File:  [Local Repository] / imach / src / imach.c
Revision 1.119: download - view: text, annotated - select for diffs
Wed Mar 15 17:42:26 2006 UTC (18 years, 3 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
(Module): Bug if status = -2, the loglikelihood was
computed as likelihood omitting the logarithm. Version O.98e

    1: /* $Id: imach.c,v 1.119 2006/03/15 17:42:26 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.119  2006/03/15 17:42:26  brouard
    5:   (Module): Bug if status = -2, the loglikelihood was
    6:   computed as likelihood omitting the logarithm. Version O.98e
    7: 
    8:   Revision 1.118  2006/03/14 18:20:07  brouard
    9:   (Module): varevsij Comments added explaining the second
   10:   table of variances if popbased=1 .
   11:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   12:   (Module): Function pstamp added
   13:   (Module): Version 0.98d
   14: 
   15:   Revision 1.117  2006/03/14 17:16:22  brouard
   16:   (Module): varevsij Comments added explaining the second
   17:   table of variances if popbased=1 .
   18:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   19:   (Module): Function pstamp added
   20:   (Module): Version 0.98d
   21: 
   22:   Revision 1.116  2006/03/06 10:29:27  brouard
   23:   (Module): Variance-covariance wrong links and
   24:   varian-covariance of ej. is needed (Saito).
   25: 
   26:   Revision 1.115  2006/02/27 12:17:45  brouard
   27:   (Module): One freematrix added in mlikeli! 0.98c
   28: 
   29:   Revision 1.114  2006/02/26 12:57:58  brouard
   30:   (Module): Some improvements in processing parameter
   31:   filename with strsep.
   32: 
   33:   Revision 1.113  2006/02/24 14:20:24  brouard
   34:   (Module): Memory leaks checks with valgrind and:
   35:   datafile was not closed, some imatrix were not freed and on matrix
   36:   allocation too.
   37: 
   38:   Revision 1.112  2006/01/30 09:55:26  brouard
   39:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
   40: 
   41:   Revision 1.111  2006/01/25 20:38:18  brouard
   42:   (Module): Lots of cleaning and bugs added (Gompertz)
   43:   (Module): Comments can be added in data file. Missing date values
   44:   can be a simple dot '.'.
   45: 
   46:   Revision 1.110  2006/01/25 00:51:50  brouard
   47:   (Module): Lots of cleaning and bugs added (Gompertz)
   48: 
   49:   Revision 1.109  2006/01/24 19:37:15  brouard
   50:   (Module): Comments (lines starting with a #) are allowed in data.
   51: 
   52:   Revision 1.108  2006/01/19 18:05:42  lievre
   53:   Gnuplot problem appeared...
   54:   To be fixed
   55: 
   56:   Revision 1.107  2006/01/19 16:20:37  brouard
   57:   Test existence of gnuplot in imach path
   58: 
   59:   Revision 1.106  2006/01/19 13:24:36  brouard
   60:   Some cleaning and links added in html output
   61: 
   62:   Revision 1.105  2006/01/05 20:23:19  lievre
   63:   *** empty log message ***
   64: 
   65:   Revision 1.104  2005/09/30 16:11:43  lievre
   66:   (Module): sump fixed, loop imx fixed, and simplifications.
   67:   (Module): If the status is missing at the last wave but we know
   68:   that the person is alive, then we can code his/her status as -2
   69:   (instead of missing=-1 in earlier versions) and his/her
   70:   contributions to the likelihood is 1 - Prob of dying from last
   71:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
   72:   the healthy state at last known wave). Version is 0.98
   73: 
   74:   Revision 1.103  2005/09/30 15:54:49  lievre
   75:   (Module): sump fixed, loop imx fixed, and simplifications.
   76: 
   77:   Revision 1.102  2004/09/15 17:31:30  brouard
   78:   Add the possibility to read data file including tab characters.
   79: 
   80:   Revision 1.101  2004/09/15 10:38:38  brouard
   81:   Fix on curr_time
   82: 
   83:   Revision 1.100  2004/07/12 18:29:06  brouard
   84:   Add version for Mac OS X. Just define UNIX in Makefile
   85: 
   86:   Revision 1.99  2004/06/05 08:57:40  brouard
   87:   *** empty log message ***
   88: 
   89:   Revision 1.98  2004/05/16 15:05:56  brouard
   90:   New version 0.97 . First attempt to estimate force of mortality
   91:   directly from the data i.e. without the need of knowing the health
   92:   state at each age, but using a Gompertz model: log u =a + b*age .
   93:   This is the basic analysis of mortality and should be done before any
   94:   other analysis, in order to test if the mortality estimated from the
   95:   cross-longitudinal survey is different from the mortality estimated
   96:   from other sources like vital statistic data.
   97: 
   98:   The same imach parameter file can be used but the option for mle should be -3.
   99: 
  100:   Agnès, who wrote this part of the code, tried to keep most of the
  101:   former routines in order to include the new code within the former code.
  102: 
  103:   The output is very simple: only an estimate of the intercept and of
  104:   the slope with 95% confident intervals.
  105: 
  106:   Current limitations:
  107:   A) Even if you enter covariates, i.e. with the
  108:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  109:   B) There is no computation of Life Expectancy nor Life Table.
  110: 
  111:   Revision 1.97  2004/02/20 13:25:42  lievre
  112:   Version 0.96d. Population forecasting command line is (temporarily)
  113:   suppressed.
  114: 
  115:   Revision 1.96  2003/07/15 15:38:55  brouard
  116:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  117:   rewritten within the same printf. Workaround: many printfs.
  118: 
  119:   Revision 1.95  2003/07/08 07:54:34  brouard
  120:   * imach.c (Repository):
  121:   (Repository): Using imachwizard code to output a more meaningful covariance
  122:   matrix (cov(a12,c31) instead of numbers.
  123: 
  124:   Revision 1.94  2003/06/27 13:00:02  brouard
  125:   Just cleaning
  126: 
  127:   Revision 1.93  2003/06/25 16:33:55  brouard
  128:   (Module): On windows (cygwin) function asctime_r doesn't
  129:   exist so I changed back to asctime which exists.
  130:   (Module): Version 0.96b
  131: 
  132:   Revision 1.92  2003/06/25 16:30:45  brouard
  133:   (Module): On windows (cygwin) function asctime_r doesn't
  134:   exist so I changed back to asctime which exists.
  135: 
  136:   Revision 1.91  2003/06/25 15:30:29  brouard
  137:   * imach.c (Repository): Duplicated warning errors corrected.
  138:   (Repository): Elapsed time after each iteration is now output. It
  139:   helps to forecast when convergence will be reached. Elapsed time
  140:   is stamped in powell.  We created a new html file for the graphs
  141:   concerning matrix of covariance. It has extension -cov.htm.
  142: 
  143:   Revision 1.90  2003/06/24 12:34:15  brouard
  144:   (Module): Some bugs corrected for windows. Also, when
  145:   mle=-1 a template is output in file "or"mypar.txt with the design
  146:   of the covariance matrix to be input.
  147: 
  148:   Revision 1.89  2003/06/24 12:30:52  brouard
  149:   (Module): Some bugs corrected for windows. Also, when
  150:   mle=-1 a template is output in file "or"mypar.txt with the design
  151:   of the covariance matrix to be input.
  152: 
  153:   Revision 1.88  2003/06/23 17:54:56  brouard
  154:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  155: 
  156:   Revision 1.87  2003/06/18 12:26:01  brouard
  157:   Version 0.96
  158: 
  159:   Revision 1.86  2003/06/17 20:04:08  brouard
  160:   (Module): Change position of html and gnuplot routines and added
  161:   routine fileappend.
  162: 
  163:   Revision 1.85  2003/06/17 13:12:43  brouard
  164:   * imach.c (Repository): Check when date of death was earlier that
  165:   current date of interview. It may happen when the death was just
  166:   prior to the death. In this case, dh was negative and likelihood
  167:   was wrong (infinity). We still send an "Error" but patch by
  168:   assuming that the date of death was just one stepm after the
  169:   interview.
  170:   (Repository): Because some people have very long ID (first column)
  171:   we changed int to long in num[] and we added a new lvector for
  172:   memory allocation. But we also truncated to 8 characters (left
  173:   truncation)
  174:   (Repository): No more line truncation errors.
  175: 
  176:   Revision 1.84  2003/06/13 21:44:43  brouard
  177:   * imach.c (Repository): Replace "freqsummary" at a correct
  178:   place. It differs from routine "prevalence" which may be called
  179:   many times. Probs is memory consuming and must be used with
  180:   parcimony.
  181:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  182: 
  183:   Revision 1.83  2003/06/10 13:39:11  lievre
  184:   *** empty log message ***
  185: 
  186:   Revision 1.82  2003/06/05 15:57:20  brouard
  187:   Add log in  imach.c and  fullversion number is now printed.
  188: 
  189: */
  190: /*
  191:    Interpolated Markov Chain
  192: 
  193:   Short summary of the programme:
  194:   
  195:   This program computes Healthy Life Expectancies from
  196:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  197:   first survey ("cross") where individuals from different ages are
  198:   interviewed on their health status or degree of disability (in the
  199:   case of a health survey which is our main interest) -2- at least a
  200:   second wave of interviews ("longitudinal") which measure each change
  201:   (if any) in individual health status.  Health expectancies are
  202:   computed from the time spent in each health state according to a
  203:   model. More health states you consider, more time is necessary to reach the
  204:   Maximum Likelihood of the parameters involved in the model.  The
  205:   simplest model is the multinomial logistic model where pij is the
  206:   probability to be observed in state j at the second wave
  207:   conditional to be observed in state i at the first wave. Therefore
  208:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  209:   'age' is age and 'sex' is a covariate. If you want to have a more
  210:   complex model than "constant and age", you should modify the program
  211:   where the markup *Covariates have to be included here again* invites
  212:   you to do it.  More covariates you add, slower the
  213:   convergence.
  214: 
  215:   The advantage of this computer programme, compared to a simple
  216:   multinomial logistic model, is clear when the delay between waves is not
  217:   identical for each individual. Also, if a individual missed an
  218:   intermediate interview, the information is lost, but taken into
  219:   account using an interpolation or extrapolation.  
  220: 
  221:   hPijx is the probability to be observed in state i at age x+h
  222:   conditional to the observed state i at age x. The delay 'h' can be
  223:   split into an exact number (nh*stepm) of unobserved intermediate
  224:   states. This elementary transition (by month, quarter,
  225:   semester or year) is modelled as a multinomial logistic.  The hPx
  226:   matrix is simply the matrix product of nh*stepm elementary matrices
  227:   and the contribution of each individual to the likelihood is simply
  228:   hPijx.
  229: 
  230:   Also this programme outputs the covariance matrix of the parameters but also
  231:   of the life expectancies. It also computes the period (stable) prevalence. 
  232:   
  233:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  234:            Institut national d'études démographiques, Paris.
  235:   This software have been partly granted by Euro-REVES, a concerted action
  236:   from the European Union.
  237:   It is copyrighted identically to a GNU software product, ie programme and
  238:   software can be distributed freely for non commercial use. Latest version
  239:   can be accessed at http://euroreves.ined.fr/imach .
  240: 
  241:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  242:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  243:   
  244:   **********************************************************************/
  245: /*
  246:   main
  247:   read parameterfile
  248:   read datafile
  249:   concatwav
  250:   freqsummary
  251:   if (mle >= 1)
  252:     mlikeli
  253:   print results files
  254:   if mle==1 
  255:      computes hessian
  256:   read end of parameter file: agemin, agemax, bage, fage, estepm
  257:       begin-prev-date,...
  258:   open gnuplot file
  259:   open html file
  260:   period (stable) prevalence
  261:    for age prevalim()
  262:   h Pij x
  263:   variance of p varprob
  264:   forecasting if prevfcast==1 prevforecast call prevalence()
  265:   health expectancies
  266:   Variance-covariance of DFLE
  267:   prevalence()
  268:    movingaverage()
  269:   varevsij() 
  270:   if popbased==1 varevsij(,popbased)
  271:   total life expectancies
  272:   Variance of period (stable) prevalence
  273:  end
  274: */
  275: 
  276: 
  277: 
  278:  
  279: #include <math.h>
  280: #include <stdio.h>
  281: #include <stdlib.h>
  282: #include <string.h>
  283: #include <unistd.h>
  284: 
  285: #include <limits.h>
  286: #include <sys/types.h>
  287: #include <sys/stat.h>
  288: #include <errno.h>
  289: extern int errno;
  290: 
  291: /* #include <sys/time.h> */
  292: #include <time.h>
  293: #include "timeval.h"
  294: 
  295: /* #include <libintl.h> */
  296: /* #define _(String) gettext (String) */
  297: 
  298: #define MAXLINE 256
  299: 
  300: #define GNUPLOTPROGRAM "gnuplot"
  301: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  302: #define FILENAMELENGTH 132
  303: 
  304: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  305: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  306: 
  307: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
  308: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
  309: 
  310: #define NINTERVMAX 8
  311: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
  312: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
  313: #define NCOVMAX 8 /* Maximum number of covariates */
  314: #define MAXN 20000
  315: #define YEARM 12. /* Number of months per year */
  316: #define AGESUP 130
  317: #define AGEBASE 40
  318: #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
  319: #ifdef UNIX
  320: #define DIRSEPARATOR '/'
  321: #define CHARSEPARATOR "/"
  322: #define ODIRSEPARATOR '\\'
  323: #else
  324: #define DIRSEPARATOR '\\'
  325: #define CHARSEPARATOR "\\"
  326: #define ODIRSEPARATOR '/'
  327: #endif
  328: 
  329: /* $Id: imach.c,v 1.119 2006/03/15 17:42:26 brouard Exp $ */
  330: /* $State: Exp $ */
  331: 
  332: char version[]="Imach version 0.98e, March 2006, INED-EUROREVES-Institut de longevite ";
  333: char fullversion[]="$Revision: 1.119 $ $Date: 2006/03/15 17:42:26 $"; 
  334: char strstart[80];
  335: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  336: int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  337: int nvar;
  338: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
  339: int npar=NPARMAX;
  340: int nlstate=2; /* Number of live states */
  341: int ndeath=1; /* Number of dead states */
  342: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  343: int popbased=0;
  344: 
  345: int *wav; /* Number of waves for this individuual 0 is possible */
  346: int maxwav; /* Maxim number of waves */
  347: int jmin, jmax; /* min, max spacing between 2 waves */
  348: int ijmin, ijmax; /* Individuals having jmin and jmax */ 
  349: int gipmx, gsw; /* Global variables on the number of contributions 
  350: 		   to the likelihood and the sum of weights (done by funcone)*/
  351: int mle, weightopt;
  352: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  353: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  354: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  355: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  356: double jmean; /* Mean space between 2 waves */
  357: double **oldm, **newm, **savm; /* Working pointers to matrices */
  358: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  359: FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  360: FILE *ficlog, *ficrespow;
  361: int globpr; /* Global variable for printing or not */
  362: double fretone; /* Only one call to likelihood */
  363: long ipmx; /* Number of contributions */
  364: double sw; /* Sum of weights */
  365: char filerespow[FILENAMELENGTH];
  366: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  367: FILE *ficresilk;
  368: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  369: FILE *ficresprobmorprev;
  370: FILE *fichtm, *fichtmcov; /* Html File */
  371: FILE *ficreseij;
  372: char filerese[FILENAMELENGTH];
  373: FILE *ficresstdeij;
  374: char fileresstde[FILENAMELENGTH];
  375: FILE *ficrescveij;
  376: char filerescve[FILENAMELENGTH];
  377: FILE  *ficresvij;
  378: char fileresv[FILENAMELENGTH];
  379: FILE  *ficresvpl;
  380: char fileresvpl[FILENAMELENGTH];
  381: char title[MAXLINE];
  382: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  383: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  384: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  385: char command[FILENAMELENGTH];
  386: int  outcmd=0;
  387: 
  388: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  389: 
  390: char filelog[FILENAMELENGTH]; /* Log file */
  391: char filerest[FILENAMELENGTH];
  392: char fileregp[FILENAMELENGTH];
  393: char popfile[FILENAMELENGTH];
  394: 
  395: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  396: 
  397: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
  398: struct timezone tzp;
  399: extern int gettimeofday();
  400: struct tm tmg, tm, tmf, *gmtime(), *localtime();
  401: long time_value;
  402: extern long time();
  403: char strcurr[80], strfor[80];
  404: 
  405: char *endptr;
  406: long lval;
  407: 
  408: #define NR_END 1
  409: #define FREE_ARG char*
  410: #define FTOL 1.0e-10
  411: 
  412: #define NRANSI 
  413: #define ITMAX 200 
  414: 
  415: #define TOL 2.0e-4 
  416: 
  417: #define CGOLD 0.3819660 
  418: #define ZEPS 1.0e-10 
  419: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  420: 
  421: #define GOLD 1.618034 
  422: #define GLIMIT 100.0 
  423: #define TINY 1.0e-20 
  424: 
  425: static double maxarg1,maxarg2;
  426: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  427: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  428:   
  429: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  430: #define rint(a) floor(a+0.5)
  431: 
  432: static double sqrarg;
  433: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  434: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  435: int agegomp= AGEGOMP;
  436: 
  437: int imx; 
  438: int stepm=1;
  439: /* Stepm, step in month: minimum step interpolation*/
  440: 
  441: int estepm;
  442: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  443: 
  444: int m,nb;
  445: long *num;
  446: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  447: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  448: double **pmmij, ***probs;
  449: double *ageexmed,*agecens;
  450: double dateintmean=0;
  451: 
  452: double *weight;
  453: int **s; /* Status */
  454: double *agedc, **covar, idx;
  455: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  456: double *lsurv, *lpop, *tpop;
  457: 
  458: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  459: double ftolhess; /* Tolerance for computing hessian */
  460: 
  461: /**************** split *************************/
  462: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  463: {
  464:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  465:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  466:   */ 
  467:   char	*ss;				/* pointer */
  468:   int	l1, l2;				/* length counters */
  469: 
  470:   l1 = strlen(path );			/* length of path */
  471:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  472:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  473:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  474:     strcpy( name, path );		/* we got the fullname name because no directory */
  475:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  476:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  477:     /* get current working directory */
  478:     /*    extern  char* getcwd ( char *buf , int len);*/
  479:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  480:       return( GLOCK_ERROR_GETCWD );
  481:     }
  482:     /* got dirc from getcwd*/
  483:     printf(" DIRC = %s \n",dirc);
  484:   } else {				/* strip direcotry from path */
  485:     ss++;				/* after this, the filename */
  486:     l2 = strlen( ss );			/* length of filename */
  487:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  488:     strcpy( name, ss );		/* save file name */
  489:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  490:     dirc[l1-l2] = 0;			/* add zero */
  491:     printf(" DIRC2 = %s \n",dirc);
  492:   }
  493:   /* We add a separator at the end of dirc if not exists */
  494:   l1 = strlen( dirc );			/* length of directory */
  495:   if( dirc[l1-1] != DIRSEPARATOR ){
  496:     dirc[l1] =  DIRSEPARATOR;
  497:     dirc[l1+1] = 0; 
  498:     printf(" DIRC3 = %s \n",dirc);
  499:   }
  500:   ss = strrchr( name, '.' );		/* find last / */
  501:   if (ss >0){
  502:     ss++;
  503:     strcpy(ext,ss);			/* save extension */
  504:     l1= strlen( name);
  505:     l2= strlen(ss)+1;
  506:     strncpy( finame, name, l1-l2);
  507:     finame[l1-l2]= 0;
  508:   }
  509: 
  510:   return( 0 );				/* we're done */
  511: }
  512: 
  513: 
  514: /******************************************/
  515: 
  516: void replace_back_to_slash(char *s, char*t)
  517: {
  518:   int i;
  519:   int lg=0;
  520:   i=0;
  521:   lg=strlen(t);
  522:   for(i=0; i<= lg; i++) {
  523:     (s[i] = t[i]);
  524:     if (t[i]== '\\') s[i]='/';
  525:   }
  526: }
  527: 
  528: int nbocc(char *s, char occ)
  529: {
  530:   int i,j=0;
  531:   int lg=20;
  532:   i=0;
  533:   lg=strlen(s);
  534:   for(i=0; i<= lg; i++) {
  535:   if  (s[i] == occ ) j++;
  536:   }
  537:   return j;
  538: }
  539: 
  540: void cutv(char *u,char *v, char*t, char occ)
  541: {
  542:   /* cuts string t into u and v where u ends before first occurence of char 'occ' 
  543:      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
  544:      gives u="abcedf" and v="ghi2j" */
  545:   int i,lg,j,p=0;
  546:   i=0;
  547:   for(j=0; j<=strlen(t)-1; j++) {
  548:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
  549:   }
  550: 
  551:   lg=strlen(t);
  552:   for(j=0; j<p; j++) {
  553:     (u[j] = t[j]);
  554:   }
  555:      u[p]='\0';
  556: 
  557:    for(j=0; j<= lg; j++) {
  558:     if (j>=(p+1))(v[j-p-1] = t[j]);
  559:   }
  560: }
  561: 
  562: /********************** nrerror ********************/
  563: 
  564: void nrerror(char error_text[])
  565: {
  566:   fprintf(stderr,"ERREUR ...\n");
  567:   fprintf(stderr,"%s\n",error_text);
  568:   exit(EXIT_FAILURE);
  569: }
  570: /*********************** vector *******************/
  571: double *vector(int nl, int nh)
  572: {
  573:   double *v;
  574:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  575:   if (!v) nrerror("allocation failure in vector");
  576:   return v-nl+NR_END;
  577: }
  578: 
  579: /************************ free vector ******************/
  580: void free_vector(double*v, int nl, int nh)
  581: {
  582:   free((FREE_ARG)(v+nl-NR_END));
  583: }
  584: 
  585: /************************ivector *******************************/
  586: int *ivector(long nl,long nh)
  587: {
  588:   int *v;
  589:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  590:   if (!v) nrerror("allocation failure in ivector");
  591:   return v-nl+NR_END;
  592: }
  593: 
  594: /******************free ivector **************************/
  595: void free_ivector(int *v, long nl, long nh)
  596: {
  597:   free((FREE_ARG)(v+nl-NR_END));
  598: }
  599: 
  600: /************************lvector *******************************/
  601: long *lvector(long nl,long nh)
  602: {
  603:   long *v;
  604:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  605:   if (!v) nrerror("allocation failure in ivector");
  606:   return v-nl+NR_END;
  607: }
  608: 
  609: /******************free lvector **************************/
  610: void free_lvector(long *v, long nl, long nh)
  611: {
  612:   free((FREE_ARG)(v+nl-NR_END));
  613: }
  614: 
  615: /******************* imatrix *******************************/
  616: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  617:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  618: { 
  619:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  620:   int **m; 
  621:   
  622:   /* allocate pointers to rows */ 
  623:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  624:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  625:   m += NR_END; 
  626:   m -= nrl; 
  627:   
  628:   
  629:   /* allocate rows and set pointers to them */ 
  630:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  631:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  632:   m[nrl] += NR_END; 
  633:   m[nrl] -= ncl; 
  634:   
  635:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  636:   
  637:   /* return pointer to array of pointers to rows */ 
  638:   return m; 
  639: } 
  640: 
  641: /****************** free_imatrix *************************/
  642: void free_imatrix(m,nrl,nrh,ncl,nch)
  643:       int **m;
  644:       long nch,ncl,nrh,nrl; 
  645:      /* free an int matrix allocated by imatrix() */ 
  646: { 
  647:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  648:   free((FREE_ARG) (m+nrl-NR_END)); 
  649: } 
  650: 
  651: /******************* matrix *******************************/
  652: double **matrix(long nrl, long nrh, long ncl, long nch)
  653: {
  654:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  655:   double **m;
  656: 
  657:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  658:   if (!m) nrerror("allocation failure 1 in matrix()");
  659:   m += NR_END;
  660:   m -= nrl;
  661: 
  662:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  663:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  664:   m[nrl] += NR_END;
  665:   m[nrl] -= ncl;
  666: 
  667:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  668:   return m;
  669:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
  670:    */
  671: }
  672: 
  673: /*************************free matrix ************************/
  674: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  675: {
  676:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  677:   free((FREE_ARG)(m+nrl-NR_END));
  678: }
  679: 
  680: /******************* ma3x *******************************/
  681: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  682: {
  683:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  684:   double ***m;
  685: 
  686:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  687:   if (!m) nrerror("allocation failure 1 in matrix()");
  688:   m += NR_END;
  689:   m -= nrl;
  690: 
  691:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  692:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  693:   m[nrl] += NR_END;
  694:   m[nrl] -= ncl;
  695: 
  696:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  697: 
  698:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  699:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  700:   m[nrl][ncl] += NR_END;
  701:   m[nrl][ncl] -= nll;
  702:   for (j=ncl+1; j<=nch; j++) 
  703:     m[nrl][j]=m[nrl][j-1]+nlay;
  704:   
  705:   for (i=nrl+1; i<=nrh; i++) {
  706:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  707:     for (j=ncl+1; j<=nch; j++) 
  708:       m[i][j]=m[i][j-1]+nlay;
  709:   }
  710:   return m; 
  711:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  712:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  713:   */
  714: }
  715: 
  716: /*************************free ma3x ************************/
  717: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  718: {
  719:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  720:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  721:   free((FREE_ARG)(m+nrl-NR_END));
  722: }
  723: 
  724: /*************** function subdirf ***********/
  725: char *subdirf(char fileres[])
  726: {
  727:   /* Caution optionfilefiname is hidden */
  728:   strcpy(tmpout,optionfilefiname);
  729:   strcat(tmpout,"/"); /* Add to the right */
  730:   strcat(tmpout,fileres);
  731:   return tmpout;
  732: }
  733: 
  734: /*************** function subdirf2 ***********/
  735: char *subdirf2(char fileres[], char *preop)
  736: {
  737:   
  738:   /* Caution optionfilefiname is hidden */
  739:   strcpy(tmpout,optionfilefiname);
  740:   strcat(tmpout,"/");
  741:   strcat(tmpout,preop);
  742:   strcat(tmpout,fileres);
  743:   return tmpout;
  744: }
  745: 
  746: /*************** function subdirf3 ***********/
  747: char *subdirf3(char fileres[], char *preop, char *preop2)
  748: {
  749:   
  750:   /* Caution optionfilefiname is hidden */
  751:   strcpy(tmpout,optionfilefiname);
  752:   strcat(tmpout,"/");
  753:   strcat(tmpout,preop);
  754:   strcat(tmpout,preop2);
  755:   strcat(tmpout,fileres);
  756:   return tmpout;
  757: }
  758: 
  759: /***************** f1dim *************************/
  760: extern int ncom; 
  761: extern double *pcom,*xicom;
  762: extern double (*nrfunc)(double []); 
  763:  
  764: double f1dim(double x) 
  765: { 
  766:   int j; 
  767:   double f;
  768:   double *xt; 
  769:  
  770:   xt=vector(1,ncom); 
  771:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  772:   f=(*nrfunc)(xt); 
  773:   free_vector(xt,1,ncom); 
  774:   return f; 
  775: } 
  776: 
  777: /*****************brent *************************/
  778: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  779: { 
  780:   int iter; 
  781:   double a,b,d,etemp;
  782:   double fu,fv,fw,fx;
  783:   double ftemp;
  784:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  785:   double e=0.0; 
  786:  
  787:   a=(ax < cx ? ax : cx); 
  788:   b=(ax > cx ? ax : cx); 
  789:   x=w=v=bx; 
  790:   fw=fv=fx=(*f)(x); 
  791:   for (iter=1;iter<=ITMAX;iter++) { 
  792:     xm=0.5*(a+b); 
  793:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  794:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  795:     printf(".");fflush(stdout);
  796:     fprintf(ficlog,".");fflush(ficlog);
  797: #ifdef DEBUG
  798:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  799:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  800:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  801: #endif
  802:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  803:       *xmin=x; 
  804:       return fx; 
  805:     } 
  806:     ftemp=fu;
  807:     if (fabs(e) > tol1) { 
  808:       r=(x-w)*(fx-fv); 
  809:       q=(x-v)*(fx-fw); 
  810:       p=(x-v)*q-(x-w)*r; 
  811:       q=2.0*(q-r); 
  812:       if (q > 0.0) p = -p; 
  813:       q=fabs(q); 
  814:       etemp=e; 
  815:       e=d; 
  816:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  817: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  818:       else { 
  819: 	d=p/q; 
  820: 	u=x+d; 
  821: 	if (u-a < tol2 || b-u < tol2) 
  822: 	  d=SIGN(tol1,xm-x); 
  823:       } 
  824:     } else { 
  825:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  826:     } 
  827:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  828:     fu=(*f)(u); 
  829:     if (fu <= fx) { 
  830:       if (u >= x) a=x; else b=x; 
  831:       SHFT(v,w,x,u) 
  832: 	SHFT(fv,fw,fx,fu) 
  833: 	} else { 
  834: 	  if (u < x) a=u; else b=u; 
  835: 	  if (fu <= fw || w == x) { 
  836: 	    v=w; 
  837: 	    w=u; 
  838: 	    fv=fw; 
  839: 	    fw=fu; 
  840: 	  } else if (fu <= fv || v == x || v == w) { 
  841: 	    v=u; 
  842: 	    fv=fu; 
  843: 	  } 
  844: 	} 
  845:   } 
  846:   nrerror("Too many iterations in brent"); 
  847:   *xmin=x; 
  848:   return fx; 
  849: } 
  850: 
  851: /****************** mnbrak ***********************/
  852: 
  853: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  854: 	    double (*func)(double)) 
  855: { 
  856:   double ulim,u,r,q, dum;
  857:   double fu; 
  858:  
  859:   *fa=(*func)(*ax); 
  860:   *fb=(*func)(*bx); 
  861:   if (*fb > *fa) { 
  862:     SHFT(dum,*ax,*bx,dum) 
  863:       SHFT(dum,*fb,*fa,dum) 
  864:       } 
  865:   *cx=(*bx)+GOLD*(*bx-*ax); 
  866:   *fc=(*func)(*cx); 
  867:   while (*fb > *fc) { 
  868:     r=(*bx-*ax)*(*fb-*fc); 
  869:     q=(*bx-*cx)*(*fb-*fa); 
  870:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  871:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  872:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  873:     if ((*bx-u)*(u-*cx) > 0.0) { 
  874:       fu=(*func)(u); 
  875:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  876:       fu=(*func)(u); 
  877:       if (fu < *fc) { 
  878: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  879: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  880: 	  } 
  881:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  882:       u=ulim; 
  883:       fu=(*func)(u); 
  884:     } else { 
  885:       u=(*cx)+GOLD*(*cx-*bx); 
  886:       fu=(*func)(u); 
  887:     } 
  888:     SHFT(*ax,*bx,*cx,u) 
  889:       SHFT(*fa,*fb,*fc,fu) 
  890:       } 
  891: } 
  892: 
  893: /*************** linmin ************************/
  894: 
  895: int ncom; 
  896: double *pcom,*xicom;
  897: double (*nrfunc)(double []); 
  898:  
  899: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  900: { 
  901:   double brent(double ax, double bx, double cx, 
  902: 	       double (*f)(double), double tol, double *xmin); 
  903:   double f1dim(double x); 
  904:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  905: 	      double *fc, double (*func)(double)); 
  906:   int j; 
  907:   double xx,xmin,bx,ax; 
  908:   double fx,fb,fa;
  909:  
  910:   ncom=n; 
  911:   pcom=vector(1,n); 
  912:   xicom=vector(1,n); 
  913:   nrfunc=func; 
  914:   for (j=1;j<=n;j++) { 
  915:     pcom[j]=p[j]; 
  916:     xicom[j]=xi[j]; 
  917:   } 
  918:   ax=0.0; 
  919:   xx=1.0; 
  920:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  921:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  922: #ifdef DEBUG
  923:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  924:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  925: #endif
  926:   for (j=1;j<=n;j++) { 
  927:     xi[j] *= xmin; 
  928:     p[j] += xi[j]; 
  929:   } 
  930:   free_vector(xicom,1,n); 
  931:   free_vector(pcom,1,n); 
  932: } 
  933: 
  934: char *asc_diff_time(long time_sec, char ascdiff[])
  935: {
  936:   long sec_left, days, hours, minutes;
  937:   days = (time_sec) / (60*60*24);
  938:   sec_left = (time_sec) % (60*60*24);
  939:   hours = (sec_left) / (60*60) ;
  940:   sec_left = (sec_left) %(60*60);
  941:   minutes = (sec_left) /60;
  942:   sec_left = (sec_left) % (60);
  943:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
  944:   return ascdiff;
  945: }
  946: 
  947: /*************** powell ************************/
  948: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  949: 	    double (*func)(double [])) 
  950: { 
  951:   void linmin(double p[], double xi[], int n, double *fret, 
  952: 	      double (*func)(double [])); 
  953:   int i,ibig,j; 
  954:   double del,t,*pt,*ptt,*xit;
  955:   double fp,fptt;
  956:   double *xits;
  957:   int niterf, itmp;
  958: 
  959:   pt=vector(1,n); 
  960:   ptt=vector(1,n); 
  961:   xit=vector(1,n); 
  962:   xits=vector(1,n); 
  963:   *fret=(*func)(p); 
  964:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  965:   for (*iter=1;;++(*iter)) { 
  966:     fp=(*fret); 
  967:     ibig=0; 
  968:     del=0.0; 
  969:     last_time=curr_time;
  970:     (void) gettimeofday(&curr_time,&tzp);
  971:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
  972:     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
  973:     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
  974:     */
  975:    for (i=1;i<=n;i++) {
  976:       printf(" %d %.12f",i, p[i]);
  977:       fprintf(ficlog," %d %.12lf",i, p[i]);
  978:       fprintf(ficrespow," %.12lf", p[i]);
  979:     }
  980:     printf("\n");
  981:     fprintf(ficlog,"\n");
  982:     fprintf(ficrespow,"\n");fflush(ficrespow);
  983:     if(*iter <=3){
  984:       tm = *localtime(&curr_time.tv_sec);
  985:       strcpy(strcurr,asctime(&tm));
  986: /*       asctime_r(&tm,strcurr); */
  987:       forecast_time=curr_time; 
  988:       itmp = strlen(strcurr);
  989:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
  990: 	strcurr[itmp-1]='\0';
  991:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  992:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  993:       for(niterf=10;niterf<=30;niterf+=10){
  994: 	forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
  995: 	tmf = *localtime(&forecast_time.tv_sec);
  996: /* 	asctime_r(&tmf,strfor); */
  997: 	strcpy(strfor,asctime(&tmf));
  998: 	itmp = strlen(strfor);
  999: 	if(strfor[itmp-1]=='\n')
 1000: 	strfor[itmp-1]='\0';
 1001: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 1002: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 1003:       }
 1004:     }
 1005:     for (i=1;i<=n;i++) { 
 1006:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1007:       fptt=(*fret); 
 1008: #ifdef DEBUG
 1009:       printf("fret=%lf \n",*fret);
 1010:       fprintf(ficlog,"fret=%lf \n",*fret);
 1011: #endif
 1012:       printf("%d",i);fflush(stdout);
 1013:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1014:       linmin(p,xit,n,fret,func); 
 1015:       if (fabs(fptt-(*fret)) > del) { 
 1016: 	del=fabs(fptt-(*fret)); 
 1017: 	ibig=i; 
 1018:       } 
 1019: #ifdef DEBUG
 1020:       printf("%d %.12e",i,(*fret));
 1021:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1022:       for (j=1;j<=n;j++) {
 1023: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1024: 	printf(" x(%d)=%.12e",j,xit[j]);
 1025: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1026:       }
 1027:       for(j=1;j<=n;j++) {
 1028: 	printf(" p=%.12e",p[j]);
 1029: 	fprintf(ficlog," p=%.12e",p[j]);
 1030:       }
 1031:       printf("\n");
 1032:       fprintf(ficlog,"\n");
 1033: #endif
 1034:     } 
 1035:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 1036: #ifdef DEBUG
 1037:       int k[2],l;
 1038:       k[0]=1;
 1039:       k[1]=-1;
 1040:       printf("Max: %.12e",(*func)(p));
 1041:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1042:       for (j=1;j<=n;j++) {
 1043: 	printf(" %.12e",p[j]);
 1044: 	fprintf(ficlog," %.12e",p[j]);
 1045:       }
 1046:       printf("\n");
 1047:       fprintf(ficlog,"\n");
 1048:       for(l=0;l<=1;l++) {
 1049: 	for (j=1;j<=n;j++) {
 1050: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1051: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1052: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1053: 	}
 1054: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1055: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1056:       }
 1057: #endif
 1058: 
 1059: 
 1060:       free_vector(xit,1,n); 
 1061:       free_vector(xits,1,n); 
 1062:       free_vector(ptt,1,n); 
 1063:       free_vector(pt,1,n); 
 1064:       return; 
 1065:     } 
 1066:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1067:     for (j=1;j<=n;j++) { 
 1068:       ptt[j]=2.0*p[j]-pt[j]; 
 1069:       xit[j]=p[j]-pt[j]; 
 1070:       pt[j]=p[j]; 
 1071:     } 
 1072:     fptt=(*func)(ptt); 
 1073:     if (fptt < fp) { 
 1074:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 1075:       if (t < 0.0) { 
 1076: 	linmin(p,xit,n,fret,func); 
 1077: 	for (j=1;j<=n;j++) { 
 1078: 	  xi[j][ibig]=xi[j][n]; 
 1079: 	  xi[j][n]=xit[j]; 
 1080: 	}
 1081: #ifdef DEBUG
 1082: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1083: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1084: 	for(j=1;j<=n;j++){
 1085: 	  printf(" %.12e",xit[j]);
 1086: 	  fprintf(ficlog," %.12e",xit[j]);
 1087: 	}
 1088: 	printf("\n");
 1089: 	fprintf(ficlog,"\n");
 1090: #endif
 1091:       }
 1092:     } 
 1093:   } 
 1094: } 
 1095: 
 1096: /**** Prevalence limit (stable or period prevalence)  ****************/
 1097: 
 1098: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1099: {
 1100:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1101:      matrix by transitions matrix until convergence is reached */
 1102: 
 1103:   int i, ii,j,k;
 1104:   double min, max, maxmin, maxmax,sumnew=0.;
 1105:   double **matprod2();
 1106:   double **out, cov[NCOVMAX], **pmij();
 1107:   double **newm;
 1108:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1109: 
 1110:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1111:     for (j=1;j<=nlstate+ndeath;j++){
 1112:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1113:     }
 1114: 
 1115:    cov[1]=1.;
 1116:  
 1117:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1118:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1119:     newm=savm;
 1120:     /* Covariates have to be included here again */
 1121:      cov[2]=agefin;
 1122:   
 1123:       for (k=1; k<=cptcovn;k++) {
 1124: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1125: 	/*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 1126:       }
 1127:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1128:       for (k=1; k<=cptcovprod;k++)
 1129: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1130: 
 1131:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1132:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1133:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1134:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 1135: 
 1136:     savm=oldm;
 1137:     oldm=newm;
 1138:     maxmax=0.;
 1139:     for(j=1;j<=nlstate;j++){
 1140:       min=1.;
 1141:       max=0.;
 1142:       for(i=1; i<=nlstate; i++) {
 1143: 	sumnew=0;
 1144: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1145: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1146: 	max=FMAX(max,prlim[i][j]);
 1147: 	min=FMIN(min,prlim[i][j]);
 1148:       }
 1149:       maxmin=max-min;
 1150:       maxmax=FMAX(maxmax,maxmin);
 1151:     }
 1152:     if(maxmax < ftolpl){
 1153:       return prlim;
 1154:     }
 1155:   }
 1156: }
 1157: 
 1158: /*************** transition probabilities ***************/ 
 1159: 
 1160: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1161: {
 1162:   double s1, s2;
 1163:   /*double t34;*/
 1164:   int i,j,j1, nc, ii, jj;
 1165: 
 1166:     for(i=1; i<= nlstate; i++){
 1167:       for(j=1; j<i;j++){
 1168: 	for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 1169: 	  /*s2 += param[i][j][nc]*cov[nc];*/
 1170: 	  s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 1171: /* 	 printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 1172: 	}
 1173: 	ps[i][j]=s2;
 1174: /* 	printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 1175:       }
 1176:       for(j=i+1; j<=nlstate+ndeath;j++){
 1177: 	for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 1178: 	  s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 1179: /* 	  printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 1180: 	}
 1181: 	ps[i][j]=s2;
 1182:       }
 1183:     }
 1184:     /*ps[3][2]=1;*/
 1185:     
 1186:     for(i=1; i<= nlstate; i++){
 1187:       s1=0;
 1188:       for(j=1; j<i; j++)
 1189: 	s1+=exp(ps[i][j]);
 1190:       for(j=i+1; j<=nlstate+ndeath; j++)
 1191: 	s1+=exp(ps[i][j]);
 1192:       ps[i][i]=1./(s1+1.);
 1193:       for(j=1; j<i; j++)
 1194: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1195:       for(j=i+1; j<=nlstate+ndeath; j++)
 1196: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1197:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1198:     } /* end i */
 1199:     
 1200:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1201:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1202: 	ps[ii][jj]=0;
 1203: 	ps[ii][ii]=1;
 1204:       }
 1205:     }
 1206:     
 1207: 
 1208: /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1209: /* 	 for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1210: /* 	   printf("ddd %lf ",ps[ii][jj]); */
 1211: /* 	 } */
 1212: /* 	 printf("\n "); */
 1213: /*        } */
 1214: /*        printf("\n ");printf("%lf ",cov[2]); */
 1215:        /*
 1216:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1217:       goto end;*/
 1218:     return ps;
 1219: }
 1220: 
 1221: /**************** Product of 2 matrices ******************/
 1222: 
 1223: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 1224: {
 1225:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1226:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1227:   /* in, b, out are matrice of pointers which should have been initialized 
 1228:      before: only the contents of out is modified. The function returns
 1229:      a pointer to pointers identical to out */
 1230:   long i, j, k;
 1231:   for(i=nrl; i<= nrh; i++)
 1232:     for(k=ncolol; k<=ncoloh; k++)
 1233:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
 1234: 	out[i][k] +=in[i][j]*b[j][k];
 1235: 
 1236:   return out;
 1237: }
 1238: 
 1239: 
 1240: /************* Higher Matrix Product ***************/
 1241: 
 1242: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1243: {
 1244:   /* Computes the transition matrix starting at age 'age' over 
 1245:      'nhstepm*hstepm*stepm' months (i.e. until
 1246:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1247:      nhstepm*hstepm matrices. 
 1248:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1249:      (typically every 2 years instead of every month which is too big 
 1250:      for the memory).
 1251:      Model is determined by parameters x and covariates have to be 
 1252:      included manually here. 
 1253: 
 1254:      */
 1255: 
 1256:   int i, j, d, h, k;
 1257:   double **out, cov[NCOVMAX];
 1258:   double **newm;
 1259: 
 1260:   /* Hstepm could be zero and should return the unit matrix */
 1261:   for (i=1;i<=nlstate+ndeath;i++)
 1262:     for (j=1;j<=nlstate+ndeath;j++){
 1263:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1264:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1265:     }
 1266:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1267:   for(h=1; h <=nhstepm; h++){
 1268:     for(d=1; d <=hstepm; d++){
 1269:       newm=savm;
 1270:       /* Covariates have to be included here again */
 1271:       cov[1]=1.;
 1272:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1273:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1274:       for (k=1; k<=cptcovage;k++)
 1275: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1276:       for (k=1; k<=cptcovprod;k++)
 1277: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1278: 
 1279: 
 1280:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1281:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1282:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1283: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1284:       savm=oldm;
 1285:       oldm=newm;
 1286:     }
 1287:     for(i=1; i<=nlstate+ndeath; i++)
 1288:       for(j=1;j<=nlstate+ndeath;j++) {
 1289: 	po[i][j][h]=newm[i][j];
 1290: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 1291: 	 */
 1292:       }
 1293:   } /* end h */
 1294:   return po;
 1295: }
 1296: 
 1297: 
 1298: /*************** log-likelihood *************/
 1299: double func( double *x)
 1300: {
 1301:   int i, ii, j, k, mi, d, kk;
 1302:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1303:   double **out;
 1304:   double sw; /* Sum of weights */
 1305:   double lli; /* Individual log likelihood */
 1306:   int s1, s2;
 1307:   double bbh, survp;
 1308:   long ipmx;
 1309:   /*extern weight */
 1310:   /* We are differentiating ll according to initial status */
 1311:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1312:   /*for(i=1;i<imx;i++) 
 1313:     printf(" %d\n",s[4][i]);
 1314:   */
 1315:   cov[1]=1.;
 1316: 
 1317:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1318: 
 1319:   if(mle==1){
 1320:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1321:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1322:       for(mi=1; mi<= wav[i]-1; mi++){
 1323: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1324: 	  for (j=1;j<=nlstate+ndeath;j++){
 1325: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1326: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1327: 	  }
 1328: 	for(d=0; d<dh[mi][i]; d++){
 1329: 	  newm=savm;
 1330: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1331: 	  for (kk=1; kk<=cptcovage;kk++) {
 1332: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1333: 	  }
 1334: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1335: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1336: 	  savm=oldm;
 1337: 	  oldm=newm;
 1338: 	} /* end mult */
 1339:       
 1340: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1341: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1342: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1343: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1344: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1345: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1346: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1347: 	 * probability in order to take into account the bias as a fraction of the way
 1348: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1349: 	 * -stepm/2 to stepm/2 .
 1350: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1351: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1352: 	 */
 1353: 	s1=s[mw[mi][i]][i];
 1354: 	s2=s[mw[mi+1][i]][i];
 1355: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1356: 	/* bias bh is positive if real duration
 1357: 	 * is higher than the multiple of stepm and negative otherwise.
 1358: 	 */
 1359: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1360: 	if( s2 > nlstate){ 
 1361: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1362: 	     then the contribution to the likelihood is the probability to 
 1363: 	     die between last step unit time and current  step unit time, 
 1364: 	     which is also equal to probability to die before dh 
 1365: 	     minus probability to die before dh-stepm . 
 1366: 	     In version up to 0.92 likelihood was computed
 1367: 	as if date of death was unknown. Death was treated as any other
 1368: 	health state: the date of the interview describes the actual state
 1369: 	and not the date of a change in health state. The former idea was
 1370: 	to consider that at each interview the state was recorded
 1371: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1372: 	introduced the exact date of death then we should have modified
 1373: 	the contribution of an exact death to the likelihood. This new
 1374: 	contribution is smaller and very dependent of the step unit
 1375: 	stepm. It is no more the probability to die between last interview
 1376: 	and month of death but the probability to survive from last
 1377: 	interview up to one month before death multiplied by the
 1378: 	probability to die within a month. Thanks to Chris
 1379: 	Jackson for correcting this bug.  Former versions increased
 1380: 	mortality artificially. The bad side is that we add another loop
 1381: 	which slows down the processing. The difference can be up to 10%
 1382: 	lower mortality.
 1383: 	  */
 1384: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1385: 
 1386: 
 1387: 	} else if  (s2==-2) {
 1388: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1389: 	    survp += out[s1][j];
 1390: 	  lli= log(survp);
 1391: 	}
 1392: 	
 1393: /* 	else if  (s2==-4) { */
 1394: /* 	  for (j=3,survp=0. ; j<=nlstate; j++)  */
 1395: /* 	    survp += out[s1][j]; */
 1396: /* 	  lli= survp; */
 1397: /* 	} */
 1398: 	
 1399: /* 	else if  (s2==-5) { */
 1400: /* 	  for (j=1,survp=0. ; j<=2; j++)  */
 1401: /* 	    survp += out[s1][j]; */
 1402: /* 	  lli= survp; */
 1403: /* 	} */
 1404: 
 1405: 
 1406: 	else{
 1407: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1408: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1409: 	} 
 1410: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1411: 	/*if(lli ==000.0)*/
 1412: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1413:   	ipmx +=1;
 1414: 	sw += weight[i];
 1415: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1416:       } /* end of wave */
 1417:     } /* end of individual */
 1418:   }  else if(mle==2){
 1419:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1420:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1421:       for(mi=1; mi<= wav[i]-1; mi++){
 1422: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1423: 	  for (j=1;j<=nlstate+ndeath;j++){
 1424: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1425: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1426: 	  }
 1427: 	for(d=0; d<=dh[mi][i]; d++){
 1428: 	  newm=savm;
 1429: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1430: 	  for (kk=1; kk<=cptcovage;kk++) {
 1431: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1432: 	  }
 1433: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1434: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1435: 	  savm=oldm;
 1436: 	  oldm=newm;
 1437: 	} /* end mult */
 1438:       
 1439: 	s1=s[mw[mi][i]][i];
 1440: 	s2=s[mw[mi+1][i]][i];
 1441: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1442: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1443: 	ipmx +=1;
 1444: 	sw += weight[i];
 1445: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1446:       } /* end of wave */
 1447:     } /* end of individual */
 1448:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1449:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1450:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1451:       for(mi=1; mi<= wav[i]-1; mi++){
 1452: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1453: 	  for (j=1;j<=nlstate+ndeath;j++){
 1454: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1455: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1456: 	  }
 1457: 	for(d=0; d<dh[mi][i]; d++){
 1458: 	  newm=savm;
 1459: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1460: 	  for (kk=1; kk<=cptcovage;kk++) {
 1461: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1462: 	  }
 1463: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1464: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1465: 	  savm=oldm;
 1466: 	  oldm=newm;
 1467: 	} /* end mult */
 1468:       
 1469: 	s1=s[mw[mi][i]][i];
 1470: 	s2=s[mw[mi+1][i]][i];
 1471: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1472: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1473: 	ipmx +=1;
 1474: 	sw += weight[i];
 1475: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1476:       } /* end of wave */
 1477:     } /* end of individual */
 1478:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1479:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1480:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1481:       for(mi=1; mi<= wav[i]-1; mi++){
 1482: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1483: 	  for (j=1;j<=nlstate+ndeath;j++){
 1484: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1485: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1486: 	  }
 1487: 	for(d=0; d<dh[mi][i]; d++){
 1488: 	  newm=savm;
 1489: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1490: 	  for (kk=1; kk<=cptcovage;kk++) {
 1491: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1492: 	  }
 1493: 	
 1494: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1495: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1496: 	  savm=oldm;
 1497: 	  oldm=newm;
 1498: 	} /* end mult */
 1499:       
 1500: 	s1=s[mw[mi][i]][i];
 1501: 	s2=s[mw[mi+1][i]][i];
 1502: 	if( s2 > nlstate){ 
 1503: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1504: 	}else{
 1505: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1506: 	}
 1507: 	ipmx +=1;
 1508: 	sw += weight[i];
 1509: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1510: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1511:       } /* end of wave */
 1512:     } /* end of individual */
 1513:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1514:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1515:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1516:       for(mi=1; mi<= wav[i]-1; mi++){
 1517: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1518: 	  for (j=1;j<=nlstate+ndeath;j++){
 1519: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1520: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1521: 	  }
 1522: 	for(d=0; d<dh[mi][i]; d++){
 1523: 	  newm=savm;
 1524: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1525: 	  for (kk=1; kk<=cptcovage;kk++) {
 1526: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1527: 	  }
 1528: 	
 1529: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1530: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1531: 	  savm=oldm;
 1532: 	  oldm=newm;
 1533: 	} /* end mult */
 1534:       
 1535: 	s1=s[mw[mi][i]][i];
 1536: 	s2=s[mw[mi+1][i]][i];
 1537: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1538: 	ipmx +=1;
 1539: 	sw += weight[i];
 1540: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1541: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1542:       } /* end of wave */
 1543:     } /* end of individual */
 1544:   } /* End of if */
 1545:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1546:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1547:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1548:   return -l;
 1549: }
 1550: 
 1551: /*************** log-likelihood *************/
 1552: double funcone( double *x)
 1553: {
 1554:   /* Same as likeli but slower because of a lot of printf and if */
 1555:   int i, ii, j, k, mi, d, kk;
 1556:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1557:   double **out;
 1558:   double lli; /* Individual log likelihood */
 1559:   double llt;
 1560:   int s1, s2;
 1561:   double bbh, survp;
 1562:   /*extern weight */
 1563:   /* We are differentiating ll according to initial status */
 1564:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1565:   /*for(i=1;i<imx;i++) 
 1566:     printf(" %d\n",s[4][i]);
 1567:   */
 1568:   cov[1]=1.;
 1569: 
 1570:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1571: 
 1572:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1573:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1574:     for(mi=1; mi<= wav[i]-1; mi++){
 1575:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1576: 	for (j=1;j<=nlstate+ndeath;j++){
 1577: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1578: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1579: 	}
 1580:       for(d=0; d<dh[mi][i]; d++){
 1581: 	newm=savm;
 1582: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1583: 	for (kk=1; kk<=cptcovage;kk++) {
 1584: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1585: 	}
 1586: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1587: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1588: 	savm=oldm;
 1589: 	oldm=newm;
 1590:       } /* end mult */
 1591:       
 1592:       s1=s[mw[mi][i]][i];
 1593:       s2=s[mw[mi+1][i]][i];
 1594:       bbh=(double)bh[mi][i]/(double)stepm; 
 1595:       /* bias is positive if real duration
 1596:        * is higher than the multiple of stepm and negative otherwise.
 1597:        */
 1598:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1599: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1600:       } else if  (s2==-2) {
 1601: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 1602: 	  survp += out[s1][j];
 1603: 	lli= log(survp);
 1604:       }else if (mle==1){
 1605: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1606:       } else if(mle==2){
 1607: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1608:       } else if(mle==3){  /* exponential inter-extrapolation */
 1609: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1610:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 1611: 	lli=log(out[s1][s2]); /* Original formula */
 1612:       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 1613: 	lli=log(out[s1][s2]); /* Original formula */
 1614:       } /* End of if */
 1615:       ipmx +=1;
 1616:       sw += weight[i];
 1617:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1618: /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1619:       if(globpr){
 1620: 	fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 1621:  %11.6f %11.6f %11.6f ", \
 1622: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 1623: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 1624: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 1625: 	  llt +=ll[k]*gipmx/gsw;
 1626: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 1627: 	}
 1628: 	fprintf(ficresilk," %10.6f\n", -llt);
 1629:       }
 1630:     } /* end of wave */
 1631:   } /* end of individual */
 1632:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1633:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1634:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1635:   if(globpr==0){ /* First time we count the contributions and weights */
 1636:     gipmx=ipmx;
 1637:     gsw=sw;
 1638:   }
 1639:   return -l;
 1640: }
 1641: 
 1642: 
 1643: /*************** function likelione ***********/
 1644: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 1645: {
 1646:   /* This routine should help understanding what is done with 
 1647:      the selection of individuals/waves and
 1648:      to check the exact contribution to the likelihood.
 1649:      Plotting could be done.
 1650:    */
 1651:   int k;
 1652: 
 1653:   if(*globpri !=0){ /* Just counts and sums, no printings */
 1654:     strcpy(fileresilk,"ilk"); 
 1655:     strcat(fileresilk,fileres);
 1656:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 1657:       printf("Problem with resultfile: %s\n", fileresilk);
 1658:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 1659:     }
 1660:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 1661:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 1662:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 1663:     for(k=1; k<=nlstate; k++) 
 1664:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 1665:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 1666:   }
 1667: 
 1668:   *fretone=(*funcone)(p);
 1669:   if(*globpri !=0){
 1670:     fclose(ficresilk);
 1671:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 1672:     fflush(fichtm); 
 1673:   } 
 1674:   return;
 1675: }
 1676: 
 1677: 
 1678: /*********** Maximum Likelihood Estimation ***************/
 1679: 
 1680: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1681: {
 1682:   int i,j, iter;
 1683:   double **xi;
 1684:   double fret;
 1685:   double fretone; /* Only one call to likelihood */
 1686:   /*  char filerespow[FILENAMELENGTH];*/
 1687:   xi=matrix(1,npar,1,npar);
 1688:   for (i=1;i<=npar;i++)
 1689:     for (j=1;j<=npar;j++)
 1690:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1691:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1692:   strcpy(filerespow,"pow"); 
 1693:   strcat(filerespow,fileres);
 1694:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 1695:     printf("Problem with resultfile: %s\n", filerespow);
 1696:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 1697:   }
 1698:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 1699:   for (i=1;i<=nlstate;i++)
 1700:     for(j=1;j<=nlstate+ndeath;j++)
 1701:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 1702:   fprintf(ficrespow,"\n");
 1703: 
 1704:   powell(p,xi,npar,ftol,&iter,&fret,func);
 1705: 
 1706:   free_matrix(xi,1,npar,1,npar);
 1707:   fclose(ficrespow);
 1708:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 1709:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1710:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1711: 
 1712: }
 1713: 
 1714: /**** Computes Hessian and covariance matrix ***/
 1715: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 1716: {
 1717:   double  **a,**y,*x,pd;
 1718:   double **hess;
 1719:   int i, j,jk;
 1720:   int *indx;
 1721: 
 1722:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 1723:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 1724:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 1725:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 1726:   double gompertz(double p[]);
 1727:   hess=matrix(1,npar,1,npar);
 1728: 
 1729:   printf("\nCalculation of the hessian matrix. Wait...\n");
 1730:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 1731:   for (i=1;i<=npar;i++){
 1732:     printf("%d",i);fflush(stdout);
 1733:     fprintf(ficlog,"%d",i);fflush(ficlog);
 1734:    
 1735:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 1736:     
 1737:     /*  printf(" %f ",p[i]);
 1738: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 1739:   }
 1740:   
 1741:   for (i=1;i<=npar;i++) {
 1742:     for (j=1;j<=npar;j++)  {
 1743:       if (j>i) { 
 1744: 	printf(".%d%d",i,j);fflush(stdout);
 1745: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 1746: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 1747: 	
 1748: 	hess[j][i]=hess[i][j];    
 1749: 	/*printf(" %lf ",hess[i][j]);*/
 1750:       }
 1751:     }
 1752:   }
 1753:   printf("\n");
 1754:   fprintf(ficlog,"\n");
 1755: 
 1756:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 1757:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 1758:   
 1759:   a=matrix(1,npar,1,npar);
 1760:   y=matrix(1,npar,1,npar);
 1761:   x=vector(1,npar);
 1762:   indx=ivector(1,npar);
 1763:   for (i=1;i<=npar;i++)
 1764:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 1765:   ludcmp(a,npar,indx,&pd);
 1766: 
 1767:   for (j=1;j<=npar;j++) {
 1768:     for (i=1;i<=npar;i++) x[i]=0;
 1769:     x[j]=1;
 1770:     lubksb(a,npar,indx,x);
 1771:     for (i=1;i<=npar;i++){ 
 1772:       matcov[i][j]=x[i];
 1773:     }
 1774:   }
 1775: 
 1776:   printf("\n#Hessian matrix#\n");
 1777:   fprintf(ficlog,"\n#Hessian matrix#\n");
 1778:   for (i=1;i<=npar;i++) { 
 1779:     for (j=1;j<=npar;j++) { 
 1780:       printf("%.3e ",hess[i][j]);
 1781:       fprintf(ficlog,"%.3e ",hess[i][j]);
 1782:     }
 1783:     printf("\n");
 1784:     fprintf(ficlog,"\n");
 1785:   }
 1786: 
 1787:   /* Recompute Inverse */
 1788:   for (i=1;i<=npar;i++)
 1789:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 1790:   ludcmp(a,npar,indx,&pd);
 1791: 
 1792:   /*  printf("\n#Hessian matrix recomputed#\n");
 1793: 
 1794:   for (j=1;j<=npar;j++) {
 1795:     for (i=1;i<=npar;i++) x[i]=0;
 1796:     x[j]=1;
 1797:     lubksb(a,npar,indx,x);
 1798:     for (i=1;i<=npar;i++){ 
 1799:       y[i][j]=x[i];
 1800:       printf("%.3e ",y[i][j]);
 1801:       fprintf(ficlog,"%.3e ",y[i][j]);
 1802:     }
 1803:     printf("\n");
 1804:     fprintf(ficlog,"\n");
 1805:   }
 1806:   */
 1807: 
 1808:   free_matrix(a,1,npar,1,npar);
 1809:   free_matrix(y,1,npar,1,npar);
 1810:   free_vector(x,1,npar);
 1811:   free_ivector(indx,1,npar);
 1812:   free_matrix(hess,1,npar,1,npar);
 1813: 
 1814: 
 1815: }
 1816: 
 1817: /*************** hessian matrix ****************/
 1818: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 1819: {
 1820:   int i;
 1821:   int l=1, lmax=20;
 1822:   double k1,k2;
 1823:   double p2[NPARMAX+1];
 1824:   double res;
 1825:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 1826:   double fx;
 1827:   int k=0,kmax=10;
 1828:   double l1;
 1829: 
 1830:   fx=func(x);
 1831:   for (i=1;i<=npar;i++) p2[i]=x[i];
 1832:   for(l=0 ; l <=lmax; l++){
 1833:     l1=pow(10,l);
 1834:     delts=delt;
 1835:     for(k=1 ; k <kmax; k=k+1){
 1836:       delt = delta*(l1*k);
 1837:       p2[theta]=x[theta] +delt;
 1838:       k1=func(p2)-fx;
 1839:       p2[theta]=x[theta]-delt;
 1840:       k2=func(p2)-fx;
 1841:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 1842:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 1843:       
 1844: #ifdef DEBUG
 1845:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1846:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1847: #endif
 1848:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 1849:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 1850: 	k=kmax;
 1851:       }
 1852:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 1853: 	k=kmax; l=lmax*10.;
 1854:       }
 1855:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 1856: 	delts=delt;
 1857:       }
 1858:     }
 1859:   }
 1860:   delti[theta]=delts;
 1861:   return res; 
 1862:   
 1863: }
 1864: 
 1865: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 1866: {
 1867:   int i;
 1868:   int l=1, l1, lmax=20;
 1869:   double k1,k2,k3,k4,res,fx;
 1870:   double p2[NPARMAX+1];
 1871:   int k;
 1872: 
 1873:   fx=func(x);
 1874:   for (k=1; k<=2; k++) {
 1875:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1876:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1877:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1878:     k1=func(p2)-fx;
 1879:   
 1880:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1881:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1882:     k2=func(p2)-fx;
 1883:   
 1884:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1885:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1886:     k3=func(p2)-fx;
 1887:   
 1888:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1889:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1890:     k4=func(p2)-fx;
 1891:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1892: #ifdef DEBUG
 1893:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1894:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1895: #endif
 1896:   }
 1897:   return res;
 1898: }
 1899: 
 1900: /************** Inverse of matrix **************/
 1901: void ludcmp(double **a, int n, int *indx, double *d) 
 1902: { 
 1903:   int i,imax,j,k; 
 1904:   double big,dum,sum,temp; 
 1905:   double *vv; 
 1906:  
 1907:   vv=vector(1,n); 
 1908:   *d=1.0; 
 1909:   for (i=1;i<=n;i++) { 
 1910:     big=0.0; 
 1911:     for (j=1;j<=n;j++) 
 1912:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1913:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1914:     vv[i]=1.0/big; 
 1915:   } 
 1916:   for (j=1;j<=n;j++) { 
 1917:     for (i=1;i<j;i++) { 
 1918:       sum=a[i][j]; 
 1919:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1920:       a[i][j]=sum; 
 1921:     } 
 1922:     big=0.0; 
 1923:     for (i=j;i<=n;i++) { 
 1924:       sum=a[i][j]; 
 1925:       for (k=1;k<j;k++) 
 1926: 	sum -= a[i][k]*a[k][j]; 
 1927:       a[i][j]=sum; 
 1928:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1929: 	big=dum; 
 1930: 	imax=i; 
 1931:       } 
 1932:     } 
 1933:     if (j != imax) { 
 1934:       for (k=1;k<=n;k++) { 
 1935: 	dum=a[imax][k]; 
 1936: 	a[imax][k]=a[j][k]; 
 1937: 	a[j][k]=dum; 
 1938:       } 
 1939:       *d = -(*d); 
 1940:       vv[imax]=vv[j]; 
 1941:     } 
 1942:     indx[j]=imax; 
 1943:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1944:     if (j != n) { 
 1945:       dum=1.0/(a[j][j]); 
 1946:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1947:     } 
 1948:   } 
 1949:   free_vector(vv,1,n);  /* Doesn't work */
 1950: ;
 1951: } 
 1952: 
 1953: void lubksb(double **a, int n, int *indx, double b[]) 
 1954: { 
 1955:   int i,ii=0,ip,j; 
 1956:   double sum; 
 1957:  
 1958:   for (i=1;i<=n;i++) { 
 1959:     ip=indx[i]; 
 1960:     sum=b[ip]; 
 1961:     b[ip]=b[i]; 
 1962:     if (ii) 
 1963:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1964:     else if (sum) ii=i; 
 1965:     b[i]=sum; 
 1966:   } 
 1967:   for (i=n;i>=1;i--) { 
 1968:     sum=b[i]; 
 1969:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1970:     b[i]=sum/a[i][i]; 
 1971:   } 
 1972: } 
 1973: 
 1974: void pstamp(FILE *fichier)
 1975: {
 1976:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 1977: }
 1978: 
 1979: /************ Frequencies ********************/
 1980: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 1981: {  /* Some frequencies */
 1982:   
 1983:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 1984:   int first;
 1985:   double ***freq; /* Frequencies */
 1986:   double *pp, **prop;
 1987:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 1988:   char fileresp[FILENAMELENGTH];
 1989:   
 1990:   pp=vector(1,nlstate);
 1991:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 1992:   strcpy(fileresp,"p");
 1993:   strcat(fileresp,fileres);
 1994:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1995:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1996:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 1997:     exit(0);
 1998:   }
 1999:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2000:   j1=0;
 2001:   
 2002:   j=cptcoveff;
 2003:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2004: 
 2005:   first=1;
 2006: 
 2007:   for(k1=1; k1<=j;k1++){
 2008:     for(i1=1; i1<=ncodemax[k1];i1++){
 2009:       j1++;
 2010:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2011: 	scanf("%d", i);*/
 2012:       for (i=-5; i<=nlstate+ndeath; i++)  
 2013: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2014: 	  for(m=iagemin; m <= iagemax+3; m++)
 2015: 	    freq[i][jk][m]=0;
 2016: 
 2017:     for (i=1; i<=nlstate; i++)  
 2018:       for(m=iagemin; m <= iagemax+3; m++)
 2019: 	prop[i][m]=0;
 2020:       
 2021:       dateintsum=0;
 2022:       k2cpt=0;
 2023:       for (i=1; i<=imx; i++) {
 2024: 	bool=1;
 2025: 	if  (cptcovn>0) {
 2026: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2027: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2028: 	      bool=0;
 2029: 	}
 2030: 	if (bool==1){
 2031: 	  for(m=firstpass; m<=lastpass; m++){
 2032: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2033: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2034: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2035: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2036: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2037: 	      if (m<lastpass) {
 2038: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2039: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2040: 	      }
 2041: 	      
 2042: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2043: 		dateintsum=dateintsum+k2;
 2044: 		k2cpt++;
 2045: 	      }
 2046: 	      /*}*/
 2047: 	  }
 2048: 	}
 2049:       }
 2050:        
 2051:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2052:       pstamp(ficresp);
 2053:       if  (cptcovn>0) {
 2054: 	fprintf(ficresp, "\n#********** Variable "); 
 2055: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2056: 	fprintf(ficresp, "**********\n#");
 2057:       }
 2058:       for(i=1; i<=nlstate;i++) 
 2059: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2060:       fprintf(ficresp, "\n");
 2061:       
 2062:       for(i=iagemin; i <= iagemax+3; i++){
 2063: 	if(i==iagemax+3){
 2064: 	  fprintf(ficlog,"Total");
 2065: 	}else{
 2066: 	  if(first==1){
 2067: 	    first=0;
 2068: 	    printf("See log file for details...\n");
 2069: 	  }
 2070: 	  fprintf(ficlog,"Age %d", i);
 2071: 	}
 2072: 	for(jk=1; jk <=nlstate ; jk++){
 2073: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2074: 	    pp[jk] += freq[jk][m][i]; 
 2075: 	}
 2076: 	for(jk=1; jk <=nlstate ; jk++){
 2077: 	  for(m=-1, pos=0; m <=0 ; m++)
 2078: 	    pos += freq[jk][m][i];
 2079: 	  if(pp[jk]>=1.e-10){
 2080: 	    if(first==1){
 2081: 	    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2082: 	    }
 2083: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2084: 	  }else{
 2085: 	    if(first==1)
 2086: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2087: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2088: 	  }
 2089: 	}
 2090: 
 2091: 	for(jk=1; jk <=nlstate ; jk++){
 2092: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2093: 	    pp[jk] += freq[jk][m][i];
 2094: 	}	
 2095: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2096: 	  pos += pp[jk];
 2097: 	  posprop += prop[jk][i];
 2098: 	}
 2099: 	for(jk=1; jk <=nlstate ; jk++){
 2100: 	  if(pos>=1.e-5){
 2101: 	    if(first==1)
 2102: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2103: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2104: 	  }else{
 2105: 	    if(first==1)
 2106: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2107: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2108: 	  }
 2109: 	  if( i <= iagemax){
 2110: 	    if(pos>=1.e-5){
 2111: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2112: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2113: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2114: 	    }
 2115: 	    else
 2116: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2117: 	  }
 2118: 	}
 2119: 	
 2120: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2121: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2122: 	    if(freq[jk][m][i] !=0 ) {
 2123: 	    if(first==1)
 2124: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2125: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2126: 	    }
 2127: 	if(i <= iagemax)
 2128: 	  fprintf(ficresp,"\n");
 2129: 	if(first==1)
 2130: 	  printf("Others in log...\n");
 2131: 	fprintf(ficlog,"\n");
 2132:       }
 2133:     }
 2134:   }
 2135:   dateintmean=dateintsum/k2cpt; 
 2136:  
 2137:   fclose(ficresp);
 2138:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2139:   free_vector(pp,1,nlstate);
 2140:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2141:   /* End of Freq */
 2142: }
 2143: 
 2144: /************ Prevalence ********************/
 2145: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2146: {  
 2147:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2148:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2149:      We still use firstpass and lastpass as another selection.
 2150:   */
 2151:  
 2152:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 2153:   double ***freq; /* Frequencies */
 2154:   double *pp, **prop;
 2155:   double pos,posprop; 
 2156:   double  y2; /* in fractional years */
 2157:   int iagemin, iagemax;
 2158: 
 2159:   iagemin= (int) agemin;
 2160:   iagemax= (int) agemax;
 2161:   /*pp=vector(1,nlstate);*/
 2162:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2163:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2164:   j1=0;
 2165:   
 2166:   j=cptcoveff;
 2167:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2168:   
 2169:   for(k1=1; k1<=j;k1++){
 2170:     for(i1=1; i1<=ncodemax[k1];i1++){
 2171:       j1++;
 2172:       
 2173:       for (i=1; i<=nlstate; i++)  
 2174: 	for(m=iagemin; m <= iagemax+3; m++)
 2175: 	  prop[i][m]=0.0;
 2176:      
 2177:       for (i=1; i<=imx; i++) { /* Each individual */
 2178: 	bool=1;
 2179: 	if  (cptcovn>0) {
 2180: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2181: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2182: 	      bool=0;
 2183: 	} 
 2184: 	if (bool==1) { 
 2185: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2186: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2187: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2188: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2189: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2190: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2191:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2192: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2193:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2194:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2195:  	      } 
 2196: 	    }
 2197: 	  } /* end selection of waves */
 2198: 	}
 2199:       }
 2200:       for(i=iagemin; i <= iagemax+3; i++){  
 2201: 	
 2202:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2203:  	  posprop += prop[jk][i]; 
 2204:  	} 
 2205: 
 2206:  	for(jk=1; jk <=nlstate ; jk++){	    
 2207:  	  if( i <=  iagemax){ 
 2208:  	    if(posprop>=1.e-5){ 
 2209:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2210:  	    } 
 2211:  	  } 
 2212:  	}/* end jk */ 
 2213:       }/* end i */ 
 2214:     } /* end i1 */
 2215:   } /* end k1 */
 2216:   
 2217:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2218:   /*free_vector(pp,1,nlstate);*/
 2219:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2220: }  /* End of prevalence */
 2221: 
 2222: /************* Waves Concatenation ***************/
 2223: 
 2224: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2225: {
 2226:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2227:      Death is a valid wave (if date is known).
 2228:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2229:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2230:      and mw[mi+1][i]. dh depends on stepm.
 2231:      */
 2232: 
 2233:   int i, mi, m;
 2234:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2235:      double sum=0., jmean=0.;*/
 2236:   int first;
 2237:   int j, k=0,jk, ju, jl;
 2238:   double sum=0.;
 2239:   first=0;
 2240:   jmin=1e+5;
 2241:   jmax=-1;
 2242:   jmean=0.;
 2243:   for(i=1; i<=imx; i++){
 2244:     mi=0;
 2245:     m=firstpass;
 2246:     while(s[m][i] <= nlstate){
 2247:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2248: 	mw[++mi][i]=m;
 2249:       if(m >=lastpass)
 2250: 	break;
 2251:       else
 2252: 	m++;
 2253:     }/* end while */
 2254:     if (s[m][i] > nlstate){
 2255:       mi++;	/* Death is another wave */
 2256:       /* if(mi==0)  never been interviewed correctly before death */
 2257: 	 /* Only death is a correct wave */
 2258:       mw[mi][i]=m;
 2259:     }
 2260: 
 2261:     wav[i]=mi;
 2262:     if(mi==0){
 2263:       nbwarn++;
 2264:       if(first==0){
 2265: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2266: 	first=1;
 2267:       }
 2268:       if(first==1){
 2269: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2270:       }
 2271:     } /* end mi==0 */
 2272:   } /* End individuals */
 2273: 
 2274:   for(i=1; i<=imx; i++){
 2275:     for(mi=1; mi<wav[i];mi++){
 2276:       if (stepm <=0)
 2277: 	dh[mi][i]=1;
 2278:       else{
 2279: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2280: 	  if (agedc[i] < 2*AGESUP) {
 2281: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2282: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2283: 	    else if(j<0){
 2284: 	      nberr++;
 2285: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2286: 	      j=1; /* Temporary Dangerous patch */
 2287: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2288: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2289: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2290: 	    }
 2291: 	    k=k+1;
 2292: 	    if (j >= jmax){
 2293: 	      jmax=j;
 2294: 	      ijmax=i;
 2295: 	    }
 2296: 	    if (j <= jmin){
 2297: 	      jmin=j;
 2298: 	      ijmin=i;
 2299: 	    }
 2300: 	    sum=sum+j;
 2301: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2302: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2303: 	  }
 2304: 	}
 2305: 	else{
 2306: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2307: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2308: 
 2309: 	  k=k+1;
 2310: 	  if (j >= jmax) {
 2311: 	    jmax=j;
 2312: 	    ijmax=i;
 2313: 	  }
 2314: 	  else if (j <= jmin){
 2315: 	    jmin=j;
 2316: 	    ijmin=i;
 2317: 	  }
 2318: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2319: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2320: 	  if(j<0){
 2321: 	    nberr++;
 2322: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2323: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2324: 	  }
 2325: 	  sum=sum+j;
 2326: 	}
 2327: 	jk= j/stepm;
 2328: 	jl= j -jk*stepm;
 2329: 	ju= j -(jk+1)*stepm;
 2330: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2331: 	  if(jl==0){
 2332: 	    dh[mi][i]=jk;
 2333: 	    bh[mi][i]=0;
 2334: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2335: 		  * at the price of an extra matrix product in likelihood */
 2336: 	    dh[mi][i]=jk+1;
 2337: 	    bh[mi][i]=ju;
 2338: 	  }
 2339: 	}else{
 2340: 	  if(jl <= -ju){
 2341: 	    dh[mi][i]=jk;
 2342: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2343: 				 * is higher than the multiple of stepm and negative otherwise.
 2344: 				 */
 2345: 	  }
 2346: 	  else{
 2347: 	    dh[mi][i]=jk+1;
 2348: 	    bh[mi][i]=ju;
 2349: 	  }
 2350: 	  if(dh[mi][i]==0){
 2351: 	    dh[mi][i]=1; /* At least one step */
 2352: 	    bh[mi][i]=ju; /* At least one step */
 2353: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2354: 	  }
 2355: 	} /* end if mle */
 2356:       }
 2357:     } /* end wave */
 2358:   }
 2359:   jmean=sum/k;
 2360:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 2361:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 2362:  }
 2363: 
 2364: /*********** Tricode ****************************/
 2365: void tricode(int *Tvar, int **nbcode, int imx)
 2366: {
 2367:   
 2368:   int Ndum[20],ij=1, k, j, i, maxncov=19;
 2369:   int cptcode=0;
 2370:   cptcoveff=0; 
 2371:  
 2372:   for (k=0; k<maxncov; k++) Ndum[k]=0;
 2373:   for (k=1; k<=7; k++) ncodemax[k]=0;
 2374: 
 2375:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 2376:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 2377: 			       modality*/ 
 2378:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 2379:       Ndum[ij]++; /*store the modality */
 2380:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2381:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 2382: 				       Tvar[j]. If V=sex and male is 0 and 
 2383: 				       female is 1, then  cptcode=1.*/
 2384:     }
 2385: 
 2386:     for (i=0; i<=cptcode; i++) {
 2387:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 2388:     }
 2389: 
 2390:     ij=1; 
 2391:     for (i=1; i<=ncodemax[j]; i++) {
 2392:       for (k=0; k<= maxncov; k++) {
 2393: 	if (Ndum[k] != 0) {
 2394: 	  nbcode[Tvar[j]][ij]=k; 
 2395: 	  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2396: 	  
 2397: 	  ij++;
 2398: 	}
 2399: 	if (ij > ncodemax[j]) break; 
 2400:       }  
 2401:     } 
 2402:   }  
 2403: 
 2404:  for (k=0; k< maxncov; k++) Ndum[k]=0;
 2405: 
 2406:  for (i=1; i<=ncovmodel-2; i++) { 
 2407:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 2408:    ij=Tvar[i];
 2409:    Ndum[ij]++;
 2410:  }
 2411: 
 2412:  ij=1;
 2413:  for (i=1; i<= maxncov; i++) {
 2414:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2415:      Tvaraff[ij]=i; /*For printing */
 2416:      ij++;
 2417:    }
 2418:  }
 2419:  
 2420:  cptcoveff=ij-1; /*Number of simple covariates*/
 2421: }
 2422: 
 2423: /*********** Health Expectancies ****************/
 2424: 
 2425: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 2426: 
 2427: {
 2428:   /* Health expectancies, no variances */
 2429:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 2430:   double age, agelim, hf;
 2431:   double ***p3mat;
 2432:   double eip;
 2433: 
 2434:   pstamp(ficreseij);
 2435:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 2436:   fprintf(ficreseij,"# Age");
 2437:   for(i=1; i<=nlstate;i++){
 2438:     for(j=1; j<=nlstate;j++){
 2439:       fprintf(ficreseij," e%1d%1d ",i,j);
 2440:     }
 2441:     fprintf(ficreseij," e%1d. ",i);
 2442:   }
 2443:   fprintf(ficreseij,"\n");
 2444: 
 2445:   
 2446:   if(estepm < stepm){
 2447:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2448:   }
 2449:   else  hstepm=estepm;   
 2450:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2451:    * This is mainly to measure the difference between two models: for example
 2452:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2453:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2454:    * progression in between and thus overestimating or underestimating according
 2455:    * to the curvature of the survival function. If, for the same date, we 
 2456:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2457:    * to compare the new estimate of Life expectancy with the same linear 
 2458:    * hypothesis. A more precise result, taking into account a more precise
 2459:    * curvature will be obtained if estepm is as small as stepm. */
 2460: 
 2461:   /* For example we decided to compute the life expectancy with the smallest unit */
 2462:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2463:      nhstepm is the number of hstepm from age to agelim 
 2464:      nstepm is the number of stepm from age to agelin. 
 2465:      Look at hpijx to understand the reason of that which relies in memory size
 2466:      and note for a fixed period like estepm months */
 2467:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2468:      survival function given by stepm (the optimization length). Unfortunately it
 2469:      means that if the survival funtion is printed only each two years of age and if
 2470:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2471:      results. So we changed our mind and took the option of the best precision.
 2472:   */
 2473:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2474: 
 2475:   agelim=AGESUP;
 2476:   /* nhstepm age range expressed in number of stepm */
 2477:   nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 2478:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2479:   /* if (stepm >= YEARM) hstepm=1;*/
 2480:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2481:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2482: 
 2483:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2484:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2485:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2486:     
 2487:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 2488:     
 2489:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2490:     
 2491:     printf("%d|",(int)age);fflush(stdout);
 2492:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2493:     
 2494:     /* Computing expectancies */
 2495:     for(i=1; i<=nlstate;i++)
 2496:       for(j=1; j<=nlstate;j++)
 2497: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2498: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2499: 	  
 2500: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2501: 
 2502: 	}
 2503: 
 2504:     fprintf(ficreseij,"%3.0f",age );
 2505:     for(i=1; i<=nlstate;i++){
 2506:       eip=0;
 2507:       for(j=1; j<=nlstate;j++){
 2508: 	eip +=eij[i][j][(int)age];
 2509: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 2510:       }
 2511:       fprintf(ficreseij,"%9.4f", eip );
 2512:     }
 2513:     fprintf(ficreseij,"\n");
 2514:     
 2515:   }
 2516:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2517:   printf("\n");
 2518:   fprintf(ficlog,"\n");
 2519:   
 2520: }
 2521: 
 2522: void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 2523: 
 2524: {
 2525:   /* Covariances of health expectancies eij and of total life expectancies according
 2526:    to initial status i, ei. .
 2527:   */
 2528:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 2529:   double age, agelim, hf;
 2530:   double ***p3matp, ***p3matm, ***varhe;
 2531:   double **dnewm,**doldm;
 2532:   double *xp, *xm;
 2533:   double **gp, **gm;
 2534:   double ***gradg, ***trgradg;
 2535:   int theta;
 2536: 
 2537:   double eip, vip;
 2538: 
 2539:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 2540:   xp=vector(1,npar);
 2541:   xm=vector(1,npar);
 2542:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 2543:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 2544:   
 2545:   pstamp(ficresstdeij);
 2546:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 2547:   fprintf(ficresstdeij,"# Age");
 2548:   for(i=1; i<=nlstate;i++){
 2549:     for(j=1; j<=nlstate;j++)
 2550:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 2551:     fprintf(ficresstdeij," e%1d. ",i);
 2552:   }
 2553:   fprintf(ficresstdeij,"\n");
 2554: 
 2555:   pstamp(ficrescveij);
 2556:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 2557:   fprintf(ficrescveij,"# Age");
 2558:   for(i=1; i<=nlstate;i++)
 2559:     for(j=1; j<=nlstate;j++){
 2560:       cptj= (j-1)*nlstate+i;
 2561:       for(i2=1; i2<=nlstate;i2++)
 2562: 	for(j2=1; j2<=nlstate;j2++){
 2563: 	  cptj2= (j2-1)*nlstate+i2;
 2564: 	  if(cptj2 <= cptj)
 2565: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 2566: 	}
 2567:     }
 2568:   fprintf(ficrescveij,"\n");
 2569:   
 2570:   if(estepm < stepm){
 2571:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2572:   }
 2573:   else  hstepm=estepm;   
 2574:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2575:    * This is mainly to measure the difference between two models: for example
 2576:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2577:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2578:    * progression in between and thus overestimating or underestimating according
 2579:    * to the curvature of the survival function. If, for the same date, we 
 2580:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2581:    * to compare the new estimate of Life expectancy with the same linear 
 2582:    * hypothesis. A more precise result, taking into account a more precise
 2583:    * curvature will be obtained if estepm is as small as stepm. */
 2584: 
 2585:   /* For example we decided to compute the life expectancy with the smallest unit */
 2586:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2587:      nhstepm is the number of hstepm from age to agelim 
 2588:      nstepm is the number of stepm from age to agelin. 
 2589:      Look at hpijx to understand the reason of that which relies in memory size
 2590:      and note for a fixed period like estepm months */
 2591:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2592:      survival function given by stepm (the optimization length). Unfortunately it
 2593:      means that if the survival funtion is printed only each two years of age and if
 2594:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2595:      results. So we changed our mind and took the option of the best precision.
 2596:   */
 2597:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2598: 
 2599:   /* If stepm=6 months */
 2600:   /* nhstepm age range expressed in number of stepm */
 2601:   agelim=AGESUP;
 2602:   nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 2603:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2604:   /* if (stepm >= YEARM) hstepm=1;*/
 2605:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2606:   
 2607:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2608:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2609:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 2610:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 2611:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 2612:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 2613: 
 2614:   for (age=bage; age<=fage; age ++){ 
 2615: 
 2616:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2617:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2618:  
 2619:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2620: 
 2621:     /* Computing  Variances of health expectancies */
 2622:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 2623:        decrease memory allocation */
 2624:     for(theta=1; theta <=npar; theta++){
 2625:       for(i=1; i<=npar; i++){ 
 2626: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2627: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 2628:       }
 2629:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 2630:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 2631:   
 2632:       for(j=1; j<= nlstate; j++){
 2633: 	for(i=1; i<=nlstate; i++){
 2634: 	  for(h=0; h<=nhstepm-1; h++){
 2635: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 2636: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 2637: 	  }
 2638: 	}
 2639:       }
 2640:      
 2641:       for(ij=1; ij<= nlstate*nlstate; ij++)
 2642: 	for(h=0; h<=nhstepm-1; h++){
 2643: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 2644: 	}
 2645:     }/* End theta */
 2646:     
 2647:     
 2648:     for(h=0; h<=nhstepm-1; h++)
 2649:       for(j=1; j<=nlstate*nlstate;j++)
 2650: 	for(theta=1; theta <=npar; theta++)
 2651: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2652:     
 2653: 
 2654:      for(ij=1;ij<=nlstate*nlstate;ij++)
 2655:       for(ji=1;ji<=nlstate*nlstate;ji++)
 2656: 	varhe[ij][ji][(int)age] =0.;
 2657: 
 2658:      printf("%d|",(int)age);fflush(stdout);
 2659:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2660:      for(h=0;h<=nhstepm-1;h++){
 2661:       for(k=0;k<=nhstepm-1;k++){
 2662: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 2663: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 2664: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 2665: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 2666: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 2667:       }
 2668:     }
 2669:     /* Computing expectancies */
 2670:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 2671:     for(i=1; i<=nlstate;i++)
 2672:       for(j=1; j<=nlstate;j++)
 2673: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2674: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 2675: 	  
 2676: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2677: 
 2678: 	}
 2679: 
 2680:     fprintf(ficresstdeij,"%3.0f",age );
 2681:     for(i=1; i<=nlstate;i++){
 2682:       eip=0.;
 2683:       vip=0.;
 2684:       for(j=1; j<=nlstate;j++){
 2685: 	eip += eij[i][j][(int)age];
 2686: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 2687: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 2688: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 2689:       }
 2690:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 2691:     }
 2692:     fprintf(ficresstdeij,"\n");
 2693: 
 2694:     fprintf(ficrescveij,"%3.0f",age );
 2695:     for(i=1; i<=nlstate;i++)
 2696:       for(j=1; j<=nlstate;j++){
 2697: 	cptj= (j-1)*nlstate+i;
 2698: 	for(i2=1; i2<=nlstate;i2++)
 2699: 	  for(j2=1; j2<=nlstate;j2++){
 2700: 	    cptj2= (j2-1)*nlstate+i2;
 2701: 	    if(cptj2 <= cptj)
 2702: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 2703: 	  }
 2704:       }
 2705:     fprintf(ficrescveij,"\n");
 2706:    
 2707:   }
 2708:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 2709:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 2710:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 2711:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 2712:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2713:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2714:   printf("\n");
 2715:   fprintf(ficlog,"\n");
 2716: 
 2717:   free_vector(xm,1,npar);
 2718:   free_vector(xp,1,npar);
 2719:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 2720:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 2721:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 2722: }
 2723: 
 2724: /************ Variance ******************/
 2725: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 2726: {
 2727:   /* Variance of health expectancies */
 2728:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 2729:   /* double **newm;*/
 2730:   double **dnewm,**doldm;
 2731:   double **dnewmp,**doldmp;
 2732:   int i, j, nhstepm, hstepm, h, nstepm ;
 2733:   int k, cptcode;
 2734:   double *xp;
 2735:   double **gp, **gm;  /* for var eij */
 2736:   double ***gradg, ***trgradg; /*for var eij */
 2737:   double **gradgp, **trgradgp; /* for var p point j */
 2738:   double *gpp, *gmp; /* for var p point j */
 2739:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 2740:   double ***p3mat;
 2741:   double age,agelim, hf;
 2742:   double ***mobaverage;
 2743:   int theta;
 2744:   char digit[4];
 2745:   char digitp[25];
 2746: 
 2747:   char fileresprobmorprev[FILENAMELENGTH];
 2748: 
 2749:   if(popbased==1){
 2750:     if(mobilav!=0)
 2751:       strcpy(digitp,"-populbased-mobilav-");
 2752:     else strcpy(digitp,"-populbased-nomobil-");
 2753:   }
 2754:   else 
 2755:     strcpy(digitp,"-stablbased-");
 2756: 
 2757:   if (mobilav!=0) {
 2758:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2759:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 2760:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2761:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2762:     }
 2763:   }
 2764: 
 2765:   strcpy(fileresprobmorprev,"prmorprev"); 
 2766:   sprintf(digit,"%-d",ij);
 2767:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 2768:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 2769:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 2770:   strcat(fileresprobmorprev,fileres);
 2771:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 2772:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 2773:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 2774:   }
 2775:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2776:  
 2777:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2778:   pstamp(ficresprobmorprev);
 2779:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 2780:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 2781:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2782:     fprintf(ficresprobmorprev," p.%-d SE",j);
 2783:     for(i=1; i<=nlstate;i++)
 2784:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 2785:   }  
 2786:   fprintf(ficresprobmorprev,"\n");
 2787:   fprintf(ficgp,"\n# Routine varevsij");
 2788:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 2789:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 2790:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 2791: /*   } */
 2792:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2793:   pstamp(ficresvij);
 2794:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 2795:   if(popbased==1)
 2796:     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
 2797:   else
 2798:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 2799:   fprintf(ficresvij,"# Age");
 2800:   for(i=1; i<=nlstate;i++)
 2801:     for(j=1; j<=nlstate;j++)
 2802:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 2803:   fprintf(ficresvij,"\n");
 2804: 
 2805:   xp=vector(1,npar);
 2806:   dnewm=matrix(1,nlstate,1,npar);
 2807:   doldm=matrix(1,nlstate,1,nlstate);
 2808:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 2809:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2810: 
 2811:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 2812:   gpp=vector(nlstate+1,nlstate+ndeath);
 2813:   gmp=vector(nlstate+1,nlstate+ndeath);
 2814:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2815:   
 2816:   if(estepm < stepm){
 2817:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2818:   }
 2819:   else  hstepm=estepm;   
 2820:   /* For example we decided to compute the life expectancy with the smallest unit */
 2821:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2822:      nhstepm is the number of hstepm from age to agelim 
 2823:      nstepm is the number of stepm from age to agelin. 
 2824:      Look at hpijx to understand the reason of that which relies in memory size
 2825:      and note for a fixed period like k years */
 2826:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2827:      survival function given by stepm (the optimization length). Unfortunately it
 2828:      means that if the survival funtion is printed every two years of age and if
 2829:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2830:      results. So we changed our mind and took the option of the best precision.
 2831:   */
 2832:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2833:   agelim = AGESUP;
 2834:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2835:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2836:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2837:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2838:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 2839:     gp=matrix(0,nhstepm,1,nlstate);
 2840:     gm=matrix(0,nhstepm,1,nlstate);
 2841: 
 2842: 
 2843:     for(theta=1; theta <=npar; theta++){
 2844:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 2845: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2846:       }
 2847:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2848:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2849: 
 2850:       if (popbased==1) {
 2851: 	if(mobilav ==0){
 2852: 	  for(i=1; i<=nlstate;i++)
 2853: 	    prlim[i][i]=probs[(int)age][i][ij];
 2854: 	}else{ /* mobilav */ 
 2855: 	  for(i=1; i<=nlstate;i++)
 2856: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2857: 	}
 2858:       }
 2859:   
 2860:       for(j=1; j<= nlstate; j++){
 2861: 	for(h=0; h<=nhstepm; h++){
 2862: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 2863: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 2864: 	}
 2865:       }
 2866:       /* This for computing probability of death (h=1 means
 2867:          computed over hstepm matrices product = hstepm*stepm months) 
 2868:          as a weighted average of prlim.
 2869:       */
 2870:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2871: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 2872: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 2873:       }    
 2874:       /* end probability of death */
 2875: 
 2876:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 2877: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2878:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2879:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2880:  
 2881:       if (popbased==1) {
 2882: 	if(mobilav ==0){
 2883: 	  for(i=1; i<=nlstate;i++)
 2884: 	    prlim[i][i]=probs[(int)age][i][ij];
 2885: 	}else{ /* mobilav */ 
 2886: 	  for(i=1; i<=nlstate;i++)
 2887: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2888: 	}
 2889:       }
 2890: 
 2891:       for(j=1; j<= nlstate; j++){
 2892: 	for(h=0; h<=nhstepm; h++){
 2893: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 2894: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 2895: 	}
 2896:       }
 2897:       /* This for computing probability of death (h=1 means
 2898:          computed over hstepm matrices product = hstepm*stepm months) 
 2899:          as a weighted average of prlim.
 2900:       */
 2901:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2902: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 2903:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 2904:       }    
 2905:       /* end probability of death */
 2906: 
 2907:       for(j=1; j<= nlstate; j++) /* vareij */
 2908: 	for(h=0; h<=nhstepm; h++){
 2909: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2910: 	}
 2911: 
 2912:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 2913: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 2914:       }
 2915: 
 2916:     } /* End theta */
 2917: 
 2918:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 2919: 
 2920:     for(h=0; h<=nhstepm; h++) /* veij */
 2921:       for(j=1; j<=nlstate;j++)
 2922: 	for(theta=1; theta <=npar; theta++)
 2923: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2924: 
 2925:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 2926:       for(theta=1; theta <=npar; theta++)
 2927: 	trgradgp[j][theta]=gradgp[theta][j];
 2928:   
 2929: 
 2930:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2931:     for(i=1;i<=nlstate;i++)
 2932:       for(j=1;j<=nlstate;j++)
 2933: 	vareij[i][j][(int)age] =0.;
 2934: 
 2935:     for(h=0;h<=nhstepm;h++){
 2936:       for(k=0;k<=nhstepm;k++){
 2937: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 2938: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 2939: 	for(i=1;i<=nlstate;i++)
 2940: 	  for(j=1;j<=nlstate;j++)
 2941: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 2942:       }
 2943:     }
 2944:   
 2945:     /* pptj */
 2946:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 2947:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 2948:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 2949:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 2950: 	varppt[j][i]=doldmp[j][i];
 2951:     /* end ppptj */
 2952:     /*  x centered again */
 2953:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 2954:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 2955:  
 2956:     if (popbased==1) {
 2957:       if(mobilav ==0){
 2958: 	for(i=1; i<=nlstate;i++)
 2959: 	  prlim[i][i]=probs[(int)age][i][ij];
 2960:       }else{ /* mobilav */ 
 2961: 	for(i=1; i<=nlstate;i++)
 2962: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 2963:       }
 2964:     }
 2965:              
 2966:     /* This for computing probability of death (h=1 means
 2967:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 2968:        as a weighted average of prlim.
 2969:     */
 2970:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2971:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 2972: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 2973:     }    
 2974:     /* end probability of death */
 2975: 
 2976:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 2977:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2978:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 2979:       for(i=1; i<=nlstate;i++){
 2980: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 2981:       }
 2982:     } 
 2983:     fprintf(ficresprobmorprev,"\n");
 2984: 
 2985:     fprintf(ficresvij,"%.0f ",age );
 2986:     for(i=1; i<=nlstate;i++)
 2987:       for(j=1; j<=nlstate;j++){
 2988: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 2989:       }
 2990:     fprintf(ficresvij,"\n");
 2991:     free_matrix(gp,0,nhstepm,1,nlstate);
 2992:     free_matrix(gm,0,nhstepm,1,nlstate);
 2993:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 2994:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 2995:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2996:   } /* End age */
 2997:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 2998:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 2999:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3000:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3001:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 3002:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3003:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3004: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3005: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3006: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3007:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 3008:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 3009:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 3010:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3011:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3012:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3013: */
 3014: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3015:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3016: 
 3017:   free_vector(xp,1,npar);
 3018:   free_matrix(doldm,1,nlstate,1,nlstate);
 3019:   free_matrix(dnewm,1,nlstate,1,npar);
 3020:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3021:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3022:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3023:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3024:   fclose(ficresprobmorprev);
 3025:   fflush(ficgp);
 3026:   fflush(fichtm); 
 3027: }  /* end varevsij */
 3028: 
 3029: /************ Variance of prevlim ******************/
 3030: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3031: {
 3032:   /* Variance of prevalence limit */
 3033:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3034:   double **newm;
 3035:   double **dnewm,**doldm;
 3036:   int i, j, nhstepm, hstepm;
 3037:   int k, cptcode;
 3038:   double *xp;
 3039:   double *gp, *gm;
 3040:   double **gradg, **trgradg;
 3041:   double age,agelim;
 3042:   int theta;
 3043:   
 3044:   pstamp(ficresvpl);
 3045:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3046:   fprintf(ficresvpl,"# Age");
 3047:   for(i=1; i<=nlstate;i++)
 3048:       fprintf(ficresvpl," %1d-%1d",i,i);
 3049:   fprintf(ficresvpl,"\n");
 3050: 
 3051:   xp=vector(1,npar);
 3052:   dnewm=matrix(1,nlstate,1,npar);
 3053:   doldm=matrix(1,nlstate,1,nlstate);
 3054:   
 3055:   hstepm=1*YEARM; /* Every year of age */
 3056:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3057:   agelim = AGESUP;
 3058:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3059:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3060:     if (stepm >= YEARM) hstepm=1;
 3061:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3062:     gradg=matrix(1,npar,1,nlstate);
 3063:     gp=vector(1,nlstate);
 3064:     gm=vector(1,nlstate);
 3065: 
 3066:     for(theta=1; theta <=npar; theta++){
 3067:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3068: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3069:       }
 3070:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3071:       for(i=1;i<=nlstate;i++)
 3072: 	gp[i] = prlim[i][i];
 3073:     
 3074:       for(i=1; i<=npar; i++) /* Computes gradient */
 3075: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3076:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3077:       for(i=1;i<=nlstate;i++)
 3078: 	gm[i] = prlim[i][i];
 3079: 
 3080:       for(i=1;i<=nlstate;i++)
 3081: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3082:     } /* End theta */
 3083: 
 3084:     trgradg =matrix(1,nlstate,1,npar);
 3085: 
 3086:     for(j=1; j<=nlstate;j++)
 3087:       for(theta=1; theta <=npar; theta++)
 3088: 	trgradg[j][theta]=gradg[theta][j];
 3089: 
 3090:     for(i=1;i<=nlstate;i++)
 3091:       varpl[i][(int)age] =0.;
 3092:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3093:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3094:     for(i=1;i<=nlstate;i++)
 3095:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3096: 
 3097:     fprintf(ficresvpl,"%.0f ",age );
 3098:     for(i=1; i<=nlstate;i++)
 3099:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3100:     fprintf(ficresvpl,"\n");
 3101:     free_vector(gp,1,nlstate);
 3102:     free_vector(gm,1,nlstate);
 3103:     free_matrix(gradg,1,npar,1,nlstate);
 3104:     free_matrix(trgradg,1,nlstate,1,npar);
 3105:   } /* End age */
 3106: 
 3107:   free_vector(xp,1,npar);
 3108:   free_matrix(doldm,1,nlstate,1,npar);
 3109:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3110: 
 3111: }
 3112: 
 3113: /************ Variance of one-step probabilities  ******************/
 3114: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3115: {
 3116:   int i, j=0,  i1, k1, l1, t, tj;
 3117:   int k2, l2, j1,  z1;
 3118:   int k=0,l, cptcode;
 3119:   int first=1, first1;
 3120:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3121:   double **dnewm,**doldm;
 3122:   double *xp;
 3123:   double *gp, *gm;
 3124:   double **gradg, **trgradg;
 3125:   double **mu;
 3126:   double age,agelim, cov[NCOVMAX];
 3127:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3128:   int theta;
 3129:   char fileresprob[FILENAMELENGTH];
 3130:   char fileresprobcov[FILENAMELENGTH];
 3131:   char fileresprobcor[FILENAMELENGTH];
 3132: 
 3133:   double ***varpij;
 3134: 
 3135:   strcpy(fileresprob,"prob"); 
 3136:   strcat(fileresprob,fileres);
 3137:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3138:     printf("Problem with resultfile: %s\n", fileresprob);
 3139:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3140:   }
 3141:   strcpy(fileresprobcov,"probcov"); 
 3142:   strcat(fileresprobcov,fileres);
 3143:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3144:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3145:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3146:   }
 3147:   strcpy(fileresprobcor,"probcor"); 
 3148:   strcat(fileresprobcor,fileres);
 3149:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3150:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3151:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3152:   }
 3153:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3154:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3155:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3156:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3157:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3158:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3159:   pstamp(ficresprob);
 3160:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3161:   fprintf(ficresprob,"# Age");
 3162:   pstamp(ficresprobcov);
 3163:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3164:   fprintf(ficresprobcov,"# Age");
 3165:   pstamp(ficresprobcor);
 3166:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3167:   fprintf(ficresprobcor,"# Age");
 3168: 
 3169: 
 3170:   for(i=1; i<=nlstate;i++)
 3171:     for(j=1; j<=(nlstate+ndeath);j++){
 3172:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3173:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3174:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3175:     }  
 3176:  /* fprintf(ficresprob,"\n");
 3177:   fprintf(ficresprobcov,"\n");
 3178:   fprintf(ficresprobcor,"\n");
 3179:  */
 3180:  xp=vector(1,npar);
 3181:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3182:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3183:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3184:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3185:   first=1;
 3186:   fprintf(ficgp,"\n# Routine varprob");
 3187:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3188:   fprintf(fichtm,"\n");
 3189: 
 3190:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3191:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3192:   file %s<br>\n",optionfilehtmcov);
 3193:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3194: and drawn. It helps understanding how is the covariance between two incidences.\
 3195:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3196:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3197: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3198: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3199: standard deviations wide on each axis. <br>\
 3200:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3201:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3202: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3203: 
 3204:   cov[1]=1;
 3205:   tj=cptcoveff;
 3206:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3207:   j1=0;
 3208:   for(t=1; t<=tj;t++){
 3209:     for(i1=1; i1<=ncodemax[t];i1++){ 
 3210:       j1++;
 3211:       if  (cptcovn>0) {
 3212: 	fprintf(ficresprob, "\n#********** Variable "); 
 3213: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3214: 	fprintf(ficresprob, "**********\n#\n");
 3215: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3216: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3217: 	fprintf(ficresprobcov, "**********\n#\n");
 3218: 	
 3219: 	fprintf(ficgp, "\n#********** Variable "); 
 3220: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3221: 	fprintf(ficgp, "**********\n#\n");
 3222: 	
 3223: 	
 3224: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3225: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3226: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3227: 	
 3228: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3229: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3230: 	fprintf(ficresprobcor, "**********\n#");    
 3231:       }
 3232:       
 3233:       for (age=bage; age<=fage; age ++){ 
 3234: 	cov[2]=age;
 3235: 	for (k=1; k<=cptcovn;k++) {
 3236: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 3237: 	}
 3238: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3239: 	for (k=1; k<=cptcovprod;k++)
 3240: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3241: 	
 3242: 	gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3243: 	trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3244: 	gp=vector(1,(nlstate)*(nlstate+ndeath));
 3245: 	gm=vector(1,(nlstate)*(nlstate+ndeath));
 3246:     
 3247: 	for(theta=1; theta <=npar; theta++){
 3248: 	  for(i=1; i<=npar; i++)
 3249: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3250: 	  
 3251: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3252: 	  
 3253: 	  k=0;
 3254: 	  for(i=1; i<= (nlstate); i++){
 3255: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3256: 	      k=k+1;
 3257: 	      gp[k]=pmmij[i][j];
 3258: 	    }
 3259: 	  }
 3260: 	  
 3261: 	  for(i=1; i<=npar; i++)
 3262: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3263:     
 3264: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3265: 	  k=0;
 3266: 	  for(i=1; i<=(nlstate); i++){
 3267: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3268: 	      k=k+1;
 3269: 	      gm[k]=pmmij[i][j];
 3270: 	    }
 3271: 	  }
 3272:      
 3273: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3274: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3275: 	}
 3276: 
 3277: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3278: 	  for(theta=1; theta <=npar; theta++)
 3279: 	    trgradg[j][theta]=gradg[theta][j];
 3280: 	
 3281: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3282: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3283: 	free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 3284: 	free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 3285: 	free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3286: 	free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3287: 
 3288: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3289: 	
 3290: 	k=0;
 3291: 	for(i=1; i<=(nlstate); i++){
 3292: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3293: 	    k=k+1;
 3294: 	    mu[k][(int) age]=pmmij[i][j];
 3295: 	  }
 3296: 	}
 3297:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3298: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3299: 	    varpij[i][j][(int)age] = doldm[i][j];
 3300: 
 3301: 	/*printf("\n%d ",(int)age);
 3302: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3303: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3304: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3305: 	  }*/
 3306: 
 3307: 	fprintf(ficresprob,"\n%d ",(int)age);
 3308: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3309: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3310: 
 3311: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3312: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3313: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3314: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3315: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3316: 	}
 3317: 	i=0;
 3318: 	for (k=1; k<=(nlstate);k++){
 3319:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3320:  	    i=i++;
 3321: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3322: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3323: 	    for (j=1; j<=i;j++){
 3324: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3325: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3326: 	    }
 3327: 	  }
 3328: 	}/* end of loop for state */
 3329:       } /* end of loop for age */
 3330: 
 3331:       /* Confidence intervalle of pij  */
 3332:       /*
 3333: 	fprintf(ficgp,"\nset noparametric;unset label");
 3334: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3335: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3336: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3337: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3338: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3339: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3340:       */
 3341: 
 3342:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3343:       first1=1;
 3344:       for (k2=1; k2<=(nlstate);k2++){
 3345: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3346: 	  if(l2==k2) continue;
 3347: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3348: 	  for (k1=1; k1<=(nlstate);k1++){
 3349: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3350: 	      if(l1==k1) continue;
 3351: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3352: 	      if(i<=j) continue;
 3353: 	      for (age=bage; age<=fage; age ++){ 
 3354: 		if ((int)age %5==0){
 3355: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3356: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3357: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3358: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3359: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3360: 		  c12=cv12/sqrt(v1*v2);
 3361: 		  /* Computing eigen value of matrix of covariance */
 3362: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3363: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3364: 		  /* Eigen vectors */
 3365: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3366: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3367: 		  v21=(lc1-v1)/cv12*v11;
 3368: 		  v12=-v21;
 3369: 		  v22=v11;
 3370: 		  tnalp=v21/v11;
 3371: 		  if(first1==1){
 3372: 		    first1=0;
 3373: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3374: 		  }
 3375: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3376: 		  /*printf(fignu*/
 3377: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3378: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3379: 		  if(first==1){
 3380: 		    first=0;
 3381:  		    fprintf(ficgp,"\nset parametric;unset label");
 3382: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3383: 		    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3384: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3385:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3386: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3387: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3388: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3389: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3390: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3391: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3392: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3393: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3394: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3395: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3396: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3397: 		  }else{
 3398: 		    first=0;
 3399: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3400: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3401: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3402: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3403: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3404: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3405: 		  }/* if first */
 3406: 		} /* age mod 5 */
 3407: 	      } /* end loop age */
 3408: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3409: 	      first=1;
 3410: 	    } /*l12 */
 3411: 	  } /* k12 */
 3412: 	} /*l1 */
 3413:       }/* k1 */
 3414:     } /* loop covariates */
 3415:   }
 3416:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3417:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3418:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3419:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 3420:   free_vector(xp,1,npar);
 3421:   fclose(ficresprob);
 3422:   fclose(ficresprobcov);
 3423:   fclose(ficresprobcor);
 3424:   fflush(ficgp);
 3425:   fflush(fichtmcov);
 3426: }
 3427: 
 3428: 
 3429: /******************* Printing html file ***********/
 3430: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3431: 		  int lastpass, int stepm, int weightopt, char model[],\
 3432: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3433: 		  int popforecast, int estepm ,\
 3434: 		  double jprev1, double mprev1,double anprev1, \
 3435: 		  double jprev2, double mprev2,double anprev2){
 3436:   int jj1, k1, i1, cpt;
 3437: 
 3438:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 3439:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 3440: </ul>");
 3441:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 3442:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 3443: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 3444:    fprintf(fichtm,"\
 3445:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 3446: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 3447:    fprintf(fichtm,"\
 3448:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 3449: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 3450:    fprintf(fichtm,"\
 3451:  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
 3452:    <a href=\"%s\">%s</a> <br>\n</li>",
 3453: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3454: 
 3455: 
 3456: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3457: 
 3458:  m=cptcoveff;
 3459:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3460: 
 3461:  jj1=0;
 3462:  for(k1=1; k1<=m;k1++){
 3463:    for(i1=1; i1<=ncodemax[k1];i1++){
 3464:      jj1++;
 3465:      if (cptcovn > 0) {
 3466:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3467:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3468: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3469:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3470:      }
 3471:      /* Pij */
 3472:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
 3473: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3474:      /* Quasi-incidences */
 3475:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3476:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
 3477: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3478:        /* Period (stable) prevalence in each health state */
 3479:        for(cpt=1; cpt<nlstate;cpt++){
 3480: 	 fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
 3481: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3482:        }
 3483:      for(cpt=1; cpt<=nlstate;cpt++) {
 3484:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 3485: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3486:      }
 3487:    } /* end i1 */
 3488:  }/* End k1 */
 3489:  fprintf(fichtm,"</ul>");
 3490: 
 3491: 
 3492:  fprintf(fichtm,"\
 3493: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 3494:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 3495: 
 3496:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3497: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 3498:  fprintf(fichtm,"\
 3499:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3500: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 3501: 
 3502:  fprintf(fichtm,"\
 3503:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3504: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 3505:  fprintf(fichtm,"\
 3506:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 3507:    <a href=\"%s\">%s</a> <br>\n</li>",
 3508: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 3509:  fprintf(fichtm,"\
 3510:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 3511:    <a href=\"%s\">%s</a> <br>\n</li>",
 3512: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 3513:  fprintf(fichtm,"\
 3514:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 3515: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 3516:  fprintf(fichtm,"\
 3517:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
 3518: 	 subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 3519:  fprintf(fichtm,"\
 3520:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 3521: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 3522: 
 3523: /*  if(popforecast==1) fprintf(fichtm,"\n */
 3524: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 3525: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 3526: /* 	<br>",fileres,fileres,fileres,fileres); */
 3527: /*  else  */
 3528: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 3529:  fflush(fichtm);
 3530:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 3531: 
 3532:  m=cptcoveff;
 3533:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3534: 
 3535:  jj1=0;
 3536:  for(k1=1; k1<=m;k1++){
 3537:    for(i1=1; i1<=ncodemax[k1];i1++){
 3538:      jj1++;
 3539:      if (cptcovn > 0) {
 3540:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3541:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3542: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3543:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3544:      }
 3545:      for(cpt=1; cpt<=nlstate;cpt++) {
 3546:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 3547: prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
 3548: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 3549:      }
 3550:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 3551: health expectancies in states (1) and (2): %s%d.png<br>\
 3552: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 3553:    } /* end i1 */
 3554:  }/* End k1 */
 3555:  fprintf(fichtm,"</ul>");
 3556:  fflush(fichtm);
 3557: }
 3558: 
 3559: /******************* Gnuplot file **************/
 3560: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3561: 
 3562:   char dirfileres[132],optfileres[132];
 3563:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 3564:   int ng;
 3565: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 3566: /*     printf("Problem with file %s",optionfilegnuplot); */
 3567: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 3568: /*   } */
 3569: 
 3570:   /*#ifdef windows */
 3571:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 3572:     /*#endif */
 3573:   m=pow(2,cptcoveff);
 3574: 
 3575:   strcpy(dirfileres,optionfilefiname);
 3576:   strcpy(optfileres,"vpl");
 3577:  /* 1eme*/
 3578:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 3579:    for (k1=1; k1<= m ; k1 ++) {
 3580:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 3581:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 3582:      fprintf(ficgp,"set xlabel \"Age\" \n\
 3583: set ylabel \"Probability\" \n\
 3584: set ter png small\n\
 3585: set size 0.65,0.65\n\
 3586: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 3587: 
 3588:      for (i=1; i<= nlstate ; i ++) {
 3589:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3590:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3591:      }
 3592:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 3593:      for (i=1; i<= nlstate ; i ++) {
 3594:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3595:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3596:      } 
 3597:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 3598:      for (i=1; i<= nlstate ; i ++) {
 3599:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3600:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3601:      }  
 3602:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 3603:    }
 3604:   }
 3605:   /*2 eme*/
 3606:   
 3607:   for (k1=1; k1<= m ; k1 ++) { 
 3608:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 3609:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 3610:     
 3611:     for (i=1; i<= nlstate+1 ; i ++) {
 3612:       k=2*i;
 3613:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3614:       for (j=1; j<= nlstate+1 ; j ++) {
 3615: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3616: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3617:       }   
 3618:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 3619:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 3620:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3621:       for (j=1; j<= nlstate+1 ; j ++) {
 3622: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3623: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3624:       }   
 3625:       fprintf(ficgp,"\" t\"\" w l 0,");
 3626:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3627:       for (j=1; j<= nlstate+1 ; j ++) {
 3628: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3629: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3630:       }   
 3631:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 3632:       else fprintf(ficgp,"\" t\"\" w l 0,");
 3633:     }
 3634:   }
 3635:   
 3636:   /*3eme*/
 3637:   
 3638:   for (k1=1; k1<= m ; k1 ++) { 
 3639:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 3640:       /*       k=2+nlstate*(2*cpt-2); */
 3641:       k=2+(nlstate+1)*(cpt-1);
 3642:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 3643:       fprintf(ficgp,"set ter png small\n\
 3644: set size 0.65,0.65\n\
 3645: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 3646:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3647: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3648: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3649: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3650: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3651: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3652: 	
 3653:       */
 3654:       for (i=1; i< nlstate ; i ++) {
 3655: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 3656: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 3657: 	
 3658:       } 
 3659:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 3660:     }
 3661:   }
 3662:   
 3663:   /* CV preval stable (period) */
 3664:   for (k1=1; k1<= m ; k1 ++) { 
 3665:     for (cpt=1; cpt<=nlstate ; cpt ++) {
 3666:       k=3;
 3667:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 3668:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 3669: set ter png small\nset size 0.65,0.65\n\
 3670: unset log y\n\
 3671: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 3672:       
 3673:       for (i=1; i< nlstate ; i ++)
 3674: 	fprintf(ficgp,"+$%d",k+i+1);
 3675:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 3676:       
 3677:       l=3+(nlstate+ndeath)*cpt;
 3678:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 3679:       for (i=1; i< nlstate ; i ++) {
 3680: 	l=3+(nlstate+ndeath)*cpt;
 3681: 	fprintf(ficgp,"+$%d",l+i+1);
 3682:       }
 3683:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 3684:     } 
 3685:   }  
 3686:   
 3687:   /* proba elementaires */
 3688:   for(i=1,jk=1; i <=nlstate; i++){
 3689:     for(k=1; k <=(nlstate+ndeath); k++){
 3690:       if (k != i) {
 3691: 	for(j=1; j <=ncovmodel; j++){
 3692: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 3693: 	  jk++; 
 3694: 	  fprintf(ficgp,"\n");
 3695: 	}
 3696:       }
 3697:     }
 3698:    }
 3699: 
 3700:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 3701:      for(jk=1; jk <=m; jk++) {
 3702:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 3703:        if (ng==2)
 3704: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 3705:        else
 3706: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 3707:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 3708:        i=1;
 3709:        for(k2=1; k2<=nlstate; k2++) {
 3710: 	 k3=i;
 3711: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 3712: 	   if (k != k2){
 3713: 	     if(ng==2)
 3714: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 3715: 	     else
 3716: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 3717: 	     ij=1;
 3718: 	     for(j=3; j <=ncovmodel; j++) {
 3719: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3720: 		 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3721: 		 ij++;
 3722: 	       }
 3723: 	       else
 3724: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3725: 	     }
 3726: 	     fprintf(ficgp,")/(1");
 3727: 	     
 3728: 	     for(k1=1; k1 <=nlstate; k1++){   
 3729: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 3730: 	       ij=1;
 3731: 	       for(j=3; j <=ncovmodel; j++){
 3732: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3733: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3734: 		   ij++;
 3735: 		 }
 3736: 		 else
 3737: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3738: 	       }
 3739: 	       fprintf(ficgp,")");
 3740: 	     }
 3741: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 3742: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 3743: 	     i=i+ncovmodel;
 3744: 	   }
 3745: 	 } /* end k */
 3746:        } /* end k2 */
 3747:      } /* end jk */
 3748:    } /* end ng */
 3749:    fflush(ficgp); 
 3750: }  /* end gnuplot */
 3751: 
 3752: 
 3753: /*************** Moving average **************/
 3754: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 3755: 
 3756:   int i, cpt, cptcod;
 3757:   int modcovmax =1;
 3758:   int mobilavrange, mob;
 3759:   double age;
 3760: 
 3761:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 3762: 			   a covariate has 2 modalities */
 3763:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 3764: 
 3765:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 3766:     if(mobilav==1) mobilavrange=5; /* default */
 3767:     else mobilavrange=mobilav;
 3768:     for (age=bage; age<=fage; age++)
 3769:       for (i=1; i<=nlstate;i++)
 3770: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 3771: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 3772:     /* We keep the original values on the extreme ages bage, fage and for 
 3773:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 3774:        we use a 5 terms etc. until the borders are no more concerned. 
 3775:     */ 
 3776:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 3777:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 3778: 	for (i=1; i<=nlstate;i++){
 3779: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 3780: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 3781: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 3782: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 3783: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 3784: 	      }
 3785: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 3786: 	  }
 3787: 	}
 3788:       }/* end age */
 3789:     }/* end mob */
 3790:   }else return -1;
 3791:   return 0;
 3792: }/* End movingaverage */
 3793: 
 3794: 
 3795: /************** Forecasting ******************/
 3796: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 3797:   /* proj1, year, month, day of starting projection 
 3798:      agemin, agemax range of age
 3799:      dateprev1 dateprev2 range of dates during which prevalence is computed
 3800:      anproj2 year of en of projection (same day and month as proj1).
 3801:   */
 3802:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 3803:   int *popage;
 3804:   double agec; /* generic age */
 3805:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 3806:   double *popeffectif,*popcount;
 3807:   double ***p3mat;
 3808:   double ***mobaverage;
 3809:   char fileresf[FILENAMELENGTH];
 3810: 
 3811:   agelim=AGESUP;
 3812:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3813:  
 3814:   strcpy(fileresf,"f"); 
 3815:   strcat(fileresf,fileres);
 3816:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 3817:     printf("Problem with forecast resultfile: %s\n", fileresf);
 3818:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 3819:   }
 3820:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 3821:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 3822: 
 3823:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3824: 
 3825:   if (mobilav!=0) {
 3826:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3827:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3828:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3829:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3830:     }
 3831:   }
 3832: 
 3833:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3834:   if (stepm<=12) stepsize=1;
 3835:   if(estepm < stepm){
 3836:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3837:   }
 3838:   else  hstepm=estepm;   
 3839: 
 3840:   hstepm=hstepm/stepm; 
 3841:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 3842:                                fractional in yp1 */
 3843:   anprojmean=yp;
 3844:   yp2=modf((yp1*12),&yp);
 3845:   mprojmean=yp;
 3846:   yp1=modf((yp2*30.5),&yp);
 3847:   jprojmean=yp;
 3848:   if(jprojmean==0) jprojmean=1;
 3849:   if(mprojmean==0) jprojmean=1;
 3850: 
 3851:   i1=cptcoveff;
 3852:   if (cptcovn < 1){i1=1;}
 3853:   
 3854:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 3855:   
 3856:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 3857: 
 3858: /* 	      if (h==(int)(YEARM*yearp)){ */
 3859:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 3860:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3861:       k=k+1;
 3862:       fprintf(ficresf,"\n#******");
 3863:       for(j=1;j<=cptcoveff;j++) {
 3864: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3865:       }
 3866:       fprintf(ficresf,"******\n");
 3867:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 3868:       for(j=1; j<=nlstate+ndeath;j++){ 
 3869: 	for(i=1; i<=nlstate;i++) 	      
 3870:           fprintf(ficresf," p%d%d",i,j);
 3871: 	fprintf(ficresf," p.%d",j);
 3872:       }
 3873:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 3874: 	fprintf(ficresf,"\n");
 3875: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 3876: 
 3877:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 3878: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 3879: 	  nhstepm = nhstepm/hstepm; 
 3880: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3881: 	  oldm=oldms;savm=savms;
 3882: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3883: 	
 3884: 	  for (h=0; h<=nhstepm; h++){
 3885: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 3886:               fprintf(ficresf,"\n");
 3887:               for(j=1;j<=cptcoveff;j++) 
 3888:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3889: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 3890: 	    } 
 3891: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3892: 	      ppij=0.;
 3893: 	      for(i=1; i<=nlstate;i++) {
 3894: 		if (mobilav==1) 
 3895: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 3896: 		else {
 3897: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 3898: 		}
 3899: 		if (h*hstepm/YEARM*stepm== yearp) {
 3900: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 3901: 		}
 3902: 	      } /* end i */
 3903: 	      if (h*hstepm/YEARM*stepm==yearp) {
 3904: 		fprintf(ficresf," %.3f", ppij);
 3905: 	      }
 3906: 	    }/* end j */
 3907: 	  } /* end h */
 3908: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3909: 	} /* end agec */
 3910:       } /* end yearp */
 3911:     } /* end cptcod */
 3912:   } /* end  cptcov */
 3913:        
 3914:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3915: 
 3916:   fclose(ficresf);
 3917: }
 3918: 
 3919: /************** Forecasting *****not tested NB*************/
 3920: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 3921:   
 3922:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 3923:   int *popage;
 3924:   double calagedatem, agelim, kk1, kk2;
 3925:   double *popeffectif,*popcount;
 3926:   double ***p3mat,***tabpop,***tabpopprev;
 3927:   double ***mobaverage;
 3928:   char filerespop[FILENAMELENGTH];
 3929: 
 3930:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3931:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3932:   agelim=AGESUP;
 3933:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 3934:   
 3935:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3936:   
 3937:   
 3938:   strcpy(filerespop,"pop"); 
 3939:   strcat(filerespop,fileres);
 3940:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 3941:     printf("Problem with forecast resultfile: %s\n", filerespop);
 3942:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 3943:   }
 3944:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 3945:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 3946: 
 3947:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3948: 
 3949:   if (mobilav!=0) {
 3950:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3951:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3952:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3953:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3954:     }
 3955:   }
 3956: 
 3957:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3958:   if (stepm<=12) stepsize=1;
 3959:   
 3960:   agelim=AGESUP;
 3961:   
 3962:   hstepm=1;
 3963:   hstepm=hstepm/stepm; 
 3964:   
 3965:   if (popforecast==1) {
 3966:     if((ficpop=fopen(popfile,"r"))==NULL) {
 3967:       printf("Problem with population file : %s\n",popfile);exit(0);
 3968:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 3969:     } 
 3970:     popage=ivector(0,AGESUP);
 3971:     popeffectif=vector(0,AGESUP);
 3972:     popcount=vector(0,AGESUP);
 3973:     
 3974:     i=1;   
 3975:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 3976:    
 3977:     imx=i;
 3978:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 3979:   }
 3980: 
 3981:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 3982:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3983:       k=k+1;
 3984:       fprintf(ficrespop,"\n#******");
 3985:       for(j=1;j<=cptcoveff;j++) {
 3986: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3987:       }
 3988:       fprintf(ficrespop,"******\n");
 3989:       fprintf(ficrespop,"# Age");
 3990:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 3991:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 3992:       
 3993:       for (cpt=0; cpt<=0;cpt++) { 
 3994: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3995: 	
 3996:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3997: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3998: 	  nhstepm = nhstepm/hstepm; 
 3999: 	  
 4000: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4001: 	  oldm=oldms;savm=savms;
 4002: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4003: 	
 4004: 	  for (h=0; h<=nhstepm; h++){
 4005: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4006: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4007: 	    } 
 4008: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4009: 	      kk1=0.;kk2=0;
 4010: 	      for(i=1; i<=nlstate;i++) {	      
 4011: 		if (mobilav==1) 
 4012: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4013: 		else {
 4014: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4015: 		}
 4016: 	      }
 4017: 	      if (h==(int)(calagedatem+12*cpt)){
 4018: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4019: 		  /*fprintf(ficrespop," %.3f", kk1);
 4020: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4021: 	      }
 4022: 	    }
 4023: 	    for(i=1; i<=nlstate;i++){
 4024: 	      kk1=0.;
 4025: 		for(j=1; j<=nlstate;j++){
 4026: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4027: 		}
 4028: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4029: 	    }
 4030: 
 4031: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4032: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4033: 	  }
 4034: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4035: 	}
 4036:       }
 4037:  
 4038:   /******/
 4039: 
 4040:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4041: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4042: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4043: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4044: 	  nhstepm = nhstepm/hstepm; 
 4045: 	  
 4046: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4047: 	  oldm=oldms;savm=savms;
 4048: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4049: 	  for (h=0; h<=nhstepm; h++){
 4050: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4051: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4052: 	    } 
 4053: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4054: 	      kk1=0.;kk2=0;
 4055: 	      for(i=1; i<=nlstate;i++) {	      
 4056: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4057: 	      }
 4058: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4059: 	    }
 4060: 	  }
 4061: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4062: 	}
 4063:       }
 4064:    } 
 4065:   }
 4066:  
 4067:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4068: 
 4069:   if (popforecast==1) {
 4070:     free_ivector(popage,0,AGESUP);
 4071:     free_vector(popeffectif,0,AGESUP);
 4072:     free_vector(popcount,0,AGESUP);
 4073:   }
 4074:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4075:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4076:   fclose(ficrespop);
 4077: } /* End of popforecast */
 4078: 
 4079: int fileappend(FILE *fichier, char *optionfich)
 4080: {
 4081:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4082:     printf("Problem with file: %s\n", optionfich);
 4083:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4084:     return (0);
 4085:   }
 4086:   fflush(fichier);
 4087:   return (1);
 4088: }
 4089: 
 4090: 
 4091: /**************** function prwizard **********************/
 4092: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4093: {
 4094: 
 4095:   /* Wizard to print covariance matrix template */
 4096: 
 4097:   char ca[32], cb[32], cc[32];
 4098:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 4099:   int numlinepar;
 4100: 
 4101:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4102:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4103:   for(i=1; i <=nlstate; i++){
 4104:     jj=0;
 4105:     for(j=1; j <=nlstate+ndeath; j++){
 4106:       if(j==i) continue;
 4107:       jj++;
 4108:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4109:       printf("%1d%1d",i,j);
 4110:       fprintf(ficparo,"%1d%1d",i,j);
 4111:       for(k=1; k<=ncovmodel;k++){
 4112: 	/* 	  printf(" %lf",param[i][j][k]); */
 4113: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4114: 	printf(" 0.");
 4115: 	fprintf(ficparo," 0.");
 4116:       }
 4117:       printf("\n");
 4118:       fprintf(ficparo,"\n");
 4119:     }
 4120:   }
 4121:   printf("# Scales (for hessian or gradient estimation)\n");
 4122:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4123:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4124:   for(i=1; i <=nlstate; i++){
 4125:     jj=0;
 4126:     for(j=1; j <=nlstate+ndeath; j++){
 4127:       if(j==i) continue;
 4128:       jj++;
 4129:       fprintf(ficparo,"%1d%1d",i,j);
 4130:       printf("%1d%1d",i,j);
 4131:       fflush(stdout);
 4132:       for(k=1; k<=ncovmodel;k++){
 4133: 	/* 	printf(" %le",delti3[i][j][k]); */
 4134: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4135: 	printf(" 0.");
 4136: 	fprintf(ficparo," 0.");
 4137:       }
 4138:       numlinepar++;
 4139:       printf("\n");
 4140:       fprintf(ficparo,"\n");
 4141:     }
 4142:   }
 4143:   printf("# Covariance matrix\n");
 4144: /* # 121 Var(a12)\n\ */
 4145: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4146: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4147: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4148: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4149: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4150: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4151: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4152:   fflush(stdout);
 4153:   fprintf(ficparo,"# Covariance matrix\n");
 4154:   /* # 121 Var(a12)\n\ */
 4155:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4156:   /* #   ...\n\ */
 4157:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4158:   
 4159:   for(itimes=1;itimes<=2;itimes++){
 4160:     jj=0;
 4161:     for(i=1; i <=nlstate; i++){
 4162:       for(j=1; j <=nlstate+ndeath; j++){
 4163: 	if(j==i) continue;
 4164: 	for(k=1; k<=ncovmodel;k++){
 4165: 	  jj++;
 4166: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4167: 	  if(itimes==1){
 4168: 	    printf("#%1d%1d%d",i,j,k);
 4169: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4170: 	  }else{
 4171: 	    printf("%1d%1d%d",i,j,k);
 4172: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4173: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4174: 	  }
 4175: 	  ll=0;
 4176: 	  for(li=1;li <=nlstate; li++){
 4177: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 4178: 	      if(lj==li) continue;
 4179: 	      for(lk=1;lk<=ncovmodel;lk++){
 4180: 		ll++;
 4181: 		if(ll<=jj){
 4182: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 4183: 		  if(ll<jj){
 4184: 		    if(itimes==1){
 4185: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4186: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4187: 		    }else{
 4188: 		      printf(" 0.");
 4189: 		      fprintf(ficparo," 0.");
 4190: 		    }
 4191: 		  }else{
 4192: 		    if(itimes==1){
 4193: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4194: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4195: 		    }else{
 4196: 		      printf(" 0.");
 4197: 		      fprintf(ficparo," 0.");
 4198: 		    }
 4199: 		  }
 4200: 		}
 4201: 	      } /* end lk */
 4202: 	    } /* end lj */
 4203: 	  } /* end li */
 4204: 	  printf("\n");
 4205: 	  fprintf(ficparo,"\n");
 4206: 	  numlinepar++;
 4207: 	} /* end k*/
 4208:       } /*end j */
 4209:     } /* end i */
 4210:   } /* end itimes */
 4211: 
 4212: } /* end of prwizard */
 4213: /******************* Gompertz Likelihood ******************************/
 4214: double gompertz(double x[])
 4215: { 
 4216:   double A,B,L=0.0,sump=0.,num=0.;
 4217:   int i,n=0; /* n is the size of the sample */
 4218: 
 4219:   for (i=0;i<=imx-1 ; i++) {
 4220:     sump=sump+weight[i];
 4221:     /*    sump=sump+1;*/
 4222:     num=num+1;
 4223:   }
 4224:  
 4225:  
 4226:   /* for (i=0; i<=imx; i++) 
 4227:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4228: 
 4229:   for (i=1;i<=imx ; i++)
 4230:     {
 4231:       if (cens[i] == 1 && wav[i]>1)
 4232: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4233:       
 4234:       if (cens[i] == 0 && wav[i]>1)
 4235: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4236: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4237:       
 4238:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4239:       if (wav[i] > 1 ) { /* ??? */
 4240: 	L=L+A*weight[i];
 4241: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4242:       }
 4243:     }
 4244: 
 4245:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4246:  
 4247:   return -2*L*num/sump;
 4248: }
 4249: 
 4250: /******************* Printing html file ***********/
 4251: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 4252: 		  int lastpass, int stepm, int weightopt, char model[],\
 4253: 		  int imx,  double p[],double **matcov,double agemortsup){
 4254:   int i,k;
 4255: 
 4256:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 4257:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 4258:   for (i=1;i<=2;i++) 
 4259:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 4260:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 4261:   fprintf(fichtm,"</ul>");
 4262: 
 4263: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 4264: 
 4265:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 4266: 
 4267:  for (k=agegomp;k<(agemortsup-2);k++) 
 4268:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 4269: 
 4270:  
 4271:   fflush(fichtm);
 4272: }
 4273: 
 4274: /******************* Gnuplot file **************/
 4275: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4276: 
 4277:   char dirfileres[132],optfileres[132];
 4278:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 4279:   int ng;
 4280: 
 4281: 
 4282:   /*#ifdef windows */
 4283:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4284:     /*#endif */
 4285: 
 4286: 
 4287:   strcpy(dirfileres,optionfilefiname);
 4288:   strcpy(optfileres,"vpl");
 4289:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 4290:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 4291:   fprintf(ficgp, "set ter png small\n set log y\n"); 
 4292:   fprintf(ficgp, "set size 0.65,0.65\n");
 4293:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 4294: 
 4295: } 
 4296: 
 4297: 
 4298: 
 4299: 
 4300: 
 4301: /***********************************************/
 4302: /**************** Main Program *****************/
 4303: /***********************************************/
 4304: 
 4305: int main(int argc, char *argv[])
 4306: {
 4307:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 4308:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 4309:   int linei, month, year,iout;
 4310:   int jj, ll, li, lj, lk, imk;
 4311:   int numlinepar=0; /* Current linenumber of parameter file */
 4312:   int itimes;
 4313:   int NDIM=2;
 4314: 
 4315:   char ca[32], cb[32], cc[32];
 4316:   char dummy[]="                         ";
 4317:   /*  FILE *fichtm; *//* Html File */
 4318:   /* FILE *ficgp;*/ /*Gnuplot File */
 4319:   struct stat info;
 4320:   double agedeb, agefin,hf;
 4321:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 4322: 
 4323:   double fret;
 4324:   double **xi,tmp,delta;
 4325: 
 4326:   double dum; /* Dummy variable */
 4327:   double ***p3mat;
 4328:   double ***mobaverage;
 4329:   int *indx;
 4330:   char line[MAXLINE], linepar[MAXLINE];
 4331:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 4332:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 4333:   char **bp, *tok, *val; /* pathtot */
 4334:   int firstobs=1, lastobs=10;
 4335:   int sdeb, sfin; /* Status at beginning and end */
 4336:   int c,  h , cpt,l;
 4337:   int ju,jl, mi;
 4338:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 4339:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
 4340:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 4341:   int mobilav=0,popforecast=0;
 4342:   int hstepm, nhstepm;
 4343:   int agemortsup;
 4344:   float  sumlpop=0.;
 4345:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 4346:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 4347: 
 4348:   double bage, fage, age, agelim, agebase;
 4349:   double ftolpl=FTOL;
 4350:   double **prlim;
 4351:   double *severity;
 4352:   double ***param; /* Matrix of parameters */
 4353:   double  *p;
 4354:   double **matcov; /* Matrix of covariance */
 4355:   double ***delti3; /* Scale */
 4356:   double *delti; /* Scale */
 4357:   double ***eij, ***vareij;
 4358:   double **varpl; /* Variances of prevalence limits by age */
 4359:   double *epj, vepp;
 4360:   double kk1, kk2;
 4361:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 4362:   double **ximort;
 4363:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 4364:   int *dcwave;
 4365: 
 4366:   char z[1]="c", occ;
 4367: 
 4368:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 4369:   char  *strt, strtend[80];
 4370:   char *stratrunc;
 4371:   int lstra;
 4372: 
 4373:   long total_usecs;
 4374:  
 4375: /*   setlocale (LC_ALL, ""); */
 4376: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 4377: /*   textdomain (PACKAGE); */
 4378: /*   setlocale (LC_CTYPE, ""); */
 4379: /*   setlocale (LC_MESSAGES, ""); */
 4380: 
 4381:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 4382:   (void) gettimeofday(&start_time,&tzp);
 4383:   curr_time=start_time;
 4384:   tm = *localtime(&start_time.tv_sec);
 4385:   tmg = *gmtime(&start_time.tv_sec);
 4386:   strcpy(strstart,asctime(&tm));
 4387: 
 4388: /*  printf("Localtime (at start)=%s",strstart); */
 4389: /*  tp.tv_sec = tp.tv_sec +86400; */
 4390: /*  tm = *localtime(&start_time.tv_sec); */
 4391: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 4392: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 4393: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 4394: /*   tp.tv_sec = mktime(&tmg); */
 4395: /*   strt=asctime(&tmg); */
 4396: /*   printf("Time(after) =%s",strstart);  */
 4397: /*  (void) time (&time_value);
 4398: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 4399: *  tm = *localtime(&time_value);
 4400: *  strstart=asctime(&tm);
 4401: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 4402: */
 4403: 
 4404:   nberr=0; /* Number of errors and warnings */
 4405:   nbwarn=0;
 4406:   getcwd(pathcd, size);
 4407: 
 4408:   printf("\n%s\n%s",version,fullversion);
 4409:   if(argc <=1){
 4410:     printf("\nEnter the parameter file name: ");
 4411:     fgets(pathr,FILENAMELENGTH,stdin);
 4412:     i=strlen(pathr);
 4413:     if(pathr[i-1]=='\n')
 4414:       pathr[i-1]='\0';
 4415:    for (tok = pathr; tok != NULL; ){
 4416:       printf("Pathr |%s|\n",pathr);
 4417:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 4418:       printf("val= |%s| pathr=%s\n",val,pathr);
 4419:       strcpy (pathtot, val);
 4420:       if(pathr[0] == '\0') break; /* Dirty */
 4421:     }
 4422:   }
 4423:   else{
 4424:     strcpy(pathtot,argv[1]);
 4425:   }
 4426:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 4427:   /*cygwin_split_path(pathtot,path,optionfile);
 4428:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 4429:   /* cutv(path,optionfile,pathtot,'\\');*/
 4430: 
 4431:   /* Split argv[0], imach program to get pathimach */
 4432:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 4433:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 4434:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 4435:  /*   strcpy(pathimach,argv[0]); */
 4436:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 4437:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 4438:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 4439:   chdir(path); /* Can be a relative path */
 4440:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 4441:     printf("Current directory %s!\n",pathcd);
 4442:   strcpy(command,"mkdir ");
 4443:   strcat(command,optionfilefiname);
 4444:   if((outcmd=system(command)) != 0){
 4445:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 4446:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 4447:     /* fclose(ficlog); */
 4448: /*     exit(1); */
 4449:   }
 4450: /*   if((imk=mkdir(optionfilefiname))<0){ */
 4451: /*     perror("mkdir"); */
 4452: /*   } */
 4453: 
 4454:   /*-------- arguments in the command line --------*/
 4455: 
 4456:   /* Log file */
 4457:   strcat(filelog, optionfilefiname);
 4458:   strcat(filelog,".log");    /* */
 4459:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 4460:     printf("Problem with logfile %s\n",filelog);
 4461:     goto end;
 4462:   }
 4463:   fprintf(ficlog,"Log filename:%s\n",filelog);
 4464:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 4465:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 4466:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 4467:  path=%s \n\
 4468:  optionfile=%s\n\
 4469:  optionfilext=%s\n\
 4470:  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 4471: 
 4472:   printf("Local time (at start):%s",strstart);
 4473:   fprintf(ficlog,"Local time (at start): %s",strstart);
 4474:   fflush(ficlog);
 4475: /*   (void) gettimeofday(&curr_time,&tzp); */
 4476: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 4477: 
 4478:   /* */
 4479:   strcpy(fileres,"r");
 4480:   strcat(fileres, optionfilefiname);
 4481:   strcat(fileres,".txt");    /* Other files have txt extension */
 4482: 
 4483:   /*---------arguments file --------*/
 4484: 
 4485:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 4486:     printf("Problem with optionfile %s\n",optionfile);
 4487:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 4488:     fflush(ficlog);
 4489:     goto end;
 4490:   }
 4491: 
 4492: 
 4493: 
 4494:   strcpy(filereso,"o");
 4495:   strcat(filereso,fileres);
 4496:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 4497:     printf("Problem with Output resultfile: %s\n", filereso);
 4498:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 4499:     fflush(ficlog);
 4500:     goto end;
 4501:   }
 4502: 
 4503:   /* Reads comments: lines beginning with '#' */
 4504:   numlinepar=0;
 4505:   while((c=getc(ficpar))=='#' && c!= EOF){
 4506:     ungetc(c,ficpar);
 4507:     fgets(line, MAXLINE, ficpar);
 4508:     numlinepar++;
 4509:     puts(line);
 4510:     fputs(line,ficparo);
 4511:     fputs(line,ficlog);
 4512:   }
 4513:   ungetc(c,ficpar);
 4514: 
 4515:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 4516:   numlinepar++;
 4517:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 4518:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4519:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4520:   fflush(ficlog);
 4521:   while((c=getc(ficpar))=='#' && c!= EOF){
 4522:     ungetc(c,ficpar);
 4523:     fgets(line, MAXLINE, ficpar);
 4524:     numlinepar++;
 4525:     puts(line);
 4526:     fputs(line,ficparo);
 4527:     fputs(line,ficlog);
 4528:   }
 4529:   ungetc(c,ficpar);
 4530: 
 4531:    
 4532:   covar=matrix(0,NCOVMAX,1,n); 
 4533:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 4534:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 4535: 
 4536:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
 4537:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 4538:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 4539: 
 4540:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4541:   delti=delti3[1][1];
 4542:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 4543:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 4544:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4545:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4546:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4547:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 4548:     fclose (ficparo);
 4549:     fclose (ficlog);
 4550:     exit(0);
 4551:   }
 4552:   else if(mle==-3) {
 4553:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4554:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 4555:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 4556:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4557:     matcov=matrix(1,npar,1,npar);
 4558:   }
 4559:   else{
 4560:     /* Read guess parameters */
 4561:     /* Reads comments: lines beginning with '#' */
 4562:     while((c=getc(ficpar))=='#' && c!= EOF){
 4563:       ungetc(c,ficpar);
 4564:       fgets(line, MAXLINE, ficpar);
 4565:       numlinepar++;
 4566:       puts(line);
 4567:       fputs(line,ficparo);
 4568:       fputs(line,ficlog);
 4569:     }
 4570:     ungetc(c,ficpar);
 4571:     
 4572:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4573:     for(i=1; i <=nlstate; i++){
 4574:       j=0;
 4575:       for(jj=1; jj <=nlstate+ndeath; jj++){
 4576: 	if(jj==i) continue;
 4577: 	j++;
 4578: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 4579: 	if ((i1 != i) && (j1 != j)){
 4580: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4581: 	  exit(1);
 4582: 	}
 4583: 	fprintf(ficparo,"%1d%1d",i1,j1);
 4584: 	if(mle==1)
 4585: 	  printf("%1d%1d",i,j);
 4586: 	fprintf(ficlog,"%1d%1d",i,j);
 4587: 	for(k=1; k<=ncovmodel;k++){
 4588: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 4589: 	  if(mle==1){
 4590: 	    printf(" %lf",param[i][j][k]);
 4591: 	    fprintf(ficlog," %lf",param[i][j][k]);
 4592: 	  }
 4593: 	  else
 4594: 	    fprintf(ficlog," %lf",param[i][j][k]);
 4595: 	  fprintf(ficparo," %lf",param[i][j][k]);
 4596: 	}
 4597: 	fscanf(ficpar,"\n");
 4598: 	numlinepar++;
 4599: 	if(mle==1)
 4600: 	  printf("\n");
 4601: 	fprintf(ficlog,"\n");
 4602: 	fprintf(ficparo,"\n");
 4603:       }
 4604:     }  
 4605:     fflush(ficlog);
 4606: 
 4607:     p=param[1][1];
 4608:     
 4609:     /* Reads comments: lines beginning with '#' */
 4610:     while((c=getc(ficpar))=='#' && c!= EOF){
 4611:       ungetc(c,ficpar);
 4612:       fgets(line, MAXLINE, ficpar);
 4613:       numlinepar++;
 4614:       puts(line);
 4615:       fputs(line,ficparo);
 4616:       fputs(line,ficlog);
 4617:     }
 4618:     ungetc(c,ficpar);
 4619: 
 4620:     for(i=1; i <=nlstate; i++){
 4621:       for(j=1; j <=nlstate+ndeath-1; j++){
 4622: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 4623: 	if ((i1-i)*(j1-j)!=0){
 4624: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4625: 	  exit(1);
 4626: 	}
 4627: 	printf("%1d%1d",i,j);
 4628: 	fprintf(ficparo,"%1d%1d",i1,j1);
 4629: 	fprintf(ficlog,"%1d%1d",i1,j1);
 4630: 	for(k=1; k<=ncovmodel;k++){
 4631: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 4632: 	  printf(" %le",delti3[i][j][k]);
 4633: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 4634: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 4635: 	}
 4636: 	fscanf(ficpar,"\n");
 4637: 	numlinepar++;
 4638: 	printf("\n");
 4639: 	fprintf(ficparo,"\n");
 4640: 	fprintf(ficlog,"\n");
 4641:       }
 4642:     }
 4643:     fflush(ficlog);
 4644: 
 4645:     delti=delti3[1][1];
 4646: 
 4647: 
 4648:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 4649:   
 4650:     /* Reads comments: lines beginning with '#' */
 4651:     while((c=getc(ficpar))=='#' && c!= EOF){
 4652:       ungetc(c,ficpar);
 4653:       fgets(line, MAXLINE, ficpar);
 4654:       numlinepar++;
 4655:       puts(line);
 4656:       fputs(line,ficparo);
 4657:       fputs(line,ficlog);
 4658:     }
 4659:     ungetc(c,ficpar);
 4660:   
 4661:     matcov=matrix(1,npar,1,npar);
 4662:     for(i=1; i <=npar; i++){
 4663:       fscanf(ficpar,"%s",&str);
 4664:       if(mle==1)
 4665: 	printf("%s",str);
 4666:       fprintf(ficlog,"%s",str);
 4667:       fprintf(ficparo,"%s",str);
 4668:       for(j=1; j <=i; j++){
 4669: 	fscanf(ficpar," %le",&matcov[i][j]);
 4670: 	if(mle==1){
 4671: 	  printf(" %.5le",matcov[i][j]);
 4672: 	}
 4673: 	fprintf(ficlog," %.5le",matcov[i][j]);
 4674: 	fprintf(ficparo," %.5le",matcov[i][j]);
 4675:       }
 4676:       fscanf(ficpar,"\n");
 4677:       numlinepar++;
 4678:       if(mle==1)
 4679: 	printf("\n");
 4680:       fprintf(ficlog,"\n");
 4681:       fprintf(ficparo,"\n");
 4682:     }
 4683:     for(i=1; i <=npar; i++)
 4684:       for(j=i+1;j<=npar;j++)
 4685: 	matcov[i][j]=matcov[j][i];
 4686:     
 4687:     if(mle==1)
 4688:       printf("\n");
 4689:     fprintf(ficlog,"\n");
 4690:     
 4691:     fflush(ficlog);
 4692:     
 4693:     /*-------- Rewriting parameter file ----------*/
 4694:     strcpy(rfileres,"r");    /* "Rparameterfile */
 4695:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 4696:     strcat(rfileres,".");    /* */
 4697:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 4698:     if((ficres =fopen(rfileres,"w"))==NULL) {
 4699:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 4700:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 4701:     }
 4702:     fprintf(ficres,"#%s\n",version);
 4703:   }    /* End of mle != -3 */
 4704: 
 4705:   /*-------- data file ----------*/
 4706:   if((fic=fopen(datafile,"r"))==NULL)    {
 4707:     printf("Problem while opening datafile: %s\n", datafile);goto end;
 4708:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
 4709:   }
 4710: 
 4711:   n= lastobs;
 4712:   severity = vector(1,maxwav);
 4713:   outcome=imatrix(1,maxwav+1,1,n);
 4714:   num=lvector(1,n);
 4715:   moisnais=vector(1,n);
 4716:   annais=vector(1,n);
 4717:   moisdc=vector(1,n);
 4718:   andc=vector(1,n);
 4719:   agedc=vector(1,n);
 4720:   cod=ivector(1,n);
 4721:   weight=vector(1,n);
 4722:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 4723:   mint=matrix(1,maxwav,1,n);
 4724:   anint=matrix(1,maxwav,1,n);
 4725:   s=imatrix(1,maxwav+1,1,n);
 4726:   tab=ivector(1,NCOVMAX);
 4727:   ncodemax=ivector(1,8);
 4728: 
 4729:   i=1;
 4730:   linei=0;
 4731:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 4732:     linei=linei+1;
 4733:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 4734:       if(line[j] == '\t')
 4735: 	line[j] = ' ';
 4736:     }
 4737:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 4738:       ;
 4739:     };
 4740:     line[j+1]=0;  /* Trims blanks at end of line */
 4741:     if(line[0]=='#'){
 4742:       fprintf(ficlog,"Comment line\n%s\n",line);
 4743:       printf("Comment line\n%s\n",line);
 4744:       continue;
 4745:     }
 4746: 
 4747:     for (j=maxwav;j>=1;j--){
 4748:       cutv(stra, strb,line,' '); 
 4749:       errno=0;
 4750:       lval=strtol(strb,&endptr,10); 
 4751:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 4752:       if( strb[0]=='\0' || (*endptr != '\0')){
 4753: 	printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 4754: 	exit(1);
 4755:       }
 4756:       s[j][i]=lval;
 4757:       
 4758:       strcpy(line,stra);
 4759:       cutv(stra, strb,line,' ');
 4760:       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4761:       }
 4762:       else  if(iout=sscanf(strb,"%s.") != 0){
 4763: 	month=99;
 4764: 	year=9999;
 4765:       }else{
 4766: 	printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 4767: 	exit(1);
 4768:       }
 4769:       anint[j][i]= (double) year; 
 4770:       mint[j][i]= (double)month; 
 4771:       strcpy(line,stra);
 4772:     } /* ENd Waves */
 4773:     
 4774:     cutv(stra, strb,line,' '); 
 4775:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4776:     }
 4777:     else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 4778:       month=99;
 4779:       year=9999;
 4780:     }else{
 4781:       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 4782:       exit(1);
 4783:     }
 4784:     andc[i]=(double) year; 
 4785:     moisdc[i]=(double) month; 
 4786:     strcpy(line,stra);
 4787:     
 4788:     cutv(stra, strb,line,' '); 
 4789:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4790:     }
 4791:     else  if(iout=sscanf(strb,"%s.") != 0){
 4792:       month=99;
 4793:       year=9999;
 4794:     }else{
 4795:       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
 4796:       exit(1);
 4797:     }
 4798:     annais[i]=(double)(year);
 4799:     moisnais[i]=(double)(month); 
 4800:     strcpy(line,stra);
 4801:     
 4802:     cutv(stra, strb,line,' '); 
 4803:     errno=0;
 4804:     lval=strtol(strb,&endptr,10); 
 4805:     if( strb[0]=='\0' || (*endptr != '\0')){
 4806:       printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
 4807:       exit(1);
 4808:     }
 4809:     weight[i]=(double)(lval); 
 4810:     strcpy(line,stra);
 4811:     
 4812:     for (j=ncovcol;j>=1;j--){
 4813:       cutv(stra, strb,line,' '); 
 4814:       errno=0;
 4815:       lval=strtol(strb,&endptr,10); 
 4816:       if( strb[0]=='\0' || (*endptr != '\0')){
 4817: 	printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
 4818: 	exit(1);
 4819:       }
 4820:       if(lval <-1 || lval >1){
 4821: 	printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
 4822: 	exit(1);
 4823:       }
 4824:       covar[j][i]=(double)(lval);
 4825:       strcpy(line,stra);
 4826:     } 
 4827:     lstra=strlen(stra);
 4828:     
 4829:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 4830:       stratrunc = &(stra[lstra-9]);
 4831:       num[i]=atol(stratrunc);
 4832:     }
 4833:     else
 4834:       num[i]=atol(stra);
 4835:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 4836:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 4837:     
 4838:     i=i+1;
 4839:   } /* End loop reading  data */
 4840:   fclose(fic);
 4841:   /* printf("ii=%d", ij);
 4842:      scanf("%d",i);*/
 4843:   imx=i-1; /* Number of individuals */
 4844: 
 4845:   /* for (i=1; i<=imx; i++){
 4846:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 4847:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 4848:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 4849:     }*/
 4850:    /*  for (i=1; i<=imx; i++){
 4851:      if (s[4][i]==9)  s[4][i]=-1; 
 4852:      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
 4853:   
 4854:   /* for (i=1; i<=imx; i++) */
 4855:  
 4856:    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
 4857:      else weight[i]=1;*/
 4858: 
 4859:   /* Calculation of the number of parameters from char model */
 4860:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 4861:   Tprod=ivector(1,15); 
 4862:   Tvaraff=ivector(1,15); 
 4863:   Tvard=imatrix(1,15,1,2);
 4864:   Tage=ivector(1,15);      
 4865:    
 4866:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 4867:     j=0, j1=0, k1=1, k2=1;
 4868:     j=nbocc(model,'+'); /* j=Number of '+' */
 4869:     j1=nbocc(model,'*'); /* j1=Number of '*' */
 4870:     cptcovn=j+1; 
 4871:     cptcovprod=j1; /*Number of products */
 4872:     
 4873:     strcpy(modelsav,model); 
 4874:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 4875:       printf("Error. Non available option model=%s ",model);
 4876:       fprintf(ficlog,"Error. Non available option model=%s ",model);
 4877:       goto end;
 4878:     }
 4879:     
 4880:     /* This loop fills the array Tvar from the string 'model'.*/
 4881: 
 4882:     for(i=(j+1); i>=1;i--){
 4883:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
 4884:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 4885:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 4886:       /*scanf("%d",i);*/
 4887:       if (strchr(strb,'*')) {  /* Model includes a product */
 4888: 	cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
 4889: 	if (strcmp(strc,"age")==0) { /* Vn*age */
 4890: 	  cptcovprod--;
 4891: 	  cutv(strb,stre,strd,'V');
 4892: 	  Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 4893: 	  cptcovage++;
 4894: 	    Tage[cptcovage]=i;
 4895: 	    /*printf("stre=%s ", stre);*/
 4896: 	}
 4897: 	else if (strcmp(strd,"age")==0) { /* or age*Vn */
 4898: 	  cptcovprod--;
 4899: 	  cutv(strb,stre,strc,'V');
 4900: 	  Tvar[i]=atoi(stre);
 4901: 	  cptcovage++;
 4902: 	  Tage[cptcovage]=i;
 4903: 	}
 4904: 	else {  /* Age is not in the model */
 4905: 	  cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
 4906: 	  Tvar[i]=ncovcol+k1;
 4907: 	  cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 4908: 	  Tprod[k1]=i;
 4909: 	  Tvard[k1][1]=atoi(strc); /* m*/
 4910: 	  Tvard[k1][2]=atoi(stre); /* n */
 4911: 	  Tvar[cptcovn+k2]=Tvard[k1][1];
 4912: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 4913: 	  for (k=1; k<=lastobs;k++) 
 4914: 	    covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 4915: 	  k1++;
 4916: 	  k2=k2+2;
 4917: 	}
 4918:       }
 4919:       else { /* no more sum */
 4920: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 4921:        /*  scanf("%d",i);*/
 4922:       cutv(strd,strc,strb,'V');
 4923:       Tvar[i]=atoi(strc);
 4924:       }
 4925:       strcpy(modelsav,stra);  
 4926:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 4927: 	scanf("%d",i);*/
 4928:     } /* end of loop + */
 4929:   } /* end model */
 4930:   
 4931:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 4932:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 4933: 
 4934:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 4935:   printf("cptcovprod=%d ", cptcovprod);
 4936:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 4937: 
 4938:   scanf("%d ",i);*/
 4939: 
 4940:     /*  if(mle==1){*/
 4941:   if (weightopt != 1) { /* Maximisation without weights*/
 4942:     for(i=1;i<=n;i++) weight[i]=1.0;
 4943:   }
 4944:     /*-calculation of age at interview from date of interview and age at death -*/
 4945:   agev=matrix(1,maxwav,1,imx);
 4946: 
 4947:   for (i=1; i<=imx; i++) {
 4948:     for(m=2; (m<= maxwav); m++) {
 4949:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 4950: 	anint[m][i]=9999;
 4951: 	s[m][i]=-1;
 4952:       }
 4953:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 4954: 	nberr++;
 4955: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4956: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4957: 	s[m][i]=-1;
 4958:       }
 4959:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 4960: 	nberr++;
 4961: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 4962: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 4963: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 4964:       }
 4965:     }
 4966:   }
 4967: 
 4968:   for (i=1; i<=imx; i++)  {
 4969:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 4970:     for(m=firstpass; (m<= lastpass); m++){
 4971:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 4972: 	if (s[m][i] >= nlstate+1) {
 4973: 	  if(agedc[i]>0)
 4974: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 4975: 	      agev[m][i]=agedc[i];
 4976: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 4977: 	    else {
 4978: 	      if ((int)andc[i]!=9999){
 4979: 		nbwarn++;
 4980: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 4981: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 4982: 		agev[m][i]=-1;
 4983: 	      }
 4984: 	    }
 4985: 	}
 4986: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 4987: 				 years but with the precision of a month */
 4988: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 4989: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 4990: 	    agev[m][i]=1;
 4991: 	  else if(agev[m][i] <agemin){ 
 4992: 	    agemin=agev[m][i];
 4993: 	    /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 4994: 	  }
 4995: 	  else if(agev[m][i] >agemax){
 4996: 	    agemax=agev[m][i];
 4997: 	    /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 4998: 	  }
 4999: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5000: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5001: 	}
 5002: 	else { /* =9 */
 5003: 	  agev[m][i]=1;
 5004: 	  s[m][i]=-1;
 5005: 	}
 5006:       }
 5007:       else /*= 0 Unknown */
 5008: 	agev[m][i]=1;
 5009:     }
 5010:     
 5011:   }
 5012:   for (i=1; i<=imx; i++)  {
 5013:     for(m=firstpass; (m<=lastpass); m++){
 5014:       if (s[m][i] > (nlstate+ndeath)) {
 5015: 	nberr++;
 5016: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5017: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5018: 	goto end;
 5019:       }
 5020:     }
 5021:   }
 5022: 
 5023:   /*for (i=1; i<=imx; i++){
 5024:   for (m=firstpass; (m<lastpass); m++){
 5025:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5026: }
 5027: 
 5028: }*/
 5029: 
 5030: 
 5031:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 5032:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
 5033: 
 5034:   agegomp=(int)agemin;
 5035:   free_vector(severity,1,maxwav);
 5036:   free_imatrix(outcome,1,maxwav+1,1,n);
 5037:   free_vector(moisnais,1,n);
 5038:   free_vector(annais,1,n);
 5039:   /* free_matrix(mint,1,maxwav,1,n);
 5040:      free_matrix(anint,1,maxwav,1,n);*/
 5041:   free_vector(moisdc,1,n);
 5042:   free_vector(andc,1,n);
 5043: 
 5044:    
 5045:   wav=ivector(1,imx);
 5046:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 5047:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 5048:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 5049:    
 5050:   /* Concatenates waves */
 5051:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 5052: 
 5053:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 5054: 
 5055:   Tcode=ivector(1,100);
 5056:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 5057:   ncodemax[1]=1;
 5058:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 5059:       
 5060:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
 5061: 				 the estimations*/
 5062:   h=0;
 5063:   m=pow(2,cptcoveff);
 5064:  
 5065:   for(k=1;k<=cptcoveff; k++){
 5066:     for(i=1; i <=(m/pow(2,k));i++){
 5067:       for(j=1; j <= ncodemax[k]; j++){
 5068: 	for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
 5069: 	  h++;
 5070: 	  if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 5071: 	  /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 5072: 	} 
 5073:       }
 5074:     }
 5075:   } 
 5076:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 5077:      codtab[1][2]=1;codtab[2][2]=2; */
 5078:   /* for(i=1; i <=m ;i++){ 
 5079:      for(k=1; k <=cptcovn; k++){
 5080:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 5081:      }
 5082:      printf("\n");
 5083:      }
 5084:      scanf("%d",i);*/
 5085:     
 5086:   /*------------ gnuplot -------------*/
 5087:   strcpy(optionfilegnuplot,optionfilefiname);
 5088:   if(mle==-3)
 5089:     strcat(optionfilegnuplot,"-mort");
 5090:   strcat(optionfilegnuplot,".gp");
 5091: 
 5092:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 5093:     printf("Problem with file %s",optionfilegnuplot);
 5094:   }
 5095:   else{
 5096:     fprintf(ficgp,"\n# %s\n", version); 
 5097:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 5098:     fprintf(ficgp,"set missing 'NaNq'\n");
 5099:   }
 5100:   /*  fclose(ficgp);*/
 5101:   /*--------- index.htm --------*/
 5102: 
 5103:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 5104:   if(mle==-3)
 5105:     strcat(optionfilehtm,"-mort");
 5106:   strcat(optionfilehtm,".htm");
 5107:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 5108:     printf("Problem with %s \n",optionfilehtm), exit(0);
 5109:   }
 5110: 
 5111:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 5112:   strcat(optionfilehtmcov,"-cov.htm");
 5113:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 5114:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 5115:   }
 5116:   else{
 5117:   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
 5118: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 5119: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 5120: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 5121:   }
 5122: 
 5123:   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
 5124: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 5125: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 5126: \n\
 5127: <hr  size=\"2\" color=\"#EC5E5E\">\
 5128:  <ul><li><h4>Parameter files</h4>\n\
 5129:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 5130:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 5131:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 5132:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 5133:  - Date and time at start: %s</ul>\n",\
 5134: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 5135: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 5136: 	  fileres,fileres,\
 5137: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 5138:   fflush(fichtm);
 5139: 
 5140:   strcpy(pathr,path);
 5141:   strcat(pathr,optionfilefiname);
 5142:   chdir(optionfilefiname); /* Move to directory named optionfile */
 5143:   
 5144:   /* Calculates basic frequencies. Computes observed prevalence at single age
 5145:      and prints on file fileres'p'. */
 5146:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 5147: 
 5148:   fprintf(fichtm,"\n");
 5149:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 5150: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 5151: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 5152: 	  imx,agemin,agemax,jmin,jmax,jmean);
 5153:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5154:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5155:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5156:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5157:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 5158:     
 5159:    
 5160:   /* For Powell, parameters are in a vector p[] starting at p[1]
 5161:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 5162:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 5163: 
 5164:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 5165: 
 5166:   if (mle==-3){
 5167:     ximort=matrix(1,NDIM,1,NDIM);
 5168:     cens=ivector(1,n);
 5169:     ageexmed=vector(1,n);
 5170:     agecens=vector(1,n);
 5171:     dcwave=ivector(1,n);
 5172:  
 5173:     for (i=1; i<=imx; i++){
 5174:       dcwave[i]=-1;
 5175:       for (m=firstpass; m<=lastpass; m++)
 5176: 	if (s[m][i]>nlstate) {
 5177: 	  dcwave[i]=m;
 5178: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 5179: 	  break;
 5180: 	}
 5181:     }
 5182: 
 5183:     for (i=1; i<=imx; i++) {
 5184:       if (wav[i]>0){
 5185: 	ageexmed[i]=agev[mw[1][i]][i];
 5186: 	j=wav[i];
 5187: 	agecens[i]=1.; 
 5188: 
 5189: 	if (ageexmed[i]> 1 && wav[i] > 0){
 5190: 	  agecens[i]=agev[mw[j][i]][i];
 5191: 	  cens[i]= 1;
 5192: 	}else if (ageexmed[i]< 1) 
 5193: 	  cens[i]= -1;
 5194: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 5195: 	  cens[i]=0 ;
 5196:       }
 5197:       else cens[i]=-1;
 5198:     }
 5199:     
 5200:     for (i=1;i<=NDIM;i++) {
 5201:       for (j=1;j<=NDIM;j++)
 5202: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 5203:     }
 5204:     
 5205:     p[1]=0.0268; p[NDIM]=0.083;
 5206:     /*printf("%lf %lf", p[1], p[2]);*/
 5207:     
 5208:     
 5209:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 5210:     strcpy(filerespow,"pow-mort"); 
 5211:     strcat(filerespow,fileres);
 5212:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 5213:       printf("Problem with resultfile: %s\n", filerespow);
 5214:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 5215:     }
 5216:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 5217:     /*  for (i=1;i<=nlstate;i++)
 5218: 	for(j=1;j<=nlstate+ndeath;j++)
 5219: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 5220:     */
 5221:     fprintf(ficrespow,"\n");
 5222:     
 5223:     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 5224:     fclose(ficrespow);
 5225:     
 5226:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 5227: 
 5228:     for(i=1; i <=NDIM; i++)
 5229:       for(j=i+1;j<=NDIM;j++)
 5230: 	matcov[i][j]=matcov[j][i];
 5231:     
 5232:     printf("\nCovariance matrix\n ");
 5233:     for(i=1; i <=NDIM; i++) {
 5234:       for(j=1;j<=NDIM;j++){ 
 5235: 	printf("%f ",matcov[i][j]);
 5236:       }
 5237:       printf("\n ");
 5238:     }
 5239:     
 5240:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 5241:     for (i=1;i<=NDIM;i++) 
 5242:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 5243: 
 5244:     lsurv=vector(1,AGESUP);
 5245:     lpop=vector(1,AGESUP);
 5246:     tpop=vector(1,AGESUP);
 5247:     lsurv[agegomp]=100000;
 5248:     
 5249:     for (k=agegomp;k<=AGESUP;k++) {
 5250:       agemortsup=k;
 5251:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 5252:     }
 5253:     
 5254:     for (k=agegomp;k<agemortsup;k++)
 5255:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 5256:     
 5257:     for (k=agegomp;k<agemortsup;k++){
 5258:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 5259:       sumlpop=sumlpop+lpop[k];
 5260:     }
 5261:     
 5262:     tpop[agegomp]=sumlpop;
 5263:     for (k=agegomp;k<(agemortsup-3);k++){
 5264:       /*  tpop[k+1]=2;*/
 5265:       tpop[k+1]=tpop[k]-lpop[k];
 5266:     }
 5267:     
 5268:     
 5269:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 5270:     for (k=agegomp;k<(agemortsup-2);k++) 
 5271:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 5272:     
 5273:     
 5274:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 5275:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 5276:     
 5277:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 5278: 		     stepm, weightopt,\
 5279: 		     model,imx,p,matcov,agemortsup);
 5280:     
 5281:     free_vector(lsurv,1,AGESUP);
 5282:     free_vector(lpop,1,AGESUP);
 5283:     free_vector(tpop,1,AGESUP);
 5284:   } /* Endof if mle==-3 */
 5285:   
 5286:   else{ /* For mle >=1 */
 5287:   
 5288:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 5289:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 5290:     for (k=1; k<=npar;k++)
 5291:       printf(" %d %8.5f",k,p[k]);
 5292:     printf("\n");
 5293:     globpr=1; /* to print the contributions */
 5294:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 5295:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 5296:     for (k=1; k<=npar;k++)
 5297:       printf(" %d %8.5f",k,p[k]);
 5298:     printf("\n");
 5299:     if(mle>=1){ /* Could be 1 or 2 */
 5300:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 5301:     }
 5302:     
 5303:     /*--------- results files --------------*/
 5304:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 5305:     
 5306:     
 5307:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5308:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5309:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5310:     for(i=1,jk=1; i <=nlstate; i++){
 5311:       for(k=1; k <=(nlstate+ndeath); k++){
 5312: 	if (k != i) {
 5313: 	  printf("%d%d ",i,k);
 5314: 	  fprintf(ficlog,"%d%d ",i,k);
 5315: 	  fprintf(ficres,"%1d%1d ",i,k);
 5316: 	  for(j=1; j <=ncovmodel; j++){
 5317: 	    printf("%f ",p[jk]);
 5318: 	    fprintf(ficlog,"%f ",p[jk]);
 5319: 	    fprintf(ficres,"%f ",p[jk]);
 5320: 	    jk++; 
 5321: 	  }
 5322: 	  printf("\n");
 5323: 	  fprintf(ficlog,"\n");
 5324: 	  fprintf(ficres,"\n");
 5325: 	}
 5326:       }
 5327:     }
 5328:     if(mle!=0){
 5329:       /* Computing hessian and covariance matrix */
 5330:       ftolhess=ftol; /* Usually correct */
 5331:       hesscov(matcov, p, npar, delti, ftolhess, func);
 5332:     }
 5333:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 5334:     printf("# Scales (for hessian or gradient estimation)\n");
 5335:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 5336:     for(i=1,jk=1; i <=nlstate; i++){
 5337:       for(j=1; j <=nlstate+ndeath; j++){
 5338: 	if (j!=i) {
 5339: 	  fprintf(ficres,"%1d%1d",i,j);
 5340: 	  printf("%1d%1d",i,j);
 5341: 	  fprintf(ficlog,"%1d%1d",i,j);
 5342: 	  for(k=1; k<=ncovmodel;k++){
 5343: 	    printf(" %.5e",delti[jk]);
 5344: 	    fprintf(ficlog," %.5e",delti[jk]);
 5345: 	    fprintf(ficres," %.5e",delti[jk]);
 5346: 	    jk++;
 5347: 	  }
 5348: 	  printf("\n");
 5349: 	  fprintf(ficlog,"\n");
 5350: 	  fprintf(ficres,"\n");
 5351: 	}
 5352:       }
 5353:     }
 5354:     
 5355:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5356:     if(mle>=1)
 5357:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5358:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5359:     /* # 121 Var(a12)\n\ */
 5360:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 5361:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 5362:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 5363:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 5364:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 5365:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 5366:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 5367:     
 5368:     
 5369:     /* Just to have a covariance matrix which will be more understandable
 5370:        even is we still don't want to manage dictionary of variables
 5371:     */
 5372:     for(itimes=1;itimes<=2;itimes++){
 5373:       jj=0;
 5374:       for(i=1; i <=nlstate; i++){
 5375: 	for(j=1; j <=nlstate+ndeath; j++){
 5376: 	  if(j==i) continue;
 5377: 	  for(k=1; k<=ncovmodel;k++){
 5378: 	    jj++;
 5379: 	    ca[0]= k+'a'-1;ca[1]='\0';
 5380: 	    if(itimes==1){
 5381: 	      if(mle>=1)
 5382: 		printf("#%1d%1d%d",i,j,k);
 5383: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 5384: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 5385: 	    }else{
 5386: 	      if(mle>=1)
 5387: 		printf("%1d%1d%d",i,j,k);
 5388: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 5389: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 5390: 	    }
 5391: 	    ll=0;
 5392: 	    for(li=1;li <=nlstate; li++){
 5393: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 5394: 		if(lj==li) continue;
 5395: 		for(lk=1;lk<=ncovmodel;lk++){
 5396: 		  ll++;
 5397: 		  if(ll<=jj){
 5398: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 5399: 		    if(ll<jj){
 5400: 		      if(itimes==1){
 5401: 			if(mle>=1)
 5402: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5403: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5404: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5405: 		      }else{
 5406: 			if(mle>=1)
 5407: 			  printf(" %.5e",matcov[jj][ll]); 
 5408: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 5409: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 5410: 		      }
 5411: 		    }else{
 5412: 		      if(itimes==1){
 5413: 			if(mle>=1)
 5414: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 5415: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 5416: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 5417: 		      }else{
 5418: 			if(mle>=1)
 5419: 			  printf(" %.5e",matcov[jj][ll]); 
 5420: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 5421: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 5422: 		      }
 5423: 		    }
 5424: 		  }
 5425: 		} /* end lk */
 5426: 	      } /* end lj */
 5427: 	    } /* end li */
 5428: 	    if(mle>=1)
 5429: 	      printf("\n");
 5430: 	    fprintf(ficlog,"\n");
 5431: 	    fprintf(ficres,"\n");
 5432: 	    numlinepar++;
 5433: 	  } /* end k*/
 5434: 	} /*end j */
 5435:       } /* end i */
 5436:     } /* end itimes */
 5437:     
 5438:     fflush(ficlog);
 5439:     fflush(ficres);
 5440:     
 5441:     while((c=getc(ficpar))=='#' && c!= EOF){
 5442:       ungetc(c,ficpar);
 5443:       fgets(line, MAXLINE, ficpar);
 5444:       puts(line);
 5445:       fputs(line,ficparo);
 5446:     }
 5447:     ungetc(c,ficpar);
 5448:     
 5449:     estepm=0;
 5450:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 5451:     if (estepm==0 || estepm < stepm) estepm=stepm;
 5452:     if (fage <= 2) {
 5453:       bage = ageminpar;
 5454:       fage = agemaxpar;
 5455:     }
 5456:     
 5457:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 5458:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 5459:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 5460:     
 5461:     while((c=getc(ficpar))=='#' && c!= EOF){
 5462:       ungetc(c,ficpar);
 5463:       fgets(line, MAXLINE, ficpar);
 5464:       puts(line);
 5465:       fputs(line,ficparo);
 5466:     }
 5467:     ungetc(c,ficpar);
 5468:     
 5469:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 5470:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5471:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5472:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5473:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5474:     
 5475:     while((c=getc(ficpar))=='#' && c!= EOF){
 5476:       ungetc(c,ficpar);
 5477:       fgets(line, MAXLINE, ficpar);
 5478:       puts(line);
 5479:       fputs(line,ficparo);
 5480:     }
 5481:     ungetc(c,ficpar);
 5482:     
 5483:     
 5484:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 5485:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 5486:     
 5487:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 5488:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 5489:     fprintf(ficres,"pop_based=%d\n",popbased);   
 5490:     
 5491:     while((c=getc(ficpar))=='#' && c!= EOF){
 5492:       ungetc(c,ficpar);
 5493:       fgets(line, MAXLINE, ficpar);
 5494:       puts(line);
 5495:       fputs(line,ficparo);
 5496:     }
 5497:     ungetc(c,ficpar);
 5498:     
 5499:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 5500:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5501:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5502:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5503:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5504:     /* day and month of proj2 are not used but only year anproj2.*/
 5505:     
 5506:     
 5507:     
 5508:     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
 5509:     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 5510:     
 5511:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 5512:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 5513:     
 5514:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 5515: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 5516: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 5517:       
 5518:    /*------------ free_vector  -------------*/
 5519:    /*  chdir(path); */
 5520:  
 5521:     free_ivector(wav,1,imx);
 5522:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 5523:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 5524:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 5525:     free_lvector(num,1,n);
 5526:     free_vector(agedc,1,n);
 5527:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 5528:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 5529:     fclose(ficparo);
 5530:     fclose(ficres);
 5531: 
 5532: 
 5533:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 5534:   
 5535:     strcpy(filerespl,"pl");
 5536:     strcat(filerespl,fileres);
 5537:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 5538:       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
 5539:       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
 5540:     }
 5541:     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 5542:     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 5543:     pstamp(ficrespl);
 5544:     fprintf(ficrespl,"# Period (stable) prevalence \n");
 5545:     fprintf(ficrespl,"#Age ");
 5546:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5547:     fprintf(ficrespl,"\n");
 5548:   
 5549:     prlim=matrix(1,nlstate,1,nlstate);
 5550: 
 5551:     agebase=ageminpar;
 5552:     agelim=agemaxpar;
 5553:     ftolpl=1.e-10;
 5554:     i1=cptcoveff;
 5555:     if (cptcovn < 1){i1=1;}
 5556: 
 5557:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5558:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5559: 	k=k+1;
 5560: 	/*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 5561: 	fprintf(ficrespl,"\n#******");
 5562: 	printf("\n#******");
 5563: 	fprintf(ficlog,"\n#******");
 5564: 	for(j=1;j<=cptcoveff;j++) {
 5565: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5566: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5567: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5568: 	}
 5569: 	fprintf(ficrespl,"******\n");
 5570: 	printf("******\n");
 5571: 	fprintf(ficlog,"******\n");
 5572: 	
 5573: 	for (age=agebase; age<=agelim; age++){
 5574: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5575: 	  fprintf(ficrespl,"%.0f ",age );
 5576: 	  for(j=1;j<=cptcoveff;j++)
 5577: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5578: 	  for(i=1; i<=nlstate;i++)
 5579: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 5580: 	  fprintf(ficrespl,"\n");
 5581: 	}
 5582:       }
 5583:     }
 5584:     fclose(ficrespl);
 5585: 
 5586:     /*------------- h Pij x at various ages ------------*/
 5587:   
 5588:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 5589:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 5590:       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 5591:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
 5592:     }
 5593:     printf("Computing pij: result on file '%s' \n", filerespij);
 5594:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 5595:   
 5596:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 5597:     /*if (stepm<=24) stepsize=2;*/
 5598: 
 5599:     agelim=AGESUP;
 5600:     hstepm=stepsize*YEARM; /* Every year of age */
 5601:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 5602: 
 5603:     /* hstepm=1;   aff par mois*/
 5604:     pstamp(ficrespij);
 5605:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 5606:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5607:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5608: 	k=k+1;
 5609: 	fprintf(ficrespij,"\n#****** ");
 5610: 	for(j=1;j<=cptcoveff;j++) 
 5611: 	  fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5612: 	fprintf(ficrespij,"******\n");
 5613: 	
 5614: 	for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 5615: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 5616: 	  nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 5617: 
 5618: 	  /*	  nhstepm=nhstepm*YEARM; aff par mois*/
 5619: 
 5620: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5621: 	  oldm=oldms;savm=savms;
 5622: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5623: 	  fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 5624: 	  for(i=1; i<=nlstate;i++)
 5625: 	    for(j=1; j<=nlstate+ndeath;j++)
 5626: 	      fprintf(ficrespij," %1d-%1d",i,j);
 5627: 	  fprintf(ficrespij,"\n");
 5628: 	  for (h=0; h<=nhstepm; h++){
 5629: 	    fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 5630: 	    for(i=1; i<=nlstate;i++)
 5631: 	      for(j=1; j<=nlstate+ndeath;j++)
 5632: 		fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 5633: 	    fprintf(ficrespij,"\n");
 5634: 	  }
 5635: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5636: 	  fprintf(ficrespij,"\n");
 5637: 	}
 5638:       }
 5639:     }
 5640: 
 5641:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 5642: 
 5643:     fclose(ficrespij);
 5644: 
 5645:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5646:     for(i=1;i<=AGESUP;i++)
 5647:       for(j=1;j<=NCOVMAX;j++)
 5648: 	for(k=1;k<=NCOVMAX;k++)
 5649: 	  probs[i][j][k]=0.;
 5650: 
 5651:     /*---------- Forecasting ------------------*/
 5652:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 5653:     if(prevfcast==1){
 5654:       /*    if(stepm ==1){*/
 5655:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 5656:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 5657:       /*      }  */
 5658:       /*      else{ */
 5659:       /*        erreur=108; */
 5660:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 5661:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 5662:       /*      } */
 5663:     }
 5664:   
 5665: 
 5666:     /*---------- Health expectancies and variances ------------*/
 5667: 
 5668:     strcpy(filerest,"t");
 5669:     strcat(filerest,fileres);
 5670:     if((ficrest=fopen(filerest,"w"))==NULL) {
 5671:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 5672:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 5673:     }
 5674:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 5675:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 5676: 
 5677: 
 5678:     strcpy(filerese,"e");
 5679:     strcat(filerese,fileres);
 5680:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 5681:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 5682:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 5683:     }
 5684:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 5685:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 5686: 
 5687:     strcpy(fileresstde,"stde");
 5688:     strcat(fileresstde,fileres);
 5689:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 5690:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 5691:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 5692:     }
 5693:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 5694:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 5695: 
 5696:     strcpy(filerescve,"cve");
 5697:     strcat(filerescve,fileres);
 5698:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 5699:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 5700:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 5701:     }
 5702:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 5703:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 5704: 
 5705:     strcpy(fileresv,"v");
 5706:     strcat(fileresv,fileres);
 5707:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 5708:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 5709:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 5710:     }
 5711:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 5712:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 5713: 
 5714:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 5715:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 5716:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 5717: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 5718:     */
 5719: 
 5720:     if (mobilav!=0) {
 5721:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5722:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 5723: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 5724: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 5725:       }
 5726:     }
 5727: 
 5728:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5729:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5730: 	k=k+1; 
 5731: 	fprintf(ficrest,"\n#****** ");
 5732: 	for(j=1;j<=cptcoveff;j++) 
 5733: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5734: 	fprintf(ficrest,"******\n");
 5735: 
 5736: 	fprintf(ficreseij,"\n#****** ");
 5737: 	fprintf(ficresstdeij,"\n#****** ");
 5738: 	fprintf(ficrescveij,"\n#****** ");
 5739: 	for(j=1;j<=cptcoveff;j++) {
 5740: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5741: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5742: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5743: 	}
 5744: 	fprintf(ficreseij,"******\n");
 5745: 	fprintf(ficresstdeij,"******\n");
 5746: 	fprintf(ficrescveij,"******\n");
 5747: 
 5748: 	fprintf(ficresvij,"\n#****** ");
 5749: 	for(j=1;j<=cptcoveff;j++) 
 5750: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5751: 	fprintf(ficresvij,"******\n");
 5752: 
 5753: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5754: 	oldm=oldms;savm=savms;
 5755: 	evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 5756: 	cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 5757:  
 5758: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5759: 	oldm=oldms;savm=savms;
 5760: 	varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
 5761: 	if(popbased==1){
 5762: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
 5763: 	}
 5764: 
 5765: 	pstamp(ficrest);
 5766: 	fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
 5767: 	for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 5768: 	fprintf(ficrest,"\n");
 5769: 
 5770: 	epj=vector(1,nlstate+1);
 5771: 	for(age=bage; age <=fage ;age++){
 5772: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5773: 	  if (popbased==1) {
 5774: 	    if(mobilav ==0){
 5775: 	      for(i=1; i<=nlstate;i++)
 5776: 		prlim[i][i]=probs[(int)age][i][k];
 5777: 	    }else{ /* mobilav */ 
 5778: 	      for(i=1; i<=nlstate;i++)
 5779: 		prlim[i][i]=mobaverage[(int)age][i][k];
 5780: 	    }
 5781: 	  }
 5782: 	
 5783: 	  fprintf(ficrest," %4.0f",age);
 5784: 	  for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 5785: 	    for(i=1, epj[j]=0.;i <=nlstate;i++) {
 5786: 	      epj[j] += prlim[i][i]*eij[i][j][(int)age];
 5787: 	      /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 5788: 	    }
 5789: 	    epj[nlstate+1] +=epj[j];
 5790: 	  }
 5791: 
 5792: 	  for(i=1, vepp=0.;i <=nlstate;i++)
 5793: 	    for(j=1;j <=nlstate;j++)
 5794: 	      vepp += vareij[i][j][(int)age];
 5795: 	  fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 5796: 	  for(j=1;j <=nlstate;j++){
 5797: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 5798: 	  }
 5799: 	  fprintf(ficrest,"\n");
 5800: 	}
 5801: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5802: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5803: 	free_vector(epj,1,nlstate+1);
 5804:       }
 5805:     }
 5806:     free_vector(weight,1,n);
 5807:     free_imatrix(Tvard,1,15,1,2);
 5808:     free_imatrix(s,1,maxwav+1,1,n);
 5809:     free_matrix(anint,1,maxwav,1,n); 
 5810:     free_matrix(mint,1,maxwav,1,n);
 5811:     free_ivector(cod,1,n);
 5812:     free_ivector(tab,1,NCOVMAX);
 5813:     fclose(ficreseij);
 5814:     fclose(ficresstdeij);
 5815:     fclose(ficrescveij);
 5816:     fclose(ficresvij);
 5817:     fclose(ficrest);
 5818:     fclose(ficpar);
 5819:   
 5820:     /*------- Variance of period (stable) prevalence------*/   
 5821: 
 5822:     strcpy(fileresvpl,"vpl");
 5823:     strcat(fileresvpl,fileres);
 5824:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 5825:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 5826:       exit(0);
 5827:     }
 5828:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 5829: 
 5830:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5831:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5832: 	k=k+1;
 5833: 	fprintf(ficresvpl,"\n#****** ");
 5834: 	for(j=1;j<=cptcoveff;j++) 
 5835: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5836: 	fprintf(ficresvpl,"******\n");
 5837:       
 5838: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 5839: 	oldm=oldms;savm=savms;
 5840: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 5841: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 5842:       }
 5843:     }
 5844: 
 5845:     fclose(ficresvpl);
 5846: 
 5847:     /*---------- End : free ----------------*/
 5848:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5849:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5850: 
 5851:   }  /* mle==-3 arrives here for freeing */
 5852:   free_matrix(prlim,1,nlstate,1,nlstate);
 5853:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 5854:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5855:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5856:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5857:     free_matrix(covar,0,NCOVMAX,1,n);
 5858:     free_matrix(matcov,1,npar,1,npar);
 5859:     /*free_vector(delti,1,npar);*/
 5860:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5861:     free_matrix(agev,1,maxwav,1,imx);
 5862:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 5863: 
 5864:     free_ivector(ncodemax,1,8);
 5865:     free_ivector(Tvar,1,15);
 5866:     free_ivector(Tprod,1,15);
 5867:     free_ivector(Tvaraff,1,15);
 5868:     free_ivector(Tage,1,15);
 5869:     free_ivector(Tcode,1,100);
 5870: 
 5871:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 5872:     free_imatrix(codtab,1,100,1,10);
 5873:   fflush(fichtm);
 5874:   fflush(ficgp);
 5875:   
 5876: 
 5877:   if((nberr >0) || (nbwarn>0)){
 5878:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 5879:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 5880:   }else{
 5881:     printf("End of Imach\n");
 5882:     fprintf(ficlog,"End of Imach\n");
 5883:   }
 5884:   printf("See log file on %s\n",filelog);
 5885:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 5886:   (void) gettimeofday(&end_time,&tzp);
 5887:   tm = *localtime(&end_time.tv_sec);
 5888:   tmg = *gmtime(&end_time.tv_sec);
 5889:   strcpy(strtend,asctime(&tm));
 5890:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 5891:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 5892:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5893: 
 5894:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5895:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5896:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5897:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 5898: /*   if(fileappend(fichtm,optionfilehtm)){ */
 5899:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
 5900:   fclose(fichtm);
 5901:   fclose(fichtmcov);
 5902:   fclose(ficgp);
 5903:   fclose(ficlog);
 5904:   /*------ End -----------*/
 5905: 
 5906: 
 5907:    printf("Before Current directory %s!\n",pathcd);
 5908:    if(chdir(pathcd) != 0)
 5909:     printf("Can't move to directory %s!\n",path);
 5910:   if(getcwd(pathcd,MAXLINE) > 0)
 5911:     printf("Current directory %s!\n",pathcd);
 5912:   /*strcat(plotcmd,CHARSEPARATOR);*/
 5913:   sprintf(plotcmd,"gnuplot");
 5914: #ifndef UNIX
 5915:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 5916: #endif
 5917:   if(!stat(plotcmd,&info)){
 5918:     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 5919:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 5920:       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 5921:     }else
 5922:       strcpy(pplotcmd,plotcmd);
 5923: #ifdef UNIX
 5924:     strcpy(plotcmd,GNUPLOTPROGRAM);
 5925:     if(!stat(plotcmd,&info)){
 5926:       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 5927:     }else
 5928:       strcpy(pplotcmd,plotcmd);
 5929: #endif
 5930:   }else
 5931:     strcpy(pplotcmd,plotcmd);
 5932:   
 5933:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 5934:   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
 5935: 
 5936:   if((outcmd=system(plotcmd)) != 0){
 5937:     printf("\n Problem with gnuplot\n");
 5938:   }
 5939:   printf(" Wait...");
 5940:   while (z[0] != 'q') {
 5941:     /* chdir(path); */
 5942:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
 5943:     scanf("%s",z);
 5944: /*     if (z[0] == 'c') system("./imach"); */
 5945:     if (z[0] == 'e') {
 5946:       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
 5947:       system(optionfilehtm);
 5948:     }
 5949:     else if (z[0] == 'g') system(plotcmd);
 5950:     else if (z[0] == 'q') exit(0);
 5951:   }
 5952:   end:
 5953:   while (z[0] != 'q') {
 5954:     printf("\nType  q for exiting: ");
 5955:     scanf("%s",z);
 5956:   }
 5957: }
 5958: 
 5959: 
 5960: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>