File:  [Local Repository] / imach / src / imach.c
Revision 1.104: download - view: text, annotated - select for diffs
Fri Sep 30 16:11:43 2005 UTC (18 years, 8 months ago) by lievre
Branches: MAIN
CVS tags: HEAD
(Module): sump fixed, loop imx fixed, and simplifications.
(Module): If the status is missing at the last wave but we know
that the person is alive, then we can code his/her status as -2
(instead of missing=-1 in earlier versions) and his/her
contributions to the likelihood is 1 - Prob of dying from last
health status (= 1-p13= p11+p12 in the easiest case of somebody in
the healthy state at last known wave). Version is 0.98

    1: /* $Id: imach.c,v 1.104 2005/09/30 16:11:43 lievre Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.104  2005/09/30 16:11:43  lievre
    5:   (Module): sump fixed, loop imx fixed, and simplifications.
    6:   (Module): If the status is missing at the last wave but we know
    7:   that the person is alive, then we can code his/her status as -2
    8:   (instead of missing=-1 in earlier versions) and his/her
    9:   contributions to the likelihood is 1 - Prob of dying from last
   10:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
   11:   the healthy state at last known wave). Version is 0.98
   12: 
   13:   Revision 1.103  2005/09/30 15:54:49  lievre
   14:   (Module): sump fixed, loop imx fixed, and simplifications.
   15: 
   16:   Revision 1.102  2004/09/15 17:31:30  brouard
   17:   Add the possibility to read data file including tab characters.
   18: 
   19:   Revision 1.101  2004/09/15 10:38:38  brouard
   20:   Fix on curr_time
   21: 
   22:   Revision 1.100  2004/07/12 18:29:06  brouard
   23:   Add version for Mac OS X. Just define UNIX in Makefile
   24: 
   25:   Revision 1.99  2004/06/05 08:57:40  brouard
   26:   *** empty log message ***
   27: 
   28:   Revision 1.98  2004/05/16 15:05:56  brouard
   29:   New version 0.97 . First attempt to estimate force of mortality
   30:   directly from the data i.e. without the need of knowing the health
   31:   state at each age, but using a Gompertz model: log u =a + b*age .
   32:   This is the basic analysis of mortality and should be done before any
   33:   other analysis, in order to test if the mortality estimated from the
   34:   cross-longitudinal survey is different from the mortality estimated
   35:   from other sources like vital statistic data.
   36: 
   37:   The same imach parameter file can be used but the option for mle should be -3.
   38: 
   39:   Agnès, who wrote this part of the code, tried to keep most of the
   40:   former routines in order to include the new code within the former code.
   41: 
   42:   The output is very simple: only an estimate of the intercept and of
   43:   the slope with 95% confident intervals.
   44: 
   45:   Current limitations:
   46:   A) Even if you enter covariates, i.e. with the
   47:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   48:   B) There is no computation of Life Expectancy nor Life Table.
   49: 
   50:   Revision 1.97  2004/02/20 13:25:42  lievre
   51:   Version 0.96d. Population forecasting command line is (temporarily)
   52:   suppressed.
   53: 
   54:   Revision 1.96  2003/07/15 15:38:55  brouard
   55:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   56:   rewritten within the same printf. Workaround: many printfs.
   57: 
   58:   Revision 1.95  2003/07/08 07:54:34  brouard
   59:   * imach.c (Repository):
   60:   (Repository): Using imachwizard code to output a more meaningful covariance
   61:   matrix (cov(a12,c31) instead of numbers.
   62: 
   63:   Revision 1.94  2003/06/27 13:00:02  brouard
   64:   Just cleaning
   65: 
   66:   Revision 1.93  2003/06/25 16:33:55  brouard
   67:   (Module): On windows (cygwin) function asctime_r doesn't
   68:   exist so I changed back to asctime which exists.
   69:   (Module): Version 0.96b
   70: 
   71:   Revision 1.92  2003/06/25 16:30:45  brouard
   72:   (Module): On windows (cygwin) function asctime_r doesn't
   73:   exist so I changed back to asctime which exists.
   74: 
   75:   Revision 1.91  2003/06/25 15:30:29  brouard
   76:   * imach.c (Repository): Duplicated warning errors corrected.
   77:   (Repository): Elapsed time after each iteration is now output. It
   78:   helps to forecast when convergence will be reached. Elapsed time
   79:   is stamped in powell.  We created a new html file for the graphs
   80:   concerning matrix of covariance. It has extension -cov.htm.
   81: 
   82:   Revision 1.90  2003/06/24 12:34:15  brouard
   83:   (Module): Some bugs corrected for windows. Also, when
   84:   mle=-1 a template is output in file "or"mypar.txt with the design
   85:   of the covariance matrix to be input.
   86: 
   87:   Revision 1.89  2003/06/24 12:30:52  brouard
   88:   (Module): Some bugs corrected for windows. Also, when
   89:   mle=-1 a template is output in file "or"mypar.txt with the design
   90:   of the covariance matrix to be input.
   91: 
   92:   Revision 1.88  2003/06/23 17:54:56  brouard
   93:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   94: 
   95:   Revision 1.87  2003/06/18 12:26:01  brouard
   96:   Version 0.96
   97: 
   98:   Revision 1.86  2003/06/17 20:04:08  brouard
   99:   (Module): Change position of html and gnuplot routines and added
  100:   routine fileappend.
  101: 
  102:   Revision 1.85  2003/06/17 13:12:43  brouard
  103:   * imach.c (Repository): Check when date of death was earlier that
  104:   current date of interview. It may happen when the death was just
  105:   prior to the death. In this case, dh was negative and likelihood
  106:   was wrong (infinity). We still send an "Error" but patch by
  107:   assuming that the date of death was just one stepm after the
  108:   interview.
  109:   (Repository): Because some people have very long ID (first column)
  110:   we changed int to long in num[] and we added a new lvector for
  111:   memory allocation. But we also truncated to 8 characters (left
  112:   truncation)
  113:   (Repository): No more line truncation errors.
  114: 
  115:   Revision 1.84  2003/06/13 21:44:43  brouard
  116:   * imach.c (Repository): Replace "freqsummary" at a correct
  117:   place. It differs from routine "prevalence" which may be called
  118:   many times. Probs is memory consuming and must be used with
  119:   parcimony.
  120:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  121: 
  122:   Revision 1.83  2003/06/10 13:39:11  lievre
  123:   *** empty log message ***
  124: 
  125:   Revision 1.82  2003/06/05 15:57:20  brouard
  126:   Add log in  imach.c and  fullversion number is now printed.
  127: 
  128: */
  129: /*
  130:    Interpolated Markov Chain
  131: 
  132:   Short summary of the programme:
  133:   
  134:   This program computes Healthy Life Expectancies from
  135:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  136:   first survey ("cross") where individuals from different ages are
  137:   interviewed on their health status or degree of disability (in the
  138:   case of a health survey which is our main interest) -2- at least a
  139:   second wave of interviews ("longitudinal") which measure each change
  140:   (if any) in individual health status.  Health expectancies are
  141:   computed from the time spent in each health state according to a
  142:   model. More health states you consider, more time is necessary to reach the
  143:   Maximum Likelihood of the parameters involved in the model.  The
  144:   simplest model is the multinomial logistic model where pij is the
  145:   probability to be observed in state j at the second wave
  146:   conditional to be observed in state i at the first wave. Therefore
  147:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  148:   'age' is age and 'sex' is a covariate. If you want to have a more
  149:   complex model than "constant and age", you should modify the program
  150:   where the markup *Covariates have to be included here again* invites
  151:   you to do it.  More covariates you add, slower the
  152:   convergence.
  153: 
  154:   The advantage of this computer programme, compared to a simple
  155:   multinomial logistic model, is clear when the delay between waves is not
  156:   identical for each individual. Also, if a individual missed an
  157:   intermediate interview, the information is lost, but taken into
  158:   account using an interpolation or extrapolation.  
  159: 
  160:   hPijx is the probability to be observed in state i at age x+h
  161:   conditional to the observed state i at age x. The delay 'h' can be
  162:   split into an exact number (nh*stepm) of unobserved intermediate
  163:   states. This elementary transition (by month, quarter,
  164:   semester or year) is modelled as a multinomial logistic.  The hPx
  165:   matrix is simply the matrix product of nh*stepm elementary matrices
  166:   and the contribution of each individual to the likelihood is simply
  167:   hPijx.
  168: 
  169:   Also this programme outputs the covariance matrix of the parameters but also
  170:   of the life expectancies. It also computes the stable prevalence. 
  171:   
  172:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  173:            Institut national d'études démographiques, Paris.
  174:   This software have been partly granted by Euro-REVES, a concerted action
  175:   from the European Union.
  176:   It is copyrighted identically to a GNU software product, ie programme and
  177:   software can be distributed freely for non commercial use. Latest version
  178:   can be accessed at http://euroreves.ined.fr/imach .
  179: 
  180:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  181:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  182:   
  183:   **********************************************************************/
  184: /*
  185:   main
  186:   read parameterfile
  187:   read datafile
  188:   concatwav
  189:   freqsummary
  190:   if (mle >= 1)
  191:     mlikeli
  192:   print results files
  193:   if mle==1 
  194:      computes hessian
  195:   read end of parameter file: agemin, agemax, bage, fage, estepm
  196:       begin-prev-date,...
  197:   open gnuplot file
  198:   open html file
  199:   stable prevalence
  200:    for age prevalim()
  201:   h Pij x
  202:   variance of p varprob
  203:   forecasting if prevfcast==1 prevforecast call prevalence()
  204:   health expectancies
  205:   Variance-covariance of DFLE
  206:   prevalence()
  207:    movingaverage()
  208:   varevsij() 
  209:   if popbased==1 varevsij(,popbased)
  210:   total life expectancies
  211:   Variance of stable prevalence
  212:  end
  213: */
  214: 
  215: 
  216: 
  217:  
  218: #include <math.h>
  219: #include <stdio.h>
  220: #include <stdlib.h>
  221: #include <unistd.h>
  222: 
  223: /* #include <sys/time.h> */
  224: #include <time.h>
  225: #include "timeval.h"
  226: 
  227: /* #include <libintl.h> */
  228: /* #define _(String) gettext (String) */
  229: 
  230: #define MAXLINE 256
  231: #define GNUPLOTPROGRAM "gnuplot"
  232: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  233: #define FILENAMELENGTH 132
  234: /*#define DEBUG*/
  235: /*#define windows*/
  236: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  237: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  238: 
  239: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
  240: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
  241: 
  242: #define NINTERVMAX 8
  243: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
  244: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
  245: #define NCOVMAX 8 /* Maximum number of covariates */
  246: #define MAXN 20000
  247: #define YEARM 12. /* Number of months per year */
  248: #define AGESUP 130
  249: #define AGEBASE 40
  250: #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
  251: #ifdef UNIX
  252: #define DIRSEPARATOR '/'
  253: #define ODIRSEPARATOR '\\'
  254: #else
  255: #define DIRSEPARATOR '\\'
  256: #define ODIRSEPARATOR '/'
  257: #endif
  258: 
  259: /* $Id: imach.c,v 1.104 2005/09/30 16:11:43 lievre Exp $ */
  260: /* $State: Exp $ */
  261: 
  262: char version[]="Imach version 0.98, September 2005, INED-EUROREVES ";
  263: char fullversion[]="$Revision: 1.104 $ $Date: 2005/09/30 16:11:43 $"; 
  264: int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  265: int nvar;
  266: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
  267: int npar=NPARMAX;
  268: int nlstate=2; /* Number of live states */
  269: int ndeath=1; /* Number of dead states */
  270: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  271: int popbased=0;
  272: 
  273: int *wav; /* Number of waves for this individuual 0 is possible */
  274: int maxwav; /* Maxim number of waves */
  275: int jmin, jmax; /* min, max spacing between 2 waves */
  276: int gipmx, gsw; /* Global variables on the number of contributions 
  277: 		   to the likelihood and the sum of weights (done by funcone)*/
  278: int mle, weightopt;
  279: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  280: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  281: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  282: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  283: double jmean; /* Mean space between 2 waves */
  284: double **oldm, **newm, **savm; /* Working pointers to matrices */
  285: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  286: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  287: FILE *ficlog, *ficrespow;
  288: int globpr; /* Global variable for printing or not */
  289: double fretone; /* Only one call to likelihood */
  290: long ipmx; /* Number of contributions */
  291: double sw; /* Sum of weights */
  292: char filerespow[FILENAMELENGTH];
  293: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  294: FILE *ficresilk;
  295: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  296: FILE *ficresprobmorprev;
  297: FILE *fichtm, *fichtmcov; /* Html File */
  298: FILE *ficreseij;
  299: char filerese[FILENAMELENGTH];
  300: FILE  *ficresvij;
  301: char fileresv[FILENAMELENGTH];
  302: FILE  *ficresvpl;
  303: char fileresvpl[FILENAMELENGTH];
  304: char title[MAXLINE];
  305: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  306: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
  307: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  308: char command[FILENAMELENGTH];
  309: int  outcmd=0;
  310: 
  311: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  312: 
  313: char filelog[FILENAMELENGTH]; /* Log file */
  314: char filerest[FILENAMELENGTH];
  315: char fileregp[FILENAMELENGTH];
  316: char popfile[FILENAMELENGTH];
  317: 
  318: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  319: 
  320: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
  321: struct timezone tzp;
  322: extern int gettimeofday();
  323: struct tm tmg, tm, tmf, *gmtime(), *localtime();
  324: long time_value;
  325: extern long time();
  326: char strcurr[80], strfor[80];
  327: 
  328: #define NR_END 1
  329: #define FREE_ARG char*
  330: #define FTOL 1.0e-10
  331: 
  332: #define NRANSI 
  333: #define ITMAX 200 
  334: 
  335: #define TOL 2.0e-4 
  336: 
  337: #define CGOLD 0.3819660 
  338: #define ZEPS 1.0e-10 
  339: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  340: 
  341: #define GOLD 1.618034 
  342: #define GLIMIT 100.0 
  343: #define TINY 1.0e-20 
  344: 
  345: static double maxarg1,maxarg2;
  346: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  347: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  348:   
  349: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  350: #define rint(a) floor(a+0.5)
  351: 
  352: static double sqrarg;
  353: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  354: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  355: int agegomp= AGEGOMP;
  356: 
  357: int imx; 
  358: int stepm=1;
  359: /* Stepm, step in month: minimum step interpolation*/
  360: 
  361: int estepm;
  362: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  363: 
  364: int m,nb;
  365: long *num;
  366: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  367: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  368: double **pmmij, ***probs;
  369: double *ageexmed,*agecens;
  370: double dateintmean=0;
  371: 
  372: double *weight;
  373: int **s; /* Status */
  374: double *agedc, **covar, idx;
  375: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  376: 
  377: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  378: double ftolhess; /* Tolerance for computing hessian */
  379: 
  380: /**************** split *************************/
  381: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  382: {
  383:   /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
  384:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  385:   */ 
  386:   char	*ss;				/* pointer */
  387:   int	l1, l2;				/* length counters */
  388: 
  389:   l1 = strlen(path );			/* length of path */
  390:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  391:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  392:   if ( ss == NULL ) {			/* no directory, so use current */
  393:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  394:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  395:     /* get current working directory */
  396:     /*    extern  char* getcwd ( char *buf , int len);*/
  397:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  398:       return( GLOCK_ERROR_GETCWD );
  399:     }
  400:     strcpy( name, path );		/* we've got it */
  401:   } else {				/* strip direcotry from path */
  402:     ss++;				/* after this, the filename */
  403:     l2 = strlen( ss );			/* length of filename */
  404:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  405:     strcpy( name, ss );		/* save file name */
  406:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  407:     dirc[l1-l2] = 0;			/* add zero */
  408:   }
  409:   l1 = strlen( dirc );			/* length of directory */
  410:   /*#ifdef windows
  411:   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
  412: #else
  413:   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
  414: #endif
  415:   */
  416:   ss = strrchr( name, '.' );		/* find last / */
  417:   if (ss >0){
  418:     ss++;
  419:     strcpy(ext,ss);			/* save extension */
  420:     l1= strlen( name);
  421:     l2= strlen(ss)+1;
  422:     strncpy( finame, name, l1-l2);
  423:     finame[l1-l2]= 0;
  424:   }
  425:   return( 0 );				/* we're done */
  426: }
  427: 
  428: 
  429: /******************************************/
  430: 
  431: void replace_back_to_slash(char *s, char*t)
  432: {
  433:   int i;
  434:   int lg=0;
  435:   i=0;
  436:   lg=strlen(t);
  437:   for(i=0; i<= lg; i++) {
  438:     (s[i] = t[i]);
  439:     if (t[i]== '\\') s[i]='/';
  440:   }
  441: }
  442: 
  443: int nbocc(char *s, char occ)
  444: {
  445:   int i,j=0;
  446:   int lg=20;
  447:   i=0;
  448:   lg=strlen(s);
  449:   for(i=0; i<= lg; i++) {
  450:   if  (s[i] == occ ) j++;
  451:   }
  452:   return j;
  453: }
  454: 
  455: void cutv(char *u,char *v, char*t, char occ)
  456: {
  457:   /* cuts string t into u and v where u ends before first occurence of char 'occ' 
  458:      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
  459:      gives u="abcedf" and v="ghi2j" */
  460:   int i,lg,j,p=0;
  461:   i=0;
  462:   for(j=0; j<=strlen(t)-1; j++) {
  463:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
  464:   }
  465: 
  466:   lg=strlen(t);
  467:   for(j=0; j<p; j++) {
  468:     (u[j] = t[j]);
  469:   }
  470:      u[p]='\0';
  471: 
  472:    for(j=0; j<= lg; j++) {
  473:     if (j>=(p+1))(v[j-p-1] = t[j]);
  474:   }
  475: }
  476: 
  477: /********************** nrerror ********************/
  478: 
  479: void nrerror(char error_text[])
  480: {
  481:   fprintf(stderr,"ERREUR ...\n");
  482:   fprintf(stderr,"%s\n",error_text);
  483:   exit(EXIT_FAILURE);
  484: }
  485: /*********************** vector *******************/
  486: double *vector(int nl, int nh)
  487: {
  488:   double *v;
  489:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  490:   if (!v) nrerror("allocation failure in vector");
  491:   return v-nl+NR_END;
  492: }
  493: 
  494: /************************ free vector ******************/
  495: void free_vector(double*v, int nl, int nh)
  496: {
  497:   free((FREE_ARG)(v+nl-NR_END));
  498: }
  499: 
  500: /************************ivector *******************************/
  501: int *ivector(long nl,long nh)
  502: {
  503:   int *v;
  504:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  505:   if (!v) nrerror("allocation failure in ivector");
  506:   return v-nl+NR_END;
  507: }
  508: 
  509: /******************free ivector **************************/
  510: void free_ivector(int *v, long nl, long nh)
  511: {
  512:   free((FREE_ARG)(v+nl-NR_END));
  513: }
  514: 
  515: /************************lvector *******************************/
  516: long *lvector(long nl,long nh)
  517: {
  518:   long *v;
  519:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  520:   if (!v) nrerror("allocation failure in ivector");
  521:   return v-nl+NR_END;
  522: }
  523: 
  524: /******************free lvector **************************/
  525: void free_lvector(long *v, long nl, long nh)
  526: {
  527:   free((FREE_ARG)(v+nl-NR_END));
  528: }
  529: 
  530: /******************* imatrix *******************************/
  531: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  532:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  533: { 
  534:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  535:   int **m; 
  536:   
  537:   /* allocate pointers to rows */ 
  538:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  539:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  540:   m += NR_END; 
  541:   m -= nrl; 
  542:   
  543:   
  544:   /* allocate rows and set pointers to them */ 
  545:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  546:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  547:   m[nrl] += NR_END; 
  548:   m[nrl] -= ncl; 
  549:   
  550:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  551:   
  552:   /* return pointer to array of pointers to rows */ 
  553:   return m; 
  554: } 
  555: 
  556: /****************** free_imatrix *************************/
  557: void free_imatrix(m,nrl,nrh,ncl,nch)
  558:       int **m;
  559:       long nch,ncl,nrh,nrl; 
  560:      /* free an int matrix allocated by imatrix() */ 
  561: { 
  562:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  563:   free((FREE_ARG) (m+nrl-NR_END)); 
  564: } 
  565: 
  566: /******************* matrix *******************************/
  567: double **matrix(long nrl, long nrh, long ncl, long nch)
  568: {
  569:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  570:   double **m;
  571: 
  572:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  573:   if (!m) nrerror("allocation failure 1 in matrix()");
  574:   m += NR_END;
  575:   m -= nrl;
  576: 
  577:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  578:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  579:   m[nrl] += NR_END;
  580:   m[nrl] -= ncl;
  581: 
  582:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  583:   return m;
  584:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
  585:    */
  586: }
  587: 
  588: /*************************free matrix ************************/
  589: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  590: {
  591:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  592:   free((FREE_ARG)(m+nrl-NR_END));
  593: }
  594: 
  595: /******************* ma3x *******************************/
  596: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  597: {
  598:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  599:   double ***m;
  600: 
  601:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  602:   if (!m) nrerror("allocation failure 1 in matrix()");
  603:   m += NR_END;
  604:   m -= nrl;
  605: 
  606:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  607:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  608:   m[nrl] += NR_END;
  609:   m[nrl] -= ncl;
  610: 
  611:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  612: 
  613:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  614:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  615:   m[nrl][ncl] += NR_END;
  616:   m[nrl][ncl] -= nll;
  617:   for (j=ncl+1; j<=nch; j++) 
  618:     m[nrl][j]=m[nrl][j-1]+nlay;
  619:   
  620:   for (i=nrl+1; i<=nrh; i++) {
  621:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  622:     for (j=ncl+1; j<=nch; j++) 
  623:       m[i][j]=m[i][j-1]+nlay;
  624:   }
  625:   return m; 
  626:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  627:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  628:   */
  629: }
  630: 
  631: /*************************free ma3x ************************/
  632: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  633: {
  634:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  635:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  636:   free((FREE_ARG)(m+nrl-NR_END));
  637: }
  638: 
  639: /*************** function subdirf ***********/
  640: char *subdirf(char fileres[])
  641: {
  642:   /* Caution optionfilefiname is hidden */
  643:   strcpy(tmpout,optionfilefiname);
  644:   strcat(tmpout,"/"); /* Add to the right */
  645:   strcat(tmpout,fileres);
  646:   return tmpout;
  647: }
  648: 
  649: /*************** function subdirf2 ***********/
  650: char *subdirf2(char fileres[], char *preop)
  651: {
  652:   
  653:   /* Caution optionfilefiname is hidden */
  654:   strcpy(tmpout,optionfilefiname);
  655:   strcat(tmpout,"/");
  656:   strcat(tmpout,preop);
  657:   strcat(tmpout,fileres);
  658:   return tmpout;
  659: }
  660: 
  661: /*************** function subdirf3 ***********/
  662: char *subdirf3(char fileres[], char *preop, char *preop2)
  663: {
  664:   
  665:   /* Caution optionfilefiname is hidden */
  666:   strcpy(tmpout,optionfilefiname);
  667:   strcat(tmpout,"/");
  668:   strcat(tmpout,preop);
  669:   strcat(tmpout,preop2);
  670:   strcat(tmpout,fileres);
  671:   return tmpout;
  672: }
  673: 
  674: /***************** f1dim *************************/
  675: extern int ncom; 
  676: extern double *pcom,*xicom;
  677: extern double (*nrfunc)(double []); 
  678:  
  679: double f1dim(double x) 
  680: { 
  681:   int j; 
  682:   double f;
  683:   double *xt; 
  684:  
  685:   xt=vector(1,ncom); 
  686:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  687:   f=(*nrfunc)(xt); 
  688:   free_vector(xt,1,ncom); 
  689:   return f; 
  690: } 
  691: 
  692: /*****************brent *************************/
  693: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  694: { 
  695:   int iter; 
  696:   double a,b,d,etemp;
  697:   double fu,fv,fw,fx;
  698:   double ftemp;
  699:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  700:   double e=0.0; 
  701:  
  702:   a=(ax < cx ? ax : cx); 
  703:   b=(ax > cx ? ax : cx); 
  704:   x=w=v=bx; 
  705:   fw=fv=fx=(*f)(x); 
  706:   for (iter=1;iter<=ITMAX;iter++) { 
  707:     xm=0.5*(a+b); 
  708:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  709:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  710:     printf(".");fflush(stdout);
  711:     fprintf(ficlog,".");fflush(ficlog);
  712: #ifdef DEBUG
  713:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  714:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  715:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  716: #endif
  717:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  718:       *xmin=x; 
  719:       return fx; 
  720:     } 
  721:     ftemp=fu;
  722:     if (fabs(e) > tol1) { 
  723:       r=(x-w)*(fx-fv); 
  724:       q=(x-v)*(fx-fw); 
  725:       p=(x-v)*q-(x-w)*r; 
  726:       q=2.0*(q-r); 
  727:       if (q > 0.0) p = -p; 
  728:       q=fabs(q); 
  729:       etemp=e; 
  730:       e=d; 
  731:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  732: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  733:       else { 
  734: 	d=p/q; 
  735: 	u=x+d; 
  736: 	if (u-a < tol2 || b-u < tol2) 
  737: 	  d=SIGN(tol1,xm-x); 
  738:       } 
  739:     } else { 
  740:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  741:     } 
  742:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  743:     fu=(*f)(u); 
  744:     if (fu <= fx) { 
  745:       if (u >= x) a=x; else b=x; 
  746:       SHFT(v,w,x,u) 
  747: 	SHFT(fv,fw,fx,fu) 
  748: 	} else { 
  749: 	  if (u < x) a=u; else b=u; 
  750: 	  if (fu <= fw || w == x) { 
  751: 	    v=w; 
  752: 	    w=u; 
  753: 	    fv=fw; 
  754: 	    fw=fu; 
  755: 	  } else if (fu <= fv || v == x || v == w) { 
  756: 	    v=u; 
  757: 	    fv=fu; 
  758: 	  } 
  759: 	} 
  760:   } 
  761:   nrerror("Too many iterations in brent"); 
  762:   *xmin=x; 
  763:   return fx; 
  764: } 
  765: 
  766: /****************** mnbrak ***********************/
  767: 
  768: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  769: 	    double (*func)(double)) 
  770: { 
  771:   double ulim,u,r,q, dum;
  772:   double fu; 
  773:  
  774:   *fa=(*func)(*ax); 
  775:   *fb=(*func)(*bx); 
  776:   if (*fb > *fa) { 
  777:     SHFT(dum,*ax,*bx,dum) 
  778:       SHFT(dum,*fb,*fa,dum) 
  779:       } 
  780:   *cx=(*bx)+GOLD*(*bx-*ax); 
  781:   *fc=(*func)(*cx); 
  782:   while (*fb > *fc) { 
  783:     r=(*bx-*ax)*(*fb-*fc); 
  784:     q=(*bx-*cx)*(*fb-*fa); 
  785:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  786:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  787:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  788:     if ((*bx-u)*(u-*cx) > 0.0) { 
  789:       fu=(*func)(u); 
  790:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  791:       fu=(*func)(u); 
  792:       if (fu < *fc) { 
  793: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  794: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  795: 	  } 
  796:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  797:       u=ulim; 
  798:       fu=(*func)(u); 
  799:     } else { 
  800:       u=(*cx)+GOLD*(*cx-*bx); 
  801:       fu=(*func)(u); 
  802:     } 
  803:     SHFT(*ax,*bx,*cx,u) 
  804:       SHFT(*fa,*fb,*fc,fu) 
  805:       } 
  806: } 
  807: 
  808: /*************** linmin ************************/
  809: 
  810: int ncom; 
  811: double *pcom,*xicom;
  812: double (*nrfunc)(double []); 
  813:  
  814: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  815: { 
  816:   double brent(double ax, double bx, double cx, 
  817: 	       double (*f)(double), double tol, double *xmin); 
  818:   double f1dim(double x); 
  819:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  820: 	      double *fc, double (*func)(double)); 
  821:   int j; 
  822:   double xx,xmin,bx,ax; 
  823:   double fx,fb,fa;
  824:  
  825:   ncom=n; 
  826:   pcom=vector(1,n); 
  827:   xicom=vector(1,n); 
  828:   nrfunc=func; 
  829:   for (j=1;j<=n;j++) { 
  830:     pcom[j]=p[j]; 
  831:     xicom[j]=xi[j]; 
  832:   } 
  833:   ax=0.0; 
  834:   xx=1.0; 
  835:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  836:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  837: #ifdef DEBUG
  838:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  839:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  840: #endif
  841:   for (j=1;j<=n;j++) { 
  842:     xi[j] *= xmin; 
  843:     p[j] += xi[j]; 
  844:   } 
  845:   free_vector(xicom,1,n); 
  846:   free_vector(pcom,1,n); 
  847: } 
  848: 
  849: char *asc_diff_time(long time_sec, char ascdiff[])
  850: {
  851:   long sec_left, days, hours, minutes;
  852:   days = (time_sec) / (60*60*24);
  853:   sec_left = (time_sec) % (60*60*24);
  854:   hours = (sec_left) / (60*60) ;
  855:   sec_left = (sec_left) %(60*60);
  856:   minutes = (sec_left) /60;
  857:   sec_left = (sec_left) % (60);
  858:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
  859:   return ascdiff;
  860: }
  861: 
  862: /*************** powell ************************/
  863: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  864: 	    double (*func)(double [])) 
  865: { 
  866:   void linmin(double p[], double xi[], int n, double *fret, 
  867: 	      double (*func)(double [])); 
  868:   int i,ibig,j; 
  869:   double del,t,*pt,*ptt,*xit;
  870:   double fp,fptt;
  871:   double *xits;
  872:   int niterf, itmp;
  873: 
  874:   pt=vector(1,n); 
  875:   ptt=vector(1,n); 
  876:   xit=vector(1,n); 
  877:   xits=vector(1,n); 
  878:   *fret=(*func)(p); 
  879:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  880:   for (*iter=1;;++(*iter)) { 
  881:     fp=(*fret); 
  882:     ibig=0; 
  883:     del=0.0; 
  884:     last_time=curr_time;
  885:     (void) gettimeofday(&curr_time,&tzp);
  886:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
  887:     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
  888:     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
  889:     */
  890:    for (i=1;i<=n;i++) {
  891:       printf(" %d %.12f",i, p[i]);
  892:       fprintf(ficlog," %d %.12lf",i, p[i]);
  893:       fprintf(ficrespow," %.12lf", p[i]);
  894:     }
  895:     printf("\n");
  896:     fprintf(ficlog,"\n");
  897:     fprintf(ficrespow,"\n");fflush(ficrespow);
  898:     if(*iter <=3){
  899:       tm = *localtime(&curr_time.tv_sec);
  900:       strcpy(strcurr,asctime(&tm));
  901: /*       asctime_r(&tm,strcurr); */
  902:       forecast_time=curr_time; 
  903:       itmp = strlen(strcurr);
  904:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
  905: 	strcurr[itmp-1]='\0';
  906:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  907:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  908:       for(niterf=10;niterf<=30;niterf+=10){
  909: 	forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
  910: 	tmf = *localtime(&forecast_time.tv_sec);
  911: /* 	asctime_r(&tmf,strfor); */
  912: 	strcpy(strfor,asctime(&tmf));
  913: 	itmp = strlen(strfor);
  914: 	if(strfor[itmp-1]=='\n')
  915: 	strfor[itmp-1]='\0';
  916: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  917: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  918:       }
  919:     }
  920:     for (i=1;i<=n;i++) { 
  921:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  922:       fptt=(*fret); 
  923: #ifdef DEBUG
  924:       printf("fret=%lf \n",*fret);
  925:       fprintf(ficlog,"fret=%lf \n",*fret);
  926: #endif
  927:       printf("%d",i);fflush(stdout);
  928:       fprintf(ficlog,"%d",i);fflush(ficlog);
  929:       linmin(p,xit,n,fret,func); 
  930:       if (fabs(fptt-(*fret)) > del) { 
  931: 	del=fabs(fptt-(*fret)); 
  932: 	ibig=i; 
  933:       } 
  934: #ifdef DEBUG
  935:       printf("%d %.12e",i,(*fret));
  936:       fprintf(ficlog,"%d %.12e",i,(*fret));
  937:       for (j=1;j<=n;j++) {
  938: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
  939: 	printf(" x(%d)=%.12e",j,xit[j]);
  940: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  941:       }
  942:       for(j=1;j<=n;j++) {
  943: 	printf(" p=%.12e",p[j]);
  944: 	fprintf(ficlog," p=%.12e",p[j]);
  945:       }
  946:       printf("\n");
  947:       fprintf(ficlog,"\n");
  948: #endif
  949:     } 
  950:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
  951: #ifdef DEBUG
  952:       int k[2],l;
  953:       k[0]=1;
  954:       k[1]=-1;
  955:       printf("Max: %.12e",(*func)(p));
  956:       fprintf(ficlog,"Max: %.12e",(*func)(p));
  957:       for (j=1;j<=n;j++) {
  958: 	printf(" %.12e",p[j]);
  959: 	fprintf(ficlog," %.12e",p[j]);
  960:       }
  961:       printf("\n");
  962:       fprintf(ficlog,"\n");
  963:       for(l=0;l<=1;l++) {
  964: 	for (j=1;j<=n;j++) {
  965: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
  966: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  967: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  968: 	}
  969: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  970: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  971:       }
  972: #endif
  973: 
  974: 
  975:       free_vector(xit,1,n); 
  976:       free_vector(xits,1,n); 
  977:       free_vector(ptt,1,n); 
  978:       free_vector(pt,1,n); 
  979:       return; 
  980:     } 
  981:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
  982:     for (j=1;j<=n;j++) { 
  983:       ptt[j]=2.0*p[j]-pt[j]; 
  984:       xit[j]=p[j]-pt[j]; 
  985:       pt[j]=p[j]; 
  986:     } 
  987:     fptt=(*func)(ptt); 
  988:     if (fptt < fp) { 
  989:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
  990:       if (t < 0.0) { 
  991: 	linmin(p,xit,n,fret,func); 
  992: 	for (j=1;j<=n;j++) { 
  993: 	  xi[j][ibig]=xi[j][n]; 
  994: 	  xi[j][n]=xit[j]; 
  995: 	}
  996: #ifdef DEBUG
  997: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  998: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  999: 	for(j=1;j<=n;j++){
 1000: 	  printf(" %.12e",xit[j]);
 1001: 	  fprintf(ficlog," %.12e",xit[j]);
 1002: 	}
 1003: 	printf("\n");
 1004: 	fprintf(ficlog,"\n");
 1005: #endif
 1006:       }
 1007:     } 
 1008:   } 
 1009: } 
 1010: 
 1011: /**** Prevalence limit (stable prevalence)  ****************/
 1012: 
 1013: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1014: {
 1015:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1016:      matrix by transitions matrix until convergence is reached */
 1017: 
 1018:   int i, ii,j,k;
 1019:   double min, max, maxmin, maxmax,sumnew=0.;
 1020:   double **matprod2();
 1021:   double **out, cov[NCOVMAX], **pmij();
 1022:   double **newm;
 1023:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1024: 
 1025:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1026:     for (j=1;j<=nlstate+ndeath;j++){
 1027:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1028:     }
 1029: 
 1030:    cov[1]=1.;
 1031:  
 1032:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1033:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1034:     newm=savm;
 1035:     /* Covariates have to be included here again */
 1036:      cov[2]=agefin;
 1037:   
 1038:       for (k=1; k<=cptcovn;k++) {
 1039: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1040: 	/*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 1041:       }
 1042:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1043:       for (k=1; k<=cptcovprod;k++)
 1044: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1045: 
 1046:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1047:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1048:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1049:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 1050: 
 1051:     savm=oldm;
 1052:     oldm=newm;
 1053:     maxmax=0.;
 1054:     for(j=1;j<=nlstate;j++){
 1055:       min=1.;
 1056:       max=0.;
 1057:       for(i=1; i<=nlstate; i++) {
 1058: 	sumnew=0;
 1059: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1060: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1061: 	max=FMAX(max,prlim[i][j]);
 1062: 	min=FMIN(min,prlim[i][j]);
 1063:       }
 1064:       maxmin=max-min;
 1065:       maxmax=FMAX(maxmax,maxmin);
 1066:     }
 1067:     if(maxmax < ftolpl){
 1068:       return prlim;
 1069:     }
 1070:   }
 1071: }
 1072: 
 1073: /*************** transition probabilities ***************/ 
 1074: 
 1075: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1076: {
 1077:   double s1, s2;
 1078:   /*double t34;*/
 1079:   int i,j,j1, nc, ii, jj;
 1080: 
 1081:     for(i=1; i<= nlstate; i++){
 1082:       for(j=1; j<i;j++){
 1083: 	for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 1084: 	  /*s2 += param[i][j][nc]*cov[nc];*/
 1085: 	  s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 1086: /* 	 printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 1087: 	}
 1088: 	ps[i][j]=s2;
 1089: /* 	printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 1090:       }
 1091:       for(j=i+1; j<=nlstate+ndeath;j++){
 1092: 	for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 1093: 	  s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 1094: /* 	  printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 1095: 	}
 1096: 	ps[i][j]=s2;
 1097:       }
 1098:     }
 1099:     /*ps[3][2]=1;*/
 1100:     
 1101:     for(i=1; i<= nlstate; i++){
 1102:       s1=0;
 1103:       for(j=1; j<i; j++)
 1104: 	s1+=exp(ps[i][j]);
 1105:       for(j=i+1; j<=nlstate+ndeath; j++)
 1106: 	s1+=exp(ps[i][j]);
 1107:       ps[i][i]=1./(s1+1.);
 1108:       for(j=1; j<i; j++)
 1109: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1110:       for(j=i+1; j<=nlstate+ndeath; j++)
 1111: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1112:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1113:     } /* end i */
 1114:     
 1115:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1116:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1117: 	ps[ii][jj]=0;
 1118: 	ps[ii][ii]=1;
 1119:       }
 1120:     }
 1121:     
 1122: 
 1123: /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1124: /* 	 for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1125: /* 	   printf("ddd %lf ",ps[ii][jj]); */
 1126: /* 	 } */
 1127: /* 	 printf("\n "); */
 1128: /*        } */
 1129: /*        printf("\n ");printf("%lf ",cov[2]); */
 1130:        /*
 1131:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1132:       goto end;*/
 1133:     return ps;
 1134: }
 1135: 
 1136: /**************** Product of 2 matrices ******************/
 1137: 
 1138: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 1139: {
 1140:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1141:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1142:   /* in, b, out are matrice of pointers which should have been initialized 
 1143:      before: only the contents of out is modified. The function returns
 1144:      a pointer to pointers identical to out */
 1145:   long i, j, k;
 1146:   for(i=nrl; i<= nrh; i++)
 1147:     for(k=ncolol; k<=ncoloh; k++)
 1148:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
 1149: 	out[i][k] +=in[i][j]*b[j][k];
 1150: 
 1151:   return out;
 1152: }
 1153: 
 1154: 
 1155: /************* Higher Matrix Product ***************/
 1156: 
 1157: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1158: {
 1159:   /* Computes the transition matrix starting at age 'age' over 
 1160:      'nhstepm*hstepm*stepm' months (i.e. until
 1161:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1162:      nhstepm*hstepm matrices. 
 1163:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1164:      (typically every 2 years instead of every month which is too big 
 1165:      for the memory).
 1166:      Model is determined by parameters x and covariates have to be 
 1167:      included manually here. 
 1168: 
 1169:      */
 1170: 
 1171:   int i, j, d, h, k;
 1172:   double **out, cov[NCOVMAX];
 1173:   double **newm;
 1174: 
 1175:   /* Hstepm could be zero and should return the unit matrix */
 1176:   for (i=1;i<=nlstate+ndeath;i++)
 1177:     for (j=1;j<=nlstate+ndeath;j++){
 1178:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1179:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1180:     }
 1181:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1182:   for(h=1; h <=nhstepm; h++){
 1183:     for(d=1; d <=hstepm; d++){
 1184:       newm=savm;
 1185:       /* Covariates have to be included here again */
 1186:       cov[1]=1.;
 1187:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1188:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1189:       for (k=1; k<=cptcovage;k++)
 1190: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1191:       for (k=1; k<=cptcovprod;k++)
 1192: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1193: 
 1194: 
 1195:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1196:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1197:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1198: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1199:       savm=oldm;
 1200:       oldm=newm;
 1201:     }
 1202:     for(i=1; i<=nlstate+ndeath; i++)
 1203:       for(j=1;j<=nlstate+ndeath;j++) {
 1204: 	po[i][j][h]=newm[i][j];
 1205: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 1206: 	 */
 1207:       }
 1208:   } /* end h */
 1209:   return po;
 1210: }
 1211: 
 1212: 
 1213: /*************** log-likelihood *************/
 1214: double func( double *x)
 1215: {
 1216:   int i, ii, j, k, mi, d, kk;
 1217:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1218:   double **out;
 1219:   double sw; /* Sum of weights */
 1220:   double lli; /* Individual log likelihood */
 1221:   int s1, s2;
 1222:   double bbh, survp;
 1223:   long ipmx;
 1224:   /*extern weight */
 1225:   /* We are differentiating ll according to initial status */
 1226:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1227:   /*for(i=1;i<imx;i++) 
 1228:     printf(" %d\n",s[4][i]);
 1229:   */
 1230:   cov[1]=1.;
 1231: 
 1232:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1233: 
 1234:   if(mle==1){
 1235:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1236:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1237:       for(mi=1; mi<= wav[i]-1; mi++){
 1238: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1239: 	  for (j=1;j<=nlstate+ndeath;j++){
 1240: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1241: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1242: 	  }
 1243: 	for(d=0; d<dh[mi][i]; d++){
 1244: 	  newm=savm;
 1245: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1246: 	  for (kk=1; kk<=cptcovage;kk++) {
 1247: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1248: 	  }
 1249: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1250: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1251: 	  savm=oldm;
 1252: 	  oldm=newm;
 1253: 	} /* end mult */
 1254:       
 1255: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1256: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1257: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1258: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1259: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1260: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1261: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1262: 	 * probability in order to take into account the bias as a fraction of the way
 1263: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1264: 	 * -stepm/2 to stepm/2 .
 1265: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1266: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1267: 	 */
 1268: 	s1=s[mw[mi][i]][i];
 1269: 	s2=s[mw[mi+1][i]][i];
 1270: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1271: 	/* bias bh is positive if real duration
 1272: 	 * is higher than the multiple of stepm and negative otherwise.
 1273: 	 */
 1274: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1275: 	if( s2 > nlstate){ 
 1276: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1277: 	     then the contribution to the likelihood is the probability to 
 1278: 	     die between last step unit time and current  step unit time, 
 1279: 	     which is also equal to probability to die before dh 
 1280: 	     minus probability to die before dh-stepm . 
 1281: 	     In version up to 0.92 likelihood was computed
 1282: 	as if date of death was unknown. Death was treated as any other
 1283: 	health state: the date of the interview describes the actual state
 1284: 	and not the date of a change in health state. The former idea was
 1285: 	to consider that at each interview the state was recorded
 1286: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1287: 	introduced the exact date of death then we should have modified
 1288: 	the contribution of an exact death to the likelihood. This new
 1289: 	contribution is smaller and very dependent of the step unit
 1290: 	stepm. It is no more the probability to die between last interview
 1291: 	and month of death but the probability to survive from last
 1292: 	interview up to one month before death multiplied by the
 1293: 	probability to die within a month. Thanks to Chris
 1294: 	Jackson for correcting this bug.  Former versions increased
 1295: 	mortality artificially. The bad side is that we add another loop
 1296: 	which slows down the processing. The difference can be up to 10%
 1297: 	lower mortality.
 1298: 	  */
 1299: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1300: 
 1301: 
 1302: 	} else if  (s2==-2) {
 1303: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1304: 	    survp += out[s1][j];
 1305: 	  lli= survp;
 1306: 	}
 1307: 
 1308: 
 1309: 	else{
 1310: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1311: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1312: 	} 
 1313: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1314: 	/*if(lli ==000.0)*/
 1315: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1316:   	ipmx +=1;
 1317: 	sw += weight[i];
 1318: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1319:       } /* end of wave */
 1320:     } /* end of individual */
 1321:   }  else if(mle==2){
 1322:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1323:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1324:       for(mi=1; mi<= wav[i]-1; mi++){
 1325: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1326: 	  for (j=1;j<=nlstate+ndeath;j++){
 1327: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1328: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1329: 	  }
 1330: 	for(d=0; d<=dh[mi][i]; d++){
 1331: 	  newm=savm;
 1332: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1333: 	  for (kk=1; kk<=cptcovage;kk++) {
 1334: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1335: 	  }
 1336: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1337: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1338: 	  savm=oldm;
 1339: 	  oldm=newm;
 1340: 	} /* end mult */
 1341:       
 1342: 	s1=s[mw[mi][i]][i];
 1343: 	s2=s[mw[mi+1][i]][i];
 1344: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1345: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1346: 	ipmx +=1;
 1347: 	sw += weight[i];
 1348: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1349:       } /* end of wave */
 1350:     } /* end of individual */
 1351:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1352:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1353:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1354:       for(mi=1; mi<= wav[i]-1; mi++){
 1355: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1356: 	  for (j=1;j<=nlstate+ndeath;j++){
 1357: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1358: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1359: 	  }
 1360: 	for(d=0; d<dh[mi][i]; d++){
 1361: 	  newm=savm;
 1362: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1363: 	  for (kk=1; kk<=cptcovage;kk++) {
 1364: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1365: 	  }
 1366: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1367: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1368: 	  savm=oldm;
 1369: 	  oldm=newm;
 1370: 	} /* end mult */
 1371:       
 1372: 	s1=s[mw[mi][i]][i];
 1373: 	s2=s[mw[mi+1][i]][i];
 1374: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1375: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1376: 	ipmx +=1;
 1377: 	sw += weight[i];
 1378: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1379:       } /* end of wave */
 1380:     } /* end of individual */
 1381:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1382:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1383:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1384:       for(mi=1; mi<= wav[i]-1; mi++){
 1385: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1386: 	  for (j=1;j<=nlstate+ndeath;j++){
 1387: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1388: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1389: 	  }
 1390: 	for(d=0; d<dh[mi][i]; d++){
 1391: 	  newm=savm;
 1392: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1393: 	  for (kk=1; kk<=cptcovage;kk++) {
 1394: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1395: 	  }
 1396: 	
 1397: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1398: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1399: 	  savm=oldm;
 1400: 	  oldm=newm;
 1401: 	} /* end mult */
 1402:       
 1403: 	s1=s[mw[mi][i]][i];
 1404: 	s2=s[mw[mi+1][i]][i];
 1405: 	if( s2 > nlstate){ 
 1406: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1407: 	}else{
 1408: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1409: 	}
 1410: 	ipmx +=1;
 1411: 	sw += weight[i];
 1412: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1413: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1414:       } /* end of wave */
 1415:     } /* end of individual */
 1416:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1417:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1418:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1419:       for(mi=1; mi<= wav[i]-1; mi++){
 1420: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1421: 	  for (j=1;j<=nlstate+ndeath;j++){
 1422: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1423: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1424: 	  }
 1425: 	for(d=0; d<dh[mi][i]; d++){
 1426: 	  newm=savm;
 1427: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1428: 	  for (kk=1; kk<=cptcovage;kk++) {
 1429: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1430: 	  }
 1431: 	
 1432: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1433: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1434: 	  savm=oldm;
 1435: 	  oldm=newm;
 1436: 	} /* end mult */
 1437:       
 1438: 	s1=s[mw[mi][i]][i];
 1439: 	s2=s[mw[mi+1][i]][i];
 1440: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1441: 	ipmx +=1;
 1442: 	sw += weight[i];
 1443: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1444: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1445:       } /* end of wave */
 1446:     } /* end of individual */
 1447:   } /* End of if */
 1448:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1449:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1450:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1451:   return -l;
 1452: }
 1453: 
 1454: /*************** log-likelihood *************/
 1455: double funcone( double *x)
 1456: {
 1457:   /* Same as likeli but slower because of a lot of printf and if */
 1458:   int i, ii, j, k, mi, d, kk;
 1459:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1460:   double **out;
 1461:   double lli; /* Individual log likelihood */
 1462:   double llt;
 1463:   int s1, s2;
 1464:   double bbh, survp;
 1465:   /*extern weight */
 1466:   /* We are differentiating ll according to initial status */
 1467:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1468:   /*for(i=1;i<imx;i++) 
 1469:     printf(" %d\n",s[4][i]);
 1470:   */
 1471:   cov[1]=1.;
 1472: 
 1473:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1474: 
 1475:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1476:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1477:     for(mi=1; mi<= wav[i]-1; mi++){
 1478:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1479: 	for (j=1;j<=nlstate+ndeath;j++){
 1480: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1481: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1482: 	}
 1483:       for(d=0; d<dh[mi][i]; d++){
 1484: 	newm=savm;
 1485: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1486: 	for (kk=1; kk<=cptcovage;kk++) {
 1487: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1488: 	}
 1489: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1490: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1491: 	savm=oldm;
 1492: 	oldm=newm;
 1493:       } /* end mult */
 1494:       
 1495:       s1=s[mw[mi][i]][i];
 1496:       s2=s[mw[mi+1][i]][i];
 1497:       bbh=(double)bh[mi][i]/(double)stepm; 
 1498:       /* bias is positive if real duration
 1499:        * is higher than the multiple of stepm and negative otherwise.
 1500:        */
 1501:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1502: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1503:       } else if (mle==1){
 1504: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1505:       } else if(mle==2){
 1506: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1507:       } else if(mle==3){  /* exponential inter-extrapolation */
 1508: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1509:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 1510: 	lli=log(out[s1][s2]); /* Original formula */
 1511:       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 1512: 	lli=log(out[s1][s2]); /* Original formula */
 1513:       } /* End of if */
 1514:       ipmx +=1;
 1515:       sw += weight[i];
 1516:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1517: /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1518:       if(globpr){
 1519: 	fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 1520:  %10.6f %10.6f %10.6f ", \
 1521: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 1522: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 1523: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 1524: 	  llt +=ll[k]*gipmx/gsw;
 1525: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 1526: 	}
 1527: 	fprintf(ficresilk," %10.6f\n", -llt);
 1528:       }
 1529:     } /* end of wave */
 1530:   } /* end of individual */
 1531:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1532:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1533:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1534:   if(globpr==0){ /* First time we count the contributions and weights */
 1535:     gipmx=ipmx;
 1536:     gsw=sw;
 1537:   }
 1538:   return -l;
 1539: }
 1540: 
 1541: 
 1542: /*************** function likelione ***********/
 1543: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 1544: {
 1545:   /* This routine should help understanding what is done with 
 1546:      the selection of individuals/waves and
 1547:      to check the exact contribution to the likelihood.
 1548:      Plotting could be done.
 1549:    */
 1550:   int k;
 1551: 
 1552:   if(*globpri !=0){ /* Just counts and sums, no printings */
 1553:     strcpy(fileresilk,"ilk"); 
 1554:     strcat(fileresilk,fileres);
 1555:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 1556:       printf("Problem with resultfile: %s\n", fileresilk);
 1557:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 1558:     }
 1559:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 1560:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 1561:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 1562:     for(k=1; k<=nlstate; k++) 
 1563:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 1564:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 1565:   }
 1566: 
 1567:   *fretone=(*funcone)(p);
 1568:   if(*globpri !=0){
 1569:     fclose(ficresilk);
 1570:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 1571:     fflush(fichtm); 
 1572:   } 
 1573:   return;
 1574: }
 1575: 
 1576: 
 1577: /*********** Maximum Likelihood Estimation ***************/
 1578: 
 1579: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1580: {
 1581:   int i,j, iter;
 1582:   double **xi;
 1583:   double fret;
 1584:   double fretone; /* Only one call to likelihood */
 1585:   /*  char filerespow[FILENAMELENGTH];*/
 1586:   xi=matrix(1,npar,1,npar);
 1587:   for (i=1;i<=npar;i++)
 1588:     for (j=1;j<=npar;j++)
 1589:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1590:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1591:   strcpy(filerespow,"pow"); 
 1592:   strcat(filerespow,fileres);
 1593:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 1594:     printf("Problem with resultfile: %s\n", filerespow);
 1595:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 1596:   }
 1597:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 1598:   for (i=1;i<=nlstate;i++)
 1599:     for(j=1;j<=nlstate+ndeath;j++)
 1600:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 1601:   fprintf(ficrespow,"\n");
 1602: 
 1603:   powell(p,xi,npar,ftol,&iter,&fret,func);
 1604: 
 1605:   fclose(ficrespow);
 1606:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 1607:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1608:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1609: 
 1610: }
 1611: 
 1612: /**** Computes Hessian and covariance matrix ***/
 1613: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 1614: {
 1615:   double  **a,**y,*x,pd;
 1616:   double **hess;
 1617:   int i, j,jk;
 1618:   int *indx;
 1619: 
 1620:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 1621:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 1622:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 1623:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 1624:   double gompertz(double p[]);
 1625:   hess=matrix(1,npar,1,npar);
 1626: 
 1627:   printf("\nCalculation of the hessian matrix. Wait...\n");
 1628:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 1629:   for (i=1;i<=npar;i++){
 1630:     printf("%d",i);fflush(stdout);
 1631:     fprintf(ficlog,"%d",i);fflush(ficlog);
 1632:    
 1633:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 1634:     
 1635:     /*  printf(" %f ",p[i]);
 1636: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 1637:   }
 1638:   
 1639:   for (i=1;i<=npar;i++) {
 1640:     for (j=1;j<=npar;j++)  {
 1641:       if (j>i) { 
 1642: 	printf(".%d%d",i,j);fflush(stdout);
 1643: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 1644: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 1645: 	
 1646: 	hess[j][i]=hess[i][j];    
 1647: 	/*printf(" %lf ",hess[i][j]);*/
 1648:       }
 1649:     }
 1650:   }
 1651:   printf("\n");
 1652:   fprintf(ficlog,"\n");
 1653: 
 1654:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 1655:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 1656:   
 1657:   a=matrix(1,npar,1,npar);
 1658:   y=matrix(1,npar,1,npar);
 1659:   x=vector(1,npar);
 1660:   indx=ivector(1,npar);
 1661:   for (i=1;i<=npar;i++)
 1662:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 1663:   ludcmp(a,npar,indx,&pd);
 1664: 
 1665:   for (j=1;j<=npar;j++) {
 1666:     for (i=1;i<=npar;i++) x[i]=0;
 1667:     x[j]=1;
 1668:     lubksb(a,npar,indx,x);
 1669:     for (i=1;i<=npar;i++){ 
 1670:       matcov[i][j]=x[i];
 1671:     }
 1672:   }
 1673: 
 1674:   printf("\n#Hessian matrix#\n");
 1675:   fprintf(ficlog,"\n#Hessian matrix#\n");
 1676:   for (i=1;i<=npar;i++) { 
 1677:     for (j=1;j<=npar;j++) { 
 1678:       printf("%.3e ",hess[i][j]);
 1679:       fprintf(ficlog,"%.3e ",hess[i][j]);
 1680:     }
 1681:     printf("\n");
 1682:     fprintf(ficlog,"\n");
 1683:   }
 1684: 
 1685:   /* Recompute Inverse */
 1686:   for (i=1;i<=npar;i++)
 1687:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 1688:   ludcmp(a,npar,indx,&pd);
 1689: 
 1690:   /*  printf("\n#Hessian matrix recomputed#\n");
 1691: 
 1692:   for (j=1;j<=npar;j++) {
 1693:     for (i=1;i<=npar;i++) x[i]=0;
 1694:     x[j]=1;
 1695:     lubksb(a,npar,indx,x);
 1696:     for (i=1;i<=npar;i++){ 
 1697:       y[i][j]=x[i];
 1698:       printf("%.3e ",y[i][j]);
 1699:       fprintf(ficlog,"%.3e ",y[i][j]);
 1700:     }
 1701:     printf("\n");
 1702:     fprintf(ficlog,"\n");
 1703:   }
 1704:   */
 1705: 
 1706:   free_matrix(a,1,npar,1,npar);
 1707:   free_matrix(y,1,npar,1,npar);
 1708:   free_vector(x,1,npar);
 1709:   free_ivector(indx,1,npar);
 1710:   free_matrix(hess,1,npar,1,npar);
 1711: 
 1712: 
 1713: }
 1714: 
 1715: /*************** hessian matrix ****************/
 1716: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 1717: {
 1718:   int i;
 1719:   int l=1, lmax=20;
 1720:   double k1,k2;
 1721:   double p2[NPARMAX+1];
 1722:   double res;
 1723:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 1724:   double fx;
 1725:   int k=0,kmax=10;
 1726:   double l1;
 1727: 
 1728:   fx=func(x);
 1729:   for (i=1;i<=npar;i++) p2[i]=x[i];
 1730:   for(l=0 ; l <=lmax; l++){
 1731:     l1=pow(10,l);
 1732:     delts=delt;
 1733:     for(k=1 ; k <kmax; k=k+1){
 1734:       delt = delta*(l1*k);
 1735:       p2[theta]=x[theta] +delt;
 1736:       k1=func(p2)-fx;
 1737:       p2[theta]=x[theta]-delt;
 1738:       k2=func(p2)-fx;
 1739:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 1740:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 1741:       
 1742: #ifdef DEBUG
 1743:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1744:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1745: #endif
 1746:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 1747:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 1748: 	k=kmax;
 1749:       }
 1750:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 1751: 	k=kmax; l=lmax*10.;
 1752:       }
 1753:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 1754: 	delts=delt;
 1755:       }
 1756:     }
 1757:   }
 1758:   delti[theta]=delts;
 1759:   return res; 
 1760:   
 1761: }
 1762: 
 1763: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 1764: {
 1765:   int i;
 1766:   int l=1, l1, lmax=20;
 1767:   double k1,k2,k3,k4,res,fx;
 1768:   double p2[NPARMAX+1];
 1769:   int k;
 1770: 
 1771:   fx=func(x);
 1772:   for (k=1; k<=2; k++) {
 1773:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1774:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1775:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1776:     k1=func(p2)-fx;
 1777:   
 1778:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1779:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1780:     k2=func(p2)-fx;
 1781:   
 1782:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1783:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1784:     k3=func(p2)-fx;
 1785:   
 1786:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1787:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1788:     k4=func(p2)-fx;
 1789:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1790: #ifdef DEBUG
 1791:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1792:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1793: #endif
 1794:   }
 1795:   return res;
 1796: }
 1797: 
 1798: /************** Inverse of matrix **************/
 1799: void ludcmp(double **a, int n, int *indx, double *d) 
 1800: { 
 1801:   int i,imax,j,k; 
 1802:   double big,dum,sum,temp; 
 1803:   double *vv; 
 1804:  
 1805:   vv=vector(1,n); 
 1806:   *d=1.0; 
 1807:   for (i=1;i<=n;i++) { 
 1808:     big=0.0; 
 1809:     for (j=1;j<=n;j++) 
 1810:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1811:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1812:     vv[i]=1.0/big; 
 1813:   } 
 1814:   for (j=1;j<=n;j++) { 
 1815:     for (i=1;i<j;i++) { 
 1816:       sum=a[i][j]; 
 1817:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1818:       a[i][j]=sum; 
 1819:     } 
 1820:     big=0.0; 
 1821:     for (i=j;i<=n;i++) { 
 1822:       sum=a[i][j]; 
 1823:       for (k=1;k<j;k++) 
 1824: 	sum -= a[i][k]*a[k][j]; 
 1825:       a[i][j]=sum; 
 1826:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1827: 	big=dum; 
 1828: 	imax=i; 
 1829:       } 
 1830:     } 
 1831:     if (j != imax) { 
 1832:       for (k=1;k<=n;k++) { 
 1833: 	dum=a[imax][k]; 
 1834: 	a[imax][k]=a[j][k]; 
 1835: 	a[j][k]=dum; 
 1836:       } 
 1837:       *d = -(*d); 
 1838:       vv[imax]=vv[j]; 
 1839:     } 
 1840:     indx[j]=imax; 
 1841:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1842:     if (j != n) { 
 1843:       dum=1.0/(a[j][j]); 
 1844:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1845:     } 
 1846:   } 
 1847:   free_vector(vv,1,n);  /* Doesn't work */
 1848: ;
 1849: } 
 1850: 
 1851: void lubksb(double **a, int n, int *indx, double b[]) 
 1852: { 
 1853:   int i,ii=0,ip,j; 
 1854:   double sum; 
 1855:  
 1856:   for (i=1;i<=n;i++) { 
 1857:     ip=indx[i]; 
 1858:     sum=b[ip]; 
 1859:     b[ip]=b[i]; 
 1860:     if (ii) 
 1861:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1862:     else if (sum) ii=i; 
 1863:     b[i]=sum; 
 1864:   } 
 1865:   for (i=n;i>=1;i--) { 
 1866:     sum=b[i]; 
 1867:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1868:     b[i]=sum/a[i][i]; 
 1869:   } 
 1870: } 
 1871: 
 1872: /************ Frequencies ********************/
 1873: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
 1874: {  /* Some frequencies */
 1875:   
 1876:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 1877:   int first;
 1878:   double ***freq; /* Frequencies */
 1879:   double *pp, **prop;
 1880:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 1881:   FILE *ficresp;
 1882:   char fileresp[FILENAMELENGTH];
 1883:   
 1884:   pp=vector(1,nlstate);
 1885:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 1886:   strcpy(fileresp,"p");
 1887:   strcat(fileresp,fileres);
 1888:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1889:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1890:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 1891:     exit(0);
 1892:   }
 1893:   freq= ma3x(-2,nlstate+ndeath,-2,nlstate+ndeath,iagemin,iagemax+3);
 1894:   j1=0;
 1895:   
 1896:   j=cptcoveff;
 1897:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1898: 
 1899:   first=1;
 1900: 
 1901:   for(k1=1; k1<=j;k1++){
 1902:     for(i1=1; i1<=ncodemax[k1];i1++){
 1903:       j1++;
 1904:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 1905: 	scanf("%d", i);*/
 1906:       for (i=-2; i<=nlstate+ndeath; i++)  
 1907: 	for (jk=-2; jk<=nlstate+ndeath; jk++)  
 1908: 	  for(m=iagemin; m <= iagemax+3; m++)
 1909: 	    freq[i][jk][m]=0;
 1910: 
 1911:     for (i=1; i<=nlstate; i++)  
 1912:       for(m=iagemin; m <= iagemax+3; m++)
 1913: 	prop[i][m]=0;
 1914:       
 1915:       dateintsum=0;
 1916:       k2cpt=0;
 1917:       for (i=1; i<=imx; i++) {
 1918: 	bool=1;
 1919: 	if  (cptcovn>0) {
 1920: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1921: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1922: 	      bool=0;
 1923: 	}
 1924: 	if (bool==1){
 1925: 	  for(m=firstpass; m<=lastpass; m++){
 1926: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1927: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 1928: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 1929: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 1930: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 1931: 	      if (m<lastpass) {
 1932: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1933: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 1934: 	      }
 1935: 	      
 1936: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 1937: 		dateintsum=dateintsum+k2;
 1938: 		k2cpt++;
 1939: 	      }
 1940: 	      /*}*/
 1941: 	  }
 1942: 	}
 1943:       }
 1944:        
 1945:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 1946: 
 1947:       if  (cptcovn>0) {
 1948: 	fprintf(ficresp, "\n#********** Variable "); 
 1949: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 1950: 	fprintf(ficresp, "**********\n#");
 1951:       }
 1952:       for(i=1; i<=nlstate;i++) 
 1953: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 1954:       fprintf(ficresp, "\n");
 1955:       
 1956:       for(i=iagemin; i <= iagemax+3; i++){
 1957: 	if(i==iagemax+3){
 1958: 	  fprintf(ficlog,"Total");
 1959: 	}else{
 1960: 	  if(first==1){
 1961: 	    first=0;
 1962: 	    printf("See log file for details...\n");
 1963: 	  }
 1964: 	  fprintf(ficlog,"Age %d", i);
 1965: 	}
 1966: 	for(jk=1; jk <=nlstate ; jk++){
 1967: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1968: 	    pp[jk] += freq[jk][m][i]; 
 1969: 	}
 1970: 	for(jk=1; jk <=nlstate ; jk++){
 1971: 	  for(m=-1, pos=0; m <=0 ; m++)
 1972: 	    pos += freq[jk][m][i];
 1973: 	  if(pp[jk]>=1.e-10){
 1974: 	    if(first==1){
 1975: 	    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1976: 	    }
 1977: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1978: 	  }else{
 1979: 	    if(first==1)
 1980: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1981: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1982: 	  }
 1983: 	}
 1984: 
 1985: 	for(jk=1; jk <=nlstate ; jk++){
 1986: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 1987: 	    pp[jk] += freq[jk][m][i];
 1988: 	}	
 1989: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 1990: 	  pos += pp[jk];
 1991: 	  posprop += prop[jk][i];
 1992: 	}
 1993: 	for(jk=1; jk <=nlstate ; jk++){
 1994: 	  if(pos>=1.e-5){
 1995: 	    if(first==1)
 1996: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1997: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1998: 	  }else{
 1999: 	    if(first==1)
 2000: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2001: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2002: 	  }
 2003: 	  if( i <= iagemax){
 2004: 	    if(pos>=1.e-5){
 2005: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2006: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2007: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2008: 	    }
 2009: 	    else
 2010: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2011: 	  }
 2012: 	}
 2013: 	
 2014: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2015: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2016: 	    if(freq[jk][m][i] !=0 ) {
 2017: 	    if(first==1)
 2018: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2019: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2020: 	    }
 2021: 	if(i <= iagemax)
 2022: 	  fprintf(ficresp,"\n");
 2023: 	if(first==1)
 2024: 	  printf("Others in log...\n");
 2025: 	fprintf(ficlog,"\n");
 2026:       }
 2027:     }
 2028:   }
 2029:   dateintmean=dateintsum/k2cpt; 
 2030:  
 2031:   fclose(ficresp);
 2032:   free_ma3x(freq,-2,nlstate+ndeath,-2,nlstate+ndeath, iagemin, iagemax+3);
 2033:   free_vector(pp,1,nlstate);
 2034:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2035:   /* End of Freq */
 2036: }
 2037: 
 2038: /************ Prevalence ********************/
 2039: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2040: {  
 2041:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2042:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2043:      We still use firstpass and lastpass as another selection.
 2044:   */
 2045:  
 2046:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 2047:   double ***freq; /* Frequencies */
 2048:   double *pp, **prop;
 2049:   double pos,posprop; 
 2050:   double  y2; /* in fractional years */
 2051:   int iagemin, iagemax;
 2052: 
 2053:   iagemin= (int) agemin;
 2054:   iagemax= (int) agemax;
 2055:   /*pp=vector(1,nlstate);*/
 2056:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2057:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2058:   j1=0;
 2059:   
 2060:   j=cptcoveff;
 2061:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2062:   
 2063:   for(k1=1; k1<=j;k1++){
 2064:     for(i1=1; i1<=ncodemax[k1];i1++){
 2065:       j1++;
 2066:       
 2067:       for (i=1; i<=nlstate; i++)  
 2068: 	for(m=iagemin; m <= iagemax+3; m++)
 2069: 	  prop[i][m]=0.0;
 2070:      
 2071:       for (i=1; i<=imx; i++) { /* Each individual */
 2072: 	bool=1;
 2073: 	if  (cptcovn>0) {
 2074: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2075: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2076: 	      bool=0;
 2077: 	} 
 2078: 	if (bool==1) { 
 2079: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2080: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2081: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2082: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2083: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2084: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2085:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2086: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2087:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2088:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2089:  	      } 
 2090: 	    }
 2091: 	  } /* end selection of waves */
 2092: 	}
 2093:       }
 2094:       for(i=iagemin; i <= iagemax+3; i++){  
 2095: 	
 2096:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2097:  	  posprop += prop[jk][i]; 
 2098:  	} 
 2099: 
 2100:  	for(jk=1; jk <=nlstate ; jk++){	    
 2101:  	  if( i <=  iagemax){ 
 2102:  	    if(posprop>=1.e-5){ 
 2103:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2104:  	    } 
 2105:  	  } 
 2106:  	}/* end jk */ 
 2107:       }/* end i */ 
 2108:     } /* end i1 */
 2109:   } /* end k1 */
 2110:   
 2111:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2112:   /*free_vector(pp,1,nlstate);*/
 2113:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2114: }  /* End of prevalence */
 2115: 
 2116: /************* Waves Concatenation ***************/
 2117: 
 2118: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2119: {
 2120:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2121:      Death is a valid wave (if date is known).
 2122:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2123:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2124:      and mw[mi+1][i]. dh depends on stepm.
 2125:      */
 2126: 
 2127:   int i, mi, m;
 2128:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2129:      double sum=0., jmean=0.;*/
 2130:   int first;
 2131:   int j, k=0,jk, ju, jl;
 2132:   double sum=0.;
 2133:   first=0;
 2134:   jmin=1e+5;
 2135:   jmax=-1;
 2136:   jmean=0.;
 2137:   for(i=1; i<=imx; i++){
 2138:     mi=0;
 2139:     m=firstpass;
 2140:     while(s[m][i] <= nlstate){
 2141:       if(s[m][i]>=1 || s[m][i]==-2)
 2142: 	mw[++mi][i]=m;
 2143:       if(m >=lastpass)
 2144: 	break;
 2145:       else
 2146: 	m++;
 2147:     }/* end while */
 2148:     if (s[m][i] > nlstate){
 2149:       mi++;	/* Death is another wave */
 2150:       /* if(mi==0)  never been interviewed correctly before death */
 2151: 	 /* Only death is a correct wave */
 2152:       mw[mi][i]=m;
 2153:     }
 2154: 
 2155:     wav[i]=mi;
 2156:     if(mi==0){
 2157:       nbwarn++;
 2158:       if(first==0){
 2159: 	printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2160: 	first=1;
 2161:       }
 2162:       if(first==1){
 2163: 	fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 2164:       }
 2165:     } /* end mi==0 */
 2166:   } /* End individuals */
 2167: 
 2168:   for(i=1; i<=imx; i++){
 2169:     for(mi=1; mi<wav[i];mi++){
 2170:       if (stepm <=0)
 2171: 	dh[mi][i]=1;
 2172:       else{
 2173: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2174: 	  if (agedc[i] < 2*AGESUP) {
 2175: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2176: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2177: 	    else if(j<0){
 2178: 	      nberr++;
 2179: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2180: 	      j=1; /* Temporary Dangerous patch */
 2181: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 2182: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2183: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 2184: 	    }
 2185: 	    k=k+1;
 2186: 	    if (j >= jmax) jmax=j;
 2187: 	    if (j <= jmin) jmin=j;
 2188: 	    sum=sum+j;
 2189: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2190: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2191: 	  }
 2192: 	}
 2193: 	else{
 2194: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2195: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2196: 
 2197: 	  k=k+1;
 2198: 	  if (j >= jmax) jmax=j;
 2199: 	  else if (j <= jmin)jmin=j;
 2200: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2201: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2202: 	  if(j<0){
 2203: 	    nberr++;
 2204: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2205: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2206: 	  }
 2207: 	  sum=sum+j;
 2208: 	}
 2209: 	jk= j/stepm;
 2210: 	jl= j -jk*stepm;
 2211: 	ju= j -(jk+1)*stepm;
 2212: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2213: 	  if(jl==0){
 2214: 	    dh[mi][i]=jk;
 2215: 	    bh[mi][i]=0;
 2216: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2217: 		  * at the price of an extra matrix product in likelihood */
 2218: 	    dh[mi][i]=jk+1;
 2219: 	    bh[mi][i]=ju;
 2220: 	  }
 2221: 	}else{
 2222: 	  if(jl <= -ju){
 2223: 	    dh[mi][i]=jk;
 2224: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2225: 				 * is higher than the multiple of stepm and negative otherwise.
 2226: 				 */
 2227: 	  }
 2228: 	  else{
 2229: 	    dh[mi][i]=jk+1;
 2230: 	    bh[mi][i]=ju;
 2231: 	  }
 2232: 	  if(dh[mi][i]==0){
 2233: 	    dh[mi][i]=1; /* At least one step */
 2234: 	    bh[mi][i]=ju; /* At least one step */
 2235: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2236: 	  }
 2237: 	} /* end if mle */
 2238:       }
 2239:     } /* end wave */
 2240:   }
 2241:   jmean=sum/k;
 2242:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 2243:   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 2244:  }
 2245: 
 2246: /*********** Tricode ****************************/
 2247: void tricode(int *Tvar, int **nbcode, int imx)
 2248: {
 2249:   
 2250:   int Ndum[20],ij=1, k, j, i, maxncov=19;
 2251:   int cptcode=0;
 2252:   cptcoveff=0; 
 2253:  
 2254:   for (k=0; k<maxncov; k++) Ndum[k]=0;
 2255:   for (k=1; k<=7; k++) ncodemax[k]=0;
 2256: 
 2257:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 2258:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 2259: 			       modality*/ 
 2260:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 2261:       Ndum[ij]++; /*store the modality */
 2262:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2263:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 2264: 				       Tvar[j]. If V=sex and male is 0 and 
 2265: 				       female is 1, then  cptcode=1.*/
 2266:     }
 2267: 
 2268:     for (i=0; i<=cptcode; i++) {
 2269:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 2270:     }
 2271: 
 2272:     ij=1; 
 2273:     for (i=1; i<=ncodemax[j]; i++) {
 2274:       for (k=0; k<= maxncov; k++) {
 2275: 	if (Ndum[k] != 0) {
 2276: 	  nbcode[Tvar[j]][ij]=k; 
 2277: 	  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2278: 	  
 2279: 	  ij++;
 2280: 	}
 2281: 	if (ij > ncodemax[j]) break; 
 2282:       }  
 2283:     } 
 2284:   }  
 2285: 
 2286:  for (k=0; k< maxncov; k++) Ndum[k]=0;
 2287: 
 2288:  for (i=1; i<=ncovmodel-2; i++) { 
 2289:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 2290:    ij=Tvar[i];
 2291:    Ndum[ij]++;
 2292:  }
 2293: 
 2294:  ij=1;
 2295:  for (i=1; i<= maxncov; i++) {
 2296:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2297:      Tvaraff[ij]=i; /*For printing */
 2298:      ij++;
 2299:    }
 2300:  }
 2301:  
 2302:  cptcoveff=ij-1; /*Number of simple covariates*/
 2303: }
 2304: 
 2305: /*********** Health Expectancies ****************/
 2306: 
 2307: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 2308: 
 2309: {
 2310:   /* Health expectancies */
 2311:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 2312:   double age, agelim, hf;
 2313:   double ***p3mat,***varhe;
 2314:   double **dnewm,**doldm;
 2315:   double *xp;
 2316:   double **gp, **gm;
 2317:   double ***gradg, ***trgradg;
 2318:   int theta;
 2319: 
 2320:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 2321:   xp=vector(1,npar);
 2322:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 2323:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 2324:   
 2325:   fprintf(ficreseij,"# Health expectancies\n");
 2326:   fprintf(ficreseij,"# Age");
 2327:   for(i=1; i<=nlstate;i++)
 2328:     for(j=1; j<=nlstate;j++)
 2329:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
 2330:   fprintf(ficreseij,"\n");
 2331: 
 2332:   if(estepm < stepm){
 2333:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2334:   }
 2335:   else  hstepm=estepm;   
 2336:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2337:    * This is mainly to measure the difference between two models: for example
 2338:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2339:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2340:    * progression in between and thus overestimating or underestimating according
 2341:    * to the curvature of the survival function. If, for the same date, we 
 2342:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2343:    * to compare the new estimate of Life expectancy with the same linear 
 2344:    * hypothesis. A more precise result, taking into account a more precise
 2345:    * curvature will be obtained if estepm is as small as stepm. */
 2346: 
 2347:   /* For example we decided to compute the life expectancy with the smallest unit */
 2348:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2349:      nhstepm is the number of hstepm from age to agelim 
 2350:      nstepm is the number of stepm from age to agelin. 
 2351:      Look at hpijx to understand the reason of that which relies in memory size
 2352:      and note for a fixed period like estepm months */
 2353:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2354:      survival function given by stepm (the optimization length). Unfortunately it
 2355:      means that if the survival funtion is printed only each two years of age and if
 2356:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2357:      results. So we changed our mind and took the option of the best precision.
 2358:   */
 2359:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2360: 
 2361:   agelim=AGESUP;
 2362:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2363:     /* nhstepm age range expressed in number of stepm */
 2364:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 2365:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2366:     /* if (stepm >= YEARM) hstepm=1;*/
 2367:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2368:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2369:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 2370:     gp=matrix(0,nhstepm,1,nlstate*nlstate);
 2371:     gm=matrix(0,nhstepm,1,nlstate*nlstate);
 2372: 
 2373:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2374:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2375:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 2376:  
 2377: 
 2378:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2379: 
 2380:     /* Computing  Variances of health expectancies */
 2381: 
 2382:      for(theta=1; theta <=npar; theta++){
 2383:       for(i=1; i<=npar; i++){ 
 2384: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2385:       }
 2386:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2387:   
 2388:       cptj=0;
 2389:       for(j=1; j<= nlstate; j++){
 2390: 	for(i=1; i<=nlstate; i++){
 2391: 	  cptj=cptj+1;
 2392: 	  for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 2393: 	    gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2394: 	  }
 2395: 	}
 2396:       }
 2397:      
 2398:      
 2399:       for(i=1; i<=npar; i++) 
 2400: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2401:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2402:       
 2403:       cptj=0;
 2404:       for(j=1; j<= nlstate; j++){
 2405: 	for(i=1;i<=nlstate;i++){
 2406: 	  cptj=cptj+1;
 2407: 	  for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 2408: 
 2409: 	    gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2410: 	  }
 2411: 	}
 2412:       }
 2413:       for(j=1; j<= nlstate*nlstate; j++)
 2414: 	for(h=0; h<=nhstepm-1; h++){
 2415: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2416: 	}
 2417:      } 
 2418:    
 2419: /* End theta */
 2420: 
 2421:      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 2422: 
 2423:      for(h=0; h<=nhstepm-1; h++)
 2424:       for(j=1; j<=nlstate*nlstate;j++)
 2425: 	for(theta=1; theta <=npar; theta++)
 2426: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2427:      
 2428: 
 2429:      for(i=1;i<=nlstate*nlstate;i++)
 2430:       for(j=1;j<=nlstate*nlstate;j++)
 2431: 	varhe[i][j][(int)age] =0.;
 2432: 
 2433:      printf("%d|",(int)age);fflush(stdout);
 2434:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2435:      for(h=0;h<=nhstepm-1;h++){
 2436:       for(k=0;k<=nhstepm-1;k++){
 2437: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 2438: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 2439: 	for(i=1;i<=nlstate*nlstate;i++)
 2440: 	  for(j=1;j<=nlstate*nlstate;j++)
 2441: 	    varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 2442:       }
 2443:     }
 2444:     /* Computing expectancies */
 2445:     for(i=1; i<=nlstate;i++)
 2446:       for(j=1; j<=nlstate;j++)
 2447: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2448: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2449: 	  
 2450: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2451: 
 2452: 	}
 2453: 
 2454:     fprintf(ficreseij,"%3.0f",age );
 2455:     cptj=0;
 2456:     for(i=1; i<=nlstate;i++)
 2457:       for(j=1; j<=nlstate;j++){
 2458: 	cptj++;
 2459: 	fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 2460:       }
 2461:     fprintf(ficreseij,"\n");
 2462:    
 2463:     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 2464:     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 2465:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 2466:     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 2467:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2468:   }
 2469:   printf("\n");
 2470:   fprintf(ficlog,"\n");
 2471: 
 2472:   free_vector(xp,1,npar);
 2473:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 2474:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 2475:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 2476: }
 2477: 
 2478: /************ Variance ******************/
 2479: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 2480: {
 2481:   /* Variance of health expectancies */
 2482:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 2483:   /* double **newm;*/
 2484:   double **dnewm,**doldm;
 2485:   double **dnewmp,**doldmp;
 2486:   int i, j, nhstepm, hstepm, h, nstepm ;
 2487:   int k, cptcode;
 2488:   double *xp;
 2489:   double **gp, **gm;  /* for var eij */
 2490:   double ***gradg, ***trgradg; /*for var eij */
 2491:   double **gradgp, **trgradgp; /* for var p point j */
 2492:   double *gpp, *gmp; /* for var p point j */
 2493:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 2494:   double ***p3mat;
 2495:   double age,agelim, hf;
 2496:   double ***mobaverage;
 2497:   int theta;
 2498:   char digit[4];
 2499:   char digitp[25];
 2500: 
 2501:   char fileresprobmorprev[FILENAMELENGTH];
 2502: 
 2503:   if(popbased==1){
 2504:     if(mobilav!=0)
 2505:       strcpy(digitp,"-populbased-mobilav-");
 2506:     else strcpy(digitp,"-populbased-nomobil-");
 2507:   }
 2508:   else 
 2509:     strcpy(digitp,"-stablbased-");
 2510: 
 2511:   if (mobilav!=0) {
 2512:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2513:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 2514:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2515:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2516:     }
 2517:   }
 2518: 
 2519:   strcpy(fileresprobmorprev,"prmorprev"); 
 2520:   sprintf(digit,"%-d",ij);
 2521:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 2522:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 2523:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 2524:   strcat(fileresprobmorprev,fileres);
 2525:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 2526:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 2527:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 2528:   }
 2529:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2530:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2531:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 2532:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 2533:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2534:     fprintf(ficresprobmorprev," p.%-d SE",j);
 2535:     for(i=1; i<=nlstate;i++)
 2536:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 2537:   }  
 2538:   fprintf(ficresprobmorprev,"\n");
 2539:   fprintf(ficgp,"\n# Routine varevsij");
 2540:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 2541:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 2542: /*   } */
 2543:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2544: 
 2545:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 2546:   fprintf(ficresvij,"# Age");
 2547:   for(i=1; i<=nlstate;i++)
 2548:     for(j=1; j<=nlstate;j++)
 2549:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 2550:   fprintf(ficresvij,"\n");
 2551: 
 2552:   xp=vector(1,npar);
 2553:   dnewm=matrix(1,nlstate,1,npar);
 2554:   doldm=matrix(1,nlstate,1,nlstate);
 2555:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 2556:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2557: 
 2558:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 2559:   gpp=vector(nlstate+1,nlstate+ndeath);
 2560:   gmp=vector(nlstate+1,nlstate+ndeath);
 2561:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2562:   
 2563:   if(estepm < stepm){
 2564:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2565:   }
 2566:   else  hstepm=estepm;   
 2567:   /* For example we decided to compute the life expectancy with the smallest unit */
 2568:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2569:      nhstepm is the number of hstepm from age to agelim 
 2570:      nstepm is the number of stepm from age to agelin. 
 2571:      Look at hpijx to understand the reason of that which relies in memory size
 2572:      and note for a fixed period like k years */
 2573:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2574:      survival function given by stepm (the optimization length). Unfortunately it
 2575:      means that if the survival funtion is printed every two years of age and if
 2576:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2577:      results. So we changed our mind and took the option of the best precision.
 2578:   */
 2579:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2580:   agelim = AGESUP;
 2581:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2582:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2583:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2584:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2585:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 2586:     gp=matrix(0,nhstepm,1,nlstate);
 2587:     gm=matrix(0,nhstepm,1,nlstate);
 2588: 
 2589: 
 2590:     for(theta=1; theta <=npar; theta++){
 2591:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 2592: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2593:       }
 2594:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2595:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2596: 
 2597:       if (popbased==1) {
 2598: 	if(mobilav ==0){
 2599: 	  for(i=1; i<=nlstate;i++)
 2600: 	    prlim[i][i]=probs[(int)age][i][ij];
 2601: 	}else{ /* mobilav */ 
 2602: 	  for(i=1; i<=nlstate;i++)
 2603: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2604: 	}
 2605:       }
 2606:   
 2607:       for(j=1; j<= nlstate; j++){
 2608: 	for(h=0; h<=nhstepm; h++){
 2609: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 2610: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 2611: 	}
 2612:       }
 2613:       /* This for computing probability of death (h=1 means
 2614:          computed over hstepm matrices product = hstepm*stepm months) 
 2615:          as a weighted average of prlim.
 2616:       */
 2617:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2618: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 2619: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 2620:       }    
 2621:       /* end probability of death */
 2622: 
 2623:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 2624: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2625:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2626:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2627:  
 2628:       if (popbased==1) {
 2629: 	if(mobilav ==0){
 2630: 	  for(i=1; i<=nlstate;i++)
 2631: 	    prlim[i][i]=probs[(int)age][i][ij];
 2632: 	}else{ /* mobilav */ 
 2633: 	  for(i=1; i<=nlstate;i++)
 2634: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2635: 	}
 2636:       }
 2637: 
 2638:       for(j=1; j<= nlstate; j++){
 2639: 	for(h=0; h<=nhstepm; h++){
 2640: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 2641: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 2642: 	}
 2643:       }
 2644:       /* This for computing probability of death (h=1 means
 2645:          computed over hstepm matrices product = hstepm*stepm months) 
 2646:          as a weighted average of prlim.
 2647:       */
 2648:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2649: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 2650:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 2651:       }    
 2652:       /* end probability of death */
 2653: 
 2654:       for(j=1; j<= nlstate; j++) /* vareij */
 2655: 	for(h=0; h<=nhstepm; h++){
 2656: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2657: 	}
 2658: 
 2659:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 2660: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 2661:       }
 2662: 
 2663:     } /* End theta */
 2664: 
 2665:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 2666: 
 2667:     for(h=0; h<=nhstepm; h++) /* veij */
 2668:       for(j=1; j<=nlstate;j++)
 2669: 	for(theta=1; theta <=npar; theta++)
 2670: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2671: 
 2672:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 2673:       for(theta=1; theta <=npar; theta++)
 2674: 	trgradgp[j][theta]=gradgp[theta][j];
 2675:   
 2676: 
 2677:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2678:     for(i=1;i<=nlstate;i++)
 2679:       for(j=1;j<=nlstate;j++)
 2680: 	vareij[i][j][(int)age] =0.;
 2681: 
 2682:     for(h=0;h<=nhstepm;h++){
 2683:       for(k=0;k<=nhstepm;k++){
 2684: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 2685: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 2686: 	for(i=1;i<=nlstate;i++)
 2687: 	  for(j=1;j<=nlstate;j++)
 2688: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 2689:       }
 2690:     }
 2691:   
 2692:     /* pptj */
 2693:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 2694:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 2695:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 2696:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 2697: 	varppt[j][i]=doldmp[j][i];
 2698:     /* end ppptj */
 2699:     /*  x centered again */
 2700:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 2701:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 2702:  
 2703:     if (popbased==1) {
 2704:       if(mobilav ==0){
 2705: 	for(i=1; i<=nlstate;i++)
 2706: 	  prlim[i][i]=probs[(int)age][i][ij];
 2707:       }else{ /* mobilav */ 
 2708: 	for(i=1; i<=nlstate;i++)
 2709: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 2710:       }
 2711:     }
 2712:              
 2713:     /* This for computing probability of death (h=1 means
 2714:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 2715:        as a weighted average of prlim.
 2716:     */
 2717:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2718:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 2719: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 2720:     }    
 2721:     /* end probability of death */
 2722: 
 2723:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 2724:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2725:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 2726:       for(i=1; i<=nlstate;i++){
 2727: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 2728:       }
 2729:     } 
 2730:     fprintf(ficresprobmorprev,"\n");
 2731: 
 2732:     fprintf(ficresvij,"%.0f ",age );
 2733:     for(i=1; i<=nlstate;i++)
 2734:       for(j=1; j<=nlstate;j++){
 2735: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 2736:       }
 2737:     fprintf(ficresvij,"\n");
 2738:     free_matrix(gp,0,nhstepm,1,nlstate);
 2739:     free_matrix(gm,0,nhstepm,1,nlstate);
 2740:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 2741:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 2742:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2743:   } /* End age */
 2744:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 2745:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 2746:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 2747:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2748:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 2749:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 2750:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 2751: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 2752: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2753: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2754:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 2755:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 2756:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 2757:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 2758:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2759:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 2760: */
 2761: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 2762:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2763: 
 2764:   free_vector(xp,1,npar);
 2765:   free_matrix(doldm,1,nlstate,1,nlstate);
 2766:   free_matrix(dnewm,1,nlstate,1,npar);
 2767:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2768:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 2769:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2770:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2771:   fclose(ficresprobmorprev);
 2772:   fflush(ficgp);
 2773:   fflush(fichtm); 
 2774: }  /* end varevsij */
 2775: 
 2776: /************ Variance of prevlim ******************/
 2777: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 2778: {
 2779:   /* Variance of prevalence limit */
 2780:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 2781:   double **newm;
 2782:   double **dnewm,**doldm;
 2783:   int i, j, nhstepm, hstepm;
 2784:   int k, cptcode;
 2785:   double *xp;
 2786:   double *gp, *gm;
 2787:   double **gradg, **trgradg;
 2788:   double age,agelim;
 2789:   int theta;
 2790:    
 2791:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 2792:   fprintf(ficresvpl,"# Age");
 2793:   for(i=1; i<=nlstate;i++)
 2794:       fprintf(ficresvpl," %1d-%1d",i,i);
 2795:   fprintf(ficresvpl,"\n");
 2796: 
 2797:   xp=vector(1,npar);
 2798:   dnewm=matrix(1,nlstate,1,npar);
 2799:   doldm=matrix(1,nlstate,1,nlstate);
 2800:   
 2801:   hstepm=1*YEARM; /* Every year of age */
 2802:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 2803:   agelim = AGESUP;
 2804:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2805:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2806:     if (stepm >= YEARM) hstepm=1;
 2807:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 2808:     gradg=matrix(1,npar,1,nlstate);
 2809:     gp=vector(1,nlstate);
 2810:     gm=vector(1,nlstate);
 2811: 
 2812:     for(theta=1; theta <=npar; theta++){
 2813:       for(i=1; i<=npar; i++){ /* Computes gradient */
 2814: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2815:       }
 2816:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2817:       for(i=1;i<=nlstate;i++)
 2818: 	gp[i] = prlim[i][i];
 2819:     
 2820:       for(i=1; i<=npar; i++) /* Computes gradient */
 2821: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2822:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2823:       for(i=1;i<=nlstate;i++)
 2824: 	gm[i] = prlim[i][i];
 2825: 
 2826:       for(i=1;i<=nlstate;i++)
 2827: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 2828:     } /* End theta */
 2829: 
 2830:     trgradg =matrix(1,nlstate,1,npar);
 2831: 
 2832:     for(j=1; j<=nlstate;j++)
 2833:       for(theta=1; theta <=npar; theta++)
 2834: 	trgradg[j][theta]=gradg[theta][j];
 2835: 
 2836:     for(i=1;i<=nlstate;i++)
 2837:       varpl[i][(int)age] =0.;
 2838:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 2839:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 2840:     for(i=1;i<=nlstate;i++)
 2841:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 2842: 
 2843:     fprintf(ficresvpl,"%.0f ",age );
 2844:     for(i=1; i<=nlstate;i++)
 2845:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 2846:     fprintf(ficresvpl,"\n");
 2847:     free_vector(gp,1,nlstate);
 2848:     free_vector(gm,1,nlstate);
 2849:     free_matrix(gradg,1,npar,1,nlstate);
 2850:     free_matrix(trgradg,1,nlstate,1,npar);
 2851:   } /* End age */
 2852: 
 2853:   free_vector(xp,1,npar);
 2854:   free_matrix(doldm,1,nlstate,1,npar);
 2855:   free_matrix(dnewm,1,nlstate,1,nlstate);
 2856: 
 2857: }
 2858: 
 2859: /************ Variance of one-step probabilities  ******************/
 2860: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
 2861: {
 2862:   int i, j=0,  i1, k1, l1, t, tj;
 2863:   int k2, l2, j1,  z1;
 2864:   int k=0,l, cptcode;
 2865:   int first=1, first1;
 2866:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 2867:   double **dnewm,**doldm;
 2868:   double *xp;
 2869:   double *gp, *gm;
 2870:   double **gradg, **trgradg;
 2871:   double **mu;
 2872:   double age,agelim, cov[NCOVMAX];
 2873:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 2874:   int theta;
 2875:   char fileresprob[FILENAMELENGTH];
 2876:   char fileresprobcov[FILENAMELENGTH];
 2877:   char fileresprobcor[FILENAMELENGTH];
 2878: 
 2879:   double ***varpij;
 2880: 
 2881:   strcpy(fileresprob,"prob"); 
 2882:   strcat(fileresprob,fileres);
 2883:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 2884:     printf("Problem with resultfile: %s\n", fileresprob);
 2885:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 2886:   }
 2887:   strcpy(fileresprobcov,"probcov"); 
 2888:   strcat(fileresprobcov,fileres);
 2889:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 2890:     printf("Problem with resultfile: %s\n", fileresprobcov);
 2891:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 2892:   }
 2893:   strcpy(fileresprobcor,"probcor"); 
 2894:   strcat(fileresprobcor,fileres);
 2895:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 2896:     printf("Problem with resultfile: %s\n", fileresprobcor);
 2897:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 2898:   }
 2899:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2900:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2901:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2902:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2903:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2904:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2905:   
 2906:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 2907:   fprintf(ficresprob,"# Age");
 2908:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 2909:   fprintf(ficresprobcov,"# Age");
 2910:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 2911:   fprintf(ficresprobcov,"# Age");
 2912: 
 2913: 
 2914:   for(i=1; i<=nlstate;i++)
 2915:     for(j=1; j<=(nlstate+ndeath);j++){
 2916:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 2917:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 2918:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 2919:     }  
 2920:  /* fprintf(ficresprob,"\n");
 2921:   fprintf(ficresprobcov,"\n");
 2922:   fprintf(ficresprobcor,"\n");
 2923:  */
 2924:  xp=vector(1,npar);
 2925:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2926:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 2927:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 2928:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 2929:   first=1;
 2930:   fprintf(ficgp,"\n# Routine varprob");
 2931:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 2932:   fprintf(fichtm,"\n");
 2933: 
 2934:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 2935:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 2936:   file %s<br>\n",optionfilehtmcov);
 2937:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 2938: and drawn. It helps understanding how is the covariance between two incidences.\
 2939:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 2940:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 2941: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 2942: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 2943: standard deviations wide on each axis. <br>\
 2944:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 2945:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 2946: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 2947: 
 2948:   cov[1]=1;
 2949:   tj=cptcoveff;
 2950:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 2951:   j1=0;
 2952:   for(t=1; t<=tj;t++){
 2953:     for(i1=1; i1<=ncodemax[t];i1++){ 
 2954:       j1++;
 2955:       if  (cptcovn>0) {
 2956: 	fprintf(ficresprob, "\n#********** Variable "); 
 2957: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2958: 	fprintf(ficresprob, "**********\n#\n");
 2959: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 2960: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2961: 	fprintf(ficresprobcov, "**********\n#\n");
 2962: 	
 2963: 	fprintf(ficgp, "\n#********** Variable "); 
 2964: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2965: 	fprintf(ficgp, "**********\n#\n");
 2966: 	
 2967: 	
 2968: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 2969: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2970: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 2971: 	
 2972: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 2973: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2974: 	fprintf(ficresprobcor, "**********\n#");    
 2975:       }
 2976:       
 2977:       for (age=bage; age<=fage; age ++){ 
 2978: 	cov[2]=age;
 2979: 	for (k=1; k<=cptcovn;k++) {
 2980: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 2981: 	}
 2982: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 2983: 	for (k=1; k<=cptcovprod;k++)
 2984: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 2985: 	
 2986: 	gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 2987: 	trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2988: 	gp=vector(1,(nlstate)*(nlstate+ndeath));
 2989: 	gm=vector(1,(nlstate)*(nlstate+ndeath));
 2990:     
 2991: 	for(theta=1; theta <=npar; theta++){
 2992: 	  for(i=1; i<=npar; i++)
 2993: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 2994: 	  
 2995: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2996: 	  
 2997: 	  k=0;
 2998: 	  for(i=1; i<= (nlstate); i++){
 2999: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3000: 	      k=k+1;
 3001: 	      gp[k]=pmmij[i][j];
 3002: 	    }
 3003: 	  }
 3004: 	  
 3005: 	  for(i=1; i<=npar; i++)
 3006: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3007:     
 3008: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3009: 	  k=0;
 3010: 	  for(i=1; i<=(nlstate); i++){
 3011: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3012: 	      k=k+1;
 3013: 	      gm[k]=pmmij[i][j];
 3014: 	    }
 3015: 	  }
 3016:      
 3017: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3018: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3019: 	}
 3020: 
 3021: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3022: 	  for(theta=1; theta <=npar; theta++)
 3023: 	    trgradg[j][theta]=gradg[theta][j];
 3024: 	
 3025: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3026: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3027: 	free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 3028: 	free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 3029: 	free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3030: 	free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3031: 
 3032: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3033: 	
 3034: 	k=0;
 3035: 	for(i=1; i<=(nlstate); i++){
 3036: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3037: 	    k=k+1;
 3038: 	    mu[k][(int) age]=pmmij[i][j];
 3039: 	  }
 3040: 	}
 3041:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3042: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3043: 	    varpij[i][j][(int)age] = doldm[i][j];
 3044: 
 3045: 	/*printf("\n%d ",(int)age);
 3046: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3047: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3048: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3049: 	  }*/
 3050: 
 3051: 	fprintf(ficresprob,"\n%d ",(int)age);
 3052: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3053: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3054: 
 3055: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3056: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3057: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3058: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3059: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3060: 	}
 3061: 	i=0;
 3062: 	for (k=1; k<=(nlstate);k++){
 3063:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3064:  	    i=i++;
 3065: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3066: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3067: 	    for (j=1; j<=i;j++){
 3068: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3069: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3070: 	    }
 3071: 	  }
 3072: 	}/* end of loop for state */
 3073:       } /* end of loop for age */
 3074: 
 3075:       /* Confidence intervalle of pij  */
 3076:       /*
 3077: 	fprintf(ficgp,"\nset noparametric;unset label");
 3078: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3079: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3080: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3081: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3082: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3083: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3084:       */
 3085: 
 3086:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3087:       first1=1;
 3088:       for (k2=1; k2<=(nlstate);k2++){
 3089: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3090: 	  if(l2==k2) continue;
 3091: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3092: 	  for (k1=1; k1<=(nlstate);k1++){
 3093: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3094: 	      if(l1==k1) continue;
 3095: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3096: 	      if(i<=j) continue;
 3097: 	      for (age=bage; age<=fage; age ++){ 
 3098: 		if ((int)age %5==0){
 3099: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3100: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3101: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3102: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3103: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3104: 		  c12=cv12/sqrt(v1*v2);
 3105: 		  /* Computing eigen value of matrix of covariance */
 3106: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3107: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3108: 		  /* Eigen vectors */
 3109: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3110: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3111: 		  v21=(lc1-v1)/cv12*v11;
 3112: 		  v12=-v21;
 3113: 		  v22=v11;
 3114: 		  tnalp=v21/v11;
 3115: 		  if(first1==1){
 3116: 		    first1=0;
 3117: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3118: 		  }
 3119: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3120: 		  /*printf(fignu*/
 3121: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3122: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3123: 		  if(first==1){
 3124: 		    first=0;
 3125:  		    fprintf(ficgp,"\nset parametric;unset label");
 3126: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3127: 		    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3128: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3129:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3130: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3131: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3132: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3133: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3134: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3135: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3136: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3137: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3138: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3139: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3140: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3141: 		  }else{
 3142: 		    first=0;
 3143: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3144: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3145: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3146: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3147: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3148: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3149: 		  }/* if first */
 3150: 		} /* age mod 5 */
 3151: 	      } /* end loop age */
 3152: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3153: 	      first=1;
 3154: 	    } /*l12 */
 3155: 	  } /* k12 */
 3156: 	} /*l1 */
 3157:       }/* k1 */
 3158:     } /* loop covariates */
 3159:   }
 3160:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3161:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3162:   free_vector(xp,1,npar);
 3163:   fclose(ficresprob);
 3164:   fclose(ficresprobcov);
 3165:   fclose(ficresprobcor);
 3166:   fflush(ficgp);
 3167:   fflush(fichtmcov);
 3168: }
 3169: 
 3170: 
 3171: /******************* Printing html file ***********/
 3172: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3173: 		  int lastpass, int stepm, int weightopt, char model[],\
 3174: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3175: 		  int popforecast, int estepm ,\
 3176: 		  double jprev1, double mprev1,double anprev1, \
 3177: 		  double jprev2, double mprev2,double anprev2){
 3178:   int jj1, k1, i1, cpt;
 3179: 
 3180:    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
 3181:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 3182: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 3183:    fprintf(fichtm,"\
 3184:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 3185: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 3186:    fprintf(fichtm,"\
 3187:  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 3188: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 3189:    fprintf(fichtm,"\
 3190:  - Life expectancies by age and initial health status (estepm=%2d months): \
 3191:    <a href=\"%s\">%s</a> <br>\n</li>",
 3192: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3193: 
 3194: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3195: 
 3196:  m=cptcoveff;
 3197:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3198: 
 3199:  jj1=0;
 3200:  for(k1=1; k1<=m;k1++){
 3201:    for(i1=1; i1<=ncodemax[k1];i1++){
 3202:      jj1++;
 3203:      if (cptcovn > 0) {
 3204:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3205:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3206: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3207:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3208:      }
 3209:      /* Pij */
 3210:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
 3211: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3212:      /* Quasi-incidences */
 3213:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3214:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
 3215: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3216:        /* Stable prevalence in each health state */
 3217:        for(cpt=1; cpt<nlstate;cpt++){
 3218: 	 fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
 3219: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3220:        }
 3221:      for(cpt=1; cpt<=nlstate;cpt++) {
 3222:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
 3223: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3224:      }
 3225:    } /* end i1 */
 3226:  }/* End k1 */
 3227:  fprintf(fichtm,"</ul>");
 3228: 
 3229: 
 3230:  fprintf(fichtm,"\
 3231: \n<br><li><h4> Result files (second order: variances)</h4>\n\
 3232:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 3233: 
 3234:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3235: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 3236:  fprintf(fichtm,"\
 3237:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3238: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 3239: 
 3240:  fprintf(fichtm,"\
 3241:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3242: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 3243:  fprintf(fichtm,"\
 3244:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 3245: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 3246:  fprintf(fichtm,"\
 3247:  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
 3248: 	 subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 3249:  fprintf(fichtm,"\
 3250:  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
 3251: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 3252: 
 3253: /*  if(popforecast==1) fprintf(fichtm,"\n */
 3254: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 3255: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 3256: /* 	<br>",fileres,fileres,fileres,fileres); */
 3257: /*  else  */
 3258: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 3259:  fflush(fichtm);
 3260:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 3261: 
 3262:  m=cptcoveff;
 3263:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3264: 
 3265:  jj1=0;
 3266:  for(k1=1; k1<=m;k1++){
 3267:    for(i1=1; i1<=ncodemax[k1];i1++){
 3268:      jj1++;
 3269:      if (cptcovn > 0) {
 3270:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3271:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3272: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3273:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3274:      }
 3275:      for(cpt=1; cpt<=nlstate;cpt++) {
 3276:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 3277: prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
 3278: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 3279:      }
 3280:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 3281: health expectancies in states (1) and (2): %s%d.png<br>\
 3282: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 3283:    } /* end i1 */
 3284:  }/* End k1 */
 3285:  fprintf(fichtm,"</ul>");
 3286:  fflush(fichtm);
 3287: }
 3288: 
 3289: /******************* Gnuplot file **************/
 3290: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3291: 
 3292:   char dirfileres[132],optfileres[132];
 3293:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 3294:   int ng;
 3295: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 3296: /*     printf("Problem with file %s",optionfilegnuplot); */
 3297: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 3298: /*   } */
 3299: 
 3300:   /*#ifdef windows */
 3301:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 3302:     /*#endif */
 3303:   m=pow(2,cptcoveff);
 3304: 
 3305:   strcpy(dirfileres,optionfilefiname);
 3306:   strcpy(optfileres,"vpl");
 3307:  /* 1eme*/
 3308:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 3309:    for (k1=1; k1<= m ; k1 ++) {
 3310:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 3311:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 3312:      fprintf(ficgp,"set xlabel \"Age\" \n\
 3313: set ylabel \"Probability\" \n\
 3314: set ter png small\n\
 3315: set size 0.65,0.65\n\
 3316: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 3317: 
 3318:      for (i=1; i<= nlstate ; i ++) {
 3319:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3320:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3321:      }
 3322:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 3323:      for (i=1; i<= nlstate ; i ++) {
 3324:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3325:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3326:      } 
 3327:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 3328:      for (i=1; i<= nlstate ; i ++) {
 3329:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3330:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3331:      }  
 3332:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 3333:    }
 3334:   }
 3335:   /*2 eme*/
 3336:   
 3337:   for (k1=1; k1<= m ; k1 ++) { 
 3338:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 3339:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 3340:     
 3341:     for (i=1; i<= nlstate+1 ; i ++) {
 3342:       k=2*i;
 3343:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3344:       for (j=1; j<= nlstate+1 ; j ++) {
 3345: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3346: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3347:       }   
 3348:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 3349:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 3350:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3351:       for (j=1; j<= nlstate+1 ; j ++) {
 3352: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3353: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3354:       }   
 3355:       fprintf(ficgp,"\" t\"\" w l 0,");
 3356:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3357:       for (j=1; j<= nlstate+1 ; j ++) {
 3358: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3359: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3360:       }   
 3361:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 3362:       else fprintf(ficgp,"\" t\"\" w l 0,");
 3363:     }
 3364:   }
 3365:   
 3366:   /*3eme*/
 3367:   
 3368:   for (k1=1; k1<= m ; k1 ++) { 
 3369:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 3370:       k=2+nlstate*(2*cpt-2);
 3371:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 3372:       fprintf(ficgp,"set ter png small\n\
 3373: set size 0.65,0.65\n\
 3374: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 3375:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3376: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3377: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3378: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3379: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3380: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3381: 	
 3382:       */
 3383:       for (i=1; i< nlstate ; i ++) {
 3384: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
 3385: 	
 3386:       } 
 3387:     }
 3388:   }
 3389:   
 3390:   /* CV preval stable (period) */
 3391:   for (k1=1; k1<= m ; k1 ++) { 
 3392:     for (cpt=1; cpt<=nlstate ; cpt ++) {
 3393:       k=3;
 3394:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 3395:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 3396: set ter png small\nset size 0.65,0.65\n\
 3397: unset log y\n\
 3398: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 3399:       
 3400:       for (i=1; i< nlstate ; i ++)
 3401: 	fprintf(ficgp,"+$%d",k+i+1);
 3402:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 3403:       
 3404:       l=3+(nlstate+ndeath)*cpt;
 3405:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 3406:       for (i=1; i< nlstate ; i ++) {
 3407: 	l=3+(nlstate+ndeath)*cpt;
 3408: 	fprintf(ficgp,"+$%d",l+i+1);
 3409:       }
 3410:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 3411:     } 
 3412:   }  
 3413:   
 3414:   /* proba elementaires */
 3415:   for(i=1,jk=1; i <=nlstate; i++){
 3416:     for(k=1; k <=(nlstate+ndeath); k++){
 3417:       if (k != i) {
 3418: 	for(j=1; j <=ncovmodel; j++){
 3419: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 3420: 	  jk++; 
 3421: 	  fprintf(ficgp,"\n");
 3422: 	}
 3423:       }
 3424:     }
 3425:    }
 3426: 
 3427:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 3428:      for(jk=1; jk <=m; jk++) {
 3429:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 3430:        if (ng==2)
 3431: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 3432:        else
 3433: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 3434:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 3435:        i=1;
 3436:        for(k2=1; k2<=nlstate; k2++) {
 3437: 	 k3=i;
 3438: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 3439: 	   if (k != k2){
 3440: 	     if(ng==2)
 3441: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 3442: 	     else
 3443: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 3444: 	     ij=1;
 3445: 	     for(j=3; j <=ncovmodel; j++) {
 3446: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3447: 		 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3448: 		 ij++;
 3449: 	       }
 3450: 	       else
 3451: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3452: 	     }
 3453: 	     fprintf(ficgp,")/(1");
 3454: 	     
 3455: 	     for(k1=1; k1 <=nlstate; k1++){   
 3456: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 3457: 	       ij=1;
 3458: 	       for(j=3; j <=ncovmodel; j++){
 3459: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3460: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3461: 		   ij++;
 3462: 		 }
 3463: 		 else
 3464: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3465: 	       }
 3466: 	       fprintf(ficgp,")");
 3467: 	     }
 3468: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 3469: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 3470: 	     i=i+ncovmodel;
 3471: 	   }
 3472: 	 } /* end k */
 3473:        } /* end k2 */
 3474:      } /* end jk */
 3475:    } /* end ng */
 3476:    fflush(ficgp); 
 3477: }  /* end gnuplot */
 3478: 
 3479: 
 3480: /*************** Moving average **************/
 3481: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 3482: 
 3483:   int i, cpt, cptcod;
 3484:   int modcovmax =1;
 3485:   int mobilavrange, mob;
 3486:   double age;
 3487: 
 3488:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 3489: 			   a covariate has 2 modalities */
 3490:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 3491: 
 3492:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 3493:     if(mobilav==1) mobilavrange=5; /* default */
 3494:     else mobilavrange=mobilav;
 3495:     for (age=bage; age<=fage; age++)
 3496:       for (i=1; i<=nlstate;i++)
 3497: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 3498: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 3499:     /* We keep the original values on the extreme ages bage, fage and for 
 3500:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 3501:        we use a 5 terms etc. until the borders are no more concerned. 
 3502:     */ 
 3503:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 3504:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 3505: 	for (i=1; i<=nlstate;i++){
 3506: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 3507: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 3508: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 3509: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 3510: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 3511: 	      }
 3512: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 3513: 	  }
 3514: 	}
 3515:       }/* end age */
 3516:     }/* end mob */
 3517:   }else return -1;
 3518:   return 0;
 3519: }/* End movingaverage */
 3520: 
 3521: 
 3522: /************** Forecasting ******************/
 3523: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 3524:   /* proj1, year, month, day of starting projection 
 3525:      agemin, agemax range of age
 3526:      dateprev1 dateprev2 range of dates during which prevalence is computed
 3527:      anproj2 year of en of projection (same day and month as proj1).
 3528:   */
 3529:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 3530:   int *popage;
 3531:   double agec; /* generic age */
 3532:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 3533:   double *popeffectif,*popcount;
 3534:   double ***p3mat;
 3535:   double ***mobaverage;
 3536:   char fileresf[FILENAMELENGTH];
 3537: 
 3538:   agelim=AGESUP;
 3539:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3540:  
 3541:   strcpy(fileresf,"f"); 
 3542:   strcat(fileresf,fileres);
 3543:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 3544:     printf("Problem with forecast resultfile: %s\n", fileresf);
 3545:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 3546:   }
 3547:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 3548:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 3549: 
 3550:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3551: 
 3552:   if (mobilav!=0) {
 3553:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3554:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3555:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3556:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3557:     }
 3558:   }
 3559: 
 3560:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3561:   if (stepm<=12) stepsize=1;
 3562:   if(estepm < stepm){
 3563:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3564:   }
 3565:   else  hstepm=estepm;   
 3566: 
 3567:   hstepm=hstepm/stepm; 
 3568:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 3569:                                fractional in yp1 */
 3570:   anprojmean=yp;
 3571:   yp2=modf((yp1*12),&yp);
 3572:   mprojmean=yp;
 3573:   yp1=modf((yp2*30.5),&yp);
 3574:   jprojmean=yp;
 3575:   if(jprojmean==0) jprojmean=1;
 3576:   if(mprojmean==0) jprojmean=1;
 3577: 
 3578:   i1=cptcoveff;
 3579:   if (cptcovn < 1){i1=1;}
 3580:   
 3581:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 3582:   
 3583:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 3584: 
 3585: /* 	      if (h==(int)(YEARM*yearp)){ */
 3586:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 3587:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3588:       k=k+1;
 3589:       fprintf(ficresf,"\n#******");
 3590:       for(j=1;j<=cptcoveff;j++) {
 3591: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3592:       }
 3593:       fprintf(ficresf,"******\n");
 3594:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 3595:       for(j=1; j<=nlstate+ndeath;j++){ 
 3596: 	for(i=1; i<=nlstate;i++) 	      
 3597:           fprintf(ficresf," p%d%d",i,j);
 3598: 	fprintf(ficresf," p.%d",j);
 3599:       }
 3600:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 3601: 	fprintf(ficresf,"\n");
 3602: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 3603: 
 3604:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 3605: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 3606: 	  nhstepm = nhstepm/hstepm; 
 3607: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3608: 	  oldm=oldms;savm=savms;
 3609: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3610: 	
 3611: 	  for (h=0; h<=nhstepm; h++){
 3612: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 3613:               fprintf(ficresf,"\n");
 3614:               for(j=1;j<=cptcoveff;j++) 
 3615:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3616: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 3617: 	    } 
 3618: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3619: 	      ppij=0.;
 3620: 	      for(i=1; i<=nlstate;i++) {
 3621: 		if (mobilav==1) 
 3622: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 3623: 		else {
 3624: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 3625: 		}
 3626: 		if (h*hstepm/YEARM*stepm== yearp) {
 3627: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 3628: 		}
 3629: 	      } /* end i */
 3630: 	      if (h*hstepm/YEARM*stepm==yearp) {
 3631: 		fprintf(ficresf," %.3f", ppij);
 3632: 	      }
 3633: 	    }/* end j */
 3634: 	  } /* end h */
 3635: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3636: 	} /* end agec */
 3637:       } /* end yearp */
 3638:     } /* end cptcod */
 3639:   } /* end  cptcov */
 3640:        
 3641:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3642: 
 3643:   fclose(ficresf);
 3644: }
 3645: 
 3646: /************** Forecasting *****not tested NB*************/
 3647: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 3648:   
 3649:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 3650:   int *popage;
 3651:   double calagedatem, agelim, kk1, kk2;
 3652:   double *popeffectif,*popcount;
 3653:   double ***p3mat,***tabpop,***tabpopprev;
 3654:   double ***mobaverage;
 3655:   char filerespop[FILENAMELENGTH];
 3656: 
 3657:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3658:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3659:   agelim=AGESUP;
 3660:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 3661:   
 3662:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3663:   
 3664:   
 3665:   strcpy(filerespop,"pop"); 
 3666:   strcat(filerespop,fileres);
 3667:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 3668:     printf("Problem with forecast resultfile: %s\n", filerespop);
 3669:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 3670:   }
 3671:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 3672:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 3673: 
 3674:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3675: 
 3676:   if (mobilav!=0) {
 3677:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3678:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3679:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3680:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3681:     }
 3682:   }
 3683: 
 3684:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3685:   if (stepm<=12) stepsize=1;
 3686:   
 3687:   agelim=AGESUP;
 3688:   
 3689:   hstepm=1;
 3690:   hstepm=hstepm/stepm; 
 3691:   
 3692:   if (popforecast==1) {
 3693:     if((ficpop=fopen(popfile,"r"))==NULL) {
 3694:       printf("Problem with population file : %s\n",popfile);exit(0);
 3695:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 3696:     } 
 3697:     popage=ivector(0,AGESUP);
 3698:     popeffectif=vector(0,AGESUP);
 3699:     popcount=vector(0,AGESUP);
 3700:     
 3701:     i=1;   
 3702:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 3703:    
 3704:     imx=i;
 3705:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 3706:   }
 3707: 
 3708:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 3709:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3710:       k=k+1;
 3711:       fprintf(ficrespop,"\n#******");
 3712:       for(j=1;j<=cptcoveff;j++) {
 3713: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3714:       }
 3715:       fprintf(ficrespop,"******\n");
 3716:       fprintf(ficrespop,"# Age");
 3717:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 3718:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 3719:       
 3720:       for (cpt=0; cpt<=0;cpt++) { 
 3721: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3722: 	
 3723:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3724: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3725: 	  nhstepm = nhstepm/hstepm; 
 3726: 	  
 3727: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3728: 	  oldm=oldms;savm=savms;
 3729: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3730: 	
 3731: 	  for (h=0; h<=nhstepm; h++){
 3732: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3733: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3734: 	    } 
 3735: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3736: 	      kk1=0.;kk2=0;
 3737: 	      for(i=1; i<=nlstate;i++) {	      
 3738: 		if (mobilav==1) 
 3739: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 3740: 		else {
 3741: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 3742: 		}
 3743: 	      }
 3744: 	      if (h==(int)(calagedatem+12*cpt)){
 3745: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 3746: 		  /*fprintf(ficrespop," %.3f", kk1);
 3747: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 3748: 	      }
 3749: 	    }
 3750: 	    for(i=1; i<=nlstate;i++){
 3751: 	      kk1=0.;
 3752: 		for(j=1; j<=nlstate;j++){
 3753: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 3754: 		}
 3755: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 3756: 	    }
 3757: 
 3758: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 3759: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 3760: 	  }
 3761: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3762: 	}
 3763:       }
 3764:  
 3765:   /******/
 3766: 
 3767:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 3768: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3769: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3770: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3771: 	  nhstepm = nhstepm/hstepm; 
 3772: 	  
 3773: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3774: 	  oldm=oldms;savm=savms;
 3775: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3776: 	  for (h=0; h<=nhstepm; h++){
 3777: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3778: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3779: 	    } 
 3780: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3781: 	      kk1=0.;kk2=0;
 3782: 	      for(i=1; i<=nlstate;i++) {	      
 3783: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 3784: 	      }
 3785: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 3786: 	    }
 3787: 	  }
 3788: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3789: 	}
 3790:       }
 3791:    } 
 3792:   }
 3793:  
 3794:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3795: 
 3796:   if (popforecast==1) {
 3797:     free_ivector(popage,0,AGESUP);
 3798:     free_vector(popeffectif,0,AGESUP);
 3799:     free_vector(popcount,0,AGESUP);
 3800:   }
 3801:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3802:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3803:   fclose(ficrespop);
 3804: } /* End of popforecast */
 3805: 
 3806: int fileappend(FILE *fichier, char *optionfich)
 3807: {
 3808:   if((fichier=fopen(optionfich,"a"))==NULL) {
 3809:     printf("Problem with file: %s\n", optionfich);
 3810:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 3811:     return (0);
 3812:   }
 3813:   fflush(fichier);
 3814:   return (1);
 3815: }
 3816: 
 3817: 
 3818: /**************** function prwizard **********************/
 3819: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 3820: {
 3821: 
 3822:   /* Wizard to print covariance matrix template */
 3823: 
 3824:   char ca[32], cb[32], cc[32];
 3825:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 3826:   int numlinepar;
 3827: 
 3828:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3829:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3830:   for(i=1; i <=nlstate; i++){
 3831:     jj=0;
 3832:     for(j=1; j <=nlstate+ndeath; j++){
 3833:       if(j==i) continue;
 3834:       jj++;
 3835:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 3836:       printf("%1d%1d",i,j);
 3837:       fprintf(ficparo,"%1d%1d",i,j);
 3838:       for(k=1; k<=ncovmodel;k++){
 3839: 	/* 	  printf(" %lf",param[i][j][k]); */
 3840: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 3841: 	printf(" 0.");
 3842: 	fprintf(ficparo," 0.");
 3843:       }
 3844:       printf("\n");
 3845:       fprintf(ficparo,"\n");
 3846:     }
 3847:   }
 3848:   printf("# Scales (for hessian or gradient estimation)\n");
 3849:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 3850:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 3851:   for(i=1; i <=nlstate; i++){
 3852:     jj=0;
 3853:     for(j=1; j <=nlstate+ndeath; j++){
 3854:       if(j==i) continue;
 3855:       jj++;
 3856:       fprintf(ficparo,"%1d%1d",i,j);
 3857:       printf("%1d%1d",i,j);
 3858:       fflush(stdout);
 3859:       for(k=1; k<=ncovmodel;k++){
 3860: 	/* 	printf(" %le",delti3[i][j][k]); */
 3861: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 3862: 	printf(" 0.");
 3863: 	fprintf(ficparo," 0.");
 3864:       }
 3865:       numlinepar++;
 3866:       printf("\n");
 3867:       fprintf(ficparo,"\n");
 3868:     }
 3869:   }
 3870:   printf("# Covariance matrix\n");
 3871: /* # 121 Var(a12)\n\ */
 3872: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3873: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 3874: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 3875: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 3876: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 3877: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 3878: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 3879:   fflush(stdout);
 3880:   fprintf(ficparo,"# Covariance matrix\n");
 3881:   /* # 121 Var(a12)\n\ */
 3882:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3883:   /* #   ...\n\ */
 3884:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 3885:   
 3886:   for(itimes=1;itimes<=2;itimes++){
 3887:     jj=0;
 3888:     for(i=1; i <=nlstate; i++){
 3889:       for(j=1; j <=nlstate+ndeath; j++){
 3890: 	if(j==i) continue;
 3891: 	for(k=1; k<=ncovmodel;k++){
 3892: 	  jj++;
 3893: 	  ca[0]= k+'a'-1;ca[1]='\0';
 3894: 	  if(itimes==1){
 3895: 	    printf("#%1d%1d%d",i,j,k);
 3896: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 3897: 	  }else{
 3898: 	    printf("%1d%1d%d",i,j,k);
 3899: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 3900: 	    /* 	printf(" %.5le",matcov[i][j]); */
 3901: 	  }
 3902: 	  ll=0;
 3903: 	  for(li=1;li <=nlstate; li++){
 3904: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 3905: 	      if(lj==li) continue;
 3906: 	      for(lk=1;lk<=ncovmodel;lk++){
 3907: 		ll++;
 3908: 		if(ll<=jj){
 3909: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 3910: 		  if(ll<jj){
 3911: 		    if(itimes==1){
 3912: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 3913: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 3914: 		    }else{
 3915: 		      printf(" 0.");
 3916: 		      fprintf(ficparo," 0.");
 3917: 		    }
 3918: 		  }else{
 3919: 		    if(itimes==1){
 3920: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 3921: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 3922: 		    }else{
 3923: 		      printf(" 0.");
 3924: 		      fprintf(ficparo," 0.");
 3925: 		    }
 3926: 		  }
 3927: 		}
 3928: 	      } /* end lk */
 3929: 	    } /* end lj */
 3930: 	  } /* end li */
 3931: 	  printf("\n");
 3932: 	  fprintf(ficparo,"\n");
 3933: 	  numlinepar++;
 3934: 	} /* end k*/
 3935:       } /*end j */
 3936:     } /* end i */
 3937:   } /* end itimes */
 3938: 
 3939: } /* end of prwizard */
 3940: /******************* Gompertz Likelihood ******************************/
 3941: double gompertz(double x[])
 3942: { 
 3943:   double A,B,L=0.0,sump=0.,num=0.;
 3944:   int i,n=0; /* n is the size of the sample */
 3945:   for (i=0;i<=imx-1 ; i++) {
 3946:     sump=sump+weight[i];
 3947:     /*    sump=sump+1;*/
 3948:     num=num+1;
 3949:   }
 3950:  
 3951:  
 3952:   /* for (i=0; i<=imx; i++) 
 3953:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 3954: 
 3955:   for (i=1;i<=imx ; i++)
 3956:     {
 3957:       if (cens[i]==1 & wav[i]>1)
 3958: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 3959:       
 3960:       if (cens[i]==0 & wav[i]>1)
 3961: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 3962: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 3963:       
 3964:       if (wav[i]>1 & agecens[i]>15) {
 3965: 	L=L+A*weight[i];
 3966: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 3967:       }
 3968:     }
 3969: 
 3970:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 3971:  
 3972:   return -2*L*num/sump;
 3973: }
 3974: 
 3975: /******************* Printing html file ***********/
 3976: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 3977: 		  int lastpass, int stepm, int weightopt, char model[],\
 3978: 		  int imx,  double p[],double **matcov){
 3979:   int i;
 3980: 
 3981:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 3982:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 3983:   for (i=1;i<=2;i++) 
 3984:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 3985:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 3986:   fprintf(fichtm,"</ul>");
 3987:   fflush(fichtm);
 3988: }
 3989: 
 3990: /******************* Gnuplot file **************/
 3991: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3992: 
 3993:   char dirfileres[132],optfileres[132];
 3994:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 3995:   int ng;
 3996: 
 3997: 
 3998:   /*#ifdef windows */
 3999:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4000:     /*#endif */
 4001: 
 4002: 
 4003:   strcpy(dirfileres,optionfilefiname);
 4004:   strcpy(optfileres,"vpl");
 4005:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 4006:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 4007:   fprintf(ficgp, "set ter png small\n set log y\n"); 
 4008:   fprintf(ficgp, "set size 0.65,0.65\n");
 4009:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 4010: 
 4011: } 
 4012: 
 4013: 
 4014: 
 4015: 
 4016: /***********************************************/
 4017: /**************** Main Program *****************/
 4018: /***********************************************/
 4019: 
 4020: int main(int argc, char *argv[])
 4021: {
 4022:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 4023:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 4024:   int jj, ll, li, lj, lk, imk;
 4025:   int numlinepar=0; /* Current linenumber of parameter file */
 4026:   int itimes;
 4027:   int NDIM=2;
 4028: 
 4029:   char ca[32], cb[32], cc[32];
 4030:   /*  FILE *fichtm; *//* Html File */
 4031:   /* FILE *ficgp;*/ /*Gnuplot File */
 4032:   double agedeb, agefin,hf;
 4033:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 4034: 
 4035:   double fret;
 4036:   double **xi,tmp,delta;
 4037: 
 4038:   double dum; /* Dummy variable */
 4039:   double ***p3mat;
 4040:   double ***mobaverage;
 4041:   int *indx;
 4042:   char line[MAXLINE], linepar[MAXLINE];
 4043:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 4044:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 4045:   int firstobs=1, lastobs=10;
 4046:   int sdeb, sfin; /* Status at beginning and end */
 4047:   int c,  h , cpt,l;
 4048:   int ju,jl, mi;
 4049:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 4050:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
 4051:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 4052:   int mobilav=0,popforecast=0;
 4053:   int hstepm, nhstepm;
 4054:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 4055:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 4056: 
 4057:   double bage, fage, age, agelim, agebase;
 4058:   double ftolpl=FTOL;
 4059:   double **prlim;
 4060:   double *severity;
 4061:   double ***param; /* Matrix of parameters */
 4062:   double  *p;
 4063:   double **matcov; /* Matrix of covariance */
 4064:   double ***delti3; /* Scale */
 4065:   double *delti; /* Scale */
 4066:   double ***eij, ***vareij;
 4067:   double **varpl; /* Variances of prevalence limits by age */
 4068:   double *epj, vepp;
 4069:   double kk1, kk2;
 4070:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 4071:   double **ximort;
 4072:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 4073:   int *dcwave;
 4074: 
 4075:   char z[1]="c", occ;
 4076: 
 4077:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 4078:   char strstart[80], *strt, strtend[80];
 4079:   char *stratrunc;
 4080:   int lstra;
 4081: 
 4082:   long total_usecs;
 4083:  
 4084: /*   setlocale (LC_ALL, ""); */
 4085: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 4086: /*   textdomain (PACKAGE); */
 4087: /*   setlocale (LC_CTYPE, ""); */
 4088: /*   setlocale (LC_MESSAGES, ""); */
 4089: 
 4090:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 4091:   (void) gettimeofday(&start_time,&tzp);
 4092:   curr_time=start_time;
 4093:   tm = *localtime(&start_time.tv_sec);
 4094:   tmg = *gmtime(&start_time.tv_sec);
 4095:   strcpy(strstart,asctime(&tm));
 4096: 
 4097: /*  printf("Localtime (at start)=%s",strstart); */
 4098: /*  tp.tv_sec = tp.tv_sec +86400; */
 4099: /*  tm = *localtime(&start_time.tv_sec); */
 4100: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 4101: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 4102: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 4103: /*   tp.tv_sec = mktime(&tmg); */
 4104: /*   strt=asctime(&tmg); */
 4105: /*   printf("Time(after) =%s",strstart);  */
 4106: /*  (void) time (&time_value);
 4107: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 4108: *  tm = *localtime(&time_value);
 4109: *  strstart=asctime(&tm);
 4110: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 4111: */
 4112: 
 4113:   nberr=0; /* Number of errors and warnings */
 4114:   nbwarn=0;
 4115:   getcwd(pathcd, size);
 4116: 
 4117:   printf("\n%s\n%s",version,fullversion);
 4118:   if(argc <=1){
 4119:     printf("\nEnter the parameter file name: ");
 4120:     scanf("%s",pathtot);
 4121:   }
 4122:   else{
 4123:     strcpy(pathtot,argv[1]);
 4124:   }
 4125:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 4126:   /*cygwin_split_path(pathtot,path,optionfile);
 4127:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 4128:   /* cutv(path,optionfile,pathtot,'\\');*/
 4129: 
 4130:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 4131:  /*   strcpy(pathimach,argv[0]); */
 4132:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 4133:   printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 4134:   chdir(path);
 4135:   strcpy(command,"mkdir ");
 4136:   strcat(command,optionfilefiname);
 4137:   if((outcmd=system(command)) != 0){
 4138:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 4139:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 4140:     /* fclose(ficlog); */
 4141: /*     exit(1); */
 4142:   }
 4143: /*   if((imk=mkdir(optionfilefiname))<0){ */
 4144: /*     perror("mkdir"); */
 4145: /*   } */
 4146: 
 4147:   /*-------- arguments in the command line --------*/
 4148: 
 4149:   /* Log file */
 4150:   strcat(filelog, optionfilefiname);
 4151:   strcat(filelog,".log");    /* */
 4152:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 4153:     printf("Problem with logfile %s\n",filelog);
 4154:     goto end;
 4155:   }
 4156:   fprintf(ficlog,"Log filename:%s\n",filelog);
 4157:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 4158:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 4159:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 4160:  path=%s \n\
 4161:  optionfile=%s\n\
 4162:  optionfilext=%s\n\
 4163:  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 4164: 
 4165:   printf("Local time (at start):%s",strstart);
 4166:   fprintf(ficlog,"Local time (at start): %s",strstart);
 4167:   fflush(ficlog);
 4168: /*   (void) gettimeofday(&curr_time,&tzp); */
 4169: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 4170: 
 4171:   /* */
 4172:   strcpy(fileres,"r");
 4173:   strcat(fileres, optionfilefiname);
 4174:   strcat(fileres,".txt");    /* Other files have txt extension */
 4175: 
 4176:   /*---------arguments file --------*/
 4177: 
 4178:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 4179:     printf("Problem with optionfile %s\n",optionfile);
 4180:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 4181:     fflush(ficlog);
 4182:     goto end;
 4183:   }
 4184: 
 4185: 
 4186: 
 4187:   strcpy(filereso,"o");
 4188:   strcat(filereso,fileres);
 4189:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 4190:     printf("Problem with Output resultfile: %s\n", filereso);
 4191:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 4192:     fflush(ficlog);
 4193:     goto end;
 4194:   }
 4195: 
 4196:   /* Reads comments: lines beginning with '#' */
 4197:   numlinepar=0;
 4198:   while((c=getc(ficpar))=='#' && c!= EOF){
 4199:     ungetc(c,ficpar);
 4200:     fgets(line, MAXLINE, ficpar);
 4201:     numlinepar++;
 4202:     puts(line);
 4203:     fputs(line,ficparo);
 4204:     fputs(line,ficlog);
 4205:   }
 4206:   ungetc(c,ficpar);
 4207: 
 4208:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 4209:   numlinepar++;
 4210:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 4211:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4212:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4213:   fflush(ficlog);
 4214:   while((c=getc(ficpar))=='#' && c!= EOF){
 4215:     ungetc(c,ficpar);
 4216:     fgets(line, MAXLINE, ficpar);
 4217:     numlinepar++;
 4218:     puts(line);
 4219:     fputs(line,ficparo);
 4220:     fputs(line,ficlog);
 4221:   }
 4222:   ungetc(c,ficpar);
 4223: 
 4224:    
 4225:   covar=matrix(0,NCOVMAX,1,n); 
 4226:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 4227:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 4228: 
 4229:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
 4230:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 4231:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 4232: 
 4233:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4234:   delti=delti3[1][1];
 4235:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 4236:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 4237:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4238:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4239:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4240:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 4241:     fclose (ficparo);
 4242:     fclose (ficlog);
 4243:     exit(0);
 4244:   }
 4245:   else if(mle==-3) {
 4246:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4247:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 4248:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 4249:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4250:     matcov=matrix(1,npar,1,npar);
 4251:   }
 4252:   else{
 4253:     /* Read guess parameters */
 4254:     /* Reads comments: lines beginning with '#' */
 4255:     while((c=getc(ficpar))=='#' && c!= EOF){
 4256:       ungetc(c,ficpar);
 4257:       fgets(line, MAXLINE, ficpar);
 4258:       numlinepar++;
 4259:       puts(line);
 4260:       fputs(line,ficparo);
 4261:       fputs(line,ficlog);
 4262:     }
 4263:     ungetc(c,ficpar);
 4264:     
 4265:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4266:     for(i=1; i <=nlstate; i++){
 4267:       j=0;
 4268:       for(jj=1; jj <=nlstate+ndeath; jj++){
 4269: 	if(jj==i) continue;
 4270: 	j++;
 4271: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 4272: 	if ((i1 != i) && (j1 != j)){
 4273: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4274: 	  exit(1);
 4275: 	}
 4276: 	fprintf(ficparo,"%1d%1d",i1,j1);
 4277: 	if(mle==1)
 4278: 	  printf("%1d%1d",i,j);
 4279: 	fprintf(ficlog,"%1d%1d",i,j);
 4280: 	for(k=1; k<=ncovmodel;k++){
 4281: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 4282: 	  if(mle==1){
 4283: 	    printf(" %lf",param[i][j][k]);
 4284: 	    fprintf(ficlog," %lf",param[i][j][k]);
 4285: 	  }
 4286: 	  else
 4287: 	    fprintf(ficlog," %lf",param[i][j][k]);
 4288: 	  fprintf(ficparo," %lf",param[i][j][k]);
 4289: 	}
 4290: 	fscanf(ficpar,"\n");
 4291: 	numlinepar++;
 4292: 	if(mle==1)
 4293: 	  printf("\n");
 4294: 	fprintf(ficlog,"\n");
 4295: 	fprintf(ficparo,"\n");
 4296:       }
 4297:     }  
 4298:     fflush(ficlog);
 4299: 
 4300: 
 4301:     p=param[1][1];
 4302:     
 4303:     /* Reads comments: lines beginning with '#' */
 4304:     while((c=getc(ficpar))=='#' && c!= EOF){
 4305:       ungetc(c,ficpar);
 4306:       fgets(line, MAXLINE, ficpar);
 4307:       numlinepar++;
 4308:       puts(line);
 4309:       fputs(line,ficparo);
 4310:       fputs(line,ficlog);
 4311:     }
 4312:     ungetc(c,ficpar);
 4313: 
 4314:     for(i=1; i <=nlstate; i++){
 4315:       for(j=1; j <=nlstate+ndeath-1; j++){
 4316: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 4317: 	if ((i1-i)*(j1-j)!=0){
 4318: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4319: 	  exit(1);
 4320: 	}
 4321: 	printf("%1d%1d",i,j);
 4322: 	fprintf(ficparo,"%1d%1d",i1,j1);
 4323: 	fprintf(ficlog,"%1d%1d",i1,j1);
 4324: 	for(k=1; k<=ncovmodel;k++){
 4325: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 4326: 	  printf(" %le",delti3[i][j][k]);
 4327: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 4328: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 4329: 	}
 4330: 	fscanf(ficpar,"\n");
 4331: 	numlinepar++;
 4332: 	printf("\n");
 4333: 	fprintf(ficparo,"\n");
 4334: 	fprintf(ficlog,"\n");
 4335:       }
 4336:     }
 4337:     fflush(ficlog);
 4338: 
 4339:     delti=delti3[1][1];
 4340: 
 4341: 
 4342:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 4343:   
 4344:     /* Reads comments: lines beginning with '#' */
 4345:     while((c=getc(ficpar))=='#' && c!= EOF){
 4346:       ungetc(c,ficpar);
 4347:       fgets(line, MAXLINE, ficpar);
 4348:       numlinepar++;
 4349:       puts(line);
 4350:       fputs(line,ficparo);
 4351:       fputs(line,ficlog);
 4352:     }
 4353:     ungetc(c,ficpar);
 4354:   
 4355:     matcov=matrix(1,npar,1,npar);
 4356:     for(i=1; i <=npar; i++){
 4357:       fscanf(ficpar,"%s",&str);
 4358:       if(mle==1)
 4359: 	printf("%s",str);
 4360:       fprintf(ficlog,"%s",str);
 4361:       fprintf(ficparo,"%s",str);
 4362:       for(j=1; j <=i; j++){
 4363: 	fscanf(ficpar," %le",&matcov[i][j]);
 4364: 	if(mle==1){
 4365: 	  printf(" %.5le",matcov[i][j]);
 4366: 	}
 4367: 	fprintf(ficlog," %.5le",matcov[i][j]);
 4368: 	fprintf(ficparo," %.5le",matcov[i][j]);
 4369:       }
 4370:       fscanf(ficpar,"\n");
 4371:       numlinepar++;
 4372:       if(mle==1)
 4373: 	printf("\n");
 4374:       fprintf(ficlog,"\n");
 4375:       fprintf(ficparo,"\n");
 4376:     }
 4377:     for(i=1; i <=npar; i++)
 4378:       for(j=i+1;j<=npar;j++)
 4379: 	matcov[i][j]=matcov[j][i];
 4380:     
 4381:     if(mle==1)
 4382:       printf("\n");
 4383:     fprintf(ficlog,"\n");
 4384:     
 4385:     fflush(ficlog);
 4386:     
 4387:     /*-------- Rewriting parameter file ----------*/
 4388:     strcpy(rfileres,"r");    /* "Rparameterfile */
 4389:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 4390:     strcat(rfileres,".");    /* */
 4391:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 4392:     if((ficres =fopen(rfileres,"w"))==NULL) {
 4393:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 4394:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 4395:     }
 4396:     fprintf(ficres,"#%s\n",version);
 4397:   }    /* End of mle != -3 */
 4398: 
 4399:   /*-------- data file ----------*/
 4400:   if((fic=fopen(datafile,"r"))==NULL)    {
 4401:     printf("Problem with datafile: %s\n", datafile);goto end;
 4402:     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
 4403:   }
 4404: 
 4405:   n= lastobs;
 4406:   severity = vector(1,maxwav);
 4407:   outcome=imatrix(1,maxwav+1,1,n);
 4408:   num=lvector(1,n);
 4409:   moisnais=vector(1,n);
 4410:   annais=vector(1,n);
 4411:   moisdc=vector(1,n);
 4412:   andc=vector(1,n);
 4413:   agedc=vector(1,n);
 4414:   cod=ivector(1,n);
 4415:   weight=vector(1,n);
 4416:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 4417:   mint=matrix(1,maxwav,1,n);
 4418:   anint=matrix(1,maxwav,1,n);
 4419:   s=imatrix(1,maxwav+1,1,n);
 4420:   tab=ivector(1,NCOVMAX);
 4421:   ncodemax=ivector(1,8);
 4422: 
 4423:   i=1;
 4424:   while (fgets(line, MAXLINE, fic) != NULL)    {
 4425:     if ((i >= firstobs) && (i <=lastobs)) {
 4426:       for(j=0; line[j] != '\n';j++){  /* Untabifies line */
 4427: 	if(line[j] == '\t')
 4428: 	  line[j] = ' ';
 4429:       }
 4430:       for (j=maxwav;j>=1;j--){
 4431: 	cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
 4432: 	strcpy(line,stra);
 4433: 	cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4434: 	cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4435:       }
 4436: 	
 4437:       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
 4438:       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
 4439: 
 4440:       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
 4441:       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
 4442: 
 4443:       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
 4444:       for (j=ncovcol;j>=1;j--){
 4445: 	cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4446:       } 
 4447:       lstra=strlen(stra);
 4448:       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 4449: 	stratrunc = &(stra[lstra-9]);
 4450: 	num[i]=atol(stratrunc);
 4451:       }
 4452:       else
 4453: 	num[i]=atol(stra);
 4454: 	
 4455:       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 4456: 	printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 4457: 
 4458:       i=i+1;
 4459:     }
 4460:   }
 4461:   /* printf("ii=%d", ij);
 4462:      scanf("%d",i);*/
 4463:   imx=i-1; /* Number of individuals */
 4464: 
 4465:   /* for (i=1; i<=imx; i++){
 4466:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 4467:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 4468:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 4469:     }*/
 4470:    /*  for (i=1; i<=imx; i++){
 4471:      if (s[4][i]==9)  s[4][i]=-1; 
 4472:      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
 4473:   
 4474:  for (i=1; i<=imx; i++)
 4475:  
 4476:    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
 4477:      else weight[i]=1;*/
 4478: 
 4479:   /* Calculation of the number of parameter from char model*/
 4480:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 4481:   Tprod=ivector(1,15); 
 4482:   Tvaraff=ivector(1,15); 
 4483:   Tvard=imatrix(1,15,1,2);
 4484:   Tage=ivector(1,15);      
 4485:    
 4486:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 4487:     j=0, j1=0, k1=1, k2=1;
 4488:     j=nbocc(model,'+'); /* j=Number of '+' */
 4489:     j1=nbocc(model,'*'); /* j1=Number of '*' */
 4490:     cptcovn=j+1; 
 4491:     cptcovprod=j1; /*Number of products */
 4492:     
 4493:     strcpy(modelsav,model); 
 4494:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 4495:       printf("Error. Non available option model=%s ",model);
 4496:       fprintf(ficlog,"Error. Non available option model=%s ",model);
 4497:       goto end;
 4498:     }
 4499:     
 4500:     /* This loop fills the array Tvar from the string 'model'.*/
 4501: 
 4502:     for(i=(j+1); i>=1;i--){
 4503:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
 4504:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 4505:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 4506:       /*scanf("%d",i);*/
 4507:       if (strchr(strb,'*')) {  /* Model includes a product */
 4508: 	cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
 4509: 	if (strcmp(strc,"age")==0) { /* Vn*age */
 4510: 	  cptcovprod--;
 4511: 	  cutv(strb,stre,strd,'V');
 4512: 	  Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 4513: 	  cptcovage++;
 4514: 	    Tage[cptcovage]=i;
 4515: 	    /*printf("stre=%s ", stre);*/
 4516: 	}
 4517: 	else if (strcmp(strd,"age")==0) { /* or age*Vn */
 4518: 	  cptcovprod--;
 4519: 	  cutv(strb,stre,strc,'V');
 4520: 	  Tvar[i]=atoi(stre);
 4521: 	  cptcovage++;
 4522: 	  Tage[cptcovage]=i;
 4523: 	}
 4524: 	else {  /* Age is not in the model */
 4525: 	  cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
 4526: 	  Tvar[i]=ncovcol+k1;
 4527: 	  cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 4528: 	  Tprod[k1]=i;
 4529: 	  Tvard[k1][1]=atoi(strc); /* m*/
 4530: 	  Tvard[k1][2]=atoi(stre); /* n */
 4531: 	  Tvar[cptcovn+k2]=Tvard[k1][1];
 4532: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 4533: 	  for (k=1; k<=lastobs;k++) 
 4534: 	    covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 4535: 	  k1++;
 4536: 	  k2=k2+2;
 4537: 	}
 4538:       }
 4539:       else { /* no more sum */
 4540: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 4541:        /*  scanf("%d",i);*/
 4542:       cutv(strd,strc,strb,'V');
 4543:       Tvar[i]=atoi(strc);
 4544:       }
 4545:       strcpy(modelsav,stra);  
 4546:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 4547: 	scanf("%d",i);*/
 4548:     } /* end of loop + */
 4549:   } /* end model */
 4550:   
 4551:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 4552:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 4553: 
 4554:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 4555:   printf("cptcovprod=%d ", cptcovprod);
 4556:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 4557: 
 4558:   scanf("%d ",i);
 4559:   fclose(fic);*/
 4560: 
 4561:     /*  if(mle==1){*/
 4562:   if (weightopt != 1) { /* Maximisation without weights*/
 4563:     for(i=1;i<=n;i++) weight[i]=1.0;
 4564:   }
 4565:     /*-calculation of age at interview from date of interview and age at death -*/
 4566:   agev=matrix(1,maxwav,1,imx);
 4567: 
 4568:   for (i=1; i<=imx; i++) {
 4569:     for(m=2; (m<= maxwav); m++) {
 4570:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 4571: 	anint[m][i]=9999;
 4572: 	s[m][i]=-1;
 4573:       }
 4574:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 4575: 	nberr++;
 4576: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4577: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4578: 	s[m][i]=-1;
 4579:       }
 4580:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 4581: 	nberr++;
 4582: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 4583: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 4584: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 4585:       }
 4586:     }
 4587:   }
 4588: 
 4589:   for (i=1; i<=imx; i++)  {
 4590:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 4591:     for(m=firstpass; (m<= lastpass); m++){
 4592:       if(s[m][i] >0 || s[m][i]==-2){
 4593: 	if (s[m][i] >= nlstate+1) {
 4594: 	  if(agedc[i]>0)
 4595: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 4596: 	      agev[m][i]=agedc[i];
 4597: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 4598: 	    else {
 4599: 	      if ((int)andc[i]!=9999){
 4600: 		nbwarn++;
 4601: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 4602: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 4603: 		agev[m][i]=-1;
 4604: 	      }
 4605: 	    }
 4606: 	}
 4607: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 4608: 				 years but with the precision of a
 4609: 				 month */
 4610: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 4611: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 4612: 	    agev[m][i]=1;
 4613: 	  else if(agev[m][i] <agemin){ 
 4614: 	    agemin=agev[m][i];
 4615: 	    /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 4616: 	  }
 4617: 	  else if(agev[m][i] >agemax){
 4618: 	    agemax=agev[m][i];
 4619: 	    /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 4620: 	  }
 4621: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 4622: 	  /*	 agev[m][i] = age[i]+2*m;*/
 4623: 	}
 4624: 	else { /* =9 */
 4625: 	  agev[m][i]=1;
 4626: 	  s[m][i]=-1;
 4627: 	}
 4628:       }
 4629:       else /*= 0 Unknown */
 4630: 	agev[m][i]=1;
 4631:     }
 4632:     
 4633:   }
 4634:   for (i=1; i<=imx; i++)  {
 4635:     for(m=firstpass; (m<=lastpass); m++){
 4636:       if (s[m][i] > (nlstate+ndeath)) {
 4637: 	nberr++;
 4638: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4639: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4640: 	goto end;
 4641:       }
 4642:     }
 4643:   }
 4644: 
 4645:   /*for (i=1; i<=imx; i++){
 4646:   for (m=firstpass; (m<lastpass); m++){
 4647:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 4648: }
 4649: 
 4650: }*/
 4651: 
 4652: 
 4653:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 4654:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
 4655: 
 4656:   agegomp=(int)agemin;
 4657:   free_vector(severity,1,maxwav);
 4658:   free_imatrix(outcome,1,maxwav+1,1,n);
 4659:   free_vector(moisnais,1,n);
 4660:   free_vector(annais,1,n);
 4661:   /* free_matrix(mint,1,maxwav,1,n);
 4662:      free_matrix(anint,1,maxwav,1,n);*/
 4663:   free_vector(moisdc,1,n);
 4664:   free_vector(andc,1,n);
 4665: 
 4666:    
 4667:   wav=ivector(1,imx);
 4668:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 4669:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 4670:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 4671:    
 4672:   /* Concatenates waves */
 4673:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 4674: 
 4675:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 4676: 
 4677:   Tcode=ivector(1,100);
 4678:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 4679:   ncodemax[1]=1;
 4680:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 4681:       
 4682:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
 4683: 				 the estimations*/
 4684:   h=0;
 4685:   m=pow(2,cptcoveff);
 4686:  
 4687:   for(k=1;k<=cptcoveff; k++){
 4688:     for(i=1; i <=(m/pow(2,k));i++){
 4689:       for(j=1; j <= ncodemax[k]; j++){
 4690: 	for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
 4691: 	  h++;
 4692: 	  if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 4693: 	  /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 4694: 	} 
 4695:       }
 4696:     }
 4697:   } 
 4698:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 4699:      codtab[1][2]=1;codtab[2][2]=2; */
 4700:   /* for(i=1; i <=m ;i++){ 
 4701:      for(k=1; k <=cptcovn; k++){
 4702:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 4703:      }
 4704:      printf("\n");
 4705:      }
 4706:      scanf("%d",i);*/
 4707:     
 4708:   /*------------ gnuplot -------------*/
 4709:   strcpy(optionfilegnuplot,optionfilefiname);
 4710:   if(mle==-3)
 4711:     strcat(optionfilegnuplot,"-mort");
 4712:   strcat(optionfilegnuplot,".gp");
 4713: 
 4714:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 4715:     printf("Problem with file %s",optionfilegnuplot);
 4716:   }
 4717:   else{
 4718:     fprintf(ficgp,"\n# %s\n", version); 
 4719:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 4720:     fprintf(ficgp,"set missing 'NaNq'\n");
 4721:   }
 4722:   /*  fclose(ficgp);*/
 4723:   /*--------- index.htm --------*/
 4724: 
 4725:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 4726:   if(mle==-3)
 4727:     strcat(optionfilehtm,"-mort");
 4728:   strcat(optionfilehtm,".htm");
 4729:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 4730:     printf("Problem with %s \n",optionfilehtm), exit(0);
 4731:   }
 4732: 
 4733:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 4734:   strcat(optionfilehtmcov,"-cov.htm");
 4735:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 4736:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 4737:   }
 4738:   else{
 4739:   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4740: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4741: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 4742: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 4743:   }
 4744: 
 4745:   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4746: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4747: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 4748: \n\
 4749: <hr  size=\"2\" color=\"#EC5E5E\">\
 4750:  <ul><li><h4>Parameter files</h4>\n\
 4751:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 4752:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 4753:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 4754:  - Date and time at start: %s</ul>\n",\
 4755: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 4756: 	  fileres,fileres,\
 4757: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 4758:   fflush(fichtm);
 4759: 
 4760:   strcpy(pathr,path);
 4761:   strcat(pathr,optionfilefiname);
 4762:   chdir(optionfilefiname); /* Move to directory named optionfile */
 4763:   
 4764:   /* Calculates basic frequencies. Computes observed prevalence at single age
 4765:      and prints on file fileres'p'. */
 4766:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
 4767: 
 4768:   fprintf(fichtm,"\n");
 4769:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 4770: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 4771: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 4772: 	  imx,agemin,agemax,jmin,jmax,jmean);
 4773:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4774:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4775:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4776:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4777:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 4778:     
 4779:    
 4780:   /* For Powell, parameters are in a vector p[] starting at p[1]
 4781:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 4782:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 4783: 
 4784:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 4785:   if (mle==-3){
 4786:     ximort=matrix(1,NDIM,1,NDIM);
 4787:     cens=ivector(1,n);
 4788:     ageexmed=vector(1,n);
 4789:     agecens=vector(1,n);
 4790:     dcwave=ivector(1,n);
 4791:  
 4792:     for (i=1; i<=imx; i++){
 4793:       dcwave[i]=-1;
 4794:       for (j=1; j<=lastpass; j++)
 4795: 	if (s[j][i]>nlstate) {
 4796: 	  dcwave[i]=j;
 4797: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 4798: 	  break;
 4799: 	}
 4800:     }
 4801: 
 4802:     for (i=1; i<=imx; i++) {
 4803:       if (wav[i]>0){
 4804: 	ageexmed[i]=agev[mw[1][i]][i];
 4805: 	j=wav[i];agecens[i]=1.; 
 4806: 	if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
 4807: 	cens[i]=1;
 4808: 	
 4809: 	if (ageexmed[i]<1) cens[i]=-1;
 4810: 	if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
 4811:       }
 4812:       else cens[i]=-1;
 4813:     }
 4814:     
 4815:     for (i=1;i<=NDIM;i++) {
 4816:       for (j=1;j<=NDIM;j++)
 4817: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 4818:     }
 4819: 
 4820:     p[1]=0.1; p[2]=0.1;
 4821:     /*printf("%lf %lf", p[1], p[2]);*/
 4822:     
 4823:     
 4824:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 4825:   strcpy(filerespow,"pow-mort"); 
 4826:   strcat(filerespow,fileres);
 4827:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 4828:     printf("Problem with resultfile: %s\n", filerespow);
 4829:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 4830:   }
 4831:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 4832:   /*  for (i=1;i<=nlstate;i++)
 4833:     for(j=1;j<=nlstate+ndeath;j++)
 4834:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 4835:   */
 4836:   fprintf(ficrespow,"\n");
 4837: 
 4838:     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 4839:     fclose(ficrespow);
 4840:     
 4841:     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
 4842: 
 4843:     for(i=1; i <=NDIM; i++)
 4844:       for(j=i+1;j<=NDIM;j++)
 4845: 	matcov[i][j]=matcov[j][i];
 4846:     
 4847:     printf("\nCovariance matrix\n ");
 4848:     for(i=1; i <=NDIM; i++) {
 4849:       for(j=1;j<=NDIM;j++){ 
 4850: 	printf("%f ",matcov[i][j]);
 4851:       }
 4852:       printf("\n ");
 4853:     }
 4854:     
 4855:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 4856:     for (i=1;i<=NDIM;i++) 
 4857:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 4858:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
 4859:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 4860:     
 4861:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 4862: 		     stepm, weightopt,\
 4863: 		     model,imx,p,matcov);
 4864:   } /* Endof if mle==-3 */
 4865: 
 4866:   else{ /* For mle >=1 */
 4867:   
 4868:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 4869:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 4870:     for (k=1; k<=npar;k++)
 4871:       printf(" %d %8.5f",k,p[k]);
 4872:     printf("\n");
 4873:     globpr=1; /* to print the contributions */
 4874:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 4875:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 4876:     for (k=1; k<=npar;k++)
 4877:       printf(" %d %8.5f",k,p[k]);
 4878:     printf("\n");
 4879:     if(mle>=1){ /* Could be 1 or 2 */
 4880:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 4881:     }
 4882:     
 4883:     /*--------- results files --------------*/
 4884:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 4885:     
 4886:     
 4887:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4888:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4889:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4890:     for(i=1,jk=1; i <=nlstate; i++){
 4891:       for(k=1; k <=(nlstate+ndeath); k++){
 4892: 	if (k != i) {
 4893: 	  printf("%d%d ",i,k);
 4894: 	  fprintf(ficlog,"%d%d ",i,k);
 4895: 	  fprintf(ficres,"%1d%1d ",i,k);
 4896: 	  for(j=1; j <=ncovmodel; j++){
 4897: 	    printf("%f ",p[jk]);
 4898: 	    fprintf(ficlog,"%f ",p[jk]);
 4899: 	    fprintf(ficres,"%f ",p[jk]);
 4900: 	    jk++; 
 4901: 	  }
 4902: 	  printf("\n");
 4903: 	  fprintf(ficlog,"\n");
 4904: 	  fprintf(ficres,"\n");
 4905: 	}
 4906:       }
 4907:     }
 4908:     if(mle!=0){
 4909:       /* Computing hessian and covariance matrix */
 4910:       ftolhess=ftol; /* Usually correct */
 4911:       hesscov(matcov, p, npar, delti, ftolhess, func);
 4912:     }
 4913:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 4914:     printf("# Scales (for hessian or gradient estimation)\n");
 4915:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 4916:     for(i=1,jk=1; i <=nlstate; i++){
 4917:       for(j=1; j <=nlstate+ndeath; j++){
 4918: 	if (j!=i) {
 4919: 	  fprintf(ficres,"%1d%1d",i,j);
 4920: 	  printf("%1d%1d",i,j);
 4921: 	  fprintf(ficlog,"%1d%1d",i,j);
 4922: 	  for(k=1; k<=ncovmodel;k++){
 4923: 	    printf(" %.5e",delti[jk]);
 4924: 	    fprintf(ficlog," %.5e",delti[jk]);
 4925: 	    fprintf(ficres," %.5e",delti[jk]);
 4926: 	    jk++;
 4927: 	  }
 4928: 	  printf("\n");
 4929: 	  fprintf(ficlog,"\n");
 4930: 	  fprintf(ficres,"\n");
 4931: 	}
 4932:       }
 4933:     }
 4934:     
 4935:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4936:     if(mle>=1)
 4937:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4938:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4939:     /* # 121 Var(a12)\n\ */
 4940:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4941:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4942:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4943:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4944:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4945:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4946:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4947:     
 4948:     
 4949:     /* Just to have a covariance matrix which will be more understandable
 4950:        even is we still don't want to manage dictionary of variables
 4951:     */
 4952:     for(itimes=1;itimes<=2;itimes++){
 4953:       jj=0;
 4954:       for(i=1; i <=nlstate; i++){
 4955: 	for(j=1; j <=nlstate+ndeath; j++){
 4956: 	  if(j==i) continue;
 4957: 	  for(k=1; k<=ncovmodel;k++){
 4958: 	    jj++;
 4959: 	    ca[0]= k+'a'-1;ca[1]='\0';
 4960: 	    if(itimes==1){
 4961: 	      if(mle>=1)
 4962: 		printf("#%1d%1d%d",i,j,k);
 4963: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 4964: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 4965: 	    }else{
 4966: 	      if(mle>=1)
 4967: 		printf("%1d%1d%d",i,j,k);
 4968: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 4969: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 4970: 	    }
 4971: 	    ll=0;
 4972: 	    for(li=1;li <=nlstate; li++){
 4973: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 4974: 		if(lj==li) continue;
 4975: 		for(lk=1;lk<=ncovmodel;lk++){
 4976: 		  ll++;
 4977: 		  if(ll<=jj){
 4978: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 4979: 		    if(ll<jj){
 4980: 		      if(itimes==1){
 4981: 			if(mle>=1)
 4982: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4983: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4984: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4985: 		      }else{
 4986: 			if(mle>=1)
 4987: 			  printf(" %.5e",matcov[jj][ll]); 
 4988: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 4989: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 4990: 		      }
 4991: 		    }else{
 4992: 		      if(itimes==1){
 4993: 			if(mle>=1)
 4994: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 4995: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 4996: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 4997: 		      }else{
 4998: 			if(mle>=1)
 4999: 			  printf(" %.5e",matcov[jj][ll]); 
 5000: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 5001: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 5002: 		      }
 5003: 		    }
 5004: 		  }
 5005: 		} /* end lk */
 5006: 	      } /* end lj */
 5007: 	    } /* end li */
 5008: 	    if(mle>=1)
 5009: 	      printf("\n");
 5010: 	    fprintf(ficlog,"\n");
 5011: 	    fprintf(ficres,"\n");
 5012: 	    numlinepar++;
 5013: 	  } /* end k*/
 5014: 	} /*end j */
 5015:       } /* end i */
 5016:     } /* end itimes */
 5017:     
 5018:     fflush(ficlog);
 5019:     fflush(ficres);
 5020:     
 5021:     while((c=getc(ficpar))=='#' && c!= EOF){
 5022:       ungetc(c,ficpar);
 5023:       fgets(line, MAXLINE, ficpar);
 5024:       puts(line);
 5025:       fputs(line,ficparo);
 5026:     }
 5027:     ungetc(c,ficpar);
 5028:     
 5029:     estepm=0;
 5030:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 5031:     if (estepm==0 || estepm < stepm) estepm=stepm;
 5032:     if (fage <= 2) {
 5033:       bage = ageminpar;
 5034:       fage = agemaxpar;
 5035:     }
 5036:     
 5037:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 5038:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 5039:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 5040:     
 5041:     while((c=getc(ficpar))=='#' && c!= EOF){
 5042:       ungetc(c,ficpar);
 5043:       fgets(line, MAXLINE, ficpar);
 5044:       puts(line);
 5045:       fputs(line,ficparo);
 5046:     }
 5047:     ungetc(c,ficpar);
 5048:     
 5049:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 5050:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5051:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5052:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5053:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5054:     
 5055:     while((c=getc(ficpar))=='#' && c!= EOF){
 5056:       ungetc(c,ficpar);
 5057:       fgets(line, MAXLINE, ficpar);
 5058:       puts(line);
 5059:       fputs(line,ficparo);
 5060:     }
 5061:     ungetc(c,ficpar);
 5062:     
 5063:     
 5064:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 5065:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 5066:     
 5067:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 5068:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 5069:     fprintf(ficres,"pop_based=%d\n",popbased);   
 5070:     
 5071:     while((c=getc(ficpar))=='#' && c!= EOF){
 5072:       ungetc(c,ficpar);
 5073:       fgets(line, MAXLINE, ficpar);
 5074:       puts(line);
 5075:       fputs(line,ficparo);
 5076:     }
 5077:     ungetc(c,ficpar);
 5078:     
 5079:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 5080:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5081:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5082:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5083:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5084:     /* day and month of proj2 are not used but only year anproj2.*/
 5085:     
 5086:     
 5087:     
 5088:     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
 5089:     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 5090:     
 5091:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
 5092:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 5093:     
 5094:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 5095: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 5096: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 5097:       
 5098:    /*------------ free_vector  -------------*/
 5099:    /*  chdir(path); */
 5100:  
 5101:     free_ivector(wav,1,imx);
 5102:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 5103:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 5104:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 5105:     free_lvector(num,1,n);
 5106:     free_vector(agedc,1,n);
 5107:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 5108:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 5109:     fclose(ficparo);
 5110:     fclose(ficres);
 5111: 
 5112: 
 5113:     /*--------------- Prevalence limit  (stable prevalence) --------------*/
 5114:   
 5115:     strcpy(filerespl,"pl");
 5116:     strcat(filerespl,fileres);
 5117:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 5118:       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 5119:       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 5120:     }
 5121:     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
 5122:     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
 5123:     fprintf(ficrespl,"#Stable prevalence \n");
 5124:     fprintf(ficrespl,"#Age ");
 5125:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5126:     fprintf(ficrespl,"\n");
 5127:   
 5128:     prlim=matrix(1,nlstate,1,nlstate);
 5129: 
 5130:     agebase=ageminpar;
 5131:     agelim=agemaxpar;
 5132:     ftolpl=1.e-10;
 5133:     i1=cptcoveff;
 5134:     if (cptcovn < 1){i1=1;}
 5135: 
 5136:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5137:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5138: 	k=k+1;
 5139: 	/*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 5140: 	fprintf(ficrespl,"\n#******");
 5141: 	printf("\n#******");
 5142: 	fprintf(ficlog,"\n#******");
 5143: 	for(j=1;j<=cptcoveff;j++) {
 5144: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5145: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5146: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5147: 	}
 5148: 	fprintf(ficrespl,"******\n");
 5149: 	printf("******\n");
 5150: 	fprintf(ficlog,"******\n");
 5151: 	
 5152: 	for (age=agebase; age<=agelim; age++){
 5153: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5154: 	  fprintf(ficrespl,"%.0f ",age );
 5155: 	  for(j=1;j<=cptcoveff;j++)
 5156: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5157: 	  for(i=1; i<=nlstate;i++)
 5158: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 5159: 	  fprintf(ficrespl,"\n");
 5160: 	}
 5161:       }
 5162:     }
 5163:     fclose(ficrespl);
 5164: 
 5165:     /*------------- h Pij x at various ages ------------*/
 5166:   
 5167:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 5168:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 5169:       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 5170:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
 5171:     }
 5172:     printf("Computing pij: result on file '%s' \n", filerespij);
 5173:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 5174:   
 5175:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 5176:     /*if (stepm<=24) stepsize=2;*/
 5177: 
 5178:     agelim=AGESUP;
 5179:     hstepm=stepsize*YEARM; /* Every year of age */
 5180:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 5181: 
 5182:     /* hstepm=1;   aff par mois*/
 5183: 
 5184:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 5185:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5186:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5187: 	k=k+1;
 5188: 	fprintf(ficrespij,"\n#****** ");
 5189: 	for(j=1;j<=cptcoveff;j++) 
 5190: 	  fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5191: 	fprintf(ficrespij,"******\n");
 5192: 	
 5193: 	for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 5194: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 5195: 	  nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 5196: 
 5197: 	  /*	  nhstepm=nhstepm*YEARM; aff par mois*/
 5198: 
 5199: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5200: 	  oldm=oldms;savm=savms;
 5201: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5202: 	  fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 5203: 	  for(i=1; i<=nlstate;i++)
 5204: 	    for(j=1; j<=nlstate+ndeath;j++)
 5205: 	      fprintf(ficrespij," %1d-%1d",i,j);
 5206: 	  fprintf(ficrespij,"\n");
 5207: 	  for (h=0; h<=nhstepm; h++){
 5208: 	    fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 5209: 	    for(i=1; i<=nlstate;i++)
 5210: 	      for(j=1; j<=nlstate+ndeath;j++)
 5211: 		fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 5212: 	    fprintf(ficrespij,"\n");
 5213: 	  }
 5214: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5215: 	  fprintf(ficrespij,"\n");
 5216: 	}
 5217:       }
 5218:     }
 5219: 
 5220:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
 5221: 
 5222:     fclose(ficrespij);
 5223: 
 5224:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5225:     for(i=1;i<=AGESUP;i++)
 5226:       for(j=1;j<=NCOVMAX;j++)
 5227: 	for(k=1;k<=NCOVMAX;k++)
 5228: 	  probs[i][j][k]=0.;
 5229: 
 5230:     /*---------- Forecasting ------------------*/
 5231:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 5232:     if(prevfcast==1){
 5233:       /*    if(stepm ==1){*/
 5234:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 5235:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 5236:       /*      }  */
 5237:       /*      else{ */
 5238:       /*        erreur=108; */
 5239:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 5240:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 5241:       /*      } */
 5242:     }
 5243:   
 5244: 
 5245:     /*---------- Health expectancies and variances ------------*/
 5246: 
 5247:     strcpy(filerest,"t");
 5248:     strcat(filerest,fileres);
 5249:     if((ficrest=fopen(filerest,"w"))==NULL) {
 5250:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 5251:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 5252:     }
 5253:     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
 5254:     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
 5255: 
 5256: 
 5257:     strcpy(filerese,"e");
 5258:     strcat(filerese,fileres);
 5259:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 5260:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 5261:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 5262:     }
 5263:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 5264:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 5265: 
 5266:     strcpy(fileresv,"v");
 5267:     strcat(fileresv,fileres);
 5268:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 5269:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 5270:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 5271:     }
 5272:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 5273:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 5274: 
 5275:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 5276:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 5277:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 5278: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 5279:     */
 5280: 
 5281:     if (mobilav!=0) {
 5282:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5283:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 5284: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 5285: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 5286:       }
 5287:     }
 5288: 
 5289:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5290:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5291: 	k=k+1; 
 5292: 	fprintf(ficrest,"\n#****** ");
 5293: 	for(j=1;j<=cptcoveff;j++) 
 5294: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5295: 	fprintf(ficrest,"******\n");
 5296: 
 5297: 	fprintf(ficreseij,"\n#****** ");
 5298: 	for(j=1;j<=cptcoveff;j++) 
 5299: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5300: 	fprintf(ficreseij,"******\n");
 5301: 
 5302: 	fprintf(ficresvij,"\n#****** ");
 5303: 	for(j=1;j<=cptcoveff;j++) 
 5304: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5305: 	fprintf(ficresvij,"******\n");
 5306: 
 5307: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5308: 	oldm=oldms;savm=savms;
 5309: 	evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
 5310:  
 5311: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5312: 	oldm=oldms;savm=savms;
 5313: 	varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
 5314: 	if(popbased==1){
 5315: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
 5316: 	}
 5317: 
 5318:  
 5319: 	fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
 5320: 	for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 5321: 	fprintf(ficrest,"\n");
 5322: 
 5323: 	epj=vector(1,nlstate+1);
 5324: 	for(age=bage; age <=fage ;age++){
 5325: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5326: 	  if (popbased==1) {
 5327: 	    if(mobilav ==0){
 5328: 	      for(i=1; i<=nlstate;i++)
 5329: 		prlim[i][i]=probs[(int)age][i][k];
 5330: 	    }else{ /* mobilav */ 
 5331: 	      for(i=1; i<=nlstate;i++)
 5332: 		prlim[i][i]=mobaverage[(int)age][i][k];
 5333: 	    }
 5334: 	  }
 5335: 	
 5336: 	  fprintf(ficrest," %4.0f",age);
 5337: 	  for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 5338: 	    for(i=1, epj[j]=0.;i <=nlstate;i++) {
 5339: 	      epj[j] += prlim[i][i]*eij[i][j][(int)age];
 5340: 	      /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 5341: 	    }
 5342: 	    epj[nlstate+1] +=epj[j];
 5343: 	  }
 5344: 
 5345: 	  for(i=1, vepp=0.;i <=nlstate;i++)
 5346: 	    for(j=1;j <=nlstate;j++)
 5347: 	      vepp += vareij[i][j][(int)age];
 5348: 	  fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 5349: 	  for(j=1;j <=nlstate;j++){
 5350: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 5351: 	  }
 5352: 	  fprintf(ficrest,"\n");
 5353: 	}
 5354: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5355: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5356: 	free_vector(epj,1,nlstate+1);
 5357:       }
 5358:     }
 5359:     free_vector(weight,1,n);
 5360:     free_imatrix(Tvard,1,15,1,2);
 5361:     free_imatrix(s,1,maxwav+1,1,n);
 5362:     free_matrix(anint,1,maxwav,1,n); 
 5363:     free_matrix(mint,1,maxwav,1,n);
 5364:     free_ivector(cod,1,n);
 5365:     free_ivector(tab,1,NCOVMAX);
 5366:     fclose(ficreseij);
 5367:     fclose(ficresvij);
 5368:     fclose(ficrest);
 5369:     fclose(ficpar);
 5370:   
 5371:     /*------- Variance of stable prevalence------*/   
 5372: 
 5373:     strcpy(fileresvpl,"vpl");
 5374:     strcat(fileresvpl,fileres);
 5375:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 5376:       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
 5377:       exit(0);
 5378:     }
 5379:     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
 5380: 
 5381:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5382:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5383: 	k=k+1;
 5384: 	fprintf(ficresvpl,"\n#****** ");
 5385: 	for(j=1;j<=cptcoveff;j++) 
 5386: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5387: 	fprintf(ficresvpl,"******\n");
 5388:       
 5389: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 5390: 	oldm=oldms;savm=savms;
 5391: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
 5392: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 5393:       }
 5394:     }
 5395: 
 5396:     fclose(ficresvpl);
 5397: 
 5398:     /*---------- End : free ----------------*/
 5399:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5400:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5401: 
 5402:   }  /* mle==-3 arrives here for freeing */
 5403:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 5404:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5405:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5406:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5407:   
 5408:     free_matrix(covar,0,NCOVMAX,1,n);
 5409:     free_matrix(matcov,1,npar,1,npar);
 5410:     /*free_vector(delti,1,npar);*/
 5411:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5412:     free_matrix(agev,1,maxwav,1,imx);
 5413:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 5414: 
 5415:     free_ivector(ncodemax,1,8);
 5416:     free_ivector(Tvar,1,15);
 5417:     free_ivector(Tprod,1,15);
 5418:     free_ivector(Tvaraff,1,15);
 5419:     free_ivector(Tage,1,15);
 5420:     free_ivector(Tcode,1,100);
 5421: 
 5422: 
 5423:   fflush(fichtm);
 5424:   fflush(ficgp);
 5425:   
 5426: 
 5427:   if((nberr >0) || (nbwarn>0)){
 5428:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 5429:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 5430:   }else{
 5431:     printf("End of Imach\n");
 5432:     fprintf(ficlog,"End of Imach\n");
 5433:   }
 5434:   printf("See log file on %s\n",filelog);
 5435:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 5436:   (void) gettimeofday(&end_time,&tzp);
 5437:   tm = *localtime(&end_time.tv_sec);
 5438:   tmg = *gmtime(&end_time.tv_sec);
 5439:   strcpy(strtend,asctime(&tm));
 5440:   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
 5441:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 5442:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5443: 
 5444:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5445:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5446:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5447:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 5448: /*   if(fileappend(fichtm,optionfilehtm)){ */
 5449:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
 5450:   fclose(fichtm);
 5451:   fclose(fichtmcov);
 5452:   fclose(ficgp);
 5453:   fclose(ficlog);
 5454:   /*------ End -----------*/
 5455: 
 5456:   chdir(path);
 5457:   strcpy(plotcmd,"\"");
 5458:   strcat(plotcmd,pathimach);
 5459:   strcat(plotcmd,GNUPLOTPROGRAM);
 5460:   strcat(plotcmd,"\"");
 5461:   strcat(plotcmd," ");
 5462:   strcat(plotcmd,optionfilegnuplot);
 5463:   printf("Starting graphs with: %s",plotcmd);fflush(stdout);
 5464:   if((outcmd=system(plotcmd)) != 0){
 5465:     printf(" Problem with gnuplot\n");
 5466:   }
 5467:   printf(" Wait...");
 5468:   while (z[0] != 'q') {
 5469:     /* chdir(path); */
 5470:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
 5471:     scanf("%s",z);
 5472: /*     if (z[0] == 'c') system("./imach"); */
 5473:     if (z[0] == 'e') {
 5474:       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
 5475:       system(optionfilehtm);
 5476:     }
 5477:     else if (z[0] == 'g') system(plotcmd);
 5478:     else if (z[0] == 'q') exit(0);
 5479:   }
 5480:   end:
 5481:   while (z[0] != 'q') {
 5482:     printf("\nType  q for exiting: ");
 5483:     scanf("%s",z);
 5484:   }
 5485: }
 5486: 
 5487: 
 5488: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>