File:  [Local Repository] / imach / src / imach.c
Revision 1.149: download - view: text, annotated - select for diffs
Wed Jun 18 15:51:14 2014 UTC (10 years ago) by brouard
Branches: MAIN
CVS tags: HEAD
Summary: Some fixes in parameter files errors
Author: Nicolas Brouard

    1: /* $Id: imach.c,v 1.149 2014/06/18 15:51:14 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.149  2014/06/18 15:51:14  brouard
    5:   Summary: Some fixes in parameter files errors
    6:   Author: Nicolas Brouard
    7: 
    8:   Revision 1.148  2014/06/17 17:38:48  brouard
    9:   Summary: Nothing new
   10:   Author: Brouard
   11: 
   12:   Just a new packaging for OS/X version 0.98nS
   13: 
   14:   Revision 1.147  2014/06/16 10:33:11  brouard
   15:   *** empty log message ***
   16: 
   17:   Revision 1.146  2014/06/16 10:20:28  brouard
   18:   Summary: Merge
   19:   Author: Brouard
   20: 
   21:   Merge, before building revised version.
   22: 
   23:   Revision 1.145  2014/06/10 21:23:15  brouard
   24:   Summary: Debugging with valgrind
   25:   Author: Nicolas Brouard
   26: 
   27:   Lot of changes in order to output the results with some covariates
   28:   After the Edimburgh REVES conference 2014, it seems mandatory to
   29:   improve the code.
   30:   No more memory valgrind error but a lot has to be done in order to
   31:   continue the work of splitting the code into subroutines.
   32:   Also, decodemodel has been improved. Tricode is still not
   33:   optimal. nbcode should be improved. Documentation has been added in
   34:   the source code.
   35: 
   36:   Revision 1.143  2014/01/26 09:45:38  brouard
   37:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   38: 
   39:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   40:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   41: 
   42:   Revision 1.142  2014/01/26 03:57:36  brouard
   43:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   44: 
   45:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   46: 
   47:   Revision 1.141  2014/01/26 02:42:01  brouard
   48:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   49: 
   50:   Revision 1.140  2011/09/02 10:37:54  brouard
   51:   Summary: times.h is ok with mingw32 now.
   52: 
   53:   Revision 1.139  2010/06/14 07:50:17  brouard
   54:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   55:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   56: 
   57:   Revision 1.138  2010/04/30 18:19:40  brouard
   58:   *** empty log message ***
   59: 
   60:   Revision 1.137  2010/04/29 18:11:38  brouard
   61:   (Module): Checking covariates for more complex models
   62:   than V1+V2. A lot of change to be done. Unstable.
   63: 
   64:   Revision 1.136  2010/04/26 20:30:53  brouard
   65:   (Module): merging some libgsl code. Fixing computation
   66:   of likelione (using inter/intrapolation if mle = 0) in order to
   67:   get same likelihood as if mle=1.
   68:   Some cleaning of code and comments added.
   69: 
   70:   Revision 1.135  2009/10/29 15:33:14  brouard
   71:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   72: 
   73:   Revision 1.134  2009/10/29 13:18:53  brouard
   74:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   75: 
   76:   Revision 1.133  2009/07/06 10:21:25  brouard
   77:   just nforces
   78: 
   79:   Revision 1.132  2009/07/06 08:22:05  brouard
   80:   Many tings
   81: 
   82:   Revision 1.131  2009/06/20 16:22:47  brouard
   83:   Some dimensions resccaled
   84: 
   85:   Revision 1.130  2009/05/26 06:44:34  brouard
   86:   (Module): Max Covariate is now set to 20 instead of 8. A
   87:   lot of cleaning with variables initialized to 0. Trying to make
   88:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   89: 
   90:   Revision 1.129  2007/08/31 13:49:27  lievre
   91:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   92: 
   93:   Revision 1.128  2006/06/30 13:02:05  brouard
   94:   (Module): Clarifications on computing e.j
   95: 
   96:   Revision 1.127  2006/04/28 18:11:50  brouard
   97:   (Module): Yes the sum of survivors was wrong since
   98:   imach-114 because nhstepm was no more computed in the age
   99:   loop. Now we define nhstepma in the age loop.
  100:   (Module): In order to speed up (in case of numerous covariates) we
  101:   compute health expectancies (without variances) in a first step
  102:   and then all the health expectancies with variances or standard
  103:   deviation (needs data from the Hessian matrices) which slows the
  104:   computation.
  105:   In the future we should be able to stop the program is only health
  106:   expectancies and graph are needed without standard deviations.
  107: 
  108:   Revision 1.126  2006/04/28 17:23:28  brouard
  109:   (Module): Yes the sum of survivors was wrong since
  110:   imach-114 because nhstepm was no more computed in the age
  111:   loop. Now we define nhstepma in the age loop.
  112:   Version 0.98h
  113: 
  114:   Revision 1.125  2006/04/04 15:20:31  lievre
  115:   Errors in calculation of health expectancies. Age was not initialized.
  116:   Forecasting file added.
  117: 
  118:   Revision 1.124  2006/03/22 17:13:53  lievre
  119:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  120:   The log-likelihood is printed in the log file
  121: 
  122:   Revision 1.123  2006/03/20 10:52:43  brouard
  123:   * imach.c (Module): <title> changed, corresponds to .htm file
  124:   name. <head> headers where missing.
  125: 
  126:   * imach.c (Module): Weights can have a decimal point as for
  127:   English (a comma might work with a correct LC_NUMERIC environment,
  128:   otherwise the weight is truncated).
  129:   Modification of warning when the covariates values are not 0 or
  130:   1.
  131:   Version 0.98g
  132: 
  133:   Revision 1.122  2006/03/20 09:45:41  brouard
  134:   (Module): Weights can have a decimal point as for
  135:   English (a comma might work with a correct LC_NUMERIC environment,
  136:   otherwise the weight is truncated).
  137:   Modification of warning when the covariates values are not 0 or
  138:   1.
  139:   Version 0.98g
  140: 
  141:   Revision 1.121  2006/03/16 17:45:01  lievre
  142:   * imach.c (Module): Comments concerning covariates added
  143: 
  144:   * imach.c (Module): refinements in the computation of lli if
  145:   status=-2 in order to have more reliable computation if stepm is
  146:   not 1 month. Version 0.98f
  147: 
  148:   Revision 1.120  2006/03/16 15:10:38  lievre
  149:   (Module): refinements in the computation of lli if
  150:   status=-2 in order to have more reliable computation if stepm is
  151:   not 1 month. Version 0.98f
  152: 
  153:   Revision 1.119  2006/03/15 17:42:26  brouard
  154:   (Module): Bug if status = -2, the loglikelihood was
  155:   computed as likelihood omitting the logarithm. Version O.98e
  156: 
  157:   Revision 1.118  2006/03/14 18:20:07  brouard
  158:   (Module): varevsij Comments added explaining the second
  159:   table of variances if popbased=1 .
  160:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  161:   (Module): Function pstamp added
  162:   (Module): Version 0.98d
  163: 
  164:   Revision 1.117  2006/03/14 17:16:22  brouard
  165:   (Module): varevsij Comments added explaining the second
  166:   table of variances if popbased=1 .
  167:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  168:   (Module): Function pstamp added
  169:   (Module): Version 0.98d
  170: 
  171:   Revision 1.116  2006/03/06 10:29:27  brouard
  172:   (Module): Variance-covariance wrong links and
  173:   varian-covariance of ej. is needed (Saito).
  174: 
  175:   Revision 1.115  2006/02/27 12:17:45  brouard
  176:   (Module): One freematrix added in mlikeli! 0.98c
  177: 
  178:   Revision 1.114  2006/02/26 12:57:58  brouard
  179:   (Module): Some improvements in processing parameter
  180:   filename with strsep.
  181: 
  182:   Revision 1.113  2006/02/24 14:20:24  brouard
  183:   (Module): Memory leaks checks with valgrind and:
  184:   datafile was not closed, some imatrix were not freed and on matrix
  185:   allocation too.
  186: 
  187:   Revision 1.112  2006/01/30 09:55:26  brouard
  188:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  189: 
  190:   Revision 1.111  2006/01/25 20:38:18  brouard
  191:   (Module): Lots of cleaning and bugs added (Gompertz)
  192:   (Module): Comments can be added in data file. Missing date values
  193:   can be a simple dot '.'.
  194: 
  195:   Revision 1.110  2006/01/25 00:51:50  brouard
  196:   (Module): Lots of cleaning and bugs added (Gompertz)
  197: 
  198:   Revision 1.109  2006/01/24 19:37:15  brouard
  199:   (Module): Comments (lines starting with a #) are allowed in data.
  200: 
  201:   Revision 1.108  2006/01/19 18:05:42  lievre
  202:   Gnuplot problem appeared...
  203:   To be fixed
  204: 
  205:   Revision 1.107  2006/01/19 16:20:37  brouard
  206:   Test existence of gnuplot in imach path
  207: 
  208:   Revision 1.106  2006/01/19 13:24:36  brouard
  209:   Some cleaning and links added in html output
  210: 
  211:   Revision 1.105  2006/01/05 20:23:19  lievre
  212:   *** empty log message ***
  213: 
  214:   Revision 1.104  2005/09/30 16:11:43  lievre
  215:   (Module): sump fixed, loop imx fixed, and simplifications.
  216:   (Module): If the status is missing at the last wave but we know
  217:   that the person is alive, then we can code his/her status as -2
  218:   (instead of missing=-1 in earlier versions) and his/her
  219:   contributions to the likelihood is 1 - Prob of dying from last
  220:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  221:   the healthy state at last known wave). Version is 0.98
  222: 
  223:   Revision 1.103  2005/09/30 15:54:49  lievre
  224:   (Module): sump fixed, loop imx fixed, and simplifications.
  225: 
  226:   Revision 1.102  2004/09/15 17:31:30  brouard
  227:   Add the possibility to read data file including tab characters.
  228: 
  229:   Revision 1.101  2004/09/15 10:38:38  brouard
  230:   Fix on curr_time
  231: 
  232:   Revision 1.100  2004/07/12 18:29:06  brouard
  233:   Add version for Mac OS X. Just define UNIX in Makefile
  234: 
  235:   Revision 1.99  2004/06/05 08:57:40  brouard
  236:   *** empty log message ***
  237: 
  238:   Revision 1.98  2004/05/16 15:05:56  brouard
  239:   New version 0.97 . First attempt to estimate force of mortality
  240:   directly from the data i.e. without the need of knowing the health
  241:   state at each age, but using a Gompertz model: log u =a + b*age .
  242:   This is the basic analysis of mortality and should be done before any
  243:   other analysis, in order to test if the mortality estimated from the
  244:   cross-longitudinal survey is different from the mortality estimated
  245:   from other sources like vital statistic data.
  246: 
  247:   The same imach parameter file can be used but the option for mle should be -3.
  248: 
  249:   Agnès, who wrote this part of the code, tried to keep most of the
  250:   former routines in order to include the new code within the former code.
  251: 
  252:   The output is very simple: only an estimate of the intercept and of
  253:   the slope with 95% confident intervals.
  254: 
  255:   Current limitations:
  256:   A) Even if you enter covariates, i.e. with the
  257:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  258:   B) There is no computation of Life Expectancy nor Life Table.
  259: 
  260:   Revision 1.97  2004/02/20 13:25:42  lievre
  261:   Version 0.96d. Population forecasting command line is (temporarily)
  262:   suppressed.
  263: 
  264:   Revision 1.96  2003/07/15 15:38:55  brouard
  265:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  266:   rewritten within the same printf. Workaround: many printfs.
  267: 
  268:   Revision 1.95  2003/07/08 07:54:34  brouard
  269:   * imach.c (Repository):
  270:   (Repository): Using imachwizard code to output a more meaningful covariance
  271:   matrix (cov(a12,c31) instead of numbers.
  272: 
  273:   Revision 1.94  2003/06/27 13:00:02  brouard
  274:   Just cleaning
  275: 
  276:   Revision 1.93  2003/06/25 16:33:55  brouard
  277:   (Module): On windows (cygwin) function asctime_r doesn't
  278:   exist so I changed back to asctime which exists.
  279:   (Module): Version 0.96b
  280: 
  281:   Revision 1.92  2003/06/25 16:30:45  brouard
  282:   (Module): On windows (cygwin) function asctime_r doesn't
  283:   exist so I changed back to asctime which exists.
  284: 
  285:   Revision 1.91  2003/06/25 15:30:29  brouard
  286:   * imach.c (Repository): Duplicated warning errors corrected.
  287:   (Repository): Elapsed time after each iteration is now output. It
  288:   helps to forecast when convergence will be reached. Elapsed time
  289:   is stamped in powell.  We created a new html file for the graphs
  290:   concerning matrix of covariance. It has extension -cov.htm.
  291: 
  292:   Revision 1.90  2003/06/24 12:34:15  brouard
  293:   (Module): Some bugs corrected for windows. Also, when
  294:   mle=-1 a template is output in file "or"mypar.txt with the design
  295:   of the covariance matrix to be input.
  296: 
  297:   Revision 1.89  2003/06/24 12:30:52  brouard
  298:   (Module): Some bugs corrected for windows. Also, when
  299:   mle=-1 a template is output in file "or"mypar.txt with the design
  300:   of the covariance matrix to be input.
  301: 
  302:   Revision 1.88  2003/06/23 17:54:56  brouard
  303:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  304: 
  305:   Revision 1.87  2003/06/18 12:26:01  brouard
  306:   Version 0.96
  307: 
  308:   Revision 1.86  2003/06/17 20:04:08  brouard
  309:   (Module): Change position of html and gnuplot routines and added
  310:   routine fileappend.
  311: 
  312:   Revision 1.85  2003/06/17 13:12:43  brouard
  313:   * imach.c (Repository): Check when date of death was earlier that
  314:   current date of interview. It may happen when the death was just
  315:   prior to the death. In this case, dh was negative and likelihood
  316:   was wrong (infinity). We still send an "Error" but patch by
  317:   assuming that the date of death was just one stepm after the
  318:   interview.
  319:   (Repository): Because some people have very long ID (first column)
  320:   we changed int to long in num[] and we added a new lvector for
  321:   memory allocation. But we also truncated to 8 characters (left
  322:   truncation)
  323:   (Repository): No more line truncation errors.
  324: 
  325:   Revision 1.84  2003/06/13 21:44:43  brouard
  326:   * imach.c (Repository): Replace "freqsummary" at a correct
  327:   place. It differs from routine "prevalence" which may be called
  328:   many times. Probs is memory consuming and must be used with
  329:   parcimony.
  330:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  331: 
  332:   Revision 1.83  2003/06/10 13:39:11  lievre
  333:   *** empty log message ***
  334: 
  335:   Revision 1.82  2003/06/05 15:57:20  brouard
  336:   Add log in  imach.c and  fullversion number is now printed.
  337: 
  338: */
  339: /*
  340:    Interpolated Markov Chain
  341: 
  342:   Short summary of the programme:
  343:   
  344:   This program computes Healthy Life Expectancies from
  345:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  346:   first survey ("cross") where individuals from different ages are
  347:   interviewed on their health status or degree of disability (in the
  348:   case of a health survey which is our main interest) -2- at least a
  349:   second wave of interviews ("longitudinal") which measure each change
  350:   (if any) in individual health status.  Health expectancies are
  351:   computed from the time spent in each health state according to a
  352:   model. More health states you consider, more time is necessary to reach the
  353:   Maximum Likelihood of the parameters involved in the model.  The
  354:   simplest model is the multinomial logistic model where pij is the
  355:   probability to be observed in state j at the second wave
  356:   conditional to be observed in state i at the first wave. Therefore
  357:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  358:   'age' is age and 'sex' is a covariate. If you want to have a more
  359:   complex model than "constant and age", you should modify the program
  360:   where the markup *Covariates have to be included here again* invites
  361:   you to do it.  More covariates you add, slower the
  362:   convergence.
  363: 
  364:   The advantage of this computer programme, compared to a simple
  365:   multinomial logistic model, is clear when the delay between waves is not
  366:   identical for each individual. Also, if a individual missed an
  367:   intermediate interview, the information is lost, but taken into
  368:   account using an interpolation or extrapolation.  
  369: 
  370:   hPijx is the probability to be observed in state i at age x+h
  371:   conditional to the observed state i at age x. The delay 'h' can be
  372:   split into an exact number (nh*stepm) of unobserved intermediate
  373:   states. This elementary transition (by month, quarter,
  374:   semester or year) is modelled as a multinomial logistic.  The hPx
  375:   matrix is simply the matrix product of nh*stepm elementary matrices
  376:   and the contribution of each individual to the likelihood is simply
  377:   hPijx.
  378: 
  379:   Also this programme outputs the covariance matrix of the parameters but also
  380:   of the life expectancies. It also computes the period (stable) prevalence. 
  381:   
  382:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  383:            Institut national d'études démographiques, Paris.
  384:   This software have been partly granted by Euro-REVES, a concerted action
  385:   from the European Union.
  386:   It is copyrighted identically to a GNU software product, ie programme and
  387:   software can be distributed freely for non commercial use. Latest version
  388:   can be accessed at http://euroreves.ined.fr/imach .
  389: 
  390:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  391:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  392:   
  393:   **********************************************************************/
  394: /*
  395:   main
  396:   read parameterfile
  397:   read datafile
  398:   concatwav
  399:   freqsummary
  400:   if (mle >= 1)
  401:     mlikeli
  402:   print results files
  403:   if mle==1 
  404:      computes hessian
  405:   read end of parameter file: agemin, agemax, bage, fage, estepm
  406:       begin-prev-date,...
  407:   open gnuplot file
  408:   open html file
  409:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  410:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  411:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  412:     freexexit2 possible for memory heap.
  413: 
  414:   h Pij x                         | pij_nom  ficrestpij
  415:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  416:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  417:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  418: 
  419:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  420:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  421:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  422:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  423:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  424: 
  425:   forecasting if prevfcast==1 prevforecast call prevalence()
  426:   health expectancies
  427:   Variance-covariance of DFLE
  428:   prevalence()
  429:    movingaverage()
  430:   varevsij() 
  431:   if popbased==1 varevsij(,popbased)
  432:   total life expectancies
  433:   Variance of period (stable) prevalence
  434:  end
  435: */
  436: 
  437: 
  438: 
  439:  
  440: #include <math.h>
  441: #include <stdio.h>
  442: #include <stdlib.h>
  443: #include <string.h>
  444: #include <unistd.h>
  445: 
  446: #include <limits.h>
  447: #include <sys/types.h>
  448: #include <sys/stat.h>
  449: #include <errno.h>
  450: extern int errno;
  451: 
  452: #ifdef LINUX
  453: #include <time.h>
  454: #include "timeval.h"
  455: #else
  456: #include <sys/time.h>
  457: #endif
  458: 
  459: #ifdef GSL
  460: #include <gsl/gsl_errno.h>
  461: #include <gsl/gsl_multimin.h>
  462: #endif
  463: 
  464: /* #include <libintl.h> */
  465: /* #define _(String) gettext (String) */
  466: 
  467: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  468: 
  469: #define GNUPLOTPROGRAM "gnuplot"
  470: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  471: #define FILENAMELENGTH 132
  472: 
  473: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  474: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  475: 
  476: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  477: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  478: 
  479: #define NINTERVMAX 8
  480: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  481: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  482: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  483: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  484: #define MAXN 20000
  485: #define YEARM 12. /**< Number of months per year */
  486: #define AGESUP 130
  487: #define AGEBASE 40
  488: #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
  489: #ifdef UNIX
  490: #define DIRSEPARATOR '/'
  491: #define CHARSEPARATOR "/"
  492: #define ODIRSEPARATOR '\\'
  493: #else
  494: #define DIRSEPARATOR '\\'
  495: #define CHARSEPARATOR "\\"
  496: #define ODIRSEPARATOR '/'
  497: #endif
  498: 
  499: /* $Id: imach.c,v 1.149 2014/06/18 15:51:14 brouard Exp $ */
  500: /* $State: Exp $ */
  501: 
  502: char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
  503: char fullversion[]="$Revision: 1.149 $ $Date: 2014/06/18 15:51:14 $"; 
  504: char strstart[80];
  505: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  506: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  507: int nvar=0, nforce=0; /* Number of variables, number of forces */
  508: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  509: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  510: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  511: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  512: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  513: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  514: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  515: int cptcov=0; /* Working variable */
  516: int npar=NPARMAX;
  517: int nlstate=2; /* Number of live states */
  518: int ndeath=1; /* Number of dead states */
  519: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  520: int popbased=0;
  521: 
  522: int *wav; /* Number of waves for this individuual 0 is possible */
  523: int maxwav=0; /* Maxim number of waves */
  524: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  525: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  526: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  527: 		   to the likelihood and the sum of weights (done by funcone)*/
  528: int mle=1, weightopt=0;
  529: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  530: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  531: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  532: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  533: double jmean=1; /* Mean space between 2 waves */
  534: double **matprod2(); /* test */
  535: double **oldm, **newm, **savm; /* Working pointers to matrices */
  536: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  537: /*FILE *fic ; */ /* Used in readdata only */
  538: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  539: FILE *ficlog, *ficrespow;
  540: int globpr=0; /* Global variable for printing or not */
  541: double fretone; /* Only one call to likelihood */
  542: long ipmx=0; /* Number of contributions */
  543: double sw; /* Sum of weights */
  544: char filerespow[FILENAMELENGTH];
  545: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  546: FILE *ficresilk;
  547: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  548: FILE *ficresprobmorprev;
  549: FILE *fichtm, *fichtmcov; /* Html File */
  550: FILE *ficreseij;
  551: char filerese[FILENAMELENGTH];
  552: FILE *ficresstdeij;
  553: char fileresstde[FILENAMELENGTH];
  554: FILE *ficrescveij;
  555: char filerescve[FILENAMELENGTH];
  556: FILE  *ficresvij;
  557: char fileresv[FILENAMELENGTH];
  558: FILE  *ficresvpl;
  559: char fileresvpl[FILENAMELENGTH];
  560: char title[MAXLINE];
  561: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  562: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  563: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  564: char command[FILENAMELENGTH];
  565: int  outcmd=0;
  566: 
  567: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  568: 
  569: char filelog[FILENAMELENGTH]; /* Log file */
  570: char filerest[FILENAMELENGTH];
  571: char fileregp[FILENAMELENGTH];
  572: char popfile[FILENAMELENGTH];
  573: 
  574: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  575: 
  576: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
  577: struct timezone tzp;
  578: extern int gettimeofday();
  579: struct tm tmg, tm, tmf, *gmtime(), *localtime();
  580: long time_value;
  581: extern long time();
  582: char strcurr[80], strfor[80];
  583: 
  584: char *endptr;
  585: long lval;
  586: double dval;
  587: 
  588: #define NR_END 1
  589: #define FREE_ARG char*
  590: #define FTOL 1.0e-10
  591: 
  592: #define NRANSI 
  593: #define ITMAX 200 
  594: 
  595: #define TOL 2.0e-4 
  596: 
  597: #define CGOLD 0.3819660 
  598: #define ZEPS 1.0e-10 
  599: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  600: 
  601: #define GOLD 1.618034 
  602: #define GLIMIT 100.0 
  603: #define TINY 1.0e-20 
  604: 
  605: static double maxarg1,maxarg2;
  606: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  607: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  608:   
  609: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  610: #define rint(a) floor(a+0.5)
  611: 
  612: static double sqrarg;
  613: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  614: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  615: int agegomp= AGEGOMP;
  616: 
  617: int imx; 
  618: int stepm=1;
  619: /* Stepm, step in month: minimum step interpolation*/
  620: 
  621: int estepm;
  622: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  623: 
  624: int m,nb;
  625: long *num;
  626: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  627: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  628: double **pmmij, ***probs;
  629: double *ageexmed,*agecens;
  630: double dateintmean=0;
  631: 
  632: double *weight;
  633: int **s; /* Status */
  634: double *agedc;
  635: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  636: 		  * covar=matrix(0,NCOVMAX,1,n); 
  637: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
  638: double  idx; 
  639: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  640: int *Ndum; /** Freq of modality (tricode */
  641: int **codtab; /**< codtab=imatrix(1,100,1,10); */
  642: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  643: double *lsurv, *lpop, *tpop;
  644: 
  645: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  646: double ftolhess; /**< Tolerance for computing hessian */
  647: 
  648: /**************** split *************************/
  649: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  650: {
  651:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  652:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  653:   */ 
  654:   char	*ss;				/* pointer */
  655:   int	l1, l2;				/* length counters */
  656: 
  657:   l1 = strlen(path );			/* length of path */
  658:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  659:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  660:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  661:     strcpy( name, path );		/* we got the fullname name because no directory */
  662:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  663:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  664:     /* get current working directory */
  665:     /*    extern  char* getcwd ( char *buf , int len);*/
  666:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  667:       return( GLOCK_ERROR_GETCWD );
  668:     }
  669:     /* got dirc from getcwd*/
  670:     printf(" DIRC = %s \n",dirc);
  671:   } else {				/* strip direcotry from path */
  672:     ss++;				/* after this, the filename */
  673:     l2 = strlen( ss );			/* length of filename */
  674:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  675:     strcpy( name, ss );		/* save file name */
  676:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  677:     dirc[l1-l2] = 0;			/* add zero */
  678:     printf(" DIRC2 = %s \n",dirc);
  679:   }
  680:   /* We add a separator at the end of dirc if not exists */
  681:   l1 = strlen( dirc );			/* length of directory */
  682:   if( dirc[l1-1] != DIRSEPARATOR ){
  683:     dirc[l1] =  DIRSEPARATOR;
  684:     dirc[l1+1] = 0; 
  685:     printf(" DIRC3 = %s \n",dirc);
  686:   }
  687:   ss = strrchr( name, '.' );		/* find last / */
  688:   if (ss >0){
  689:     ss++;
  690:     strcpy(ext,ss);			/* save extension */
  691:     l1= strlen( name);
  692:     l2= strlen(ss)+1;
  693:     strncpy( finame, name, l1-l2);
  694:     finame[l1-l2]= 0;
  695:   }
  696: 
  697:   return( 0 );				/* we're done */
  698: }
  699: 
  700: 
  701: /******************************************/
  702: 
  703: void replace_back_to_slash(char *s, char*t)
  704: {
  705:   int i;
  706:   int lg=0;
  707:   i=0;
  708:   lg=strlen(t);
  709:   for(i=0; i<= lg; i++) {
  710:     (s[i] = t[i]);
  711:     if (t[i]== '\\') s[i]='/';
  712:   }
  713: }
  714: 
  715: char *trimbb(char *out, char *in)
  716: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  717:   char *s;
  718:   s=out;
  719:   while (*in != '\0'){
  720:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  721:       in++;
  722:     }
  723:     *out++ = *in++;
  724:   }
  725:   *out='\0';
  726:   return s;
  727: }
  728: 
  729: char *cutl(char *blocc, char *alocc, char *in, char occ)
  730: {
  731:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
  732:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  733:      gives blocc="abcdef2ghi" and alocc="j".
  734:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
  735:   */
  736:   char *s, *t, *bl;
  737:   t=in;s=in;
  738:   while ((*in != occ) && (*in != '\0')){
  739:     *alocc++ = *in++;
  740:   }
  741:   if( *in == occ){
  742:     *(alocc)='\0';
  743:     s=++in;
  744:   }
  745:  
  746:   if (s == t) {/* occ not found */
  747:     *(alocc-(in-s))='\0';
  748:     in=s;
  749:   }
  750:   while ( *in != '\0'){
  751:     *blocc++ = *in++;
  752:   }
  753: 
  754:   *blocc='\0';
  755:   return t;
  756: }
  757: char *cutv(char *blocc, char *alocc, char *in, char occ)
  758: {
  759:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  760:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  761:      gives blocc="abcdef2ghi" and alocc="j".
  762:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
  763:   */
  764:   char *s, *t;
  765:   t=in;s=in;
  766:   while (*in != '\0'){
  767:     while( *in == occ){
  768:       *blocc++ = *in++;
  769:       s=in;
  770:     }
  771:     *blocc++ = *in++;
  772:   }
  773:   if (s == t) /* occ not found */
  774:     *(blocc-(in-s))='\0';
  775:   else
  776:     *(blocc-(in-s)-1)='\0';
  777:   in=s;
  778:   while ( *in != '\0'){
  779:     *alocc++ = *in++;
  780:   }
  781: 
  782:   *alocc='\0';
  783:   return s;
  784: }
  785: 
  786: int nbocc(char *s, char occ)
  787: {
  788:   int i,j=0;
  789:   int lg=20;
  790:   i=0;
  791:   lg=strlen(s);
  792:   for(i=0; i<= lg; i++) {
  793:   if  (s[i] == occ ) j++;
  794:   }
  795:   return j;
  796: }
  797: 
  798: /* void cutv(char *u,char *v, char*t, char occ) */
  799: /* { */
  800: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  801: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
  802: /*      gives u="abcdef2ghi" and v="j" *\/ */
  803: /*   int i,lg,j,p=0; */
  804: /*   i=0; */
  805: /*   lg=strlen(t); */
  806: /*   for(j=0; j<=lg-1; j++) { */
  807: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
  808: /*   } */
  809: 
  810: /*   for(j=0; j<p; j++) { */
  811: /*     (u[j] = t[j]); */
  812: /*   } */
  813: /*      u[p]='\0'; */
  814: 
  815: /*    for(j=0; j<= lg; j++) { */
  816: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
  817: /*   } */
  818: /* } */
  819: 
  820: /********************** nrerror ********************/
  821: 
  822: void nrerror(char error_text[])
  823: {
  824:   fprintf(stderr,"ERREUR ...\n");
  825:   fprintf(stderr,"%s\n",error_text);
  826:   exit(EXIT_FAILURE);
  827: }
  828: /*********************** vector *******************/
  829: double *vector(int nl, int nh)
  830: {
  831:   double *v;
  832:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  833:   if (!v) nrerror("allocation failure in vector");
  834:   return v-nl+NR_END;
  835: }
  836: 
  837: /************************ free vector ******************/
  838: void free_vector(double*v, int nl, int nh)
  839: {
  840:   free((FREE_ARG)(v+nl-NR_END));
  841: }
  842: 
  843: /************************ivector *******************************/
  844: int *ivector(long nl,long nh)
  845: {
  846:   int *v;
  847:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  848:   if (!v) nrerror("allocation failure in ivector");
  849:   return v-nl+NR_END;
  850: }
  851: 
  852: /******************free ivector **************************/
  853: void free_ivector(int *v, long nl, long nh)
  854: {
  855:   free((FREE_ARG)(v+nl-NR_END));
  856: }
  857: 
  858: /************************lvector *******************************/
  859: long *lvector(long nl,long nh)
  860: {
  861:   long *v;
  862:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  863:   if (!v) nrerror("allocation failure in ivector");
  864:   return v-nl+NR_END;
  865: }
  866: 
  867: /******************free lvector **************************/
  868: void free_lvector(long *v, long nl, long nh)
  869: {
  870:   free((FREE_ARG)(v+nl-NR_END));
  871: }
  872: 
  873: /******************* imatrix *******************************/
  874: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  875:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  876: { 
  877:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  878:   int **m; 
  879:   
  880:   /* allocate pointers to rows */ 
  881:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  882:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  883:   m += NR_END; 
  884:   m -= nrl; 
  885:   
  886:   
  887:   /* allocate rows and set pointers to them */ 
  888:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  889:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  890:   m[nrl] += NR_END; 
  891:   m[nrl] -= ncl; 
  892:   
  893:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  894:   
  895:   /* return pointer to array of pointers to rows */ 
  896:   return m; 
  897: } 
  898: 
  899: /****************** free_imatrix *************************/
  900: void free_imatrix(m,nrl,nrh,ncl,nch)
  901:       int **m;
  902:       long nch,ncl,nrh,nrl; 
  903:      /* free an int matrix allocated by imatrix() */ 
  904: { 
  905:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  906:   free((FREE_ARG) (m+nrl-NR_END)); 
  907: } 
  908: 
  909: /******************* matrix *******************************/
  910: double **matrix(long nrl, long nrh, long ncl, long nch)
  911: {
  912:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  913:   double **m;
  914: 
  915:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  916:   if (!m) nrerror("allocation failure 1 in matrix()");
  917:   m += NR_END;
  918:   m -= nrl;
  919: 
  920:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  921:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  922:   m[nrl] += NR_END;
  923:   m[nrl] -= ncl;
  924: 
  925:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  926:   return m;
  927:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
  928: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
  929: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
  930:    */
  931: }
  932: 
  933: /*************************free matrix ************************/
  934: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  935: {
  936:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  937:   free((FREE_ARG)(m+nrl-NR_END));
  938: }
  939: 
  940: /******************* ma3x *******************************/
  941: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  942: {
  943:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  944:   double ***m;
  945: 
  946:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  947:   if (!m) nrerror("allocation failure 1 in matrix()");
  948:   m += NR_END;
  949:   m -= nrl;
  950: 
  951:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  952:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  953:   m[nrl] += NR_END;
  954:   m[nrl] -= ncl;
  955: 
  956:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  957: 
  958:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  959:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  960:   m[nrl][ncl] += NR_END;
  961:   m[nrl][ncl] -= nll;
  962:   for (j=ncl+1; j<=nch; j++) 
  963:     m[nrl][j]=m[nrl][j-1]+nlay;
  964:   
  965:   for (i=nrl+1; i<=nrh; i++) {
  966:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  967:     for (j=ncl+1; j<=nch; j++) 
  968:       m[i][j]=m[i][j-1]+nlay;
  969:   }
  970:   return m; 
  971:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  972:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  973:   */
  974: }
  975: 
  976: /*************************free ma3x ************************/
  977: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  978: {
  979:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  980:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  981:   free((FREE_ARG)(m+nrl-NR_END));
  982: }
  983: 
  984: /*************** function subdirf ***********/
  985: char *subdirf(char fileres[])
  986: {
  987:   /* Caution optionfilefiname is hidden */
  988:   strcpy(tmpout,optionfilefiname);
  989:   strcat(tmpout,"/"); /* Add to the right */
  990:   strcat(tmpout,fileres);
  991:   return tmpout;
  992: }
  993: 
  994: /*************** function subdirf2 ***********/
  995: char *subdirf2(char fileres[], char *preop)
  996: {
  997:   
  998:   /* Caution optionfilefiname is hidden */
  999:   strcpy(tmpout,optionfilefiname);
 1000:   strcat(tmpout,"/");
 1001:   strcat(tmpout,preop);
 1002:   strcat(tmpout,fileres);
 1003:   return tmpout;
 1004: }
 1005: 
 1006: /*************** function subdirf3 ***********/
 1007: char *subdirf3(char fileres[], char *preop, char *preop2)
 1008: {
 1009:   
 1010:   /* Caution optionfilefiname is hidden */
 1011:   strcpy(tmpout,optionfilefiname);
 1012:   strcat(tmpout,"/");
 1013:   strcat(tmpout,preop);
 1014:   strcat(tmpout,preop2);
 1015:   strcat(tmpout,fileres);
 1016:   return tmpout;
 1017: }
 1018: 
 1019: /***************** f1dim *************************/
 1020: extern int ncom; 
 1021: extern double *pcom,*xicom;
 1022: extern double (*nrfunc)(double []); 
 1023:  
 1024: double f1dim(double x) 
 1025: { 
 1026:   int j; 
 1027:   double f;
 1028:   double *xt; 
 1029:  
 1030:   xt=vector(1,ncom); 
 1031:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1032:   f=(*nrfunc)(xt); 
 1033:   free_vector(xt,1,ncom); 
 1034:   return f; 
 1035: } 
 1036: 
 1037: /*****************brent *************************/
 1038: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1039: { 
 1040:   int iter; 
 1041:   double a,b,d,etemp;
 1042:   double fu,fv,fw,fx;
 1043:   double ftemp;
 1044:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1045:   double e=0.0; 
 1046:  
 1047:   a=(ax < cx ? ax : cx); 
 1048:   b=(ax > cx ? ax : cx); 
 1049:   x=w=v=bx; 
 1050:   fw=fv=fx=(*f)(x); 
 1051:   for (iter=1;iter<=ITMAX;iter++) { 
 1052:     xm=0.5*(a+b); 
 1053:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1054:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1055:     printf(".");fflush(stdout);
 1056:     fprintf(ficlog,".");fflush(ficlog);
 1057: #ifdef DEBUG
 1058:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1059:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1060:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1061: #endif
 1062:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1063:       *xmin=x; 
 1064:       return fx; 
 1065:     } 
 1066:     ftemp=fu;
 1067:     if (fabs(e) > tol1) { 
 1068:       r=(x-w)*(fx-fv); 
 1069:       q=(x-v)*(fx-fw); 
 1070:       p=(x-v)*q-(x-w)*r; 
 1071:       q=2.0*(q-r); 
 1072:       if (q > 0.0) p = -p; 
 1073:       q=fabs(q); 
 1074:       etemp=e; 
 1075:       e=d; 
 1076:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1077: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1078:       else { 
 1079: 	d=p/q; 
 1080: 	u=x+d; 
 1081: 	if (u-a < tol2 || b-u < tol2) 
 1082: 	  d=SIGN(tol1,xm-x); 
 1083:       } 
 1084:     } else { 
 1085:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1086:     } 
 1087:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1088:     fu=(*f)(u); 
 1089:     if (fu <= fx) { 
 1090:       if (u >= x) a=x; else b=x; 
 1091:       SHFT(v,w,x,u) 
 1092: 	SHFT(fv,fw,fx,fu) 
 1093: 	} else { 
 1094: 	  if (u < x) a=u; else b=u; 
 1095: 	  if (fu <= fw || w == x) { 
 1096: 	    v=w; 
 1097: 	    w=u; 
 1098: 	    fv=fw; 
 1099: 	    fw=fu; 
 1100: 	  } else if (fu <= fv || v == x || v == w) { 
 1101: 	    v=u; 
 1102: 	    fv=fu; 
 1103: 	  } 
 1104: 	} 
 1105:   } 
 1106:   nrerror("Too many iterations in brent"); 
 1107:   *xmin=x; 
 1108:   return fx; 
 1109: } 
 1110: 
 1111: /****************** mnbrak ***********************/
 1112: 
 1113: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1114: 	    double (*func)(double)) 
 1115: { 
 1116:   double ulim,u,r,q, dum;
 1117:   double fu; 
 1118:  
 1119:   *fa=(*func)(*ax); 
 1120:   *fb=(*func)(*bx); 
 1121:   if (*fb > *fa) { 
 1122:     SHFT(dum,*ax,*bx,dum) 
 1123:       SHFT(dum,*fb,*fa,dum) 
 1124:       } 
 1125:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1126:   *fc=(*func)(*cx); 
 1127:   while (*fb > *fc) { 
 1128:     r=(*bx-*ax)*(*fb-*fc); 
 1129:     q=(*bx-*cx)*(*fb-*fa); 
 1130:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1131:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 1132:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
 1133:     if ((*bx-u)*(u-*cx) > 0.0) { 
 1134:       fu=(*func)(u); 
 1135:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
 1136:       fu=(*func)(u); 
 1137:       if (fu < *fc) { 
 1138: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1139: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
 1140: 	  } 
 1141:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 1142:       u=ulim; 
 1143:       fu=(*func)(u); 
 1144:     } else { 
 1145:       u=(*cx)+GOLD*(*cx-*bx); 
 1146:       fu=(*func)(u); 
 1147:     } 
 1148:     SHFT(*ax,*bx,*cx,u) 
 1149:       SHFT(*fa,*fb,*fc,fu) 
 1150:       } 
 1151: } 
 1152: 
 1153: /*************** linmin ************************/
 1154: 
 1155: int ncom; 
 1156: double *pcom,*xicom;
 1157: double (*nrfunc)(double []); 
 1158:  
 1159: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1160: { 
 1161:   double brent(double ax, double bx, double cx, 
 1162: 	       double (*f)(double), double tol, double *xmin); 
 1163:   double f1dim(double x); 
 1164:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1165: 	      double *fc, double (*func)(double)); 
 1166:   int j; 
 1167:   double xx,xmin,bx,ax; 
 1168:   double fx,fb,fa;
 1169:  
 1170:   ncom=n; 
 1171:   pcom=vector(1,n); 
 1172:   xicom=vector(1,n); 
 1173:   nrfunc=func; 
 1174:   for (j=1;j<=n;j++) { 
 1175:     pcom[j]=p[j]; 
 1176:     xicom[j]=xi[j]; 
 1177:   } 
 1178:   ax=0.0; 
 1179:   xx=1.0; 
 1180:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 1181:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 1182: #ifdef DEBUG
 1183:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1184:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1185: #endif
 1186:   for (j=1;j<=n;j++) { 
 1187:     xi[j] *= xmin; 
 1188:     p[j] += xi[j]; 
 1189:   } 
 1190:   free_vector(xicom,1,n); 
 1191:   free_vector(pcom,1,n); 
 1192: } 
 1193: 
 1194: char *asc_diff_time(long time_sec, char ascdiff[])
 1195: {
 1196:   long sec_left, days, hours, minutes;
 1197:   days = (time_sec) / (60*60*24);
 1198:   sec_left = (time_sec) % (60*60*24);
 1199:   hours = (sec_left) / (60*60) ;
 1200:   sec_left = (sec_left) %(60*60);
 1201:   minutes = (sec_left) /60;
 1202:   sec_left = (sec_left) % (60);
 1203:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1204:   return ascdiff;
 1205: }
 1206: 
 1207: /*************** powell ************************/
 1208: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1209: 	    double (*func)(double [])) 
 1210: { 
 1211:   void linmin(double p[], double xi[], int n, double *fret, 
 1212: 	      double (*func)(double [])); 
 1213:   int i,ibig,j; 
 1214:   double del,t,*pt,*ptt,*xit;
 1215:   double fp,fptt;
 1216:   double *xits;
 1217:   int niterf, itmp;
 1218: 
 1219:   pt=vector(1,n); 
 1220:   ptt=vector(1,n); 
 1221:   xit=vector(1,n); 
 1222:   xits=vector(1,n); 
 1223:   *fret=(*func)(p); 
 1224:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1225:   for (*iter=1;;++(*iter)) { 
 1226:     fp=(*fret); 
 1227:     ibig=0; 
 1228:     del=0.0; 
 1229:     last_time=curr_time;
 1230:     (void) gettimeofday(&curr_time,&tzp);
 1231:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 1232:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 1233: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 1234:    for (i=1;i<=n;i++) {
 1235:       printf(" %d %.12f",i, p[i]);
 1236:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1237:       fprintf(ficrespow," %.12lf", p[i]);
 1238:     }
 1239:     printf("\n");
 1240:     fprintf(ficlog,"\n");
 1241:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1242:     if(*iter <=3){
 1243:       tm = *localtime(&curr_time.tv_sec);
 1244:       strcpy(strcurr,asctime(&tm));
 1245: /*       asctime_r(&tm,strcurr); */
 1246:       forecast_time=curr_time; 
 1247:       itmp = strlen(strcurr);
 1248:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1249: 	strcurr[itmp-1]='\0';
 1250:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 1251:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 1252:       for(niterf=10;niterf<=30;niterf+=10){
 1253: 	forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 1254: 	tmf = *localtime(&forecast_time.tv_sec);
 1255: /* 	asctime_r(&tmf,strfor); */
 1256: 	strcpy(strfor,asctime(&tmf));
 1257: 	itmp = strlen(strfor);
 1258: 	if(strfor[itmp-1]=='\n')
 1259: 	strfor[itmp-1]='\0';
 1260: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 1261: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 1262:       }
 1263:     }
 1264:     for (i=1;i<=n;i++) { 
 1265:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1266:       fptt=(*fret); 
 1267: #ifdef DEBUG
 1268:       printf("fret=%lf \n",*fret);
 1269:       fprintf(ficlog,"fret=%lf \n",*fret);
 1270: #endif
 1271:       printf("%d",i);fflush(stdout);
 1272:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1273:       linmin(p,xit,n,fret,func); 
 1274:       if (fabs(fptt-(*fret)) > del) { 
 1275: 	del=fabs(fptt-(*fret)); 
 1276: 	ibig=i; 
 1277:       } 
 1278: #ifdef DEBUG
 1279:       printf("%d %.12e",i,(*fret));
 1280:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1281:       for (j=1;j<=n;j++) {
 1282: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1283: 	printf(" x(%d)=%.12e",j,xit[j]);
 1284: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1285:       }
 1286:       for(j=1;j<=n;j++) {
 1287: 	printf(" p=%.12e",p[j]);
 1288: 	fprintf(ficlog," p=%.12e",p[j]);
 1289:       }
 1290:       printf("\n");
 1291:       fprintf(ficlog,"\n");
 1292: #endif
 1293:     } 
 1294:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 1295: #ifdef DEBUG
 1296:       int k[2],l;
 1297:       k[0]=1;
 1298:       k[1]=-1;
 1299:       printf("Max: %.12e",(*func)(p));
 1300:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1301:       for (j=1;j<=n;j++) {
 1302: 	printf(" %.12e",p[j]);
 1303: 	fprintf(ficlog," %.12e",p[j]);
 1304:       }
 1305:       printf("\n");
 1306:       fprintf(ficlog,"\n");
 1307:       for(l=0;l<=1;l++) {
 1308: 	for (j=1;j<=n;j++) {
 1309: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1310: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1311: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1312: 	}
 1313: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1314: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1315:       }
 1316: #endif
 1317: 
 1318: 
 1319:       free_vector(xit,1,n); 
 1320:       free_vector(xits,1,n); 
 1321:       free_vector(ptt,1,n); 
 1322:       free_vector(pt,1,n); 
 1323:       return; 
 1324:     } 
 1325:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1326:     for (j=1;j<=n;j++) { 
 1327:       ptt[j]=2.0*p[j]-pt[j]; 
 1328:       xit[j]=p[j]-pt[j]; 
 1329:       pt[j]=p[j]; 
 1330:     } 
 1331:     fptt=(*func)(ptt); 
 1332:     if (fptt < fp) { 
 1333:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 1334:       if (t < 0.0) { 
 1335: 	linmin(p,xit,n,fret,func); 
 1336: 	for (j=1;j<=n;j++) { 
 1337: 	  xi[j][ibig]=xi[j][n]; 
 1338: 	  xi[j][n]=xit[j]; 
 1339: 	}
 1340: #ifdef DEBUG
 1341: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1342: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1343: 	for(j=1;j<=n;j++){
 1344: 	  printf(" %.12e",xit[j]);
 1345: 	  fprintf(ficlog," %.12e",xit[j]);
 1346: 	}
 1347: 	printf("\n");
 1348: 	fprintf(ficlog,"\n");
 1349: #endif
 1350:       }
 1351:     } 
 1352:   } 
 1353: } 
 1354: 
 1355: /**** Prevalence limit (stable or period prevalence)  ****************/
 1356: 
 1357: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1358: {
 1359:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1360:      matrix by transitions matrix until convergence is reached */
 1361: 
 1362:   int i, ii,j,k;
 1363:   double min, max, maxmin, maxmax,sumnew=0.;
 1364:   /* double **matprod2(); */ /* test */
 1365:   double **out, cov[NCOVMAX+1], **pmij();
 1366:   double **newm;
 1367:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1368: 
 1369:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1370:     for (j=1;j<=nlstate+ndeath;j++){
 1371:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1372:     }
 1373: 
 1374:    cov[1]=1.;
 1375:  
 1376:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1377:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1378:     newm=savm;
 1379:     /* Covariates have to be included here again */
 1380:     cov[2]=agefin;
 1381:     
 1382:     for (k=1; k<=cptcovn;k++) {
 1383:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1384:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 1385:     }
 1386:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1387:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 1388:     /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
 1389:     
 1390:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1391:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1392:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1393:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1394:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1395:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1396:     
 1397:     savm=oldm;
 1398:     oldm=newm;
 1399:     maxmax=0.;
 1400:     for(j=1;j<=nlstate;j++){
 1401:       min=1.;
 1402:       max=0.;
 1403:       for(i=1; i<=nlstate; i++) {
 1404: 	sumnew=0;
 1405: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1406: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1407:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1408: 	max=FMAX(max,prlim[i][j]);
 1409: 	min=FMIN(min,prlim[i][j]);
 1410:       }
 1411:       maxmin=max-min;
 1412:       maxmax=FMAX(maxmax,maxmin);
 1413:     }
 1414:     if(maxmax < ftolpl){
 1415:       return prlim;
 1416:     }
 1417:   }
 1418: }
 1419: 
 1420: /*************** transition probabilities ***************/ 
 1421: 
 1422: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1423: {
 1424:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1425:      computes the probability to be observed in state j being in state i by appying the
 1426:      model to the ncovmodel covariates (including constant and age).
 1427:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1428:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1429:      ncth covariate in the global vector x is given by the formula:
 1430:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1431:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1432:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1433:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1434:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1435:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1436:   */
 1437:   double s1, lnpijopii;
 1438:   /*double t34;*/
 1439:   int i,j,j1, nc, ii, jj;
 1440: 
 1441:     for(i=1; i<= nlstate; i++){
 1442:       for(j=1; j<i;j++){
 1443: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1444: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1445: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1446: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1447: 	}
 1448: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1449: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1450:       }
 1451:       for(j=i+1; j<=nlstate+ndeath;j++){
 1452: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1453: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1454: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1455: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1456: 	}
 1457: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1458:       }
 1459:     }
 1460:     
 1461:     for(i=1; i<= nlstate; i++){
 1462:       s1=0;
 1463:       for(j=1; j<i; j++){
 1464: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1465: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1466:       }
 1467:       for(j=i+1; j<=nlstate+ndeath; j++){
 1468: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1469: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1470:       }
 1471:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1472:       ps[i][i]=1./(s1+1.);
 1473:       /* Computing other pijs */
 1474:       for(j=1; j<i; j++)
 1475: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1476:       for(j=i+1; j<=nlstate+ndeath; j++)
 1477: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1478:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1479:     } /* end i */
 1480:     
 1481:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1482:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1483: 	ps[ii][jj]=0;
 1484: 	ps[ii][ii]=1;
 1485:       }
 1486:     }
 1487:     
 1488:     
 1489:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1490:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1491:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 1492:     /*   } */
 1493:     /*   printf("\n "); */
 1494:     /* } */
 1495:     /* printf("\n ");printf("%lf ",cov[2]);*/
 1496:     /*
 1497:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1498:       goto end;*/
 1499:     return ps;
 1500: }
 1501: 
 1502: /**************** Product of 2 matrices ******************/
 1503: 
 1504: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 1505: {
 1506:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1507:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1508:   /* in, b, out are matrice of pointers which should have been initialized 
 1509:      before: only the contents of out is modified. The function returns
 1510:      a pointer to pointers identical to out */
 1511:   int i, j, k;
 1512:   for(i=nrl; i<= nrh; i++)
 1513:     for(k=ncolol; k<=ncoloh; k++){
 1514:       out[i][k]=0.;
 1515:       for(j=ncl; j<=nch; j++)
 1516:   	out[i][k] +=in[i][j]*b[j][k];
 1517:     }
 1518:   return out;
 1519: }
 1520: 
 1521: 
 1522: /************* Higher Matrix Product ***************/
 1523: 
 1524: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1525: {
 1526:   /* Computes the transition matrix starting at age 'age' over 
 1527:      'nhstepm*hstepm*stepm' months (i.e. until
 1528:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1529:      nhstepm*hstepm matrices. 
 1530:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1531:      (typically every 2 years instead of every month which is too big 
 1532:      for the memory).
 1533:      Model is determined by parameters x and covariates have to be 
 1534:      included manually here. 
 1535: 
 1536:      */
 1537: 
 1538:   int i, j, d, h, k;
 1539:   double **out, cov[NCOVMAX+1];
 1540:   double **newm;
 1541: 
 1542:   /* Hstepm could be zero and should return the unit matrix */
 1543:   for (i=1;i<=nlstate+ndeath;i++)
 1544:     for (j=1;j<=nlstate+ndeath;j++){
 1545:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1546:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1547:     }
 1548:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1549:   for(h=1; h <=nhstepm; h++){
 1550:     for(d=1; d <=hstepm; d++){
 1551:       newm=savm;
 1552:       /* Covariates have to be included here again */
 1553:       cov[1]=1.;
 1554:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1555:       for (k=1; k<=cptcovn;k++) 
 1556: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1557:       for (k=1; k<=cptcovage;k++)
 1558: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1559:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 1560: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1561: 
 1562: 
 1563:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1564:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1565:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1566: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1567:       savm=oldm;
 1568:       oldm=newm;
 1569:     }
 1570:     for(i=1; i<=nlstate+ndeath; i++)
 1571:       for(j=1;j<=nlstate+ndeath;j++) {
 1572: 	po[i][j][h]=newm[i][j];
 1573: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 1574:       }
 1575:     /*printf("h=%d ",h);*/
 1576:   } /* end h */
 1577: /*     printf("\n H=%d \n",h); */
 1578:   return po;
 1579: }
 1580: 
 1581: 
 1582: /*************** log-likelihood *************/
 1583: double func( double *x)
 1584: {
 1585:   int i, ii, j, k, mi, d, kk;
 1586:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1587:   double **out;
 1588:   double sw; /* Sum of weights */
 1589:   double lli; /* Individual log likelihood */
 1590:   int s1, s2;
 1591:   double bbh, survp;
 1592:   long ipmx;
 1593:   /*extern weight */
 1594:   /* We are differentiating ll according to initial status */
 1595:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1596:   /*for(i=1;i<imx;i++) 
 1597:     printf(" %d\n",s[4][i]);
 1598:   */
 1599:   cov[1]=1.;
 1600: 
 1601:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1602: 
 1603:   if(mle==1){
 1604:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1605:       /* Computes the values of the ncovmodel covariates of the model
 1606: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 1607: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 1608: 	 to be observed in j being in i according to the model.
 1609:        */
 1610:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 1611: 	cov[2+k]=covar[Tvar[k]][i];
 1612:       }
 1613:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 1614: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 1615: 	 has been calculated etc */
 1616:       for(mi=1; mi<= wav[i]-1; mi++){
 1617: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1618: 	  for (j=1;j<=nlstate+ndeath;j++){
 1619: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1620: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1621: 	  }
 1622: 	for(d=0; d<dh[mi][i]; d++){
 1623: 	  newm=savm;
 1624: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1625: 	  for (kk=1; kk<=cptcovage;kk++) {
 1626: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 1627: 	  }
 1628: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1629: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1630: 	  savm=oldm;
 1631: 	  oldm=newm;
 1632: 	} /* end mult */
 1633:       
 1634: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1635: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1636: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1637: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1638: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1639: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1640: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1641: 	 * probability in order to take into account the bias as a fraction of the way
 1642: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1643: 	 * -stepm/2 to stepm/2 .
 1644: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1645: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1646: 	 */
 1647: 	s1=s[mw[mi][i]][i];
 1648: 	s2=s[mw[mi+1][i]][i];
 1649: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1650: 	/* bias bh is positive if real duration
 1651: 	 * is higher than the multiple of stepm and negative otherwise.
 1652: 	 */
 1653: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1654: 	if( s2 > nlstate){ 
 1655: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1656: 	     then the contribution to the likelihood is the probability to 
 1657: 	     die between last step unit time and current  step unit time, 
 1658: 	     which is also equal to probability to die before dh 
 1659: 	     minus probability to die before dh-stepm . 
 1660: 	     In version up to 0.92 likelihood was computed
 1661: 	as if date of death was unknown. Death was treated as any other
 1662: 	health state: the date of the interview describes the actual state
 1663: 	and not the date of a change in health state. The former idea was
 1664: 	to consider that at each interview the state was recorded
 1665: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1666: 	introduced the exact date of death then we should have modified
 1667: 	the contribution of an exact death to the likelihood. This new
 1668: 	contribution is smaller and very dependent of the step unit
 1669: 	stepm. It is no more the probability to die between last interview
 1670: 	and month of death but the probability to survive from last
 1671: 	interview up to one month before death multiplied by the
 1672: 	probability to die within a month. Thanks to Chris
 1673: 	Jackson for correcting this bug.  Former versions increased
 1674: 	mortality artificially. The bad side is that we add another loop
 1675: 	which slows down the processing. The difference can be up to 10%
 1676: 	lower mortality.
 1677: 	  */
 1678: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1679: 
 1680: 
 1681: 	} else if  (s2==-2) {
 1682: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1683: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1684: 	  /*survp += out[s1][j]; */
 1685: 	  lli= log(survp);
 1686: 	}
 1687: 	
 1688:  	else if  (s2==-4) { 
 1689: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 1690: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1691:  	  lli= log(survp); 
 1692:  	} 
 1693: 
 1694:  	else if  (s2==-5) { 
 1695:  	  for (j=1,survp=0. ; j<=2; j++)  
 1696: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1697:  	  lli= log(survp); 
 1698:  	} 
 1699: 	
 1700: 	else{
 1701: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1702: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1703: 	} 
 1704: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1705: 	/*if(lli ==000.0)*/
 1706: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1707:   	ipmx +=1;
 1708: 	sw += weight[i];
 1709: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1710:       } /* end of wave */
 1711:     } /* end of individual */
 1712:   }  else if(mle==2){
 1713:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1714:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1715:       for(mi=1; mi<= wav[i]-1; mi++){
 1716: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1717: 	  for (j=1;j<=nlstate+ndeath;j++){
 1718: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1719: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1720: 	  }
 1721: 	for(d=0; d<=dh[mi][i]; d++){
 1722: 	  newm=savm;
 1723: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1724: 	  for (kk=1; kk<=cptcovage;kk++) {
 1725: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1726: 	  }
 1727: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1728: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1729: 	  savm=oldm;
 1730: 	  oldm=newm;
 1731: 	} /* end mult */
 1732:       
 1733: 	s1=s[mw[mi][i]][i];
 1734: 	s2=s[mw[mi+1][i]][i];
 1735: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1736: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1737: 	ipmx +=1;
 1738: 	sw += weight[i];
 1739: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1740:       } /* end of wave */
 1741:     } /* end of individual */
 1742:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1743:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1744:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1745:       for(mi=1; mi<= wav[i]-1; mi++){
 1746: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1747: 	  for (j=1;j<=nlstate+ndeath;j++){
 1748: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1749: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1750: 	  }
 1751: 	for(d=0; d<dh[mi][i]; d++){
 1752: 	  newm=savm;
 1753: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1754: 	  for (kk=1; kk<=cptcovage;kk++) {
 1755: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1756: 	  }
 1757: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1758: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1759: 	  savm=oldm;
 1760: 	  oldm=newm;
 1761: 	} /* end mult */
 1762:       
 1763: 	s1=s[mw[mi][i]][i];
 1764: 	s2=s[mw[mi+1][i]][i];
 1765: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1766: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1767: 	ipmx +=1;
 1768: 	sw += weight[i];
 1769: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1770:       } /* end of wave */
 1771:     } /* end of individual */
 1772:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1773:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1774:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1775:       for(mi=1; mi<= wav[i]-1; mi++){
 1776: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1777: 	  for (j=1;j<=nlstate+ndeath;j++){
 1778: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1779: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1780: 	  }
 1781: 	for(d=0; d<dh[mi][i]; d++){
 1782: 	  newm=savm;
 1783: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1784: 	  for (kk=1; kk<=cptcovage;kk++) {
 1785: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1786: 	  }
 1787: 	
 1788: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1789: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1790: 	  savm=oldm;
 1791: 	  oldm=newm;
 1792: 	} /* end mult */
 1793:       
 1794: 	s1=s[mw[mi][i]][i];
 1795: 	s2=s[mw[mi+1][i]][i];
 1796: 	if( s2 > nlstate){ 
 1797: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1798: 	}else{
 1799: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1800: 	}
 1801: 	ipmx +=1;
 1802: 	sw += weight[i];
 1803: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1804: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1805:       } /* end of wave */
 1806:     } /* end of individual */
 1807:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1808:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1809:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1810:       for(mi=1; mi<= wav[i]-1; mi++){
 1811: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1812: 	  for (j=1;j<=nlstate+ndeath;j++){
 1813: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1814: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1815: 	  }
 1816: 	for(d=0; d<dh[mi][i]; d++){
 1817: 	  newm=savm;
 1818: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1819: 	  for (kk=1; kk<=cptcovage;kk++) {
 1820: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1821: 	  }
 1822: 	
 1823: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1824: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1825: 	  savm=oldm;
 1826: 	  oldm=newm;
 1827: 	} /* end mult */
 1828:       
 1829: 	s1=s[mw[mi][i]][i];
 1830: 	s2=s[mw[mi+1][i]][i];
 1831: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1832: 	ipmx +=1;
 1833: 	sw += weight[i];
 1834: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1835: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1836:       } /* end of wave */
 1837:     } /* end of individual */
 1838:   } /* End of if */
 1839:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1840:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1841:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1842:   return -l;
 1843: }
 1844: 
 1845: /*************** log-likelihood *************/
 1846: double funcone( double *x)
 1847: {
 1848:   /* Same as likeli but slower because of a lot of printf and if */
 1849:   int i, ii, j, k, mi, d, kk;
 1850:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1851:   double **out;
 1852:   double lli; /* Individual log likelihood */
 1853:   double llt;
 1854:   int s1, s2;
 1855:   double bbh, survp;
 1856:   /*extern weight */
 1857:   /* We are differentiating ll according to initial status */
 1858:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1859:   /*for(i=1;i<imx;i++) 
 1860:     printf(" %d\n",s[4][i]);
 1861:   */
 1862:   cov[1]=1.;
 1863: 
 1864:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1865: 
 1866:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1867:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1868:     for(mi=1; mi<= wav[i]-1; mi++){
 1869:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1870: 	for (j=1;j<=nlstate+ndeath;j++){
 1871: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1872: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1873: 	}
 1874:       for(d=0; d<dh[mi][i]; d++){
 1875: 	newm=savm;
 1876: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1877: 	for (kk=1; kk<=cptcovage;kk++) {
 1878: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1879: 	}
 1880: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1881: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1882: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1883: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 1884: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 1885: 	savm=oldm;
 1886: 	oldm=newm;
 1887:       } /* end mult */
 1888:       
 1889:       s1=s[mw[mi][i]][i];
 1890:       s2=s[mw[mi+1][i]][i];
 1891:       bbh=(double)bh[mi][i]/(double)stepm; 
 1892:       /* bias is positive if real duration
 1893:        * is higher than the multiple of stepm and negative otherwise.
 1894:        */
 1895:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1896: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1897:       } else if  (s2==-2) {
 1898: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 1899: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1900: 	lli= log(survp);
 1901:       }else if (mle==1){
 1902: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1903:       } else if(mle==2){
 1904: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1905:       } else if(mle==3){  /* exponential inter-extrapolation */
 1906: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1907:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 1908: 	lli=log(out[s1][s2]); /* Original formula */
 1909:       } else{  /* mle=0 back to 1 */
 1910: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1911: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 1912:       } /* End of if */
 1913:       ipmx +=1;
 1914:       sw += weight[i];
 1915:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1916:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1917:       if(globpr){
 1918: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 1919:  %11.6f %11.6f %11.6f ", \
 1920: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 1921: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 1922: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 1923: 	  llt +=ll[k]*gipmx/gsw;
 1924: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 1925: 	}
 1926: 	fprintf(ficresilk," %10.6f\n", -llt);
 1927:       }
 1928:     } /* end of wave */
 1929:   } /* end of individual */
 1930:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1931:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1932:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1933:   if(globpr==0){ /* First time we count the contributions and weights */
 1934:     gipmx=ipmx;
 1935:     gsw=sw;
 1936:   }
 1937:   return -l;
 1938: }
 1939: 
 1940: 
 1941: /*************** function likelione ***********/
 1942: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 1943: {
 1944:   /* This routine should help understanding what is done with 
 1945:      the selection of individuals/waves and
 1946:      to check the exact contribution to the likelihood.
 1947:      Plotting could be done.
 1948:    */
 1949:   int k;
 1950: 
 1951:   if(*globpri !=0){ /* Just counts and sums, no printings */
 1952:     strcpy(fileresilk,"ilk"); 
 1953:     strcat(fileresilk,fileres);
 1954:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 1955:       printf("Problem with resultfile: %s\n", fileresilk);
 1956:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 1957:     }
 1958:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 1959:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 1960:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 1961:     for(k=1; k<=nlstate; k++) 
 1962:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 1963:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 1964:   }
 1965: 
 1966:   *fretone=(*funcone)(p);
 1967:   if(*globpri !=0){
 1968:     fclose(ficresilk);
 1969:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 1970:     fflush(fichtm); 
 1971:   } 
 1972:   return;
 1973: }
 1974: 
 1975: 
 1976: /*********** Maximum Likelihood Estimation ***************/
 1977: 
 1978: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1979: {
 1980:   int i,j, iter;
 1981:   double **xi;
 1982:   double fret;
 1983:   double fretone; /* Only one call to likelihood */
 1984:   /*  char filerespow[FILENAMELENGTH];*/
 1985:   xi=matrix(1,npar,1,npar);
 1986:   for (i=1;i<=npar;i++)
 1987:     for (j=1;j<=npar;j++)
 1988:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1989:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1990:   strcpy(filerespow,"pow"); 
 1991:   strcat(filerespow,fileres);
 1992:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 1993:     printf("Problem with resultfile: %s\n", filerespow);
 1994:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 1995:   }
 1996:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 1997:   for (i=1;i<=nlstate;i++)
 1998:     for(j=1;j<=nlstate+ndeath;j++)
 1999:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2000:   fprintf(ficrespow,"\n");
 2001: 
 2002:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2003: 
 2004:   free_matrix(xi,1,npar,1,npar);
 2005:   fclose(ficrespow);
 2006:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 2007:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 2008:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 2009: 
 2010: }
 2011: 
 2012: /**** Computes Hessian and covariance matrix ***/
 2013: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2014: {
 2015:   double  **a,**y,*x,pd;
 2016:   double **hess;
 2017:   int i, j,jk;
 2018:   int *indx;
 2019: 
 2020:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2021:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2022:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2023:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2024:   double gompertz(double p[]);
 2025:   hess=matrix(1,npar,1,npar);
 2026: 
 2027:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2028:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2029:   for (i=1;i<=npar;i++){
 2030:     printf("%d",i);fflush(stdout);
 2031:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2032:    
 2033:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2034:     
 2035:     /*  printf(" %f ",p[i]);
 2036: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2037:   }
 2038:   
 2039:   for (i=1;i<=npar;i++) {
 2040:     for (j=1;j<=npar;j++)  {
 2041:       if (j>i) { 
 2042: 	printf(".%d%d",i,j);fflush(stdout);
 2043: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2044: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2045: 	
 2046: 	hess[j][i]=hess[i][j];    
 2047: 	/*printf(" %lf ",hess[i][j]);*/
 2048:       }
 2049:     }
 2050:   }
 2051:   printf("\n");
 2052:   fprintf(ficlog,"\n");
 2053: 
 2054:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2055:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2056:   
 2057:   a=matrix(1,npar,1,npar);
 2058:   y=matrix(1,npar,1,npar);
 2059:   x=vector(1,npar);
 2060:   indx=ivector(1,npar);
 2061:   for (i=1;i<=npar;i++)
 2062:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2063:   ludcmp(a,npar,indx,&pd);
 2064: 
 2065:   for (j=1;j<=npar;j++) {
 2066:     for (i=1;i<=npar;i++) x[i]=0;
 2067:     x[j]=1;
 2068:     lubksb(a,npar,indx,x);
 2069:     for (i=1;i<=npar;i++){ 
 2070:       matcov[i][j]=x[i];
 2071:     }
 2072:   }
 2073: 
 2074:   printf("\n#Hessian matrix#\n");
 2075:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2076:   for (i=1;i<=npar;i++) { 
 2077:     for (j=1;j<=npar;j++) { 
 2078:       printf("%.3e ",hess[i][j]);
 2079:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2080:     }
 2081:     printf("\n");
 2082:     fprintf(ficlog,"\n");
 2083:   }
 2084: 
 2085:   /* Recompute Inverse */
 2086:   for (i=1;i<=npar;i++)
 2087:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2088:   ludcmp(a,npar,indx,&pd);
 2089: 
 2090:   /*  printf("\n#Hessian matrix recomputed#\n");
 2091: 
 2092:   for (j=1;j<=npar;j++) {
 2093:     for (i=1;i<=npar;i++) x[i]=0;
 2094:     x[j]=1;
 2095:     lubksb(a,npar,indx,x);
 2096:     for (i=1;i<=npar;i++){ 
 2097:       y[i][j]=x[i];
 2098:       printf("%.3e ",y[i][j]);
 2099:       fprintf(ficlog,"%.3e ",y[i][j]);
 2100:     }
 2101:     printf("\n");
 2102:     fprintf(ficlog,"\n");
 2103:   }
 2104:   */
 2105: 
 2106:   free_matrix(a,1,npar,1,npar);
 2107:   free_matrix(y,1,npar,1,npar);
 2108:   free_vector(x,1,npar);
 2109:   free_ivector(indx,1,npar);
 2110:   free_matrix(hess,1,npar,1,npar);
 2111: 
 2112: 
 2113: }
 2114: 
 2115: /*************** hessian matrix ****************/
 2116: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2117: {
 2118:   int i;
 2119:   int l=1, lmax=20;
 2120:   double k1,k2;
 2121:   double p2[MAXPARM+1]; /* identical to x */
 2122:   double res;
 2123:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2124:   double fx;
 2125:   int k=0,kmax=10;
 2126:   double l1;
 2127: 
 2128:   fx=func(x);
 2129:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2130:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2131:     l1=pow(10,l);
 2132:     delts=delt;
 2133:     for(k=1 ; k <kmax; k=k+1){
 2134:       delt = delta*(l1*k);
 2135:       p2[theta]=x[theta] +delt;
 2136:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2137:       p2[theta]=x[theta]-delt;
 2138:       k2=func(p2)-fx;
 2139:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2140:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2141:       
 2142: #ifdef DEBUGHESS
 2143:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2144:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2145: #endif
 2146:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2147:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2148: 	k=kmax;
 2149:       }
 2150:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2151: 	k=kmax; l=lmax*10.;
 2152:       }
 2153:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2154: 	delts=delt;
 2155:       }
 2156:     }
 2157:   }
 2158:   delti[theta]=delts;
 2159:   return res; 
 2160:   
 2161: }
 2162: 
 2163: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2164: {
 2165:   int i;
 2166:   int l=1, l1, lmax=20;
 2167:   double k1,k2,k3,k4,res,fx;
 2168:   double p2[MAXPARM+1];
 2169:   int k;
 2170: 
 2171:   fx=func(x);
 2172:   for (k=1; k<=2; k++) {
 2173:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2174:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2175:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2176:     k1=func(p2)-fx;
 2177:   
 2178:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2179:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2180:     k2=func(p2)-fx;
 2181:   
 2182:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2183:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2184:     k3=func(p2)-fx;
 2185:   
 2186:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2187:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2188:     k4=func(p2)-fx;
 2189:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2190: #ifdef DEBUG
 2191:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2192:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2193: #endif
 2194:   }
 2195:   return res;
 2196: }
 2197: 
 2198: /************** Inverse of matrix **************/
 2199: void ludcmp(double **a, int n, int *indx, double *d) 
 2200: { 
 2201:   int i,imax,j,k; 
 2202:   double big,dum,sum,temp; 
 2203:   double *vv; 
 2204:  
 2205:   vv=vector(1,n); 
 2206:   *d=1.0; 
 2207:   for (i=1;i<=n;i++) { 
 2208:     big=0.0; 
 2209:     for (j=1;j<=n;j++) 
 2210:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2211:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2212:     vv[i]=1.0/big; 
 2213:   } 
 2214:   for (j=1;j<=n;j++) { 
 2215:     for (i=1;i<j;i++) { 
 2216:       sum=a[i][j]; 
 2217:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2218:       a[i][j]=sum; 
 2219:     } 
 2220:     big=0.0; 
 2221:     for (i=j;i<=n;i++) { 
 2222:       sum=a[i][j]; 
 2223:       for (k=1;k<j;k++) 
 2224: 	sum -= a[i][k]*a[k][j]; 
 2225:       a[i][j]=sum; 
 2226:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2227: 	big=dum; 
 2228: 	imax=i; 
 2229:       } 
 2230:     } 
 2231:     if (j != imax) { 
 2232:       for (k=1;k<=n;k++) { 
 2233: 	dum=a[imax][k]; 
 2234: 	a[imax][k]=a[j][k]; 
 2235: 	a[j][k]=dum; 
 2236:       } 
 2237:       *d = -(*d); 
 2238:       vv[imax]=vv[j]; 
 2239:     } 
 2240:     indx[j]=imax; 
 2241:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2242:     if (j != n) { 
 2243:       dum=1.0/(a[j][j]); 
 2244:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2245:     } 
 2246:   } 
 2247:   free_vector(vv,1,n);  /* Doesn't work */
 2248: ;
 2249: } 
 2250: 
 2251: void lubksb(double **a, int n, int *indx, double b[]) 
 2252: { 
 2253:   int i,ii=0,ip,j; 
 2254:   double sum; 
 2255:  
 2256:   for (i=1;i<=n;i++) { 
 2257:     ip=indx[i]; 
 2258:     sum=b[ip]; 
 2259:     b[ip]=b[i]; 
 2260:     if (ii) 
 2261:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2262:     else if (sum) ii=i; 
 2263:     b[i]=sum; 
 2264:   } 
 2265:   for (i=n;i>=1;i--) { 
 2266:     sum=b[i]; 
 2267:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2268:     b[i]=sum/a[i][i]; 
 2269:   } 
 2270: } 
 2271: 
 2272: void pstamp(FILE *fichier)
 2273: {
 2274:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2275: }
 2276: 
 2277: /************ Frequencies ********************/
 2278: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2279: {  /* Some frequencies */
 2280:   
 2281:   int i, m, jk, k1,i1, j1, bool, z1,j;
 2282:   int first;
 2283:   double ***freq; /* Frequencies */
 2284:   double *pp, **prop;
 2285:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2286:   char fileresp[FILENAMELENGTH];
 2287:   
 2288:   pp=vector(1,nlstate);
 2289:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2290:   strcpy(fileresp,"p");
 2291:   strcat(fileresp,fileres);
 2292:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2293:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2294:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2295:     exit(0);
 2296:   }
 2297:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2298:   j1=0;
 2299:   
 2300:   j=cptcoveff;
 2301:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2302: 
 2303:   first=1;
 2304: 
 2305:   /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
 2306:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
 2307:   /*    j1++;
 2308: */
 2309:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2310:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2311: 	scanf("%d", i);*/
 2312:       for (i=-5; i<=nlstate+ndeath; i++)  
 2313: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2314: 	  for(m=iagemin; m <= iagemax+3; m++)
 2315: 	    freq[i][jk][m]=0;
 2316:       
 2317:       for (i=1; i<=nlstate; i++)  
 2318: 	for(m=iagemin; m <= iagemax+3; m++)
 2319: 	  prop[i][m]=0;
 2320:       
 2321:       dateintsum=0;
 2322:       k2cpt=0;
 2323:       for (i=1; i<=imx; i++) {
 2324: 	bool=1;
 2325: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2326: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2327:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 2328:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2329:               bool=0;
 2330:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 2331:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 2332:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 2333:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 2334:             } 
 2335: 	}
 2336:  
 2337: 	if (bool==1){
 2338: 	  for(m=firstpass; m<=lastpass; m++){
 2339: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2340: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2341: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2342: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2343: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2344: 	      if (m<lastpass) {
 2345: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2346: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2347: 	      }
 2348: 	      
 2349: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2350: 		dateintsum=dateintsum+k2;
 2351: 		k2cpt++;
 2352: 	      }
 2353: 	      /*}*/
 2354: 	  }
 2355: 	}
 2356:       } /* end i */
 2357:        
 2358:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2359:       pstamp(ficresp);
 2360:       if  (cptcovn>0) {
 2361: 	fprintf(ficresp, "\n#********** Variable "); 
 2362: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2363: 	fprintf(ficresp, "**********\n#");
 2364: 	fprintf(ficlog, "\n#********** Variable "); 
 2365: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2366: 	fprintf(ficlog, "**********\n#");
 2367:       }
 2368:       for(i=1; i<=nlstate;i++) 
 2369: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2370:       fprintf(ficresp, "\n");
 2371:       
 2372:       for(i=iagemin; i <= iagemax+3; i++){
 2373: 	if(i==iagemax+3){
 2374: 	  fprintf(ficlog,"Total");
 2375: 	}else{
 2376: 	  if(first==1){
 2377: 	    first=0;
 2378: 	    printf("See log file for details...\n");
 2379: 	  }
 2380: 	  fprintf(ficlog,"Age %d", i);
 2381: 	}
 2382: 	for(jk=1; jk <=nlstate ; jk++){
 2383: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2384: 	    pp[jk] += freq[jk][m][i]; 
 2385: 	}
 2386: 	for(jk=1; jk <=nlstate ; jk++){
 2387: 	  for(m=-1, pos=0; m <=0 ; m++)
 2388: 	    pos += freq[jk][m][i];
 2389: 	  if(pp[jk]>=1.e-10){
 2390: 	    if(first==1){
 2391: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2392: 	    }
 2393: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2394: 	  }else{
 2395: 	    if(first==1)
 2396: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2397: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2398: 	  }
 2399: 	}
 2400: 
 2401: 	for(jk=1; jk <=nlstate ; jk++){
 2402: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2403: 	    pp[jk] += freq[jk][m][i];
 2404: 	}	
 2405: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2406: 	  pos += pp[jk];
 2407: 	  posprop += prop[jk][i];
 2408: 	}
 2409: 	for(jk=1; jk <=nlstate ; jk++){
 2410: 	  if(pos>=1.e-5){
 2411: 	    if(first==1)
 2412: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2413: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2414: 	  }else{
 2415: 	    if(first==1)
 2416: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2417: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2418: 	  }
 2419: 	  if( i <= iagemax){
 2420: 	    if(pos>=1.e-5){
 2421: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2422: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2423: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2424: 	    }
 2425: 	    else
 2426: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2427: 	  }
 2428: 	}
 2429: 	
 2430: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2431: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2432: 	    if(freq[jk][m][i] !=0 ) {
 2433: 	    if(first==1)
 2434: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2435: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2436: 	    }
 2437: 	if(i <= iagemax)
 2438: 	  fprintf(ficresp,"\n");
 2439: 	if(first==1)
 2440: 	  printf("Others in log...\n");
 2441: 	fprintf(ficlog,"\n");
 2442:       }
 2443:       /*}*/
 2444:   }
 2445:   dateintmean=dateintsum/k2cpt; 
 2446:  
 2447:   fclose(ficresp);
 2448:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2449:   free_vector(pp,1,nlstate);
 2450:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2451:   /* End of Freq */
 2452: }
 2453: 
 2454: /************ Prevalence ********************/
 2455: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2456: {  
 2457:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2458:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2459:      We still use firstpass and lastpass as another selection.
 2460:   */
 2461:  
 2462:   int i, m, jk, k1, i1, j1, bool, z1,j;
 2463:   double ***freq; /* Frequencies */
 2464:   double *pp, **prop;
 2465:   double pos,posprop; 
 2466:   double  y2; /* in fractional years */
 2467:   int iagemin, iagemax;
 2468:   int first; /** to stop verbosity which is redirected to log file */
 2469: 
 2470:   iagemin= (int) agemin;
 2471:   iagemax= (int) agemax;
 2472:   /*pp=vector(1,nlstate);*/
 2473:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2474:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2475:   j1=0;
 2476:   
 2477:   /*j=cptcoveff;*/
 2478:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2479:   
 2480:   first=1;
 2481:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 2482:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 2483:       j1++;*/
 2484:       
 2485:       for (i=1; i<=nlstate; i++)  
 2486: 	for(m=iagemin; m <= iagemax+3; m++)
 2487: 	  prop[i][m]=0.0;
 2488:      
 2489:       for (i=1; i<=imx; i++) { /* Each individual */
 2490: 	bool=1;
 2491: 	if  (cptcovn>0) {
 2492: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2493: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2494: 	      bool=0;
 2495: 	} 
 2496: 	if (bool==1) { 
 2497: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2498: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2499: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2500: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2501: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2502: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2503:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2504: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2505:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2506:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2507:  	      } 
 2508: 	    }
 2509: 	  } /* end selection of waves */
 2510: 	}
 2511:       }
 2512:       for(i=iagemin; i <= iagemax+3; i++){  
 2513:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2514:  	  posprop += prop[jk][i]; 
 2515:  	} 
 2516: 	
 2517:  	for(jk=1; jk <=nlstate ; jk++){	    
 2518:  	  if( i <=  iagemax){ 
 2519:  	    if(posprop>=1.e-5){ 
 2520:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2521:  	    } else{
 2522: 	      if(first==1){
 2523: 		first=0;
 2524: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 2525: 	      }
 2526: 	    }
 2527:  	  } 
 2528:  	}/* end jk */ 
 2529:       }/* end i */ 
 2530:     /*} *//* end i1 */
 2531:   } /* end j1 */
 2532:   
 2533:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2534:   /*free_vector(pp,1,nlstate);*/
 2535:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2536: }  /* End of prevalence */
 2537: 
 2538: /************* Waves Concatenation ***************/
 2539: 
 2540: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2541: {
 2542:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2543:      Death is a valid wave (if date is known).
 2544:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2545:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2546:      and mw[mi+1][i]. dh depends on stepm.
 2547:      */
 2548: 
 2549:   int i, mi, m;
 2550:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2551:      double sum=0., jmean=0.;*/
 2552:   int first;
 2553:   int j, k=0,jk, ju, jl;
 2554:   double sum=0.;
 2555:   first=0;
 2556:   jmin=1e+5;
 2557:   jmax=-1;
 2558:   jmean=0.;
 2559:   for(i=1; i<=imx; i++){
 2560:     mi=0;
 2561:     m=firstpass;
 2562:     while(s[m][i] <= nlstate){
 2563:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2564: 	mw[++mi][i]=m;
 2565:       if(m >=lastpass)
 2566: 	break;
 2567:       else
 2568: 	m++;
 2569:     }/* end while */
 2570:     if (s[m][i] > nlstate){
 2571:       mi++;	/* Death is another wave */
 2572:       /* if(mi==0)  never been interviewed correctly before death */
 2573: 	 /* Only death is a correct wave */
 2574:       mw[mi][i]=m;
 2575:     }
 2576: 
 2577:     wav[i]=mi;
 2578:     if(mi==0){
 2579:       nbwarn++;
 2580:       if(first==0){
 2581: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2582: 	first=1;
 2583:       }
 2584:       if(first==1){
 2585: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2586:       }
 2587:     } /* end mi==0 */
 2588:   } /* End individuals */
 2589: 
 2590:   for(i=1; i<=imx; i++){
 2591:     for(mi=1; mi<wav[i];mi++){
 2592:       if (stepm <=0)
 2593: 	dh[mi][i]=1;
 2594:       else{
 2595: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2596: 	  if (agedc[i] < 2*AGESUP) {
 2597: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2598: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2599: 	    else if(j<0){
 2600: 	      nberr++;
 2601: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2602: 	      j=1; /* Temporary Dangerous patch */
 2603: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2604: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2605: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2606: 	    }
 2607: 	    k=k+1;
 2608: 	    if (j >= jmax){
 2609: 	      jmax=j;
 2610: 	      ijmax=i;
 2611: 	    }
 2612: 	    if (j <= jmin){
 2613: 	      jmin=j;
 2614: 	      ijmin=i;
 2615: 	    }
 2616: 	    sum=sum+j;
 2617: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2618: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2619: 	  }
 2620: 	}
 2621: 	else{
 2622: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2623: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2624: 
 2625: 	  k=k+1;
 2626: 	  if (j >= jmax) {
 2627: 	    jmax=j;
 2628: 	    ijmax=i;
 2629: 	  }
 2630: 	  else if (j <= jmin){
 2631: 	    jmin=j;
 2632: 	    ijmin=i;
 2633: 	  }
 2634: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2635: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2636: 	  if(j<0){
 2637: 	    nberr++;
 2638: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2639: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2640: 	  }
 2641: 	  sum=sum+j;
 2642: 	}
 2643: 	jk= j/stepm;
 2644: 	jl= j -jk*stepm;
 2645: 	ju= j -(jk+1)*stepm;
 2646: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2647: 	  if(jl==0){
 2648: 	    dh[mi][i]=jk;
 2649: 	    bh[mi][i]=0;
 2650: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2651: 		  * to avoid the price of an extra matrix product in likelihood */
 2652: 	    dh[mi][i]=jk+1;
 2653: 	    bh[mi][i]=ju;
 2654: 	  }
 2655: 	}else{
 2656: 	  if(jl <= -ju){
 2657: 	    dh[mi][i]=jk;
 2658: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2659: 				 * is higher than the multiple of stepm and negative otherwise.
 2660: 				 */
 2661: 	  }
 2662: 	  else{
 2663: 	    dh[mi][i]=jk+1;
 2664: 	    bh[mi][i]=ju;
 2665: 	  }
 2666: 	  if(dh[mi][i]==0){
 2667: 	    dh[mi][i]=1; /* At least one step */
 2668: 	    bh[mi][i]=ju; /* At least one step */
 2669: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2670: 	  }
 2671: 	} /* end if mle */
 2672:       }
 2673:     } /* end wave */
 2674:   }
 2675:   jmean=sum/k;
 2676:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 2677:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 2678:  }
 2679: 
 2680: /*********** Tricode ****************************/
 2681: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 2682: {
 2683:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 2684:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 2685:   /* Boring subroutine which should only output nbcode[Tvar[j]][k]
 2686:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 2687:   /* nbcode[Tvar[j]][1]= 
 2688:   */
 2689: 
 2690:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 2691:   int modmaxcovj=0; /* Modality max of covariates j */
 2692:   int cptcode=0; /* Modality max of covariates j */
 2693:   int modmincovj=0; /* Modality min of covariates j */
 2694: 
 2695: 
 2696:   cptcoveff=0; 
 2697:  
 2698:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
 2699:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 2700: 
 2701:   /* Loop on covariates without age and products */
 2702:   for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
 2703:     for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 2704: 			       modality of this covariate Vj*/ 
 2705:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 2706: 				    * If product of Vn*Vm, still boolean *:
 2707: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 2708: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 2709:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 2710: 				      modality of the nth covariate of individual i. */
 2711:       if (ij > modmaxcovj)
 2712:         modmaxcovj=ij; 
 2713:       else if (ij < modmincovj) 
 2714: 	modmincovj=ij; 
 2715:       if ((ij < -1) && (ij > NCOVMAX)){
 2716: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 2717: 	exit(1);
 2718:       }else
 2719:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 2720:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 2721:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2722:       /* getting the maximum value of the modality of the covariate
 2723: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 2724: 	 female is 1, then modmaxcovj=1.*/
 2725:     }
 2726:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 2727:     cptcode=modmaxcovj;
 2728:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 2729:    /*for (i=0; i<=cptcode; i++) {*/
 2730:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 2731:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
 2732:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 2733: 	ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
 2734:       }
 2735:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 2736: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 2737:     } /* Ndum[-1] number of undefined modalities */
 2738: 
 2739:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 2740:     /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 2741:     /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
 2742:        modmincovj=3; modmaxcovj = 7;
 2743:        There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 2744:        which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 2745:        variables V1_1 and V1_2.
 2746:        nbcode[Tvar[j]][ij]=k;
 2747:        nbcode[Tvar[j]][1]=0;
 2748:        nbcode[Tvar[j]][2]=1;
 2749:        nbcode[Tvar[j]][3]=2;
 2750:     */
 2751:     ij=1; /* ij is similar to i but can jumps over null modalities */
 2752:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
 2753:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
 2754: 	/*recode from 0 */
 2755: 	if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 2756: 	  nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 2757: 				     k is a modality. If we have model=V1+V1*sex 
 2758: 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2759: 	  ij++;
 2760: 	}
 2761: 	if (ij > ncodemax[j]) break; 
 2762:       }  /* end of loop on */
 2763:     } /* end of loop on modality */ 
 2764:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 2765:   
 2766:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 2767:   
 2768:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
 2769:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 2770:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 2771:    Ndum[ij]++; 
 2772:  } 
 2773: 
 2774:  ij=1;
 2775:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 2776:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 2777:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2778:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 2779:      Tvaraff[ij]=i; /*For printing (unclear) */
 2780:      ij++;
 2781:    }else
 2782:        Tvaraff[ij]=0;
 2783:  }
 2784:  ij--;
 2785:  cptcoveff=ij; /*Number of total covariates*/
 2786: 
 2787: }
 2788: 
 2789: 
 2790: /*********** Health Expectancies ****************/
 2791: 
 2792: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 2793: 
 2794: {
 2795:   /* Health expectancies, no variances */
 2796:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 2797:   int nhstepma, nstepma; /* Decreasing with age */
 2798:   double age, agelim, hf;
 2799:   double ***p3mat;
 2800:   double eip;
 2801: 
 2802:   pstamp(ficreseij);
 2803:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 2804:   fprintf(ficreseij,"# Age");
 2805:   for(i=1; i<=nlstate;i++){
 2806:     for(j=1; j<=nlstate;j++){
 2807:       fprintf(ficreseij," e%1d%1d ",i,j);
 2808:     }
 2809:     fprintf(ficreseij," e%1d. ",i);
 2810:   }
 2811:   fprintf(ficreseij,"\n");
 2812: 
 2813:   
 2814:   if(estepm < stepm){
 2815:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2816:   }
 2817:   else  hstepm=estepm;   
 2818:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2819:    * This is mainly to measure the difference between two models: for example
 2820:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2821:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2822:    * progression in between and thus overestimating or underestimating according
 2823:    * to the curvature of the survival function. If, for the same date, we 
 2824:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2825:    * to compare the new estimate of Life expectancy with the same linear 
 2826:    * hypothesis. A more precise result, taking into account a more precise
 2827:    * curvature will be obtained if estepm is as small as stepm. */
 2828: 
 2829:   /* For example we decided to compute the life expectancy with the smallest unit */
 2830:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2831:      nhstepm is the number of hstepm from age to agelim 
 2832:      nstepm is the number of stepm from age to agelin. 
 2833:      Look at hpijx to understand the reason of that which relies in memory size
 2834:      and note for a fixed period like estepm months */
 2835:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2836:      survival function given by stepm (the optimization length). Unfortunately it
 2837:      means that if the survival funtion is printed only each two years of age and if
 2838:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2839:      results. So we changed our mind and took the option of the best precision.
 2840:   */
 2841:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2842: 
 2843:   agelim=AGESUP;
 2844:   /* If stepm=6 months */
 2845:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2846:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2847:     
 2848: /* nhstepm age range expressed in number of stepm */
 2849:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 2850:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2851:   /* if (stepm >= YEARM) hstepm=1;*/
 2852:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2853:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2854: 
 2855:   for (age=bage; age<=fage; age ++){ 
 2856:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 2857:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2858:     /* if (stepm >= YEARM) hstepm=1;*/
 2859:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 2860: 
 2861:     /* If stepm=6 months */
 2862:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 2863:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 2864:     
 2865:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 2866:     
 2867:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2868:     
 2869:     printf("%d|",(int)age);fflush(stdout);
 2870:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2871:     
 2872:     /* Computing expectancies */
 2873:     for(i=1; i<=nlstate;i++)
 2874:       for(j=1; j<=nlstate;j++)
 2875: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2876: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2877: 	  
 2878: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2879: 
 2880: 	}
 2881: 
 2882:     fprintf(ficreseij,"%3.0f",age );
 2883:     for(i=1; i<=nlstate;i++){
 2884:       eip=0;
 2885:       for(j=1; j<=nlstate;j++){
 2886: 	eip +=eij[i][j][(int)age];
 2887: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 2888:       }
 2889:       fprintf(ficreseij,"%9.4f", eip );
 2890:     }
 2891:     fprintf(ficreseij,"\n");
 2892:     
 2893:   }
 2894:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2895:   printf("\n");
 2896:   fprintf(ficlog,"\n");
 2897:   
 2898: }
 2899: 
 2900: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 2901: 
 2902: {
 2903:   /* Covariances of health expectancies eij and of total life expectancies according
 2904:    to initial status i, ei. .
 2905:   */
 2906:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 2907:   int nhstepma, nstepma; /* Decreasing with age */
 2908:   double age, agelim, hf;
 2909:   double ***p3matp, ***p3matm, ***varhe;
 2910:   double **dnewm,**doldm;
 2911:   double *xp, *xm;
 2912:   double **gp, **gm;
 2913:   double ***gradg, ***trgradg;
 2914:   int theta;
 2915: 
 2916:   double eip, vip;
 2917: 
 2918:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 2919:   xp=vector(1,npar);
 2920:   xm=vector(1,npar);
 2921:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 2922:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 2923:   
 2924:   pstamp(ficresstdeij);
 2925:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 2926:   fprintf(ficresstdeij,"# Age");
 2927:   for(i=1; i<=nlstate;i++){
 2928:     for(j=1; j<=nlstate;j++)
 2929:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 2930:     fprintf(ficresstdeij," e%1d. ",i);
 2931:   }
 2932:   fprintf(ficresstdeij,"\n");
 2933: 
 2934:   pstamp(ficrescveij);
 2935:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 2936:   fprintf(ficrescveij,"# Age");
 2937:   for(i=1; i<=nlstate;i++)
 2938:     for(j=1; j<=nlstate;j++){
 2939:       cptj= (j-1)*nlstate+i;
 2940:       for(i2=1; i2<=nlstate;i2++)
 2941: 	for(j2=1; j2<=nlstate;j2++){
 2942: 	  cptj2= (j2-1)*nlstate+i2;
 2943: 	  if(cptj2 <= cptj)
 2944: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 2945: 	}
 2946:     }
 2947:   fprintf(ficrescveij,"\n");
 2948:   
 2949:   if(estepm < stepm){
 2950:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2951:   }
 2952:   else  hstepm=estepm;   
 2953:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2954:    * This is mainly to measure the difference between two models: for example
 2955:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2956:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2957:    * progression in between and thus overestimating or underestimating according
 2958:    * to the curvature of the survival function. If, for the same date, we 
 2959:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2960:    * to compare the new estimate of Life expectancy with the same linear 
 2961:    * hypothesis. A more precise result, taking into account a more precise
 2962:    * curvature will be obtained if estepm is as small as stepm. */
 2963: 
 2964:   /* For example we decided to compute the life expectancy with the smallest unit */
 2965:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2966:      nhstepm is the number of hstepm from age to agelim 
 2967:      nstepm is the number of stepm from age to agelin. 
 2968:      Look at hpijx to understand the reason of that which relies in memory size
 2969:      and note for a fixed period like estepm months */
 2970:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2971:      survival function given by stepm (the optimization length). Unfortunately it
 2972:      means that if the survival funtion is printed only each two years of age and if
 2973:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2974:      results. So we changed our mind and took the option of the best precision.
 2975:   */
 2976:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2977: 
 2978:   /* If stepm=6 months */
 2979:   /* nhstepm age range expressed in number of stepm */
 2980:   agelim=AGESUP;
 2981:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 2982:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2983:   /* if (stepm >= YEARM) hstepm=1;*/
 2984:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2985:   
 2986:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2987:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2988:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 2989:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 2990:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 2991:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 2992: 
 2993:   for (age=bage; age<=fage; age ++){ 
 2994:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 2995:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2996:     /* if (stepm >= YEARM) hstepm=1;*/
 2997:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 2998: 
 2999:     /* If stepm=6 months */
 3000:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3001:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3002:     
 3003:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3004: 
 3005:     /* Computing  Variances of health expectancies */
 3006:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3007:        decrease memory allocation */
 3008:     for(theta=1; theta <=npar; theta++){
 3009:       for(i=1; i<=npar; i++){ 
 3010: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3011: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3012:       }
 3013:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3014:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3015:   
 3016:       for(j=1; j<= nlstate; j++){
 3017: 	for(i=1; i<=nlstate; i++){
 3018: 	  for(h=0; h<=nhstepm-1; h++){
 3019: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3020: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3021: 	  }
 3022: 	}
 3023:       }
 3024:      
 3025:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3026: 	for(h=0; h<=nhstepm-1; h++){
 3027: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3028: 	}
 3029:     }/* End theta */
 3030:     
 3031:     
 3032:     for(h=0; h<=nhstepm-1; h++)
 3033:       for(j=1; j<=nlstate*nlstate;j++)
 3034: 	for(theta=1; theta <=npar; theta++)
 3035: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3036:     
 3037: 
 3038:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3039:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3040: 	varhe[ij][ji][(int)age] =0.;
 3041: 
 3042:      printf("%d|",(int)age);fflush(stdout);
 3043:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3044:      for(h=0;h<=nhstepm-1;h++){
 3045:       for(k=0;k<=nhstepm-1;k++){
 3046: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3047: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3048: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3049: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3050: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3051:       }
 3052:     }
 3053: 
 3054:     /* Computing expectancies */
 3055:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3056:     for(i=1; i<=nlstate;i++)
 3057:       for(j=1; j<=nlstate;j++)
 3058: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3059: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3060: 	  
 3061: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3062: 
 3063: 	}
 3064: 
 3065:     fprintf(ficresstdeij,"%3.0f",age );
 3066:     for(i=1; i<=nlstate;i++){
 3067:       eip=0.;
 3068:       vip=0.;
 3069:       for(j=1; j<=nlstate;j++){
 3070: 	eip += eij[i][j][(int)age];
 3071: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3072: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3073: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3074:       }
 3075:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3076:     }
 3077:     fprintf(ficresstdeij,"\n");
 3078: 
 3079:     fprintf(ficrescveij,"%3.0f",age );
 3080:     for(i=1; i<=nlstate;i++)
 3081:       for(j=1; j<=nlstate;j++){
 3082: 	cptj= (j-1)*nlstate+i;
 3083: 	for(i2=1; i2<=nlstate;i2++)
 3084: 	  for(j2=1; j2<=nlstate;j2++){
 3085: 	    cptj2= (j2-1)*nlstate+i2;
 3086: 	    if(cptj2 <= cptj)
 3087: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3088: 	  }
 3089:       }
 3090:     fprintf(ficrescveij,"\n");
 3091:    
 3092:   }
 3093:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3094:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3095:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3096:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3097:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3098:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3099:   printf("\n");
 3100:   fprintf(ficlog,"\n");
 3101: 
 3102:   free_vector(xm,1,npar);
 3103:   free_vector(xp,1,npar);
 3104:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3105:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3106:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3107: }
 3108: 
 3109: /************ Variance ******************/
 3110: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3111: {
 3112:   /* Variance of health expectancies */
 3113:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3114:   /* double **newm;*/
 3115:   double **dnewm,**doldm;
 3116:   double **dnewmp,**doldmp;
 3117:   int i, j, nhstepm, hstepm, h, nstepm ;
 3118:   int k, cptcode;
 3119:   double *xp;
 3120:   double **gp, **gm;  /* for var eij */
 3121:   double ***gradg, ***trgradg; /*for var eij */
 3122:   double **gradgp, **trgradgp; /* for var p point j */
 3123:   double *gpp, *gmp; /* for var p point j */
 3124:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3125:   double ***p3mat;
 3126:   double age,agelim, hf;
 3127:   double ***mobaverage;
 3128:   int theta;
 3129:   char digit[4];
 3130:   char digitp[25];
 3131: 
 3132:   char fileresprobmorprev[FILENAMELENGTH];
 3133: 
 3134:   if(popbased==1){
 3135:     if(mobilav!=0)
 3136:       strcpy(digitp,"-populbased-mobilav-");
 3137:     else strcpy(digitp,"-populbased-nomobil-");
 3138:   }
 3139:   else 
 3140:     strcpy(digitp,"-stablbased-");
 3141: 
 3142:   if (mobilav!=0) {
 3143:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3144:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3145:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3146:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3147:     }
 3148:   }
 3149: 
 3150:   strcpy(fileresprobmorprev,"prmorprev"); 
 3151:   sprintf(digit,"%-d",ij);
 3152:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3153:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3154:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3155:   strcat(fileresprobmorprev,fileres);
 3156:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3157:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3158:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3159:   }
 3160:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3161:  
 3162:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3163:   pstamp(ficresprobmorprev);
 3164:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3165:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3166:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3167:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3168:     for(i=1; i<=nlstate;i++)
 3169:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3170:   }  
 3171:   fprintf(ficresprobmorprev,"\n");
 3172:   fprintf(ficgp,"\n# Routine varevsij");
 3173:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3174:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3175:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3176: /*   } */
 3177:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3178:   pstamp(ficresvij);
 3179:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3180:   if(popbased==1)
 3181:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3182:   else
 3183:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3184:   fprintf(ficresvij,"# Age");
 3185:   for(i=1; i<=nlstate;i++)
 3186:     for(j=1; j<=nlstate;j++)
 3187:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3188:   fprintf(ficresvij,"\n");
 3189: 
 3190:   xp=vector(1,npar);
 3191:   dnewm=matrix(1,nlstate,1,npar);
 3192:   doldm=matrix(1,nlstate,1,nlstate);
 3193:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3194:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3195: 
 3196:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3197:   gpp=vector(nlstate+1,nlstate+ndeath);
 3198:   gmp=vector(nlstate+1,nlstate+ndeath);
 3199:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3200:   
 3201:   if(estepm < stepm){
 3202:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3203:   }
 3204:   else  hstepm=estepm;   
 3205:   /* For example we decided to compute the life expectancy with the smallest unit */
 3206:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3207:      nhstepm is the number of hstepm from age to agelim 
 3208:      nstepm is the number of stepm from age to agelin. 
 3209:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3210:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3211:      survival function given by stepm (the optimization length). Unfortunately it
 3212:      means that if the survival funtion is printed every two years of age and if
 3213:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3214:      results. So we changed our mind and took the option of the best precision.
 3215:   */
 3216:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3217:   agelim = AGESUP;
 3218:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3219:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3220:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3221:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3222:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3223:     gp=matrix(0,nhstepm,1,nlstate);
 3224:     gm=matrix(0,nhstepm,1,nlstate);
 3225: 
 3226: 
 3227:     for(theta=1; theta <=npar; theta++){
 3228:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3229: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3230:       }
 3231:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3232:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3233: 
 3234:       if (popbased==1) {
 3235: 	if(mobilav ==0){
 3236: 	  for(i=1; i<=nlstate;i++)
 3237: 	    prlim[i][i]=probs[(int)age][i][ij];
 3238: 	}else{ /* mobilav */ 
 3239: 	  for(i=1; i<=nlstate;i++)
 3240: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3241: 	}
 3242:       }
 3243:   
 3244:       for(j=1; j<= nlstate; j++){
 3245: 	for(h=0; h<=nhstepm; h++){
 3246: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3247: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3248: 	}
 3249:       }
 3250:       /* This for computing probability of death (h=1 means
 3251:          computed over hstepm matrices product = hstepm*stepm months) 
 3252:          as a weighted average of prlim.
 3253:       */
 3254:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3255: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3256: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3257:       }    
 3258:       /* end probability of death */
 3259: 
 3260:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3261: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3262:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3263:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3264:  
 3265:       if (popbased==1) {
 3266: 	if(mobilav ==0){
 3267: 	  for(i=1; i<=nlstate;i++)
 3268: 	    prlim[i][i]=probs[(int)age][i][ij];
 3269: 	}else{ /* mobilav */ 
 3270: 	  for(i=1; i<=nlstate;i++)
 3271: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3272: 	}
 3273:       }
 3274: 
 3275:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3276: 	for(h=0; h<=nhstepm; h++){
 3277: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3278: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3279: 	}
 3280:       }
 3281:       /* This for computing probability of death (h=1 means
 3282:          computed over hstepm matrices product = hstepm*stepm months) 
 3283:          as a weighted average of prlim.
 3284:       */
 3285:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3286: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3287:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3288:       }    
 3289:       /* end probability of death */
 3290: 
 3291:       for(j=1; j<= nlstate; j++) /* vareij */
 3292: 	for(h=0; h<=nhstepm; h++){
 3293: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3294: 	}
 3295: 
 3296:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3297: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3298:       }
 3299: 
 3300:     } /* End theta */
 3301: 
 3302:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3303: 
 3304:     for(h=0; h<=nhstepm; h++) /* veij */
 3305:       for(j=1; j<=nlstate;j++)
 3306: 	for(theta=1; theta <=npar; theta++)
 3307: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3308: 
 3309:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3310:       for(theta=1; theta <=npar; theta++)
 3311: 	trgradgp[j][theta]=gradgp[theta][j];
 3312:   
 3313: 
 3314:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3315:     for(i=1;i<=nlstate;i++)
 3316:       for(j=1;j<=nlstate;j++)
 3317: 	vareij[i][j][(int)age] =0.;
 3318: 
 3319:     for(h=0;h<=nhstepm;h++){
 3320:       for(k=0;k<=nhstepm;k++){
 3321: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3322: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3323: 	for(i=1;i<=nlstate;i++)
 3324: 	  for(j=1;j<=nlstate;j++)
 3325: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3326:       }
 3327:     }
 3328:   
 3329:     /* pptj */
 3330:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3331:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3332:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3333:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3334: 	varppt[j][i]=doldmp[j][i];
 3335:     /* end ppptj */
 3336:     /*  x centered again */
 3337:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3338:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3339:  
 3340:     if (popbased==1) {
 3341:       if(mobilav ==0){
 3342: 	for(i=1; i<=nlstate;i++)
 3343: 	  prlim[i][i]=probs[(int)age][i][ij];
 3344:       }else{ /* mobilav */ 
 3345: 	for(i=1; i<=nlstate;i++)
 3346: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3347:       }
 3348:     }
 3349:              
 3350:     /* This for computing probability of death (h=1 means
 3351:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3352:        as a weighted average of prlim.
 3353:     */
 3354:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3355:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 3356: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 3357:     }    
 3358:     /* end probability of death */
 3359: 
 3360:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 3361:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3362:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 3363:       for(i=1; i<=nlstate;i++){
 3364: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 3365:       }
 3366:     } 
 3367:     fprintf(ficresprobmorprev,"\n");
 3368: 
 3369:     fprintf(ficresvij,"%.0f ",age );
 3370:     for(i=1; i<=nlstate;i++)
 3371:       for(j=1; j<=nlstate;j++){
 3372: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 3373:       }
 3374:     fprintf(ficresvij,"\n");
 3375:     free_matrix(gp,0,nhstepm,1,nlstate);
 3376:     free_matrix(gm,0,nhstepm,1,nlstate);
 3377:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 3378:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 3379:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3380:   } /* End age */
 3381:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 3382:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 3383:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3384:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3385:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 3386:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3387:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3388: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3389: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3390: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3391:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 3392:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 3393:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 3394:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3395:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3396:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3397: */
 3398: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3399:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3400: 
 3401:   free_vector(xp,1,npar);
 3402:   free_matrix(doldm,1,nlstate,1,nlstate);
 3403:   free_matrix(dnewm,1,nlstate,1,npar);
 3404:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3405:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3406:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3407:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3408:   fclose(ficresprobmorprev);
 3409:   fflush(ficgp);
 3410:   fflush(fichtm); 
 3411: }  /* end varevsij */
 3412: 
 3413: /************ Variance of prevlim ******************/
 3414: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3415: {
 3416:   /* Variance of prevalence limit */
 3417:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3418:   double **newm;
 3419:   double **dnewm,**doldm;
 3420:   int i, j, nhstepm, hstepm;
 3421:   int k, cptcode;
 3422:   double *xp;
 3423:   double *gp, *gm;
 3424:   double **gradg, **trgradg;
 3425:   double age,agelim;
 3426:   int theta;
 3427:   
 3428:   pstamp(ficresvpl);
 3429:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3430:   fprintf(ficresvpl,"# Age");
 3431:   for(i=1; i<=nlstate;i++)
 3432:       fprintf(ficresvpl," %1d-%1d",i,i);
 3433:   fprintf(ficresvpl,"\n");
 3434: 
 3435:   xp=vector(1,npar);
 3436:   dnewm=matrix(1,nlstate,1,npar);
 3437:   doldm=matrix(1,nlstate,1,nlstate);
 3438:   
 3439:   hstepm=1*YEARM; /* Every year of age */
 3440:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3441:   agelim = AGESUP;
 3442:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3443:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3444:     if (stepm >= YEARM) hstepm=1;
 3445:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3446:     gradg=matrix(1,npar,1,nlstate);
 3447:     gp=vector(1,nlstate);
 3448:     gm=vector(1,nlstate);
 3449: 
 3450:     for(theta=1; theta <=npar; theta++){
 3451:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3452: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3453:       }
 3454:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3455:       for(i=1;i<=nlstate;i++)
 3456: 	gp[i] = prlim[i][i];
 3457:     
 3458:       for(i=1; i<=npar; i++) /* Computes gradient */
 3459: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3460:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3461:       for(i=1;i<=nlstate;i++)
 3462: 	gm[i] = prlim[i][i];
 3463: 
 3464:       for(i=1;i<=nlstate;i++)
 3465: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3466:     } /* End theta */
 3467: 
 3468:     trgradg =matrix(1,nlstate,1,npar);
 3469: 
 3470:     for(j=1; j<=nlstate;j++)
 3471:       for(theta=1; theta <=npar; theta++)
 3472: 	trgradg[j][theta]=gradg[theta][j];
 3473: 
 3474:     for(i=1;i<=nlstate;i++)
 3475:       varpl[i][(int)age] =0.;
 3476:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3477:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3478:     for(i=1;i<=nlstate;i++)
 3479:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3480: 
 3481:     fprintf(ficresvpl,"%.0f ",age );
 3482:     for(i=1; i<=nlstate;i++)
 3483:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3484:     fprintf(ficresvpl,"\n");
 3485:     free_vector(gp,1,nlstate);
 3486:     free_vector(gm,1,nlstate);
 3487:     free_matrix(gradg,1,npar,1,nlstate);
 3488:     free_matrix(trgradg,1,nlstate,1,npar);
 3489:   } /* End age */
 3490: 
 3491:   free_vector(xp,1,npar);
 3492:   free_matrix(doldm,1,nlstate,1,npar);
 3493:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3494: 
 3495: }
 3496: 
 3497: /************ Variance of one-step probabilities  ******************/
 3498: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3499: {
 3500:   int i, j=0,  i1, k1, l1, t, tj;
 3501:   int k2, l2, j1,  z1;
 3502:   int k=0,l, cptcode;
 3503:   int first=1, first1, first2;
 3504:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3505:   double **dnewm,**doldm;
 3506:   double *xp;
 3507:   double *gp, *gm;
 3508:   double **gradg, **trgradg;
 3509:   double **mu;
 3510:   double age,agelim, cov[NCOVMAX+1];
 3511:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3512:   int theta;
 3513:   char fileresprob[FILENAMELENGTH];
 3514:   char fileresprobcov[FILENAMELENGTH];
 3515:   char fileresprobcor[FILENAMELENGTH];
 3516:   double ***varpij;
 3517: 
 3518:   strcpy(fileresprob,"prob"); 
 3519:   strcat(fileresprob,fileres);
 3520:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3521:     printf("Problem with resultfile: %s\n", fileresprob);
 3522:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3523:   }
 3524:   strcpy(fileresprobcov,"probcov"); 
 3525:   strcat(fileresprobcov,fileres);
 3526:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3527:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3528:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3529:   }
 3530:   strcpy(fileresprobcor,"probcor"); 
 3531:   strcat(fileresprobcor,fileres);
 3532:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3533:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3534:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3535:   }
 3536:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3537:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3538:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3539:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3540:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3541:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3542:   pstamp(ficresprob);
 3543:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3544:   fprintf(ficresprob,"# Age");
 3545:   pstamp(ficresprobcov);
 3546:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3547:   fprintf(ficresprobcov,"# Age");
 3548:   pstamp(ficresprobcor);
 3549:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3550:   fprintf(ficresprobcor,"# Age");
 3551: 
 3552: 
 3553:   for(i=1; i<=nlstate;i++)
 3554:     for(j=1; j<=(nlstate+ndeath);j++){
 3555:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3556:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3557:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3558:     }  
 3559:  /* fprintf(ficresprob,"\n");
 3560:   fprintf(ficresprobcov,"\n");
 3561:   fprintf(ficresprobcor,"\n");
 3562:  */
 3563:   xp=vector(1,npar);
 3564:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3565:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3566:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3567:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3568:   first=1;
 3569:   fprintf(ficgp,"\n# Routine varprob");
 3570:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3571:   fprintf(fichtm,"\n");
 3572: 
 3573:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3574:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3575:   file %s<br>\n",optionfilehtmcov);
 3576:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3577: and drawn. It helps understanding how is the covariance between two incidences.\
 3578:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3579:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3580: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3581: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3582: standard deviations wide on each axis. <br>\
 3583:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3584:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3585: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3586: 
 3587:   cov[1]=1;
 3588:   /* tj=cptcoveff; */
 3589:   tj = (int) pow(2,cptcoveff);
 3590:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3591:   j1=0;
 3592:   for(j1=1; j1<=tj;j1++){
 3593:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 3594:     /*j1++;*/
 3595:       if  (cptcovn>0) {
 3596: 	fprintf(ficresprob, "\n#********** Variable "); 
 3597: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3598: 	fprintf(ficresprob, "**********\n#\n");
 3599: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3600: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3601: 	fprintf(ficresprobcov, "**********\n#\n");
 3602: 	
 3603: 	fprintf(ficgp, "\n#********** Variable "); 
 3604: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3605: 	fprintf(ficgp, "**********\n#\n");
 3606: 	
 3607: 	
 3608: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3609: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3610: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3611: 	
 3612: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3613: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3614: 	fprintf(ficresprobcor, "**********\n#");    
 3615:       }
 3616:       
 3617:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3618:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3619:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 3620:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 3621:       for (age=bage; age<=fage; age ++){ 
 3622: 	cov[2]=age;
 3623: 	for (k=1; k<=cptcovn;k++) {
 3624: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
 3625: 							 * 1  1 1 1 1
 3626: 							 * 2  2 1 1 1
 3627: 							 * 3  1 2 1 1
 3628: 							 */
 3629: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 3630: 	}
 3631: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3632: 	for (k=1; k<=cptcovprod;k++)
 3633: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3634: 	
 3635:     
 3636: 	for(theta=1; theta <=npar; theta++){
 3637: 	  for(i=1; i<=npar; i++)
 3638: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3639: 	  
 3640: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3641: 	  
 3642: 	  k=0;
 3643: 	  for(i=1; i<= (nlstate); i++){
 3644: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3645: 	      k=k+1;
 3646: 	      gp[k]=pmmij[i][j];
 3647: 	    }
 3648: 	  }
 3649: 	  
 3650: 	  for(i=1; i<=npar; i++)
 3651: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3652:     
 3653: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3654: 	  k=0;
 3655: 	  for(i=1; i<=(nlstate); i++){
 3656: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3657: 	      k=k+1;
 3658: 	      gm[k]=pmmij[i][j];
 3659: 	    }
 3660: 	  }
 3661:      
 3662: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3663: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3664: 	}
 3665: 
 3666: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3667: 	  for(theta=1; theta <=npar; theta++)
 3668: 	    trgradg[j][theta]=gradg[theta][j];
 3669: 	
 3670: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3671: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3672: 
 3673: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3674: 	
 3675: 	k=0;
 3676: 	for(i=1; i<=(nlstate); i++){
 3677: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3678: 	    k=k+1;
 3679: 	    mu[k][(int) age]=pmmij[i][j];
 3680: 	  }
 3681: 	}
 3682:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3683: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3684: 	    varpij[i][j][(int)age] = doldm[i][j];
 3685: 
 3686: 	/*printf("\n%d ",(int)age);
 3687: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3688: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3689: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3690: 	  }*/
 3691: 
 3692: 	fprintf(ficresprob,"\n%d ",(int)age);
 3693: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3694: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3695: 
 3696: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3697: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3698: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3699: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3700: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3701: 	}
 3702: 	i=0;
 3703: 	for (k=1; k<=(nlstate);k++){
 3704:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3705:  	    i++;
 3706: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3707: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3708: 	    for (j=1; j<=i;j++){
 3709: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 3710: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3711: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3712: 	    }
 3713: 	  }
 3714: 	}/* end of loop for state */
 3715:       } /* end of loop for age */
 3716:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 3717:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 3718:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3719:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3720:       
 3721:       /* Confidence intervalle of pij  */
 3722:       /*
 3723: 	fprintf(ficgp,"\nunset parametric;unset label");
 3724: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3725: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3726: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3727: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3728: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3729: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3730:       */
 3731: 
 3732:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3733:       first1=1;first2=2;
 3734:       for (k2=1; k2<=(nlstate);k2++){
 3735: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3736: 	  if(l2==k2) continue;
 3737: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3738: 	  for (k1=1; k1<=(nlstate);k1++){
 3739: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3740: 	      if(l1==k1) continue;
 3741: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3742: 	      if(i<=j) continue;
 3743: 	      for (age=bage; age<=fage; age ++){ 
 3744: 		if ((int)age %5==0){
 3745: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3746: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3747: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3748: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3749: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3750: 		  c12=cv12/sqrt(v1*v2);
 3751: 		  /* Computing eigen value of matrix of covariance */
 3752: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3753: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3754: 		  if ((lc2 <0) || (lc1 <0) ){
 3755: 		    if(first2==1){
 3756: 		      first1=0;
 3757: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 3758: 		    }
 3759: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 3760: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 3761: 		    /* lc2=fabs(lc2); */
 3762: 		  }
 3763: 
 3764: 		  /* Eigen vectors */
 3765: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3766: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3767: 		  v21=(lc1-v1)/cv12*v11;
 3768: 		  v12=-v21;
 3769: 		  v22=v11;
 3770: 		  tnalp=v21/v11;
 3771: 		  if(first1==1){
 3772: 		    first1=0;
 3773: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3774: 		  }
 3775: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3776: 		  /*printf(fignu*/
 3777: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3778: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3779: 		  if(first==1){
 3780: 		    first=0;
 3781:  		    fprintf(ficgp,"\nset parametric;unset label");
 3782: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3783: 		    fprintf(ficgp,"\nset ter png small size 320, 240");
 3784: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3785:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3786: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3787: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3788: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3789: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3790: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3791: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3792: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3793: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3794: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3795: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3796: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3797: 		  }else{
 3798: 		    first=0;
 3799: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3800: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3801: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3802: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3803: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3804: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3805: 		  }/* if first */
 3806: 		} /* age mod 5 */
 3807: 	      } /* end loop age */
 3808: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3809: 	      first=1;
 3810: 	    } /*l12 */
 3811: 	  } /* k12 */
 3812: 	} /*l1 */
 3813:       }/* k1 */
 3814:       /* } /* loop covariates */
 3815:   }
 3816:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3817:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3818:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3819:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 3820:   free_vector(xp,1,npar);
 3821:   fclose(ficresprob);
 3822:   fclose(ficresprobcov);
 3823:   fclose(ficresprobcor);
 3824:   fflush(ficgp);
 3825:   fflush(fichtmcov);
 3826: }
 3827: 
 3828: 
 3829: /******************* Printing html file ***********/
 3830: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3831: 		  int lastpass, int stepm, int weightopt, char model[],\
 3832: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3833: 		  int popforecast, int estepm ,\
 3834: 		  double jprev1, double mprev1,double anprev1, \
 3835: 		  double jprev2, double mprev2,double anprev2){
 3836:   int jj1, k1, i1, cpt;
 3837: 
 3838:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 3839:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 3840: </ul>");
 3841:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 3842:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 3843: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 3844:    fprintf(fichtm,"\
 3845:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 3846: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 3847:    fprintf(fichtm,"\
 3848:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 3849: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 3850:    fprintf(fichtm,"\
 3851:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 3852:    <a href=\"%s\">%s</a> <br>\n",
 3853: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3854:    fprintf(fichtm,"\
 3855:  - Population projections by age and states: \
 3856:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 3857: 
 3858: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3859: 
 3860:  m=pow(2,cptcoveff);
 3861:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3862: 
 3863:  jj1=0;
 3864:  for(k1=1; k1<=m;k1++){
 3865:    for(i1=1; i1<=ncodemax[k1];i1++){
 3866:      jj1++;
 3867:      if (cptcovn > 0) {
 3868:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3869:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3870: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3871:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3872:      }
 3873:      /* Pij */
 3874:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
 3875: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3876:      /* Quasi-incidences */
 3877:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3878:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
 3879: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3880:        /* Period (stable) prevalence in each health state */
 3881:        for(cpt=1; cpt<nlstate;cpt++){
 3882: 	 fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
 3883: <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3884:        }
 3885:      for(cpt=1; cpt<=nlstate;cpt++) {
 3886:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 3887: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3888:      }
 3889:    } /* end i1 */
 3890:  }/* End k1 */
 3891:  fprintf(fichtm,"</ul>");
 3892: 
 3893: 
 3894:  fprintf(fichtm,"\
 3895: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 3896:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 3897: 
 3898:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3899: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 3900:  fprintf(fichtm,"\
 3901:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3902: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 3903: 
 3904:  fprintf(fichtm,"\
 3905:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3906: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 3907:  fprintf(fichtm,"\
 3908:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 3909:    <a href=\"%s\">%s</a> <br>\n</li>",
 3910: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 3911:  fprintf(fichtm,"\
 3912:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 3913:    <a href=\"%s\">%s</a> <br>\n</li>",
 3914: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 3915:  fprintf(fichtm,"\
 3916:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 3917: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 3918:  fprintf(fichtm,"\
 3919:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 3920: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 3921:  fprintf(fichtm,"\
 3922:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 3923: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 3924: 
 3925: /*  if(popforecast==1) fprintf(fichtm,"\n */
 3926: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 3927: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 3928: /* 	<br>",fileres,fileres,fileres,fileres); */
 3929: /*  else  */
 3930: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 3931:  fflush(fichtm);
 3932:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 3933: 
 3934:  m=pow(2,cptcoveff);
 3935:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3936: 
 3937:  jj1=0;
 3938:  for(k1=1; k1<=m;k1++){
 3939:    for(i1=1; i1<=ncodemax[k1];i1++){
 3940:      jj1++;
 3941:      if (cptcovn > 0) {
 3942:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3943:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3944: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3945:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3946:      }
 3947:      for(cpt=1; cpt<=nlstate;cpt++) {
 3948:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 3949: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
 3950: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 3951:      }
 3952:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 3953: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 3954: true period expectancies (those weighted with period prevalences are also\
 3955:  drawn in addition to the population based expectancies computed using\
 3956:  observed and cahotic prevalences: %s%d.png<br>\
 3957: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 3958:    } /* end i1 */
 3959:  }/* End k1 */
 3960:  fprintf(fichtm,"</ul>");
 3961:  fflush(fichtm);
 3962: }
 3963: 
 3964: /******************* Gnuplot file **************/
 3965: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3966: 
 3967:   char dirfileres[132],optfileres[132];
 3968:   int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 3969:   int ng=0;
 3970: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 3971: /*     printf("Problem with file %s",optionfilegnuplot); */
 3972: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 3973: /*   } */
 3974: 
 3975:   /*#ifdef windows */
 3976:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 3977:     /*#endif */
 3978:   m=pow(2,cptcoveff);
 3979: 
 3980:   strcpy(dirfileres,optionfilefiname);
 3981:   strcpy(optfileres,"vpl");
 3982:  /* 1eme*/
 3983:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 3984:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 3985:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 3986:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 3987:      fprintf(ficgp,"set xlabel \"Age\" \n\
 3988: set ylabel \"Probability\" \n\
 3989: set ter png small size 320, 240\n\
 3990: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 3991: 
 3992:      for (i=1; i<= nlstate ; i ++) {
 3993:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3994:        else        fprintf(ficgp," \%%*lf (\%%*lf)");
 3995:      }
 3996:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 3997:      for (i=1; i<= nlstate ; i ++) {
 3998:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3999:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 4000:      } 
 4001:      fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4002:      for (i=1; i<= nlstate ; i ++) {
 4003:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4004:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 4005:      }  
 4006:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4007:    }
 4008:   }
 4009:   /*2 eme*/
 4010:   
 4011:   for (k1=1; k1<= m ; k1 ++) { 
 4012:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 4013:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
 4014:     
 4015:     for (i=1; i<= nlstate+1 ; i ++) {
 4016:       k=2*i;
 4017:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4018:       for (j=1; j<= nlstate+1 ; j ++) {
 4019: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4020: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4021:       }   
 4022:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4023:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4024:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4025:       for (j=1; j<= nlstate+1 ; j ++) {
 4026: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4027: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4028:       }   
 4029:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4030:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4031:       for (j=1; j<= nlstate+1 ; j ++) {
 4032: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4033: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4034:       }   
 4035:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4036:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4037:     }
 4038:   }
 4039:   
 4040:   /*3eme*/
 4041:   
 4042:   for (k1=1; k1<= m ; k1 ++) { 
 4043:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4044:       /*       k=2+nlstate*(2*cpt-2); */
 4045:       k=2+(nlstate+1)*(cpt-1);
 4046:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4047:       fprintf(ficgp,"set ter png small size 320, 240\n\
 4048: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4049:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4050: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4051: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4052: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4053: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4054: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4055: 	
 4056:       */
 4057:       for (i=1; i< nlstate ; i ++) {
 4058: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4059: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4060: 	
 4061:       } 
 4062:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4063:     }
 4064:   }
 4065:   
 4066:   /* CV preval stable (period) */
 4067:   for (k1=1; k1<= m ; k1 ++) { 
 4068:     for (cpt=1; cpt<=nlstate ; cpt ++) {
 4069:       k=3;
 4070:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4071:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4072: set ter png small size 320, 240\n\
 4073: unset log y\n\
 4074: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 4075:       
 4076:       for (i=1; i< nlstate ; i ++)
 4077: 	fprintf(ficgp,"+$%d",k+i+1);
 4078:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 4079:       
 4080:       l=3+(nlstate+ndeath)*cpt;
 4081:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 4082:       for (i=1; i< nlstate ; i ++) {
 4083: 	l=3+(nlstate+ndeath)*cpt;
 4084: 	fprintf(ficgp,"+$%d",l+i+1);
 4085:       }
 4086:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 4087:     } 
 4088:   }  
 4089:   
 4090:   /* proba elementaires */
 4091:   for(i=1,jk=1; i <=nlstate; i++){
 4092:     for(k=1; k <=(nlstate+ndeath); k++){
 4093:       if (k != i) {
 4094: 	for(j=1; j <=ncovmodel; j++){
 4095: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 4096: 	  jk++; 
 4097: 	  fprintf(ficgp,"\n");
 4098: 	}
 4099:       }
 4100:     }
 4101:    }
 4102:   /*goto avoid;*/
 4103:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4104:      for(jk=1; jk <=m; jk++) {
 4105:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4106:        if (ng==2)
 4107: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4108:        else
 4109: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 4110:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4111:        i=1;
 4112:        for(k2=1; k2<=nlstate; k2++) {
 4113: 	 k3=i;
 4114: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4115: 	   if (k != k2){
 4116: 	     if(ng==2)
 4117: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4118: 	     else
 4119: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4120: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4121: 	     for(j=3; j <=ncovmodel; j++) {
 4122: 	       /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
 4123: 	       /* 	 /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
 4124: 	       /* 	 ij++; */
 4125: 	       /* } */
 4126: 	       /* else */
 4127: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4128: 	     }
 4129: 	     fprintf(ficgp,")/(1");
 4130: 	     
 4131: 	     for(k1=1; k1 <=nlstate; k1++){   
 4132: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4133: 	       ij=1;
 4134: 	       for(j=3; j <=ncovmodel; j++){
 4135: 		 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
 4136: 		 /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
 4137: 		 /*   ij++; */
 4138: 		 /* } */
 4139: 		 /* else */
 4140: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4141: 	       }
 4142: 	       fprintf(ficgp,")");
 4143: 	     }
 4144: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4145: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4146: 	     i=i+ncovmodel;
 4147: 	   }
 4148: 	 } /* end k */
 4149:        } /* end k2 */
 4150:      } /* end jk */
 4151:    } /* end ng */
 4152:  avoid:
 4153:    fflush(ficgp); 
 4154: }  /* end gnuplot */
 4155: 
 4156: 
 4157: /*************** Moving average **************/
 4158: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4159: 
 4160:   int i, cpt, cptcod;
 4161:   int modcovmax =1;
 4162:   int mobilavrange, mob;
 4163:   double age;
 4164: 
 4165:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4166: 			   a covariate has 2 modalities */
 4167:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4168: 
 4169:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4170:     if(mobilav==1) mobilavrange=5; /* default */
 4171:     else mobilavrange=mobilav;
 4172:     for (age=bage; age<=fage; age++)
 4173:       for (i=1; i<=nlstate;i++)
 4174: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4175: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4176:     /* We keep the original values on the extreme ages bage, fage and for 
 4177:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4178:        we use a 5 terms etc. until the borders are no more concerned. 
 4179:     */ 
 4180:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4181:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4182: 	for (i=1; i<=nlstate;i++){
 4183: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4184: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4185: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4186: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4187: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4188: 	      }
 4189: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4190: 	  }
 4191: 	}
 4192:       }/* end age */
 4193:     }/* end mob */
 4194:   }else return -1;
 4195:   return 0;
 4196: }/* End movingaverage */
 4197: 
 4198: 
 4199: /************** Forecasting ******************/
 4200: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4201:   /* proj1, year, month, day of starting projection 
 4202:      agemin, agemax range of age
 4203:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4204:      anproj2 year of en of projection (same day and month as proj1).
 4205:   */
 4206:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 4207:   int *popage;
 4208:   double agec; /* generic age */
 4209:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4210:   double *popeffectif,*popcount;
 4211:   double ***p3mat;
 4212:   double ***mobaverage;
 4213:   char fileresf[FILENAMELENGTH];
 4214: 
 4215:   agelim=AGESUP;
 4216:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4217:  
 4218:   strcpy(fileresf,"f"); 
 4219:   strcat(fileresf,fileres);
 4220:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4221:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4222:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4223:   }
 4224:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4225:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4226: 
 4227:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4228: 
 4229:   if (mobilav!=0) {
 4230:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4231:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4232:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4233:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4234:     }
 4235:   }
 4236: 
 4237:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4238:   if (stepm<=12) stepsize=1;
 4239:   if(estepm < stepm){
 4240:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4241:   }
 4242:   else  hstepm=estepm;   
 4243: 
 4244:   hstepm=hstepm/stepm; 
 4245:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4246:                                fractional in yp1 */
 4247:   anprojmean=yp;
 4248:   yp2=modf((yp1*12),&yp);
 4249:   mprojmean=yp;
 4250:   yp1=modf((yp2*30.5),&yp);
 4251:   jprojmean=yp;
 4252:   if(jprojmean==0) jprojmean=1;
 4253:   if(mprojmean==0) jprojmean=1;
 4254: 
 4255:   i1=cptcoveff;
 4256:   if (cptcovn < 1){i1=1;}
 4257:   
 4258:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4259:   
 4260:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4261: 
 4262: /* 	      if (h==(int)(YEARM*yearp)){ */
 4263:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4264:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4265:       k=k+1;
 4266:       fprintf(ficresf,"\n#******");
 4267:       for(j=1;j<=cptcoveff;j++) {
 4268: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4269:       }
 4270:       fprintf(ficresf,"******\n");
 4271:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4272:       for(j=1; j<=nlstate+ndeath;j++){ 
 4273: 	for(i=1; i<=nlstate;i++) 	      
 4274:           fprintf(ficresf," p%d%d",i,j);
 4275: 	fprintf(ficresf," p.%d",j);
 4276:       }
 4277:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4278: 	fprintf(ficresf,"\n");
 4279: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4280: 
 4281:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4282: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4283: 	  nhstepm = nhstepm/hstepm; 
 4284: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4285: 	  oldm=oldms;savm=savms;
 4286: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4287: 	
 4288: 	  for (h=0; h<=nhstepm; h++){
 4289: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4290:               fprintf(ficresf,"\n");
 4291:               for(j=1;j<=cptcoveff;j++) 
 4292:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4293: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4294: 	    } 
 4295: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4296: 	      ppij=0.;
 4297: 	      for(i=1; i<=nlstate;i++) {
 4298: 		if (mobilav==1) 
 4299: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4300: 		else {
 4301: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4302: 		}
 4303: 		if (h*hstepm/YEARM*stepm== yearp) {
 4304: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4305: 		}
 4306: 	      } /* end i */
 4307: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4308: 		fprintf(ficresf," %.3f", ppij);
 4309: 	      }
 4310: 	    }/* end j */
 4311: 	  } /* end h */
 4312: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4313: 	} /* end agec */
 4314:       } /* end yearp */
 4315:     } /* end cptcod */
 4316:   } /* end  cptcov */
 4317:        
 4318:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4319: 
 4320:   fclose(ficresf);
 4321: }
 4322: 
 4323: /************** Forecasting *****not tested NB*************/
 4324: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 4325:   
 4326:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 4327:   int *popage;
 4328:   double calagedatem, agelim, kk1, kk2;
 4329:   double *popeffectif,*popcount;
 4330:   double ***p3mat,***tabpop,***tabpopprev;
 4331:   double ***mobaverage;
 4332:   char filerespop[FILENAMELENGTH];
 4333: 
 4334:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4335:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4336:   agelim=AGESUP;
 4337:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 4338:   
 4339:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4340:   
 4341:   
 4342:   strcpy(filerespop,"pop"); 
 4343:   strcat(filerespop,fileres);
 4344:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 4345:     printf("Problem with forecast resultfile: %s\n", filerespop);
 4346:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 4347:   }
 4348:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 4349:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 4350: 
 4351:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4352: 
 4353:   if (mobilav!=0) {
 4354:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4355:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4356:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4357:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4358:     }
 4359:   }
 4360: 
 4361:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4362:   if (stepm<=12) stepsize=1;
 4363:   
 4364:   agelim=AGESUP;
 4365:   
 4366:   hstepm=1;
 4367:   hstepm=hstepm/stepm; 
 4368:   
 4369:   if (popforecast==1) {
 4370:     if((ficpop=fopen(popfile,"r"))==NULL) {
 4371:       printf("Problem with population file : %s\n",popfile);exit(0);
 4372:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 4373:     } 
 4374:     popage=ivector(0,AGESUP);
 4375:     popeffectif=vector(0,AGESUP);
 4376:     popcount=vector(0,AGESUP);
 4377:     
 4378:     i=1;   
 4379:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 4380:    
 4381:     imx=i;
 4382:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 4383:   }
 4384: 
 4385:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 4386:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4387:       k=k+1;
 4388:       fprintf(ficrespop,"\n#******");
 4389:       for(j=1;j<=cptcoveff;j++) {
 4390: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4391:       }
 4392:       fprintf(ficrespop,"******\n");
 4393:       fprintf(ficrespop,"# Age");
 4394:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 4395:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 4396:       
 4397:       for (cpt=0; cpt<=0;cpt++) { 
 4398: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4399: 	
 4400:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4401: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4402: 	  nhstepm = nhstepm/hstepm; 
 4403: 	  
 4404: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4405: 	  oldm=oldms;savm=savms;
 4406: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4407: 	
 4408: 	  for (h=0; h<=nhstepm; h++){
 4409: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4410: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4411: 	    } 
 4412: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4413: 	      kk1=0.;kk2=0;
 4414: 	      for(i=1; i<=nlstate;i++) {	      
 4415: 		if (mobilav==1) 
 4416: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4417: 		else {
 4418: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4419: 		}
 4420: 	      }
 4421: 	      if (h==(int)(calagedatem+12*cpt)){
 4422: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4423: 		  /*fprintf(ficrespop," %.3f", kk1);
 4424: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4425: 	      }
 4426: 	    }
 4427: 	    for(i=1; i<=nlstate;i++){
 4428: 	      kk1=0.;
 4429: 		for(j=1; j<=nlstate;j++){
 4430: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4431: 		}
 4432: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4433: 	    }
 4434: 
 4435: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4436: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4437: 	  }
 4438: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4439: 	}
 4440:       }
 4441:  
 4442:   /******/
 4443: 
 4444:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4445: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4446: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4447: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4448: 	  nhstepm = nhstepm/hstepm; 
 4449: 	  
 4450: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4451: 	  oldm=oldms;savm=savms;
 4452: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4453: 	  for (h=0; h<=nhstepm; h++){
 4454: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4455: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4456: 	    } 
 4457: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4458: 	      kk1=0.;kk2=0;
 4459: 	      for(i=1; i<=nlstate;i++) {	      
 4460: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4461: 	      }
 4462: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4463: 	    }
 4464: 	  }
 4465: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4466: 	}
 4467:       }
 4468:    } 
 4469:   }
 4470:  
 4471:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4472: 
 4473:   if (popforecast==1) {
 4474:     free_ivector(popage,0,AGESUP);
 4475:     free_vector(popeffectif,0,AGESUP);
 4476:     free_vector(popcount,0,AGESUP);
 4477:   }
 4478:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4479:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4480:   fclose(ficrespop);
 4481: } /* End of popforecast */
 4482: 
 4483: int fileappend(FILE *fichier, char *optionfich)
 4484: {
 4485:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4486:     printf("Problem with file: %s\n", optionfich);
 4487:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4488:     return (0);
 4489:   }
 4490:   fflush(fichier);
 4491:   return (1);
 4492: }
 4493: 
 4494: 
 4495: /**************** function prwizard **********************/
 4496: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4497: {
 4498: 
 4499:   /* Wizard to print covariance matrix template */
 4500: 
 4501:   char ca[32], cb[32], cc[32];
 4502:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 4503:   int numlinepar;
 4504: 
 4505:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4506:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4507:   for(i=1; i <=nlstate; i++){
 4508:     jj=0;
 4509:     for(j=1; j <=nlstate+ndeath; j++){
 4510:       if(j==i) continue;
 4511:       jj++;
 4512:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4513:       printf("%1d%1d",i,j);
 4514:       fprintf(ficparo,"%1d%1d",i,j);
 4515:       for(k=1; k<=ncovmodel;k++){
 4516: 	/* 	  printf(" %lf",param[i][j][k]); */
 4517: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4518: 	printf(" 0.");
 4519: 	fprintf(ficparo," 0.");
 4520:       }
 4521:       printf("\n");
 4522:       fprintf(ficparo,"\n");
 4523:     }
 4524:   }
 4525:   printf("# Scales (for hessian or gradient estimation)\n");
 4526:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4527:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4528:   for(i=1; i <=nlstate; i++){
 4529:     jj=0;
 4530:     for(j=1; j <=nlstate+ndeath; j++){
 4531:       if(j==i) continue;
 4532:       jj++;
 4533:       fprintf(ficparo,"%1d%1d",i,j);
 4534:       printf("%1d%1d",i,j);
 4535:       fflush(stdout);
 4536:       for(k=1; k<=ncovmodel;k++){
 4537: 	/* 	printf(" %le",delti3[i][j][k]); */
 4538: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4539: 	printf(" 0.");
 4540: 	fprintf(ficparo," 0.");
 4541:       }
 4542:       numlinepar++;
 4543:       printf("\n");
 4544:       fprintf(ficparo,"\n");
 4545:     }
 4546:   }
 4547:   printf("# Covariance matrix\n");
 4548: /* # 121 Var(a12)\n\ */
 4549: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4550: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4551: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4552: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4553: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4554: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4555: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4556:   fflush(stdout);
 4557:   fprintf(ficparo,"# Covariance matrix\n");
 4558:   /* # 121 Var(a12)\n\ */
 4559:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4560:   /* #   ...\n\ */
 4561:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4562:   
 4563:   for(itimes=1;itimes<=2;itimes++){
 4564:     jj=0;
 4565:     for(i=1; i <=nlstate; i++){
 4566:       for(j=1; j <=nlstate+ndeath; j++){
 4567: 	if(j==i) continue;
 4568: 	for(k=1; k<=ncovmodel;k++){
 4569: 	  jj++;
 4570: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4571: 	  if(itimes==1){
 4572: 	    printf("#%1d%1d%d",i,j,k);
 4573: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4574: 	  }else{
 4575: 	    printf("%1d%1d%d",i,j,k);
 4576: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4577: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4578: 	  }
 4579: 	  ll=0;
 4580: 	  for(li=1;li <=nlstate; li++){
 4581: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 4582: 	      if(lj==li) continue;
 4583: 	      for(lk=1;lk<=ncovmodel;lk++){
 4584: 		ll++;
 4585: 		if(ll<=jj){
 4586: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 4587: 		  if(ll<jj){
 4588: 		    if(itimes==1){
 4589: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4590: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4591: 		    }else{
 4592: 		      printf(" 0.");
 4593: 		      fprintf(ficparo," 0.");
 4594: 		    }
 4595: 		  }else{
 4596: 		    if(itimes==1){
 4597: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4598: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4599: 		    }else{
 4600: 		      printf(" 0.");
 4601: 		      fprintf(ficparo," 0.");
 4602: 		    }
 4603: 		  }
 4604: 		}
 4605: 	      } /* end lk */
 4606: 	    } /* end lj */
 4607: 	  } /* end li */
 4608: 	  printf("\n");
 4609: 	  fprintf(ficparo,"\n");
 4610: 	  numlinepar++;
 4611: 	} /* end k*/
 4612:       } /*end j */
 4613:     } /* end i */
 4614:   } /* end itimes */
 4615: 
 4616: } /* end of prwizard */
 4617: /******************* Gompertz Likelihood ******************************/
 4618: double gompertz(double x[])
 4619: { 
 4620:   double A,B,L=0.0,sump=0.,num=0.;
 4621:   int i,n=0; /* n is the size of the sample */
 4622: 
 4623:   for (i=0;i<=imx-1 ; i++) {
 4624:     sump=sump+weight[i];
 4625:     /*    sump=sump+1;*/
 4626:     num=num+1;
 4627:   }
 4628:  
 4629:  
 4630:   /* for (i=0; i<=imx; i++) 
 4631:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4632: 
 4633:   for (i=1;i<=imx ; i++)
 4634:     {
 4635:       if (cens[i] == 1 && wav[i]>1)
 4636: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4637:       
 4638:       if (cens[i] == 0 && wav[i]>1)
 4639: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4640: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4641:       
 4642:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4643:       if (wav[i] > 1 ) { /* ??? */
 4644: 	L=L+A*weight[i];
 4645: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4646:       }
 4647:     }
 4648: 
 4649:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4650:  
 4651:   return -2*L*num/sump;
 4652: }
 4653: 
 4654: #ifdef GSL
 4655: /******************* Gompertz_f Likelihood ******************************/
 4656: double gompertz_f(const gsl_vector *v, void *params)
 4657: { 
 4658:   double A,B,LL=0.0,sump=0.,num=0.;
 4659:   double *x= (double *) v->data;
 4660:   int i,n=0; /* n is the size of the sample */
 4661: 
 4662:   for (i=0;i<=imx-1 ; i++) {
 4663:     sump=sump+weight[i];
 4664:     /*    sump=sump+1;*/
 4665:     num=num+1;
 4666:   }
 4667:  
 4668:  
 4669:   /* for (i=0; i<=imx; i++) 
 4670:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4671:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 4672:   for (i=1;i<=imx ; i++)
 4673:     {
 4674:       if (cens[i] == 1 && wav[i]>1)
 4675: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 4676:       
 4677:       if (cens[i] == 0 && wav[i]>1)
 4678: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 4679: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 4680:       
 4681:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4682:       if (wav[i] > 1 ) { /* ??? */
 4683: 	LL=LL+A*weight[i];
 4684: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4685:       }
 4686:     }
 4687: 
 4688:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4689:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 4690:  
 4691:   return -2*LL*num/sump;
 4692: }
 4693: #endif
 4694: 
 4695: /******************* Printing html file ***********/
 4696: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 4697: 		  int lastpass, int stepm, int weightopt, char model[],\
 4698: 		  int imx,  double p[],double **matcov,double agemortsup){
 4699:   int i,k;
 4700: 
 4701:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 4702:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 4703:   for (i=1;i<=2;i++) 
 4704:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 4705:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 4706:   fprintf(fichtm,"</ul>");
 4707: 
 4708: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 4709: 
 4710:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 4711: 
 4712:  for (k=agegomp;k<(agemortsup-2);k++) 
 4713:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 4714: 
 4715:  
 4716:   fflush(fichtm);
 4717: }
 4718: 
 4719: /******************* Gnuplot file **************/
 4720: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4721: 
 4722:   char dirfileres[132],optfileres[132];
 4723:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 4724:   int ng;
 4725: 
 4726: 
 4727:   /*#ifdef windows */
 4728:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4729:     /*#endif */
 4730: 
 4731: 
 4732:   strcpy(dirfileres,optionfilefiname);
 4733:   strcpy(optfileres,"vpl");
 4734:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 4735:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 4736:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
 4737:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 4738:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 4739: 
 4740: } 
 4741: 
 4742: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 4743: {
 4744: 
 4745:   /*-------- data file ----------*/
 4746:   FILE *fic;
 4747:   char dummy[]="                         ";
 4748:   int i, j, n;
 4749:   int linei, month, year,iout;
 4750:   char line[MAXLINE], linetmp[MAXLINE];
 4751:   char stra[80], strb[80];
 4752:   char *stratrunc;
 4753:   int lstra;
 4754: 
 4755: 
 4756:   if((fic=fopen(datafile,"r"))==NULL)    {
 4757:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 4758:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 4759:   }
 4760: 
 4761:   i=1;
 4762:   linei=0;
 4763:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 4764:     linei=linei+1;
 4765:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 4766:       if(line[j] == '\t')
 4767: 	line[j] = ' ';
 4768:     }
 4769:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 4770:       ;
 4771:     };
 4772:     line[j+1]=0;  /* Trims blanks at end of line */
 4773:     if(line[0]=='#'){
 4774:       fprintf(ficlog,"Comment line\n%s\n",line);
 4775:       printf("Comment line\n%s\n",line);
 4776:       continue;
 4777:     }
 4778:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 4779:     for (j=0; line[j]!='\0';j++){
 4780:       line[j]=linetmp[j];
 4781:     }
 4782:   
 4783: 
 4784:     for (j=maxwav;j>=1;j--){
 4785:       cutv(stra, strb, line, ' '); 
 4786:       if(strb[0]=='.') { /* Missing status */
 4787: 	lval=-1;
 4788:       }else{
 4789: 	errno=0;
 4790: 	lval=strtol(strb,&endptr,10); 
 4791:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 4792: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4793: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 4794: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 4795: 	  return 1;
 4796: 	}
 4797:       }
 4798:       s[j][i]=lval;
 4799:       
 4800:       strcpy(line,stra);
 4801:       cutv(stra, strb,line,' ');
 4802:       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4803:       }
 4804:       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 4805: 	month=99;
 4806: 	year=9999;
 4807:       }else{
 4808: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 4809: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 4810: 	return 1;
 4811:       }
 4812:       anint[j][i]= (double) year; 
 4813:       mint[j][i]= (double)month; 
 4814:       strcpy(line,stra);
 4815:     } /* ENd Waves */
 4816:     
 4817:     cutv(stra, strb,line,' '); 
 4818:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4819:     }
 4820:     else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 4821:       month=99;
 4822:       year=9999;
 4823:     }else{
 4824:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 4825: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4826: 	return 1;
 4827:     }
 4828:     andc[i]=(double) year; 
 4829:     moisdc[i]=(double) month; 
 4830:     strcpy(line,stra);
 4831:     
 4832:     cutv(stra, strb,line,' '); 
 4833:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4834:     }
 4835:     else  if(iout=sscanf(strb,"%s.", dummy) != 0){
 4836:       month=99;
 4837:       year=9999;
 4838:     }else{
 4839:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 4840:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4841: 	return 1;
 4842:     }
 4843:     if (year==9999) {
 4844:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 4845:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4846: 	return 1;
 4847: 
 4848:     }
 4849:     annais[i]=(double)(year);
 4850:     moisnais[i]=(double)(month); 
 4851:     strcpy(line,stra);
 4852:     
 4853:     cutv(stra, strb,line,' '); 
 4854:     errno=0;
 4855:     dval=strtod(strb,&endptr); 
 4856:     if( strb[0]=='\0' || (*endptr != '\0')){
 4857:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 4858:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 4859:       fflush(ficlog);
 4860:       return 1;
 4861:     }
 4862:     weight[i]=dval; 
 4863:     strcpy(line,stra);
 4864:     
 4865:     for (j=ncovcol;j>=1;j--){
 4866:       cutv(stra, strb,line,' '); 
 4867:       if(strb[0]=='.') { /* Missing status */
 4868: 	lval=-1;
 4869:       }else{
 4870: 	errno=0;
 4871: 	lval=strtol(strb,&endptr,10); 
 4872: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4873: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 4874: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 4875: 	  return 1;
 4876: 	}
 4877:       }
 4878:       if(lval <-1 || lval >1){
 4879: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 4880:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 4881:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 4882:  For example, for multinomial values like 1, 2 and 3,\n \
 4883:  build V1=0 V2=0 for the reference value (1),\n \
 4884:         V1=1 V2=0 for (2) \n \
 4885:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 4886:  output of IMaCh is often meaningless.\n \
 4887:  Exiting.\n",lval,linei, i,line,j);
 4888: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 4889:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 4890:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 4891:  For example, for multinomial values like 1, 2 and 3,\n \
 4892:  build V1=0 V2=0 for the reference value (1),\n \
 4893:         V1=1 V2=0 for (2) \n \
 4894:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 4895:  output of IMaCh is often meaningless.\n \
 4896:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 4897: 	return 1;
 4898:       }
 4899:       covar[j][i]=(double)(lval);
 4900:       strcpy(line,stra);
 4901:     }  
 4902:     lstra=strlen(stra);
 4903:      
 4904:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 4905:       stratrunc = &(stra[lstra-9]);
 4906:       num[i]=atol(stratrunc);
 4907:     }
 4908:     else
 4909:       num[i]=atol(stra);
 4910:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 4911:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 4912:     
 4913:     i=i+1;
 4914:   } /* End loop reading  data */
 4915: 
 4916:   *imax=i-1; /* Number of individuals */
 4917:   fclose(fic);
 4918:  
 4919:   return (0);
 4920:   endread:
 4921:     printf("Exiting readdata: ");
 4922:     fclose(fic);
 4923:     return (1);
 4924: 
 4925: 
 4926: 
 4927: }
 4928: void removespace(char *str) {
 4929:   char *p1 = str, *p2 = str;
 4930:   do
 4931:     while (*p2 == ' ')
 4932:       p2++;
 4933:   while (*p1++ = *p2++);
 4934: }
 4935: 
 4936: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 4937:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
 4938:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
 4939:    * - cptcovn or number of covariates k of the models excluding age*products =6
 4940:    * - cptcovage number of covariates with age*products =2
 4941:    * - cptcovs number of simple covariates
 4942:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 4943:    *     which is a new column after the 9 (ncovcol) variables. 
 4944:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 4945:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 4946:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 4947:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 4948:  */
 4949: {
 4950:   int i, j, k, ks;
 4951:   int i1, j1, k1, k2;
 4952:   char modelsav[80];
 4953:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 4954: 
 4955:   /*removespace(model);*/
 4956:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 4957:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 4958:     j=nbocc(model,'+'); /**< j=Number of '+' */
 4959:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
 4960:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
 4961:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
 4962:                   /* including age products which are counted in cptcovage.
 4963: 		  /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
 4964:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 4965:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 4966:     strcpy(modelsav,model); 
 4967:     if (strstr(model,"AGE") !=0){
 4968:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
 4969:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
 4970:       return 1;
 4971:     }
 4972:     if (strstr(model,"v") !=0){
 4973:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 4974:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 4975:       return 1;
 4976:     }
 4977:     
 4978:     /*   Design
 4979:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 4980:      *  <          ncovcol=8                >
 4981:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 4982:      *   k=  1    2      3       4     5       6      7        8
 4983:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 4984:      *  covar[k,i], value of kth covariate if not including age for individual i:
 4985:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 4986:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 4987:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 4988:      *  Tage[++cptcovage]=k
 4989:      *       if products, new covar are created after ncovcol with k1
 4990:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 4991:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 4992:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 4993:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 4994:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 4995:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 4996:      *  <          ncovcol=8                >
 4997:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 4998:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 4999:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5000:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5001:      * p Tprod[1]@2={                         6, 5}
 5002:      *p Tvard[1][1]@4= {7, 8, 5, 6}
 5003:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5004:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5005:      *How to reorganize?
 5006:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5007:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5008:      *       {2,   1,     4,      8,    5,      6,     3,       7}
 5009:      * Struct []
 5010:      */
 5011: 
 5012:     /* This loop fills the array Tvar from the string 'model'.*/
 5013:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5014:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5015:     /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5016:     /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5017:     /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5018:     /* 	k=1 Tvar[1]=2 (from V2) */
 5019:     /* 	k=5 Tvar[5] */
 5020:     /* for (k=1; k<=cptcovn;k++) { */
 5021:     /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 5022:     /* 	} */
 5023:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 5024:     /*
 5025:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5026:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5027:         Tvar[k]=0;
 5028:     cptcovage=0;
 5029:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5030:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5031: 				     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5032:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5033:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5034:       /*scanf("%d",i);*/
 5035:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5036: 	cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5037: 	if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5038: 	  /* covar is not filled and then is empty */
 5039: 	  cptcovprod--;
 5040: 	  cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5041: 	  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
 5042: 	  cptcovage++; /* Sums the number of covariates which include age as a product */
 5043: 	  Tage[cptcovage]=k;  /* Tage[1] = 4 */
 5044: 	  /*printf("stre=%s ", stre);*/
 5045: 	} else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5046: 	  cptcovprod--;
 5047: 	  cutl(stre,strb,strc,'V');
 5048: 	  Tvar[k]=atoi(stre);
 5049: 	  cptcovage++;
 5050: 	  Tage[cptcovage]=k;
 5051: 	} else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5052: 	  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5053: 	  cptcovn++;
 5054: 	  cptcovprodnoage++;k1++;
 5055: 	  cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5056: 	  Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5057: 				  because this model-covariate is a construction we invent a new column
 5058: 				  ncovcol + k1
 5059: 				  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5060: 				  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5061: 	  cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5062: 	  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5063: 	  Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5064: 	  Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5065: 	  k2=k2+2;
 5066: 	  Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5067: 	  Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5068: 	  for (i=1; i<=lastobs;i++){
 5069: 	    /* Computes the new covariate which is a product of
 5070: 	       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5071: 	    covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5072: 	  }
 5073: 	} /* End age is not in the model */
 5074:       } /* End if model includes a product */
 5075:       else { /* no more sum */
 5076: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5077:        /*  scanf("%d",i);*/
 5078: 	cutl(strd,strc,strb,'V');
 5079: 	ks++; /**< Number of simple covariates */
 5080: 	cptcovn++;
 5081: 	Tvar[k]=atoi(strd);
 5082:       }
 5083:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5084:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5085: 	scanf("%d",i);*/
 5086:     } /* end of loop + */
 5087:   } /* end model */
 5088:   
 5089:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5090:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5091: 
 5092:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5093:   printf("cptcovprod=%d ", cptcovprod);
 5094:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5095: 
 5096:   scanf("%d ",i);*/
 5097: 
 5098: 
 5099:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5100:   endread:
 5101:     printf("Exiting decodemodel: ");
 5102:     return (1);
 5103: }
 5104: 
 5105: calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5106: {
 5107:   int i, m;
 5108: 
 5109:   for (i=1; i<=imx; i++) {
 5110:     for(m=2; (m<= maxwav); m++) {
 5111:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5112: 	anint[m][i]=9999;
 5113: 	s[m][i]=-1;
 5114:       }
 5115:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5116: 	*nberr++;
 5117: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 5118: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 5119: 	s[m][i]=-1;
 5120:       }
 5121:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5122: 	*nberr++;
 5123: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5124: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5125: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5126:       }
 5127:     }
 5128:   }
 5129: 
 5130:   for (i=1; i<=imx; i++)  {
 5131:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5132:     for(m=firstpass; (m<= lastpass); m++){
 5133:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5134: 	if (s[m][i] >= nlstate+1) {
 5135: 	  if(agedc[i]>0)
 5136: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 5137: 	      agev[m][i]=agedc[i];
 5138: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5139: 	    else {
 5140: 	      if ((int)andc[i]!=9999){
 5141: 		nbwarn++;
 5142: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5143: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5144: 		agev[m][i]=-1;
 5145: 	      }
 5146: 	    }
 5147: 	}
 5148: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5149: 				 years but with the precision of a month */
 5150: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5151: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5152: 	    agev[m][i]=1;
 5153: 	  else if(agev[m][i] < *agemin){ 
 5154: 	    *agemin=agev[m][i];
 5155: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5156: 	  }
 5157: 	  else if(agev[m][i] >*agemax){
 5158: 	    *agemax=agev[m][i];
 5159: 	    printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
 5160: 	  }
 5161: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5162: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5163: 	}
 5164: 	else { /* =9 */
 5165: 	  agev[m][i]=1;
 5166: 	  s[m][i]=-1;
 5167: 	}
 5168:       }
 5169:       else /*= 0 Unknown */
 5170: 	agev[m][i]=1;
 5171:     }
 5172:     
 5173:   }
 5174:   for (i=1; i<=imx; i++)  {
 5175:     for(m=firstpass; (m<=lastpass); m++){
 5176:       if (s[m][i] > (nlstate+ndeath)) {
 5177: 	*nberr++;
 5178: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5179: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5180: 	return 1;
 5181:       }
 5182:     }
 5183:   }
 5184: 
 5185:   /*for (i=1; i<=imx; i++){
 5186:   for (m=firstpass; (m<lastpass); m++){
 5187:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5188: }
 5189: 
 5190: }*/
 5191: 
 5192: 
 5193:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5194:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5195: 
 5196:   return (0);
 5197:   endread:
 5198:     printf("Exiting calandcheckages: ");
 5199:     return (1);
 5200: }
 5201: 
 5202: 
 5203: /***********************************************/
 5204: /**************** Main Program *****************/
 5205: /***********************************************/
 5206: 
 5207: int main(int argc, char *argv[])
 5208: {
 5209: #ifdef GSL
 5210:   const gsl_multimin_fminimizer_type *T;
 5211:   size_t iteri = 0, it;
 5212:   int rval = GSL_CONTINUE;
 5213:   int status = GSL_SUCCESS;
 5214:   double ssval;
 5215: #endif
 5216:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 5217:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 5218:   int linei, month, year,iout;
 5219:   int jj, ll, li, lj, lk, imk;
 5220:   int numlinepar=0; /* Current linenumber of parameter file */
 5221:   int itimes;
 5222:   int NDIM=2;
 5223:   int vpopbased=0;
 5224: 
 5225:   char ca[32], cb[32], cc[32];
 5226:   /*  FILE *fichtm; *//* Html File */
 5227:   /* FILE *ficgp;*/ /*Gnuplot File */
 5228:   struct stat info;
 5229:   double agedeb, agefin,hf;
 5230:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 5231: 
 5232:   double fret;
 5233:   double **xi,tmp,delta;
 5234: 
 5235:   double dum; /* Dummy variable */
 5236:   double ***p3mat;
 5237:   double ***mobaverage;
 5238:   int *indx;
 5239:   char line[MAXLINE], linepar[MAXLINE];
 5240:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 5241:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 5242:   char **bp, *tok, *val; /* pathtot */
 5243:   int firstobs=1, lastobs=10;
 5244:   int sdeb, sfin; /* Status at beginning and end */
 5245:   int c,  h , cpt,l;
 5246:   int ju,jl, mi;
 5247:   int i1,j1, jk,aa,bb, stepsize, ij;
 5248:   int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
 5249:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 5250:   int mobilav=0,popforecast=0;
 5251:   int hstepm, nhstepm;
 5252:   int agemortsup;
 5253:   float  sumlpop=0.;
 5254:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 5255:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 5256: 
 5257:   double bage, fage, age, agelim, agebase;
 5258:   double ftolpl=FTOL;
 5259:   double **prlim;
 5260:   double ***param; /* Matrix of parameters */
 5261:   double  *p;
 5262:   double **matcov; /* Matrix of covariance */
 5263:   double ***delti3; /* Scale */
 5264:   double *delti; /* Scale */
 5265:   double ***eij, ***vareij;
 5266:   double **varpl; /* Variances of prevalence limits by age */
 5267:   double *epj, vepp;
 5268:   double kk1, kk2;
 5269:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 5270:   double **ximort;
 5271:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 5272:   int *dcwave;
 5273: 
 5274:   char z[1]="c", occ;
 5275: 
 5276:   /*char  *strt;*/
 5277:   char strtend[80];
 5278: 
 5279:   long total_usecs;
 5280:  
 5281: /*   setlocale (LC_ALL, ""); */
 5282: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 5283: /*   textdomain (PACKAGE); */
 5284: /*   setlocale (LC_CTYPE, ""); */
 5285: /*   setlocale (LC_MESSAGES, ""); */
 5286: 
 5287:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 5288:   (void) gettimeofday(&start_time,&tzp);
 5289:   curr_time=start_time;
 5290:   tm = *localtime(&start_time.tv_sec);
 5291:   tmg = *gmtime(&start_time.tv_sec);
 5292:   strcpy(strstart,asctime(&tm));
 5293: 
 5294: /*  printf("Localtime (at start)=%s",strstart); */
 5295: /*  tp.tv_sec = tp.tv_sec +86400; */
 5296: /*  tm = *localtime(&start_time.tv_sec); */
 5297: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 5298: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 5299: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 5300: /*   tp.tv_sec = mktime(&tmg); */
 5301: /*   strt=asctime(&tmg); */
 5302: /*   printf("Time(after) =%s",strstart);  */
 5303: /*  (void) time (&time_value);
 5304: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 5305: *  tm = *localtime(&time_value);
 5306: *  strstart=asctime(&tm);
 5307: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 5308: */
 5309: 
 5310:   nberr=0; /* Number of errors and warnings */
 5311:   nbwarn=0;
 5312:   getcwd(pathcd, size);
 5313: 
 5314:   printf("\n%s\n%s",version,fullversion);
 5315:   if(argc <=1){
 5316:     printf("\nEnter the parameter file name: ");
 5317:     fgets(pathr,FILENAMELENGTH,stdin);
 5318:     i=strlen(pathr);
 5319:     if(pathr[i-1]=='\n')
 5320:       pathr[i-1]='\0';
 5321:    for (tok = pathr; tok != NULL; ){
 5322:       printf("Pathr |%s|\n",pathr);
 5323:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 5324:       printf("val= |%s| pathr=%s\n",val,pathr);
 5325:       strcpy (pathtot, val);
 5326:       if(pathr[0] == '\0') break; /* Dirty */
 5327:     }
 5328:   }
 5329:   else{
 5330:     strcpy(pathtot,argv[1]);
 5331:   }
 5332:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 5333:   /*cygwin_split_path(pathtot,path,optionfile);
 5334:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 5335:   /* cutv(path,optionfile,pathtot,'\\');*/
 5336: 
 5337:   /* Split argv[0], imach program to get pathimach */
 5338:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 5339:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5340:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5341:  /*   strcpy(pathimach,argv[0]); */
 5342:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 5343:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 5344:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 5345:   chdir(path); /* Can be a relative path */
 5346:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 5347:     printf("Current directory %s!\n",pathcd);
 5348:   strcpy(command,"mkdir ");
 5349:   strcat(command,optionfilefiname);
 5350:   if((outcmd=system(command)) != 0){
 5351:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 5352:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 5353:     /* fclose(ficlog); */
 5354: /*     exit(1); */
 5355:   }
 5356: /*   if((imk=mkdir(optionfilefiname))<0){ */
 5357: /*     perror("mkdir"); */
 5358: /*   } */
 5359: 
 5360:   /*-------- arguments in the command line --------*/
 5361: 
 5362:   /* Log file */
 5363:   strcat(filelog, optionfilefiname);
 5364:   strcat(filelog,".log");    /* */
 5365:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 5366:     printf("Problem with logfile %s\n",filelog);
 5367:     goto end;
 5368:   }
 5369:   fprintf(ficlog,"Log filename:%s\n",filelog);
 5370:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 5371:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 5372:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 5373:  path=%s \n\
 5374:  optionfile=%s\n\
 5375:  optionfilext=%s\n\
 5376:  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 5377: 
 5378:   printf("Local time (at start):%s",strstart);
 5379:   fprintf(ficlog,"Local time (at start): %s",strstart);
 5380:   fflush(ficlog);
 5381: /*   (void) gettimeofday(&curr_time,&tzp); */
 5382: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 5383: 
 5384:   /* */
 5385:   strcpy(fileres,"r");
 5386:   strcat(fileres, optionfilefiname);
 5387:   strcat(fileres,".txt");    /* Other files have txt extension */
 5388: 
 5389:   /*---------arguments file --------*/
 5390: 
 5391:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 5392:     printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
 5393:     fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
 5394:     fflush(ficlog);
 5395:     /* goto end; */
 5396:     exit(70); 
 5397:   }
 5398: 
 5399: 
 5400: 
 5401:   strcpy(filereso,"o");
 5402:   strcat(filereso,fileres);
 5403:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 5404:     printf("Problem with Output resultfile: %s\n", filereso);
 5405:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 5406:     fflush(ficlog);
 5407:     goto end;
 5408:   }
 5409: 
 5410:   /* Reads comments: lines beginning with '#' */
 5411:   numlinepar=0;
 5412:   while((c=getc(ficpar))=='#' && c!= EOF){
 5413:     ungetc(c,ficpar);
 5414:     fgets(line, MAXLINE, ficpar);
 5415:     numlinepar++;
 5416:     fputs(line,stdout);
 5417:     fputs(line,ficparo);
 5418:     fputs(line,ficlog);
 5419:   }
 5420:   ungetc(c,ficpar);
 5421: 
 5422:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 5423:   numlinepar++;
 5424:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 5425:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5426:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5427:   fflush(ficlog);
 5428:   while((c=getc(ficpar))=='#' && c!= EOF){
 5429:     ungetc(c,ficpar);
 5430:     fgets(line, MAXLINE, ficpar);
 5431:     numlinepar++;
 5432:     fputs(line, stdout);
 5433:     //puts(line);
 5434:     fputs(line,ficparo);
 5435:     fputs(line,ficlog);
 5436:   }
 5437:   ungetc(c,ficpar);
 5438: 
 5439:    
 5440:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 5441:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 5442:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 5443:      v1+v2*age+v2*v3 makes cptcovn = 3
 5444:   */
 5445:   if (strlen(model)>1) 
 5446:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
 5447:   else
 5448:     ncovmodel=2;
 5449:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 5450:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 5451:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 5452:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 5453:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5454:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5455:     fflush(stdout);
 5456:     fclose (ficlog);
 5457:     goto end;
 5458:   }
 5459:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5460:   delti=delti3[1][1];
 5461:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 5462:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 5463:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5464:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5465:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5466:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5467:     fclose (ficparo);
 5468:     fclose (ficlog);
 5469:     goto end;
 5470:     exit(0);
 5471:   }
 5472:   else if(mle==-3) {
 5473:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5474:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5475:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5476:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5477:     matcov=matrix(1,npar,1,npar);
 5478:   }
 5479:   else{
 5480:     /* Read guessed parameters */
 5481:     /* Reads comments: lines beginning with '#' */
 5482:     while((c=getc(ficpar))=='#' && c!= EOF){
 5483:       ungetc(c,ficpar);
 5484:       fgets(line, MAXLINE, ficpar);
 5485:       numlinepar++;
 5486:       fputs(line,stdout);
 5487:       fputs(line,ficparo);
 5488:       fputs(line,ficlog);
 5489:     }
 5490:     ungetc(c,ficpar);
 5491:     
 5492:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5493:     for(i=1; i <=nlstate; i++){
 5494:       j=0;
 5495:       for(jj=1; jj <=nlstate+ndeath; jj++){
 5496: 	if(jj==i) continue;
 5497: 	j++;
 5498: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5499: 	if ((i1 != i) && (j1 != j)){
 5500: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 5501: It might be a problem of design; if ncovcol and the model are correct\n \
 5502: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 5503: 	  exit(1);
 5504: 	}
 5505: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5506: 	if(mle==1)
 5507: 	  printf("%1d%1d",i,j);
 5508: 	fprintf(ficlog,"%1d%1d",i,j);
 5509: 	for(k=1; k<=ncovmodel;k++){
 5510: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 5511: 	  if(mle==1){
 5512: 	    printf(" %lf",param[i][j][k]);
 5513: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5514: 	  }
 5515: 	  else
 5516: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5517: 	  fprintf(ficparo," %lf",param[i][j][k]);
 5518: 	}
 5519: 	fscanf(ficpar,"\n");
 5520: 	numlinepar++;
 5521: 	if(mle==1)
 5522: 	  printf("\n");
 5523: 	fprintf(ficlog,"\n");
 5524: 	fprintf(ficparo,"\n");
 5525:       }
 5526:     }  
 5527:     fflush(ficlog);
 5528: 
 5529:     /* Reads scales values */
 5530:     p=param[1][1];
 5531:     
 5532:     /* Reads comments: lines beginning with '#' */
 5533:     while((c=getc(ficpar))=='#' && c!= EOF){
 5534:       ungetc(c,ficpar);
 5535:       fgets(line, MAXLINE, ficpar);
 5536:       numlinepar++;
 5537:       fputs(line,stdout);
 5538:       fputs(line,ficparo);
 5539:       fputs(line,ficlog);
 5540:     }
 5541:     ungetc(c,ficpar);
 5542: 
 5543:     for(i=1; i <=nlstate; i++){
 5544:       for(j=1; j <=nlstate+ndeath-1; j++){
 5545: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5546: 	if ((i1-i)*(j1-j)!=0){
 5547: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 5548: 	  exit(1);
 5549: 	}
 5550: 	printf("%1d%1d",i,j);
 5551: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5552: 	fprintf(ficlog,"%1d%1d",i1,j1);
 5553: 	for(k=1; k<=ncovmodel;k++){
 5554: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 5555: 	  printf(" %le",delti3[i][j][k]);
 5556: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 5557: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 5558: 	}
 5559: 	fscanf(ficpar,"\n");
 5560: 	numlinepar++;
 5561: 	printf("\n");
 5562: 	fprintf(ficparo,"\n");
 5563: 	fprintf(ficlog,"\n");
 5564:       }
 5565:     }
 5566:     fflush(ficlog);
 5567: 
 5568:     /* Reads covariance matrix */
 5569:     delti=delti3[1][1];
 5570: 
 5571: 
 5572:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 5573:   
 5574:     /* Reads comments: lines beginning with '#' */
 5575:     while((c=getc(ficpar))=='#' && c!= EOF){
 5576:       ungetc(c,ficpar);
 5577:       fgets(line, MAXLINE, ficpar);
 5578:       numlinepar++;
 5579:       fputs(line,stdout);
 5580:       fputs(line,ficparo);
 5581:       fputs(line,ficlog);
 5582:     }
 5583:     ungetc(c,ficpar);
 5584:   
 5585:     matcov=matrix(1,npar,1,npar);
 5586:     for(i=1; i <=npar; i++)
 5587:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 5588:       
 5589:     for(i=1; i <=npar; i++){
 5590:       fscanf(ficpar,"%s",str);
 5591:       if(mle==1)
 5592: 	printf("%s",str);
 5593:       fprintf(ficlog,"%s",str);
 5594:       fprintf(ficparo,"%s",str);
 5595:       for(j=1; j <=i; j++){
 5596: 	fscanf(ficpar," %le",&matcov[i][j]);
 5597: 	if(mle==1){
 5598: 	  printf(" %.5le",matcov[i][j]);
 5599: 	}
 5600: 	fprintf(ficlog," %.5le",matcov[i][j]);
 5601: 	fprintf(ficparo," %.5le",matcov[i][j]);
 5602:       }
 5603:       fscanf(ficpar,"\n");
 5604:       numlinepar++;
 5605:       if(mle==1)
 5606: 	printf("\n");
 5607:       fprintf(ficlog,"\n");
 5608:       fprintf(ficparo,"\n");
 5609:     }
 5610:     for(i=1; i <=npar; i++)
 5611:       for(j=i+1;j<=npar;j++)
 5612: 	matcov[i][j]=matcov[j][i];
 5613:     
 5614:     if(mle==1)
 5615:       printf("\n");
 5616:     fprintf(ficlog,"\n");
 5617:     
 5618:     fflush(ficlog);
 5619:     
 5620:     /*-------- Rewriting parameter file ----------*/
 5621:     strcpy(rfileres,"r");    /* "Rparameterfile */
 5622:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 5623:     strcat(rfileres,".");    /* */
 5624:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 5625:     if((ficres =fopen(rfileres,"w"))==NULL) {
 5626:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 5627:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 5628:     }
 5629:     fprintf(ficres,"#%s\n",version);
 5630:   }    /* End of mle != -3 */
 5631: 
 5632: 
 5633:   n= lastobs;
 5634:   num=lvector(1,n);
 5635:   moisnais=vector(1,n);
 5636:   annais=vector(1,n);
 5637:   moisdc=vector(1,n);
 5638:   andc=vector(1,n);
 5639:   agedc=vector(1,n);
 5640:   cod=ivector(1,n);
 5641:   weight=vector(1,n);
 5642:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 5643:   mint=matrix(1,maxwav,1,n);
 5644:   anint=matrix(1,maxwav,1,n);
 5645:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 5646:   tab=ivector(1,NCOVMAX);
 5647:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 5648: 
 5649:   /* Reads data from file datafile */
 5650:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 5651:     goto end;
 5652: 
 5653:   /* Calculation of the number of parameters from char model */
 5654:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 5655: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 5656: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 5657: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 5658: 	k=1 Tvar[1]=2 (from V2)
 5659:     */
 5660:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 5661:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 5662:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 5663:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 5664:   */
 5665:   /* For model-covariate k tells which data-covariate to use but
 5666:     because this model-covariate is a construction we invent a new column
 5667:     ncovcol + k1
 5668:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 5669:     Tvar[3=V1*V4]=4+1 etc */
 5670:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 5671:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 5672:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 5673:   */
 5674:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 5675:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 5676: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 5677: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 5678:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 5679: 			 4 covariates (3 plus signs)
 5680: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 5681: 		      */  
 5682: 
 5683:   if(decodemodel(model, lastobs) == 1)
 5684:     goto end;
 5685: 
 5686:   if((double)(lastobs-imx)/(double)imx > 1.10){
 5687:     nbwarn++;
 5688:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5689:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5690:   }
 5691:     /*  if(mle==1){*/
 5692:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 5693:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 5694:   }
 5695: 
 5696:     /*-calculation of age at interview from date of interview and age at death -*/
 5697:   agev=matrix(1,maxwav,1,imx);
 5698: 
 5699:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 5700:     goto end;
 5701: 
 5702: 
 5703:   agegomp=(int)agemin;
 5704:   free_vector(moisnais,1,n);
 5705:   free_vector(annais,1,n);
 5706:   /* free_matrix(mint,1,maxwav,1,n);
 5707:      free_matrix(anint,1,maxwav,1,n);*/
 5708:   free_vector(moisdc,1,n);
 5709:   free_vector(andc,1,n);
 5710:   /* */
 5711:   
 5712:   wav=ivector(1,imx);
 5713:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 5714:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 5715:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 5716:    
 5717:   /* Concatenates waves */
 5718:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 5719:   /* */
 5720:  
 5721:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 5722: 
 5723:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 5724:   ncodemax[1]=1;
 5725:   Ndum =ivector(-1,NCOVMAX);  
 5726:   if (ncovmodel > 2)
 5727:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 5728: 
 5729:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 5730:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
 5731:   h=0;
 5732: 
 5733: 
 5734:   /*if (cptcovn > 0) */
 5735:       
 5736:  
 5737:   m=pow(2,cptcoveff);
 5738:  
 5739:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 5740:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 5741:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
 5742: 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 5743: 	  h++;
 5744: 	  if (h>m) 
 5745: 	    h=1;
 5746: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 5747: 	   *     h     1     2     3     4
 5748: 	   *______________________________  
 5749: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 5750: 	   *     2     2     1     1     1
 5751: 	   *     3 i=2 1     2     1     1
 5752: 	   *     4     2     2     1     1
 5753: 	   *     5 i=3 1 i=2 1     2     1
 5754: 	   *     6     2     1     2     1
 5755: 	   *     7 i=4 1     2     2     1
 5756: 	   *     8     2     2     2     1
 5757: 	   *     9 i=5 1 i=3 1 i=2 1     1
 5758: 	   *    10     2     1     1     1
 5759: 	   *    11 i=6 1     2     1     1
 5760: 	   *    12     2     2     1     1
 5761: 	   *    13 i=7 1 i=4 1     2     1    
 5762: 	   *    14     2     1     2     1
 5763: 	   *    15 i=8 1     2     2     1
 5764: 	   *    16     2     2     2     1
 5765: 	   */
 5766: 	  codtab[h][k]=j;
 5767: 	  /*codtab[h][Tvar[k]]=j;*/
 5768: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 5769: 	} 
 5770:       }
 5771:     }
 5772:   } 
 5773:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 5774:      codtab[1][2]=1;codtab[2][2]=2; */
 5775:   /* for(i=1; i <=m ;i++){ 
 5776:      for(k=1; k <=cptcovn; k++){
 5777:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 5778:      }
 5779:      printf("\n");
 5780:      }
 5781:      scanf("%d",i);*/
 5782: 
 5783:  free_ivector(Ndum,-1,NCOVMAX);
 5784: 
 5785: 
 5786:     
 5787:   /*------------ gnuplot -------------*/
 5788:   strcpy(optionfilegnuplot,optionfilefiname);
 5789:   if(mle==-3)
 5790:     strcat(optionfilegnuplot,"-mort");
 5791:   strcat(optionfilegnuplot,".gp");
 5792: 
 5793:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 5794:     printf("Problem with file %s",optionfilegnuplot);
 5795:   }
 5796:   else{
 5797:     fprintf(ficgp,"\n# %s\n", version); 
 5798:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 5799:     //fprintf(ficgp,"set missing 'NaNq'\n");
 5800:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 5801:   }
 5802:   /*  fclose(ficgp);*/
 5803:   /*--------- index.htm --------*/
 5804: 
 5805:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 5806:   if(mle==-3)
 5807:     strcat(optionfilehtm,"-mort");
 5808:   strcat(optionfilehtm,".htm");
 5809:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 5810:     printf("Problem with %s \n",optionfilehtm);
 5811:     exit(0);
 5812:   }
 5813: 
 5814:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 5815:   strcat(optionfilehtmcov,"-cov.htm");
 5816:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 5817:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 5818:   }
 5819:   else{
 5820:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 5821: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 5822: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 5823: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 5824:   }
 5825: 
 5826:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 5827: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 5828: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 5829: \n\
 5830: <hr  size=\"2\" color=\"#EC5E5E\">\
 5831:  <ul><li><h4>Parameter files</h4>\n\
 5832:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 5833:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 5834:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 5835:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 5836:  - Date and time at start: %s</ul>\n",\
 5837: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 5838: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 5839: 	  fileres,fileres,\
 5840: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 5841:   fflush(fichtm);
 5842: 
 5843:   strcpy(pathr,path);
 5844:   strcat(pathr,optionfilefiname);
 5845:   chdir(optionfilefiname); /* Move to directory named optionfile */
 5846:   
 5847:   /* Calculates basic frequencies. Computes observed prevalence at single age
 5848:      and prints on file fileres'p'. */
 5849:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 5850: 
 5851:   fprintf(fichtm,"\n");
 5852:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 5853: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 5854: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 5855: 	  imx,agemin,agemax,jmin,jmax,jmean);
 5856:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5857:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5858:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5859:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5860:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 5861:     
 5862:    
 5863:   /* For Powell, parameters are in a vector p[] starting at p[1]
 5864:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 5865:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 5866: 
 5867:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 5868: 
 5869:   if (mle==-3){
 5870:     ximort=matrix(1,NDIM,1,NDIM); 
 5871: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 5872:     cens=ivector(1,n);
 5873:     ageexmed=vector(1,n);
 5874:     agecens=vector(1,n);
 5875:     dcwave=ivector(1,n);
 5876:  
 5877:     for (i=1; i<=imx; i++){
 5878:       dcwave[i]=-1;
 5879:       for (m=firstpass; m<=lastpass; m++)
 5880: 	if (s[m][i]>nlstate) {
 5881: 	  dcwave[i]=m;
 5882: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 5883: 	  break;
 5884: 	}
 5885:     }
 5886: 
 5887:     for (i=1; i<=imx; i++) {
 5888:       if (wav[i]>0){
 5889: 	ageexmed[i]=agev[mw[1][i]][i];
 5890: 	j=wav[i];
 5891: 	agecens[i]=1.; 
 5892: 
 5893: 	if (ageexmed[i]> 1 && wav[i] > 0){
 5894: 	  agecens[i]=agev[mw[j][i]][i];
 5895: 	  cens[i]= 1;
 5896: 	}else if (ageexmed[i]< 1) 
 5897: 	  cens[i]= -1;
 5898: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 5899: 	  cens[i]=0 ;
 5900:       }
 5901:       else cens[i]=-1;
 5902:     }
 5903:     
 5904:     for (i=1;i<=NDIM;i++) {
 5905:       for (j=1;j<=NDIM;j++)
 5906: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 5907:     }
 5908:     
 5909:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 5910:     /*printf("%lf %lf", p[1], p[2]);*/
 5911:     
 5912:     
 5913: #ifdef GSL
 5914:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 5915: #elsedef
 5916:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 5917: #endif
 5918:     strcpy(filerespow,"pow-mort"); 
 5919:     strcat(filerespow,fileres);
 5920:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 5921:       printf("Problem with resultfile: %s\n", filerespow);
 5922:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 5923:     }
 5924: #ifdef GSL
 5925:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 5926: #elsedef
 5927:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 5928: #endif
 5929:     /*  for (i=1;i<=nlstate;i++)
 5930: 	for(j=1;j<=nlstate+ndeath;j++)
 5931: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 5932:     */
 5933:     fprintf(ficrespow,"\n");
 5934: #ifdef GSL
 5935:     /* gsl starts here */ 
 5936:     T = gsl_multimin_fminimizer_nmsimplex;
 5937:     gsl_multimin_fminimizer *sfm = NULL;
 5938:     gsl_vector *ss, *x;
 5939:     gsl_multimin_function minex_func;
 5940: 
 5941:     /* Initial vertex size vector */
 5942:     ss = gsl_vector_alloc (NDIM);
 5943:     
 5944:     if (ss == NULL){
 5945:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 5946:     }
 5947:     /* Set all step sizes to 1 */
 5948:     gsl_vector_set_all (ss, 0.001);
 5949: 
 5950:     /* Starting point */
 5951:     
 5952:     x = gsl_vector_alloc (NDIM);
 5953:     
 5954:     if (x == NULL){
 5955:       gsl_vector_free(ss);
 5956:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 5957:     }
 5958:   
 5959:     /* Initialize method and iterate */
 5960:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 5961: /*     gsl_vector_set(x, 0, 0.0268); */
 5962: /*     gsl_vector_set(x, 1, 0.083); */
 5963:     gsl_vector_set(x, 0, p[1]);
 5964:     gsl_vector_set(x, 1, p[2]);
 5965: 
 5966:     minex_func.f = &gompertz_f;
 5967:     minex_func.n = NDIM;
 5968:     minex_func.params = (void *)&p; /* ??? */
 5969:     
 5970:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 5971:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 5972:     
 5973:     printf("Iterations beginning .....\n\n");
 5974:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 5975: 
 5976:     iteri=0;
 5977:     while (rval == GSL_CONTINUE){
 5978:       iteri++;
 5979:       status = gsl_multimin_fminimizer_iterate(sfm);
 5980:       
 5981:       if (status) printf("error: %s\n", gsl_strerror (status));
 5982:       fflush(0);
 5983:       
 5984:       if (status) 
 5985:         break;
 5986:       
 5987:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 5988:       ssval = gsl_multimin_fminimizer_size (sfm);
 5989:       
 5990:       if (rval == GSL_SUCCESS)
 5991:         printf ("converged to a local maximum at\n");
 5992:       
 5993:       printf("%5d ", iteri);
 5994:       for (it = 0; it < NDIM; it++){
 5995: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 5996:       }
 5997:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 5998:     }
 5999:     
 6000:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 6001:     
 6002:     gsl_vector_free(x); /* initial values */
 6003:     gsl_vector_free(ss); /* inital step size */
 6004:     for (it=0; it<NDIM; it++){
 6005:       p[it+1]=gsl_vector_get(sfm->x,it);
 6006:       fprintf(ficrespow," %.12lf", p[it]);
 6007:     }
 6008:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 6009: #endif
 6010: #ifdef POWELL
 6011:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 6012: #endif  
 6013:     fclose(ficrespow);
 6014:     
 6015:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 6016: 
 6017:     for(i=1; i <=NDIM; i++)
 6018:       for(j=i+1;j<=NDIM;j++)
 6019: 	matcov[i][j]=matcov[j][i];
 6020:     
 6021:     printf("\nCovariance matrix\n ");
 6022:     for(i=1; i <=NDIM; i++) {
 6023:       for(j=1;j<=NDIM;j++){ 
 6024: 	printf("%f ",matcov[i][j]);
 6025:       }
 6026:       printf("\n ");
 6027:     }
 6028:     
 6029:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 6030:     for (i=1;i<=NDIM;i++) 
 6031:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 6032: 
 6033:     lsurv=vector(1,AGESUP);
 6034:     lpop=vector(1,AGESUP);
 6035:     tpop=vector(1,AGESUP);
 6036:     lsurv[agegomp]=100000;
 6037:     
 6038:     for (k=agegomp;k<=AGESUP;k++) {
 6039:       agemortsup=k;
 6040:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 6041:     }
 6042:     
 6043:     for (k=agegomp;k<agemortsup;k++)
 6044:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 6045:     
 6046:     for (k=agegomp;k<agemortsup;k++){
 6047:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 6048:       sumlpop=sumlpop+lpop[k];
 6049:     }
 6050:     
 6051:     tpop[agegomp]=sumlpop;
 6052:     for (k=agegomp;k<(agemortsup-3);k++){
 6053:       /*  tpop[k+1]=2;*/
 6054:       tpop[k+1]=tpop[k]-lpop[k];
 6055:     }
 6056:     
 6057:     
 6058:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 6059:     for (k=agegomp;k<(agemortsup-2);k++) 
 6060:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 6061:     
 6062:     
 6063:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6064:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6065:     
 6066:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 6067: 		     stepm, weightopt,\
 6068: 		     model,imx,p,matcov,agemortsup);
 6069:     
 6070:     free_vector(lsurv,1,AGESUP);
 6071:     free_vector(lpop,1,AGESUP);
 6072:     free_vector(tpop,1,AGESUP);
 6073: #ifdef GSL
 6074:     free_ivector(cens,1,n);
 6075:     free_vector(agecens,1,n);
 6076:     free_ivector(dcwave,1,n);
 6077:     free_matrix(ximort,1,NDIM,1,NDIM);
 6078: #endif
 6079:   } /* Endof if mle==-3 */
 6080:   
 6081:   else{ /* For mle >=1 */
 6082:     globpr=0;/* debug */
 6083:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6084:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6085:     for (k=1; k<=npar;k++)
 6086:       printf(" %d %8.5f",k,p[k]);
 6087:     printf("\n");
 6088:     globpr=1; /* to print the contributions */
 6089:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6090:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6091:     for (k=1; k<=npar;k++)
 6092:       printf(" %d %8.5f",k,p[k]);
 6093:     printf("\n");
 6094:     if(mle>=1){ /* Could be 1 or 2 */
 6095:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 6096:     }
 6097:     
 6098:     /*--------- results files --------------*/
 6099:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 6100:     
 6101:     
 6102:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6103:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6104:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6105:     for(i=1,jk=1; i <=nlstate; i++){
 6106:       for(k=1; k <=(nlstate+ndeath); k++){
 6107: 	if (k != i) {
 6108: 	  printf("%d%d ",i,k);
 6109: 	  fprintf(ficlog,"%d%d ",i,k);
 6110: 	  fprintf(ficres,"%1d%1d ",i,k);
 6111: 	  for(j=1; j <=ncovmodel; j++){
 6112: 	    printf("%lf ",p[jk]);
 6113: 	    fprintf(ficlog,"%lf ",p[jk]);
 6114: 	    fprintf(ficres,"%lf ",p[jk]);
 6115: 	    jk++; 
 6116: 	  }
 6117: 	  printf("\n");
 6118: 	  fprintf(ficlog,"\n");
 6119: 	  fprintf(ficres,"\n");
 6120: 	}
 6121:       }
 6122:     }
 6123:     if(mle!=0){
 6124:       /* Computing hessian and covariance matrix */
 6125:       ftolhess=ftol; /* Usually correct */
 6126:       hesscov(matcov, p, npar, delti, ftolhess, func);
 6127:     }
 6128:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 6129:     printf("# Scales (for hessian or gradient estimation)\n");
 6130:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 6131:     for(i=1,jk=1; i <=nlstate; i++){
 6132:       for(j=1; j <=nlstate+ndeath; j++){
 6133: 	if (j!=i) {
 6134: 	  fprintf(ficres,"%1d%1d",i,j);
 6135: 	  printf("%1d%1d",i,j);
 6136: 	  fprintf(ficlog,"%1d%1d",i,j);
 6137: 	  for(k=1; k<=ncovmodel;k++){
 6138: 	    printf(" %.5e",delti[jk]);
 6139: 	    fprintf(ficlog," %.5e",delti[jk]);
 6140: 	    fprintf(ficres," %.5e",delti[jk]);
 6141: 	    jk++;
 6142: 	  }
 6143: 	  printf("\n");
 6144: 	  fprintf(ficlog,"\n");
 6145: 	  fprintf(ficres,"\n");
 6146: 	}
 6147:       }
 6148:     }
 6149:     
 6150:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6151:     if(mle>=1)
 6152:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6153:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6154:     /* # 121 Var(a12)\n\ */
 6155:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 6156:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 6157:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 6158:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 6159:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 6160:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 6161:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 6162:     
 6163:     
 6164:     /* Just to have a covariance matrix which will be more understandable
 6165:        even is we still don't want to manage dictionary of variables
 6166:     */
 6167:     for(itimes=1;itimes<=2;itimes++){
 6168:       jj=0;
 6169:       for(i=1; i <=nlstate; i++){
 6170: 	for(j=1; j <=nlstate+ndeath; j++){
 6171: 	  if(j==i) continue;
 6172: 	  for(k=1; k<=ncovmodel;k++){
 6173: 	    jj++;
 6174: 	    ca[0]= k+'a'-1;ca[1]='\0';
 6175: 	    if(itimes==1){
 6176: 	      if(mle>=1)
 6177: 		printf("#%1d%1d%d",i,j,k);
 6178: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 6179: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 6180: 	    }else{
 6181: 	      if(mle>=1)
 6182: 		printf("%1d%1d%d",i,j,k);
 6183: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 6184: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 6185: 	    }
 6186: 	    ll=0;
 6187: 	    for(li=1;li <=nlstate; li++){
 6188: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 6189: 		if(lj==li) continue;
 6190: 		for(lk=1;lk<=ncovmodel;lk++){
 6191: 		  ll++;
 6192: 		  if(ll<=jj){
 6193: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 6194: 		    if(ll<jj){
 6195: 		      if(itimes==1){
 6196: 			if(mle>=1)
 6197: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6198: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6199: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6200: 		      }else{
 6201: 			if(mle>=1)
 6202: 			  printf(" %.5e",matcov[jj][ll]); 
 6203: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6204: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6205: 		      }
 6206: 		    }else{
 6207: 		      if(itimes==1){
 6208: 			if(mle>=1)
 6209: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 6210: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 6211: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 6212: 		      }else{
 6213: 			if(mle>=1)
 6214: 			  printf(" %.5e",matcov[jj][ll]); 
 6215: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6216: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6217: 		      }
 6218: 		    }
 6219: 		  }
 6220: 		} /* end lk */
 6221: 	      } /* end lj */
 6222: 	    } /* end li */
 6223: 	    if(mle>=1)
 6224: 	      printf("\n");
 6225: 	    fprintf(ficlog,"\n");
 6226: 	    fprintf(ficres,"\n");
 6227: 	    numlinepar++;
 6228: 	  } /* end k*/
 6229: 	} /*end j */
 6230:       } /* end i */
 6231:     } /* end itimes */
 6232:     
 6233:     fflush(ficlog);
 6234:     fflush(ficres);
 6235:     
 6236:     while((c=getc(ficpar))=='#' && c!= EOF){
 6237:       ungetc(c,ficpar);
 6238:       fgets(line, MAXLINE, ficpar);
 6239:       fputs(line,stdout);
 6240:       fputs(line,ficparo);
 6241:     }
 6242:     ungetc(c,ficpar);
 6243:     
 6244:     estepm=0;
 6245:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 6246:     if (estepm==0 || estepm < stepm) estepm=stepm;
 6247:     if (fage <= 2) {
 6248:       bage = ageminpar;
 6249:       fage = agemaxpar;
 6250:     }
 6251:     
 6252:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 6253:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6254:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6255:     
 6256:     while((c=getc(ficpar))=='#' && c!= EOF){
 6257:       ungetc(c,ficpar);
 6258:       fgets(line, MAXLINE, ficpar);
 6259:       fputs(line,stdout);
 6260:       fputs(line,ficparo);
 6261:     }
 6262:     ungetc(c,ficpar);
 6263:     
 6264:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 6265:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6266:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6267:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6268:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6269:     
 6270:     while((c=getc(ficpar))=='#' && c!= EOF){
 6271:       ungetc(c,ficpar);
 6272:       fgets(line, MAXLINE, ficpar);
 6273:       fputs(line,stdout);
 6274:       fputs(line,ficparo);
 6275:     }
 6276:     ungetc(c,ficpar);
 6277:     
 6278:     
 6279:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 6280:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 6281:     
 6282:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 6283:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 6284:     fprintf(ficres,"pop_based=%d\n",popbased);   
 6285:     
 6286:     while((c=getc(ficpar))=='#' && c!= EOF){
 6287:       ungetc(c,ficpar);
 6288:       fgets(line, MAXLINE, ficpar);
 6289:       fputs(line,stdout);
 6290:       fputs(line,ficparo);
 6291:     }
 6292:     ungetc(c,ficpar);
 6293:     
 6294:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 6295:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6296:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6297:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6298:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6299:     /* day and month of proj2 are not used but only year anproj2.*/
 6300:     
 6301:     
 6302:     
 6303:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 6304:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 6305:     
 6306:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6307:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6308:     
 6309:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 6310: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 6311: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 6312:       
 6313:    /*------------ free_vector  -------------*/
 6314:    /*  chdir(path); */
 6315:  
 6316:     free_ivector(wav,1,imx);
 6317:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 6318:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 6319:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 6320:     free_lvector(num,1,n);
 6321:     free_vector(agedc,1,n);
 6322:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 6323:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 6324:     fclose(ficparo);
 6325:     fclose(ficres);
 6326: 
 6327: 
 6328:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 6329: #include "prevlim.h"  /* Use ficrespl, ficlog */
 6330:     fclose(ficrespl);
 6331: 
 6332: #ifdef FREEEXIT2
 6333: #include "freeexit2.h"
 6334: #endif
 6335: 
 6336:     /*------------- h Pij x at various ages ------------*/
 6337: #include "hpijx.h"
 6338:     fclose(ficrespij);
 6339: 
 6340:   /*-------------- Variance of one-step probabilities---*/
 6341:     k=1;
 6342:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 6343: 
 6344: 
 6345:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6346:     for(i=1;i<=AGESUP;i++)
 6347:       for(j=1;j<=NCOVMAX;j++)
 6348: 	for(k=1;k<=NCOVMAX;k++)
 6349: 	  probs[i][j][k]=0.;
 6350: 
 6351:     /*---------- Forecasting ------------------*/
 6352:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 6353:     if(prevfcast==1){
 6354:       /*    if(stepm ==1){*/
 6355:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 6356:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 6357:       /*      }  */
 6358:       /*      else{ */
 6359:       /*        erreur=108; */
 6360:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6361:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6362:       /*      } */
 6363:     }
 6364:   
 6365: 
 6366:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 6367: 
 6368:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 6369:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 6370: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 6371:     */
 6372: 
 6373:     if (mobilav!=0) {
 6374:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6375:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 6376: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 6377: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 6378:       }
 6379:     }
 6380: 
 6381: 
 6382:     /*---------- Health expectancies, no variances ------------*/
 6383: 
 6384:     strcpy(filerese,"e");
 6385:     strcat(filerese,fileres);
 6386:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 6387:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6388:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6389:     }
 6390:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 6391:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 6392:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6393:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6394:           
 6395:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6396: 	fprintf(ficreseij,"\n#****** ");
 6397: 	for(j=1;j<=cptcoveff;j++) {
 6398: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6399: 	}
 6400: 	fprintf(ficreseij,"******\n");
 6401: 
 6402: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6403: 	oldm=oldms;savm=savms;
 6404: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 6405:       
 6406: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6407:       /*}*/
 6408:     }
 6409:     fclose(ficreseij);
 6410: 
 6411: 
 6412:     /*---------- Health expectancies and variances ------------*/
 6413: 
 6414: 
 6415:     strcpy(filerest,"t");
 6416:     strcat(filerest,fileres);
 6417:     if((ficrest=fopen(filerest,"w"))==NULL) {
 6418:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 6419:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 6420:     }
 6421:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6422:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6423: 
 6424: 
 6425:     strcpy(fileresstde,"stde");
 6426:     strcat(fileresstde,fileres);
 6427:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 6428:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6429:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6430:     }
 6431:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6432:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6433: 
 6434:     strcpy(filerescve,"cve");
 6435:     strcat(filerescve,fileres);
 6436:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 6437:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6438:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6439:     }
 6440:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6441:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6442: 
 6443:     strcpy(fileresv,"v");
 6444:     strcat(fileresv,fileres);
 6445:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 6446:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 6447:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 6448:     }
 6449:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6450:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6451: 
 6452:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6453:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6454:           
 6455:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6456:     	fprintf(ficrest,"\n#****** ");
 6457: 	for(j=1;j<=cptcoveff;j++) 
 6458: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6459: 	fprintf(ficrest,"******\n");
 6460: 
 6461: 	fprintf(ficresstdeij,"\n#****** ");
 6462: 	fprintf(ficrescveij,"\n#****** ");
 6463: 	for(j=1;j<=cptcoveff;j++) {
 6464: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6465: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6466: 	}
 6467: 	fprintf(ficresstdeij,"******\n");
 6468: 	fprintf(ficrescveij,"******\n");
 6469: 
 6470: 	fprintf(ficresvij,"\n#****** ");
 6471: 	for(j=1;j<=cptcoveff;j++) 
 6472: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6473: 	fprintf(ficresvij,"******\n");
 6474: 
 6475: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6476: 	oldm=oldms;savm=savms;
 6477: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 6478: 	/*
 6479: 	 */
 6480: 	/* goto endfree; */
 6481:  
 6482: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6483: 	pstamp(ficrest);
 6484: 
 6485: 
 6486: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 6487: 	  oldm=oldms;savm=savms; /* Segmentation fault */
 6488: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
 6489: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 6490: 	  if(vpopbased==1)
 6491: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 6492: 	  else
 6493: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 6494: 	  fprintf(ficrest,"# Age e.. (std) ");
 6495: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 6496: 	  fprintf(ficrest,"\n");
 6497: 
 6498: 	  epj=vector(1,nlstate+1);
 6499: 	  for(age=bage; age <=fage ;age++){
 6500: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 6501: 	    if (vpopbased==1) {
 6502: 	      if(mobilav ==0){
 6503: 		for(i=1; i<=nlstate;i++)
 6504: 		  prlim[i][i]=probs[(int)age][i][k];
 6505: 	      }else{ /* mobilav */ 
 6506: 		for(i=1; i<=nlstate;i++)
 6507: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 6508: 	      }
 6509: 	    }
 6510: 	
 6511: 	    fprintf(ficrest," %4.0f",age);
 6512: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 6513: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 6514: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 6515: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 6516: 	      }
 6517: 	      epj[nlstate+1] +=epj[j];
 6518: 	    }
 6519: 
 6520: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 6521: 	      for(j=1;j <=nlstate;j++)
 6522: 		vepp += vareij[i][j][(int)age];
 6523: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 6524: 	    for(j=1;j <=nlstate;j++){
 6525: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 6526: 	    }
 6527: 	    fprintf(ficrest,"\n");
 6528: 	  }
 6529: 	}
 6530: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6531: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6532: 	free_vector(epj,1,nlstate+1);
 6533:       /*}*/
 6534:     }
 6535:     free_vector(weight,1,n);
 6536:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 6537:     free_imatrix(s,1,maxwav+1,1,n);
 6538:     free_matrix(anint,1,maxwav,1,n); 
 6539:     free_matrix(mint,1,maxwav,1,n);
 6540:     free_ivector(cod,1,n);
 6541:     free_ivector(tab,1,NCOVMAX);
 6542:     fclose(ficresstdeij);
 6543:     fclose(ficrescveij);
 6544:     fclose(ficresvij);
 6545:     fclose(ficrest);
 6546:     fclose(ficpar);
 6547:   
 6548:     /*------- Variance of period (stable) prevalence------*/   
 6549: 
 6550:     strcpy(fileresvpl,"vpl");
 6551:     strcat(fileresvpl,fileres);
 6552:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 6553:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 6554:       exit(0);
 6555:     }
 6556:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 6557: 
 6558:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6559:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6560:           
 6561:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6562:     	fprintf(ficresvpl,"\n#****** ");
 6563: 	for(j=1;j<=cptcoveff;j++) 
 6564: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6565: 	fprintf(ficresvpl,"******\n");
 6566:       
 6567: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 6568: 	oldm=oldms;savm=savms;
 6569: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 6570: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 6571:       /*}*/
 6572:     }
 6573: 
 6574:     fclose(ficresvpl);
 6575: 
 6576:     /*---------- End : free ----------------*/
 6577:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6578:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6579:   }  /* mle==-3 arrives here for freeing */
 6580:  endfree:
 6581:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 6582:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 6583:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6584:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6585:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6586:     free_matrix(covar,0,NCOVMAX,1,n);
 6587:     free_matrix(matcov,1,npar,1,npar);
 6588:     /*free_vector(delti,1,npar);*/
 6589:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6590:     free_matrix(agev,1,maxwav,1,imx);
 6591:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 6592: 
 6593:     free_ivector(ncodemax,1,NCOVMAX);
 6594:     free_ivector(Tvar,1,NCOVMAX);
 6595:     free_ivector(Tprod,1,NCOVMAX);
 6596:     free_ivector(Tvaraff,1,NCOVMAX);
 6597:     free_ivector(Tage,1,NCOVMAX);
 6598: 
 6599:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 6600:     free_imatrix(codtab,1,100,1,10);
 6601:   fflush(fichtm);
 6602:   fflush(ficgp);
 6603:   
 6604: 
 6605:   if((nberr >0) || (nbwarn>0)){
 6606:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 6607:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 6608:   }else{
 6609:     printf("End of Imach\n");
 6610:     fprintf(ficlog,"End of Imach\n");
 6611:   }
 6612:   printf("See log file on %s\n",filelog);
 6613:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 6614:   (void) gettimeofday(&end_time,&tzp);
 6615:   tm = *localtime(&end_time.tv_sec);
 6616:   tmg = *gmtime(&end_time.tv_sec);
 6617:   strcpy(strtend,asctime(&tm));
 6618:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 6619:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 6620:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 6621: 
 6622:   printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
 6623:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 6624:   fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
 6625:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 6626: /*   if(fileappend(fichtm,optionfilehtm)){ */
 6627:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6628:   fclose(fichtm);
 6629:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6630:   fclose(fichtmcov);
 6631:   fclose(ficgp);
 6632:   fclose(ficlog);
 6633:   /*------ End -----------*/
 6634: 
 6635: 
 6636:    printf("Before Current directory %s!\n",pathcd);
 6637:    if(chdir(pathcd) != 0)
 6638:     printf("Can't move to directory %s!\n",path);
 6639:   if(getcwd(pathcd,MAXLINE) > 0)
 6640:     printf("Current directory %s!\n",pathcd);
 6641:   /*strcat(plotcmd,CHARSEPARATOR);*/
 6642:   sprintf(plotcmd,"gnuplot");
 6643: #ifndef UNIX
 6644:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 6645: #endif
 6646:   if(!stat(plotcmd,&info)){
 6647:     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 6648:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 6649:       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 6650:     }else
 6651:       strcpy(pplotcmd,plotcmd);
 6652: #ifdef UNIX
 6653:     strcpy(plotcmd,GNUPLOTPROGRAM);
 6654:     if(!stat(plotcmd,&info)){
 6655:       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 6656:     }else
 6657:       strcpy(pplotcmd,plotcmd);
 6658: #endif
 6659:   }else
 6660:     strcpy(pplotcmd,plotcmd);
 6661:   
 6662:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 6663:   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
 6664: 
 6665:   if((outcmd=system(plotcmd)) != 0){
 6666:     printf("\n Problem with gnuplot\n");
 6667:   }
 6668:   printf(" Wait...");
 6669:   while (z[0] != 'q') {
 6670:     /* chdir(path); */
 6671:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
 6672:     scanf("%s",z);
 6673: /*     if (z[0] == 'c') system("./imach"); */
 6674:     if (z[0] == 'e') {
 6675:       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
 6676:       system(optionfilehtm);
 6677:     }
 6678:     else if (z[0] == 'g') system(plotcmd);
 6679:     else if (z[0] == 'q') exit(0);
 6680:   }
 6681:   end:
 6682:   while (z[0] != 'q') {
 6683:     printf("\nType  q for exiting: ");
 6684:     scanf("%s",z);
 6685:   }
 6686: }
 6687: 
 6688: 
 6689: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>