File:  [Local Repository] / imach / src / imach.c
Revision 1.139: download - view: text, annotated - select for diffs
Mon Jun 14 07:50:17 2010 UTC (14 years ago) by brouard
Branches: MAIN
CVS tags: HEAD
After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
I remember having already fixed agemin agemax which are pointers now but not cvs saved.

    1: /* $Id: imach.c,v 1.139 2010/06/14 07:50:17 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.139  2010/06/14 07:50:17  brouard
    5:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
    6:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    7: 
    8:   Revision 1.138  2010/04/30 18:19:40  brouard
    9:   *** empty log message ***
   10: 
   11:   Revision 1.137  2010/04/29 18:11:38  brouard
   12:   (Module): Checking covariates for more complex models
   13:   than V1+V2. A lot of change to be done. Unstable.
   14: 
   15:   Revision 1.136  2010/04/26 20:30:53  brouard
   16:   (Module): merging some libgsl code. Fixing computation
   17:   of likelione (using inter/intrapolation if mle = 0) in order to
   18:   get same likelihood as if mle=1.
   19:   Some cleaning of code and comments added.
   20: 
   21:   Revision 1.135  2009/10/29 15:33:14  brouard
   22:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   23: 
   24:   Revision 1.134  2009/10/29 13:18:53  brouard
   25:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   26: 
   27:   Revision 1.133  2009/07/06 10:21:25  brouard
   28:   just nforces
   29: 
   30:   Revision 1.132  2009/07/06 08:22:05  brouard
   31:   Many tings
   32: 
   33:   Revision 1.131  2009/06/20 16:22:47  brouard
   34:   Some dimensions resccaled
   35: 
   36:   Revision 1.130  2009/05/26 06:44:34  brouard
   37:   (Module): Max Covariate is now set to 20 instead of 8. A
   38:   lot of cleaning with variables initialized to 0. Trying to make
   39:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   40: 
   41:   Revision 1.129  2007/08/31 13:49:27  lievre
   42:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   43: 
   44:   Revision 1.128  2006/06/30 13:02:05  brouard
   45:   (Module): Clarifications on computing e.j
   46: 
   47:   Revision 1.127  2006/04/28 18:11:50  brouard
   48:   (Module): Yes the sum of survivors was wrong since
   49:   imach-114 because nhstepm was no more computed in the age
   50:   loop. Now we define nhstepma in the age loop.
   51:   (Module): In order to speed up (in case of numerous covariates) we
   52:   compute health expectancies (without variances) in a first step
   53:   and then all the health expectancies with variances or standard
   54:   deviation (needs data from the Hessian matrices) which slows the
   55:   computation.
   56:   In the future we should be able to stop the program is only health
   57:   expectancies and graph are needed without standard deviations.
   58: 
   59:   Revision 1.126  2006/04/28 17:23:28  brouard
   60:   (Module): Yes the sum of survivors was wrong since
   61:   imach-114 because nhstepm was no more computed in the age
   62:   loop. Now we define nhstepma in the age loop.
   63:   Version 0.98h
   64: 
   65:   Revision 1.125  2006/04/04 15:20:31  lievre
   66:   Errors in calculation of health expectancies. Age was not initialized.
   67:   Forecasting file added.
   68: 
   69:   Revision 1.124  2006/03/22 17:13:53  lievre
   70:   Parameters are printed with %lf instead of %f (more numbers after the comma).
   71:   The log-likelihood is printed in the log file
   72: 
   73:   Revision 1.123  2006/03/20 10:52:43  brouard
   74:   * imach.c (Module): <title> changed, corresponds to .htm file
   75:   name. <head> headers where missing.
   76: 
   77:   * imach.c (Module): Weights can have a decimal point as for
   78:   English (a comma might work with a correct LC_NUMERIC environment,
   79:   otherwise the weight is truncated).
   80:   Modification of warning when the covariates values are not 0 or
   81:   1.
   82:   Version 0.98g
   83: 
   84:   Revision 1.122  2006/03/20 09:45:41  brouard
   85:   (Module): Weights can have a decimal point as for
   86:   English (a comma might work with a correct LC_NUMERIC environment,
   87:   otherwise the weight is truncated).
   88:   Modification of warning when the covariates values are not 0 or
   89:   1.
   90:   Version 0.98g
   91: 
   92:   Revision 1.121  2006/03/16 17:45:01  lievre
   93:   * imach.c (Module): Comments concerning covariates added
   94: 
   95:   * imach.c (Module): refinements in the computation of lli if
   96:   status=-2 in order to have more reliable computation if stepm is
   97:   not 1 month. Version 0.98f
   98: 
   99:   Revision 1.120  2006/03/16 15:10:38  lievre
  100:   (Module): refinements in the computation of lli if
  101:   status=-2 in order to have more reliable computation if stepm is
  102:   not 1 month. Version 0.98f
  103: 
  104:   Revision 1.119  2006/03/15 17:42:26  brouard
  105:   (Module): Bug if status = -2, the loglikelihood was
  106:   computed as likelihood omitting the logarithm. Version O.98e
  107: 
  108:   Revision 1.118  2006/03/14 18:20:07  brouard
  109:   (Module): varevsij Comments added explaining the second
  110:   table of variances if popbased=1 .
  111:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  112:   (Module): Function pstamp added
  113:   (Module): Version 0.98d
  114: 
  115:   Revision 1.117  2006/03/14 17:16:22  brouard
  116:   (Module): varevsij Comments added explaining the second
  117:   table of variances if popbased=1 .
  118:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  119:   (Module): Function pstamp added
  120:   (Module): Version 0.98d
  121: 
  122:   Revision 1.116  2006/03/06 10:29:27  brouard
  123:   (Module): Variance-covariance wrong links and
  124:   varian-covariance of ej. is needed (Saito).
  125: 
  126:   Revision 1.115  2006/02/27 12:17:45  brouard
  127:   (Module): One freematrix added in mlikeli! 0.98c
  128: 
  129:   Revision 1.114  2006/02/26 12:57:58  brouard
  130:   (Module): Some improvements in processing parameter
  131:   filename with strsep.
  132: 
  133:   Revision 1.113  2006/02/24 14:20:24  brouard
  134:   (Module): Memory leaks checks with valgrind and:
  135:   datafile was not closed, some imatrix were not freed and on matrix
  136:   allocation too.
  137: 
  138:   Revision 1.112  2006/01/30 09:55:26  brouard
  139:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  140: 
  141:   Revision 1.111  2006/01/25 20:38:18  brouard
  142:   (Module): Lots of cleaning and bugs added (Gompertz)
  143:   (Module): Comments can be added in data file. Missing date values
  144:   can be a simple dot '.'.
  145: 
  146:   Revision 1.110  2006/01/25 00:51:50  brouard
  147:   (Module): Lots of cleaning and bugs added (Gompertz)
  148: 
  149:   Revision 1.109  2006/01/24 19:37:15  brouard
  150:   (Module): Comments (lines starting with a #) are allowed in data.
  151: 
  152:   Revision 1.108  2006/01/19 18:05:42  lievre
  153:   Gnuplot problem appeared...
  154:   To be fixed
  155: 
  156:   Revision 1.107  2006/01/19 16:20:37  brouard
  157:   Test existence of gnuplot in imach path
  158: 
  159:   Revision 1.106  2006/01/19 13:24:36  brouard
  160:   Some cleaning and links added in html output
  161: 
  162:   Revision 1.105  2006/01/05 20:23:19  lievre
  163:   *** empty log message ***
  164: 
  165:   Revision 1.104  2005/09/30 16:11:43  lievre
  166:   (Module): sump fixed, loop imx fixed, and simplifications.
  167:   (Module): If the status is missing at the last wave but we know
  168:   that the person is alive, then we can code his/her status as -2
  169:   (instead of missing=-1 in earlier versions) and his/her
  170:   contributions to the likelihood is 1 - Prob of dying from last
  171:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  172:   the healthy state at last known wave). Version is 0.98
  173: 
  174:   Revision 1.103  2005/09/30 15:54:49  lievre
  175:   (Module): sump fixed, loop imx fixed, and simplifications.
  176: 
  177:   Revision 1.102  2004/09/15 17:31:30  brouard
  178:   Add the possibility to read data file including tab characters.
  179: 
  180:   Revision 1.101  2004/09/15 10:38:38  brouard
  181:   Fix on curr_time
  182: 
  183:   Revision 1.100  2004/07/12 18:29:06  brouard
  184:   Add version for Mac OS X. Just define UNIX in Makefile
  185: 
  186:   Revision 1.99  2004/06/05 08:57:40  brouard
  187:   *** empty log message ***
  188: 
  189:   Revision 1.98  2004/05/16 15:05:56  brouard
  190:   New version 0.97 . First attempt to estimate force of mortality
  191:   directly from the data i.e. without the need of knowing the health
  192:   state at each age, but using a Gompertz model: log u =a + b*age .
  193:   This is the basic analysis of mortality and should be done before any
  194:   other analysis, in order to test if the mortality estimated from the
  195:   cross-longitudinal survey is different from the mortality estimated
  196:   from other sources like vital statistic data.
  197: 
  198:   The same imach parameter file can be used but the option for mle should be -3.
  199: 
  200:   Agnès, who wrote this part of the code, tried to keep most of the
  201:   former routines in order to include the new code within the former code.
  202: 
  203:   The output is very simple: only an estimate of the intercept and of
  204:   the slope with 95% confident intervals.
  205: 
  206:   Current limitations:
  207:   A) Even if you enter covariates, i.e. with the
  208:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  209:   B) There is no computation of Life Expectancy nor Life Table.
  210: 
  211:   Revision 1.97  2004/02/20 13:25:42  lievre
  212:   Version 0.96d. Population forecasting command line is (temporarily)
  213:   suppressed.
  214: 
  215:   Revision 1.96  2003/07/15 15:38:55  brouard
  216:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  217:   rewritten within the same printf. Workaround: many printfs.
  218: 
  219:   Revision 1.95  2003/07/08 07:54:34  brouard
  220:   * imach.c (Repository):
  221:   (Repository): Using imachwizard code to output a more meaningful covariance
  222:   matrix (cov(a12,c31) instead of numbers.
  223: 
  224:   Revision 1.94  2003/06/27 13:00:02  brouard
  225:   Just cleaning
  226: 
  227:   Revision 1.93  2003/06/25 16:33:55  brouard
  228:   (Module): On windows (cygwin) function asctime_r doesn't
  229:   exist so I changed back to asctime which exists.
  230:   (Module): Version 0.96b
  231: 
  232:   Revision 1.92  2003/06/25 16:30:45  brouard
  233:   (Module): On windows (cygwin) function asctime_r doesn't
  234:   exist so I changed back to asctime which exists.
  235: 
  236:   Revision 1.91  2003/06/25 15:30:29  brouard
  237:   * imach.c (Repository): Duplicated warning errors corrected.
  238:   (Repository): Elapsed time after each iteration is now output. It
  239:   helps to forecast when convergence will be reached. Elapsed time
  240:   is stamped in powell.  We created a new html file for the graphs
  241:   concerning matrix of covariance. It has extension -cov.htm.
  242: 
  243:   Revision 1.90  2003/06/24 12:34:15  brouard
  244:   (Module): Some bugs corrected for windows. Also, when
  245:   mle=-1 a template is output in file "or"mypar.txt with the design
  246:   of the covariance matrix to be input.
  247: 
  248:   Revision 1.89  2003/06/24 12:30:52  brouard
  249:   (Module): Some bugs corrected for windows. Also, when
  250:   mle=-1 a template is output in file "or"mypar.txt with the design
  251:   of the covariance matrix to be input.
  252: 
  253:   Revision 1.88  2003/06/23 17:54:56  brouard
  254:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  255: 
  256:   Revision 1.87  2003/06/18 12:26:01  brouard
  257:   Version 0.96
  258: 
  259:   Revision 1.86  2003/06/17 20:04:08  brouard
  260:   (Module): Change position of html and gnuplot routines and added
  261:   routine fileappend.
  262: 
  263:   Revision 1.85  2003/06/17 13:12:43  brouard
  264:   * imach.c (Repository): Check when date of death was earlier that
  265:   current date of interview. It may happen when the death was just
  266:   prior to the death. In this case, dh was negative and likelihood
  267:   was wrong (infinity). We still send an "Error" but patch by
  268:   assuming that the date of death was just one stepm after the
  269:   interview.
  270:   (Repository): Because some people have very long ID (first column)
  271:   we changed int to long in num[] and we added a new lvector for
  272:   memory allocation. But we also truncated to 8 characters (left
  273:   truncation)
  274:   (Repository): No more line truncation errors.
  275: 
  276:   Revision 1.84  2003/06/13 21:44:43  brouard
  277:   * imach.c (Repository): Replace "freqsummary" at a correct
  278:   place. It differs from routine "prevalence" which may be called
  279:   many times. Probs is memory consuming and must be used with
  280:   parcimony.
  281:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  282: 
  283:   Revision 1.83  2003/06/10 13:39:11  lievre
  284:   *** empty log message ***
  285: 
  286:   Revision 1.82  2003/06/05 15:57:20  brouard
  287:   Add log in  imach.c and  fullversion number is now printed.
  288: 
  289: */
  290: /*
  291:    Interpolated Markov Chain
  292: 
  293:   Short summary of the programme:
  294:   
  295:   This program computes Healthy Life Expectancies from
  296:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  297:   first survey ("cross") where individuals from different ages are
  298:   interviewed on their health status or degree of disability (in the
  299:   case of a health survey which is our main interest) -2- at least a
  300:   second wave of interviews ("longitudinal") which measure each change
  301:   (if any) in individual health status.  Health expectancies are
  302:   computed from the time spent in each health state according to a
  303:   model. More health states you consider, more time is necessary to reach the
  304:   Maximum Likelihood of the parameters involved in the model.  The
  305:   simplest model is the multinomial logistic model where pij is the
  306:   probability to be observed in state j at the second wave
  307:   conditional to be observed in state i at the first wave. Therefore
  308:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  309:   'age' is age and 'sex' is a covariate. If you want to have a more
  310:   complex model than "constant and age", you should modify the program
  311:   where the markup *Covariates have to be included here again* invites
  312:   you to do it.  More covariates you add, slower the
  313:   convergence.
  314: 
  315:   The advantage of this computer programme, compared to a simple
  316:   multinomial logistic model, is clear when the delay between waves is not
  317:   identical for each individual. Also, if a individual missed an
  318:   intermediate interview, the information is lost, but taken into
  319:   account using an interpolation or extrapolation.  
  320: 
  321:   hPijx is the probability to be observed in state i at age x+h
  322:   conditional to the observed state i at age x. The delay 'h' can be
  323:   split into an exact number (nh*stepm) of unobserved intermediate
  324:   states. This elementary transition (by month, quarter,
  325:   semester or year) is modelled as a multinomial logistic.  The hPx
  326:   matrix is simply the matrix product of nh*stepm elementary matrices
  327:   and the contribution of each individual to the likelihood is simply
  328:   hPijx.
  329: 
  330:   Also this programme outputs the covariance matrix of the parameters but also
  331:   of the life expectancies. It also computes the period (stable) prevalence. 
  332:   
  333:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  334:            Institut national d'études démographiques, Paris.
  335:   This software have been partly granted by Euro-REVES, a concerted action
  336:   from the European Union.
  337:   It is copyrighted identically to a GNU software product, ie programme and
  338:   software can be distributed freely for non commercial use. Latest version
  339:   can be accessed at http://euroreves.ined.fr/imach .
  340: 
  341:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  342:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  343:   
  344:   **********************************************************************/
  345: /*
  346:   main
  347:   read parameterfile
  348:   read datafile
  349:   concatwav
  350:   freqsummary
  351:   if (mle >= 1)
  352:     mlikeli
  353:   print results files
  354:   if mle==1 
  355:      computes hessian
  356:   read end of parameter file: agemin, agemax, bage, fage, estepm
  357:       begin-prev-date,...
  358:   open gnuplot file
  359:   open html file
  360:   period (stable) prevalence
  361:    for age prevalim()
  362:   h Pij x
  363:   variance of p varprob
  364:   forecasting if prevfcast==1 prevforecast call prevalence()
  365:   health expectancies
  366:   Variance-covariance of DFLE
  367:   prevalence()
  368:    movingaverage()
  369:   varevsij() 
  370:   if popbased==1 varevsij(,popbased)
  371:   total life expectancies
  372:   Variance of period (stable) prevalence
  373:  end
  374: */
  375: 
  376: 
  377: 
  378:  
  379: #include <math.h>
  380: #include <stdio.h>
  381: #include <stdlib.h>
  382: #include <string.h>
  383: #include <unistd.h>
  384: 
  385: #include <limits.h>
  386: #include <sys/types.h>
  387: #include <sys/stat.h>
  388: #include <errno.h>
  389: extern int errno;
  390: 
  391: /* #include <sys/time.h> */
  392: #include <time.h>
  393: #include "timeval.h"
  394: 
  395: #ifdef GSL
  396: #include <gsl/gsl_errno.h>
  397: #include <gsl/gsl_multimin.h>
  398: #endif
  399: 
  400: /* #include <libintl.h> */
  401: /* #define _(String) gettext (String) */
  402: 
  403: #define MAXLINE 256
  404: 
  405: #define GNUPLOTPROGRAM "gnuplot"
  406: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  407: #define FILENAMELENGTH 132
  408: 
  409: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  410: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  411: 
  412: #define MAXPARM 128 /* Maximum number of parameters for the optimization */
  413: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
  414: 
  415: #define NINTERVMAX 8
  416: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
  417: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
  418: #define NCOVMAX 20 /* Maximum number of covariates */
  419: #define MAXN 20000
  420: #define YEARM 12. /* Number of months per year */
  421: #define AGESUP 130
  422: #define AGEBASE 40
  423: #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
  424: #ifdef UNIX
  425: #define DIRSEPARATOR '/'
  426: #define CHARSEPARATOR "/"
  427: #define ODIRSEPARATOR '\\'
  428: #else
  429: #define DIRSEPARATOR '\\'
  430: #define CHARSEPARATOR "\\"
  431: #define ODIRSEPARATOR '/'
  432: #endif
  433: 
  434: /* $Id: imach.c,v 1.139 2010/06/14 07:50:17 brouard Exp $ */
  435: /* $State: Exp $ */
  436: 
  437: char version[]="Imach version 0.98m, April 2010, INED-EUROREVES-Institut de longevite ";
  438: char fullversion[]="$Revision: 1.139 $ $Date: 2010/06/14 07:50:17 $"; 
  439: char strstart[80];
  440: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  441: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  442: int nvar=0, nforce=0; /* Number of variables, number of forces */
  443: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
  444: int npar=NPARMAX;
  445: int nlstate=2; /* Number of live states */
  446: int ndeath=1; /* Number of dead states */
  447: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  448: int popbased=0;
  449: 
  450: int *wav; /* Number of waves for this individuual 0 is possible */
  451: int maxwav=0; /* Maxim number of waves */
  452: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  453: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  454: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  455: 		   to the likelihood and the sum of weights (done by funcone)*/
  456: int mle=1, weightopt=0;
  457: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  458: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  459: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  460: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  461: double jmean=1; /* Mean space between 2 waves */
  462: double **oldm, **newm, **savm; /* Working pointers to matrices */
  463: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  464: /*FILE *fic ; */ /* Used in readdata only */
  465: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  466: FILE *ficlog, *ficrespow;
  467: int globpr=0; /* Global variable for printing or not */
  468: double fretone; /* Only one call to likelihood */
  469: long ipmx=0; /* Number of contributions */
  470: double sw; /* Sum of weights */
  471: char filerespow[FILENAMELENGTH];
  472: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  473: FILE *ficresilk;
  474: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  475: FILE *ficresprobmorprev;
  476: FILE *fichtm, *fichtmcov; /* Html File */
  477: FILE *ficreseij;
  478: char filerese[FILENAMELENGTH];
  479: FILE *ficresstdeij;
  480: char fileresstde[FILENAMELENGTH];
  481: FILE *ficrescveij;
  482: char filerescve[FILENAMELENGTH];
  483: FILE  *ficresvij;
  484: char fileresv[FILENAMELENGTH];
  485: FILE  *ficresvpl;
  486: char fileresvpl[FILENAMELENGTH];
  487: char title[MAXLINE];
  488: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  489: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  490: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  491: char command[FILENAMELENGTH];
  492: int  outcmd=0;
  493: 
  494: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  495: 
  496: char filelog[FILENAMELENGTH]; /* Log file */
  497: char filerest[FILENAMELENGTH];
  498: char fileregp[FILENAMELENGTH];
  499: char popfile[FILENAMELENGTH];
  500: 
  501: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  502: 
  503: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
  504: struct timezone tzp;
  505: extern int gettimeofday();
  506: struct tm tmg, tm, tmf, *gmtime(), *localtime();
  507: long time_value;
  508: extern long time();
  509: char strcurr[80], strfor[80];
  510: 
  511: char *endptr;
  512: long lval;
  513: double dval;
  514: 
  515: #define NR_END 1
  516: #define FREE_ARG char*
  517: #define FTOL 1.0e-10
  518: 
  519: #define NRANSI 
  520: #define ITMAX 200 
  521: 
  522: #define TOL 2.0e-4 
  523: 
  524: #define CGOLD 0.3819660 
  525: #define ZEPS 1.0e-10 
  526: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  527: 
  528: #define GOLD 1.618034 
  529: #define GLIMIT 100.0 
  530: #define TINY 1.0e-20 
  531: 
  532: static double maxarg1,maxarg2;
  533: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  534: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  535:   
  536: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  537: #define rint(a) floor(a+0.5)
  538: 
  539: static double sqrarg;
  540: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  541: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  542: int agegomp= AGEGOMP;
  543: 
  544: int imx; 
  545: int stepm=1;
  546: /* Stepm, step in month: minimum step interpolation*/
  547: 
  548: int estepm;
  549: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  550: 
  551: int m,nb;
  552: long *num;
  553: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  554: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  555: double **pmmij, ***probs;
  556: double *ageexmed,*agecens;
  557: double dateintmean=0;
  558: 
  559: double *weight;
  560: int **s; /* Status */
  561: double *agedc, **covar, idx;
  562: int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  563: double *lsurv, *lpop, *tpop;
  564: 
  565: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  566: double ftolhess; /* Tolerance for computing hessian */
  567: 
  568: /**************** split *************************/
  569: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  570: {
  571:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  572:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  573:   */ 
  574:   char	*ss;				/* pointer */
  575:   int	l1, l2;				/* length counters */
  576: 
  577:   l1 = strlen(path );			/* length of path */
  578:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  579:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  580:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  581:     strcpy( name, path );		/* we got the fullname name because no directory */
  582:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  583:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  584:     /* get current working directory */
  585:     /*    extern  char* getcwd ( char *buf , int len);*/
  586:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  587:       return( GLOCK_ERROR_GETCWD );
  588:     }
  589:     /* got dirc from getcwd*/
  590:     printf(" DIRC = %s \n",dirc);
  591:   } else {				/* strip direcotry from path */
  592:     ss++;				/* after this, the filename */
  593:     l2 = strlen( ss );			/* length of filename */
  594:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  595:     strcpy( name, ss );		/* save file name */
  596:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  597:     dirc[l1-l2] = 0;			/* add zero */
  598:     printf(" DIRC2 = %s \n",dirc);
  599:   }
  600:   /* We add a separator at the end of dirc if not exists */
  601:   l1 = strlen( dirc );			/* length of directory */
  602:   if( dirc[l1-1] != DIRSEPARATOR ){
  603:     dirc[l1] =  DIRSEPARATOR;
  604:     dirc[l1+1] = 0; 
  605:     printf(" DIRC3 = %s \n",dirc);
  606:   }
  607:   ss = strrchr( name, '.' );		/* find last / */
  608:   if (ss >0){
  609:     ss++;
  610:     strcpy(ext,ss);			/* save extension */
  611:     l1= strlen( name);
  612:     l2= strlen(ss)+1;
  613:     strncpy( finame, name, l1-l2);
  614:     finame[l1-l2]= 0;
  615:   }
  616: 
  617:   return( 0 );				/* we're done */
  618: }
  619: 
  620: 
  621: /******************************************/
  622: 
  623: void replace_back_to_slash(char *s, char*t)
  624: {
  625:   int i;
  626:   int lg=0;
  627:   i=0;
  628:   lg=strlen(t);
  629:   for(i=0; i<= lg; i++) {
  630:     (s[i] = t[i]);
  631:     if (t[i]== '\\') s[i]='/';
  632:   }
  633: }
  634: 
  635: char *trimbb(char *out, char *in)
  636: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  637:   char *s;
  638:   s=out;
  639:   while (*in != '\0'){
  640:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  641:       in++;
  642:     }
  643:     *out++ = *in++;
  644:   }
  645:   *out='\0';
  646:   return s;
  647: }
  648: 
  649: char *cutv(char *blocc, char *alocc, char *in, char occ)
  650: {
  651:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  652:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  653:      gives blocc="abcdef2ghi" and alocc="j".
  654:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
  655:   */
  656:   char *s, *t;
  657:   t=in;s=in;
  658:   while (*in != '\0'){
  659:     while( *in == occ){
  660:       *blocc++ = *in++;
  661:       s=in;
  662:     }
  663:     *blocc++ = *in++;
  664:   }
  665:   if (s == t) /* occ not found */
  666:     *(blocc-(in-s))='\0';
  667:   else
  668:     *(blocc-(in-s)-1)='\0';
  669:   in=s;
  670:   while ( *in != '\0'){
  671:     *alocc++ = *in++;
  672:   }
  673: 
  674:   *alocc='\0';
  675:   return s;
  676: }
  677: 
  678: int nbocc(char *s, char occ)
  679: {
  680:   int i,j=0;
  681:   int lg=20;
  682:   i=0;
  683:   lg=strlen(s);
  684:   for(i=0; i<= lg; i++) {
  685:   if  (s[i] == occ ) j++;
  686:   }
  687:   return j;
  688: }
  689: 
  690: /* void cutv(char *u,char *v, char*t, char occ) */
  691: /* { */
  692: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  693: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
  694: /*      gives u="abcdef2ghi" and v="j" *\/ */
  695: /*   int i,lg,j,p=0; */
  696: /*   i=0; */
  697: /*   lg=strlen(t); */
  698: /*   for(j=0; j<=lg-1; j++) { */
  699: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
  700: /*   } */
  701: 
  702: /*   for(j=0; j<p; j++) { */
  703: /*     (u[j] = t[j]); */
  704: /*   } */
  705: /*      u[p]='\0'; */
  706: 
  707: /*    for(j=0; j<= lg; j++) { */
  708: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
  709: /*   } */
  710: /* } */
  711: 
  712: /********************** nrerror ********************/
  713: 
  714: void nrerror(char error_text[])
  715: {
  716:   fprintf(stderr,"ERREUR ...\n");
  717:   fprintf(stderr,"%s\n",error_text);
  718:   exit(EXIT_FAILURE);
  719: }
  720: /*********************** vector *******************/
  721: double *vector(int nl, int nh)
  722: {
  723:   double *v;
  724:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  725:   if (!v) nrerror("allocation failure in vector");
  726:   return v-nl+NR_END;
  727: }
  728: 
  729: /************************ free vector ******************/
  730: void free_vector(double*v, int nl, int nh)
  731: {
  732:   free((FREE_ARG)(v+nl-NR_END));
  733: }
  734: 
  735: /************************ivector *******************************/
  736: int *ivector(long nl,long nh)
  737: {
  738:   int *v;
  739:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  740:   if (!v) nrerror("allocation failure in ivector");
  741:   return v-nl+NR_END;
  742: }
  743: 
  744: /******************free ivector **************************/
  745: void free_ivector(int *v, long nl, long nh)
  746: {
  747:   free((FREE_ARG)(v+nl-NR_END));
  748: }
  749: 
  750: /************************lvector *******************************/
  751: long *lvector(long nl,long nh)
  752: {
  753:   long *v;
  754:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  755:   if (!v) nrerror("allocation failure in ivector");
  756:   return v-nl+NR_END;
  757: }
  758: 
  759: /******************free lvector **************************/
  760: void free_lvector(long *v, long nl, long nh)
  761: {
  762:   free((FREE_ARG)(v+nl-NR_END));
  763: }
  764: 
  765: /******************* imatrix *******************************/
  766: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  767:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  768: { 
  769:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  770:   int **m; 
  771:   
  772:   /* allocate pointers to rows */ 
  773:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  774:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  775:   m += NR_END; 
  776:   m -= nrl; 
  777:   
  778:   
  779:   /* allocate rows and set pointers to them */ 
  780:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  781:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  782:   m[nrl] += NR_END; 
  783:   m[nrl] -= ncl; 
  784:   
  785:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  786:   
  787:   /* return pointer to array of pointers to rows */ 
  788:   return m; 
  789: } 
  790: 
  791: /****************** free_imatrix *************************/
  792: void free_imatrix(m,nrl,nrh,ncl,nch)
  793:       int **m;
  794:       long nch,ncl,nrh,nrl; 
  795:      /* free an int matrix allocated by imatrix() */ 
  796: { 
  797:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  798:   free((FREE_ARG) (m+nrl-NR_END)); 
  799: } 
  800: 
  801: /******************* matrix *******************************/
  802: double **matrix(long nrl, long nrh, long ncl, long nch)
  803: {
  804:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  805:   double **m;
  806: 
  807:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  808:   if (!m) nrerror("allocation failure 1 in matrix()");
  809:   m += NR_END;
  810:   m -= nrl;
  811: 
  812:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  813:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  814:   m[nrl] += NR_END;
  815:   m[nrl] -= ncl;
  816: 
  817:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  818:   return m;
  819:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
  820:    */
  821: }
  822: 
  823: /*************************free matrix ************************/
  824: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  825: {
  826:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  827:   free((FREE_ARG)(m+nrl-NR_END));
  828: }
  829: 
  830: /******************* ma3x *******************************/
  831: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  832: {
  833:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  834:   double ***m;
  835: 
  836:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  837:   if (!m) nrerror("allocation failure 1 in matrix()");
  838:   m += NR_END;
  839:   m -= nrl;
  840: 
  841:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  842:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  843:   m[nrl] += NR_END;
  844:   m[nrl] -= ncl;
  845: 
  846:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  847: 
  848:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  849:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  850:   m[nrl][ncl] += NR_END;
  851:   m[nrl][ncl] -= nll;
  852:   for (j=ncl+1; j<=nch; j++) 
  853:     m[nrl][j]=m[nrl][j-1]+nlay;
  854:   
  855:   for (i=nrl+1; i<=nrh; i++) {
  856:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  857:     for (j=ncl+1; j<=nch; j++) 
  858:       m[i][j]=m[i][j-1]+nlay;
  859:   }
  860:   return m; 
  861:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  862:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  863:   */
  864: }
  865: 
  866: /*************************free ma3x ************************/
  867: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  868: {
  869:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  870:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  871:   free((FREE_ARG)(m+nrl-NR_END));
  872: }
  873: 
  874: /*************** function subdirf ***********/
  875: char *subdirf(char fileres[])
  876: {
  877:   /* Caution optionfilefiname is hidden */
  878:   strcpy(tmpout,optionfilefiname);
  879:   strcat(tmpout,"/"); /* Add to the right */
  880:   strcat(tmpout,fileres);
  881:   return tmpout;
  882: }
  883: 
  884: /*************** function subdirf2 ***********/
  885: char *subdirf2(char fileres[], char *preop)
  886: {
  887:   
  888:   /* Caution optionfilefiname is hidden */
  889:   strcpy(tmpout,optionfilefiname);
  890:   strcat(tmpout,"/");
  891:   strcat(tmpout,preop);
  892:   strcat(tmpout,fileres);
  893:   return tmpout;
  894: }
  895: 
  896: /*************** function subdirf3 ***********/
  897: char *subdirf3(char fileres[], char *preop, char *preop2)
  898: {
  899:   
  900:   /* Caution optionfilefiname is hidden */
  901:   strcpy(tmpout,optionfilefiname);
  902:   strcat(tmpout,"/");
  903:   strcat(tmpout,preop);
  904:   strcat(tmpout,preop2);
  905:   strcat(tmpout,fileres);
  906:   return tmpout;
  907: }
  908: 
  909: /***************** f1dim *************************/
  910: extern int ncom; 
  911: extern double *pcom,*xicom;
  912: extern double (*nrfunc)(double []); 
  913:  
  914: double f1dim(double x) 
  915: { 
  916:   int j; 
  917:   double f;
  918:   double *xt; 
  919:  
  920:   xt=vector(1,ncom); 
  921:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  922:   f=(*nrfunc)(xt); 
  923:   free_vector(xt,1,ncom); 
  924:   return f; 
  925: } 
  926: 
  927: /*****************brent *************************/
  928: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  929: { 
  930:   int iter; 
  931:   double a,b,d,etemp;
  932:   double fu,fv,fw,fx;
  933:   double ftemp;
  934:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  935:   double e=0.0; 
  936:  
  937:   a=(ax < cx ? ax : cx); 
  938:   b=(ax > cx ? ax : cx); 
  939:   x=w=v=bx; 
  940:   fw=fv=fx=(*f)(x); 
  941:   for (iter=1;iter<=ITMAX;iter++) { 
  942:     xm=0.5*(a+b); 
  943:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  944:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  945:     printf(".");fflush(stdout);
  946:     fprintf(ficlog,".");fflush(ficlog);
  947: #ifdef DEBUG
  948:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  949:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  950:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  951: #endif
  952:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  953:       *xmin=x; 
  954:       return fx; 
  955:     } 
  956:     ftemp=fu;
  957:     if (fabs(e) > tol1) { 
  958:       r=(x-w)*(fx-fv); 
  959:       q=(x-v)*(fx-fw); 
  960:       p=(x-v)*q-(x-w)*r; 
  961:       q=2.0*(q-r); 
  962:       if (q > 0.0) p = -p; 
  963:       q=fabs(q); 
  964:       etemp=e; 
  965:       e=d; 
  966:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  967: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  968:       else { 
  969: 	d=p/q; 
  970: 	u=x+d; 
  971: 	if (u-a < tol2 || b-u < tol2) 
  972: 	  d=SIGN(tol1,xm-x); 
  973:       } 
  974:     } else { 
  975:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  976:     } 
  977:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  978:     fu=(*f)(u); 
  979:     if (fu <= fx) { 
  980:       if (u >= x) a=x; else b=x; 
  981:       SHFT(v,w,x,u) 
  982: 	SHFT(fv,fw,fx,fu) 
  983: 	} else { 
  984: 	  if (u < x) a=u; else b=u; 
  985: 	  if (fu <= fw || w == x) { 
  986: 	    v=w; 
  987: 	    w=u; 
  988: 	    fv=fw; 
  989: 	    fw=fu; 
  990: 	  } else if (fu <= fv || v == x || v == w) { 
  991: 	    v=u; 
  992: 	    fv=fu; 
  993: 	  } 
  994: 	} 
  995:   } 
  996:   nrerror("Too many iterations in brent"); 
  997:   *xmin=x; 
  998:   return fx; 
  999: } 
 1000: 
 1001: /****************** mnbrak ***********************/
 1002: 
 1003: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1004: 	    double (*func)(double)) 
 1005: { 
 1006:   double ulim,u,r,q, dum;
 1007:   double fu; 
 1008:  
 1009:   *fa=(*func)(*ax); 
 1010:   *fb=(*func)(*bx); 
 1011:   if (*fb > *fa) { 
 1012:     SHFT(dum,*ax,*bx,dum) 
 1013:       SHFT(dum,*fb,*fa,dum) 
 1014:       } 
 1015:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1016:   *fc=(*func)(*cx); 
 1017:   while (*fb > *fc) { 
 1018:     r=(*bx-*ax)*(*fb-*fc); 
 1019:     q=(*bx-*cx)*(*fb-*fa); 
 1020:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1021:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 1022:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
 1023:     if ((*bx-u)*(u-*cx) > 0.0) { 
 1024:       fu=(*func)(u); 
 1025:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
 1026:       fu=(*func)(u); 
 1027:       if (fu < *fc) { 
 1028: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1029: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
 1030: 	  } 
 1031:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 1032:       u=ulim; 
 1033:       fu=(*func)(u); 
 1034:     } else { 
 1035:       u=(*cx)+GOLD*(*cx-*bx); 
 1036:       fu=(*func)(u); 
 1037:     } 
 1038:     SHFT(*ax,*bx,*cx,u) 
 1039:       SHFT(*fa,*fb,*fc,fu) 
 1040:       } 
 1041: } 
 1042: 
 1043: /*************** linmin ************************/
 1044: 
 1045: int ncom; 
 1046: double *pcom,*xicom;
 1047: double (*nrfunc)(double []); 
 1048:  
 1049: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1050: { 
 1051:   double brent(double ax, double bx, double cx, 
 1052: 	       double (*f)(double), double tol, double *xmin); 
 1053:   double f1dim(double x); 
 1054:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1055: 	      double *fc, double (*func)(double)); 
 1056:   int j; 
 1057:   double xx,xmin,bx,ax; 
 1058:   double fx,fb,fa;
 1059:  
 1060:   ncom=n; 
 1061:   pcom=vector(1,n); 
 1062:   xicom=vector(1,n); 
 1063:   nrfunc=func; 
 1064:   for (j=1;j<=n;j++) { 
 1065:     pcom[j]=p[j]; 
 1066:     xicom[j]=xi[j]; 
 1067:   } 
 1068:   ax=0.0; 
 1069:   xx=1.0; 
 1070:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 1071:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 1072: #ifdef DEBUG
 1073:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1074:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1075: #endif
 1076:   for (j=1;j<=n;j++) { 
 1077:     xi[j] *= xmin; 
 1078:     p[j] += xi[j]; 
 1079:   } 
 1080:   free_vector(xicom,1,n); 
 1081:   free_vector(pcom,1,n); 
 1082: } 
 1083: 
 1084: char *asc_diff_time(long time_sec, char ascdiff[])
 1085: {
 1086:   long sec_left, days, hours, minutes;
 1087:   days = (time_sec) / (60*60*24);
 1088:   sec_left = (time_sec) % (60*60*24);
 1089:   hours = (sec_left) / (60*60) ;
 1090:   sec_left = (sec_left) %(60*60);
 1091:   minutes = (sec_left) /60;
 1092:   sec_left = (sec_left) % (60);
 1093:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 1094:   return ascdiff;
 1095: }
 1096: 
 1097: /*************** powell ************************/
 1098: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1099: 	    double (*func)(double [])) 
 1100: { 
 1101:   void linmin(double p[], double xi[], int n, double *fret, 
 1102: 	      double (*func)(double [])); 
 1103:   int i,ibig,j; 
 1104:   double del,t,*pt,*ptt,*xit;
 1105:   double fp,fptt;
 1106:   double *xits;
 1107:   int niterf, itmp;
 1108: 
 1109:   pt=vector(1,n); 
 1110:   ptt=vector(1,n); 
 1111:   xit=vector(1,n); 
 1112:   xits=vector(1,n); 
 1113:   *fret=(*func)(p); 
 1114:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1115:   for (*iter=1;;++(*iter)) { 
 1116:     fp=(*fret); 
 1117:     ibig=0; 
 1118:     del=0.0; 
 1119:     last_time=curr_time;
 1120:     (void) gettimeofday(&curr_time,&tzp);
 1121:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 1122:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 1123: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 1124:    for (i=1;i<=n;i++) {
 1125:       printf(" %d %.12f",i, p[i]);
 1126:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1127:       fprintf(ficrespow," %.12lf", p[i]);
 1128:     }
 1129:     printf("\n");
 1130:     fprintf(ficlog,"\n");
 1131:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1132:     if(*iter <=3){
 1133:       tm = *localtime(&curr_time.tv_sec);
 1134:       strcpy(strcurr,asctime(&tm));
 1135: /*       asctime_r(&tm,strcurr); */
 1136:       forecast_time=curr_time; 
 1137:       itmp = strlen(strcurr);
 1138:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1139: 	strcurr[itmp-1]='\0';
 1140:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 1141:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 1142:       for(niterf=10;niterf<=30;niterf+=10){
 1143: 	forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 1144: 	tmf = *localtime(&forecast_time.tv_sec);
 1145: /* 	asctime_r(&tmf,strfor); */
 1146: 	strcpy(strfor,asctime(&tmf));
 1147: 	itmp = strlen(strfor);
 1148: 	if(strfor[itmp-1]=='\n')
 1149: 	strfor[itmp-1]='\0';
 1150: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 1151: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 1152:       }
 1153:     }
 1154:     for (i=1;i<=n;i++) { 
 1155:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1156:       fptt=(*fret); 
 1157: #ifdef DEBUG
 1158:       printf("fret=%lf \n",*fret);
 1159:       fprintf(ficlog,"fret=%lf \n",*fret);
 1160: #endif
 1161:       printf("%d",i);fflush(stdout);
 1162:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1163:       linmin(p,xit,n,fret,func); 
 1164:       if (fabs(fptt-(*fret)) > del) { 
 1165: 	del=fabs(fptt-(*fret)); 
 1166: 	ibig=i; 
 1167:       } 
 1168: #ifdef DEBUG
 1169:       printf("%d %.12e",i,(*fret));
 1170:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1171:       for (j=1;j<=n;j++) {
 1172: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1173: 	printf(" x(%d)=%.12e",j,xit[j]);
 1174: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1175:       }
 1176:       for(j=1;j<=n;j++) {
 1177: 	printf(" p=%.12e",p[j]);
 1178: 	fprintf(ficlog," p=%.12e",p[j]);
 1179:       }
 1180:       printf("\n");
 1181:       fprintf(ficlog,"\n");
 1182: #endif
 1183:     } 
 1184:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 1185: #ifdef DEBUG
 1186:       int k[2],l;
 1187:       k[0]=1;
 1188:       k[1]=-1;
 1189:       printf("Max: %.12e",(*func)(p));
 1190:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1191:       for (j=1;j<=n;j++) {
 1192: 	printf(" %.12e",p[j]);
 1193: 	fprintf(ficlog," %.12e",p[j]);
 1194:       }
 1195:       printf("\n");
 1196:       fprintf(ficlog,"\n");
 1197:       for(l=0;l<=1;l++) {
 1198: 	for (j=1;j<=n;j++) {
 1199: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1200: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1201: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1202: 	}
 1203: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1204: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1205:       }
 1206: #endif
 1207: 
 1208: 
 1209:       free_vector(xit,1,n); 
 1210:       free_vector(xits,1,n); 
 1211:       free_vector(ptt,1,n); 
 1212:       free_vector(pt,1,n); 
 1213:       return; 
 1214:     } 
 1215:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1216:     for (j=1;j<=n;j++) { 
 1217:       ptt[j]=2.0*p[j]-pt[j]; 
 1218:       xit[j]=p[j]-pt[j]; 
 1219:       pt[j]=p[j]; 
 1220:     } 
 1221:     fptt=(*func)(ptt); 
 1222:     if (fptt < fp) { 
 1223:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 1224:       if (t < 0.0) { 
 1225: 	linmin(p,xit,n,fret,func); 
 1226: 	for (j=1;j<=n;j++) { 
 1227: 	  xi[j][ibig]=xi[j][n]; 
 1228: 	  xi[j][n]=xit[j]; 
 1229: 	}
 1230: #ifdef DEBUG
 1231: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1232: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1233: 	for(j=1;j<=n;j++){
 1234: 	  printf(" %.12e",xit[j]);
 1235: 	  fprintf(ficlog," %.12e",xit[j]);
 1236: 	}
 1237: 	printf("\n");
 1238: 	fprintf(ficlog,"\n");
 1239: #endif
 1240:       }
 1241:     } 
 1242:   } 
 1243: } 
 1244: 
 1245: /**** Prevalence limit (stable or period prevalence)  ****************/
 1246: 
 1247: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1248: {
 1249:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1250:      matrix by transitions matrix until convergence is reached */
 1251: 
 1252:   int i, ii,j,k;
 1253:   double min, max, maxmin, maxmax,sumnew=0.;
 1254:   double **matprod2();
 1255:   double **out, cov[NCOVMAX+1], **pmij();
 1256:   double **newm;
 1257:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1258: 
 1259:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1260:     for (j=1;j<=nlstate+ndeath;j++){
 1261:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1262:     }
 1263: 
 1264:    cov[1]=1.;
 1265:  
 1266:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1267:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1268:     newm=savm;
 1269:     /* Covariates have to be included here again */
 1270:     cov[2]=agefin;
 1271:     
 1272:     for (k=1; k<=cptcovn;k++) {
 1273:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1274:       /*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 1275:     }
 1276:     for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1277:     for (k=1; k<=cptcovprod;k++)
 1278:       cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1279:     
 1280:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1281:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1282:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1283:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 1284:     
 1285:     savm=oldm;
 1286:     oldm=newm;
 1287:     maxmax=0.;
 1288:     for(j=1;j<=nlstate;j++){
 1289:       min=1.;
 1290:       max=0.;
 1291:       for(i=1; i<=nlstate; i++) {
 1292: 	sumnew=0;
 1293: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1294: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1295: 	max=FMAX(max,prlim[i][j]);
 1296: 	min=FMIN(min,prlim[i][j]);
 1297:       }
 1298:       maxmin=max-min;
 1299:       maxmax=FMAX(maxmax,maxmin);
 1300:     }
 1301:     if(maxmax < ftolpl){
 1302:       return prlim;
 1303:     }
 1304:   }
 1305: }
 1306: 
 1307: /*************** transition probabilities ***************/ 
 1308: 
 1309: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1310: {
 1311:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1312:      computes the probability to be observed in state j being in state i by appying the
 1313:      model to the ncovmodel covariates (including constant and age).
 1314:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1315:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1316:      ncth covariate in the global vector x is given by the formula:
 1317:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1318:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1319:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1320:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1321:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1322:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1323:   */
 1324:   double s1, lnpijopii;
 1325:   /*double t34;*/
 1326:   int i,j,j1, nc, ii, jj;
 1327: 
 1328:     for(i=1; i<= nlstate; i++){
 1329:       for(j=1; j<i;j++){
 1330: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1331: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1332: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1333: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1334: 	}
 1335: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1336: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1337:       }
 1338:       for(j=i+1; j<=nlstate+ndeath;j++){
 1339: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1340: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1341: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1342: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1343: 	}
 1344: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1345:       }
 1346:     }
 1347:     
 1348:     for(i=1; i<= nlstate; i++){
 1349:       s1=0;
 1350:       for(j=1; j<i; j++){
 1351: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1352: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1353:       }
 1354:       for(j=i+1; j<=nlstate+ndeath; j++){
 1355: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1356: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1357:       }
 1358:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1359:       ps[i][i]=1./(s1+1.);
 1360:       /* Computing other pijs */
 1361:       for(j=1; j<i; j++)
 1362: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1363:       for(j=i+1; j<=nlstate+ndeath; j++)
 1364: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1365:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1366:     } /* end i */
 1367:     
 1368:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1369:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1370: 	ps[ii][jj]=0;
 1371: 	ps[ii][ii]=1;
 1372:       }
 1373:     }
 1374:     
 1375: 
 1376: /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1377: /* 	 for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1378: /* 	   printf("ddd %lf ",ps[ii][jj]); */
 1379: /* 	 } */
 1380: /* 	 printf("\n "); */
 1381: /*        } */
 1382: /*        printf("\n ");printf("%lf ",cov[2]); */
 1383:        /*
 1384:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1385:       goto end;*/
 1386:     return ps;
 1387: }
 1388: 
 1389: /**************** Product of 2 matrices ******************/
 1390: 
 1391: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 1392: {
 1393:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1394:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1395:   /* in, b, out are matrice of pointers which should have been initialized 
 1396:      before: only the contents of out is modified. The function returns
 1397:      a pointer to pointers identical to out */
 1398:   long i, j, k;
 1399:   for(i=nrl; i<= nrh; i++)
 1400:     for(k=ncolol; k<=ncoloh; k++)
 1401:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
 1402: 	out[i][k] +=in[i][j]*b[j][k];
 1403: 
 1404:   return out;
 1405: }
 1406: 
 1407: 
 1408: /************* Higher Matrix Product ***************/
 1409: 
 1410: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1411: {
 1412:   /* Computes the transition matrix starting at age 'age' over 
 1413:      'nhstepm*hstepm*stepm' months (i.e. until
 1414:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1415:      nhstepm*hstepm matrices. 
 1416:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1417:      (typically every 2 years instead of every month which is too big 
 1418:      for the memory).
 1419:      Model is determined by parameters x and covariates have to be 
 1420:      included manually here. 
 1421: 
 1422:      */
 1423: 
 1424:   int i, j, d, h, k;
 1425:   double **out, cov[NCOVMAX+1];
 1426:   double **newm;
 1427: 
 1428:   /* Hstepm could be zero and should return the unit matrix */
 1429:   for (i=1;i<=nlstate+ndeath;i++)
 1430:     for (j=1;j<=nlstate+ndeath;j++){
 1431:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1432:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1433:     }
 1434:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1435:   for(h=1; h <=nhstepm; h++){
 1436:     for(d=1; d <=hstepm; d++){
 1437:       newm=savm;
 1438:       /* Covariates have to be included here again */
 1439:       cov[1]=1.;
 1440:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1441:       for (k=1; k<=cptcovn;k++) 
 1442: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1443:       for (k=1; k<=cptcovage;k++)
 1444: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1445:       for (k=1; k<=cptcovprod;k++)
 1446: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1447: 
 1448: 
 1449:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1450:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1451:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1452: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1453:       savm=oldm;
 1454:       oldm=newm;
 1455:     }
 1456:     for(i=1; i<=nlstate+ndeath; i++)
 1457:       for(j=1;j<=nlstate+ndeath;j++) {
 1458: 	po[i][j][h]=newm[i][j];
 1459: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 1460:       }
 1461:     /*printf("h=%d ",h);*/
 1462:   } /* end h */
 1463: /*     printf("\n H=%d \n",h); */
 1464:   return po;
 1465: }
 1466: 
 1467: 
 1468: /*************** log-likelihood *************/
 1469: double func( double *x)
 1470: {
 1471:   int i, ii, j, k, mi, d, kk;
 1472:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1473:   double **out;
 1474:   double sw; /* Sum of weights */
 1475:   double lli; /* Individual log likelihood */
 1476:   int s1, s2;
 1477:   double bbh, survp;
 1478:   long ipmx;
 1479:   /*extern weight */
 1480:   /* We are differentiating ll according to initial status */
 1481:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1482:   /*for(i=1;i<imx;i++) 
 1483:     printf(" %d\n",s[4][i]);
 1484:   */
 1485:   cov[1]=1.;
 1486: 
 1487:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1488: 
 1489:   if(mle==1){
 1490:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1491:       /* Computes the values of the ncovmodel covariates of the model
 1492: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 1493: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 1494: 	 to be observed in j being in i according to the model.
 1495:        */
 1496:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1497:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 1498: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 1499: 	 has been calculated etc */
 1500:       for(mi=1; mi<= wav[i]-1; mi++){
 1501: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1502: 	  for (j=1;j<=nlstate+ndeath;j++){
 1503: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1504: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1505: 	  }
 1506: 	for(d=0; d<dh[mi][i]; d++){
 1507: 	  newm=savm;
 1508: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1509: 	  for (kk=1; kk<=cptcovage;kk++) {
 1510: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 1511: 	  }
 1512: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1513: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1514: 	  savm=oldm;
 1515: 	  oldm=newm;
 1516: 	} /* end mult */
 1517:       
 1518: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1519: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1520: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1521: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1522: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1523: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1524: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1525: 	 * probability in order to take into account the bias as a fraction of the way
 1526: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1527: 	 * -stepm/2 to stepm/2 .
 1528: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1529: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1530: 	 */
 1531: 	s1=s[mw[mi][i]][i];
 1532: 	s2=s[mw[mi+1][i]][i];
 1533: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1534: 	/* bias bh is positive if real duration
 1535: 	 * is higher than the multiple of stepm and negative otherwise.
 1536: 	 */
 1537: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1538: 	if( s2 > nlstate){ 
 1539: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1540: 	     then the contribution to the likelihood is the probability to 
 1541: 	     die between last step unit time and current  step unit time, 
 1542: 	     which is also equal to probability to die before dh 
 1543: 	     minus probability to die before dh-stepm . 
 1544: 	     In version up to 0.92 likelihood was computed
 1545: 	as if date of death was unknown. Death was treated as any other
 1546: 	health state: the date of the interview describes the actual state
 1547: 	and not the date of a change in health state. The former idea was
 1548: 	to consider that at each interview the state was recorded
 1549: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1550: 	introduced the exact date of death then we should have modified
 1551: 	the contribution of an exact death to the likelihood. This new
 1552: 	contribution is smaller and very dependent of the step unit
 1553: 	stepm. It is no more the probability to die between last interview
 1554: 	and month of death but the probability to survive from last
 1555: 	interview up to one month before death multiplied by the
 1556: 	probability to die within a month. Thanks to Chris
 1557: 	Jackson for correcting this bug.  Former versions increased
 1558: 	mortality artificially. The bad side is that we add another loop
 1559: 	which slows down the processing. The difference can be up to 10%
 1560: 	lower mortality.
 1561: 	  */
 1562: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1563: 
 1564: 
 1565: 	} else if  (s2==-2) {
 1566: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1567: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1568: 	  /*survp += out[s1][j]; */
 1569: 	  lli= log(survp);
 1570: 	}
 1571: 	
 1572:  	else if  (s2==-4) { 
 1573: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 1574: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1575:  	  lli= log(survp); 
 1576:  	} 
 1577: 
 1578:  	else if  (s2==-5) { 
 1579:  	  for (j=1,survp=0. ; j<=2; j++)  
 1580: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1581:  	  lli= log(survp); 
 1582:  	} 
 1583: 	
 1584: 	else{
 1585: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1586: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1587: 	} 
 1588: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1589: 	/*if(lli ==000.0)*/
 1590: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1591:   	ipmx +=1;
 1592: 	sw += weight[i];
 1593: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1594:       } /* end of wave */
 1595:     } /* end of individual */
 1596:   }  else if(mle==2){
 1597:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1598:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1599:       for(mi=1; mi<= wav[i]-1; mi++){
 1600: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1601: 	  for (j=1;j<=nlstate+ndeath;j++){
 1602: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1603: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1604: 	  }
 1605: 	for(d=0; d<=dh[mi][i]; d++){
 1606: 	  newm=savm;
 1607: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1608: 	  for (kk=1; kk<=cptcovage;kk++) {
 1609: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1610: 	  }
 1611: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1612: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1613: 	  savm=oldm;
 1614: 	  oldm=newm;
 1615: 	} /* end mult */
 1616:       
 1617: 	s1=s[mw[mi][i]][i];
 1618: 	s2=s[mw[mi+1][i]][i];
 1619: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1620: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1621: 	ipmx +=1;
 1622: 	sw += weight[i];
 1623: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1624:       } /* end of wave */
 1625:     } /* end of individual */
 1626:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1627:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1628:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1629:       for(mi=1; mi<= wav[i]-1; mi++){
 1630: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1631: 	  for (j=1;j<=nlstate+ndeath;j++){
 1632: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1633: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1634: 	  }
 1635: 	for(d=0; d<dh[mi][i]; d++){
 1636: 	  newm=savm;
 1637: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1638: 	  for (kk=1; kk<=cptcovage;kk++) {
 1639: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1640: 	  }
 1641: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1642: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1643: 	  savm=oldm;
 1644: 	  oldm=newm;
 1645: 	} /* end mult */
 1646:       
 1647: 	s1=s[mw[mi][i]][i];
 1648: 	s2=s[mw[mi+1][i]][i];
 1649: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1650: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1651: 	ipmx +=1;
 1652: 	sw += weight[i];
 1653: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1654:       } /* end of wave */
 1655:     } /* end of individual */
 1656:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1657:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1658:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1659:       for(mi=1; mi<= wav[i]-1; mi++){
 1660: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1661: 	  for (j=1;j<=nlstate+ndeath;j++){
 1662: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1663: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1664: 	  }
 1665: 	for(d=0; d<dh[mi][i]; d++){
 1666: 	  newm=savm;
 1667: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1668: 	  for (kk=1; kk<=cptcovage;kk++) {
 1669: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1670: 	  }
 1671: 	
 1672: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1673: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1674: 	  savm=oldm;
 1675: 	  oldm=newm;
 1676: 	} /* end mult */
 1677:       
 1678: 	s1=s[mw[mi][i]][i];
 1679: 	s2=s[mw[mi+1][i]][i];
 1680: 	if( s2 > nlstate){ 
 1681: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1682: 	}else{
 1683: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1684: 	}
 1685: 	ipmx +=1;
 1686: 	sw += weight[i];
 1687: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1688: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1689:       } /* end of wave */
 1690:     } /* end of individual */
 1691:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1692:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1693:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1694:       for(mi=1; mi<= wav[i]-1; mi++){
 1695: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1696: 	  for (j=1;j<=nlstate+ndeath;j++){
 1697: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1698: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1699: 	  }
 1700: 	for(d=0; d<dh[mi][i]; d++){
 1701: 	  newm=savm;
 1702: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1703: 	  for (kk=1; kk<=cptcovage;kk++) {
 1704: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1705: 	  }
 1706: 	
 1707: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1708: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1709: 	  savm=oldm;
 1710: 	  oldm=newm;
 1711: 	} /* end mult */
 1712:       
 1713: 	s1=s[mw[mi][i]][i];
 1714: 	s2=s[mw[mi+1][i]][i];
 1715: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1716: 	ipmx +=1;
 1717: 	sw += weight[i];
 1718: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1719: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1720:       } /* end of wave */
 1721:     } /* end of individual */
 1722:   } /* End of if */
 1723:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1724:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1725:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1726:   return -l;
 1727: }
 1728: 
 1729: /*************** log-likelihood *************/
 1730: double funcone( double *x)
 1731: {
 1732:   /* Same as likeli but slower because of a lot of printf and if */
 1733:   int i, ii, j, k, mi, d, kk;
 1734:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1735:   double **out;
 1736:   double lli; /* Individual log likelihood */
 1737:   double llt;
 1738:   int s1, s2;
 1739:   double bbh, survp;
 1740:   /*extern weight */
 1741:   /* We are differentiating ll according to initial status */
 1742:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1743:   /*for(i=1;i<imx;i++) 
 1744:     printf(" %d\n",s[4][i]);
 1745:   */
 1746:   cov[1]=1.;
 1747: 
 1748:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1749: 
 1750:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1751:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1752:     for(mi=1; mi<= wav[i]-1; mi++){
 1753:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1754: 	for (j=1;j<=nlstate+ndeath;j++){
 1755: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1756: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1757: 	}
 1758:       for(d=0; d<dh[mi][i]; d++){
 1759: 	newm=savm;
 1760: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1761: 	for (kk=1; kk<=cptcovage;kk++) {
 1762: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1763: 	}
 1764: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1765: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1766: 	savm=oldm;
 1767: 	oldm=newm;
 1768:       } /* end mult */
 1769:       
 1770:       s1=s[mw[mi][i]][i];
 1771:       s2=s[mw[mi+1][i]][i];
 1772:       bbh=(double)bh[mi][i]/(double)stepm; 
 1773:       /* bias is positive if real duration
 1774:        * is higher than the multiple of stepm and negative otherwise.
 1775:        */
 1776:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1777: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1778:       } else if  (s2==-2) {
 1779: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 1780: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1781: 	lli= log(survp);
 1782:       }else if (mle==1){
 1783: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1784:       } else if(mle==2){
 1785: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1786:       } else if(mle==3){  /* exponential inter-extrapolation */
 1787: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1788:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 1789: 	lli=log(out[s1][s2]); /* Original formula */
 1790:       } else{  /* mle=0 back to 1 */
 1791: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1792: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 1793:       } /* End of if */
 1794:       ipmx +=1;
 1795:       sw += weight[i];
 1796:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1797:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1798:       if(globpr){
 1799: 	fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 1800:  %11.6f %11.6f %11.6f ", \
 1801: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 1802: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 1803: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 1804: 	  llt +=ll[k]*gipmx/gsw;
 1805: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 1806: 	}
 1807: 	fprintf(ficresilk," %10.6f\n", -llt);
 1808:       }
 1809:     } /* end of wave */
 1810:   } /* end of individual */
 1811:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1812:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1813:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1814:   if(globpr==0){ /* First time we count the contributions and weights */
 1815:     gipmx=ipmx;
 1816:     gsw=sw;
 1817:   }
 1818:   return -l;
 1819: }
 1820: 
 1821: 
 1822: /*************** function likelione ***********/
 1823: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 1824: {
 1825:   /* This routine should help understanding what is done with 
 1826:      the selection of individuals/waves and
 1827:      to check the exact contribution to the likelihood.
 1828:      Plotting could be done.
 1829:    */
 1830:   int k;
 1831: 
 1832:   if(*globpri !=0){ /* Just counts and sums, no printings */
 1833:     strcpy(fileresilk,"ilk"); 
 1834:     strcat(fileresilk,fileres);
 1835:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 1836:       printf("Problem with resultfile: %s\n", fileresilk);
 1837:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 1838:     }
 1839:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 1840:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 1841:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 1842:     for(k=1; k<=nlstate; k++) 
 1843:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 1844:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 1845:   }
 1846: 
 1847:   *fretone=(*funcone)(p);
 1848:   if(*globpri !=0){
 1849:     fclose(ficresilk);
 1850:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 1851:     fflush(fichtm); 
 1852:   } 
 1853:   return;
 1854: }
 1855: 
 1856: 
 1857: /*********** Maximum Likelihood Estimation ***************/
 1858: 
 1859: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1860: {
 1861:   int i,j, iter;
 1862:   double **xi;
 1863:   double fret;
 1864:   double fretone; /* Only one call to likelihood */
 1865:   /*  char filerespow[FILENAMELENGTH];*/
 1866:   xi=matrix(1,npar,1,npar);
 1867:   for (i=1;i<=npar;i++)
 1868:     for (j=1;j<=npar;j++)
 1869:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1870:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1871:   strcpy(filerespow,"pow"); 
 1872:   strcat(filerespow,fileres);
 1873:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 1874:     printf("Problem with resultfile: %s\n", filerespow);
 1875:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 1876:   }
 1877:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 1878:   for (i=1;i<=nlstate;i++)
 1879:     for(j=1;j<=nlstate+ndeath;j++)
 1880:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 1881:   fprintf(ficrespow,"\n");
 1882: 
 1883:   powell(p,xi,npar,ftol,&iter,&fret,func);
 1884: 
 1885:   free_matrix(xi,1,npar,1,npar);
 1886:   fclose(ficrespow);
 1887:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 1888:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1889:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1890: 
 1891: }
 1892: 
 1893: /**** Computes Hessian and covariance matrix ***/
 1894: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 1895: {
 1896:   double  **a,**y,*x,pd;
 1897:   double **hess;
 1898:   int i, j,jk;
 1899:   int *indx;
 1900: 
 1901:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 1902:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 1903:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 1904:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 1905:   double gompertz(double p[]);
 1906:   hess=matrix(1,npar,1,npar);
 1907: 
 1908:   printf("\nCalculation of the hessian matrix. Wait...\n");
 1909:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 1910:   for (i=1;i<=npar;i++){
 1911:     printf("%d",i);fflush(stdout);
 1912:     fprintf(ficlog,"%d",i);fflush(ficlog);
 1913:    
 1914:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 1915:     
 1916:     /*  printf(" %f ",p[i]);
 1917: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 1918:   }
 1919:   
 1920:   for (i=1;i<=npar;i++) {
 1921:     for (j=1;j<=npar;j++)  {
 1922:       if (j>i) { 
 1923: 	printf(".%d%d",i,j);fflush(stdout);
 1924: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 1925: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 1926: 	
 1927: 	hess[j][i]=hess[i][j];    
 1928: 	/*printf(" %lf ",hess[i][j]);*/
 1929:       }
 1930:     }
 1931:   }
 1932:   printf("\n");
 1933:   fprintf(ficlog,"\n");
 1934: 
 1935:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 1936:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 1937:   
 1938:   a=matrix(1,npar,1,npar);
 1939:   y=matrix(1,npar,1,npar);
 1940:   x=vector(1,npar);
 1941:   indx=ivector(1,npar);
 1942:   for (i=1;i<=npar;i++)
 1943:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 1944:   ludcmp(a,npar,indx,&pd);
 1945: 
 1946:   for (j=1;j<=npar;j++) {
 1947:     for (i=1;i<=npar;i++) x[i]=0;
 1948:     x[j]=1;
 1949:     lubksb(a,npar,indx,x);
 1950:     for (i=1;i<=npar;i++){ 
 1951:       matcov[i][j]=x[i];
 1952:     }
 1953:   }
 1954: 
 1955:   printf("\n#Hessian matrix#\n");
 1956:   fprintf(ficlog,"\n#Hessian matrix#\n");
 1957:   for (i=1;i<=npar;i++) { 
 1958:     for (j=1;j<=npar;j++) { 
 1959:       printf("%.3e ",hess[i][j]);
 1960:       fprintf(ficlog,"%.3e ",hess[i][j]);
 1961:     }
 1962:     printf("\n");
 1963:     fprintf(ficlog,"\n");
 1964:   }
 1965: 
 1966:   /* Recompute Inverse */
 1967:   for (i=1;i<=npar;i++)
 1968:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 1969:   ludcmp(a,npar,indx,&pd);
 1970: 
 1971:   /*  printf("\n#Hessian matrix recomputed#\n");
 1972: 
 1973:   for (j=1;j<=npar;j++) {
 1974:     for (i=1;i<=npar;i++) x[i]=0;
 1975:     x[j]=1;
 1976:     lubksb(a,npar,indx,x);
 1977:     for (i=1;i<=npar;i++){ 
 1978:       y[i][j]=x[i];
 1979:       printf("%.3e ",y[i][j]);
 1980:       fprintf(ficlog,"%.3e ",y[i][j]);
 1981:     }
 1982:     printf("\n");
 1983:     fprintf(ficlog,"\n");
 1984:   }
 1985:   */
 1986: 
 1987:   free_matrix(a,1,npar,1,npar);
 1988:   free_matrix(y,1,npar,1,npar);
 1989:   free_vector(x,1,npar);
 1990:   free_ivector(indx,1,npar);
 1991:   free_matrix(hess,1,npar,1,npar);
 1992: 
 1993: 
 1994: }
 1995: 
 1996: /*************** hessian matrix ****************/
 1997: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 1998: {
 1999:   int i;
 2000:   int l=1, lmax=20;
 2001:   double k1,k2;
 2002:   double p2[MAXPARM+1]; /* identical to x */
 2003:   double res;
 2004:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2005:   double fx;
 2006:   int k=0,kmax=10;
 2007:   double l1;
 2008: 
 2009:   fx=func(x);
 2010:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2011:   for(l=0 ; l <=lmax; l++){
 2012:     l1=pow(10,l);
 2013:     delts=delt;
 2014:     for(k=1 ; k <kmax; k=k+1){
 2015:       delt = delta*(l1*k);
 2016:       p2[theta]=x[theta] +delt;
 2017:       k1=func(p2)-fx;
 2018:       p2[theta]=x[theta]-delt;
 2019:       k2=func(p2)-fx;
 2020:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2021:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2022:       
 2023: #ifdef DEBUGHESS
 2024:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2025:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2026: #endif
 2027:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2028:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2029: 	k=kmax;
 2030:       }
 2031:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2032: 	k=kmax; l=lmax*10.;
 2033:       }
 2034:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2035: 	delts=delt;
 2036:       }
 2037:     }
 2038:   }
 2039:   delti[theta]=delts;
 2040:   return res; 
 2041:   
 2042: }
 2043: 
 2044: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2045: {
 2046:   int i;
 2047:   int l=1, l1, lmax=20;
 2048:   double k1,k2,k3,k4,res,fx;
 2049:   double p2[MAXPARM+1];
 2050:   int k;
 2051: 
 2052:   fx=func(x);
 2053:   for (k=1; k<=2; k++) {
 2054:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2055:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2056:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2057:     k1=func(p2)-fx;
 2058:   
 2059:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2060:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2061:     k2=func(p2)-fx;
 2062:   
 2063:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2064:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2065:     k3=func(p2)-fx;
 2066:   
 2067:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2068:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2069:     k4=func(p2)-fx;
 2070:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2071: #ifdef DEBUG
 2072:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2073:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2074: #endif
 2075:   }
 2076:   return res;
 2077: }
 2078: 
 2079: /************** Inverse of matrix **************/
 2080: void ludcmp(double **a, int n, int *indx, double *d) 
 2081: { 
 2082:   int i,imax,j,k; 
 2083:   double big,dum,sum,temp; 
 2084:   double *vv; 
 2085:  
 2086:   vv=vector(1,n); 
 2087:   *d=1.0; 
 2088:   for (i=1;i<=n;i++) { 
 2089:     big=0.0; 
 2090:     for (j=1;j<=n;j++) 
 2091:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2092:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2093:     vv[i]=1.0/big; 
 2094:   } 
 2095:   for (j=1;j<=n;j++) { 
 2096:     for (i=1;i<j;i++) { 
 2097:       sum=a[i][j]; 
 2098:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2099:       a[i][j]=sum; 
 2100:     } 
 2101:     big=0.0; 
 2102:     for (i=j;i<=n;i++) { 
 2103:       sum=a[i][j]; 
 2104:       for (k=1;k<j;k++) 
 2105: 	sum -= a[i][k]*a[k][j]; 
 2106:       a[i][j]=sum; 
 2107:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2108: 	big=dum; 
 2109: 	imax=i; 
 2110:       } 
 2111:     } 
 2112:     if (j != imax) { 
 2113:       for (k=1;k<=n;k++) { 
 2114: 	dum=a[imax][k]; 
 2115: 	a[imax][k]=a[j][k]; 
 2116: 	a[j][k]=dum; 
 2117:       } 
 2118:       *d = -(*d); 
 2119:       vv[imax]=vv[j]; 
 2120:     } 
 2121:     indx[j]=imax; 
 2122:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2123:     if (j != n) { 
 2124:       dum=1.0/(a[j][j]); 
 2125:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2126:     } 
 2127:   } 
 2128:   free_vector(vv,1,n);  /* Doesn't work */
 2129: ;
 2130: } 
 2131: 
 2132: void lubksb(double **a, int n, int *indx, double b[]) 
 2133: { 
 2134:   int i,ii=0,ip,j; 
 2135:   double sum; 
 2136:  
 2137:   for (i=1;i<=n;i++) { 
 2138:     ip=indx[i]; 
 2139:     sum=b[ip]; 
 2140:     b[ip]=b[i]; 
 2141:     if (ii) 
 2142:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2143:     else if (sum) ii=i; 
 2144:     b[i]=sum; 
 2145:   } 
 2146:   for (i=n;i>=1;i--) { 
 2147:     sum=b[i]; 
 2148:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2149:     b[i]=sum/a[i][i]; 
 2150:   } 
 2151: } 
 2152: 
 2153: void pstamp(FILE *fichier)
 2154: {
 2155:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2156: }
 2157: 
 2158: /************ Frequencies ********************/
 2159: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2160: {  /* Some frequencies */
 2161:   
 2162:   int i, m, jk, k1,i1, j1, bool, z1,j;
 2163:   int first;
 2164:   double ***freq; /* Frequencies */
 2165:   double *pp, **prop;
 2166:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2167:   char fileresp[FILENAMELENGTH];
 2168:   
 2169:   pp=vector(1,nlstate);
 2170:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2171:   strcpy(fileresp,"p");
 2172:   strcat(fileresp,fileres);
 2173:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2174:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2175:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2176:     exit(0);
 2177:   }
 2178:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2179:   j1=0;
 2180:   
 2181:   j=cptcoveff;
 2182:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2183: 
 2184:   first=1;
 2185: 
 2186:   for(k1=1; k1<=j;k1++){
 2187:     for(i1=1; i1<=ncodemax[k1];i1++){
 2188:       j1++;
 2189:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2190: 	scanf("%d", i);*/
 2191:       for (i=-5; i<=nlstate+ndeath; i++)  
 2192: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2193: 	  for(m=iagemin; m <= iagemax+3; m++)
 2194: 	    freq[i][jk][m]=0;
 2195: 
 2196:     for (i=1; i<=nlstate; i++)  
 2197:       for(m=iagemin; m <= iagemax+3; m++)
 2198: 	prop[i][m]=0;
 2199:       
 2200:       dateintsum=0;
 2201:       k2cpt=0;
 2202:       for (i=1; i<=imx; i++) {
 2203: 	bool=1;
 2204: 	if  (cptcovn>0) {
 2205: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2206: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2207: 	      bool=0;
 2208: 	}
 2209: 	if (bool==1){
 2210: 	  for(m=firstpass; m<=lastpass; m++){
 2211: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2212: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2213: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2214: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2215: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2216: 	      if (m<lastpass) {
 2217: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2218: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2219: 	      }
 2220: 	      
 2221: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2222: 		dateintsum=dateintsum+k2;
 2223: 		k2cpt++;
 2224: 	      }
 2225: 	      /*}*/
 2226: 	  }
 2227: 	}
 2228:       }
 2229:        
 2230:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2231:       pstamp(ficresp);
 2232:       if  (cptcovn>0) {
 2233: 	fprintf(ficresp, "\n#********** Variable "); 
 2234: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2235: 	fprintf(ficresp, "**********\n#");
 2236:       }
 2237:       for(i=1; i<=nlstate;i++) 
 2238: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2239:       fprintf(ficresp, "\n");
 2240:       
 2241:       for(i=iagemin; i <= iagemax+3; i++){
 2242: 	if(i==iagemax+3){
 2243: 	  fprintf(ficlog,"Total");
 2244: 	}else{
 2245: 	  if(first==1){
 2246: 	    first=0;
 2247: 	    printf("See log file for details...\n");
 2248: 	  }
 2249: 	  fprintf(ficlog,"Age %d", i);
 2250: 	}
 2251: 	for(jk=1; jk <=nlstate ; jk++){
 2252: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2253: 	    pp[jk] += freq[jk][m][i]; 
 2254: 	}
 2255: 	for(jk=1; jk <=nlstate ; jk++){
 2256: 	  for(m=-1, pos=0; m <=0 ; m++)
 2257: 	    pos += freq[jk][m][i];
 2258: 	  if(pp[jk]>=1.e-10){
 2259: 	    if(first==1){
 2260: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2261: 	    }
 2262: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2263: 	  }else{
 2264: 	    if(first==1)
 2265: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2266: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2267: 	  }
 2268: 	}
 2269: 
 2270: 	for(jk=1; jk <=nlstate ; jk++){
 2271: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2272: 	    pp[jk] += freq[jk][m][i];
 2273: 	}	
 2274: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2275: 	  pos += pp[jk];
 2276: 	  posprop += prop[jk][i];
 2277: 	}
 2278: 	for(jk=1; jk <=nlstate ; jk++){
 2279: 	  if(pos>=1.e-5){
 2280: 	    if(first==1)
 2281: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2282: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2283: 	  }else{
 2284: 	    if(first==1)
 2285: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2286: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2287: 	  }
 2288: 	  if( i <= iagemax){
 2289: 	    if(pos>=1.e-5){
 2290: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2291: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2292: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2293: 	    }
 2294: 	    else
 2295: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2296: 	  }
 2297: 	}
 2298: 	
 2299: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2300: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2301: 	    if(freq[jk][m][i] !=0 ) {
 2302: 	    if(first==1)
 2303: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2304: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2305: 	    }
 2306: 	if(i <= iagemax)
 2307: 	  fprintf(ficresp,"\n");
 2308: 	if(first==1)
 2309: 	  printf("Others in log...\n");
 2310: 	fprintf(ficlog,"\n");
 2311:       }
 2312:     }
 2313:   }
 2314:   dateintmean=dateintsum/k2cpt; 
 2315:  
 2316:   fclose(ficresp);
 2317:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2318:   free_vector(pp,1,nlstate);
 2319:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2320:   /* End of Freq */
 2321: }
 2322: 
 2323: /************ Prevalence ********************/
 2324: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2325: {  
 2326:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2327:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2328:      We still use firstpass and lastpass as another selection.
 2329:   */
 2330:  
 2331:   int i, m, jk, k1, i1, j1, bool, z1,j;
 2332:   double ***freq; /* Frequencies */
 2333:   double *pp, **prop;
 2334:   double pos,posprop; 
 2335:   double  y2; /* in fractional years */
 2336:   int iagemin, iagemax;
 2337: 
 2338:   iagemin= (int) agemin;
 2339:   iagemax= (int) agemax;
 2340:   /*pp=vector(1,nlstate);*/
 2341:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2342:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2343:   j1=0;
 2344:   
 2345:   j=cptcoveff;
 2346:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2347:   
 2348:   for(k1=1; k1<=j;k1++){
 2349:     for(i1=1; i1<=ncodemax[k1];i1++){
 2350:       j1++;
 2351:       
 2352:       for (i=1; i<=nlstate; i++)  
 2353: 	for(m=iagemin; m <= iagemax+3; m++)
 2354: 	  prop[i][m]=0.0;
 2355:      
 2356:       for (i=1; i<=imx; i++) { /* Each individual */
 2357: 	bool=1;
 2358: 	if  (cptcovn>0) {
 2359: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2360: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2361: 	      bool=0;
 2362: 	} 
 2363: 	if (bool==1) { 
 2364: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2365: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2366: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2367: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2368: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2369: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2370:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2371: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2372:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2373:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2374:  	      } 
 2375: 	    }
 2376: 	  } /* end selection of waves */
 2377: 	}
 2378:       }
 2379:       for(i=iagemin; i <= iagemax+3; i++){  
 2380: 	
 2381:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2382:  	  posprop += prop[jk][i]; 
 2383:  	} 
 2384: 
 2385:  	for(jk=1; jk <=nlstate ; jk++){	    
 2386:  	  if( i <=  iagemax){ 
 2387:  	    if(posprop>=1.e-5){ 
 2388:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2389:  	    } else
 2390: 	      printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
 2391:  	  } 
 2392:  	}/* end jk */ 
 2393:       }/* end i */ 
 2394:     } /* end i1 */
 2395:   } /* end k1 */
 2396:   
 2397:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2398:   /*free_vector(pp,1,nlstate);*/
 2399:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2400: }  /* End of prevalence */
 2401: 
 2402: /************* Waves Concatenation ***************/
 2403: 
 2404: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2405: {
 2406:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2407:      Death is a valid wave (if date is known).
 2408:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2409:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2410:      and mw[mi+1][i]. dh depends on stepm.
 2411:      */
 2412: 
 2413:   int i, mi, m;
 2414:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2415:      double sum=0., jmean=0.;*/
 2416:   int first;
 2417:   int j, k=0,jk, ju, jl;
 2418:   double sum=0.;
 2419:   first=0;
 2420:   jmin=1e+5;
 2421:   jmax=-1;
 2422:   jmean=0.;
 2423:   for(i=1; i<=imx; i++){
 2424:     mi=0;
 2425:     m=firstpass;
 2426:     while(s[m][i] <= nlstate){
 2427:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2428: 	mw[++mi][i]=m;
 2429:       if(m >=lastpass)
 2430: 	break;
 2431:       else
 2432: 	m++;
 2433:     }/* end while */
 2434:     if (s[m][i] > nlstate){
 2435:       mi++;	/* Death is another wave */
 2436:       /* if(mi==0)  never been interviewed correctly before death */
 2437: 	 /* Only death is a correct wave */
 2438:       mw[mi][i]=m;
 2439:     }
 2440: 
 2441:     wav[i]=mi;
 2442:     if(mi==0){
 2443:       nbwarn++;
 2444:       if(first==0){
 2445: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2446: 	first=1;
 2447:       }
 2448:       if(first==1){
 2449: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2450:       }
 2451:     } /* end mi==0 */
 2452:   } /* End individuals */
 2453: 
 2454:   for(i=1; i<=imx; i++){
 2455:     for(mi=1; mi<wav[i];mi++){
 2456:       if (stepm <=0)
 2457: 	dh[mi][i]=1;
 2458:       else{
 2459: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2460: 	  if (agedc[i] < 2*AGESUP) {
 2461: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2462: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2463: 	    else if(j<0){
 2464: 	      nberr++;
 2465: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2466: 	      j=1; /* Temporary Dangerous patch */
 2467: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2468: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2469: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2470: 	    }
 2471: 	    k=k+1;
 2472: 	    if (j >= jmax){
 2473: 	      jmax=j;
 2474: 	      ijmax=i;
 2475: 	    }
 2476: 	    if (j <= jmin){
 2477: 	      jmin=j;
 2478: 	      ijmin=i;
 2479: 	    }
 2480: 	    sum=sum+j;
 2481: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2482: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2483: 	  }
 2484: 	}
 2485: 	else{
 2486: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2487: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2488: 
 2489: 	  k=k+1;
 2490: 	  if (j >= jmax) {
 2491: 	    jmax=j;
 2492: 	    ijmax=i;
 2493: 	  }
 2494: 	  else if (j <= jmin){
 2495: 	    jmin=j;
 2496: 	    ijmin=i;
 2497: 	  }
 2498: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2499: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2500: 	  if(j<0){
 2501: 	    nberr++;
 2502: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2503: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2504: 	  }
 2505: 	  sum=sum+j;
 2506: 	}
 2507: 	jk= j/stepm;
 2508: 	jl= j -jk*stepm;
 2509: 	ju= j -(jk+1)*stepm;
 2510: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2511: 	  if(jl==0){
 2512: 	    dh[mi][i]=jk;
 2513: 	    bh[mi][i]=0;
 2514: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2515: 		  * to avoid the price of an extra matrix product in likelihood */
 2516: 	    dh[mi][i]=jk+1;
 2517: 	    bh[mi][i]=ju;
 2518: 	  }
 2519: 	}else{
 2520: 	  if(jl <= -ju){
 2521: 	    dh[mi][i]=jk;
 2522: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2523: 				 * is higher than the multiple of stepm and negative otherwise.
 2524: 				 */
 2525: 	  }
 2526: 	  else{
 2527: 	    dh[mi][i]=jk+1;
 2528: 	    bh[mi][i]=ju;
 2529: 	  }
 2530: 	  if(dh[mi][i]==0){
 2531: 	    dh[mi][i]=1; /* At least one step */
 2532: 	    bh[mi][i]=ju; /* At least one step */
 2533: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2534: 	  }
 2535: 	} /* end if mle */
 2536:       }
 2537:     } /* end wave */
 2538:   }
 2539:   jmean=sum/k;
 2540:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 2541:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 2542:  }
 2543: 
 2544: /*********** Tricode ****************************/
 2545: void tricode(int *Tvar, int **nbcode, int imx)
 2546: {
 2547:   /* Uses cptcovn+2*cptcovprod as the number of covariates */
 2548:   /*	  Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
 2549: 
 2550:   int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 2551:   int modmaxcovj=0; /* Modality max of covariates j */
 2552:   cptcoveff=0; 
 2553:  
 2554:   for (k=0; k<maxncov; k++) Ndum[k]=0;
 2555:   for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
 2556: 
 2557:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
 2558:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
 2559: 			       modality of this covariate Vj*/ 
 2560:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
 2561: 				      modality of the nth covariate of individual i. */
 2562:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 2563:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2564:       if (ij > modmaxcovj) modmaxcovj=ij; 
 2565:       /* getting the maximum value of the modality of the covariate
 2566: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 2567: 	 female is 1, then modmaxcovj=1.*/
 2568:     }
 2569:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 2570:     for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
 2571:       if( Ndum[i] != 0 )
 2572: 	ncodemax[j]++; 
 2573:       /* Number of modalities of the j th covariate. In fact
 2574: 	 ncodemax[j]=2 (dichotom. variables only) but it could be more for
 2575: 	 historical reasons */
 2576:     } /* Ndum[-1] number of undefined modalities */
 2577: 
 2578:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 2579:     ij=1; 
 2580:     for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
 2581:       for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
 2582: 	if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 2583: 	  nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 2584: 				     k is a modality. If we have model=V1+V1*sex 
 2585: 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2586: 	  ij++;
 2587: 	}
 2588: 	if (ij > ncodemax[j]) break; 
 2589:       }  /* end of loop on */
 2590:     } /* end of loop on modality */ 
 2591:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 2592:   
 2593:   for (k=0; k< maxncov; k++) Ndum[k]=0;
 2594:   
 2595:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
 2596:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 2597:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
 2598:    Ndum[ij]++;
 2599:  }
 2600: 
 2601:  ij=1;
 2602:  for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 2603:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2604:      Tvaraff[ij]=i; /*For printing */
 2605:      ij++;
 2606:    }
 2607:  }
 2608:  ij--;
 2609:  cptcoveff=ij; /*Number of simple covariates*/
 2610: }
 2611: 
 2612: /*********** Health Expectancies ****************/
 2613: 
 2614: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 2615: 
 2616: {
 2617:   /* Health expectancies, no variances */
 2618:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 2619:   int nhstepma, nstepma; /* Decreasing with age */
 2620:   double age, agelim, hf;
 2621:   double ***p3mat;
 2622:   double eip;
 2623: 
 2624:   pstamp(ficreseij);
 2625:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 2626:   fprintf(ficreseij,"# Age");
 2627:   for(i=1; i<=nlstate;i++){
 2628:     for(j=1; j<=nlstate;j++){
 2629:       fprintf(ficreseij," e%1d%1d ",i,j);
 2630:     }
 2631:     fprintf(ficreseij," e%1d. ",i);
 2632:   }
 2633:   fprintf(ficreseij,"\n");
 2634: 
 2635:   
 2636:   if(estepm < stepm){
 2637:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2638:   }
 2639:   else  hstepm=estepm;   
 2640:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2641:    * This is mainly to measure the difference between two models: for example
 2642:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2643:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2644:    * progression in between and thus overestimating or underestimating according
 2645:    * to the curvature of the survival function. If, for the same date, we 
 2646:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2647:    * to compare the new estimate of Life expectancy with the same linear 
 2648:    * hypothesis. A more precise result, taking into account a more precise
 2649:    * curvature will be obtained if estepm is as small as stepm. */
 2650: 
 2651:   /* For example we decided to compute the life expectancy with the smallest unit */
 2652:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2653:      nhstepm is the number of hstepm from age to agelim 
 2654:      nstepm is the number of stepm from age to agelin. 
 2655:      Look at hpijx to understand the reason of that which relies in memory size
 2656:      and note for a fixed period like estepm months */
 2657:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2658:      survival function given by stepm (the optimization length). Unfortunately it
 2659:      means that if the survival funtion is printed only each two years of age and if
 2660:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2661:      results. So we changed our mind and took the option of the best precision.
 2662:   */
 2663:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2664: 
 2665:   agelim=AGESUP;
 2666:   /* If stepm=6 months */
 2667:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2668:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2669:     
 2670: /* nhstepm age range expressed in number of stepm */
 2671:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 2672:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2673:   /* if (stepm >= YEARM) hstepm=1;*/
 2674:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2675:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2676: 
 2677:   for (age=bage; age<=fage; age ++){ 
 2678:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 2679:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2680:     /* if (stepm >= YEARM) hstepm=1;*/
 2681:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 2682: 
 2683:     /* If stepm=6 months */
 2684:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 2685:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 2686:     
 2687:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 2688:     
 2689:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2690:     
 2691:     printf("%d|",(int)age);fflush(stdout);
 2692:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2693:     
 2694:     /* Computing expectancies */
 2695:     for(i=1; i<=nlstate;i++)
 2696:       for(j=1; j<=nlstate;j++)
 2697: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2698: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2699: 	  
 2700: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2701: 
 2702: 	}
 2703: 
 2704:     fprintf(ficreseij,"%3.0f",age );
 2705:     for(i=1; i<=nlstate;i++){
 2706:       eip=0;
 2707:       for(j=1; j<=nlstate;j++){
 2708: 	eip +=eij[i][j][(int)age];
 2709: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 2710:       }
 2711:       fprintf(ficreseij,"%9.4f", eip );
 2712:     }
 2713:     fprintf(ficreseij,"\n");
 2714:     
 2715:   }
 2716:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2717:   printf("\n");
 2718:   fprintf(ficlog,"\n");
 2719:   
 2720: }
 2721: 
 2722: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 2723: 
 2724: {
 2725:   /* Covariances of health expectancies eij and of total life expectancies according
 2726:    to initial status i, ei. .
 2727:   */
 2728:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 2729:   int nhstepma, nstepma; /* Decreasing with age */
 2730:   double age, agelim, hf;
 2731:   double ***p3matp, ***p3matm, ***varhe;
 2732:   double **dnewm,**doldm;
 2733:   double *xp, *xm;
 2734:   double **gp, **gm;
 2735:   double ***gradg, ***trgradg;
 2736:   int theta;
 2737: 
 2738:   double eip, vip;
 2739: 
 2740:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 2741:   xp=vector(1,npar);
 2742:   xm=vector(1,npar);
 2743:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 2744:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 2745:   
 2746:   pstamp(ficresstdeij);
 2747:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 2748:   fprintf(ficresstdeij,"# Age");
 2749:   for(i=1; i<=nlstate;i++){
 2750:     for(j=1; j<=nlstate;j++)
 2751:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 2752:     fprintf(ficresstdeij," e%1d. ",i);
 2753:   }
 2754:   fprintf(ficresstdeij,"\n");
 2755: 
 2756:   pstamp(ficrescveij);
 2757:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 2758:   fprintf(ficrescveij,"# Age");
 2759:   for(i=1; i<=nlstate;i++)
 2760:     for(j=1; j<=nlstate;j++){
 2761:       cptj= (j-1)*nlstate+i;
 2762:       for(i2=1; i2<=nlstate;i2++)
 2763: 	for(j2=1; j2<=nlstate;j2++){
 2764: 	  cptj2= (j2-1)*nlstate+i2;
 2765: 	  if(cptj2 <= cptj)
 2766: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 2767: 	}
 2768:     }
 2769:   fprintf(ficrescveij,"\n");
 2770:   
 2771:   if(estepm < stepm){
 2772:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2773:   }
 2774:   else  hstepm=estepm;   
 2775:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2776:    * This is mainly to measure the difference between two models: for example
 2777:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2778:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2779:    * progression in between and thus overestimating or underestimating according
 2780:    * to the curvature of the survival function. If, for the same date, we 
 2781:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2782:    * to compare the new estimate of Life expectancy with the same linear 
 2783:    * hypothesis. A more precise result, taking into account a more precise
 2784:    * curvature will be obtained if estepm is as small as stepm. */
 2785: 
 2786:   /* For example we decided to compute the life expectancy with the smallest unit */
 2787:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2788:      nhstepm is the number of hstepm from age to agelim 
 2789:      nstepm is the number of stepm from age to agelin. 
 2790:      Look at hpijx to understand the reason of that which relies in memory size
 2791:      and note for a fixed period like estepm months */
 2792:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2793:      survival function given by stepm (the optimization length). Unfortunately it
 2794:      means that if the survival funtion is printed only each two years of age and if
 2795:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2796:      results. So we changed our mind and took the option of the best precision.
 2797:   */
 2798:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2799: 
 2800:   /* If stepm=6 months */
 2801:   /* nhstepm age range expressed in number of stepm */
 2802:   agelim=AGESUP;
 2803:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 2804:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2805:   /* if (stepm >= YEARM) hstepm=1;*/
 2806:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2807:   
 2808:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2809:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2810:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 2811:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 2812:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 2813:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 2814: 
 2815:   for (age=bage; age<=fage; age ++){ 
 2816:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 2817:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2818:     /* if (stepm >= YEARM) hstepm=1;*/
 2819:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 2820: 
 2821:     /* If stepm=6 months */
 2822:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 2823:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 2824:     
 2825:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2826: 
 2827:     /* Computing  Variances of health expectancies */
 2828:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 2829:        decrease memory allocation */
 2830:     for(theta=1; theta <=npar; theta++){
 2831:       for(i=1; i<=npar; i++){ 
 2832: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2833: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 2834:       }
 2835:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 2836:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 2837:   
 2838:       for(j=1; j<= nlstate; j++){
 2839: 	for(i=1; i<=nlstate; i++){
 2840: 	  for(h=0; h<=nhstepm-1; h++){
 2841: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 2842: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 2843: 	  }
 2844: 	}
 2845:       }
 2846:      
 2847:       for(ij=1; ij<= nlstate*nlstate; ij++)
 2848: 	for(h=0; h<=nhstepm-1; h++){
 2849: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 2850: 	}
 2851:     }/* End theta */
 2852:     
 2853:     
 2854:     for(h=0; h<=nhstepm-1; h++)
 2855:       for(j=1; j<=nlstate*nlstate;j++)
 2856: 	for(theta=1; theta <=npar; theta++)
 2857: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2858:     
 2859: 
 2860:      for(ij=1;ij<=nlstate*nlstate;ij++)
 2861:       for(ji=1;ji<=nlstate*nlstate;ji++)
 2862: 	varhe[ij][ji][(int)age] =0.;
 2863: 
 2864:      printf("%d|",(int)age);fflush(stdout);
 2865:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2866:      for(h=0;h<=nhstepm-1;h++){
 2867:       for(k=0;k<=nhstepm-1;k++){
 2868: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 2869: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 2870: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 2871: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 2872: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 2873:       }
 2874:     }
 2875: 
 2876:     /* Computing expectancies */
 2877:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 2878:     for(i=1; i<=nlstate;i++)
 2879:       for(j=1; j<=nlstate;j++)
 2880: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2881: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 2882: 	  
 2883: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2884: 
 2885: 	}
 2886: 
 2887:     fprintf(ficresstdeij,"%3.0f",age );
 2888:     for(i=1; i<=nlstate;i++){
 2889:       eip=0.;
 2890:       vip=0.;
 2891:       for(j=1; j<=nlstate;j++){
 2892: 	eip += eij[i][j][(int)age];
 2893: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 2894: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 2895: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 2896:       }
 2897:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 2898:     }
 2899:     fprintf(ficresstdeij,"\n");
 2900: 
 2901:     fprintf(ficrescveij,"%3.0f",age );
 2902:     for(i=1; i<=nlstate;i++)
 2903:       for(j=1; j<=nlstate;j++){
 2904: 	cptj= (j-1)*nlstate+i;
 2905: 	for(i2=1; i2<=nlstate;i2++)
 2906: 	  for(j2=1; j2<=nlstate;j2++){
 2907: 	    cptj2= (j2-1)*nlstate+i2;
 2908: 	    if(cptj2 <= cptj)
 2909: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 2910: 	  }
 2911:       }
 2912:     fprintf(ficrescveij,"\n");
 2913:    
 2914:   }
 2915:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 2916:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 2917:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 2918:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 2919:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2920:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2921:   printf("\n");
 2922:   fprintf(ficlog,"\n");
 2923: 
 2924:   free_vector(xm,1,npar);
 2925:   free_vector(xp,1,npar);
 2926:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 2927:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 2928:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 2929: }
 2930: 
 2931: /************ Variance ******************/
 2932: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 2933: {
 2934:   /* Variance of health expectancies */
 2935:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 2936:   /* double **newm;*/
 2937:   double **dnewm,**doldm;
 2938:   double **dnewmp,**doldmp;
 2939:   int i, j, nhstepm, hstepm, h, nstepm ;
 2940:   int k, cptcode;
 2941:   double *xp;
 2942:   double **gp, **gm;  /* for var eij */
 2943:   double ***gradg, ***trgradg; /*for var eij */
 2944:   double **gradgp, **trgradgp; /* for var p point j */
 2945:   double *gpp, *gmp; /* for var p point j */
 2946:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 2947:   double ***p3mat;
 2948:   double age,agelim, hf;
 2949:   double ***mobaverage;
 2950:   int theta;
 2951:   char digit[4];
 2952:   char digitp[25];
 2953: 
 2954:   char fileresprobmorprev[FILENAMELENGTH];
 2955: 
 2956:   if(popbased==1){
 2957:     if(mobilav!=0)
 2958:       strcpy(digitp,"-populbased-mobilav-");
 2959:     else strcpy(digitp,"-populbased-nomobil-");
 2960:   }
 2961:   else 
 2962:     strcpy(digitp,"-stablbased-");
 2963: 
 2964:   if (mobilav!=0) {
 2965:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2966:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 2967:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2968:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2969:     }
 2970:   }
 2971: 
 2972:   strcpy(fileresprobmorprev,"prmorprev"); 
 2973:   sprintf(digit,"%-d",ij);
 2974:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 2975:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 2976:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 2977:   strcat(fileresprobmorprev,fileres);
 2978:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 2979:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 2980:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 2981:   }
 2982:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2983:  
 2984:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2985:   pstamp(ficresprobmorprev);
 2986:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 2987:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 2988:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2989:     fprintf(ficresprobmorprev," p.%-d SE",j);
 2990:     for(i=1; i<=nlstate;i++)
 2991:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 2992:   }  
 2993:   fprintf(ficresprobmorprev,"\n");
 2994:   fprintf(ficgp,"\n# Routine varevsij");
 2995:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 2996:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 2997:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 2998: /*   } */
 2999:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3000:   pstamp(ficresvij);
 3001:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3002:   if(popbased==1)
 3003:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3004:   else
 3005:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3006:   fprintf(ficresvij,"# Age");
 3007:   for(i=1; i<=nlstate;i++)
 3008:     for(j=1; j<=nlstate;j++)
 3009:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3010:   fprintf(ficresvij,"\n");
 3011: 
 3012:   xp=vector(1,npar);
 3013:   dnewm=matrix(1,nlstate,1,npar);
 3014:   doldm=matrix(1,nlstate,1,nlstate);
 3015:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3016:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3017: 
 3018:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3019:   gpp=vector(nlstate+1,nlstate+ndeath);
 3020:   gmp=vector(nlstate+1,nlstate+ndeath);
 3021:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3022:   
 3023:   if(estepm < stepm){
 3024:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3025:   }
 3026:   else  hstepm=estepm;   
 3027:   /* For example we decided to compute the life expectancy with the smallest unit */
 3028:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3029:      nhstepm is the number of hstepm from age to agelim 
 3030:      nstepm is the number of stepm from age to agelin. 
 3031:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3032:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3033:      survival function given by stepm (the optimization length). Unfortunately it
 3034:      means that if the survival funtion is printed every two years of age and if
 3035:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3036:      results. So we changed our mind and took the option of the best precision.
 3037:   */
 3038:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3039:   agelim = AGESUP;
 3040:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3041:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3042:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3043:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3044:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3045:     gp=matrix(0,nhstepm,1,nlstate);
 3046:     gm=matrix(0,nhstepm,1,nlstate);
 3047: 
 3048: 
 3049:     for(theta=1; theta <=npar; theta++){
 3050:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3051: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3052:       }
 3053:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3054:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3055: 
 3056:       if (popbased==1) {
 3057: 	if(mobilav ==0){
 3058: 	  for(i=1; i<=nlstate;i++)
 3059: 	    prlim[i][i]=probs[(int)age][i][ij];
 3060: 	}else{ /* mobilav */ 
 3061: 	  for(i=1; i<=nlstate;i++)
 3062: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3063: 	}
 3064:       }
 3065:   
 3066:       for(j=1; j<= nlstate; j++){
 3067: 	for(h=0; h<=nhstepm; h++){
 3068: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3069: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3070: 	}
 3071:       }
 3072:       /* This for computing probability of death (h=1 means
 3073:          computed over hstepm matrices product = hstepm*stepm months) 
 3074:          as a weighted average of prlim.
 3075:       */
 3076:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3077: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3078: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3079:       }    
 3080:       /* end probability of death */
 3081: 
 3082:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3083: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3084:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3085:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3086:  
 3087:       if (popbased==1) {
 3088: 	if(mobilav ==0){
 3089: 	  for(i=1; i<=nlstate;i++)
 3090: 	    prlim[i][i]=probs[(int)age][i][ij];
 3091: 	}else{ /* mobilav */ 
 3092: 	  for(i=1; i<=nlstate;i++)
 3093: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3094: 	}
 3095:       }
 3096: 
 3097:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3098: 	for(h=0; h<=nhstepm; h++){
 3099: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3100: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3101: 	}
 3102:       }
 3103:       /* This for computing probability of death (h=1 means
 3104:          computed over hstepm matrices product = hstepm*stepm months) 
 3105:          as a weighted average of prlim.
 3106:       */
 3107:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3108: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3109:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3110:       }    
 3111:       /* end probability of death */
 3112: 
 3113:       for(j=1; j<= nlstate; j++) /* vareij */
 3114: 	for(h=0; h<=nhstepm; h++){
 3115: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3116: 	}
 3117: 
 3118:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3119: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3120:       }
 3121: 
 3122:     } /* End theta */
 3123: 
 3124:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3125: 
 3126:     for(h=0; h<=nhstepm; h++) /* veij */
 3127:       for(j=1; j<=nlstate;j++)
 3128: 	for(theta=1; theta <=npar; theta++)
 3129: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3130: 
 3131:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3132:       for(theta=1; theta <=npar; theta++)
 3133: 	trgradgp[j][theta]=gradgp[theta][j];
 3134:   
 3135: 
 3136:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3137:     for(i=1;i<=nlstate;i++)
 3138:       for(j=1;j<=nlstate;j++)
 3139: 	vareij[i][j][(int)age] =0.;
 3140: 
 3141:     for(h=0;h<=nhstepm;h++){
 3142:       for(k=0;k<=nhstepm;k++){
 3143: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3144: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3145: 	for(i=1;i<=nlstate;i++)
 3146: 	  for(j=1;j<=nlstate;j++)
 3147: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3148:       }
 3149:     }
 3150:   
 3151:     /* pptj */
 3152:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3153:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3154:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3155:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3156: 	varppt[j][i]=doldmp[j][i];
 3157:     /* end ppptj */
 3158:     /*  x centered again */
 3159:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3160:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3161:  
 3162:     if (popbased==1) {
 3163:       if(mobilav ==0){
 3164: 	for(i=1; i<=nlstate;i++)
 3165: 	  prlim[i][i]=probs[(int)age][i][ij];
 3166:       }else{ /* mobilav */ 
 3167: 	for(i=1; i<=nlstate;i++)
 3168: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3169:       }
 3170:     }
 3171:              
 3172:     /* This for computing probability of death (h=1 means
 3173:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3174:        as a weighted average of prlim.
 3175:     */
 3176:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3177:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 3178: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 3179:     }    
 3180:     /* end probability of death */
 3181: 
 3182:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 3183:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3184:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 3185:       for(i=1; i<=nlstate;i++){
 3186: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 3187:       }
 3188:     } 
 3189:     fprintf(ficresprobmorprev,"\n");
 3190: 
 3191:     fprintf(ficresvij,"%.0f ",age );
 3192:     for(i=1; i<=nlstate;i++)
 3193:       for(j=1; j<=nlstate;j++){
 3194: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 3195:       }
 3196:     fprintf(ficresvij,"\n");
 3197:     free_matrix(gp,0,nhstepm,1,nlstate);
 3198:     free_matrix(gm,0,nhstepm,1,nlstate);
 3199:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 3200:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 3201:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3202:   } /* End age */
 3203:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 3204:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 3205:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3206:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3207:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
 3208:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3209:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3210: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3211: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3212: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3213:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 3214:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 3215:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 3216:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3217:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3218:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3219: */
 3220: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3221:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3222: 
 3223:   free_vector(xp,1,npar);
 3224:   free_matrix(doldm,1,nlstate,1,nlstate);
 3225:   free_matrix(dnewm,1,nlstate,1,npar);
 3226:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3227:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3228:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3229:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3230:   fclose(ficresprobmorprev);
 3231:   fflush(ficgp);
 3232:   fflush(fichtm); 
 3233: }  /* end varevsij */
 3234: 
 3235: /************ Variance of prevlim ******************/
 3236: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3237: {
 3238:   /* Variance of prevalence limit */
 3239:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3240:   double **newm;
 3241:   double **dnewm,**doldm;
 3242:   int i, j, nhstepm, hstepm;
 3243:   int k, cptcode;
 3244:   double *xp;
 3245:   double *gp, *gm;
 3246:   double **gradg, **trgradg;
 3247:   double age,agelim;
 3248:   int theta;
 3249:   
 3250:   pstamp(ficresvpl);
 3251:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3252:   fprintf(ficresvpl,"# Age");
 3253:   for(i=1; i<=nlstate;i++)
 3254:       fprintf(ficresvpl," %1d-%1d",i,i);
 3255:   fprintf(ficresvpl,"\n");
 3256: 
 3257:   xp=vector(1,npar);
 3258:   dnewm=matrix(1,nlstate,1,npar);
 3259:   doldm=matrix(1,nlstate,1,nlstate);
 3260:   
 3261:   hstepm=1*YEARM; /* Every year of age */
 3262:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3263:   agelim = AGESUP;
 3264:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3265:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3266:     if (stepm >= YEARM) hstepm=1;
 3267:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3268:     gradg=matrix(1,npar,1,nlstate);
 3269:     gp=vector(1,nlstate);
 3270:     gm=vector(1,nlstate);
 3271: 
 3272:     for(theta=1; theta <=npar; theta++){
 3273:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3274: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3275:       }
 3276:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3277:       for(i=1;i<=nlstate;i++)
 3278: 	gp[i] = prlim[i][i];
 3279:     
 3280:       for(i=1; i<=npar; i++) /* Computes gradient */
 3281: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3282:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3283:       for(i=1;i<=nlstate;i++)
 3284: 	gm[i] = prlim[i][i];
 3285: 
 3286:       for(i=1;i<=nlstate;i++)
 3287: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3288:     } /* End theta */
 3289: 
 3290:     trgradg =matrix(1,nlstate,1,npar);
 3291: 
 3292:     for(j=1; j<=nlstate;j++)
 3293:       for(theta=1; theta <=npar; theta++)
 3294: 	trgradg[j][theta]=gradg[theta][j];
 3295: 
 3296:     for(i=1;i<=nlstate;i++)
 3297:       varpl[i][(int)age] =0.;
 3298:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3299:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3300:     for(i=1;i<=nlstate;i++)
 3301:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3302: 
 3303:     fprintf(ficresvpl,"%.0f ",age );
 3304:     for(i=1; i<=nlstate;i++)
 3305:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3306:     fprintf(ficresvpl,"\n");
 3307:     free_vector(gp,1,nlstate);
 3308:     free_vector(gm,1,nlstate);
 3309:     free_matrix(gradg,1,npar,1,nlstate);
 3310:     free_matrix(trgradg,1,nlstate,1,npar);
 3311:   } /* End age */
 3312: 
 3313:   free_vector(xp,1,npar);
 3314:   free_matrix(doldm,1,nlstate,1,npar);
 3315:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3316: 
 3317: }
 3318: 
 3319: /************ Variance of one-step probabilities  ******************/
 3320: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3321: {
 3322:   int i, j=0,  i1, k1, l1, t, tj;
 3323:   int k2, l2, j1,  z1;
 3324:   int k=0,l, cptcode;
 3325:   int first=1, first1;
 3326:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3327:   double **dnewm,**doldm;
 3328:   double *xp;
 3329:   double *gp, *gm;
 3330:   double **gradg, **trgradg;
 3331:   double **mu;
 3332:   double age,agelim, cov[NCOVMAX];
 3333:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3334:   int theta;
 3335:   char fileresprob[FILENAMELENGTH];
 3336:   char fileresprobcov[FILENAMELENGTH];
 3337:   char fileresprobcor[FILENAMELENGTH];
 3338: 
 3339:   double ***varpij;
 3340: 
 3341:   strcpy(fileresprob,"prob"); 
 3342:   strcat(fileresprob,fileres);
 3343:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3344:     printf("Problem with resultfile: %s\n", fileresprob);
 3345:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3346:   }
 3347:   strcpy(fileresprobcov,"probcov"); 
 3348:   strcat(fileresprobcov,fileres);
 3349:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3350:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3351:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3352:   }
 3353:   strcpy(fileresprobcor,"probcor"); 
 3354:   strcat(fileresprobcor,fileres);
 3355:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3356:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3357:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3358:   }
 3359:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3360:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3361:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3362:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3363:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3364:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3365:   pstamp(ficresprob);
 3366:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3367:   fprintf(ficresprob,"# Age");
 3368:   pstamp(ficresprobcov);
 3369:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3370:   fprintf(ficresprobcov,"# Age");
 3371:   pstamp(ficresprobcor);
 3372:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3373:   fprintf(ficresprobcor,"# Age");
 3374: 
 3375: 
 3376:   for(i=1; i<=nlstate;i++)
 3377:     for(j=1; j<=(nlstate+ndeath);j++){
 3378:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3379:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3380:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3381:     }  
 3382:  /* fprintf(ficresprob,"\n");
 3383:   fprintf(ficresprobcov,"\n");
 3384:   fprintf(ficresprobcor,"\n");
 3385:  */
 3386:   xp=vector(1,npar);
 3387:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3388:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3389:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3390:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3391:   first=1;
 3392:   fprintf(ficgp,"\n# Routine varprob");
 3393:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3394:   fprintf(fichtm,"\n");
 3395: 
 3396:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3397:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3398:   file %s<br>\n",optionfilehtmcov);
 3399:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3400: and drawn. It helps understanding how is the covariance between two incidences.\
 3401:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3402:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3403: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3404: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3405: standard deviations wide on each axis. <br>\
 3406:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3407:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3408: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3409: 
 3410:   cov[1]=1;
 3411:   tj=cptcoveff;
 3412:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3413:   j1=0;
 3414:   for(t=1; t<=tj;t++){
 3415:     for(i1=1; i1<=ncodemax[t];i1++){ 
 3416:       j1++;
 3417:       if  (cptcovn>0) {
 3418: 	fprintf(ficresprob, "\n#********** Variable "); 
 3419: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3420: 	fprintf(ficresprob, "**********\n#\n");
 3421: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3422: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3423: 	fprintf(ficresprobcov, "**********\n#\n");
 3424: 	
 3425: 	fprintf(ficgp, "\n#********** Variable "); 
 3426: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3427: 	fprintf(ficgp, "**********\n#\n");
 3428: 	
 3429: 	
 3430: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3431: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3432: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3433: 	
 3434: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3435: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3436: 	fprintf(ficresprobcor, "**********\n#");    
 3437:       }
 3438:       
 3439:       for (age=bage; age<=fage; age ++){ 
 3440: 	cov[2]=age;
 3441: 	for (k=1; k<=cptcovn;k++) {
 3442: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 3443: 	}
 3444: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3445: 	for (k=1; k<=cptcovprod;k++)
 3446: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3447: 	
 3448: 	gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3449: 	trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3450: 	gp=vector(1,(nlstate)*(nlstate+ndeath));
 3451: 	gm=vector(1,(nlstate)*(nlstate+ndeath));
 3452:     
 3453: 	for(theta=1; theta <=npar; theta++){
 3454: 	  for(i=1; i<=npar; i++)
 3455: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3456: 	  
 3457: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3458: 	  
 3459: 	  k=0;
 3460: 	  for(i=1; i<= (nlstate); i++){
 3461: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3462: 	      k=k+1;
 3463: 	      gp[k]=pmmij[i][j];
 3464: 	    }
 3465: 	  }
 3466: 	  
 3467: 	  for(i=1; i<=npar; i++)
 3468: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3469:     
 3470: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3471: 	  k=0;
 3472: 	  for(i=1; i<=(nlstate); i++){
 3473: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3474: 	      k=k+1;
 3475: 	      gm[k]=pmmij[i][j];
 3476: 	    }
 3477: 	  }
 3478:      
 3479: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3480: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3481: 	}
 3482: 
 3483: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3484: 	  for(theta=1; theta <=npar; theta++)
 3485: 	    trgradg[j][theta]=gradg[theta][j];
 3486: 	
 3487: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3488: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3489: 	free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 3490: 	free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 3491: 	free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3492: 	free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3493: 
 3494: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3495: 	
 3496: 	k=0;
 3497: 	for(i=1; i<=(nlstate); i++){
 3498: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3499: 	    k=k+1;
 3500: 	    mu[k][(int) age]=pmmij[i][j];
 3501: 	  }
 3502: 	}
 3503:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3504: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3505: 	    varpij[i][j][(int)age] = doldm[i][j];
 3506: 
 3507: 	/*printf("\n%d ",(int)age);
 3508: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3509: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3510: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3511: 	  }*/
 3512: 
 3513: 	fprintf(ficresprob,"\n%d ",(int)age);
 3514: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3515: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3516: 
 3517: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3518: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3519: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3520: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3521: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3522: 	}
 3523: 	i=0;
 3524: 	for (k=1; k<=(nlstate);k++){
 3525:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3526:  	    i=i++;
 3527: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3528: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3529: 	    for (j=1; j<=i;j++){
 3530: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3531: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3532: 	    }
 3533: 	  }
 3534: 	}/* end of loop for state */
 3535:       } /* end of loop for age */
 3536: 
 3537:       /* Confidence intervalle of pij  */
 3538:       /*
 3539: 	fprintf(ficgp,"\nunset parametric;unset label");
 3540: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3541: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3542: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3543: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3544: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3545: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3546:       */
 3547: 
 3548:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3549:       first1=1;
 3550:       for (k2=1; k2<=(nlstate);k2++){
 3551: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3552: 	  if(l2==k2) continue;
 3553: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3554: 	  for (k1=1; k1<=(nlstate);k1++){
 3555: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3556: 	      if(l1==k1) continue;
 3557: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3558: 	      if(i<=j) continue;
 3559: 	      for (age=bage; age<=fage; age ++){ 
 3560: 		if ((int)age %5==0){
 3561: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3562: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3563: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3564: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3565: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3566: 		  c12=cv12/sqrt(v1*v2);
 3567: 		  /* Computing eigen value of matrix of covariance */
 3568: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3569: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3570: 		  if ((lc2 <0) || (lc1 <0) ){
 3571: 		    printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 3572: 		    fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
 3573: 		    lc1=fabs(lc1);
 3574: 		    lc2=fabs(lc2);
 3575: 		  }
 3576: 
 3577: 		  /* Eigen vectors */
 3578: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3579: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3580: 		  v21=(lc1-v1)/cv12*v11;
 3581: 		  v12=-v21;
 3582: 		  v22=v11;
 3583: 		  tnalp=v21/v11;
 3584: 		  if(first1==1){
 3585: 		    first1=0;
 3586: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3587: 		  }
 3588: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3589: 		  /*printf(fignu*/
 3590: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3591: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3592: 		  if(first==1){
 3593: 		    first=0;
 3594:  		    fprintf(ficgp,"\nset parametric;unset label");
 3595: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3596: 		    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3597: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3598:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3599: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3600: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3601: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3602: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3603: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3604: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3605: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3606: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3607: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3608: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3609: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3610: 		  }else{
 3611: 		    first=0;
 3612: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3613: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3614: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3615: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3616: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3617: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3618: 		  }/* if first */
 3619: 		} /* age mod 5 */
 3620: 	      } /* end loop age */
 3621: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3622: 	      first=1;
 3623: 	    } /*l12 */
 3624: 	  } /* k12 */
 3625: 	} /*l1 */
 3626:       }/* k1 */
 3627:     } /* loop covariates */
 3628:   }
 3629:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3630:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3631:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3632:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 3633:   free_vector(xp,1,npar);
 3634:   fclose(ficresprob);
 3635:   fclose(ficresprobcov);
 3636:   fclose(ficresprobcor);
 3637:   fflush(ficgp);
 3638:   fflush(fichtmcov);
 3639: }
 3640: 
 3641: 
 3642: /******************* Printing html file ***********/
 3643: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3644: 		  int lastpass, int stepm, int weightopt, char model[],\
 3645: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3646: 		  int popforecast, int estepm ,\
 3647: 		  double jprev1, double mprev1,double anprev1, \
 3648: 		  double jprev2, double mprev2,double anprev2){
 3649:   int jj1, k1, i1, cpt;
 3650: 
 3651:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 3652:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 3653: </ul>");
 3654:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 3655:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 3656: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 3657:    fprintf(fichtm,"\
 3658:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 3659: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 3660:    fprintf(fichtm,"\
 3661:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 3662: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 3663:    fprintf(fichtm,"\
 3664:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 3665:    <a href=\"%s\">%s</a> <br>\n",
 3666: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3667:    fprintf(fichtm,"\
 3668:  - Population projections by age and states: \
 3669:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 3670: 
 3671: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3672: 
 3673:  m=cptcoveff;
 3674:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3675: 
 3676:  jj1=0;
 3677:  for(k1=1; k1<=m;k1++){
 3678:    for(i1=1; i1<=ncodemax[k1];i1++){
 3679:      jj1++;
 3680:      if (cptcovn > 0) {
 3681:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3682:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3683: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3684:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3685:      }
 3686:      /* Pij */
 3687:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
 3688: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3689:      /* Quasi-incidences */
 3690:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3691:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
 3692: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3693:        /* Period (stable) prevalence in each health state */
 3694:        for(cpt=1; cpt<nlstate;cpt++){
 3695: 	 fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
 3696: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3697:        }
 3698:      for(cpt=1; cpt<=nlstate;cpt++) {
 3699:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 3700: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3701:      }
 3702:    } /* end i1 */
 3703:  }/* End k1 */
 3704:  fprintf(fichtm,"</ul>");
 3705: 
 3706: 
 3707:  fprintf(fichtm,"\
 3708: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 3709:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 3710: 
 3711:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3712: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 3713:  fprintf(fichtm,"\
 3714:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3715: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 3716: 
 3717:  fprintf(fichtm,"\
 3718:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3719: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 3720:  fprintf(fichtm,"\
 3721:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 3722:    <a href=\"%s\">%s</a> <br>\n</li>",
 3723: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 3724:  fprintf(fichtm,"\
 3725:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 3726:    <a href=\"%s\">%s</a> <br>\n</li>",
 3727: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 3728:  fprintf(fichtm,"\
 3729:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 3730: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 3731:  fprintf(fichtm,"\
 3732:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 3733: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 3734:  fprintf(fichtm,"\
 3735:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 3736: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 3737: 
 3738: /*  if(popforecast==1) fprintf(fichtm,"\n */
 3739: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 3740: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 3741: /* 	<br>",fileres,fileres,fileres,fileres); */
 3742: /*  else  */
 3743: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 3744:  fflush(fichtm);
 3745:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 3746: 
 3747:  m=cptcoveff;
 3748:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3749: 
 3750:  jj1=0;
 3751:  for(k1=1; k1<=m;k1++){
 3752:    for(i1=1; i1<=ncodemax[k1];i1++){
 3753:      jj1++;
 3754:      if (cptcovn > 0) {
 3755:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3756:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3757: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3758:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3759:      }
 3760:      for(cpt=1; cpt<=nlstate;cpt++) {
 3761:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 3762: prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
 3763: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 3764:      }
 3765:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 3766: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 3767: true period expectancies (those weighted with period prevalences are also\
 3768:  drawn in addition to the population based expectancies computed using\
 3769:  observed and cahotic prevalences: %s%d.png<br>\
 3770: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 3771:    } /* end i1 */
 3772:  }/* End k1 */
 3773:  fprintf(fichtm,"</ul>");
 3774:  fflush(fichtm);
 3775: }
 3776: 
 3777: /******************* Gnuplot file **************/
 3778: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3779: 
 3780:   char dirfileres[132],optfileres[132];
 3781:   int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 3782:   int ng=0;
 3783: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 3784: /*     printf("Problem with file %s",optionfilegnuplot); */
 3785: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 3786: /*   } */
 3787: 
 3788:   /*#ifdef windows */
 3789:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 3790:     /*#endif */
 3791:   m=pow(2,cptcoveff);
 3792: 
 3793:   strcpy(dirfileres,optionfilefiname);
 3794:   strcpy(optfileres,"vpl");
 3795:  /* 1eme*/
 3796:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 3797:    for (k1=1; k1<= m ; k1 ++) {
 3798:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 3799:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 3800:      fprintf(ficgp,"set xlabel \"Age\" \n\
 3801: set ylabel \"Probability\" \n\
 3802: set ter png small\n\
 3803: set size 0.65,0.65\n\
 3804: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 3805: 
 3806:      for (i=1; i<= nlstate ; i ++) {
 3807:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3808:        else        fprintf(ficgp," \%%*lf (\%%*lf)");
 3809:      }
 3810:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 3811:      for (i=1; i<= nlstate ; i ++) {
 3812:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3813:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3814:      } 
 3815:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 3816:      for (i=1; i<= nlstate ; i ++) {
 3817:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3818:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3819:      }  
 3820:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 3821:    }
 3822:   }
 3823:   /*2 eme*/
 3824:   
 3825:   for (k1=1; k1<= m ; k1 ++) { 
 3826:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 3827:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 3828:     
 3829:     for (i=1; i<= nlstate+1 ; i ++) {
 3830:       k=2*i;
 3831:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3832:       for (j=1; j<= nlstate+1 ; j ++) {
 3833: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3834: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3835:       }   
 3836:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 3837:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 3838:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3839:       for (j=1; j<= nlstate+1 ; j ++) {
 3840: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3841: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3842:       }   
 3843:       fprintf(ficgp,"\" t\"\" w l 0,");
 3844:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3845:       for (j=1; j<= nlstate+1 ; j ++) {
 3846: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3847: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3848:       }   
 3849:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 3850:       else fprintf(ficgp,"\" t\"\" w l 0,");
 3851:     }
 3852:   }
 3853:   
 3854:   /*3eme*/
 3855:   
 3856:   for (k1=1; k1<= m ; k1 ++) { 
 3857:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 3858:       /*       k=2+nlstate*(2*cpt-2); */
 3859:       k=2+(nlstate+1)*(cpt-1);
 3860:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 3861:       fprintf(ficgp,"set ter png small\n\
 3862: set size 0.65,0.65\n\
 3863: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 3864:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3865: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3866: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3867: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3868: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3869: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3870: 	
 3871:       */
 3872:       for (i=1; i< nlstate ; i ++) {
 3873: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 3874: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 3875: 	
 3876:       } 
 3877:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 3878:     }
 3879:   }
 3880:   
 3881:   /* CV preval stable (period) */
 3882:   for (k1=1; k1<= m ; k1 ++) { 
 3883:     for (cpt=1; cpt<=nlstate ; cpt ++) {
 3884:       k=3;
 3885:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 3886:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 3887: set ter png small\nset size 0.65,0.65\n\
 3888: unset log y\n\
 3889: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 3890:       
 3891:       for (i=1; i< nlstate ; i ++)
 3892: 	fprintf(ficgp,"+$%d",k+i+1);
 3893:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 3894:       
 3895:       l=3+(nlstate+ndeath)*cpt;
 3896:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 3897:       for (i=1; i< nlstate ; i ++) {
 3898: 	l=3+(nlstate+ndeath)*cpt;
 3899: 	fprintf(ficgp,"+$%d",l+i+1);
 3900:       }
 3901:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 3902:     } 
 3903:   }  
 3904:   
 3905:   /* proba elementaires */
 3906:   for(i=1,jk=1; i <=nlstate; i++){
 3907:     for(k=1; k <=(nlstate+ndeath); k++){
 3908:       if (k != i) {
 3909: 	for(j=1; j <=ncovmodel; j++){
 3910: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 3911: 	  jk++; 
 3912: 	  fprintf(ficgp,"\n");
 3913: 	}
 3914:       }
 3915:     }
 3916:    }
 3917: 
 3918:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 3919:      for(jk=1; jk <=m; jk++) {
 3920:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 3921:        if (ng==2)
 3922: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 3923:        else
 3924: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 3925:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 3926:        i=1;
 3927:        for(k2=1; k2<=nlstate; k2++) {
 3928: 	 k3=i;
 3929: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 3930: 	   if (k != k2){
 3931: 	     if(ng==2)
 3932: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 3933: 	     else
 3934: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 3935: 	     ij=1;
 3936: 	     for(j=3; j <=ncovmodel; j++) {
 3937: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3938: 		 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3939: 		 ij++;
 3940: 	       }
 3941: 	       else
 3942: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3943: 	     }
 3944: 	     fprintf(ficgp,")/(1");
 3945: 	     
 3946: 	     for(k1=1; k1 <=nlstate; k1++){   
 3947: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 3948: 	       ij=1;
 3949: 	       for(j=3; j <=ncovmodel; j++){
 3950: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3951: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3952: 		   ij++;
 3953: 		 }
 3954: 		 else
 3955: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3956: 	       }
 3957: 	       fprintf(ficgp,")");
 3958: 	     }
 3959: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 3960: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 3961: 	     i=i+ncovmodel;
 3962: 	   }
 3963: 	 } /* end k */
 3964:        } /* end k2 */
 3965:      } /* end jk */
 3966:    } /* end ng */
 3967:    fflush(ficgp); 
 3968: }  /* end gnuplot */
 3969: 
 3970: 
 3971: /*************** Moving average **************/
 3972: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 3973: 
 3974:   int i, cpt, cptcod;
 3975:   int modcovmax =1;
 3976:   int mobilavrange, mob;
 3977:   double age;
 3978: 
 3979:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 3980: 			   a covariate has 2 modalities */
 3981:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 3982: 
 3983:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 3984:     if(mobilav==1) mobilavrange=5; /* default */
 3985:     else mobilavrange=mobilav;
 3986:     for (age=bage; age<=fage; age++)
 3987:       for (i=1; i<=nlstate;i++)
 3988: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 3989: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 3990:     /* We keep the original values on the extreme ages bage, fage and for 
 3991:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 3992:        we use a 5 terms etc. until the borders are no more concerned. 
 3993:     */ 
 3994:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 3995:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 3996: 	for (i=1; i<=nlstate;i++){
 3997: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 3998: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 3999: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4000: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4001: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4002: 	      }
 4003: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4004: 	  }
 4005: 	}
 4006:       }/* end age */
 4007:     }/* end mob */
 4008:   }else return -1;
 4009:   return 0;
 4010: }/* End movingaverage */
 4011: 
 4012: 
 4013: /************** Forecasting ******************/
 4014: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4015:   /* proj1, year, month, day of starting projection 
 4016:      agemin, agemax range of age
 4017:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4018:      anproj2 year of en of projection (same day and month as proj1).
 4019:   */
 4020:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 4021:   int *popage;
 4022:   double agec; /* generic age */
 4023:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4024:   double *popeffectif,*popcount;
 4025:   double ***p3mat;
 4026:   double ***mobaverage;
 4027:   char fileresf[FILENAMELENGTH];
 4028: 
 4029:   agelim=AGESUP;
 4030:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4031:  
 4032:   strcpy(fileresf,"f"); 
 4033:   strcat(fileresf,fileres);
 4034:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4035:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4036:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4037:   }
 4038:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4039:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4040: 
 4041:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4042: 
 4043:   if (mobilav!=0) {
 4044:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4045:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4046:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4047:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4048:     }
 4049:   }
 4050: 
 4051:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4052:   if (stepm<=12) stepsize=1;
 4053:   if(estepm < stepm){
 4054:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4055:   }
 4056:   else  hstepm=estepm;   
 4057: 
 4058:   hstepm=hstepm/stepm; 
 4059:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4060:                                fractional in yp1 */
 4061:   anprojmean=yp;
 4062:   yp2=modf((yp1*12),&yp);
 4063:   mprojmean=yp;
 4064:   yp1=modf((yp2*30.5),&yp);
 4065:   jprojmean=yp;
 4066:   if(jprojmean==0) jprojmean=1;
 4067:   if(mprojmean==0) jprojmean=1;
 4068: 
 4069:   i1=cptcoveff;
 4070:   if (cptcovn < 1){i1=1;}
 4071:   
 4072:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4073:   
 4074:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4075: 
 4076: /* 	      if (h==(int)(YEARM*yearp)){ */
 4077:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4078:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4079:       k=k+1;
 4080:       fprintf(ficresf,"\n#******");
 4081:       for(j=1;j<=cptcoveff;j++) {
 4082: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4083:       }
 4084:       fprintf(ficresf,"******\n");
 4085:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4086:       for(j=1; j<=nlstate+ndeath;j++){ 
 4087: 	for(i=1; i<=nlstate;i++) 	      
 4088:           fprintf(ficresf," p%d%d",i,j);
 4089: 	fprintf(ficresf," p.%d",j);
 4090:       }
 4091:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4092: 	fprintf(ficresf,"\n");
 4093: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4094: 
 4095:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4096: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4097: 	  nhstepm = nhstepm/hstepm; 
 4098: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4099: 	  oldm=oldms;savm=savms;
 4100: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4101: 	
 4102: 	  for (h=0; h<=nhstepm; h++){
 4103: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4104:               fprintf(ficresf,"\n");
 4105:               for(j=1;j<=cptcoveff;j++) 
 4106:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4107: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4108: 	    } 
 4109: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4110: 	      ppij=0.;
 4111: 	      for(i=1; i<=nlstate;i++) {
 4112: 		if (mobilav==1) 
 4113: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4114: 		else {
 4115: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4116: 		}
 4117: 		if (h*hstepm/YEARM*stepm== yearp) {
 4118: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4119: 		}
 4120: 	      } /* end i */
 4121: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4122: 		fprintf(ficresf," %.3f", ppij);
 4123: 	      }
 4124: 	    }/* end j */
 4125: 	  } /* end h */
 4126: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4127: 	} /* end agec */
 4128:       } /* end yearp */
 4129:     } /* end cptcod */
 4130:   } /* end  cptcov */
 4131:        
 4132:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4133: 
 4134:   fclose(ficresf);
 4135: }
 4136: 
 4137: /************** Forecasting *****not tested NB*************/
 4138: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 4139:   
 4140:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 4141:   int *popage;
 4142:   double calagedatem, agelim, kk1, kk2;
 4143:   double *popeffectif,*popcount;
 4144:   double ***p3mat,***tabpop,***tabpopprev;
 4145:   double ***mobaverage;
 4146:   char filerespop[FILENAMELENGTH];
 4147: 
 4148:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4149:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4150:   agelim=AGESUP;
 4151:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 4152:   
 4153:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4154:   
 4155:   
 4156:   strcpy(filerespop,"pop"); 
 4157:   strcat(filerespop,fileres);
 4158:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 4159:     printf("Problem with forecast resultfile: %s\n", filerespop);
 4160:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 4161:   }
 4162:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 4163:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 4164: 
 4165:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4166: 
 4167:   if (mobilav!=0) {
 4168:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4169:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4170:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4171:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4172:     }
 4173:   }
 4174: 
 4175:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4176:   if (stepm<=12) stepsize=1;
 4177:   
 4178:   agelim=AGESUP;
 4179:   
 4180:   hstepm=1;
 4181:   hstepm=hstepm/stepm; 
 4182:   
 4183:   if (popforecast==1) {
 4184:     if((ficpop=fopen(popfile,"r"))==NULL) {
 4185:       printf("Problem with population file : %s\n",popfile);exit(0);
 4186:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 4187:     } 
 4188:     popage=ivector(0,AGESUP);
 4189:     popeffectif=vector(0,AGESUP);
 4190:     popcount=vector(0,AGESUP);
 4191:     
 4192:     i=1;   
 4193:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 4194:    
 4195:     imx=i;
 4196:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 4197:   }
 4198: 
 4199:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 4200:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4201:       k=k+1;
 4202:       fprintf(ficrespop,"\n#******");
 4203:       for(j=1;j<=cptcoveff;j++) {
 4204: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4205:       }
 4206:       fprintf(ficrespop,"******\n");
 4207:       fprintf(ficrespop,"# Age");
 4208:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 4209:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 4210:       
 4211:       for (cpt=0; cpt<=0;cpt++) { 
 4212: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4213: 	
 4214:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4215: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4216: 	  nhstepm = nhstepm/hstepm; 
 4217: 	  
 4218: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4219: 	  oldm=oldms;savm=savms;
 4220: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4221: 	
 4222: 	  for (h=0; h<=nhstepm; h++){
 4223: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4224: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4225: 	    } 
 4226: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4227: 	      kk1=0.;kk2=0;
 4228: 	      for(i=1; i<=nlstate;i++) {	      
 4229: 		if (mobilav==1) 
 4230: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4231: 		else {
 4232: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4233: 		}
 4234: 	      }
 4235: 	      if (h==(int)(calagedatem+12*cpt)){
 4236: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4237: 		  /*fprintf(ficrespop," %.3f", kk1);
 4238: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4239: 	      }
 4240: 	    }
 4241: 	    for(i=1; i<=nlstate;i++){
 4242: 	      kk1=0.;
 4243: 		for(j=1; j<=nlstate;j++){
 4244: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4245: 		}
 4246: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4247: 	    }
 4248: 
 4249: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4250: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4251: 	  }
 4252: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4253: 	}
 4254:       }
 4255:  
 4256:   /******/
 4257: 
 4258:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4259: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4260: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4261: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4262: 	  nhstepm = nhstepm/hstepm; 
 4263: 	  
 4264: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4265: 	  oldm=oldms;savm=savms;
 4266: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4267: 	  for (h=0; h<=nhstepm; h++){
 4268: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4269: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4270: 	    } 
 4271: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4272: 	      kk1=0.;kk2=0;
 4273: 	      for(i=1; i<=nlstate;i++) {	      
 4274: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4275: 	      }
 4276: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4277: 	    }
 4278: 	  }
 4279: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4280: 	}
 4281:       }
 4282:    } 
 4283:   }
 4284:  
 4285:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4286: 
 4287:   if (popforecast==1) {
 4288:     free_ivector(popage,0,AGESUP);
 4289:     free_vector(popeffectif,0,AGESUP);
 4290:     free_vector(popcount,0,AGESUP);
 4291:   }
 4292:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4293:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4294:   fclose(ficrespop);
 4295: } /* End of popforecast */
 4296: 
 4297: int fileappend(FILE *fichier, char *optionfich)
 4298: {
 4299:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4300:     printf("Problem with file: %s\n", optionfich);
 4301:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4302:     return (0);
 4303:   }
 4304:   fflush(fichier);
 4305:   return (1);
 4306: }
 4307: 
 4308: 
 4309: /**************** function prwizard **********************/
 4310: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4311: {
 4312: 
 4313:   /* Wizard to print covariance matrix template */
 4314: 
 4315:   char ca[32], cb[32], cc[32];
 4316:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 4317:   int numlinepar;
 4318: 
 4319:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4320:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4321:   for(i=1; i <=nlstate; i++){
 4322:     jj=0;
 4323:     for(j=1; j <=nlstate+ndeath; j++){
 4324:       if(j==i) continue;
 4325:       jj++;
 4326:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4327:       printf("%1d%1d",i,j);
 4328:       fprintf(ficparo,"%1d%1d",i,j);
 4329:       for(k=1; k<=ncovmodel;k++){
 4330: 	/* 	  printf(" %lf",param[i][j][k]); */
 4331: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4332: 	printf(" 0.");
 4333: 	fprintf(ficparo," 0.");
 4334:       }
 4335:       printf("\n");
 4336:       fprintf(ficparo,"\n");
 4337:     }
 4338:   }
 4339:   printf("# Scales (for hessian or gradient estimation)\n");
 4340:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4341:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4342:   for(i=1; i <=nlstate; i++){
 4343:     jj=0;
 4344:     for(j=1; j <=nlstate+ndeath; j++){
 4345:       if(j==i) continue;
 4346:       jj++;
 4347:       fprintf(ficparo,"%1d%1d",i,j);
 4348:       printf("%1d%1d",i,j);
 4349:       fflush(stdout);
 4350:       for(k=1; k<=ncovmodel;k++){
 4351: 	/* 	printf(" %le",delti3[i][j][k]); */
 4352: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4353: 	printf(" 0.");
 4354: 	fprintf(ficparo," 0.");
 4355:       }
 4356:       numlinepar++;
 4357:       printf("\n");
 4358:       fprintf(ficparo,"\n");
 4359:     }
 4360:   }
 4361:   printf("# Covariance matrix\n");
 4362: /* # 121 Var(a12)\n\ */
 4363: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4364: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4365: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4366: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4367: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4368: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4369: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4370:   fflush(stdout);
 4371:   fprintf(ficparo,"# Covariance matrix\n");
 4372:   /* # 121 Var(a12)\n\ */
 4373:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4374:   /* #   ...\n\ */
 4375:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4376:   
 4377:   for(itimes=1;itimes<=2;itimes++){
 4378:     jj=0;
 4379:     for(i=1; i <=nlstate; i++){
 4380:       for(j=1; j <=nlstate+ndeath; j++){
 4381: 	if(j==i) continue;
 4382: 	for(k=1; k<=ncovmodel;k++){
 4383: 	  jj++;
 4384: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4385: 	  if(itimes==1){
 4386: 	    printf("#%1d%1d%d",i,j,k);
 4387: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4388: 	  }else{
 4389: 	    printf("%1d%1d%d",i,j,k);
 4390: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4391: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4392: 	  }
 4393: 	  ll=0;
 4394: 	  for(li=1;li <=nlstate; li++){
 4395: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 4396: 	      if(lj==li) continue;
 4397: 	      for(lk=1;lk<=ncovmodel;lk++){
 4398: 		ll++;
 4399: 		if(ll<=jj){
 4400: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 4401: 		  if(ll<jj){
 4402: 		    if(itimes==1){
 4403: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4404: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4405: 		    }else{
 4406: 		      printf(" 0.");
 4407: 		      fprintf(ficparo," 0.");
 4408: 		    }
 4409: 		  }else{
 4410: 		    if(itimes==1){
 4411: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4412: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4413: 		    }else{
 4414: 		      printf(" 0.");
 4415: 		      fprintf(ficparo," 0.");
 4416: 		    }
 4417: 		  }
 4418: 		}
 4419: 	      } /* end lk */
 4420: 	    } /* end lj */
 4421: 	  } /* end li */
 4422: 	  printf("\n");
 4423: 	  fprintf(ficparo,"\n");
 4424: 	  numlinepar++;
 4425: 	} /* end k*/
 4426:       } /*end j */
 4427:     } /* end i */
 4428:   } /* end itimes */
 4429: 
 4430: } /* end of prwizard */
 4431: /******************* Gompertz Likelihood ******************************/
 4432: double gompertz(double x[])
 4433: { 
 4434:   double A,B,L=0.0,sump=0.,num=0.;
 4435:   int i,n=0; /* n is the size of the sample */
 4436: 
 4437:   for (i=0;i<=imx-1 ; i++) {
 4438:     sump=sump+weight[i];
 4439:     /*    sump=sump+1;*/
 4440:     num=num+1;
 4441:   }
 4442:  
 4443:  
 4444:   /* for (i=0; i<=imx; i++) 
 4445:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4446: 
 4447:   for (i=1;i<=imx ; i++)
 4448:     {
 4449:       if (cens[i] == 1 && wav[i]>1)
 4450: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4451:       
 4452:       if (cens[i] == 0 && wav[i]>1)
 4453: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4454: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4455:       
 4456:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4457:       if (wav[i] > 1 ) { /* ??? */
 4458: 	L=L+A*weight[i];
 4459: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4460:       }
 4461:     }
 4462: 
 4463:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4464:  
 4465:   return -2*L*num/sump;
 4466: }
 4467: 
 4468: #ifdef GSL
 4469: /******************* Gompertz_f Likelihood ******************************/
 4470: double gompertz_f(const gsl_vector *v, void *params)
 4471: { 
 4472:   double A,B,LL=0.0,sump=0.,num=0.;
 4473:   double *x= (double *) v->data;
 4474:   int i,n=0; /* n is the size of the sample */
 4475: 
 4476:   for (i=0;i<=imx-1 ; i++) {
 4477:     sump=sump+weight[i];
 4478:     /*    sump=sump+1;*/
 4479:     num=num+1;
 4480:   }
 4481:  
 4482:  
 4483:   /* for (i=0; i<=imx; i++) 
 4484:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4485:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 4486:   for (i=1;i<=imx ; i++)
 4487:     {
 4488:       if (cens[i] == 1 && wav[i]>1)
 4489: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 4490:       
 4491:       if (cens[i] == 0 && wav[i]>1)
 4492: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 4493: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 4494:       
 4495:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4496:       if (wav[i] > 1 ) { /* ??? */
 4497: 	LL=LL+A*weight[i];
 4498: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4499:       }
 4500:     }
 4501: 
 4502:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4503:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 4504:  
 4505:   return -2*LL*num/sump;
 4506: }
 4507: #endif
 4508: 
 4509: /******************* Printing html file ***********/
 4510: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 4511: 		  int lastpass, int stepm, int weightopt, char model[],\
 4512: 		  int imx,  double p[],double **matcov,double agemortsup){
 4513:   int i,k;
 4514: 
 4515:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 4516:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 4517:   for (i=1;i<=2;i++) 
 4518:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 4519:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 4520:   fprintf(fichtm,"</ul>");
 4521: 
 4522: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 4523: 
 4524:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 4525: 
 4526:  for (k=agegomp;k<(agemortsup-2);k++) 
 4527:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 4528: 
 4529:  
 4530:   fflush(fichtm);
 4531: }
 4532: 
 4533: /******************* Gnuplot file **************/
 4534: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4535: 
 4536:   char dirfileres[132],optfileres[132];
 4537:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 4538:   int ng;
 4539: 
 4540: 
 4541:   /*#ifdef windows */
 4542:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4543:     /*#endif */
 4544: 
 4545: 
 4546:   strcpy(dirfileres,optionfilefiname);
 4547:   strcpy(optfileres,"vpl");
 4548:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 4549:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 4550:   fprintf(ficgp, "set ter png small\n set log y\n"); 
 4551:   fprintf(ficgp, "set size 0.65,0.65\n");
 4552:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 4553: 
 4554: } 
 4555: 
 4556: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 4557: {
 4558: 
 4559:   /*-------- data file ----------*/
 4560:   FILE *fic;
 4561:   char dummy[]="                         ";
 4562:   int i, j, n;
 4563:   int linei, month, year,iout;
 4564:   char line[MAXLINE], linetmp[MAXLINE];
 4565:   char stra[80], strb[80];
 4566:   char *stratrunc;
 4567:   int lstra;
 4568: 
 4569: 
 4570:   if((fic=fopen(datafile,"r"))==NULL)    {
 4571:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 4572:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 4573:   }
 4574: 
 4575:   i=1;
 4576:   linei=0;
 4577:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 4578:     linei=linei+1;
 4579:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 4580:       if(line[j] == '\t')
 4581: 	line[j] = ' ';
 4582:     }
 4583:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 4584:       ;
 4585:     };
 4586:     line[j+1]=0;  /* Trims blanks at end of line */
 4587:     if(line[0]=='#'){
 4588:       fprintf(ficlog,"Comment line\n%s\n",line);
 4589:       printf("Comment line\n%s\n",line);
 4590:       continue;
 4591:     }
 4592:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 4593:     for (j=0; line[j]!='\0';j++){
 4594:       line[j]=linetmp[j];
 4595:     }
 4596:   
 4597: 
 4598:     for (j=maxwav;j>=1;j--){
 4599:       cutv(stra, strb, line, ' '); 
 4600:       if(strb[0]=='.') { /* Missing status */
 4601: 	lval=-1;
 4602:       }else{
 4603: 	errno=0;
 4604: 	lval=strtol(strb,&endptr,10); 
 4605:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 4606: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4607: 	  printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 4608: 	  fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 4609: 	  return 1;
 4610: 	}
 4611:       }
 4612:       s[j][i]=lval;
 4613:       
 4614:       strcpy(line,stra);
 4615:       cutv(stra, strb,line,' ');
 4616:       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4617:       }
 4618:       else  if(iout=sscanf(strb,"%s.") != 0){
 4619: 	month=99;
 4620: 	year=9999;
 4621:       }else{
 4622: 	printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 4623: 	fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 4624: 	return 1;
 4625:       }
 4626:       anint[j][i]= (double) year; 
 4627:       mint[j][i]= (double)month; 
 4628:       strcpy(line,stra);
 4629:     } /* ENd Waves */
 4630:     
 4631:     cutv(stra, strb,line,' '); 
 4632:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4633:     }
 4634:     else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 4635:       month=99;
 4636:       year=9999;
 4637:     }else{
 4638:       printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 4639: 	fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4640: 	return 1;
 4641:     }
 4642:     andc[i]=(double) year; 
 4643:     moisdc[i]=(double) month; 
 4644:     strcpy(line,stra);
 4645:     
 4646:     cutv(stra, strb,line,' '); 
 4647:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4648:     }
 4649:     else  if(iout=sscanf(strb,"%s.") != 0){
 4650:       month=99;
 4651:       year=9999;
 4652:     }else{
 4653:       printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 4654:       fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4655: 	return 1;
 4656:     }
 4657:     if (year==9999) {
 4658:       printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 4659:       fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4660: 	return 1;
 4661: 
 4662:     }
 4663:     annais[i]=(double)(year);
 4664:     moisnais[i]=(double)(month); 
 4665:     strcpy(line,stra);
 4666:     
 4667:     cutv(stra, strb,line,' '); 
 4668:     errno=0;
 4669:     dval=strtod(strb,&endptr); 
 4670:     if( strb[0]=='\0' || (*endptr != '\0')){
 4671:       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 4672:       fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 4673:       fflush(ficlog);
 4674:       return 1;
 4675:     }
 4676:     weight[i]=dval; 
 4677:     strcpy(line,stra);
 4678:     
 4679:     for (j=ncovcol;j>=1;j--){
 4680:       cutv(stra, strb,line,' '); 
 4681:       if(strb[0]=='.') { /* Missing status */
 4682: 	lval=-1;
 4683:       }else{
 4684: 	errno=0;
 4685: 	lval=strtol(strb,&endptr,10); 
 4686: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4687: 	  printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 4688: 	  fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 4689: 	  return 1;
 4690: 	}
 4691:       }
 4692:       if(lval <-1 || lval >1){
 4693: 	printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
 4694:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 4695:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 4696:  For example, for multinomial values like 1, 2 and 3,\n \
 4697:  build V1=0 V2=0 for the reference value (1),\n \
 4698:         V1=1 V2=0 for (2) \n \
 4699:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 4700:  output of IMaCh is often meaningless.\n \
 4701:  Exiting.\n",lval,linei, i,line,j);
 4702: 	fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
 4703:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 4704:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 4705:  For example, for multinomial values like 1, 2 and 3,\n \
 4706:  build V1=0 V2=0 for the reference value (1),\n \
 4707:         V1=1 V2=0 for (2) \n \
 4708:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 4709:  output of IMaCh is often meaningless.\n \
 4710:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 4711: 	return 1;
 4712:       }
 4713:       covar[j][i]=(double)(lval);
 4714:       strcpy(line,stra);
 4715:     }  
 4716:     lstra=strlen(stra);
 4717:      
 4718:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 4719:       stratrunc = &(stra[lstra-9]);
 4720:       num[i]=atol(stratrunc);
 4721:     }
 4722:     else
 4723:       num[i]=atol(stra);
 4724:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 4725:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 4726:     
 4727:     i=i+1;
 4728:   } /* End loop reading  data */
 4729: 
 4730:   *imax=i-1; /* Number of individuals */
 4731:   fclose(fic);
 4732:  
 4733:   return (0);
 4734:   endread:
 4735:     printf("Exiting readdata: ");
 4736:     fclose(fic);
 4737:     return (1);
 4738: 
 4739: 
 4740: 
 4741: }
 4742: 
 4743: int decodemodel ( char model[], int lastobs)
 4744: {
 4745:   int i, j, k;
 4746:   int i1, j1, k1, k2;
 4747:   char modelsav[80];
 4748:    char stra[80], strb[80], strc[80], strd[80],stre[80];
 4749: 
 4750:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 4751:     j=0, j1=0, k1=1, k2=1;
 4752:     j=nbocc(model,'+'); /* j=Number of '+' */
 4753:     j1=nbocc(model,'*'); /* j1=Number of '*' */
 4754:     cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
 4755: 		  but the covariates which are product must be computed and stored. */
 4756:     cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
 4757:     
 4758:     strcpy(modelsav,model); 
 4759:     if (strstr(model,"AGE") !=0){
 4760:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
 4761:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
 4762:       return 1;
 4763:     }
 4764:     
 4765:     /* This loop fills the array Tvar from the string 'model'.*/
 4766:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 4767:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 4768:     /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 4769:     /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 4770:     /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 4771:     /* 	k=1 Tvar[1]=2 (from V2) */
 4772:     /* 	k=5 Tvar[5] */
 4773:     /* for (k=1; k<=cptcovn;k++) { */
 4774:     /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 4775:     /* 	} */
 4776:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 4777:     for(k=cptcovn; k>=1;k--){
 4778:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 4779: 				     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
 4780: 				    */ 
 4781:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 4782:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 4783:       /*scanf("%d",i);*/
 4784:       if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
 4785: 	cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 4786: 	if (strcmp(strc,"age")==0) { /* Vn*age */
 4787: 	  cptcovprod--;
 4788: 	  cutv(strb,stre,strd,'V'); /* stre="V3" */
 4789: 	  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
 4790: 	  cptcovage++; /* Sums the number of covariates which include age as a product */
 4791: 	  Tage[cptcovage]=k;  /* Tage[1] = 4 */
 4792: 	  /*printf("stre=%s ", stre);*/
 4793: 	} else if (strcmp(strd,"age")==0) { /* or age*Vn */
 4794: 	  cptcovprod--;
 4795: 	  cutv(strb,stre,strc,'V');
 4796: 	  Tvar[k]=atoi(stre);
 4797: 	  cptcovage++;
 4798: 	  Tage[cptcovage]=k;
 4799: 	} else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 4800: 	  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 4801: 	  cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 4802: 	  Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
 4803: 				  because this model-covariate is a construction we invent a new column
 4804: 				  ncovcol + k1
 4805: 				  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 4806: 				  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 4807: 	  cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 4808: 	  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 4809: 	  Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
 4810: 	  Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
 4811: 	  Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
 4812: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
 4813: 	  for (i=1; i<=lastobs;i++){
 4814: 	    /* Computes the new covariate which is a product of
 4815: 	       covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
 4816: 	    covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 4817: 	  }
 4818: 	  k1++;
 4819: 	  k2=k2+2;
 4820: 	} /* End age is not in the model */
 4821:       } /* End if model includes a product */
 4822:       else { /* no more sum */
 4823: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 4824:        /*  scanf("%d",i);*/
 4825: 	cutv(strd,strc,strb,'V');
 4826: 	Tvar[k]=atoi(strc);
 4827:       }
 4828:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 4829:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 4830: 	scanf("%d",i);*/
 4831:     } /* end of loop + */
 4832:   } /* end model */
 4833:   
 4834:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 4835:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 4836: 
 4837:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 4838:   printf("cptcovprod=%d ", cptcovprod);
 4839:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 4840: 
 4841:   scanf("%d ",i);*/
 4842: 
 4843: 
 4844:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 4845:   endread:
 4846:     printf("Exiting decodemodel: ");
 4847:     return (1);
 4848: }
 4849: 
 4850: calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 4851: {
 4852:   int i, m;
 4853: 
 4854:   for (i=1; i<=imx; i++) {
 4855:     for(m=2; (m<= maxwav); m++) {
 4856:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 4857: 	anint[m][i]=9999;
 4858: 	s[m][i]=-1;
 4859:       }
 4860:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 4861: 	*nberr++;
 4862: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4863: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4864: 	s[m][i]=-1;
 4865:       }
 4866:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 4867: 	*nberr++;
 4868: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 4869: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 4870: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 4871:       }
 4872:     }
 4873:   }
 4874: 
 4875:   for (i=1; i<=imx; i++)  {
 4876:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 4877:     for(m=firstpass; (m<= lastpass); m++){
 4878:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 4879: 	if (s[m][i] >= nlstate+1) {
 4880: 	  if(agedc[i]>0)
 4881: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 4882: 	      agev[m][i]=agedc[i];
 4883: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 4884: 	    else {
 4885: 	      if ((int)andc[i]!=9999){
 4886: 		nbwarn++;
 4887: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 4888: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 4889: 		agev[m][i]=-1;
 4890: 	      }
 4891: 	    }
 4892: 	}
 4893: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 4894: 				 years but with the precision of a month */
 4895: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 4896: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 4897: 	    agev[m][i]=1;
 4898: 	  else if(agev[m][i] < *agemin){ 
 4899: 	    *agemin=agev[m][i];
 4900: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 4901: 	  }
 4902: 	  else if(agev[m][i] >*agemax){
 4903: 	    *agemax=agev[m][i];
 4904: 	    printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
 4905: 	  }
 4906: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 4907: 	  /*	 agev[m][i] = age[i]+2*m;*/
 4908: 	}
 4909: 	else { /* =9 */
 4910: 	  agev[m][i]=1;
 4911: 	  s[m][i]=-1;
 4912: 	}
 4913:       }
 4914:       else /*= 0 Unknown */
 4915: 	agev[m][i]=1;
 4916:     }
 4917:     
 4918:   }
 4919:   for (i=1; i<=imx; i++)  {
 4920:     for(m=firstpass; (m<=lastpass); m++){
 4921:       if (s[m][i] > (nlstate+ndeath)) {
 4922: 	*nberr++;
 4923: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4924: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4925: 	return 1;
 4926:       }
 4927:     }
 4928:   }
 4929: 
 4930:   /*for (i=1; i<=imx; i++){
 4931:   for (m=firstpass; (m<lastpass); m++){
 4932:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 4933: }
 4934: 
 4935: }*/
 4936: 
 4937: 
 4938:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 4939:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 4940: 
 4941:   return (0);
 4942:   endread:
 4943:     printf("Exiting calandcheckages: ");
 4944:     return (1);
 4945: }
 4946: 
 4947: 
 4948: /***********************************************/
 4949: /**************** Main Program *****************/
 4950: /***********************************************/
 4951: 
 4952: int main(int argc, char *argv[])
 4953: {
 4954: #ifdef GSL
 4955:   const gsl_multimin_fminimizer_type *T;
 4956:   size_t iteri = 0, it;
 4957:   int rval = GSL_CONTINUE;
 4958:   int status = GSL_SUCCESS;
 4959:   double ssval;
 4960: #endif
 4961:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 4962:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 4963:   int linei, month, year,iout;
 4964:   int jj, ll, li, lj, lk, imk;
 4965:   int numlinepar=0; /* Current linenumber of parameter file */
 4966:   int itimes;
 4967:   int NDIM=2;
 4968:   int vpopbased=0;
 4969: 
 4970:   char ca[32], cb[32], cc[32];
 4971:   /*  FILE *fichtm; *//* Html File */
 4972:   /* FILE *ficgp;*/ /*Gnuplot File */
 4973:   struct stat info;
 4974:   double agedeb, agefin,hf;
 4975:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 4976: 
 4977:   double fret;
 4978:   double **xi,tmp,delta;
 4979: 
 4980:   double dum; /* Dummy variable */
 4981:   double ***p3mat;
 4982:   double ***mobaverage;
 4983:   int *indx;
 4984:   char line[MAXLINE], linepar[MAXLINE];
 4985:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 4986:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 4987:   char **bp, *tok, *val; /* pathtot */
 4988:   int firstobs=1, lastobs=10;
 4989:   int sdeb, sfin; /* Status at beginning and end */
 4990:   int c,  h , cpt,l;
 4991:   int ju,jl, mi;
 4992:   int i1,j1, jk,aa,bb, stepsize, ij;
 4993:   int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
 4994:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 4995:   int mobilav=0,popforecast=0;
 4996:   int hstepm, nhstepm;
 4997:   int agemortsup;
 4998:   float  sumlpop=0.;
 4999:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 5000:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 5001: 
 5002:   double bage, fage, age, agelim, agebase;
 5003:   double ftolpl=FTOL;
 5004:   double **prlim;
 5005:   double ***param; /* Matrix of parameters */
 5006:   double  *p;
 5007:   double **matcov; /* Matrix of covariance */
 5008:   double ***delti3; /* Scale */
 5009:   double *delti; /* Scale */
 5010:   double ***eij, ***vareij;
 5011:   double **varpl; /* Variances of prevalence limits by age */
 5012:   double *epj, vepp;
 5013:   double kk1, kk2;
 5014:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 5015:   double **ximort;
 5016:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 5017:   int *dcwave;
 5018: 
 5019:   char z[1]="c", occ;
 5020: 
 5021:   /*char  *strt;*/
 5022:   char strtend[80];
 5023: 
 5024:   long total_usecs;
 5025:  
 5026: /*   setlocale (LC_ALL, ""); */
 5027: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 5028: /*   textdomain (PACKAGE); */
 5029: /*   setlocale (LC_CTYPE, ""); */
 5030: /*   setlocale (LC_MESSAGES, ""); */
 5031: 
 5032:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 5033:   (void) gettimeofday(&start_time,&tzp);
 5034:   curr_time=start_time;
 5035:   tm = *localtime(&start_time.tv_sec);
 5036:   tmg = *gmtime(&start_time.tv_sec);
 5037:   strcpy(strstart,asctime(&tm));
 5038: 
 5039: /*  printf("Localtime (at start)=%s",strstart); */
 5040: /*  tp.tv_sec = tp.tv_sec +86400; */
 5041: /*  tm = *localtime(&start_time.tv_sec); */
 5042: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 5043: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 5044: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 5045: /*   tp.tv_sec = mktime(&tmg); */
 5046: /*   strt=asctime(&tmg); */
 5047: /*   printf("Time(after) =%s",strstart);  */
 5048: /*  (void) time (&time_value);
 5049: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 5050: *  tm = *localtime(&time_value);
 5051: *  strstart=asctime(&tm);
 5052: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 5053: */
 5054: 
 5055:   nberr=0; /* Number of errors and warnings */
 5056:   nbwarn=0;
 5057:   getcwd(pathcd, size);
 5058: 
 5059:   printf("\n%s\n%s",version,fullversion);
 5060:   if(argc <=1){
 5061:     printf("\nEnter the parameter file name: ");
 5062:     fgets(pathr,FILENAMELENGTH,stdin);
 5063:     i=strlen(pathr);
 5064:     if(pathr[i-1]=='\n')
 5065:       pathr[i-1]='\0';
 5066:    for (tok = pathr; tok != NULL; ){
 5067:       printf("Pathr |%s|\n",pathr);
 5068:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 5069:       printf("val= |%s| pathr=%s\n",val,pathr);
 5070:       strcpy (pathtot, val);
 5071:       if(pathr[0] == '\0') break; /* Dirty */
 5072:     }
 5073:   }
 5074:   else{
 5075:     strcpy(pathtot,argv[1]);
 5076:   }
 5077:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 5078:   /*cygwin_split_path(pathtot,path,optionfile);
 5079:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 5080:   /* cutv(path,optionfile,pathtot,'\\');*/
 5081: 
 5082:   /* Split argv[0], imach program to get pathimach */
 5083:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 5084:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5085:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5086:  /*   strcpy(pathimach,argv[0]); */
 5087:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 5088:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 5089:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 5090:   chdir(path); /* Can be a relative path */
 5091:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 5092:     printf("Current directory %s!\n",pathcd);
 5093:   strcpy(command,"mkdir ");
 5094:   strcat(command,optionfilefiname);
 5095:   if((outcmd=system(command)) != 0){
 5096:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 5097:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 5098:     /* fclose(ficlog); */
 5099: /*     exit(1); */
 5100:   }
 5101: /*   if((imk=mkdir(optionfilefiname))<0){ */
 5102: /*     perror("mkdir"); */
 5103: /*   } */
 5104: 
 5105:   /*-------- arguments in the command line --------*/
 5106: 
 5107:   /* Log file */
 5108:   strcat(filelog, optionfilefiname);
 5109:   strcat(filelog,".log");    /* */
 5110:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 5111:     printf("Problem with logfile %s\n",filelog);
 5112:     goto end;
 5113:   }
 5114:   fprintf(ficlog,"Log filename:%s\n",filelog);
 5115:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 5116:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 5117:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 5118:  path=%s \n\
 5119:  optionfile=%s\n\
 5120:  optionfilext=%s\n\
 5121:  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 5122: 
 5123:   printf("Local time (at start):%s",strstart);
 5124:   fprintf(ficlog,"Local time (at start): %s",strstart);
 5125:   fflush(ficlog);
 5126: /*   (void) gettimeofday(&curr_time,&tzp); */
 5127: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 5128: 
 5129:   /* */
 5130:   strcpy(fileres,"r");
 5131:   strcat(fileres, optionfilefiname);
 5132:   strcat(fileres,".txt");    /* Other files have txt extension */
 5133: 
 5134:   /*---------arguments file --------*/
 5135: 
 5136:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 5137:     printf("Problem with optionfile %s\n",optionfile);
 5138:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 5139:     fflush(ficlog);
 5140:     goto end;
 5141:   }
 5142: 
 5143: 
 5144: 
 5145:   strcpy(filereso,"o");
 5146:   strcat(filereso,fileres);
 5147:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 5148:     printf("Problem with Output resultfile: %s\n", filereso);
 5149:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 5150:     fflush(ficlog);
 5151:     goto end;
 5152:   }
 5153: 
 5154:   /* Reads comments: lines beginning with '#' */
 5155:   numlinepar=0;
 5156:   while((c=getc(ficpar))=='#' && c!= EOF){
 5157:     ungetc(c,ficpar);
 5158:     fgets(line, MAXLINE, ficpar);
 5159:     numlinepar++;
 5160:     puts(line);
 5161:     fputs(line,ficparo);
 5162:     fputs(line,ficlog);
 5163:   }
 5164:   ungetc(c,ficpar);
 5165: 
 5166:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 5167:   numlinepar++;
 5168:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 5169:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5170:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5171:   fflush(ficlog);
 5172:   while((c=getc(ficpar))=='#' && c!= EOF){
 5173:     ungetc(c,ficpar);
 5174:     fgets(line, MAXLINE, ficpar);
 5175:     numlinepar++;
 5176:     puts(line);
 5177:     fputs(line,ficparo);
 5178:     fputs(line,ficlog);
 5179:   }
 5180:   ungetc(c,ficpar);
 5181: 
 5182:    
 5183:   covar=matrix(0,NCOVMAX,1,n); 
 5184:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 5185:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 5186:      v1+v2*age+v2*v3 makes cptcovn = 3
 5187:   */
 5188:   if (strlen(model)>1) 
 5189:     cptcovn=nbocc(model,'+')+1;
 5190:   /* ncovprod */
 5191:   ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
 5192:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 5193:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 5194:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 5195:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 5196:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5197:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5198:     fflush(stdout);
 5199:     fclose (ficlog);
 5200:     goto end;
 5201:   }
 5202:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5203:   delti=delti3[1][1];
 5204:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 5205:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 5206:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5207:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5208:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5209:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5210:     fclose (ficparo);
 5211:     fclose (ficlog);
 5212:     goto end;
 5213:     exit(0);
 5214:   }
 5215:   else if(mle==-3) {
 5216:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5217:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5218:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5219:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5220:     matcov=matrix(1,npar,1,npar);
 5221:   }
 5222:   else{
 5223:     /* Read guess parameters */
 5224:     /* Reads comments: lines beginning with '#' */
 5225:     while((c=getc(ficpar))=='#' && c!= EOF){
 5226:       ungetc(c,ficpar);
 5227:       fgets(line, MAXLINE, ficpar);
 5228:       numlinepar++;
 5229:       puts(line);
 5230:       fputs(line,ficparo);
 5231:       fputs(line,ficlog);
 5232:     }
 5233:     ungetc(c,ficpar);
 5234:     
 5235:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5236:     for(i=1; i <=nlstate; i++){
 5237:       j=0;
 5238:       for(jj=1; jj <=nlstate+ndeath; jj++){
 5239: 	if(jj==i) continue;
 5240: 	j++;
 5241: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5242: 	if ((i1 != i) && (j1 != j)){
 5243: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 5244: It might be a problem of design; if ncovcol and the model are correct\n \
 5245: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 5246: 	  exit(1);
 5247: 	}
 5248: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5249: 	if(mle==1)
 5250: 	  printf("%1d%1d",i,j);
 5251: 	fprintf(ficlog,"%1d%1d",i,j);
 5252: 	for(k=1; k<=ncovmodel;k++){
 5253: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 5254: 	  if(mle==1){
 5255: 	    printf(" %lf",param[i][j][k]);
 5256: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5257: 	  }
 5258: 	  else
 5259: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5260: 	  fprintf(ficparo," %lf",param[i][j][k]);
 5261: 	}
 5262: 	fscanf(ficpar,"\n");
 5263: 	numlinepar++;
 5264: 	if(mle==1)
 5265: 	  printf("\n");
 5266: 	fprintf(ficlog,"\n");
 5267: 	fprintf(ficparo,"\n");
 5268:       }
 5269:     }  
 5270:     fflush(ficlog);
 5271: 
 5272:     p=param[1][1];
 5273:     
 5274:     /* Reads comments: lines beginning with '#' */
 5275:     while((c=getc(ficpar))=='#' && c!= EOF){
 5276:       ungetc(c,ficpar);
 5277:       fgets(line, MAXLINE, ficpar);
 5278:       numlinepar++;
 5279:       puts(line);
 5280:       fputs(line,ficparo);
 5281:       fputs(line,ficlog);
 5282:     }
 5283:     ungetc(c,ficpar);
 5284: 
 5285:     for(i=1; i <=nlstate; i++){
 5286:       for(j=1; j <=nlstate+ndeath-1; j++){
 5287: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5288: 	if ((i1-i)*(j1-j)!=0){
 5289: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 5290: 	  exit(1);
 5291: 	}
 5292: 	printf("%1d%1d",i,j);
 5293: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5294: 	fprintf(ficlog,"%1d%1d",i1,j1);
 5295: 	for(k=1; k<=ncovmodel;k++){
 5296: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 5297: 	  printf(" %le",delti3[i][j][k]);
 5298: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 5299: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 5300: 	}
 5301: 	fscanf(ficpar,"\n");
 5302: 	numlinepar++;
 5303: 	printf("\n");
 5304: 	fprintf(ficparo,"\n");
 5305: 	fprintf(ficlog,"\n");
 5306:       }
 5307:     }
 5308:     fflush(ficlog);
 5309: 
 5310:     delti=delti3[1][1];
 5311: 
 5312: 
 5313:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 5314:   
 5315:     /* Reads comments: lines beginning with '#' */
 5316:     while((c=getc(ficpar))=='#' && c!= EOF){
 5317:       ungetc(c,ficpar);
 5318:       fgets(line, MAXLINE, ficpar);
 5319:       numlinepar++;
 5320:       puts(line);
 5321:       fputs(line,ficparo);
 5322:       fputs(line,ficlog);
 5323:     }
 5324:     ungetc(c,ficpar);
 5325:   
 5326:     matcov=matrix(1,npar,1,npar);
 5327:     for(i=1; i <=npar; i++)
 5328:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 5329:       
 5330:     for(i=1; i <=npar; i++){
 5331:       fscanf(ficpar,"%s",&str);
 5332:       if(mle==1)
 5333: 	printf("%s",str);
 5334:       fprintf(ficlog,"%s",str);
 5335:       fprintf(ficparo,"%s",str);
 5336:       for(j=1; j <=i; j++){
 5337: 	fscanf(ficpar," %le",&matcov[i][j]);
 5338: 	if(mle==1){
 5339: 	  printf(" %.5le",matcov[i][j]);
 5340: 	}
 5341: 	fprintf(ficlog," %.5le",matcov[i][j]);
 5342: 	fprintf(ficparo," %.5le",matcov[i][j]);
 5343:       }
 5344:       fscanf(ficpar,"\n");
 5345:       numlinepar++;
 5346:       if(mle==1)
 5347: 	printf("\n");
 5348:       fprintf(ficlog,"\n");
 5349:       fprintf(ficparo,"\n");
 5350:     }
 5351:     for(i=1; i <=npar; i++)
 5352:       for(j=i+1;j<=npar;j++)
 5353: 	matcov[i][j]=matcov[j][i];
 5354:     
 5355:     if(mle==1)
 5356:       printf("\n");
 5357:     fprintf(ficlog,"\n");
 5358:     
 5359:     fflush(ficlog);
 5360:     
 5361:     /*-------- Rewriting parameter file ----------*/
 5362:     strcpy(rfileres,"r");    /* "Rparameterfile */
 5363:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 5364:     strcat(rfileres,".");    /* */
 5365:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 5366:     if((ficres =fopen(rfileres,"w"))==NULL) {
 5367:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 5368:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 5369:     }
 5370:     fprintf(ficres,"#%s\n",version);
 5371:   }    /* End of mle != -3 */
 5372: 
 5373: 
 5374:   n= lastobs;
 5375:   num=lvector(1,n);
 5376:   moisnais=vector(1,n);
 5377:   annais=vector(1,n);
 5378:   moisdc=vector(1,n);
 5379:   andc=vector(1,n);
 5380:   agedc=vector(1,n);
 5381:   cod=ivector(1,n);
 5382:   weight=vector(1,n);
 5383:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 5384:   mint=matrix(1,maxwav,1,n);
 5385:   anint=matrix(1,maxwav,1,n);
 5386:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 5387:   tab=ivector(1,NCOVMAX);
 5388:   ncodemax=ivector(1,8); /* hard coded ? */
 5389: 
 5390:   /* Reads data from file datafile */
 5391:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 5392:     goto end;
 5393: 
 5394:   /* Calculation of the number of parameters from char model */
 5395:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 5396: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 5397: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 5398: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 5399: 	k=1 Tvar[1]=2 (from V2)
 5400:     */
 5401:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 5402:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 5403:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 5404:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 5405:   */
 5406:   /* For model-covariate k tells which data-covariate to use but
 5407:     because this model-covariate is a construction we invent a new column
 5408:     ncovcol + k1
 5409:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 5410:     Tvar[3=V1*V4]=4+1 etc */
 5411:   Tprod=ivector(1,15); 
 5412:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 5413:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 5414:   */
 5415:   Tvaraff=ivector(1,15); 
 5416:   Tvard=imatrix(1,15,1,2); /* For V3*V2 Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 5417:   Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 5418: 			 4 covariates (3 plus signs)
 5419: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 5420: 		      */  
 5421: 
 5422:   if(decodemodel(model, lastobs) == 1)
 5423:     goto end;
 5424: 
 5425:   if((double)(lastobs-imx)/(double)imx > 1.10){
 5426:     nbwarn++;
 5427:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5428:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5429:   }
 5430:     /*  if(mle==1){*/
 5431:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 5432:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 5433:   }
 5434: 
 5435:     /*-calculation of age at interview from date of interview and age at death -*/
 5436:   agev=matrix(1,maxwav,1,imx);
 5437: 
 5438:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 5439:     goto end;
 5440: 
 5441: 
 5442:   agegomp=(int)agemin;
 5443:   free_vector(moisnais,1,n);
 5444:   free_vector(annais,1,n);
 5445:   /* free_matrix(mint,1,maxwav,1,n);
 5446:      free_matrix(anint,1,maxwav,1,n);*/
 5447:   free_vector(moisdc,1,n);
 5448:   free_vector(andc,1,n);
 5449: 
 5450:    
 5451:   wav=ivector(1,imx);
 5452:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 5453:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 5454:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 5455:    
 5456:   /* Concatenates waves */
 5457:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 5458: 
 5459:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 5460: 
 5461:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 5462:   ncodemax[1]=1;
 5463:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 5464:       
 5465:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
 5466: 				 the estimations*/
 5467:   h=0;
 5468:   m=pow(2,cptcoveff);
 5469:  
 5470:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 5471:     for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 5472:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
 5473: 	for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 5474: 	  h++;
 5475: 	  if (h>m) {
 5476: 	    h=1;
 5477: 	    codtab[h][k]=j;
 5478: 	    codtab[h][Tvar[k]]=j;
 5479: 	  }
 5480: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 5481: 	} 
 5482:       }
 5483:     }
 5484:   } 
 5485:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 5486:      codtab[1][2]=1;codtab[2][2]=2; */
 5487:   /* for(i=1; i <=m ;i++){ 
 5488:      for(k=1; k <=cptcovn; k++){
 5489:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 5490:      }
 5491:      printf("\n");
 5492:      }
 5493:      scanf("%d",i);*/
 5494:     
 5495:   /*------------ gnuplot -------------*/
 5496:   strcpy(optionfilegnuplot,optionfilefiname);
 5497:   if(mle==-3)
 5498:     strcat(optionfilegnuplot,"-mort");
 5499:   strcat(optionfilegnuplot,".gp");
 5500: 
 5501:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 5502:     printf("Problem with file %s",optionfilegnuplot);
 5503:   }
 5504:   else{
 5505:     fprintf(ficgp,"\n# %s\n", version); 
 5506:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 5507:     fprintf(ficgp,"set missing 'NaNq'\n");
 5508:   }
 5509:   /*  fclose(ficgp);*/
 5510:   /*--------- index.htm --------*/
 5511: 
 5512:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 5513:   if(mle==-3)
 5514:     strcat(optionfilehtm,"-mort");
 5515:   strcat(optionfilehtm,".htm");
 5516:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 5517:     printf("Problem with %s \n",optionfilehtm);
 5518:     exit(0);
 5519:   }
 5520: 
 5521:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 5522:   strcat(optionfilehtmcov,"-cov.htm");
 5523:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 5524:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 5525:   }
 5526:   else{
 5527:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 5528: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 5529: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 5530: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 5531:   }
 5532: 
 5533:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 5534: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 5535: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 5536: \n\
 5537: <hr  size=\"2\" color=\"#EC5E5E\">\
 5538:  <ul><li><h4>Parameter files</h4>\n\
 5539:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 5540:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 5541:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 5542:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 5543:  - Date and time at start: %s</ul>\n",\
 5544: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 5545: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 5546: 	  fileres,fileres,\
 5547: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 5548:   fflush(fichtm);
 5549: 
 5550:   strcpy(pathr,path);
 5551:   strcat(pathr,optionfilefiname);
 5552:   chdir(optionfilefiname); /* Move to directory named optionfile */
 5553:   
 5554:   /* Calculates basic frequencies. Computes observed prevalence at single age
 5555:      and prints on file fileres'p'. */
 5556:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 5557: 
 5558:   fprintf(fichtm,"\n");
 5559:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 5560: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 5561: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 5562: 	  imx,agemin,agemax,jmin,jmax,jmean);
 5563:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5564:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5565:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5566:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5567:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 5568:     
 5569:    
 5570:   /* For Powell, parameters are in a vector p[] starting at p[1]
 5571:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 5572:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 5573: 
 5574:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 5575: 
 5576:   if (mle==-3){
 5577:     ximort=matrix(1,NDIM,1,NDIM); 
 5578: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 5579:     cens=ivector(1,n);
 5580:     ageexmed=vector(1,n);
 5581:     agecens=vector(1,n);
 5582:     dcwave=ivector(1,n);
 5583:  
 5584:     for (i=1; i<=imx; i++){
 5585:       dcwave[i]=-1;
 5586:       for (m=firstpass; m<=lastpass; m++)
 5587: 	if (s[m][i]>nlstate) {
 5588: 	  dcwave[i]=m;
 5589: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 5590: 	  break;
 5591: 	}
 5592:     }
 5593: 
 5594:     for (i=1; i<=imx; i++) {
 5595:       if (wav[i]>0){
 5596: 	ageexmed[i]=agev[mw[1][i]][i];
 5597: 	j=wav[i];
 5598: 	agecens[i]=1.; 
 5599: 
 5600: 	if (ageexmed[i]> 1 && wav[i] > 0){
 5601: 	  agecens[i]=agev[mw[j][i]][i];
 5602: 	  cens[i]= 1;
 5603: 	}else if (ageexmed[i]< 1) 
 5604: 	  cens[i]= -1;
 5605: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 5606: 	  cens[i]=0 ;
 5607:       }
 5608:       else cens[i]=-1;
 5609:     }
 5610:     
 5611:     for (i=1;i<=NDIM;i++) {
 5612:       for (j=1;j<=NDIM;j++)
 5613: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 5614:     }
 5615:     
 5616:     p[1]=0.0268; p[NDIM]=0.083;
 5617:     /*printf("%lf %lf", p[1], p[2]);*/
 5618:     
 5619:     
 5620: #ifdef GSL
 5621:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 5622: #elsedef
 5623:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 5624: #endif
 5625:     strcpy(filerespow,"pow-mort"); 
 5626:     strcat(filerespow,fileres);
 5627:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 5628:       printf("Problem with resultfile: %s\n", filerespow);
 5629:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 5630:     }
 5631: #ifdef GSL
 5632:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 5633: #elsedef
 5634:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 5635: #endif
 5636:     /*  for (i=1;i<=nlstate;i++)
 5637: 	for(j=1;j<=nlstate+ndeath;j++)
 5638: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 5639:     */
 5640:     fprintf(ficrespow,"\n");
 5641: #ifdef GSL
 5642:     /* gsl starts here */ 
 5643:     T = gsl_multimin_fminimizer_nmsimplex;
 5644:     gsl_multimin_fminimizer *sfm = NULL;
 5645:     gsl_vector *ss, *x;
 5646:     gsl_multimin_function minex_func;
 5647: 
 5648:     /* Initial vertex size vector */
 5649:     ss = gsl_vector_alloc (NDIM);
 5650:     
 5651:     if (ss == NULL){
 5652:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 5653:     }
 5654:     /* Set all step sizes to 1 */
 5655:     gsl_vector_set_all (ss, 0.001);
 5656: 
 5657:     /* Starting point */
 5658:     
 5659:     x = gsl_vector_alloc (NDIM);
 5660:     
 5661:     if (x == NULL){
 5662:       gsl_vector_free(ss);
 5663:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 5664:     }
 5665:   
 5666:     /* Initialize method and iterate */
 5667:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 5668: /*     gsl_vector_set(x, 0, 0.0268); */
 5669: /*     gsl_vector_set(x, 1, 0.083); */
 5670:     gsl_vector_set(x, 0, p[1]);
 5671:     gsl_vector_set(x, 1, p[2]);
 5672: 
 5673:     minex_func.f = &gompertz_f;
 5674:     minex_func.n = NDIM;
 5675:     minex_func.params = (void *)&p; /* ??? */
 5676:     
 5677:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 5678:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 5679:     
 5680:     printf("Iterations beginning .....\n\n");
 5681:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 5682: 
 5683:     iteri=0;
 5684:     while (rval == GSL_CONTINUE){
 5685:       iteri++;
 5686:       status = gsl_multimin_fminimizer_iterate(sfm);
 5687:       
 5688:       if (status) printf("error: %s\n", gsl_strerror (status));
 5689:       fflush(0);
 5690:       
 5691:       if (status) 
 5692:         break;
 5693:       
 5694:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 5695:       ssval = gsl_multimin_fminimizer_size (sfm);
 5696:       
 5697:       if (rval == GSL_SUCCESS)
 5698:         printf ("converged to a local maximum at\n");
 5699:       
 5700:       printf("%5d ", iteri);
 5701:       for (it = 0; it < NDIM; it++){
 5702: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 5703:       }
 5704:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 5705:     }
 5706:     
 5707:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 5708:     
 5709:     gsl_vector_free(x); /* initial values */
 5710:     gsl_vector_free(ss); /* inital step size */
 5711:     for (it=0; it<NDIM; it++){
 5712:       p[it+1]=gsl_vector_get(sfm->x,it);
 5713:       fprintf(ficrespow," %.12lf", p[it]);
 5714:     }
 5715:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 5716: #endif
 5717: #ifdef POWELL
 5718:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 5719: #endif  
 5720:     fclose(ficrespow);
 5721:     
 5722:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 5723: 
 5724:     for(i=1; i <=NDIM; i++)
 5725:       for(j=i+1;j<=NDIM;j++)
 5726: 	matcov[i][j]=matcov[j][i];
 5727:     
 5728:     printf("\nCovariance matrix\n ");
 5729:     for(i=1; i <=NDIM; i++) {
 5730:       for(j=1;j<=NDIM;j++){ 
 5731: 	printf("%f ",matcov[i][j]);
 5732:       }
 5733:       printf("\n ");
 5734:     }
 5735:     
 5736:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 5737:     for (i=1;i<=NDIM;i++) 
 5738:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 5739: 
 5740:     lsurv=vector(1,AGESUP);
 5741:     lpop=vector(1,AGESUP);
 5742:     tpop=vector(1,AGESUP);
 5743:     lsurv[agegomp]=100000;
 5744:     
 5745:     for (k=agegomp;k<=AGESUP;k++) {
 5746:       agemortsup=k;
 5747:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 5748:     }
 5749:     
 5750:     for (k=agegomp;k<agemortsup;k++)
 5751:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 5752:     
 5753:     for (k=agegomp;k<agemortsup;k++){
 5754:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 5755:       sumlpop=sumlpop+lpop[k];
 5756:     }
 5757:     
 5758:     tpop[agegomp]=sumlpop;
 5759:     for (k=agegomp;k<(agemortsup-3);k++){
 5760:       /*  tpop[k+1]=2;*/
 5761:       tpop[k+1]=tpop[k]-lpop[k];
 5762:     }
 5763:     
 5764:     
 5765:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 5766:     for (k=agegomp;k<(agemortsup-2);k++) 
 5767:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 5768:     
 5769:     
 5770:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 5771:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 5772:     
 5773:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 5774: 		     stepm, weightopt,\
 5775: 		     model,imx,p,matcov,agemortsup);
 5776:     
 5777:     free_vector(lsurv,1,AGESUP);
 5778:     free_vector(lpop,1,AGESUP);
 5779:     free_vector(tpop,1,AGESUP);
 5780: #ifdef GSL
 5781:     free_ivector(cens,1,n);
 5782:     free_vector(agecens,1,n);
 5783:     free_ivector(dcwave,1,n);
 5784:     free_matrix(ximort,1,NDIM,1,NDIM);
 5785: #endif
 5786:   } /* Endof if mle==-3 */
 5787:   
 5788:   else{ /* For mle >=1 */
 5789:     globpr=0;/* debug */
 5790:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 5791:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 5792:     for (k=1; k<=npar;k++)
 5793:       printf(" %d %8.5f",k,p[k]);
 5794:     printf("\n");
 5795:     globpr=1; /* to print the contributions */
 5796:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 5797:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 5798:     for (k=1; k<=npar;k++)
 5799:       printf(" %d %8.5f",k,p[k]);
 5800:     printf("\n");
 5801:     if(mle>=1){ /* Could be 1 or 2 */
 5802:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 5803:     }
 5804:     
 5805:     /*--------- results files --------------*/
 5806:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 5807:     
 5808:     
 5809:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5810:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5811:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5812:     for(i=1,jk=1; i <=nlstate; i++){
 5813:       for(k=1; k <=(nlstate+ndeath); k++){
 5814: 	if (k != i) {
 5815: 	  printf("%d%d ",i,k);
 5816: 	  fprintf(ficlog,"%d%d ",i,k);
 5817: 	  fprintf(ficres,"%1d%1d ",i,k);
 5818: 	  for(j=1; j <=ncovmodel; j++){
 5819: 	    printf("%lf ",p[jk]);
 5820: 	    fprintf(ficlog,"%lf ",p[jk]);
 5821: 	    fprintf(ficres,"%lf ",p[jk]);
 5822: 	    jk++; 
 5823: 	  }
 5824: 	  printf("\n");
 5825: 	  fprintf(ficlog,"\n");
 5826: 	  fprintf(ficres,"\n");
 5827: 	}
 5828:       }
 5829:     }
 5830:     if(mle!=0){
 5831:       /* Computing hessian and covariance matrix */
 5832:       ftolhess=ftol; /* Usually correct */
 5833:       hesscov(matcov, p, npar, delti, ftolhess, func);
 5834:     }
 5835:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 5836:     printf("# Scales (for hessian or gradient estimation)\n");
 5837:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 5838:     for(i=1,jk=1; i <=nlstate; i++){
 5839:       for(j=1; j <=nlstate+ndeath; j++){
 5840: 	if (j!=i) {
 5841: 	  fprintf(ficres,"%1d%1d",i,j);
 5842: 	  printf("%1d%1d",i,j);
 5843: 	  fprintf(ficlog,"%1d%1d",i,j);
 5844: 	  for(k=1; k<=ncovmodel;k++){
 5845: 	    printf(" %.5e",delti[jk]);
 5846: 	    fprintf(ficlog," %.5e",delti[jk]);
 5847: 	    fprintf(ficres," %.5e",delti[jk]);
 5848: 	    jk++;
 5849: 	  }
 5850: 	  printf("\n");
 5851: 	  fprintf(ficlog,"\n");
 5852: 	  fprintf(ficres,"\n");
 5853: 	}
 5854:       }
 5855:     }
 5856:     
 5857:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5858:     if(mle>=1)
 5859:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5860:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5861:     /* # 121 Var(a12)\n\ */
 5862:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 5863:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 5864:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 5865:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 5866:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 5867:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 5868:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 5869:     
 5870:     
 5871:     /* Just to have a covariance matrix which will be more understandable
 5872:        even is we still don't want to manage dictionary of variables
 5873:     */
 5874:     for(itimes=1;itimes<=2;itimes++){
 5875:       jj=0;
 5876:       for(i=1; i <=nlstate; i++){
 5877: 	for(j=1; j <=nlstate+ndeath; j++){
 5878: 	  if(j==i) continue;
 5879: 	  for(k=1; k<=ncovmodel;k++){
 5880: 	    jj++;
 5881: 	    ca[0]= k+'a'-1;ca[1]='\0';
 5882: 	    if(itimes==1){
 5883: 	      if(mle>=1)
 5884: 		printf("#%1d%1d%d",i,j,k);
 5885: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 5886: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 5887: 	    }else{
 5888: 	      if(mle>=1)
 5889: 		printf("%1d%1d%d",i,j,k);
 5890: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 5891: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 5892: 	    }
 5893: 	    ll=0;
 5894: 	    for(li=1;li <=nlstate; li++){
 5895: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 5896: 		if(lj==li) continue;
 5897: 		for(lk=1;lk<=ncovmodel;lk++){
 5898: 		  ll++;
 5899: 		  if(ll<=jj){
 5900: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 5901: 		    if(ll<jj){
 5902: 		      if(itimes==1){
 5903: 			if(mle>=1)
 5904: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5905: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5906: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5907: 		      }else{
 5908: 			if(mle>=1)
 5909: 			  printf(" %.5e",matcov[jj][ll]); 
 5910: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 5911: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 5912: 		      }
 5913: 		    }else{
 5914: 		      if(itimes==1){
 5915: 			if(mle>=1)
 5916: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 5917: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 5918: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 5919: 		      }else{
 5920: 			if(mle>=1)
 5921: 			  printf(" %.5e",matcov[jj][ll]); 
 5922: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 5923: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 5924: 		      }
 5925: 		    }
 5926: 		  }
 5927: 		} /* end lk */
 5928: 	      } /* end lj */
 5929: 	    } /* end li */
 5930: 	    if(mle>=1)
 5931: 	      printf("\n");
 5932: 	    fprintf(ficlog,"\n");
 5933: 	    fprintf(ficres,"\n");
 5934: 	    numlinepar++;
 5935: 	  } /* end k*/
 5936: 	} /*end j */
 5937:       } /* end i */
 5938:     } /* end itimes */
 5939:     
 5940:     fflush(ficlog);
 5941:     fflush(ficres);
 5942:     
 5943:     while((c=getc(ficpar))=='#' && c!= EOF){
 5944:       ungetc(c,ficpar);
 5945:       fgets(line, MAXLINE, ficpar);
 5946:       puts(line);
 5947:       fputs(line,ficparo);
 5948:     }
 5949:     ungetc(c,ficpar);
 5950:     
 5951:     estepm=0;
 5952:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 5953:     if (estepm==0 || estepm < stepm) estepm=stepm;
 5954:     if (fage <= 2) {
 5955:       bage = ageminpar;
 5956:       fage = agemaxpar;
 5957:     }
 5958:     
 5959:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 5960:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 5961:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 5962:     
 5963:     while((c=getc(ficpar))=='#' && c!= EOF){
 5964:       ungetc(c,ficpar);
 5965:       fgets(line, MAXLINE, ficpar);
 5966:       puts(line);
 5967:       fputs(line,ficparo);
 5968:     }
 5969:     ungetc(c,ficpar);
 5970:     
 5971:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 5972:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5973:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5974:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5975:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5976:     
 5977:     while((c=getc(ficpar))=='#' && c!= EOF){
 5978:       ungetc(c,ficpar);
 5979:       fgets(line, MAXLINE, ficpar);
 5980:       puts(line);
 5981:       fputs(line,ficparo);
 5982:     }
 5983:     ungetc(c,ficpar);
 5984:     
 5985:     
 5986:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 5987:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 5988:     
 5989:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 5990:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 5991:     fprintf(ficres,"pop_based=%d\n",popbased);   
 5992:     
 5993:     while((c=getc(ficpar))=='#' && c!= EOF){
 5994:       ungetc(c,ficpar);
 5995:       fgets(line, MAXLINE, ficpar);
 5996:       puts(line);
 5997:       fputs(line,ficparo);
 5998:     }
 5999:     ungetc(c,ficpar);
 6000:     
 6001:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 6002:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6003:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6004:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6005:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6006:     /* day and month of proj2 are not used but only year anproj2.*/
 6007:     
 6008:     
 6009:     
 6010:     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
 6011:     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 6012:     
 6013:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6014:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6015:     
 6016:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 6017: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 6018: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 6019:       
 6020:    /*------------ free_vector  -------------*/
 6021:    /*  chdir(path); */
 6022:  
 6023:     free_ivector(wav,1,imx);
 6024:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 6025:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 6026:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 6027:     free_lvector(num,1,n);
 6028:     free_vector(agedc,1,n);
 6029:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 6030:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 6031:     fclose(ficparo);
 6032:     fclose(ficres);
 6033: 
 6034: 
 6035:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 6036:   
 6037:     strcpy(filerespl,"pl");
 6038:     strcat(filerespl,fileres);
 6039:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 6040:       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
 6041:       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
 6042:     }
 6043:     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 6044:     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 6045:     pstamp(ficrespl);
 6046:     fprintf(ficrespl,"# Period (stable) prevalence \n");
 6047:     fprintf(ficrespl,"#Age ");
 6048:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 6049:     fprintf(ficrespl,"\n");
 6050:   
 6051:     prlim=matrix(1,nlstate,1,nlstate);
 6052: 
 6053:     agebase=ageminpar;
 6054:     agelim=agemaxpar;
 6055:     ftolpl=1.e-10;
 6056:     i1=cptcoveff;
 6057:     if (cptcovn < 1){i1=1;}
 6058: 
 6059:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6060:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 6061: 	k=k+1;
 6062: 	/* to clean */
 6063: 	printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
 6064: 	fprintf(ficrespl,"\n#******");
 6065: 	printf("\n#******");
 6066: 	fprintf(ficlog,"\n#******");
 6067: 	for(j=1;j<=cptcoveff;j++) {
 6068: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6069: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6070: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6071: 	}
 6072: 	fprintf(ficrespl,"******\n");
 6073: 	printf("******\n");
 6074: 	fprintf(ficlog,"******\n");
 6075: 	
 6076: 	for (age=agebase; age<=agelim; age++){
 6077: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 6078: 	  fprintf(ficrespl,"%.0f ",age );
 6079: 	  for(j=1;j<=cptcoveff;j++)
 6080: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6081: 	  for(i=1; i<=nlstate;i++)
 6082: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 6083: 	  fprintf(ficrespl,"\n");
 6084: 	}
 6085:       }
 6086:     }
 6087:     fclose(ficrespl);
 6088: 
 6089:     /*------------- h Pij x at various ages ------------*/
 6090:   
 6091:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 6092:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 6093:       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 6094:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
 6095:     }
 6096:     printf("Computing pij: result on file '%s' \n", filerespij);
 6097:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 6098:   
 6099:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 6100:     /*if (stepm<=24) stepsize=2;*/
 6101: 
 6102:     agelim=AGESUP;
 6103:     hstepm=stepsize*YEARM; /* Every year of age */
 6104:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 6105: 
 6106:     /* hstepm=1;   aff par mois*/
 6107:     pstamp(ficrespij);
 6108:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 6109:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6110:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 6111: 	k=k+1;
 6112: 	fprintf(ficrespij,"\n#****** ");
 6113: 	for(j=1;j<=cptcoveff;j++) 
 6114: 	  fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6115: 	fprintf(ficrespij,"******\n");
 6116: 	
 6117: 	for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 6118: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 6119: 	  nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 6120: 
 6121: 	  /*	  nhstepm=nhstepm*YEARM; aff par mois*/
 6122: 
 6123: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 6124: 	  oldm=oldms;savm=savms;
 6125: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 6126: 	  fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 6127: 	  for(i=1; i<=nlstate;i++)
 6128: 	    for(j=1; j<=nlstate+ndeath;j++)
 6129: 	      fprintf(ficrespij," %1d-%1d",i,j);
 6130: 	  fprintf(ficrespij,"\n");
 6131: 	  for (h=0; h<=nhstepm; h++){
 6132: 	    fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 6133: 	    for(i=1; i<=nlstate;i++)
 6134: 	      for(j=1; j<=nlstate+ndeath;j++)
 6135: 		fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 6136: 	    fprintf(ficrespij,"\n");
 6137: 	  }
 6138: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 6139: 	  fprintf(ficrespij,"\n");
 6140: 	}
 6141:       }
 6142:     }
 6143: 
 6144:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 6145: 
 6146:     fclose(ficrespij);
 6147: 
 6148:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6149:     for(i=1;i<=AGESUP;i++)
 6150:       for(j=1;j<=NCOVMAX;j++)
 6151: 	for(k=1;k<=NCOVMAX;k++)
 6152: 	  probs[i][j][k]=0.;
 6153: 
 6154:     /*---------- Forecasting ------------------*/
 6155:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 6156:     if(prevfcast==1){
 6157:       /*    if(stepm ==1){*/
 6158:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 6159:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 6160:       /*      }  */
 6161:       /*      else{ */
 6162:       /*        erreur=108; */
 6163:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6164:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6165:       /*      } */
 6166:     }
 6167:   
 6168: 
 6169:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 6170: 
 6171:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 6172:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 6173: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 6174:     */
 6175: 
 6176:     if (mobilav!=0) {
 6177:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6178:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 6179: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 6180: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 6181:       }
 6182:     }
 6183: 
 6184: 
 6185:     /*---------- Health expectancies, no variances ------------*/
 6186: 
 6187:     strcpy(filerese,"e");
 6188:     strcat(filerese,fileres);
 6189:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 6190:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6191:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6192:     }
 6193:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 6194:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 6195:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6196:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 6197: 	k=k+1; 
 6198: 	fprintf(ficreseij,"\n#****** ");
 6199: 	for(j=1;j<=cptcoveff;j++) {
 6200: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6201: 	}
 6202: 	fprintf(ficreseij,"******\n");
 6203: 
 6204: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6205: 	oldm=oldms;savm=savms;
 6206: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 6207:       
 6208: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6209:       }
 6210:     }
 6211:     fclose(ficreseij);
 6212: 
 6213: 
 6214:     /*---------- Health expectancies and variances ------------*/
 6215: 
 6216: 
 6217:     strcpy(filerest,"t");
 6218:     strcat(filerest,fileres);
 6219:     if((ficrest=fopen(filerest,"w"))==NULL) {
 6220:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 6221:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 6222:     }
 6223:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6224:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6225: 
 6226: 
 6227:     strcpy(fileresstde,"stde");
 6228:     strcat(fileresstde,fileres);
 6229:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 6230:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6231:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6232:     }
 6233:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6234:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6235: 
 6236:     strcpy(filerescve,"cve");
 6237:     strcat(filerescve,fileres);
 6238:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 6239:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6240:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6241:     }
 6242:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6243:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6244: 
 6245:     strcpy(fileresv,"v");
 6246:     strcat(fileresv,fileres);
 6247:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 6248:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 6249:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 6250:     }
 6251:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6252:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6253: 
 6254:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6255:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 6256: 	k=k+1; 
 6257: 	fprintf(ficrest,"\n#****** ");
 6258: 	for(j=1;j<=cptcoveff;j++) 
 6259: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6260: 	fprintf(ficrest,"******\n");
 6261: 
 6262: 	fprintf(ficresstdeij,"\n#****** ");
 6263: 	fprintf(ficrescveij,"\n#****** ");
 6264: 	for(j=1;j<=cptcoveff;j++) {
 6265: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6266: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6267: 	}
 6268: 	fprintf(ficresstdeij,"******\n");
 6269: 	fprintf(ficrescveij,"******\n");
 6270: 
 6271: 	fprintf(ficresvij,"\n#****** ");
 6272: 	for(j=1;j<=cptcoveff;j++) 
 6273: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6274: 	fprintf(ficresvij,"******\n");
 6275: 
 6276: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6277: 	oldm=oldms;savm=savms;
 6278: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 6279:  
 6280: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6281: 	pstamp(ficrest);
 6282: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 6283: 	  oldm=oldms;savm=savms;
 6284: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 6285: 	  if(vpopbased==1)
 6286: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 6287: 	  else
 6288: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 6289: 	  fprintf(ficrest,"# Age e.. (std) ");
 6290: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 6291: 	  fprintf(ficrest,"\n");
 6292: 
 6293: 	  epj=vector(1,nlstate+1);
 6294: 	  for(age=bage; age <=fage ;age++){
 6295: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 6296: 	    if (vpopbased==1) {
 6297: 	      if(mobilav ==0){
 6298: 		for(i=1; i<=nlstate;i++)
 6299: 		  prlim[i][i]=probs[(int)age][i][k];
 6300: 	      }else{ /* mobilav */ 
 6301: 		for(i=1; i<=nlstate;i++)
 6302: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 6303: 	      }
 6304: 	    }
 6305: 	
 6306: 	    fprintf(ficrest," %4.0f",age);
 6307: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 6308: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 6309: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 6310: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 6311: 	      }
 6312: 	      epj[nlstate+1] +=epj[j];
 6313: 	    }
 6314: 
 6315: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 6316: 	      for(j=1;j <=nlstate;j++)
 6317: 		vepp += vareij[i][j][(int)age];
 6318: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 6319: 	    for(j=1;j <=nlstate;j++){
 6320: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 6321: 	    }
 6322: 	    fprintf(ficrest,"\n");
 6323: 	  }
 6324: 	}
 6325: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6326: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6327: 	free_vector(epj,1,nlstate+1);
 6328:       }
 6329:     }
 6330:     free_vector(weight,1,n);
 6331:     free_imatrix(Tvard,1,15,1,2);
 6332:     free_imatrix(s,1,maxwav+1,1,n);
 6333:     free_matrix(anint,1,maxwav,1,n); 
 6334:     free_matrix(mint,1,maxwav,1,n);
 6335:     free_ivector(cod,1,n);
 6336:     free_ivector(tab,1,NCOVMAX);
 6337:     fclose(ficresstdeij);
 6338:     fclose(ficrescveij);
 6339:     fclose(ficresvij);
 6340:     fclose(ficrest);
 6341:     fclose(ficpar);
 6342:   
 6343:     /*------- Variance of period (stable) prevalence------*/   
 6344: 
 6345:     strcpy(fileresvpl,"vpl");
 6346:     strcat(fileresvpl,fileres);
 6347:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 6348:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 6349:       exit(0);
 6350:     }
 6351:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 6352: 
 6353:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6354:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 6355: 	k=k+1;
 6356: 	fprintf(ficresvpl,"\n#****** ");
 6357: 	for(j=1;j<=cptcoveff;j++) 
 6358: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6359: 	fprintf(ficresvpl,"******\n");
 6360:       
 6361: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 6362: 	oldm=oldms;savm=savms;
 6363: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 6364: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 6365:       }
 6366:     }
 6367: 
 6368:     fclose(ficresvpl);
 6369: 
 6370:     /*---------- End : free ----------------*/
 6371:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6372:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6373: 
 6374:   }  /* mle==-3 arrives here for freeing */
 6375:  endfree:
 6376:   free_matrix(prlim,1,nlstate,1,nlstate);
 6377:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 6378:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6379:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6380:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6381:     free_matrix(covar,0,NCOVMAX,1,n);
 6382:     free_matrix(matcov,1,npar,1,npar);
 6383:     /*free_vector(delti,1,npar);*/
 6384:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6385:     free_matrix(agev,1,maxwav,1,imx);
 6386:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 6387: 
 6388:     free_ivector(ncodemax,1,8);
 6389:     free_ivector(Tvar,1,15);
 6390:     free_ivector(Tprod,1,15);
 6391:     free_ivector(Tvaraff,1,15);
 6392:     free_ivector(Tage,1,15);
 6393: 
 6394:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 6395:     free_imatrix(codtab,1,100,1,10);
 6396:   fflush(fichtm);
 6397:   fflush(ficgp);
 6398:   
 6399: 
 6400:   if((nberr >0) || (nbwarn>0)){
 6401:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 6402:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 6403:   }else{
 6404:     printf("End of Imach\n");
 6405:     fprintf(ficlog,"End of Imach\n");
 6406:   }
 6407:   printf("See log file on %s\n",filelog);
 6408:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 6409:   (void) gettimeofday(&end_time,&tzp);
 6410:   tm = *localtime(&end_time.tv_sec);
 6411:   tmg = *gmtime(&end_time.tv_sec);
 6412:   strcpy(strtend,asctime(&tm));
 6413:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 6414:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 6415:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 6416: 
 6417:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 6418:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 6419:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 6420:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 6421: /*   if(fileappend(fichtm,optionfilehtm)){ */
 6422:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6423:   fclose(fichtm);
 6424:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6425:   fclose(fichtmcov);
 6426:   fclose(ficgp);
 6427:   fclose(ficlog);
 6428:   /*------ End -----------*/
 6429: 
 6430: 
 6431:    printf("Before Current directory %s!\n",pathcd);
 6432:    if(chdir(pathcd) != 0)
 6433:     printf("Can't move to directory %s!\n",path);
 6434:   if(getcwd(pathcd,MAXLINE) > 0)
 6435:     printf("Current directory %s!\n",pathcd);
 6436:   /*strcat(plotcmd,CHARSEPARATOR);*/
 6437:   sprintf(plotcmd,"gnuplot");
 6438: #ifndef UNIX
 6439:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 6440: #endif
 6441:   if(!stat(plotcmd,&info)){
 6442:     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 6443:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 6444:       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 6445:     }else
 6446:       strcpy(pplotcmd,plotcmd);
 6447: #ifdef UNIX
 6448:     strcpy(plotcmd,GNUPLOTPROGRAM);
 6449:     if(!stat(plotcmd,&info)){
 6450:       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 6451:     }else
 6452:       strcpy(pplotcmd,plotcmd);
 6453: #endif
 6454:   }else
 6455:     strcpy(pplotcmd,plotcmd);
 6456:   
 6457:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 6458:   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
 6459: 
 6460:   if((outcmd=system(plotcmd)) != 0){
 6461:     printf("\n Problem with gnuplot\n");
 6462:   }
 6463:   printf(" Wait...");
 6464:   while (z[0] != 'q') {
 6465:     /* chdir(path); */
 6466:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
 6467:     scanf("%s",z);
 6468: /*     if (z[0] == 'c') system("./imach"); */
 6469:     if (z[0] == 'e') {
 6470:       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
 6471:       system(optionfilehtm);
 6472:     }
 6473:     else if (z[0] == 'g') system(plotcmd);
 6474:     else if (z[0] == 'q') exit(0);
 6475:   }
 6476:   end:
 6477:   while (z[0] != 'q') {
 6478:     printf("\nType  q for exiting: ");
 6479:     scanf("%s",z);
 6480:   }
 6481: }
 6482: 
 6483: 
 6484: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>