][j][(int)age] =0.;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        for(h=0;h<=nhstepm;h++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        for(k=0;k<=nhstepm;k++){
 #ifdef unix          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 #endif          for(i=1;i<=nlstate;i++)
    }            for(j=1;j<=nlstate;j++)
   }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   /*2 eme*/        }
       }
   for (k1=1; k1<= m ; k1 ++) {    
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      /* pptj */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
          matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     for (i=1; i<= nlstate+1 ; i ++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       k=2*i;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          varppt[j][i]=doldmp[j][i];
       for (j=1; j<= nlstate+1 ; j ++) {      /* end ppptj */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /*  x centered again */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 }        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");   
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      if (popbased==1) {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        if(mobilav ==0){
       for (j=1; j<= nlstate+1 ; j ++) {          for(i=1; i<=nlstate;i++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            prlim[i][i]=probs[(int)age][i][ij];
         else fprintf(ficgp," \%%*lf (\%%*lf)");        }else{ /* mobilav */ 
 }            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\" t\"\" w l 0,");            prlim[i][i]=mobaverage[(int)age][i][ij];
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        }
       for (j=1; j<= nlstate+1 ; j ++) {      }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");               
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* This for computing probability of death (h=1 means
 }           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");         as a weighted average of prlim.
       else fprintf(ficgp,"\" t\"\" w l 0,");      */
     }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   /*3eme*/      }    
       /* end probability of death */
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       k=2+nlstate*(2*cpt-2);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        for(i=1; i<=nlstate;i++){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      } 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      fprintf(ficresprobmorprev,"\n");
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
 */        for(j=1; j<=nlstate;j++){
       for (i=1; i< nlstate ; i ++) {          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        }
       fprintf(ficresvij,"\n");
       }      free_matrix(gp,0,nhstepm,1,nlstate);
     }      free_matrix(gm,0,nhstepm,1,nlstate);
   }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   /* CV preval stat */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for (k1=1; k1<= m ; k1 ++) {    } /* End age */
     for (cpt=1; cpt<nlstate ; cpt ++) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
       k=3;    free_vector(gmp,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       for (i=1; i< nlstate ; i ++)    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         fprintf(ficgp,"+$%d",k+i+1);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
        /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       l=3+(nlstate+ndeath)*cpt;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       for (i=1; i< nlstate ; i ++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         l=3+(nlstate+ndeath)*cpt;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficgp,"+$%d",l+i+1);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     }  */
   }    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
      fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){    free_vector(xp,1,npar);
     for(k=1; k <=(nlstate+ndeath); k++){    free_matrix(doldm,1,nlstate,1,nlstate);
       if (k != i) {    free_matrix(dnewm,1,nlstate,1,npar);
         for(j=1; j <=ncovmodel; j++){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           jk++;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficgp,"\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }    fclose(ficresprobmorprev);
       }    fflush(ficgp);
     }    fflush(fichtm); 
    }  }  /* end varevsij */
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  /************ Variance of prevlim ******************/
      for(jk=1; jk <=m; jk++) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  {
        if (ng==2)    /* Variance of prevalence limit */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
        else    double **newm;
          fprintf(ficgp,"\nset title \"Probability\"\n");    double **dnewm,**doldm;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    int i, j, nhstepm, hstepm;
        i=1;    int k, cptcode;
        for(k2=1; k2<=nlstate; k2++) {    double *xp;
          k3=i;    double *gp, *gm;
          for(k=1; k<=(nlstate+ndeath); k++) {    double **gradg, **trgradg;
            if (k != k2){    double age,agelim;
              if(ng==2)    int theta;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);     
              else    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    fprintf(ficresvpl,"# Age");
              ij=1;    for(i=1; i<=nlstate;i++)
              for(j=3; j <=ncovmodel; j++) {        fprintf(ficresvpl," %1d-%1d",i,i);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficresvpl,"\n");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;    xp=vector(1,npar);
                }    dnewm=matrix(1,nlstate,1,npar);
                else    doldm=matrix(1,nlstate,1,nlstate);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
              }    hstepm=1*YEARM; /* Every year of age */
              fprintf(ficgp,")/(1");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                  agelim = AGESUP;
              for(k1=1; k1 <=nlstate; k1++){      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                ij=1;      if (stepm >= YEARM) hstepm=1;
                for(j=3; j <=ncovmodel; j++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      gradg=matrix(1,npar,1,nlstate);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      gp=vector(1,nlstate);
                    ij++;      gm=vector(1,nlstate);
                  }  
                  else      for(theta=1; theta <=npar; theta++){
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(i=1; i<=npar; i++){ /* Computes gradient */
                }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                fprintf(ficgp,")");        }
              }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        for(i=1;i<=nlstate;i++)
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          gp[i] = prlim[i][i];
              i=i+ncovmodel;      
            }        for(i=1; i<=npar; i++) /* Computes gradient */
          } /* end k */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        } /* end k2 */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      } /* end jk */        for(i=1;i<=nlstate;i++)
    } /* end ng */          gm[i] = prlim[i][i];
    fclose(ficgp);  
 }  /* end gnuplot */        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      trgradg =matrix(1,nlstate,1,npar);
   
   int i, cpt, cptcod;      for(j=1; j<=nlstate;j++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        for(theta=1; theta <=npar; theta++)
       for (i=1; i<=nlstate;i++)          trgradg[j][theta]=gradg[theta][j];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;      for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] =0.;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       for (i=1; i<=nlstate;i++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(i=1;i<=nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }      fprintf(ficresvpl,"%.0f ",age );
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(i=1; i<=nlstate;i++)
         }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       }      fprintf(ficresvpl,"\n");
     }      free_vector(gp,1,nlstate);
          free_vector(gm,1,nlstate);
 }      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    free_matrix(dnewm,1,nlstate,1,nlstate);
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  }
   double *popeffectif,*popcount;  
   double ***p3mat;  /************ Variance of one-step probabilities  ******************/
   char fileresf[FILENAMELENGTH];  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
  agelim=AGESUP;    int i, j=0,  i1, k1, l1, t, tj;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int first=1, first1;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
   strcpy(fileresf,"f");    double *xp;
   strcat(fileresf,fileres);    double *gp, *gm;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double **gradg, **trgradg;
     printf("Problem with forecast resultfile: %s\n", fileresf);    double **mu;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    double age,agelim, cov[NCOVMAX];
   }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   printf("Computing forecasting: result on file '%s' \n", fileresf);    int theta;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    char fileresprobcor[FILENAMELENGTH];
   
   if (mobilav==1) {    double ***varpij;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    strcpy(fileresprob,"prob"); 
   }    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;      printf("Problem with resultfile: %s\n", fileresprob);
   if (stepm<=12) stepsize=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      }
   agelim=AGESUP;    strcpy(fileresprobcov,"probcov"); 
      strcat(fileresprobcov,fileres);
   hstepm=1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   hstepm=hstepm/stepm;      printf("Problem with resultfile: %s\n", fileresprobcov);
   yp1=modf(dateintmean,&yp);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   anprojmean=yp;    }
   yp2=modf((yp1*12),&yp);    strcpy(fileresprobcor,"probcor"); 
   mprojmean=yp;    strcat(fileresprobcor,fileres);
   yp1=modf((yp2*30.5),&yp);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   jprojmean=yp;      printf("Problem with resultfile: %s\n", fileresprobcor);
   if(jprojmean==0) jprojmean=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   if(mprojmean==0) jprojmean=1;    }
      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       k=k+1;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficresf,"\n#******");    
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprob,"# Age");
       }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       fprintf(ficresf,"******\n");    fprintf(ficresprobcov,"# Age");
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(ficresprobcov,"# Age");
        
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n");      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      }  
           nhstepm = nhstepm/hstepm;   /* fprintf(ficresprob,"\n");
              fprintf(ficresprobcov,"\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcor,"\n");
           oldm=oldms;savm=savms;   */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     xp=vector(1,npar);
            dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           for (h=0; h<=nhstepm; h++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             if (h==(int) (calagedate+YEARM*cpt)) {    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
             }    first=1;
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficgp,"\n# Routine varprob");
               kk1=0.;kk2=0;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
               for(i=1; i<=nlstate;i++) {                  fprintf(fichtm,"\n");
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                 else {    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    file %s<br>\n",optionfilehtmcov);
                 }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                  and drawn. It helps understanding how is the covariance between two incidences.\
               }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
               if (h==(int)(calagedate+12*cpt)){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                 fprintf(ficresf," %.3f", kk1);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                          would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
               }  standard deviations wide on each axis. <br>\
             }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         }  
       }    cov[1]=1;
     }    tj=cptcoveff;
   }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
            j1=0;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
   fclose(ficresf);        j1++;
 }        if  (cptcovn>0) {
 /************** Forecasting ******************/          fprintf(ficresprob, "\n#********** Variable "); 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprob, "**********\n#\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficresprobcov, "\n#********** Variable "); 
   int *popage;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          fprintf(ficresprobcov, "**********\n#\n");
   double *popeffectif,*popcount;          
   double ***p3mat,***tabpop,***tabpopprev;          fprintf(ficgp, "\n#********** Variable "); 
   char filerespop[FILENAMELENGTH];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
   agelim=AGESUP;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          
            fprintf(ficresprobcor, "\n#********** Variable ");    
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcpy(filerespop,"pop");          fprintf(ficresprobcor, "**********\n#");    
   strcat(filerespop,fileres);        }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        
     printf("Problem with forecast resultfile: %s\n", filerespop);        for (age=bage; age<=fage; age ++){ 
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          cov[2]=age;
   }          for (k=1; k<=cptcovn;k++) {
   printf("Computing forecasting: result on file '%s' \n", filerespop);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   if (mobilav==1) {          
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     movingaverage(agedeb, fage, ageminpar, mobaverage);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   }          gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
   stepsize=(int) (stepm+YEARM-1)/YEARM;      
   if (stepm<=12) stepsize=1;          for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++)
   agelim=AGESUP;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
              
   hstepm=1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   hstepm=hstepm/stepm;            
              k=0;
   if (popforecast==1) {            for(i=1; i<= (nlstate); i++){
     if((ficpop=fopen(popfile,"r"))==NULL) {              for(j=1; j<=(nlstate+ndeath);j++){
       printf("Problem with population file : %s\n",popfile);exit(0);                k=k+1;
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);                gp[k]=pmmij[i][j];
     }              }
     popage=ivector(0,AGESUP);            }
     popeffectif=vector(0,AGESUP);            
     popcount=vector(0,AGESUP);            for(i=1; i<=npar; i++)
                  xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     i=1;        
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                k=0;
     imx=i;            for(i=1; i<=(nlstate); i++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              for(j=1; j<=(nlstate+ndeath);j++){
   }                k=k+1;
                 gm[k]=pmmij[i][j];
   for(cptcov=1;cptcov<=i2;cptcov++){              }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            }
       k=k+1;       
       fprintf(ficrespop,"\n#******");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       for(j=1;j<=cptcoveff;j++) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       }  
       fprintf(ficrespop,"******\n");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficrespop,"# Age");            for(theta=1; theta <=npar; theta++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              trgradg[j][theta]=gradg[theta][j];
       if (popforecast==1)  fprintf(ficrespop," [Population]");          
                matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       for (cpt=0; cpt<=0;cpt++) {          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                  free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           nhstepm = nhstepm/hstepm;  
                    pmij(pmmij,cov,ncovmodel,x,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
           oldm=oldms;savm=savms;          k=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(i=1; i<=(nlstate); i++){
                    for(j=1; j<=(nlstate+ndeath);j++){
           for (h=0; h<=nhstepm; h++){              k=k+1;
             if (h==(int) (calagedate+YEARM*cpt)) {              mu[k][(int) age]=pmmij[i][j];
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            }
             }          }
             for(j=1; j<=nlstate+ndeath;j++) {          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
               kk1=0.;kk2=0;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               for(i=1; i<=nlstate;i++) {                            varpij[i][j][(int)age] = doldm[i][j];
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          /*printf("\n%d ",(int)age);
                 else {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                 }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               }            }*/
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          fprintf(ficresprob,"\n%d ",(int)age);
                   /*fprintf(ficrespop," %.3f", kk1);          fprintf(ficresprobcov,"\n%d ",(int)age);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          fprintf(ficresprobcor,"\n%d ",(int)age);
               }  
             }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             for(i=1; i<=nlstate;i++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
               kk1=0.;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                 for(j=1; j<=nlstate;j++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                 }          }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          i=0;
             }          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)              i=i++;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              for (j=1; j<=i;j++){
         }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
   /******/            }
           }/* end of loop for state */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        } /* end of loop for age */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        /* Confidence intervalle of pij  */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        /*
           nhstepm = nhstepm/hstepm;          fprintf(ficgp,"\nset noparametric;unset label");
                    fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           oldm=oldms;savm=savms;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           for (h=0; h<=nhstepm; h++){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
             if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
               kk1=0.;kk2=0;        first1=1;
               for(i=1; i<=nlstate;i++) {                      for (k2=1; k2<=(nlstate);k2++){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              for (l2=1; l2<=(nlstate+ndeath);l2++){ 
               }            if(l2==k2) continue;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            j=(k2-1)*(nlstate+ndeath)+l2;
             }            for (k1=1; k1<=(nlstate);k1++){
           }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(l1==k1) continue;
         }                i=(k1-1)*(nlstate+ndeath)+l1;
       }                if(i<=j) continue;
    }                for (age=bage; age<=fage; age ++){ 
   }                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   if (popforecast==1) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
     free_ivector(popage,0,AGESUP);                    mu2=mu[j][(int) age]/stepm*YEARM;
     free_vector(popeffectif,0,AGESUP);                    c12=cv12/sqrt(v1*v2);
     free_vector(popcount,0,AGESUP);                    /* Computing eigen value of matrix of covariance */
   }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    /* Eigen vectors */
   fclose(ficrespop);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 }                    /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
 /***********************************************/                    v12=-v21;
 /**************** Main Program *****************/                    v22=v11;
 /***********************************************/                    tnalp=v21/v11;
                     if(first1==1){
 int main(int argc, char *argv[])                      first1=0;
 {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   double agedeb, agefin,hf;                    /*printf(fignu*/
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   double fret;                    if(first==1){
   double **xi,tmp,delta;                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
   double dum; /* Dummy variable */                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   double ***p3mat;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   int *indx;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   char line[MAXLINE], linepar[MAXLINE];   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   int firstobs=1, lastobs=10;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   int sdeb, sfin; /* Status at beginning and end */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   int c,  h , cpt,l;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   int ju,jl, mi;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   int mobilav=0,popforecast=0;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   int hstepm, nhstepm;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double bage, fage, age, agelim, agebase;                    }else{
   double ftolpl=FTOL;                      first=0;
   double **prlim;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   double *severity;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   double ***param; /* Matrix of parameters */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   double  *p;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double **matcov; /* Matrix of covariance */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double ***delti3; /* Scale */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double *delti; /* Scale */                    }/* if first */
   double ***eij, ***vareij;                  } /* age mod 5 */
   double **varpl; /* Variances of prevalence limits by age */                } /* end loop age */
   double *epj, vepp;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double kk1, kk2;                first=1;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;              } /*l12 */
              } /* k12 */
           } /*l1 */
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }/* k1 */
       } /* loop covariates */
     }
   char z[1]="c", occ;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 #include <sys/time.h>    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 #include <time.h>    free_vector(xp,1,npar);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fclose(ficresprob);
      fclose(ficresprobcov);
   /* long total_usecs;    fclose(ficresprobcor);
   struct timeval start_time, end_time;    fflush(ficgp);
      fflush(fichtmcov);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  }
   getcwd(pathcd, size);  
   
   printf("\n%s",version);  /******************* Printing html file ***********/
   if(argc <=1){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     printf("\nEnter the parameter file name: ");                    int lastpass, int stepm, int weightopt, char model[],\
     scanf("%s",pathtot);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   }                    int popforecast, int estepm ,\
   else{                    double jprev1, double mprev1,double anprev1, \
     strcpy(pathtot,argv[1]);                    double jprev2, double mprev2,double anprev2){
   }    int jj1, k1, i1, cpt;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   /* cutv(path,optionfile,pathtot,'\\');*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   chdir(path);     fprintf(fichtm,"\
   replace(pathc,path);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 /*-------- arguments in the command line --------*/     fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
   /* Log file */     <a href=\"%s\">%s</a> <br>\n</li>",
   strcat(filelog, optionfilefiname);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     printf("Problem with logfile %s\n",filelog);  
     goto end;   m=cptcoveff;
   }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   fprintf(ficlog,"Log filename:%s\n",filelog);  
   fprintf(ficlog,"\n%s",version);   jj1=0;
   fprintf(ficlog,"\nEnter the parameter file name: ");   for(k1=1; k1<=m;k1++){
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     for(i1=1; i1<=ncodemax[k1];i1++){
   fflush(ficlog);       jj1++;
        if (cptcovn > 0) {
   /* */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcpy(fileres,"r");         for (cpt=1; cpt<=cptcoveff;cpt++) 
   strcat(fileres, optionfilefiname);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   strcat(fileres,".txt");    /* Other files have txt extension */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   /*---------arguments file --------*/       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     printf("Problem with optionfile %s\n",optionfile);       /* Quasi-incidences */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     goto end;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
   strcpy(filereso,"o");         for(cpt=1; cpt<nlstate;cpt++){
   strcat(filereso,fileres);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   if((ficparo=fopen(filereso,"w"))==NULL) {  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     printf("Problem with Output resultfile: %s\n", filereso);         }
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);       for(cpt=1; cpt<=nlstate;cpt++) {
     goto end;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
   /* Reads comments: lines beginning with '#' */     } /* end i1 */
   while((c=getc(ficpar))=='#' && c!= EOF){   }/* End k1 */
     ungetc(c,ficpar);   fprintf(fichtm,"</ul>");
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);   fprintf(fichtm,"\
   }  \n<br><li><h4> Result files (second order: variances)</h4>\n\
   ungetc(c,ficpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);   fprintf(fichtm,"\
 while((c=getc(ficpar))=='#' && c!= EOF){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     ungetc(c,ficpar);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     fgets(line, MAXLINE, ficpar);  
     puts(line);   fprintf(fichtm,"\
     fputs(line,ficparo);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   ungetc(c,ficpar);   fprintf(fichtm,"\
     - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
               estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   covar=matrix(0,NCOVMAX,1,n);   fprintf(fichtm,"\
   cptcovn=0;   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
   ncovmodel=2+cptcovn;   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    
   /* Read guess parameters */  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /* Reads comments: lines beginning with '#' */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   while((c=getc(ficpar))=='#' && c!= EOF){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     ungetc(c,ficpar);  /*      <br>",fileres,fileres,fileres,fileres); */
     fgets(line, MAXLINE, ficpar);  /*  else  */
     puts(line);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fputs(line,ficparo);   fflush(fichtm);
   }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   ungetc(c,ficpar);  
     m=cptcoveff;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){   jj1=0;
       fscanf(ficpar,"%1d%1d",&i1,&j1);   for(k1=1; k1<=m;k1++){
       fprintf(ficparo,"%1d%1d",i1,j1);     for(i1=1; i1<=ncodemax[k1];i1++){
       if(mle==1)       jj1++;
         printf("%1d%1d",i,j);       if (cptcovn > 0) {
       fprintf(ficlog,"%1d%1d",i,j);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       for(k=1; k<=ncovmodel;k++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
         fscanf(ficpar," %lf",&param[i][j][k]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         if(mle==1){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           printf(" %lf",param[i][j][k]);       }
           fprintf(ficlog," %lf",param[i][j][k]);       for(cpt=1; cpt<=nlstate;cpt++) {
         }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         else  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
           fprintf(ficlog," %lf",param[i][j][k]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         fprintf(ficparo," %lf",param[i][j][k]);       }
       }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       fscanf(ficpar,"\n");  health expectancies in states (1) and (2): %s%d.png<br>\
       if(mle==1)  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         printf("\n");     } /* end i1 */
       fprintf(ficlog,"\n");   }/* End k1 */
       fprintf(ficparo,"\n");   fprintf(fichtm,"</ul>");
     }   fflush(fichtm);
    }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
   /******************* Gnuplot file **************/
   p=param[1][1];  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
   /* Reads comments: lines beginning with '#' */    char dirfileres[132],optfileres[132];
   while((c=getc(ficpar))=='#' && c!= EOF){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     ungetc(c,ficpar);    int ng;
     fgets(line, MAXLINE, ficpar);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     puts(line);  /*     printf("Problem with file %s",optionfilegnuplot); */
     fputs(line,ficparo);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   }  /*   } */
   ungetc(c,ficpar);  
     /*#ifdef windows */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      /*#endif */
   for(i=1; i <=nlstate; i++){    m=pow(2,cptcoveff);
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcpy(dirfileres,optionfilefiname);
       printf("%1d%1d",i,j);    strcpy(optfileres,"vpl");
       fprintf(ficparo,"%1d%1d",i1,j1);   /* 1eme*/
       for(k=1; k<=ncovmodel;k++){    for (cpt=1; cpt<= nlstate ; cpt ++) {
         fscanf(ficpar,"%le",&delti3[i][j][k]);     for (k1=1; k1<= m ; k1 ++) {
         printf(" %le",delti3[i][j][k]);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficparo," %le",delti3[i][j][k]);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       }       fprintf(ficgp,"set xlabel \"Age\" \n\
       fscanf(ficpar,"\n");  set ylabel \"Probability\" \n\
       printf("\n");  set ter png small\n\
       fprintf(ficparo,"\n");  set size 0.65,0.65\n\
     }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   }  
   delti=delti3[1][1];       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /* Reads comments: lines beginning with '#' */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){       }
     ungetc(c,ficpar);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     fgets(line, MAXLINE, ficpar);       for (i=1; i<= nlstate ; i ++) {
     puts(line);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fputs(line,ficparo);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       } 
   ungetc(c,ficpar);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         for (i=1; i<= nlstate ; i ++) {
   matcov=matrix(1,npar,1,npar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   for(i=1; i <=npar; i++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fscanf(ficpar,"%s",&str);       }  
     if(mle==1)       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       printf("%s",str);     }
     fprintf(ficlog,"%s",str);    }
     fprintf(ficparo,"%s",str);    /*2 eme*/
     for(j=1; j <=i; j++){    
       fscanf(ficpar," %le",&matcov[i][j]);    for (k1=1; k1<= m ; k1 ++) { 
       if(mle==1){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         printf(" %.5le",matcov[i][j]);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         fprintf(ficlog," %.5le",matcov[i][j]);      
       }      for (i=1; i<= nlstate+1 ; i ++) {
       else        k=2*i;
         fprintf(ficlog," %.5le",matcov[i][j]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficparo," %.5le",matcov[i][j]);        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fscanf(ficpar,"\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
     if(mle==1)        }   
       printf("\n");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     fprintf(ficlog,"\n");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     fprintf(ficparo,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   for(i=1; i <=npar; i++)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     for(j=i+1;j<=npar;j++)          else fprintf(ficgp," \%%*lf (\%%*lf)");
       matcov[i][j]=matcov[j][i];        }   
            fprintf(ficgp,"\" t\"\" w l 0,");
   if(mle==1)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     printf("\n");        for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficlog,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
     /*-------- Rewriting paramater file ----------*/        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      strcpy(rfileres,"r");    /* "Rparameterfile */        else fprintf(ficgp,"\" t\"\" w l 0,");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      }
      strcat(rfileres,".");    /* */    }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    
     if((ficres =fopen(rfileres,"w"))==NULL) {    /*3eme*/
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    for (k1=1; k1<= m ; k1 ++) { 
     }      for (cpt=1; cpt<= nlstate ; cpt ++) {
     fprintf(ficres,"#%s\n",version);        k=2+nlstate*(2*cpt-2);
            fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     /*-------- data file ----------*/        fprintf(ficgp,"set ter png small\n\
     if((fic=fopen(datafile,"r"))==NULL)    {  set size 0.65,0.65\n\
       printf("Problem with datafile: %s\n", datafile);goto end;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     n= lastobs;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     severity = vector(1,maxwav);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     outcome=imatrix(1,maxwav+1,1,n);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     num=ivector(1,n);          
     moisnais=vector(1,n);        */
     annais=vector(1,n);        for (i=1; i< nlstate ; i ++) {
     moisdc=vector(1,n);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
     andc=vector(1,n);          
     agedc=vector(1,n);        } 
     cod=ivector(1,n);      }
     weight=vector(1,n);    }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);    /* CV preval stable (period) */
     anint=matrix(1,maxwav,1,n);    for (k1=1; k1<= m ; k1 ++) { 
     s=imatrix(1,maxwav+1,1,n);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     adl=imatrix(1,maxwav+1,1,n);            k=3;
     tab=ivector(1,NCOVMAX);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     ncodemax=ivector(1,8);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
     i=1;  unset log y\n\
     while (fgets(line, MAXLINE, fic) != NULL)    {  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       if ((i >= firstobs) && (i <=lastobs)) {        
                for (i=1; i< nlstate ; i ++)
         for (j=maxwav;j>=1;j--){          fprintf(ficgp,"+$%d",k+i+1);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
           strcpy(line,stra);        
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        l=3+(nlstate+ndeath)*cpt;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         }        for (i=1; i< nlstate ; i ++) {
                  l=3+(nlstate+ndeath)*cpt;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"+$%d",l+i+1);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      } 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    }  
     
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /* proba elementaires */
         for (j=ncovcol;j>=1;j--){    for(i=1,jk=1; i <=nlstate; i++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(k=1; k <=(nlstate+ndeath); k++){
         }        if (k != i) {
         num[i]=atol(stra);          for(j=1; j <=ncovmodel; j++){
                    fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            jk++; 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            fprintf(ficgp,"\n");
           }
         i=i+1;        }
       }      }
     }     }
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   imx=i-1; /* Number of individuals */       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   /* for (i=1; i<=imx; i++){         if (ng==2)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;         else
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;           fprintf(ficgp,"\nset title \"Probability\"\n");
     }*/         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
    /*  for (i=1; i<=imx; i++){         i=1;
      if (s[4][i]==9)  s[4][i]=-1;         for(k2=1; k2<=nlstate; k2++) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/           k3=i;
             for(k=1; k<=(nlstate+ndeath); k++) {
               if (k != k2){
   /* Calculation of the number of parameter from char model*/               if(ng==2)
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   Tprod=ivector(1,15);               else
   Tvaraff=ivector(1,15);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   Tvard=imatrix(1,15,1,2);               ij=1;
   Tage=ivector(1,15);                     for(j=3; j <=ncovmodel; j++) {
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   if (strlen(model) >1){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     j=0, j1=0, k1=1, k2=1;                   ij++;
     j=nbocc(model,'+');                 }
     j1=nbocc(model,'*');                 else
     cptcovn=j+1;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     cptcovprod=j1;               }
                   fprintf(ficgp,")/(1");
     strcpy(modelsav,model);               
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){               for(k1=1; k1 <=nlstate; k1++){   
       printf("Error. Non available option model=%s ",model);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       fprintf(ficlog,"Error. Non available option model=%s ",model);                 ij=1;
       goto end;                 for(j=3; j <=ncovmodel; j++){
     }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                         fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     for(i=(j+1); i>=1;i--){                     ij++;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                   }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */                   else
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       /*scanf("%d",i);*/                 }
       if (strchr(strb,'*')) {  /* Model includes a product */                 fprintf(ficgp,")");
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/               }
         if (strcmp(strc,"age")==0) { /* Vn*age */               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           cptcovprod--;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           cutv(strb,stre,strd,'V');               i=i+ncovmodel;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/             }
           cptcovage++;           } /* end k */
             Tage[cptcovage]=i;         } /* end k2 */
             /*printf("stre=%s ", stre);*/       } /* end jk */
         }     } /* end ng */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */     fflush(ficgp); 
           cptcovprod--;  }  /* end gnuplot */
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);  
           cptcovage++;  /*************** Moving average **************/
           Tage[cptcovage]=i;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         }  
         else {  /* Age is not in the model */    int i, cpt, cptcod;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    int modcovmax =1;
           Tvar[i]=ncovcol+k1;    int mobilavrange, mob;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    double age;
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc); /* m*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           Tvard[k1][2]=atoi(stre); /* n */                             a covariate has 2 modalities */
           Tvar[cptcovn+k2]=Tvard[k1][1];    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      if(mobilav==1) mobilavrange=5; /* default */
           k1++;      else mobilavrange=mobilav;
           k2=k2+2;      for (age=bage; age<=fage; age++)
         }        for (i=1; i<=nlstate;i++)
       }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       else { /* no more sum */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      /* We keep the original values on the extreme ages bage, fage and for 
        /*  scanf("%d",i);*/         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       cutv(strd,strc,strb,'V');         we use a 5 terms etc. until the borders are no more concerned. 
       Tvar[i]=atoi(strc);      */ 
       }      for (mob=3;mob <=mobilavrange;mob=mob+2){
       strcpy(modelsav,stra);          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          for (i=1; i<=nlstate;i++){
         scanf("%d",i);*/            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     } /* end of loop + */              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   } /* end model */                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   printf("cptcovprod=%d ", cptcovprod);                }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   scanf("%d ",i);*/            }
     fclose(fic);          }
         }/* end age */
     /*  if(mle==1){*/      }/* end mob */
     if (weightopt != 1) { /* Maximisation without weights*/    }else return -1;
       for(i=1;i<=n;i++) weight[i]=1.0;    return 0;
     }  }/* End movingaverage */
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);  
   /************** Forecasting ******************/
     for (i=1; i<=imx; i++) {  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       for(m=2; (m<= maxwav); m++) {    /* proj1, year, month, day of starting projection 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       agemin, agemax range of age
          anint[m][i]=9999;       dateprev1 dateprev2 range of dates during which prevalence is computed
          s[m][i]=-1;       anproj2 year of en of projection (same day and month as proj1).
        }    */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       }    int *popage;
     }    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     for (i=1; i<=imx; i++)  {    double *popeffectif,*popcount;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double ***p3mat;
       for(m=1; (m<= maxwav); m++){    double ***mobaverage;
         if(s[m][i] >0){    char fileresf[FILENAMELENGTH];
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)    agelim=AGESUP;
               if(moisdc[i]!=99 && andc[i]!=9999)    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                 agev[m][i]=agedc[i];   
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    strcpy(fileresf,"f"); 
            else {    strcat(fileresf,fileres);
               if (andc[i]!=9999){    if((ficresf=fopen(fileresf,"w"))==NULL) {
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      printf("Problem with forecast resultfile: %s\n", fileresf);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
               agev[m][i]=-1;    }
               }    printf("Computing forecasting: result on file '%s' \n", fileresf);
             }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)    if (mobilav!=0) {
               agev[m][i]=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             else if(agev[m][i] <agemin){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               agemin=agev[m][i];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }      }
             else if(agev[m][i] >agemax){    }
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
             }    if (stepm<=12) stepsize=1;
             /*agev[m][i]=anint[m][i]-annais[i];*/    if(estepm < stepm){
             /*   agev[m][i] = age[i]+2*m;*/      printf ("Problem %d lower than %d\n",estepm, stepm);
           }    }
           else { /* =9 */    else  hstepm=estepm;   
             agev[m][i]=1;  
             s[m][i]=-1;    hstepm=hstepm/stepm; 
           }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
         }                                 fractional in yp1 */
         else /*= 0 Unknown */    anprojmean=yp;
           agev[m][i]=1;    yp2=modf((yp1*12),&yp);
       }    mprojmean=yp;
        yp1=modf((yp2*30.5),&yp);
     }    jprojmean=yp;
     for (i=1; i<=imx; i++)  {    if(jprojmean==0) jprojmean=1;
       for(m=1; (m<= maxwav); m++){    if(mprojmean==0) jprojmean=1;
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      i1=cptcoveff;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      if (cptcovn < 1){i1=1;}
           goto end;    
         }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       }    
     }    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /*            if (h==(int)(YEARM*yearp)){ */
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     free_vector(severity,1,maxwav);        k=k+1;
     free_imatrix(outcome,1,maxwav+1,1,n);        fprintf(ficresf,"\n#******");
     free_vector(moisnais,1,n);        for(j=1;j<=cptcoveff;j++) {
     free_vector(annais,1,n);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     /* free_matrix(mint,1,maxwav,1,n);        }
        free_matrix(anint,1,maxwav,1,n);*/        fprintf(ficresf,"******\n");
     free_vector(moisdc,1,n);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     free_vector(andc,1,n);        for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
                fprintf(ficresf," p%d%d",i,j);
     wav=ivector(1,imx);          fprintf(ficresf," p.%d",j);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
              fprintf(ficresf,"\n");
     /* Concatenates waves */          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       Tcode=ivector(1,100);            nhstepm = nhstepm/hstepm; 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       ncodemax[1]=1;            oldm=oldms;savm=savms;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
                
    codtab=imatrix(1,100,1,10);            for (h=0; h<=nhstepm; h++){
    h=0;              if (h*hstepm/YEARM*stepm ==yearp) {
    m=pow(2,cptcoveff);                fprintf(ficresf,"\n");
                  for(j=1;j<=cptcoveff;j++) 
    for(k=1;k<=cptcoveff; k++){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      for(i=1; i <=(m/pow(2,k));i++){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
        for(j=1; j <= ncodemax[k]; j++){              } 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              for(j=1; j<=nlstate+ndeath;j++) {
            h++;                ppij=0.;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                for(i=1; i<=nlstate;i++) {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                  if (mobilav==1) 
          }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
        }                  else {
      }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
    }                  }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                  if (h*hstepm/YEARM*stepm== yearp) {
       codtab[1][2]=1;codtab[2][2]=2; */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
    /* for(i=1; i <=m ;i++){                  }
       for(k=1; k <=cptcovn; k++){                } /* end i */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                if (h*hstepm/YEARM*stepm==yearp) {
       }                  fprintf(ficresf," %.3f", ppij);
       printf("\n");                }
       }              }/* end j */
       scanf("%d",i);*/            } /* end h */
                free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    /* Calculates basic frequencies. Computes observed prevalence at single age          } /* end agec */
        and prints on file fileres'p'. */        } /* end yearp */
       } /* end cptcod */
        } /* end  cptcov */
             
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fclose(ficresf);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        /************** Forecasting *****not tested NB*************/
     /* For Powell, parameters are in a vector p[] starting at p[1]  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     if(mle==1){    double calagedatem, agelim, kk1, kk2;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double *popeffectif,*popcount;
     }    double ***p3mat,***tabpop,***tabpopprev;
        double ***mobaverage;
     /*--------- results files --------------*/    char filerespop[FILENAMELENGTH];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    jk=1;    agelim=AGESUP;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    for(i=1,jk=1; i <=nlstate; i++){    
      for(k=1; k <=(nlstate+ndeath); k++){    
        if (k != i)    strcpy(filerespop,"pop"); 
          {    strcat(filerespop,fileres);
            printf("%d%d ",i,k);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
            fprintf(ficlog,"%d%d ",i,k);      printf("Problem with forecast resultfile: %s\n", filerespop);
            fprintf(ficres,"%1d%1d ",i,k);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
            for(j=1; j <=ncovmodel; j++){    }
              printf("%f ",p[jk]);    printf("Computing forecasting: result on file '%s' \n", filerespop);
              fprintf(ficlog,"%f ",p[jk]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
            }  
            printf("\n");    if (mobilav!=0) {
            fprintf(ficlog,"\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            fprintf(ficres,"\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    }      }
    if(mle==1){    }
      /* Computing hessian and covariance matrix */  
      ftolhess=ftol; /* Usually correct */    stepsize=(int) (stepm+YEARM-1)/YEARM;
      hesscov(matcov, p, npar, delti, ftolhess, func);    if (stepm<=12) stepsize=1;
    }    
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    agelim=AGESUP;
    printf("# Scales (for hessian or gradient estimation)\n");    
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    hstepm=1;
    for(i=1,jk=1; i <=nlstate; i++){    hstepm=hstepm/stepm; 
      for(j=1; j <=nlstate+ndeath; j++){    
        if (j!=i) {    if (popforecast==1) {
          fprintf(ficres,"%1d%1d",i,j);      if((ficpop=fopen(popfile,"r"))==NULL) {
          printf("%1d%1d",i,j);        printf("Problem with population file : %s\n",popfile);exit(0);
          fprintf(ficlog,"%1d%1d",i,j);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
          for(k=1; k<=ncovmodel;k++){      } 
            printf(" %.5e",delti[jk]);      popage=ivector(0,AGESUP);
            fprintf(ficlog," %.5e",delti[jk]);      popeffectif=vector(0,AGESUP);
            fprintf(ficres," %.5e",delti[jk]);      popcount=vector(0,AGESUP);
            jk++;      
          }      i=1;   
          printf("\n");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
          fprintf(ficlog,"\n");     
          fprintf(ficres,"\n");      imx=i;
        }      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
      }    }
    }  
        for(cptcov=1,k=0;cptcov<=i2;cptcov++){
    k=1;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        k=k+1;
    if(mle==1)        fprintf(ficrespop,"\n#******");
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for(j=1;j<=cptcoveff;j++) {
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    for(i=1;i<=npar;i++){        }
      /*  if (k>nlstate) k=1;        fprintf(ficrespop,"******\n");
          i1=(i-1)/(ncovmodel*nlstate)+1;        fprintf(ficrespop,"# Age");
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
          printf("%s%d%d",alph[k],i1,tab[i]);*/        if (popforecast==1)  fprintf(ficrespop," [Population]");
      fprintf(ficres,"%3d",i);        
      if(mle==1)        for (cpt=0; cpt<=0;cpt++) { 
        printf("%3d",i);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
      fprintf(ficlog,"%3d",i);          
      for(j=1; j<=i;j++){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
        fprintf(ficres," %.5e",matcov[i][j]);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
        if(mle==1)            nhstepm = nhstepm/hstepm; 
          printf(" %.5e",matcov[i][j]);            
        fprintf(ficlog," %.5e",matcov[i][j]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }            oldm=oldms;savm=savms;
      fprintf(ficres,"\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
      if(mle==1)          
        printf("\n");            for (h=0; h<=nhstepm; h++){
      fprintf(ficlog,"\n");              if (h==(int) (calagedatem+YEARM*cpt)) {
      k++;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
    }              } 
                  for(j=1; j<=nlstate+ndeath;j++) {
    while((c=getc(ficpar))=='#' && c!= EOF){                kk1=0.;kk2=0;
      ungetc(c,ficpar);                for(i=1; i<=nlstate;i++) {              
      fgets(line, MAXLINE, ficpar);                  if (mobilav==1) 
      puts(line);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
      fputs(line,ficparo);                  else {
    }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
    ungetc(c,ficpar);                  }
    estepm=0;                }
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                if (h==(int)(calagedatem+12*cpt)){
    if (estepm==0 || estepm < stepm) estepm=stepm;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
    if (fage <= 2) {                    /*fprintf(ficrespop," %.3f", kk1);
      bage = ageminpar;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
      fage = agemaxpar;                }
    }              }
                  for(i=1; i<=nlstate;i++){
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                kk1=0.;
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  for(j=1; j<=nlstate;j++){
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                      }
    while((c=getc(ficpar))=='#' && c!= EOF){                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
      ungetc(c,ficpar);              }
      fgets(line, MAXLINE, ficpar);  
      puts(line);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
      fputs(line,ficparo);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
    }            }
    ungetc(c,ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            }
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        }
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /******/
      
    while((c=getc(ficpar))=='#' && c!= EOF){        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
      ungetc(c,ficpar);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
      fgets(line, MAXLINE, ficpar);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
      puts(line);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
      fputs(line,ficparo);            nhstepm = nhstepm/hstepm; 
    }            
    ungetc(c,ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            for (h=0; h<=nhstepm; h++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fscanf(ficpar,"pop_based=%d\n",&popbased);              } 
   fprintf(ficparo,"pop_based=%d\n",popbased);                for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(ficres,"pop_based=%d\n",popbased);                  kk1=0.;kk2=0;
                  for(i=1; i<=nlstate;i++) {              
   while((c=getc(ficpar))=='#' && c!= EOF){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     ungetc(c,ficpar);                }
     fgets(line, MAXLINE, ficpar);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     puts(line);              }
     fputs(line,ficparo);            }
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   ungetc(c,ficpar);          }
         }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);     } 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
 while((c=getc(ficpar))=='#' && c!= EOF){    if (popforecast==1) {
     ungetc(c,ficpar);      free_ivector(popage,0,AGESUP);
     fgets(line, MAXLINE, ficpar);      free_vector(popeffectif,0,AGESUP);
     puts(line);      free_vector(popcount,0,AGESUP);
     fputs(line,ficparo);    }
   }    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  } /* End of popforecast */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  int fileappend(FILE *fichier, char *optionfich)
   {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
 /*------------ gnuplot -------------*/      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   strcpy(optionfilegnuplot,optionfilefiname);      return (0);
   strcat(optionfilegnuplot,".gp");    }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    fflush(fichier);
     printf("Problem with file %s",optionfilegnuplot);    return (1);
   }  }
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  
 /*--------- index.htm --------*/  /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   strcpy(optionfilehtm,optionfile);  {
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /* Wizard to print covariance matrix template */
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    int numlinepar;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 Total number of observations=%d <br>\n    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    for(i=1; i <=nlstate; i++){
 <hr  size=\"2\" color=\"#EC5E5E\">      jj=0;
  <ul><li><h4>Parameter files</h4>\n      for(j=1; j <=nlstate+ndeath; j++){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        if(j==i) continue;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n        jj++;
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   fclose(fichtm);        printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        for(k=1; k<=ncovmodel;k++){
            /*        printf(" %lf",param[i][j][k]); */
 /*------------ free_vector  -------------*/          /*        fprintf(ficparo," %lf",param[i][j][k]); */
  chdir(path);          printf(" 0.");
            fprintf(ficparo," 0.");
  free_ivector(wav,1,imx);        }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        printf("\n");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          fprintf(ficparo,"\n");
  free_ivector(num,1,n);      }
  free_vector(agedc,1,n);    }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    printf("# Scales (for hessian or gradient estimation)\n");
  fclose(ficparo);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
  fclose(ficres);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
   /*--------------- Prevalence limit --------------*/      for(j=1; j <=nlstate+ndeath; j++){
          if(j==i) continue;
   strcpy(filerespl,"pl");        jj++;
   strcat(filerespl,fileres);        fprintf(ficparo,"%1d%1d",i,j);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        printf("%1d%1d",i,j);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        fflush(stdout);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for(k=1; k<=ncovmodel;k++){
   }          /*      printf(" %le",delti3[i][j][k]); */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);          printf(" 0.");
   fprintf(ficrespl,"#Prevalence limit\n");          fprintf(ficparo," 0.");
   fprintf(ficrespl,"#Age ");        }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        numlinepar++;
   fprintf(ficrespl,"\n");        printf("\n");
          fprintf(ficparo,"\n");
   prlim=matrix(1,nlstate,1,nlstate);      }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("# Covariance matrix\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /* # 121 Var(a12)\n\ */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   k=0;  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   agebase=ageminpar;  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   agelim=agemaxpar;  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   ftolpl=1.e-10;  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   i1=cptcoveff;  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   if (cptcovn < 1){i1=1;}    fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    /* # 121 Var(a12)\n\ */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* # 122 Cov(b12,a12) Var(b12)\n\ */
         k=k+1;    /* #   ...\n\ */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
         fprintf(ficrespl,"\n#******");    
         printf("\n#******");    for(itimes=1;itimes<=2;itimes++){
         fprintf(ficlog,"\n#******");      jj=0;
         for(j=1;j<=cptcoveff;j++) {      for(i=1; i <=nlstate; i++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j <=nlstate+ndeath; j++){
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if(j==i) continue;
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(k=1; k<=ncovmodel;k++){
         }            jj++;
         fprintf(ficrespl,"******\n");            ca[0]= k+'a'-1;ca[1]='\0';
         printf("******\n");            if(itimes==1){
         fprintf(ficlog,"******\n");              printf("#%1d%1d%d",i,j,k);
                      fprintf(ficparo,"#%1d%1d%d",i,j,k);
         for (age=agebase; age<=agelim; age++){            }else{
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              printf("%1d%1d%d",i,j,k);
           fprintf(ficrespl,"%.0f",age );              fprintf(ficparo,"%1d%1d%d",i,j,k);
           for(i=1; i<=nlstate;i++)              /*  printf(" %.5le",matcov[i][j]); */
           fprintf(ficrespl," %.5f", prlim[i][i]);            }
           fprintf(ficrespl,"\n");            ll=0;
         }            for(li=1;li <=nlstate; li++){
       }              for(lj=1;lj <=nlstate+ndeath; lj++){
     }                if(lj==li) continue;
   fclose(ficrespl);                for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
   /*------------- h Pij x at various ages ------------*/                  if(ll<=jj){
                      cb[0]= lk +'a'-1;cb[1]='\0';
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                    if(ll<jj){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                      if(itimes==1){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   }                      }else{
   printf("Computing pij: result on file '%s' \n", filerespij);                        printf(" 0.");
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                        fprintf(ficparo," 0.");
                        }
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    }else{
   /*if (stepm<=24) stepsize=2;*/                      if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
   agelim=AGESUP;                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   hstepm=stepsize*YEARM; /* Every year of age */                      }else{
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                        printf(" 0.");
                         fprintf(ficparo," 0.");
   /* hstepm=1;   aff par mois*/                      }
                     }
   k=0;                  }
   for(cptcov=1;cptcov<=i1;cptcov++){                } /* end lk */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              } /* end lj */
       k=k+1;            } /* end li */
         fprintf(ficrespij,"\n#****** ");            printf("\n");
         for(j=1;j<=cptcoveff;j++)            fprintf(ficparo,"\n");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            numlinepar++;
         fprintf(ficrespij,"******\n");          } /* end k*/
                } /*end j */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      } /* end i */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    } /* end itimes */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
   } /* end of prwizard */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /***********************************************/
           oldm=oldms;savm=savms;  /**************** Main Program *****************/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /***********************************************/
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)  int main(int argc, char *argv[])
             for(j=1; j<=nlstate+ndeath;j++)  {
               fprintf(ficrespij," %1d-%1d",i,j);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           fprintf(ficrespij,"\n");    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
            for (h=0; h<=nhstepm; h++){    int jj, ll, li, lj, lk, imk;
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    int numlinepar=0; /* Current linenumber of parameter file */
             for(i=1; i<=nlstate;i++)    int itimes;
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    char ca[32], cb[32], cc[32];
             fprintf(ficrespij,"\n");    /*  FILE *fichtm; *//* Html File */
              }    /* FILE *ficgp;*/ /*Gnuplot File */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double agedeb, agefin,hf;
           fprintf(ficrespij,"\n");    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         }  
     }    double fret;
   }    double **xi,tmp,delta;
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    double dum; /* Dummy variable */
     double ***p3mat;
   fclose(ficrespij);    double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
   /*---------- Forecasting ------------------*/    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   if((stepm == 1) && (strcmp(model,".")==0)){    char pathr[MAXLINE]; 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    int firstobs=1, lastobs=10;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    int sdeb, sfin; /* Status at beginning and end */
   }    int c,  h , cpt,l;
   else{    int ju,jl, mi;
     erreur=108;    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   }    int mobilav=0,popforecast=0;
      int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   /*---------- Health expectancies and variances ------------*/    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
   strcpy(filerest,"t");    double bage, fage, age, agelim, agebase;
   strcat(filerest,fileres);    double ftolpl=FTOL;
   if((ficrest=fopen(filerest,"w"))==NULL) {    double **prlim;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    double *severity;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    double ***param; /* Matrix of parameters */
   }    double  *p;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    double **matcov; /* Matrix of covariance */
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
   strcpy(filerese,"e");    double **varpl; /* Variances of prevalence limits by age */
   strcat(filerese,fileres);    double *epj, vepp;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    double kk1, kk2;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    char *alph[]={"a","a","b","c","d","e"}, str[4];
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  
     char z[1]="c", occ;
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    char strstart[80], *strt, strtend[80];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    char *stratrunc;
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    int lstra;
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    long total_usecs;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   
   calagedate=-1;  /*   setlocale (LC_ALL, ""); */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   k=0;  /*   setlocale (LC_CTYPE, ""); */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*   setlocale (LC_MESSAGES, ""); */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       fprintf(ficrest,"\n#****** ");    (void) gettimeofday(&start_time,&tzp);
       for(j=1;j<=cptcoveff;j++)    curr_time=start_time;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    tm = *localtime(&start_time.tv_sec);
       fprintf(ficrest,"******\n");    tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /*  printf("Localtime (at start)=%s",strstart); */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*  tp.tv_sec = tp.tv_sec +86400; */
       fprintf(ficreseij,"******\n");  /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
       fprintf(ficresvij,"\n#****** ");  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       for(j=1;j<=cptcoveff;j++)  /*   tmg.tm_hour=tmg.tm_hour + 1; */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   tp.tv_sec = mktime(&tmg); */
       fprintf(ficresvij,"******\n");  /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*  (void) time (&time_value);
       oldm=oldms;savm=savms;  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    *  tm = *localtime(&time_value);
    *  strstart=asctime(&tm);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
       oldm=oldms;savm=savms;  */
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);  
       if(popbased==1){    nberr=0; /* Number of errors and warnings */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    nbwarn=0;
        }    getcwd(pathcd, size);
   
      printf("\n%s\n%s",version,fullversion);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    if(argc <=1){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      printf("\nEnter the parameter file name: ");
       fprintf(ficrest,"\n");      scanf("%s",pathtot);
     }
       epj=vector(1,nlstate+1);    else{
       for(age=bage; age <=fage ;age++){      strcpy(pathtot,argv[1]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
         if (popbased==1) {    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
           for(i=1; i<=nlstate;i++)    /*cygwin_split_path(pathtot,path,optionfile);
             prlim[i][i]=probs[(int)age][i][k];      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
         }    /* cutv(path,optionfile,pathtot,'\\');*/
          
         fprintf(ficrest," %4.0f",age);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    chdir(path);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    strcpy(command,"mkdir ");
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    strcat(command,optionfilefiname);
           }    if((outcmd=system(command)) != 0){
           epj[nlstate+1] +=epj[j];      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
         }      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
         for(i=1, vepp=0.;i <=nlstate;i++)  /*     exit(1); */
           for(j=1;j <=nlstate;j++)    }
             vepp += vareij[i][j][(int)age];  /*   if((imk=mkdir(optionfilefiname))<0){ */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  /*     perror("mkdir"); */
         for(j=1;j <=nlstate;j++){  /*   } */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }    /*-------- arguments in the command line --------*/
         fprintf(ficrest,"\n");  
       }    /* Log file */
     }    strcat(filelog, optionfilefiname);
   }    strcat(filelog,".log");    /* */
 free_matrix(mint,1,maxwav,1,n);    if((ficlog=fopen(filelog,"w"))==NULL)    {
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      printf("Problem with logfile %s\n",filelog);
     free_vector(weight,1,n);      goto end;
   fclose(ficreseij);    }
   fclose(ficresvij);    fprintf(ficlog,"Log filename:%s\n",filelog);
   fclose(ficrest);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   fclose(ficpar);    fprintf(ficlog,"\nEnter the parameter file name: ");
   free_vector(epj,1,nlstate+1);    fprintf(ficlog,"pathtot=%s\n\
     path=%s \n\
   /*------- Variance limit prevalence------*/     optionfile=%s\n\
    optionfilext=%s\n\
   strcpy(fileresvpl,"vpl");   optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    printf("Local time (at start):%s",strstart);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    fprintf(ficlog,"Local time (at start): %s",strstart);
     exit(0);    fflush(ficlog);
   }  /*   (void) gettimeofday(&curr_time,&tzp); */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
   k=0;    /* */
   for(cptcov=1;cptcov<=i1;cptcov++){    strcpy(fileres,"r");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcat(fileres, optionfilefiname);
       k=k+1;    strcat(fileres,".txt");    /* Other files have txt extension */
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    /*---------arguments file --------*/
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");    if((ficpar=fopen(optionfile,"r"))==NULL)    {
            printf("Problem with optionfile %s\n",optionfile);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       oldm=oldms;savm=savms;      fflush(ficlog);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      goto end;
     }    }
  }  
   
   fclose(ficresvpl);  
     strcpy(filereso,"o");
   /*---------- End : free ----------------*/    strcat(filereso,fileres);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
        printf("Problem with Output resultfile: %s\n", filereso);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fflush(ficlog);
        goto end;
      }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* Reads comments: lines beginning with '#' */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    numlinepar=0;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    while((c=getc(ficpar))=='#' && c!= EOF){
        ungetc(c,ficpar);
   free_matrix(matcov,1,npar,1,npar);      fgets(line, MAXLINE, ficpar);
   free_vector(delti,1,npar);      numlinepar++;
   free_matrix(agev,1,maxwav,1,imx);      puts(line);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fputs(line,ficparo);
       fputs(line,ficlog);
   fprintf(fichtm,"\n</body>");    }
   fclose(fichtm);    ungetc(c,ficpar);
   fclose(ficgp);  
      fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
   if(erreur >0){    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     printf("End of Imach with error or warning %d\n",erreur);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   }else{    fflush(ficlog);
    printf("End of Imach\n");    while((c=getc(ficpar))=='#' && c!= EOF){
    fprintf(ficlog,"End of Imach\n");      ungetc(c,ficpar);
   }      fgets(line, MAXLINE, ficpar);
   printf("See log file on %s\n",filelog);      numlinepar++;
   fclose(ficlog);      puts(line);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fputs(line,ficparo);
        fputs(line,ficlog);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    }
   /*printf("Total time was %d uSec.\n", total_usecs);*/    ungetc(c,ficpar);
   /*------ End -----------*/  
      
     covar=matrix(0,NCOVMAX,1,n); 
  end:    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 #ifdef windows    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   /* chdir(pathcd);*/  
 #endif    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
  /*system("wgnuplot graph.plt");*/    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
  /*system("../gp37mgw/wgnuplot graph.plt");*/   
  /*system("cd ../gp37mgw");*/    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
  strcpy(plotcmd,GNUPLOTPROGRAM);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
  strcat(plotcmd," ");      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
  strcat(plotcmd,optionfilegnuplot);      fclose (ficparo);
  system(plotcmd);      fclose (ficlog);
       exit(0);
 #ifdef windows    }
   while (z[0] != 'q') {    /* Read guess parameters */
     /* chdir(path); */    /* Reads comments: lines beginning with '#' */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    while((c=getc(ficpar))=='#' && c!= EOF){
     scanf("%s",z);      ungetc(c,ficpar);
     if (z[0] == 'c') system("./imach");      fgets(line, MAXLINE, ficpar);
     else if (z[0] == 'e') system(optionfilehtm);      numlinepar++;
     else if (z[0] == 'g') system(plotcmd);      puts(line);
     else if (z[0] == 'q') exit(0);      fputs(line,ficparo);
   }      fputs(line,ficlog);
 #endif    }
 }    ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){
             printf("%f ",p[jk]);
             fprintf(ficlog,"%f ",p[jk]);
             fprintf(ficres,"%f ",p[jk]);
             jk++; 
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle>=1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   
   
   /* Just to have a covariance matrix which will be more understandable
      even is we still don't want to manage dictionary of variables
   */
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               if(mle>=1)
                 printf("#%1d%1d%d",i,j,k);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficres,"#%1d%1d%d",i,j,k);
             }else{
               if(mle>=1)
                 printf("%1d%1d%d",i,j,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);
               fprintf(ficres,"%1d%1d%d",i,j,k);
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }else{
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             if(mle>=1)
               printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
     fflush(ficlog);
     fflush(ficres);
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(i=1;i<=AGESUP;i++)
       for(j=1;j<=NCOVMAX;j++)
         for(k=1;k<=NCOVMAX;k++)
           probs[i][j][k]=0.;
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.52  
changed lines
  Added in v.1.96


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>