File:  [Local Repository] / imach / src / imach.c
Revision 1.161: download - view: text, annotated - select for diffs
Mon Sep 15 20:41:41 2014 UTC (9 years, 9 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
Summary: Problem with macro SQR on Intel compiler

    1: /* $Id: imach.c,v 1.161 2014/09/15 20:41:41 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.161  2014/09/15 20:41:41  brouard
    5:   Summary: Problem with macro SQR on Intel compiler
    6: 
    7:   Revision 1.160  2014/09/02 09:24:05  brouard
    8:   *** empty log message ***
    9: 
   10:   Revision 1.159  2014/09/01 10:34:10  brouard
   11:   Summary: WIN32
   12:   Author: Brouard
   13: 
   14:   Revision 1.158  2014/08/27 17:11:51  brouard
   15:   *** empty log message ***
   16: 
   17:   Revision 1.157  2014/08/27 16:26:55  brouard
   18:   Summary: Preparing windows Visual studio version
   19:   Author: Brouard
   20: 
   21:   In order to compile on Visual studio, time.h is now correct and time_t
   22:   and tm struct should be used. difftime should be used but sometimes I
   23:   just make the differences in raw time format (time(&now).
   24:   Trying to suppress #ifdef LINUX
   25:   Add xdg-open for __linux in order to open default browser.
   26: 
   27:   Revision 1.156  2014/08/25 20:10:10  brouard
   28:   *** empty log message ***
   29: 
   30:   Revision 1.155  2014/08/25 18:32:34  brouard
   31:   Summary: New compile, minor changes
   32:   Author: Brouard
   33: 
   34:   Revision 1.154  2014/06/20 17:32:08  brouard
   35:   Summary: Outputs now all graphs of convergence to period prevalence
   36: 
   37:   Revision 1.153  2014/06/20 16:45:46  brouard
   38:   Summary: If 3 live state, convergence to period prevalence on same graph
   39:   Author: Brouard
   40: 
   41:   Revision 1.152  2014/06/18 17:54:09  brouard
   42:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
   43: 
   44:   Revision 1.151  2014/06/18 16:43:30  brouard
   45:   *** empty log message ***
   46: 
   47:   Revision 1.150  2014/06/18 16:42:35  brouard
   48:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   49:   Author: brouard
   50: 
   51:   Revision 1.149  2014/06/18 15:51:14  brouard
   52:   Summary: Some fixes in parameter files errors
   53:   Author: Nicolas Brouard
   54: 
   55:   Revision 1.148  2014/06/17 17:38:48  brouard
   56:   Summary: Nothing new
   57:   Author: Brouard
   58: 
   59:   Just a new packaging for OS/X version 0.98nS
   60: 
   61:   Revision 1.147  2014/06/16 10:33:11  brouard
   62:   *** empty log message ***
   63: 
   64:   Revision 1.146  2014/06/16 10:20:28  brouard
   65:   Summary: Merge
   66:   Author: Brouard
   67: 
   68:   Merge, before building revised version.
   69: 
   70:   Revision 1.145  2014/06/10 21:23:15  brouard
   71:   Summary: Debugging with valgrind
   72:   Author: Nicolas Brouard
   73: 
   74:   Lot of changes in order to output the results with some covariates
   75:   After the Edimburgh REVES conference 2014, it seems mandatory to
   76:   improve the code.
   77:   No more memory valgrind error but a lot has to be done in order to
   78:   continue the work of splitting the code into subroutines.
   79:   Also, decodemodel has been improved. Tricode is still not
   80:   optimal. nbcode should be improved. Documentation has been added in
   81:   the source code.
   82: 
   83:   Revision 1.143  2014/01/26 09:45:38  brouard
   84:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   85: 
   86:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   87:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   88: 
   89:   Revision 1.142  2014/01/26 03:57:36  brouard
   90:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   91: 
   92:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   93: 
   94:   Revision 1.141  2014/01/26 02:42:01  brouard
   95:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   96: 
   97:   Revision 1.140  2011/09/02 10:37:54  brouard
   98:   Summary: times.h is ok with mingw32 now.
   99: 
  100:   Revision 1.139  2010/06/14 07:50:17  brouard
  101:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
  102:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  103: 
  104:   Revision 1.138  2010/04/30 18:19:40  brouard
  105:   *** empty log message ***
  106: 
  107:   Revision 1.137  2010/04/29 18:11:38  brouard
  108:   (Module): Checking covariates for more complex models
  109:   than V1+V2. A lot of change to be done. Unstable.
  110: 
  111:   Revision 1.136  2010/04/26 20:30:53  brouard
  112:   (Module): merging some libgsl code. Fixing computation
  113:   of likelione (using inter/intrapolation if mle = 0) in order to
  114:   get same likelihood as if mle=1.
  115:   Some cleaning of code and comments added.
  116: 
  117:   Revision 1.135  2009/10/29 15:33:14  brouard
  118:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  119: 
  120:   Revision 1.134  2009/10/29 13:18:53  brouard
  121:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  122: 
  123:   Revision 1.133  2009/07/06 10:21:25  brouard
  124:   just nforces
  125: 
  126:   Revision 1.132  2009/07/06 08:22:05  brouard
  127:   Many tings
  128: 
  129:   Revision 1.131  2009/06/20 16:22:47  brouard
  130:   Some dimensions resccaled
  131: 
  132:   Revision 1.130  2009/05/26 06:44:34  brouard
  133:   (Module): Max Covariate is now set to 20 instead of 8. A
  134:   lot of cleaning with variables initialized to 0. Trying to make
  135:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
  136: 
  137:   Revision 1.129  2007/08/31 13:49:27  lievre
  138:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
  139: 
  140:   Revision 1.128  2006/06/30 13:02:05  brouard
  141:   (Module): Clarifications on computing e.j
  142: 
  143:   Revision 1.127  2006/04/28 18:11:50  brouard
  144:   (Module): Yes the sum of survivors was wrong since
  145:   imach-114 because nhstepm was no more computed in the age
  146:   loop. Now we define nhstepma in the age loop.
  147:   (Module): In order to speed up (in case of numerous covariates) we
  148:   compute health expectancies (without variances) in a first step
  149:   and then all the health expectancies with variances or standard
  150:   deviation (needs data from the Hessian matrices) which slows the
  151:   computation.
  152:   In the future we should be able to stop the program is only health
  153:   expectancies and graph are needed without standard deviations.
  154: 
  155:   Revision 1.126  2006/04/28 17:23:28  brouard
  156:   (Module): Yes the sum of survivors was wrong since
  157:   imach-114 because nhstepm was no more computed in the age
  158:   loop. Now we define nhstepma in the age loop.
  159:   Version 0.98h
  160: 
  161:   Revision 1.125  2006/04/04 15:20:31  lievre
  162:   Errors in calculation of health expectancies. Age was not initialized.
  163:   Forecasting file added.
  164: 
  165:   Revision 1.124  2006/03/22 17:13:53  lievre
  166:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  167:   The log-likelihood is printed in the log file
  168: 
  169:   Revision 1.123  2006/03/20 10:52:43  brouard
  170:   * imach.c (Module): <title> changed, corresponds to .htm file
  171:   name. <head> headers where missing.
  172: 
  173:   * imach.c (Module): Weights can have a decimal point as for
  174:   English (a comma might work with a correct LC_NUMERIC environment,
  175:   otherwise the weight is truncated).
  176:   Modification of warning when the covariates values are not 0 or
  177:   1.
  178:   Version 0.98g
  179: 
  180:   Revision 1.122  2006/03/20 09:45:41  brouard
  181:   (Module): Weights can have a decimal point as for
  182:   English (a comma might work with a correct LC_NUMERIC environment,
  183:   otherwise the weight is truncated).
  184:   Modification of warning when the covariates values are not 0 or
  185:   1.
  186:   Version 0.98g
  187: 
  188:   Revision 1.121  2006/03/16 17:45:01  lievre
  189:   * imach.c (Module): Comments concerning covariates added
  190: 
  191:   * imach.c (Module): refinements in the computation of lli if
  192:   status=-2 in order to have more reliable computation if stepm is
  193:   not 1 month. Version 0.98f
  194: 
  195:   Revision 1.120  2006/03/16 15:10:38  lievre
  196:   (Module): refinements in the computation of lli if
  197:   status=-2 in order to have more reliable computation if stepm is
  198:   not 1 month. Version 0.98f
  199: 
  200:   Revision 1.119  2006/03/15 17:42:26  brouard
  201:   (Module): Bug if status = -2, the loglikelihood was
  202:   computed as likelihood omitting the logarithm. Version O.98e
  203: 
  204:   Revision 1.118  2006/03/14 18:20:07  brouard
  205:   (Module): varevsij Comments added explaining the second
  206:   table of variances if popbased=1 .
  207:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  208:   (Module): Function pstamp added
  209:   (Module): Version 0.98d
  210: 
  211:   Revision 1.117  2006/03/14 17:16:22  brouard
  212:   (Module): varevsij Comments added explaining the second
  213:   table of variances if popbased=1 .
  214:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  215:   (Module): Function pstamp added
  216:   (Module): Version 0.98d
  217: 
  218:   Revision 1.116  2006/03/06 10:29:27  brouard
  219:   (Module): Variance-covariance wrong links and
  220:   varian-covariance of ej. is needed (Saito).
  221: 
  222:   Revision 1.115  2006/02/27 12:17:45  brouard
  223:   (Module): One freematrix added in mlikeli! 0.98c
  224: 
  225:   Revision 1.114  2006/02/26 12:57:58  brouard
  226:   (Module): Some improvements in processing parameter
  227:   filename with strsep.
  228: 
  229:   Revision 1.113  2006/02/24 14:20:24  brouard
  230:   (Module): Memory leaks checks with valgrind and:
  231:   datafile was not closed, some imatrix were not freed and on matrix
  232:   allocation too.
  233: 
  234:   Revision 1.112  2006/01/30 09:55:26  brouard
  235:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  236: 
  237:   Revision 1.111  2006/01/25 20:38:18  brouard
  238:   (Module): Lots of cleaning and bugs added (Gompertz)
  239:   (Module): Comments can be added in data file. Missing date values
  240:   can be a simple dot '.'.
  241: 
  242:   Revision 1.110  2006/01/25 00:51:50  brouard
  243:   (Module): Lots of cleaning and bugs added (Gompertz)
  244: 
  245:   Revision 1.109  2006/01/24 19:37:15  brouard
  246:   (Module): Comments (lines starting with a #) are allowed in data.
  247: 
  248:   Revision 1.108  2006/01/19 18:05:42  lievre
  249:   Gnuplot problem appeared...
  250:   To be fixed
  251: 
  252:   Revision 1.107  2006/01/19 16:20:37  brouard
  253:   Test existence of gnuplot in imach path
  254: 
  255:   Revision 1.106  2006/01/19 13:24:36  brouard
  256:   Some cleaning and links added in html output
  257: 
  258:   Revision 1.105  2006/01/05 20:23:19  lievre
  259:   *** empty log message ***
  260: 
  261:   Revision 1.104  2005/09/30 16:11:43  lievre
  262:   (Module): sump fixed, loop imx fixed, and simplifications.
  263:   (Module): If the status is missing at the last wave but we know
  264:   that the person is alive, then we can code his/her status as -2
  265:   (instead of missing=-1 in earlier versions) and his/her
  266:   contributions to the likelihood is 1 - Prob of dying from last
  267:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  268:   the healthy state at last known wave). Version is 0.98
  269: 
  270:   Revision 1.103  2005/09/30 15:54:49  lievre
  271:   (Module): sump fixed, loop imx fixed, and simplifications.
  272: 
  273:   Revision 1.102  2004/09/15 17:31:30  brouard
  274:   Add the possibility to read data file including tab characters.
  275: 
  276:   Revision 1.101  2004/09/15 10:38:38  brouard
  277:   Fix on curr_time
  278: 
  279:   Revision 1.100  2004/07/12 18:29:06  brouard
  280:   Add version for Mac OS X. Just define UNIX in Makefile
  281: 
  282:   Revision 1.99  2004/06/05 08:57:40  brouard
  283:   *** empty log message ***
  284: 
  285:   Revision 1.98  2004/05/16 15:05:56  brouard
  286:   New version 0.97 . First attempt to estimate force of mortality
  287:   directly from the data i.e. without the need of knowing the health
  288:   state at each age, but using a Gompertz model: log u =a + b*age .
  289:   This is the basic analysis of mortality and should be done before any
  290:   other analysis, in order to test if the mortality estimated from the
  291:   cross-longitudinal survey is different from the mortality estimated
  292:   from other sources like vital statistic data.
  293: 
  294:   The same imach parameter file can be used but the option for mle should be -3.
  295: 
  296:   Agnès, who wrote this part of the code, tried to keep most of the
  297:   former routines in order to include the new code within the former code.
  298: 
  299:   The output is very simple: only an estimate of the intercept and of
  300:   the slope with 95% confident intervals.
  301: 
  302:   Current limitations:
  303:   A) Even if you enter covariates, i.e. with the
  304:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  305:   B) There is no computation of Life Expectancy nor Life Table.
  306: 
  307:   Revision 1.97  2004/02/20 13:25:42  lievre
  308:   Version 0.96d. Population forecasting command line is (temporarily)
  309:   suppressed.
  310: 
  311:   Revision 1.96  2003/07/15 15:38:55  brouard
  312:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  313:   rewritten within the same printf. Workaround: many printfs.
  314: 
  315:   Revision 1.95  2003/07/08 07:54:34  brouard
  316:   * imach.c (Repository):
  317:   (Repository): Using imachwizard code to output a more meaningful covariance
  318:   matrix (cov(a12,c31) instead of numbers.
  319: 
  320:   Revision 1.94  2003/06/27 13:00:02  brouard
  321:   Just cleaning
  322: 
  323:   Revision 1.93  2003/06/25 16:33:55  brouard
  324:   (Module): On windows (cygwin) function asctime_r doesn't
  325:   exist so I changed back to asctime which exists.
  326:   (Module): Version 0.96b
  327: 
  328:   Revision 1.92  2003/06/25 16:30:45  brouard
  329:   (Module): On windows (cygwin) function asctime_r doesn't
  330:   exist so I changed back to asctime which exists.
  331: 
  332:   Revision 1.91  2003/06/25 15:30:29  brouard
  333:   * imach.c (Repository): Duplicated warning errors corrected.
  334:   (Repository): Elapsed time after each iteration is now output. It
  335:   helps to forecast when convergence will be reached. Elapsed time
  336:   is stamped in powell.  We created a new html file for the graphs
  337:   concerning matrix of covariance. It has extension -cov.htm.
  338: 
  339:   Revision 1.90  2003/06/24 12:34:15  brouard
  340:   (Module): Some bugs corrected for windows. Also, when
  341:   mle=-1 a template is output in file "or"mypar.txt with the design
  342:   of the covariance matrix to be input.
  343: 
  344:   Revision 1.89  2003/06/24 12:30:52  brouard
  345:   (Module): Some bugs corrected for windows. Also, when
  346:   mle=-1 a template is output in file "or"mypar.txt with the design
  347:   of the covariance matrix to be input.
  348: 
  349:   Revision 1.88  2003/06/23 17:54:56  brouard
  350:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  351: 
  352:   Revision 1.87  2003/06/18 12:26:01  brouard
  353:   Version 0.96
  354: 
  355:   Revision 1.86  2003/06/17 20:04:08  brouard
  356:   (Module): Change position of html and gnuplot routines and added
  357:   routine fileappend.
  358: 
  359:   Revision 1.85  2003/06/17 13:12:43  brouard
  360:   * imach.c (Repository): Check when date of death was earlier that
  361:   current date of interview. It may happen when the death was just
  362:   prior to the death. In this case, dh was negative and likelihood
  363:   was wrong (infinity). We still send an "Error" but patch by
  364:   assuming that the date of death was just one stepm after the
  365:   interview.
  366:   (Repository): Because some people have very long ID (first column)
  367:   we changed int to long in num[] and we added a new lvector for
  368:   memory allocation. But we also truncated to 8 characters (left
  369:   truncation)
  370:   (Repository): No more line truncation errors.
  371: 
  372:   Revision 1.84  2003/06/13 21:44:43  brouard
  373:   * imach.c (Repository): Replace "freqsummary" at a correct
  374:   place. It differs from routine "prevalence" which may be called
  375:   many times. Probs is memory consuming and must be used with
  376:   parcimony.
  377:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  378: 
  379:   Revision 1.83  2003/06/10 13:39:11  lievre
  380:   *** empty log message ***
  381: 
  382:   Revision 1.82  2003/06/05 15:57:20  brouard
  383:   Add log in  imach.c and  fullversion number is now printed.
  384: 
  385: */
  386: /*
  387:    Interpolated Markov Chain
  388: 
  389:   Short summary of the programme:
  390:   
  391:   This program computes Healthy Life Expectancies from
  392:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  393:   first survey ("cross") where individuals from different ages are
  394:   interviewed on their health status or degree of disability (in the
  395:   case of a health survey which is our main interest) -2- at least a
  396:   second wave of interviews ("longitudinal") which measure each change
  397:   (if any) in individual health status.  Health expectancies are
  398:   computed from the time spent in each health state according to a
  399:   model. More health states you consider, more time is necessary to reach the
  400:   Maximum Likelihood of the parameters involved in the model.  The
  401:   simplest model is the multinomial logistic model where pij is the
  402:   probability to be observed in state j at the second wave
  403:   conditional to be observed in state i at the first wave. Therefore
  404:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  405:   'age' is age and 'sex' is a covariate. If you want to have a more
  406:   complex model than "constant and age", you should modify the program
  407:   where the markup *Covariates have to be included here again* invites
  408:   you to do it.  More covariates you add, slower the
  409:   convergence.
  410: 
  411:   The advantage of this computer programme, compared to a simple
  412:   multinomial logistic model, is clear when the delay between waves is not
  413:   identical for each individual. Also, if a individual missed an
  414:   intermediate interview, the information is lost, but taken into
  415:   account using an interpolation or extrapolation.  
  416: 
  417:   hPijx is the probability to be observed in state i at age x+h
  418:   conditional to the observed state i at age x. The delay 'h' can be
  419:   split into an exact number (nh*stepm) of unobserved intermediate
  420:   states. This elementary transition (by month, quarter,
  421:   semester or year) is modelled as a multinomial logistic.  The hPx
  422:   matrix is simply the matrix product of nh*stepm elementary matrices
  423:   and the contribution of each individual to the likelihood is simply
  424:   hPijx.
  425: 
  426:   Also this programme outputs the covariance matrix of the parameters but also
  427:   of the life expectancies. It also computes the period (stable) prevalence. 
  428:   
  429:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  430:            Institut national d'études démographiques, Paris.
  431:   This software have been partly granted by Euro-REVES, a concerted action
  432:   from the European Union.
  433:   It is copyrighted identically to a GNU software product, ie programme and
  434:   software can be distributed freely for non commercial use. Latest version
  435:   can be accessed at http://euroreves.ined.fr/imach .
  436: 
  437:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  438:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  439:   
  440:   **********************************************************************/
  441: /*
  442:   main
  443:   read parameterfile
  444:   read datafile
  445:   concatwav
  446:   freqsummary
  447:   if (mle >= 1)
  448:     mlikeli
  449:   print results files
  450:   if mle==1 
  451:      computes hessian
  452:   read end of parameter file: agemin, agemax, bage, fage, estepm
  453:       begin-prev-date,...
  454:   open gnuplot file
  455:   open html file
  456:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  457:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  458:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  459:     freexexit2 possible for memory heap.
  460: 
  461:   h Pij x                         | pij_nom  ficrestpij
  462:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  463:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  464:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  465: 
  466:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  467:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  468:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  469:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  470:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  471: 
  472:   forecasting if prevfcast==1 prevforecast call prevalence()
  473:   health expectancies
  474:   Variance-covariance of DFLE
  475:   prevalence()
  476:    movingaverage()
  477:   varevsij() 
  478:   if popbased==1 varevsij(,popbased)
  479:   total life expectancies
  480:   Variance of period (stable) prevalence
  481:  end
  482: */
  483: 
  484: 
  485: 
  486:  
  487: #include <math.h>
  488: #include <stdio.h>
  489: #include <stdlib.h>
  490: #include <string.h>
  491: 
  492: #ifdef _WIN32
  493: #include <io.h>
  494: #else
  495: #include <unistd.h>
  496: #endif
  497: 
  498: #include <limits.h>
  499: #include <sys/types.h>
  500: #include <sys/stat.h>
  501: #include <errno.h>
  502: /* extern int errno; */
  503: 
  504: /* #ifdef LINUX */
  505: /* #include <time.h> */
  506: /* #include "timeval.h" */
  507: /* #else */
  508: /* #include <sys/time.h> */
  509: /* #endif */
  510: 
  511: #include <time.h>
  512: 
  513: #ifdef GSL
  514: #include <gsl/gsl_errno.h>
  515: #include <gsl/gsl_multimin.h>
  516: #endif
  517: 
  518: /* #include <libintl.h> */
  519: /* #define _(String) gettext (String) */
  520: 
  521: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  522: 
  523: #define GNUPLOTPROGRAM "gnuplot"
  524: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  525: #define FILENAMELENGTH 132
  526: 
  527: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  528: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  529: 
  530: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  531: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  532: 
  533: #define NINTERVMAX 8
  534: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  535: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  536: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  537: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  538: #define MAXN 20000
  539: #define YEARM 12. /**< Number of months per year */
  540: #define AGESUP 130
  541: #define AGEBASE 40
  542: #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
  543: #ifdef _WIN32
  544: #define DIRSEPARATOR '\\'
  545: #define CHARSEPARATOR "\\"
  546: #define ODIRSEPARATOR '/'
  547: #else
  548: #define DIRSEPARATOR '/'
  549: #define CHARSEPARATOR "/"
  550: #define ODIRSEPARATOR '\\'
  551: #endif
  552: 
  553: /* $Id: imach.c,v 1.161 2014/09/15 20:41:41 brouard Exp $ */
  554: /* $State: Exp $ */
  555: 
  556: char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
  557: char fullversion[]="$Revision: 1.161 $ $Date: 2014/09/15 20:41:41 $"; 
  558: char strstart[80];
  559: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  560: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  561: int nvar=0, nforce=0; /* Number of variables, number of forces */
  562: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  563: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  564: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  565: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  566: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  567: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  568: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  569: int cptcov=0; /* Working variable */
  570: int npar=NPARMAX;
  571: int nlstate=2; /* Number of live states */
  572: int ndeath=1; /* Number of dead states */
  573: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  574: int popbased=0;
  575: 
  576: int *wav; /* Number of waves for this individuual 0 is possible */
  577: int maxwav=0; /* Maxim number of waves */
  578: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  579: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  580: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  581: 		   to the likelihood and the sum of weights (done by funcone)*/
  582: int mle=1, weightopt=0;
  583: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  584: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  585: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  586: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  587: double jmean=1; /* Mean space between 2 waves */
  588: double **matprod2(); /* test */
  589: double **oldm, **newm, **savm; /* Working pointers to matrices */
  590: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  591: /*FILE *fic ; */ /* Used in readdata only */
  592: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  593: FILE *ficlog, *ficrespow;
  594: int globpr=0; /* Global variable for printing or not */
  595: double fretone; /* Only one call to likelihood */
  596: long ipmx=0; /* Number of contributions */
  597: double sw; /* Sum of weights */
  598: char filerespow[FILENAMELENGTH];
  599: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  600: FILE *ficresilk;
  601: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  602: FILE *ficresprobmorprev;
  603: FILE *fichtm, *fichtmcov; /* Html File */
  604: FILE *ficreseij;
  605: char filerese[FILENAMELENGTH];
  606: FILE *ficresstdeij;
  607: char fileresstde[FILENAMELENGTH];
  608: FILE *ficrescveij;
  609: char filerescve[FILENAMELENGTH];
  610: FILE  *ficresvij;
  611: char fileresv[FILENAMELENGTH];
  612: FILE  *ficresvpl;
  613: char fileresvpl[FILENAMELENGTH];
  614: char title[MAXLINE];
  615: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  616: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  617: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  618: char command[FILENAMELENGTH];
  619: int  outcmd=0;
  620: 
  621: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  622: 
  623: char filelog[FILENAMELENGTH]; /* Log file */
  624: char filerest[FILENAMELENGTH];
  625: char fileregp[FILENAMELENGTH];
  626: char popfile[FILENAMELENGTH];
  627: 
  628: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  629: 
  630: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
  631: /* struct timezone tzp; */
  632: /* extern int gettimeofday(); */
  633: struct tm tml, *gmtime(), *localtime();
  634: 
  635: extern time_t time();
  636: 
  637: struct tm start_time, end_time, curr_time, last_time, forecast_time;
  638: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
  639: struct tm tm;
  640: 
  641: char strcurr[80], strfor[80];
  642: 
  643: char *endptr;
  644: long lval;
  645: double dval;
  646: 
  647: #define NR_END 1
  648: #define FREE_ARG char*
  649: #define FTOL 1.0e-10
  650: 
  651: #define NRANSI 
  652: #define ITMAX 200 
  653: 
  654: #define TOL 2.0e-4 
  655: 
  656: #define CGOLD 0.3819660 
  657: #define ZEPS 1.0e-10 
  658: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  659: 
  660: #define GOLD 1.618034 
  661: #define GLIMIT 100.0 
  662: #define TINY 1.0e-20 
  663: 
  664: static double maxarg1,maxarg2;
  665: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  666: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  667:   
  668: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  669: #define rint(a) floor(a+0.5)
  670: 
  671: static double sqrarg;
  672: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  673: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  674: int agegomp= AGEGOMP;
  675: 
  676: int imx; 
  677: int stepm=1;
  678: /* Stepm, step in month: minimum step interpolation*/
  679: 
  680: int estepm;
  681: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  682: 
  683: int m,nb;
  684: long *num;
  685: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  686: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  687: double **pmmij, ***probs;
  688: double *ageexmed,*agecens;
  689: double dateintmean=0;
  690: 
  691: double *weight;
  692: int **s; /* Status */
  693: double *agedc;
  694: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  695: 		  * covar=matrix(0,NCOVMAX,1,n); 
  696: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
  697: double  idx; 
  698: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  699: int *Ndum; /** Freq of modality (tricode */
  700: int **codtab; /**< codtab=imatrix(1,100,1,10); */
  701: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  702: double *lsurv, *lpop, *tpop;
  703: 
  704: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  705: double ftolhess; /**< Tolerance for computing hessian */
  706: 
  707: /**************** split *************************/
  708: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  709: {
  710:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  711:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  712:   */ 
  713:   char	*ss;				/* pointer */
  714:   int	l1, l2;				/* length counters */
  715: 
  716:   l1 = strlen(path );			/* length of path */
  717:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  718:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  719:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  720:     strcpy( name, path );		/* we got the fullname name because no directory */
  721:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  722:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  723:     /* get current working directory */
  724:     /*    extern  char* getcwd ( char *buf , int len);*/
  725:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  726:       return( GLOCK_ERROR_GETCWD );
  727:     }
  728:     /* got dirc from getcwd*/
  729:     printf(" DIRC = %s \n",dirc);
  730:   } else {				/* strip direcotry from path */
  731:     ss++;				/* after this, the filename */
  732:     l2 = strlen( ss );			/* length of filename */
  733:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  734:     strcpy( name, ss );		/* save file name */
  735:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  736:     dirc[l1-l2] = 0;			/* add zero */
  737:     printf(" DIRC2 = %s \n",dirc);
  738:   }
  739:   /* We add a separator at the end of dirc if not exists */
  740:   l1 = strlen( dirc );			/* length of directory */
  741:   if( dirc[l1-1] != DIRSEPARATOR ){
  742:     dirc[l1] =  DIRSEPARATOR;
  743:     dirc[l1+1] = 0; 
  744:     printf(" DIRC3 = %s \n",dirc);
  745:   }
  746:   ss = strrchr( name, '.' );		/* find last / */
  747:   if (ss >0){
  748:     ss++;
  749:     strcpy(ext,ss);			/* save extension */
  750:     l1= strlen( name);
  751:     l2= strlen(ss)+1;
  752:     strncpy( finame, name, l1-l2);
  753:     finame[l1-l2]= 0;
  754:   }
  755: 
  756:   return( 0 );				/* we're done */
  757: }
  758: 
  759: 
  760: /******************************************/
  761: 
  762: void replace_back_to_slash(char *s, char*t)
  763: {
  764:   int i;
  765:   int lg=0;
  766:   i=0;
  767:   lg=strlen(t);
  768:   for(i=0; i<= lg; i++) {
  769:     (s[i] = t[i]);
  770:     if (t[i]== '\\') s[i]='/';
  771:   }
  772: }
  773: 
  774: char *trimbb(char *out, char *in)
  775: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  776:   char *s;
  777:   s=out;
  778:   while (*in != '\0'){
  779:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  780:       in++;
  781:     }
  782:     *out++ = *in++;
  783:   }
  784:   *out='\0';
  785:   return s;
  786: }
  787: 
  788: char *cutl(char *blocc, char *alocc, char *in, char occ)
  789: {
  790:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
  791:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  792:      gives blocc="abcdef2ghi" and alocc="j".
  793:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
  794:   */
  795:   char *s, *t;
  796:   t=in;s=in;
  797:   while ((*in != occ) && (*in != '\0')){
  798:     *alocc++ = *in++;
  799:   }
  800:   if( *in == occ){
  801:     *(alocc)='\0';
  802:     s=++in;
  803:   }
  804:  
  805:   if (s == t) {/* occ not found */
  806:     *(alocc-(in-s))='\0';
  807:     in=s;
  808:   }
  809:   while ( *in != '\0'){
  810:     *blocc++ = *in++;
  811:   }
  812: 
  813:   *blocc='\0';
  814:   return t;
  815: }
  816: char *cutv(char *blocc, char *alocc, char *in, char occ)
  817: {
  818:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  819:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  820:      gives blocc="abcdef2ghi" and alocc="j".
  821:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
  822:   */
  823:   char *s, *t;
  824:   t=in;s=in;
  825:   while (*in != '\0'){
  826:     while( *in == occ){
  827:       *blocc++ = *in++;
  828:       s=in;
  829:     }
  830:     *blocc++ = *in++;
  831:   }
  832:   if (s == t) /* occ not found */
  833:     *(blocc-(in-s))='\0';
  834:   else
  835:     *(blocc-(in-s)-1)='\0';
  836:   in=s;
  837:   while ( *in != '\0'){
  838:     *alocc++ = *in++;
  839:   }
  840: 
  841:   *alocc='\0';
  842:   return s;
  843: }
  844: 
  845: int nbocc(char *s, char occ)
  846: {
  847:   int i,j=0;
  848:   int lg=20;
  849:   i=0;
  850:   lg=strlen(s);
  851:   for(i=0; i<= lg; i++) {
  852:   if  (s[i] == occ ) j++;
  853:   }
  854:   return j;
  855: }
  856: 
  857: /* void cutv(char *u,char *v, char*t, char occ) */
  858: /* { */
  859: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  860: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
  861: /*      gives u="abcdef2ghi" and v="j" *\/ */
  862: /*   int i,lg,j,p=0; */
  863: /*   i=0; */
  864: /*   lg=strlen(t); */
  865: /*   for(j=0; j<=lg-1; j++) { */
  866: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
  867: /*   } */
  868: 
  869: /*   for(j=0; j<p; j++) { */
  870: /*     (u[j] = t[j]); */
  871: /*   } */
  872: /*      u[p]='\0'; */
  873: 
  874: /*    for(j=0; j<= lg; j++) { */
  875: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
  876: /*   } */
  877: /* } */
  878: 
  879: #ifdef _WIN32
  880: char * strsep(char **pp, const char *delim)
  881: {
  882:   char *p, *q;
  883:          
  884:   if ((p = *pp) == NULL)
  885:     return 0;
  886:   if ((q = strpbrk (p, delim)) != NULL)
  887:   {
  888:     *pp = q + 1;
  889:     *q = '\0';
  890:   }
  891:   else
  892:     *pp = 0;
  893:   return p;
  894: }
  895: #endif
  896: 
  897: /********************** nrerror ********************/
  898: 
  899: void nrerror(char error_text[])
  900: {
  901:   fprintf(stderr,"ERREUR ...\n");
  902:   fprintf(stderr,"%s\n",error_text);
  903:   exit(EXIT_FAILURE);
  904: }
  905: /*********************** vector *******************/
  906: double *vector(int nl, int nh)
  907: {
  908:   double *v;
  909:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  910:   if (!v) nrerror("allocation failure in vector");
  911:   return v-nl+NR_END;
  912: }
  913: 
  914: /************************ free vector ******************/
  915: void free_vector(double*v, int nl, int nh)
  916: {
  917:   free((FREE_ARG)(v+nl-NR_END));
  918: }
  919: 
  920: /************************ivector *******************************/
  921: int *ivector(long nl,long nh)
  922: {
  923:   int *v;
  924:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  925:   if (!v) nrerror("allocation failure in ivector");
  926:   return v-nl+NR_END;
  927: }
  928: 
  929: /******************free ivector **************************/
  930: void free_ivector(int *v, long nl, long nh)
  931: {
  932:   free((FREE_ARG)(v+nl-NR_END));
  933: }
  934: 
  935: /************************lvector *******************************/
  936: long *lvector(long nl,long nh)
  937: {
  938:   long *v;
  939:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  940:   if (!v) nrerror("allocation failure in ivector");
  941:   return v-nl+NR_END;
  942: }
  943: 
  944: /******************free lvector **************************/
  945: void free_lvector(long *v, long nl, long nh)
  946: {
  947:   free((FREE_ARG)(v+nl-NR_END));
  948: }
  949: 
  950: /******************* imatrix *******************************/
  951: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  952:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  953: { 
  954:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  955:   int **m; 
  956:   
  957:   /* allocate pointers to rows */ 
  958:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  959:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  960:   m += NR_END; 
  961:   m -= nrl; 
  962:   
  963:   
  964:   /* allocate rows and set pointers to them */ 
  965:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  966:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  967:   m[nrl] += NR_END; 
  968:   m[nrl] -= ncl; 
  969:   
  970:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  971:   
  972:   /* return pointer to array of pointers to rows */ 
  973:   return m; 
  974: } 
  975: 
  976: /****************** free_imatrix *************************/
  977: void free_imatrix(m,nrl,nrh,ncl,nch)
  978:       int **m;
  979:       long nch,ncl,nrh,nrl; 
  980:      /* free an int matrix allocated by imatrix() */ 
  981: { 
  982:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  983:   free((FREE_ARG) (m+nrl-NR_END)); 
  984: } 
  985: 
  986: /******************* matrix *******************************/
  987: double **matrix(long nrl, long nrh, long ncl, long nch)
  988: {
  989:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  990:   double **m;
  991: 
  992:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  993:   if (!m) nrerror("allocation failure 1 in matrix()");
  994:   m += NR_END;
  995:   m -= nrl;
  996: 
  997:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  998:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  999:   m[nrl] += NR_END;
 1000:   m[nrl] -= ncl;
 1001: 
 1002:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1003:   return m;
 1004:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 1005: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 1006: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 1007:    */
 1008: }
 1009: 
 1010: /*************************free matrix ************************/
 1011: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 1012: {
 1013:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1014:   free((FREE_ARG)(m+nrl-NR_END));
 1015: }
 1016: 
 1017: /******************* ma3x *******************************/
 1018: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 1019: {
 1020:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 1021:   double ***m;
 1022: 
 1023:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1024:   if (!m) nrerror("allocation failure 1 in matrix()");
 1025:   m += NR_END;
 1026:   m -= nrl;
 1027: 
 1028:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1029:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1030:   m[nrl] += NR_END;
 1031:   m[nrl] -= ncl;
 1032: 
 1033:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1034: 
 1035:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 1036:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 1037:   m[nrl][ncl] += NR_END;
 1038:   m[nrl][ncl] -= nll;
 1039:   for (j=ncl+1; j<=nch; j++) 
 1040:     m[nrl][j]=m[nrl][j-1]+nlay;
 1041:   
 1042:   for (i=nrl+1; i<=nrh; i++) {
 1043:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 1044:     for (j=ncl+1; j<=nch; j++) 
 1045:       m[i][j]=m[i][j-1]+nlay;
 1046:   }
 1047:   return m; 
 1048:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 1049:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 1050:   */
 1051: }
 1052: 
 1053: /*************************free ma3x ************************/
 1054: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 1055: {
 1056:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 1057:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1058:   free((FREE_ARG)(m+nrl-NR_END));
 1059: }
 1060: 
 1061: /*************** function subdirf ***********/
 1062: char *subdirf(char fileres[])
 1063: {
 1064:   /* Caution optionfilefiname is hidden */
 1065:   strcpy(tmpout,optionfilefiname);
 1066:   strcat(tmpout,"/"); /* Add to the right */
 1067:   strcat(tmpout,fileres);
 1068:   return tmpout;
 1069: }
 1070: 
 1071: /*************** function subdirf2 ***********/
 1072: char *subdirf2(char fileres[], char *preop)
 1073: {
 1074:   
 1075:   /* Caution optionfilefiname is hidden */
 1076:   strcpy(tmpout,optionfilefiname);
 1077:   strcat(tmpout,"/");
 1078:   strcat(tmpout,preop);
 1079:   strcat(tmpout,fileres);
 1080:   return tmpout;
 1081: }
 1082: 
 1083: /*************** function subdirf3 ***********/
 1084: char *subdirf3(char fileres[], char *preop, char *preop2)
 1085: {
 1086:   
 1087:   /* Caution optionfilefiname is hidden */
 1088:   strcpy(tmpout,optionfilefiname);
 1089:   strcat(tmpout,"/");
 1090:   strcat(tmpout,preop);
 1091:   strcat(tmpout,preop2);
 1092:   strcat(tmpout,fileres);
 1093:   return tmpout;
 1094: }
 1095: 
 1096: /***************** f1dim *************************/
 1097: extern int ncom; 
 1098: extern double *pcom,*xicom;
 1099: extern double (*nrfunc)(double []); 
 1100:  
 1101: double f1dim(double x) 
 1102: { 
 1103:   int j; 
 1104:   double f;
 1105:   double *xt; 
 1106:  
 1107:   xt=vector(1,ncom); 
 1108:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1109:   f=(*nrfunc)(xt); 
 1110:   free_vector(xt,1,ncom); 
 1111:   return f; 
 1112: } 
 1113: 
 1114: /*****************brent *************************/
 1115: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1116: { 
 1117:   int iter; 
 1118:   double a,b,d,etemp;
 1119:   double fu=0,fv,fw,fx;
 1120:   double ftemp;
 1121:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1122:   double e=0.0; 
 1123:  
 1124:   a=(ax < cx ? ax : cx); 
 1125:   b=(ax > cx ? ax : cx); 
 1126:   x=w=v=bx; 
 1127:   fw=fv=fx=(*f)(x); 
 1128:   for (iter=1;iter<=ITMAX;iter++) { 
 1129:     xm=0.5*(a+b); 
 1130:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1131:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1132:     printf(".");fflush(stdout);
 1133:     fprintf(ficlog,".");fflush(ficlog);
 1134: #ifdef DEBUG
 1135:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1136:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1137:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1138: #endif
 1139:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1140:       *xmin=x; 
 1141:       return fx; 
 1142:     } 
 1143:     ftemp=fu;
 1144:     if (fabs(e) > tol1) { 
 1145:       r=(x-w)*(fx-fv); 
 1146:       q=(x-v)*(fx-fw); 
 1147:       p=(x-v)*q-(x-w)*r; 
 1148:       q=2.0*(q-r); 
 1149:       if (q > 0.0) p = -p; 
 1150:       q=fabs(q); 
 1151:       etemp=e; 
 1152:       e=d; 
 1153:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1154: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1155:       else { 
 1156: 	d=p/q; 
 1157: 	u=x+d; 
 1158: 	if (u-a < tol2 || b-u < tol2) 
 1159: 	  d=SIGN(tol1,xm-x); 
 1160:       } 
 1161:     } else { 
 1162:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1163:     } 
 1164:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1165:     fu=(*f)(u); 
 1166:     if (fu <= fx) { 
 1167:       if (u >= x) a=x; else b=x; 
 1168:       SHFT(v,w,x,u) 
 1169: 	SHFT(fv,fw,fx,fu) 
 1170: 	} else { 
 1171: 	  if (u < x) a=u; else b=u; 
 1172: 	  if (fu <= fw || w == x) { 
 1173: 	    v=w; 
 1174: 	    w=u; 
 1175: 	    fv=fw; 
 1176: 	    fw=fu; 
 1177: 	  } else if (fu <= fv || v == x || v == w) { 
 1178: 	    v=u; 
 1179: 	    fv=fu; 
 1180: 	  } 
 1181: 	} 
 1182:   } 
 1183:   nrerror("Too many iterations in brent"); 
 1184:   *xmin=x; 
 1185:   return fx; 
 1186: } 
 1187: 
 1188: /****************** mnbrak ***********************/
 1189: 
 1190: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1191: 	    double (*func)(double)) 
 1192: { 
 1193:   double ulim,u,r,q, dum;
 1194:   double fu; 
 1195:  
 1196:   *fa=(*func)(*ax); 
 1197:   *fb=(*func)(*bx); 
 1198:   if (*fb > *fa) { 
 1199:     SHFT(dum,*ax,*bx,dum) 
 1200:       SHFT(dum,*fb,*fa,dum) 
 1201:       } 
 1202:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1203:   *fc=(*func)(*cx); 
 1204:   while (*fb > *fc) { 
 1205:     r=(*bx-*ax)*(*fb-*fc); 
 1206:     q=(*bx-*cx)*(*fb-*fa); 
 1207:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1208:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 1209:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
 1210:     if ((*bx-u)*(u-*cx) > 0.0) { 
 1211:       fu=(*func)(u); 
 1212:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
 1213:       fu=(*func)(u); 
 1214:       if (fu < *fc) { 
 1215: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1216: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
 1217: 	  } 
 1218:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 1219:       u=ulim; 
 1220:       fu=(*func)(u); 
 1221:     } else { 
 1222:       u=(*cx)+GOLD*(*cx-*bx); 
 1223:       fu=(*func)(u); 
 1224:     } 
 1225:     SHFT(*ax,*bx,*cx,u) 
 1226:       SHFT(*fa,*fb,*fc,fu) 
 1227:       } 
 1228: } 
 1229: 
 1230: /*************** linmin ************************/
 1231: 
 1232: int ncom; 
 1233: double *pcom,*xicom;
 1234: double (*nrfunc)(double []); 
 1235:  
 1236: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1237: { 
 1238:   double brent(double ax, double bx, double cx, 
 1239: 	       double (*f)(double), double tol, double *xmin); 
 1240:   double f1dim(double x); 
 1241:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1242: 	      double *fc, double (*func)(double)); 
 1243:   int j; 
 1244:   double xx,xmin,bx,ax; 
 1245:   double fx,fb,fa;
 1246:  
 1247:   ncom=n; 
 1248:   pcom=vector(1,n); 
 1249:   xicom=vector(1,n); 
 1250:   nrfunc=func; 
 1251:   for (j=1;j<=n;j++) { 
 1252:     pcom[j]=p[j]; 
 1253:     xicom[j]=xi[j]; 
 1254:   } 
 1255:   ax=0.0; 
 1256:   xx=1.0; 
 1257:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 1258:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 1259: #ifdef DEBUG
 1260:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1261:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1262: #endif
 1263:   for (j=1;j<=n;j++) { 
 1264:     xi[j] *= xmin; 
 1265:     p[j] += xi[j]; 
 1266:   } 
 1267:   free_vector(xicom,1,n); 
 1268:   free_vector(pcom,1,n); 
 1269: } 
 1270: 
 1271: char *asc_diff_time(long time_sec, char ascdiff[])
 1272: {
 1273:   long sec_left, days, hours, minutes;
 1274:   days = (time_sec) / (60*60*24);
 1275:   sec_left = (time_sec) % (60*60*24);
 1276:   hours = (sec_left) / (60*60) ;
 1277:   sec_left = (sec_left) %(60*60);
 1278:   minutes = (sec_left) /60;
 1279:   sec_left = (sec_left) % (60);
 1280:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1281:   return ascdiff;
 1282: }
 1283: 
 1284: /*************** powell ************************/
 1285: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1286: 	    double (*func)(double [])) 
 1287: { 
 1288:   void linmin(double p[], double xi[], int n, double *fret, 
 1289: 	      double (*func)(double [])); 
 1290:   int i,ibig,j; 
 1291:   double del,t,*pt,*ptt,*xit;
 1292:   double fp,fptt;
 1293:   double *xits;
 1294:   int niterf, itmp;
 1295: 
 1296:   pt=vector(1,n); 
 1297:   ptt=vector(1,n); 
 1298:   xit=vector(1,n); 
 1299:   xits=vector(1,n); 
 1300:   *fret=(*func)(p); 
 1301:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1302:     rcurr_time = time(NULL);  
 1303:   for (*iter=1;;++(*iter)) { 
 1304:     fp=(*fret); 
 1305:     ibig=0; 
 1306:     del=0.0; 
 1307:     rlast_time=rcurr_time;
 1308:     /* (void) gettimeofday(&curr_time,&tzp); */
 1309:     rcurr_time = time(NULL);  
 1310:     curr_time = *localtime(&rcurr_time);
 1311:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 1312:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 1313: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 1314:    for (i=1;i<=n;i++) {
 1315:       printf(" %d %.12f",i, p[i]);
 1316:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1317:       fprintf(ficrespow," %.12lf", p[i]);
 1318:     }
 1319:     printf("\n");
 1320:     fprintf(ficlog,"\n");
 1321:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1322:     if(*iter <=3){
 1323:       tml = *localtime(&rcurr_time);
 1324:       strcpy(strcurr,asctime(&tml));
 1325: /*       asctime_r(&tm,strcurr); */
 1326:       rforecast_time=rcurr_time; 
 1327:       itmp = strlen(strcurr);
 1328:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1329: 	strcurr[itmp-1]='\0';
 1330:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1331:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1332:       for(niterf=10;niterf<=30;niterf+=10){
 1333: 	rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 1334: 	forecast_time = *localtime(&rforecast_time);
 1335: /* 	asctime_r(&tmf,strfor); */
 1336: 	strcpy(strfor,asctime(&forecast_time));
 1337: 	itmp = strlen(strfor);
 1338: 	if(strfor[itmp-1]=='\n')
 1339: 	strfor[itmp-1]='\0';
 1340: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1341: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1342:       }
 1343:     }
 1344:     for (i=1;i<=n;i++) { 
 1345:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1346:       fptt=(*fret); 
 1347: #ifdef DEBUG
 1348:       printf("fret=%lf \n",*fret);
 1349:       fprintf(ficlog,"fret=%lf \n",*fret);
 1350: #endif
 1351:       printf("%d",i);fflush(stdout);
 1352:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1353:       linmin(p,xit,n,fret,func); 
 1354:       if (fabs(fptt-(*fret)) > del) { 
 1355: 	del=fabs(fptt-(*fret)); 
 1356: 	ibig=i; 
 1357:       } 
 1358: #ifdef DEBUG
 1359:       printf("%d %.12e",i,(*fret));
 1360:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1361:       for (j=1;j<=n;j++) {
 1362: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1363: 	printf(" x(%d)=%.12e",j,xit[j]);
 1364: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1365:       }
 1366:       for(j=1;j<=n;j++) {
 1367: 	printf(" p=%.12e",p[j]);
 1368: 	fprintf(ficlog," p=%.12e",p[j]);
 1369:       }
 1370:       printf("\n");
 1371:       fprintf(ficlog,"\n");
 1372: #endif
 1373:     } 
 1374:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 1375: #ifdef DEBUG
 1376:       int k[2],l;
 1377:       k[0]=1;
 1378:       k[1]=-1;
 1379:       printf("Max: %.12e",(*func)(p));
 1380:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1381:       for (j=1;j<=n;j++) {
 1382: 	printf(" %.12e",p[j]);
 1383: 	fprintf(ficlog," %.12e",p[j]);
 1384:       }
 1385:       printf("\n");
 1386:       fprintf(ficlog,"\n");
 1387:       for(l=0;l<=1;l++) {
 1388: 	for (j=1;j<=n;j++) {
 1389: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1390: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1391: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1392: 	}
 1393: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1394: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1395:       }
 1396: #endif
 1397: 
 1398: 
 1399:       free_vector(xit,1,n); 
 1400:       free_vector(xits,1,n); 
 1401:       free_vector(ptt,1,n); 
 1402:       free_vector(pt,1,n); 
 1403:       return; 
 1404:     } 
 1405:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1406:     for (j=1;j<=n;j++) { /* Computes an extrapolated point */
 1407:       ptt[j]=2.0*p[j]-pt[j]; 
 1408:       xit[j]=p[j]-pt[j]; 
 1409:       pt[j]=p[j]; 
 1410:     } 
 1411:     fptt=(*func)(ptt); 
 1412:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 1413:       /* x1 f1=fp x2 f2=*fret x3 f3=fptt, xm fm */
 1414:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 1415:       /* Let f"(x2) be the 2nd derivative equal everywhere. Then the parabolic through (x1,f1), (x2,f2) and (x3,f3)
 1416: 	 will reach at f3 = fm + h^2/2 f''m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 1417:       /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
 1418:       /* Thus we compare delta(2h) with observed f1-f3 */
 1419:       /* or best gain on one ancient line 'del' with total gain f1-f2 = f1 - f2 - 'del' with del */ 
 1420:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
 1421:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
 1422:       t= t- del*SQR(fp-fptt);
 1423:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
 1424:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
 1425: #ifdef DEBUG
 1426:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1427: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1428:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1429: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1430:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1431:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1432: #endif
 1433:       if (t < 0.0) { /* Then we use it for last direction */
 1434: 	linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
 1435: 	for (j=1;j<=n;j++) { 
 1436: 	  xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
 1437: 	  xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
 1438: 	}
 1439: 	printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1440: 	fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
 1441: 
 1442: #ifdef DEBUG
 1443: 	for(j=1;j<=n;j++){
 1444: 	  printf(" %.12e",xit[j]);
 1445: 	  fprintf(ficlog," %.12e",xit[j]);
 1446: 	}
 1447: 	printf("\n");
 1448: 	fprintf(ficlog,"\n");
 1449: #endif
 1450:       }
 1451:     } 
 1452:   } 
 1453: } 
 1454: 
 1455: /**** Prevalence limit (stable or period prevalence)  ****************/
 1456: 
 1457: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1458: {
 1459:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1460:      matrix by transitions matrix until convergence is reached */
 1461: 
 1462:   int i, ii,j,k;
 1463:   double min, max, maxmin, maxmax,sumnew=0.;
 1464:   /* double **matprod2(); */ /* test */
 1465:   double **out, cov[NCOVMAX+1], **pmij();
 1466:   double **newm;
 1467:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1468: 
 1469:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1470:     for (j=1;j<=nlstate+ndeath;j++){
 1471:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1472:     }
 1473: 
 1474:    cov[1]=1.;
 1475:  
 1476:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1477:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1478:     newm=savm;
 1479:     /* Covariates have to be included here again */
 1480:     cov[2]=agefin;
 1481:     
 1482:     for (k=1; k<=cptcovn;k++) {
 1483:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1484:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 1485:     }
 1486:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1487:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 1488:     /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
 1489:     
 1490:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1491:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1492:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1493:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1494:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1495:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1496:     
 1497:     savm=oldm;
 1498:     oldm=newm;
 1499:     maxmax=0.;
 1500:     for(j=1;j<=nlstate;j++){
 1501:       min=1.;
 1502:       max=0.;
 1503:       for(i=1; i<=nlstate; i++) {
 1504: 	sumnew=0;
 1505: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1506: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1507:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1508: 	max=FMAX(max,prlim[i][j]);
 1509: 	min=FMIN(min,prlim[i][j]);
 1510:       }
 1511:       maxmin=max-min;
 1512:       maxmax=FMAX(maxmax,maxmin);
 1513:     }
 1514:     if(maxmax < ftolpl){
 1515:       return prlim;
 1516:     }
 1517:   }
 1518: }
 1519: 
 1520: /*************** transition probabilities ***************/ 
 1521: 
 1522: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1523: {
 1524:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1525:      computes the probability to be observed in state j being in state i by appying the
 1526:      model to the ncovmodel covariates (including constant and age).
 1527:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1528:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1529:      ncth covariate in the global vector x is given by the formula:
 1530:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1531:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1532:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1533:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1534:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1535:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1536:   */
 1537:   double s1, lnpijopii;
 1538:   /*double t34;*/
 1539:   int i,j,j1, nc, ii, jj;
 1540: 
 1541:     for(i=1; i<= nlstate; i++){
 1542:       for(j=1; j<i;j++){
 1543: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1544: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1545: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1546: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1547: 	}
 1548: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1549: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1550:       }
 1551:       for(j=i+1; j<=nlstate+ndeath;j++){
 1552: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1553: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1554: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1555: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1556: 	}
 1557: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1558:       }
 1559:     }
 1560:     
 1561:     for(i=1; i<= nlstate; i++){
 1562:       s1=0;
 1563:       for(j=1; j<i; j++){
 1564: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1565: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1566:       }
 1567:       for(j=i+1; j<=nlstate+ndeath; j++){
 1568: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1569: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1570:       }
 1571:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1572:       ps[i][i]=1./(s1+1.);
 1573:       /* Computing other pijs */
 1574:       for(j=1; j<i; j++)
 1575: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1576:       for(j=i+1; j<=nlstate+ndeath; j++)
 1577: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1578:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1579:     } /* end i */
 1580:     
 1581:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1582:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1583: 	ps[ii][jj]=0;
 1584: 	ps[ii][ii]=1;
 1585:       }
 1586:     }
 1587:     
 1588:     
 1589:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1590:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1591:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 1592:     /*   } */
 1593:     /*   printf("\n "); */
 1594:     /* } */
 1595:     /* printf("\n ");printf("%lf ",cov[2]);*/
 1596:     /*
 1597:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1598:       goto end;*/
 1599:     return ps;
 1600: }
 1601: 
 1602: /**************** Product of 2 matrices ******************/
 1603: 
 1604: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 1605: {
 1606:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1607:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1608:   /* in, b, out are matrice of pointers which should have been initialized 
 1609:      before: only the contents of out is modified. The function returns
 1610:      a pointer to pointers identical to out */
 1611:   int i, j, k;
 1612:   for(i=nrl; i<= nrh; i++)
 1613:     for(k=ncolol; k<=ncoloh; k++){
 1614:       out[i][k]=0.;
 1615:       for(j=ncl; j<=nch; j++)
 1616:   	out[i][k] +=in[i][j]*b[j][k];
 1617:     }
 1618:   return out;
 1619: }
 1620: 
 1621: 
 1622: /************* Higher Matrix Product ***************/
 1623: 
 1624: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1625: {
 1626:   /* Computes the transition matrix starting at age 'age' over 
 1627:      'nhstepm*hstepm*stepm' months (i.e. until
 1628:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1629:      nhstepm*hstepm matrices. 
 1630:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1631:      (typically every 2 years instead of every month which is too big 
 1632:      for the memory).
 1633:      Model is determined by parameters x and covariates have to be 
 1634:      included manually here. 
 1635: 
 1636:      */
 1637: 
 1638:   int i, j, d, h, k;
 1639:   double **out, cov[NCOVMAX+1];
 1640:   double **newm;
 1641: 
 1642:   /* Hstepm could be zero and should return the unit matrix */
 1643:   for (i=1;i<=nlstate+ndeath;i++)
 1644:     for (j=1;j<=nlstate+ndeath;j++){
 1645:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1646:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1647:     }
 1648:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1649:   for(h=1; h <=nhstepm; h++){
 1650:     for(d=1; d <=hstepm; d++){
 1651:       newm=savm;
 1652:       /* Covariates have to be included here again */
 1653:       cov[1]=1.;
 1654:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1655:       for (k=1; k<=cptcovn;k++) 
 1656: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1657:       for (k=1; k<=cptcovage;k++)
 1658: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1659:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 1660: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1661: 
 1662: 
 1663:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1664:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1665:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1666: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1667:       savm=oldm;
 1668:       oldm=newm;
 1669:     }
 1670:     for(i=1; i<=nlstate+ndeath; i++)
 1671:       for(j=1;j<=nlstate+ndeath;j++) {
 1672: 	po[i][j][h]=newm[i][j];
 1673: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 1674:       }
 1675:     /*printf("h=%d ",h);*/
 1676:   } /* end h */
 1677: /*     printf("\n H=%d \n",h); */
 1678:   return po;
 1679: }
 1680: 
 1681: 
 1682: /*************** log-likelihood *************/
 1683: double func( double *x)
 1684: {
 1685:   int i, ii, j, k, mi, d, kk;
 1686:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1687:   double **out;
 1688:   double sw; /* Sum of weights */
 1689:   double lli; /* Individual log likelihood */
 1690:   int s1, s2;
 1691:   double bbh, survp;
 1692:   long ipmx;
 1693:   /*extern weight */
 1694:   /* We are differentiating ll according to initial status */
 1695:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1696:   /*for(i=1;i<imx;i++) 
 1697:     printf(" %d\n",s[4][i]);
 1698:   */
 1699:   cov[1]=1.;
 1700: 
 1701:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1702: 
 1703:   if(mle==1){
 1704:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1705:       /* Computes the values of the ncovmodel covariates of the model
 1706: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 1707: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 1708: 	 to be observed in j being in i according to the model.
 1709:        */
 1710:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 1711: 	cov[2+k]=covar[Tvar[k]][i];
 1712:       }
 1713:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 1714: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 1715: 	 has been calculated etc */
 1716:       for(mi=1; mi<= wav[i]-1; mi++){
 1717: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1718: 	  for (j=1;j<=nlstate+ndeath;j++){
 1719: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1720: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1721: 	  }
 1722: 	for(d=0; d<dh[mi][i]; d++){
 1723: 	  newm=savm;
 1724: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1725: 	  for (kk=1; kk<=cptcovage;kk++) {
 1726: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 1727: 	  }
 1728: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1729: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1730: 	  savm=oldm;
 1731: 	  oldm=newm;
 1732: 	} /* end mult */
 1733:       
 1734: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1735: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1736: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1737: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1738: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1739: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1740: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1741: 	 * probability in order to take into account the bias as a fraction of the way
 1742: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1743: 	 * -stepm/2 to stepm/2 .
 1744: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1745: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1746: 	 */
 1747: 	s1=s[mw[mi][i]][i];
 1748: 	s2=s[mw[mi+1][i]][i];
 1749: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1750: 	/* bias bh is positive if real duration
 1751: 	 * is higher than the multiple of stepm and negative otherwise.
 1752: 	 */
 1753: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1754: 	if( s2 > nlstate){ 
 1755: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1756: 	     then the contribution to the likelihood is the probability to 
 1757: 	     die between last step unit time and current  step unit time, 
 1758: 	     which is also equal to probability to die before dh 
 1759: 	     minus probability to die before dh-stepm . 
 1760: 	     In version up to 0.92 likelihood was computed
 1761: 	as if date of death was unknown. Death was treated as any other
 1762: 	health state: the date of the interview describes the actual state
 1763: 	and not the date of a change in health state. The former idea was
 1764: 	to consider that at each interview the state was recorded
 1765: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1766: 	introduced the exact date of death then we should have modified
 1767: 	the contribution of an exact death to the likelihood. This new
 1768: 	contribution is smaller and very dependent of the step unit
 1769: 	stepm. It is no more the probability to die between last interview
 1770: 	and month of death but the probability to survive from last
 1771: 	interview up to one month before death multiplied by the
 1772: 	probability to die within a month. Thanks to Chris
 1773: 	Jackson for correcting this bug.  Former versions increased
 1774: 	mortality artificially. The bad side is that we add another loop
 1775: 	which slows down the processing. The difference can be up to 10%
 1776: 	lower mortality.
 1777: 	  */
 1778: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1779: 
 1780: 
 1781: 	} else if  (s2==-2) {
 1782: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1783: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1784: 	  /*survp += out[s1][j]; */
 1785: 	  lli= log(survp);
 1786: 	}
 1787: 	
 1788:  	else if  (s2==-4) { 
 1789: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 1790: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1791:  	  lli= log(survp); 
 1792:  	} 
 1793: 
 1794:  	else if  (s2==-5) { 
 1795:  	  for (j=1,survp=0. ; j<=2; j++)  
 1796: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1797:  	  lli= log(survp); 
 1798:  	} 
 1799: 	
 1800: 	else{
 1801: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1802: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1803: 	} 
 1804: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1805: 	/*if(lli ==000.0)*/
 1806: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1807:   	ipmx +=1;
 1808: 	sw += weight[i];
 1809: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1810:       } /* end of wave */
 1811:     } /* end of individual */
 1812:   }  else if(mle==2){
 1813:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1814:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1815:       for(mi=1; mi<= wav[i]-1; mi++){
 1816: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1817: 	  for (j=1;j<=nlstate+ndeath;j++){
 1818: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1819: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1820: 	  }
 1821: 	for(d=0; d<=dh[mi][i]; d++){
 1822: 	  newm=savm;
 1823: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1824: 	  for (kk=1; kk<=cptcovage;kk++) {
 1825: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1826: 	  }
 1827: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1828: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1829: 	  savm=oldm;
 1830: 	  oldm=newm;
 1831: 	} /* end mult */
 1832:       
 1833: 	s1=s[mw[mi][i]][i];
 1834: 	s2=s[mw[mi+1][i]][i];
 1835: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1836: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1837: 	ipmx +=1;
 1838: 	sw += weight[i];
 1839: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1840:       } /* end of wave */
 1841:     } /* end of individual */
 1842:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1843:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1844:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1845:       for(mi=1; mi<= wav[i]-1; mi++){
 1846: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1847: 	  for (j=1;j<=nlstate+ndeath;j++){
 1848: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1849: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1850: 	  }
 1851: 	for(d=0; d<dh[mi][i]; d++){
 1852: 	  newm=savm;
 1853: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1854: 	  for (kk=1; kk<=cptcovage;kk++) {
 1855: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1856: 	  }
 1857: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1858: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1859: 	  savm=oldm;
 1860: 	  oldm=newm;
 1861: 	} /* end mult */
 1862:       
 1863: 	s1=s[mw[mi][i]][i];
 1864: 	s2=s[mw[mi+1][i]][i];
 1865: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1866: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1867: 	ipmx +=1;
 1868: 	sw += weight[i];
 1869: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1870:       } /* end of wave */
 1871:     } /* end of individual */
 1872:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1873:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1874:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1875:       for(mi=1; mi<= wav[i]-1; mi++){
 1876: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1877: 	  for (j=1;j<=nlstate+ndeath;j++){
 1878: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1879: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1880: 	  }
 1881: 	for(d=0; d<dh[mi][i]; d++){
 1882: 	  newm=savm;
 1883: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1884: 	  for (kk=1; kk<=cptcovage;kk++) {
 1885: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1886: 	  }
 1887: 	
 1888: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1889: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1890: 	  savm=oldm;
 1891: 	  oldm=newm;
 1892: 	} /* end mult */
 1893:       
 1894: 	s1=s[mw[mi][i]][i];
 1895: 	s2=s[mw[mi+1][i]][i];
 1896: 	if( s2 > nlstate){ 
 1897: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1898: 	}else{
 1899: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1900: 	}
 1901: 	ipmx +=1;
 1902: 	sw += weight[i];
 1903: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1904: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1905:       } /* end of wave */
 1906:     } /* end of individual */
 1907:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1908:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1909:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1910:       for(mi=1; mi<= wav[i]-1; mi++){
 1911: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1912: 	  for (j=1;j<=nlstate+ndeath;j++){
 1913: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1914: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1915: 	  }
 1916: 	for(d=0; d<dh[mi][i]; d++){
 1917: 	  newm=savm;
 1918: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1919: 	  for (kk=1; kk<=cptcovage;kk++) {
 1920: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1921: 	  }
 1922: 	
 1923: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1924: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1925: 	  savm=oldm;
 1926: 	  oldm=newm;
 1927: 	} /* end mult */
 1928:       
 1929: 	s1=s[mw[mi][i]][i];
 1930: 	s2=s[mw[mi+1][i]][i];
 1931: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1932: 	ipmx +=1;
 1933: 	sw += weight[i];
 1934: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1935: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1936:       } /* end of wave */
 1937:     } /* end of individual */
 1938:   } /* End of if */
 1939:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1940:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1941:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1942:   return -l;
 1943: }
 1944: 
 1945: /*************** log-likelihood *************/
 1946: double funcone( double *x)
 1947: {
 1948:   /* Same as likeli but slower because of a lot of printf and if */
 1949:   int i, ii, j, k, mi, d, kk;
 1950:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1951:   double **out;
 1952:   double lli; /* Individual log likelihood */
 1953:   double llt;
 1954:   int s1, s2;
 1955:   double bbh, survp;
 1956:   /*extern weight */
 1957:   /* We are differentiating ll according to initial status */
 1958:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1959:   /*for(i=1;i<imx;i++) 
 1960:     printf(" %d\n",s[4][i]);
 1961:   */
 1962:   cov[1]=1.;
 1963: 
 1964:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1965: 
 1966:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1967:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1968:     for(mi=1; mi<= wav[i]-1; mi++){
 1969:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1970: 	for (j=1;j<=nlstate+ndeath;j++){
 1971: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1972: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1973: 	}
 1974:       for(d=0; d<dh[mi][i]; d++){
 1975: 	newm=savm;
 1976: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1977: 	for (kk=1; kk<=cptcovage;kk++) {
 1978: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1979: 	}
 1980: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1981: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1982: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1983: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 1984: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 1985: 	savm=oldm;
 1986: 	oldm=newm;
 1987:       } /* end mult */
 1988:       
 1989:       s1=s[mw[mi][i]][i];
 1990:       s2=s[mw[mi+1][i]][i];
 1991:       bbh=(double)bh[mi][i]/(double)stepm; 
 1992:       /* bias is positive if real duration
 1993:        * is higher than the multiple of stepm and negative otherwise.
 1994:        */
 1995:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1996: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1997:       } else if  (s2==-2) {
 1998: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 1999: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2000: 	lli= log(survp);
 2001:       }else if (mle==1){
 2002: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2003:       } else if(mle==2){
 2004: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2005:       } else if(mle==3){  /* exponential inter-extrapolation */
 2006: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2007:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 2008: 	lli=log(out[s1][s2]); /* Original formula */
 2009:       } else{  /* mle=0 back to 1 */
 2010: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2011: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 2012:       } /* End of if */
 2013:       ipmx +=1;
 2014:       sw += weight[i];
 2015:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2016:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2017:       if(globpr){
 2018: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 2019:  %11.6f %11.6f %11.6f ", \
 2020: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 2021: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 2022: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 2023: 	  llt +=ll[k]*gipmx/gsw;
 2024: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 2025: 	}
 2026: 	fprintf(ficresilk," %10.6f\n", -llt);
 2027:       }
 2028:     } /* end of wave */
 2029:   } /* end of individual */
 2030:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2031:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2032:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2033:   if(globpr==0){ /* First time we count the contributions and weights */
 2034:     gipmx=ipmx;
 2035:     gsw=sw;
 2036:   }
 2037:   return -l;
 2038: }
 2039: 
 2040: 
 2041: /*************** function likelione ***********/
 2042: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 2043: {
 2044:   /* This routine should help understanding what is done with 
 2045:      the selection of individuals/waves and
 2046:      to check the exact contribution to the likelihood.
 2047:      Plotting could be done.
 2048:    */
 2049:   int k;
 2050: 
 2051:   if(*globpri !=0){ /* Just counts and sums, no printings */
 2052:     strcpy(fileresilk,"ilk"); 
 2053:     strcat(fileresilk,fileres);
 2054:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 2055:       printf("Problem with resultfile: %s\n", fileresilk);
 2056:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 2057:     }
 2058:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 2059:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 2060:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 2061:     for(k=1; k<=nlstate; k++) 
 2062:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 2063:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 2064:   }
 2065: 
 2066:   *fretone=(*funcone)(p);
 2067:   if(*globpri !=0){
 2068:     fclose(ficresilk);
 2069:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 2070:     fflush(fichtm); 
 2071:   } 
 2072:   return;
 2073: }
 2074: 
 2075: 
 2076: /*********** Maximum Likelihood Estimation ***************/
 2077: 
 2078: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 2079: {
 2080:   int i,j, iter;
 2081:   double **xi;
 2082:   double fret;
 2083:   double fretone; /* Only one call to likelihood */
 2084:   /*  char filerespow[FILENAMELENGTH];*/
 2085:   xi=matrix(1,npar,1,npar);
 2086:   for (i=1;i<=npar;i++)
 2087:     for (j=1;j<=npar;j++)
 2088:       xi[i][j]=(i==j ? 1.0 : 0.0);
 2089:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 2090:   strcpy(filerespow,"pow"); 
 2091:   strcat(filerespow,fileres);
 2092:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 2093:     printf("Problem with resultfile: %s\n", filerespow);
 2094:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 2095:   }
 2096:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 2097:   for (i=1;i<=nlstate;i++)
 2098:     for(j=1;j<=nlstate+ndeath;j++)
 2099:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2100:   fprintf(ficrespow,"\n");
 2101: 
 2102:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2103: 
 2104:   free_matrix(xi,1,npar,1,npar);
 2105:   fclose(ficrespow);
 2106:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 2107:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 2108:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 2109: 
 2110: }
 2111: 
 2112: /**** Computes Hessian and covariance matrix ***/
 2113: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2114: {
 2115:   double  **a,**y,*x,pd;
 2116:   double **hess;
 2117:   int i, j,jk;
 2118:   int *indx;
 2119: 
 2120:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2121:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2122:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2123:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2124:   double gompertz(double p[]);
 2125:   hess=matrix(1,npar,1,npar);
 2126: 
 2127:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2128:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2129:   for (i=1;i<=npar;i++){
 2130:     printf("%d",i);fflush(stdout);
 2131:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2132:    
 2133:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2134:     
 2135:     /*  printf(" %f ",p[i]);
 2136: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2137:   }
 2138:   
 2139:   for (i=1;i<=npar;i++) {
 2140:     for (j=1;j<=npar;j++)  {
 2141:       if (j>i) { 
 2142: 	printf(".%d%d",i,j);fflush(stdout);
 2143: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2144: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2145: 	
 2146: 	hess[j][i]=hess[i][j];    
 2147: 	/*printf(" %lf ",hess[i][j]);*/
 2148:       }
 2149:     }
 2150:   }
 2151:   printf("\n");
 2152:   fprintf(ficlog,"\n");
 2153: 
 2154:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2155:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2156:   
 2157:   a=matrix(1,npar,1,npar);
 2158:   y=matrix(1,npar,1,npar);
 2159:   x=vector(1,npar);
 2160:   indx=ivector(1,npar);
 2161:   for (i=1;i<=npar;i++)
 2162:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2163:   ludcmp(a,npar,indx,&pd);
 2164: 
 2165:   for (j=1;j<=npar;j++) {
 2166:     for (i=1;i<=npar;i++) x[i]=0;
 2167:     x[j]=1;
 2168:     lubksb(a,npar,indx,x);
 2169:     for (i=1;i<=npar;i++){ 
 2170:       matcov[i][j]=x[i];
 2171:     }
 2172:   }
 2173: 
 2174:   printf("\n#Hessian matrix#\n");
 2175:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2176:   for (i=1;i<=npar;i++) { 
 2177:     for (j=1;j<=npar;j++) { 
 2178:       printf("%.3e ",hess[i][j]);
 2179:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2180:     }
 2181:     printf("\n");
 2182:     fprintf(ficlog,"\n");
 2183:   }
 2184: 
 2185:   /* Recompute Inverse */
 2186:   for (i=1;i<=npar;i++)
 2187:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2188:   ludcmp(a,npar,indx,&pd);
 2189: 
 2190:   /*  printf("\n#Hessian matrix recomputed#\n");
 2191: 
 2192:   for (j=1;j<=npar;j++) {
 2193:     for (i=1;i<=npar;i++) x[i]=0;
 2194:     x[j]=1;
 2195:     lubksb(a,npar,indx,x);
 2196:     for (i=1;i<=npar;i++){ 
 2197:       y[i][j]=x[i];
 2198:       printf("%.3e ",y[i][j]);
 2199:       fprintf(ficlog,"%.3e ",y[i][j]);
 2200:     }
 2201:     printf("\n");
 2202:     fprintf(ficlog,"\n");
 2203:   }
 2204:   */
 2205: 
 2206:   free_matrix(a,1,npar,1,npar);
 2207:   free_matrix(y,1,npar,1,npar);
 2208:   free_vector(x,1,npar);
 2209:   free_ivector(indx,1,npar);
 2210:   free_matrix(hess,1,npar,1,npar);
 2211: 
 2212: 
 2213: }
 2214: 
 2215: /*************** hessian matrix ****************/
 2216: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2217: {
 2218:   int i;
 2219:   int l=1, lmax=20;
 2220:   double k1,k2;
 2221:   double p2[MAXPARM+1]; /* identical to x */
 2222:   double res;
 2223:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2224:   double fx;
 2225:   int k=0,kmax=10;
 2226:   double l1;
 2227: 
 2228:   fx=func(x);
 2229:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2230:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2231:     l1=pow(10,l);
 2232:     delts=delt;
 2233:     for(k=1 ; k <kmax; k=k+1){
 2234:       delt = delta*(l1*k);
 2235:       p2[theta]=x[theta] +delt;
 2236:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2237:       p2[theta]=x[theta]-delt;
 2238:       k2=func(p2)-fx;
 2239:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2240:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2241:       
 2242: #ifdef DEBUGHESS
 2243:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2244:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2245: #endif
 2246:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2247:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2248: 	k=kmax;
 2249:       }
 2250:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2251: 	k=kmax; l=lmax*10.;
 2252:       }
 2253:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2254: 	delts=delt;
 2255:       }
 2256:     }
 2257:   }
 2258:   delti[theta]=delts;
 2259:   return res; 
 2260:   
 2261: }
 2262: 
 2263: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2264: {
 2265:   int i;
 2266:   int l=1, l1, lmax=20;
 2267:   double k1,k2,k3,k4,res,fx;
 2268:   double p2[MAXPARM+1];
 2269:   int k;
 2270: 
 2271:   fx=func(x);
 2272:   for (k=1; k<=2; k++) {
 2273:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2274:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2275:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2276:     k1=func(p2)-fx;
 2277:   
 2278:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2279:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2280:     k2=func(p2)-fx;
 2281:   
 2282:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2283:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2284:     k3=func(p2)-fx;
 2285:   
 2286:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2287:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2288:     k4=func(p2)-fx;
 2289:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2290: #ifdef DEBUG
 2291:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2292:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2293: #endif
 2294:   }
 2295:   return res;
 2296: }
 2297: 
 2298: /************** Inverse of matrix **************/
 2299: void ludcmp(double **a, int n, int *indx, double *d) 
 2300: { 
 2301:   int i,imax,j,k; 
 2302:   double big,dum,sum,temp; 
 2303:   double *vv; 
 2304:  
 2305:   vv=vector(1,n); 
 2306:   *d=1.0; 
 2307:   for (i=1;i<=n;i++) { 
 2308:     big=0.0; 
 2309:     for (j=1;j<=n;j++) 
 2310:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2311:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2312:     vv[i]=1.0/big; 
 2313:   } 
 2314:   for (j=1;j<=n;j++) { 
 2315:     for (i=1;i<j;i++) { 
 2316:       sum=a[i][j]; 
 2317:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2318:       a[i][j]=sum; 
 2319:     } 
 2320:     big=0.0; 
 2321:     for (i=j;i<=n;i++) { 
 2322:       sum=a[i][j]; 
 2323:       for (k=1;k<j;k++) 
 2324: 	sum -= a[i][k]*a[k][j]; 
 2325:       a[i][j]=sum; 
 2326:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2327: 	big=dum; 
 2328: 	imax=i; 
 2329:       } 
 2330:     } 
 2331:     if (j != imax) { 
 2332:       for (k=1;k<=n;k++) { 
 2333: 	dum=a[imax][k]; 
 2334: 	a[imax][k]=a[j][k]; 
 2335: 	a[j][k]=dum; 
 2336:       } 
 2337:       *d = -(*d); 
 2338:       vv[imax]=vv[j]; 
 2339:     } 
 2340:     indx[j]=imax; 
 2341:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2342:     if (j != n) { 
 2343:       dum=1.0/(a[j][j]); 
 2344:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2345:     } 
 2346:   } 
 2347:   free_vector(vv,1,n);  /* Doesn't work */
 2348: ;
 2349: } 
 2350: 
 2351: void lubksb(double **a, int n, int *indx, double b[]) 
 2352: { 
 2353:   int i,ii=0,ip,j; 
 2354:   double sum; 
 2355:  
 2356:   for (i=1;i<=n;i++) { 
 2357:     ip=indx[i]; 
 2358:     sum=b[ip]; 
 2359:     b[ip]=b[i]; 
 2360:     if (ii) 
 2361:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2362:     else if (sum) ii=i; 
 2363:     b[i]=sum; 
 2364:   } 
 2365:   for (i=n;i>=1;i--) { 
 2366:     sum=b[i]; 
 2367:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2368:     b[i]=sum/a[i][i]; 
 2369:   } 
 2370: } 
 2371: 
 2372: void pstamp(FILE *fichier)
 2373: {
 2374:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2375: }
 2376: 
 2377: /************ Frequencies ********************/
 2378: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2379: {  /* Some frequencies */
 2380:   
 2381:   int i, m, jk, k1,i1, j1, bool, z1,j;
 2382:   int first;
 2383:   double ***freq; /* Frequencies */
 2384:   double *pp, **prop;
 2385:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2386:   char fileresp[FILENAMELENGTH];
 2387:   
 2388:   pp=vector(1,nlstate);
 2389:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2390:   strcpy(fileresp,"p");
 2391:   strcat(fileresp,fileres);
 2392:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2393:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2394:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2395:     exit(0);
 2396:   }
 2397:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2398:   j1=0;
 2399:   
 2400:   j=cptcoveff;
 2401:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2402: 
 2403:   first=1;
 2404: 
 2405:   /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
 2406:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
 2407:   /*    j1++;
 2408: */
 2409:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2410:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2411: 	scanf("%d", i);*/
 2412:       for (i=-5; i<=nlstate+ndeath; i++)  
 2413: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2414: 	  for(m=iagemin; m <= iagemax+3; m++)
 2415: 	    freq[i][jk][m]=0;
 2416:       
 2417:       for (i=1; i<=nlstate; i++)  
 2418: 	for(m=iagemin; m <= iagemax+3; m++)
 2419: 	  prop[i][m]=0;
 2420:       
 2421:       dateintsum=0;
 2422:       k2cpt=0;
 2423:       for (i=1; i<=imx; i++) {
 2424: 	bool=1;
 2425: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2426: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2427:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 2428:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2429:               bool=0;
 2430:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 2431:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 2432:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 2433:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 2434:             } 
 2435: 	}
 2436:  
 2437: 	if (bool==1){
 2438: 	  for(m=firstpass; m<=lastpass; m++){
 2439: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2440: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2441: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2442: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2443: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2444: 	      if (m<lastpass) {
 2445: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2446: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2447: 	      }
 2448: 	      
 2449: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2450: 		dateintsum=dateintsum+k2;
 2451: 		k2cpt++;
 2452: 	      }
 2453: 	      /*}*/
 2454: 	  }
 2455: 	}
 2456:       } /* end i */
 2457:        
 2458:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2459:       pstamp(ficresp);
 2460:       if  (cptcovn>0) {
 2461: 	fprintf(ficresp, "\n#********** Variable "); 
 2462: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2463: 	fprintf(ficresp, "**********\n#");
 2464: 	fprintf(ficlog, "\n#********** Variable "); 
 2465: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2466: 	fprintf(ficlog, "**********\n#");
 2467:       }
 2468:       for(i=1; i<=nlstate;i++) 
 2469: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2470:       fprintf(ficresp, "\n");
 2471:       
 2472:       for(i=iagemin; i <= iagemax+3; i++){
 2473: 	if(i==iagemax+3){
 2474: 	  fprintf(ficlog,"Total");
 2475: 	}else{
 2476: 	  if(first==1){
 2477: 	    first=0;
 2478: 	    printf("See log file for details...\n");
 2479: 	  }
 2480: 	  fprintf(ficlog,"Age %d", i);
 2481: 	}
 2482: 	for(jk=1; jk <=nlstate ; jk++){
 2483: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2484: 	    pp[jk] += freq[jk][m][i]; 
 2485: 	}
 2486: 	for(jk=1; jk <=nlstate ; jk++){
 2487: 	  for(m=-1, pos=0; m <=0 ; m++)
 2488: 	    pos += freq[jk][m][i];
 2489: 	  if(pp[jk]>=1.e-10){
 2490: 	    if(first==1){
 2491: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2492: 	    }
 2493: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2494: 	  }else{
 2495: 	    if(first==1)
 2496: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2497: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2498: 	  }
 2499: 	}
 2500: 
 2501: 	for(jk=1; jk <=nlstate ; jk++){
 2502: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2503: 	    pp[jk] += freq[jk][m][i];
 2504: 	}	
 2505: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2506: 	  pos += pp[jk];
 2507: 	  posprop += prop[jk][i];
 2508: 	}
 2509: 	for(jk=1; jk <=nlstate ; jk++){
 2510: 	  if(pos>=1.e-5){
 2511: 	    if(first==1)
 2512: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2513: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2514: 	  }else{
 2515: 	    if(first==1)
 2516: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2517: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2518: 	  }
 2519: 	  if( i <= iagemax){
 2520: 	    if(pos>=1.e-5){
 2521: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2522: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2523: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2524: 	    }
 2525: 	    else
 2526: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2527: 	  }
 2528: 	}
 2529: 	
 2530: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2531: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2532: 	    if(freq[jk][m][i] !=0 ) {
 2533: 	    if(first==1)
 2534: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2535: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2536: 	    }
 2537: 	if(i <= iagemax)
 2538: 	  fprintf(ficresp,"\n");
 2539: 	if(first==1)
 2540: 	  printf("Others in log...\n");
 2541: 	fprintf(ficlog,"\n");
 2542:       }
 2543:       /*}*/
 2544:   }
 2545:   dateintmean=dateintsum/k2cpt; 
 2546:  
 2547:   fclose(ficresp);
 2548:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2549:   free_vector(pp,1,nlstate);
 2550:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2551:   /* End of Freq */
 2552: }
 2553: 
 2554: /************ Prevalence ********************/
 2555: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2556: {  
 2557:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2558:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2559:      We still use firstpass and lastpass as another selection.
 2560:   */
 2561:  
 2562:   int i, m, jk, k1, i1, j1, bool, z1,j;
 2563:   double ***freq; /* Frequencies */
 2564:   double *pp, **prop;
 2565:   double pos,posprop; 
 2566:   double  y2; /* in fractional years */
 2567:   int iagemin, iagemax;
 2568:   int first; /** to stop verbosity which is redirected to log file */
 2569: 
 2570:   iagemin= (int) agemin;
 2571:   iagemax= (int) agemax;
 2572:   /*pp=vector(1,nlstate);*/
 2573:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2574:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2575:   j1=0;
 2576:   
 2577:   /*j=cptcoveff;*/
 2578:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2579:   
 2580:   first=1;
 2581:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 2582:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 2583:       j1++;*/
 2584:       
 2585:       for (i=1; i<=nlstate; i++)  
 2586: 	for(m=iagemin; m <= iagemax+3; m++)
 2587: 	  prop[i][m]=0.0;
 2588:      
 2589:       for (i=1; i<=imx; i++) { /* Each individual */
 2590: 	bool=1;
 2591: 	if  (cptcovn>0) {
 2592: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2593: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2594: 	      bool=0;
 2595: 	} 
 2596: 	if (bool==1) { 
 2597: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2598: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2599: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2600: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2601: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2602: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2603:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2604: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2605:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2606:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2607:  	      } 
 2608: 	    }
 2609: 	  } /* end selection of waves */
 2610: 	}
 2611:       }
 2612:       for(i=iagemin; i <= iagemax+3; i++){  
 2613:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2614:  	  posprop += prop[jk][i]; 
 2615:  	} 
 2616: 	
 2617:  	for(jk=1; jk <=nlstate ; jk++){	    
 2618:  	  if( i <=  iagemax){ 
 2619:  	    if(posprop>=1.e-5){ 
 2620:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2621:  	    } else{
 2622: 	      if(first==1){
 2623: 		first=0;
 2624: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 2625: 	      }
 2626: 	    }
 2627:  	  } 
 2628:  	}/* end jk */ 
 2629:       }/* end i */ 
 2630:     /*} *//* end i1 */
 2631:   } /* end j1 */
 2632:   
 2633:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2634:   /*free_vector(pp,1,nlstate);*/
 2635:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2636: }  /* End of prevalence */
 2637: 
 2638: /************* Waves Concatenation ***************/
 2639: 
 2640: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2641: {
 2642:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2643:      Death is a valid wave (if date is known).
 2644:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2645:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2646:      and mw[mi+1][i]. dh depends on stepm.
 2647:      */
 2648: 
 2649:   int i, mi, m;
 2650:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2651:      double sum=0., jmean=0.;*/
 2652:   int first;
 2653:   int j, k=0,jk, ju, jl;
 2654:   double sum=0.;
 2655:   first=0;
 2656:   jmin=1e+5;
 2657:   jmax=-1;
 2658:   jmean=0.;
 2659:   for(i=1; i<=imx; i++){
 2660:     mi=0;
 2661:     m=firstpass;
 2662:     while(s[m][i] <= nlstate){
 2663:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2664: 	mw[++mi][i]=m;
 2665:       if(m >=lastpass)
 2666: 	break;
 2667:       else
 2668: 	m++;
 2669:     }/* end while */
 2670:     if (s[m][i] > nlstate){
 2671:       mi++;	/* Death is another wave */
 2672:       /* if(mi==0)  never been interviewed correctly before death */
 2673: 	 /* Only death is a correct wave */
 2674:       mw[mi][i]=m;
 2675:     }
 2676: 
 2677:     wav[i]=mi;
 2678:     if(mi==0){
 2679:       nbwarn++;
 2680:       if(first==0){
 2681: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2682: 	first=1;
 2683:       }
 2684:       if(first==1){
 2685: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2686:       }
 2687:     } /* end mi==0 */
 2688:   } /* End individuals */
 2689: 
 2690:   for(i=1; i<=imx; i++){
 2691:     for(mi=1; mi<wav[i];mi++){
 2692:       if (stepm <=0)
 2693: 	dh[mi][i]=1;
 2694:       else{
 2695: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2696: 	  if (agedc[i] < 2*AGESUP) {
 2697: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2698: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2699: 	    else if(j<0){
 2700: 	      nberr++;
 2701: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2702: 	      j=1; /* Temporary Dangerous patch */
 2703: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2704: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2705: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2706: 	    }
 2707: 	    k=k+1;
 2708: 	    if (j >= jmax){
 2709: 	      jmax=j;
 2710: 	      ijmax=i;
 2711: 	    }
 2712: 	    if (j <= jmin){
 2713: 	      jmin=j;
 2714: 	      ijmin=i;
 2715: 	    }
 2716: 	    sum=sum+j;
 2717: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2718: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2719: 	  }
 2720: 	}
 2721: 	else{
 2722: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2723: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2724: 
 2725: 	  k=k+1;
 2726: 	  if (j >= jmax) {
 2727: 	    jmax=j;
 2728: 	    ijmax=i;
 2729: 	  }
 2730: 	  else if (j <= jmin){
 2731: 	    jmin=j;
 2732: 	    ijmin=i;
 2733: 	  }
 2734: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2735: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2736: 	  if(j<0){
 2737: 	    nberr++;
 2738: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2739: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2740: 	  }
 2741: 	  sum=sum+j;
 2742: 	}
 2743: 	jk= j/stepm;
 2744: 	jl= j -jk*stepm;
 2745: 	ju= j -(jk+1)*stepm;
 2746: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2747: 	  if(jl==0){
 2748: 	    dh[mi][i]=jk;
 2749: 	    bh[mi][i]=0;
 2750: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2751: 		  * to avoid the price of an extra matrix product in likelihood */
 2752: 	    dh[mi][i]=jk+1;
 2753: 	    bh[mi][i]=ju;
 2754: 	  }
 2755: 	}else{
 2756: 	  if(jl <= -ju){
 2757: 	    dh[mi][i]=jk;
 2758: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2759: 				 * is higher than the multiple of stepm and negative otherwise.
 2760: 				 */
 2761: 	  }
 2762: 	  else{
 2763: 	    dh[mi][i]=jk+1;
 2764: 	    bh[mi][i]=ju;
 2765: 	  }
 2766: 	  if(dh[mi][i]==0){
 2767: 	    dh[mi][i]=1; /* At least one step */
 2768: 	    bh[mi][i]=ju; /* At least one step */
 2769: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2770: 	  }
 2771: 	} /* end if mle */
 2772:       }
 2773:     } /* end wave */
 2774:   }
 2775:   jmean=sum/k;
 2776:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 2777:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 2778:  }
 2779: 
 2780: /*********** Tricode ****************************/
 2781: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 2782: {
 2783:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 2784:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 2785:   /* Boring subroutine which should only output nbcode[Tvar[j]][k]
 2786:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 2787:   /* nbcode[Tvar[j]][1]= 
 2788:   */
 2789: 
 2790:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 2791:   int modmaxcovj=0; /* Modality max of covariates j */
 2792:   int cptcode=0; /* Modality max of covariates j */
 2793:   int modmincovj=0; /* Modality min of covariates j */
 2794: 
 2795: 
 2796:   cptcoveff=0; 
 2797:  
 2798:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
 2799:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 2800: 
 2801:   /* Loop on covariates without age and products */
 2802:   for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
 2803:     for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 2804: 			       modality of this covariate Vj*/ 
 2805:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 2806: 				    * If product of Vn*Vm, still boolean *:
 2807: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 2808: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 2809:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 2810: 				      modality of the nth covariate of individual i. */
 2811:       if (ij > modmaxcovj)
 2812:         modmaxcovj=ij; 
 2813:       else if (ij < modmincovj) 
 2814: 	modmincovj=ij; 
 2815:       if ((ij < -1) && (ij > NCOVMAX)){
 2816: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 2817: 	exit(1);
 2818:       }else
 2819:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 2820:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 2821:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2822:       /* getting the maximum value of the modality of the covariate
 2823: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 2824: 	 female is 1, then modmaxcovj=1.*/
 2825:     }
 2826:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 2827:     cptcode=modmaxcovj;
 2828:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 2829:    /*for (i=0; i<=cptcode; i++) {*/
 2830:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 2831:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
 2832:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 2833: 	ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
 2834:       }
 2835:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 2836: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 2837:     } /* Ndum[-1] number of undefined modalities */
 2838: 
 2839:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 2840:     /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 2841:     /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
 2842:        modmincovj=3; modmaxcovj = 7;
 2843:        There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 2844:        which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 2845:        variables V1_1 and V1_2.
 2846:        nbcode[Tvar[j]][ij]=k;
 2847:        nbcode[Tvar[j]][1]=0;
 2848:        nbcode[Tvar[j]][2]=1;
 2849:        nbcode[Tvar[j]][3]=2;
 2850:     */
 2851:     ij=1; /* ij is similar to i but can jumps over null modalities */
 2852:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
 2853:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
 2854: 	/*recode from 0 */
 2855: 	if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 2856: 	  nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 2857: 				     k is a modality. If we have model=V1+V1*sex 
 2858: 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2859: 	  ij++;
 2860: 	}
 2861: 	if (ij > ncodemax[j]) break; 
 2862:       }  /* end of loop on */
 2863:     } /* end of loop on modality */ 
 2864:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 2865:   
 2866:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 2867:   
 2868:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
 2869:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 2870:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 2871:    Ndum[ij]++; 
 2872:  } 
 2873: 
 2874:  ij=1;
 2875:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 2876:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 2877:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2878:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 2879:      Tvaraff[ij]=i; /*For printing (unclear) */
 2880:      ij++;
 2881:    }else
 2882:        Tvaraff[ij]=0;
 2883:  }
 2884:  ij--;
 2885:  cptcoveff=ij; /*Number of total covariates*/
 2886: 
 2887: }
 2888: 
 2889: 
 2890: /*********** Health Expectancies ****************/
 2891: 
 2892: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 2893: 
 2894: {
 2895:   /* Health expectancies, no variances */
 2896:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 2897:   int nhstepma, nstepma; /* Decreasing with age */
 2898:   double age, agelim, hf;
 2899:   double ***p3mat;
 2900:   double eip;
 2901: 
 2902:   pstamp(ficreseij);
 2903:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 2904:   fprintf(ficreseij,"# Age");
 2905:   for(i=1; i<=nlstate;i++){
 2906:     for(j=1; j<=nlstate;j++){
 2907:       fprintf(ficreseij," e%1d%1d ",i,j);
 2908:     }
 2909:     fprintf(ficreseij," e%1d. ",i);
 2910:   }
 2911:   fprintf(ficreseij,"\n");
 2912: 
 2913:   
 2914:   if(estepm < stepm){
 2915:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2916:   }
 2917:   else  hstepm=estepm;   
 2918:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2919:    * This is mainly to measure the difference between two models: for example
 2920:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2921:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2922:    * progression in between and thus overestimating or underestimating according
 2923:    * to the curvature of the survival function. If, for the same date, we 
 2924:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2925:    * to compare the new estimate of Life expectancy with the same linear 
 2926:    * hypothesis. A more precise result, taking into account a more precise
 2927:    * curvature will be obtained if estepm is as small as stepm. */
 2928: 
 2929:   /* For example we decided to compute the life expectancy with the smallest unit */
 2930:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2931:      nhstepm is the number of hstepm from age to agelim 
 2932:      nstepm is the number of stepm from age to agelin. 
 2933:      Look at hpijx to understand the reason of that which relies in memory size
 2934:      and note for a fixed period like estepm months */
 2935:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2936:      survival function given by stepm (the optimization length). Unfortunately it
 2937:      means that if the survival funtion is printed only each two years of age and if
 2938:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2939:      results. So we changed our mind and took the option of the best precision.
 2940:   */
 2941:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2942: 
 2943:   agelim=AGESUP;
 2944:   /* If stepm=6 months */
 2945:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2946:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2947:     
 2948: /* nhstepm age range expressed in number of stepm */
 2949:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 2950:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2951:   /* if (stepm >= YEARM) hstepm=1;*/
 2952:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2953:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2954: 
 2955:   for (age=bage; age<=fage; age ++){ 
 2956:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 2957:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2958:     /* if (stepm >= YEARM) hstepm=1;*/
 2959:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 2960: 
 2961:     /* If stepm=6 months */
 2962:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 2963:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 2964:     
 2965:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 2966:     
 2967:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2968:     
 2969:     printf("%d|",(int)age);fflush(stdout);
 2970:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2971:     
 2972:     /* Computing expectancies */
 2973:     for(i=1; i<=nlstate;i++)
 2974:       for(j=1; j<=nlstate;j++)
 2975: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2976: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2977: 	  
 2978: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2979: 
 2980: 	}
 2981: 
 2982:     fprintf(ficreseij,"%3.0f",age );
 2983:     for(i=1; i<=nlstate;i++){
 2984:       eip=0;
 2985:       for(j=1; j<=nlstate;j++){
 2986: 	eip +=eij[i][j][(int)age];
 2987: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 2988:       }
 2989:       fprintf(ficreseij,"%9.4f", eip );
 2990:     }
 2991:     fprintf(ficreseij,"\n");
 2992:     
 2993:   }
 2994:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2995:   printf("\n");
 2996:   fprintf(ficlog,"\n");
 2997:   
 2998: }
 2999: 
 3000: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 3001: 
 3002: {
 3003:   /* Covariances of health expectancies eij and of total life expectancies according
 3004:    to initial status i, ei. .
 3005:   */
 3006:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 3007:   int nhstepma, nstepma; /* Decreasing with age */
 3008:   double age, agelim, hf;
 3009:   double ***p3matp, ***p3matm, ***varhe;
 3010:   double **dnewm,**doldm;
 3011:   double *xp, *xm;
 3012:   double **gp, **gm;
 3013:   double ***gradg, ***trgradg;
 3014:   int theta;
 3015: 
 3016:   double eip, vip;
 3017: 
 3018:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 3019:   xp=vector(1,npar);
 3020:   xm=vector(1,npar);
 3021:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 3022:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 3023:   
 3024:   pstamp(ficresstdeij);
 3025:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 3026:   fprintf(ficresstdeij,"# Age");
 3027:   for(i=1; i<=nlstate;i++){
 3028:     for(j=1; j<=nlstate;j++)
 3029:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 3030:     fprintf(ficresstdeij," e%1d. ",i);
 3031:   }
 3032:   fprintf(ficresstdeij,"\n");
 3033: 
 3034:   pstamp(ficrescveij);
 3035:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 3036:   fprintf(ficrescveij,"# Age");
 3037:   for(i=1; i<=nlstate;i++)
 3038:     for(j=1; j<=nlstate;j++){
 3039:       cptj= (j-1)*nlstate+i;
 3040:       for(i2=1; i2<=nlstate;i2++)
 3041: 	for(j2=1; j2<=nlstate;j2++){
 3042: 	  cptj2= (j2-1)*nlstate+i2;
 3043: 	  if(cptj2 <= cptj)
 3044: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 3045: 	}
 3046:     }
 3047:   fprintf(ficrescveij,"\n");
 3048:   
 3049:   if(estepm < stepm){
 3050:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3051:   }
 3052:   else  hstepm=estepm;   
 3053:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3054:    * This is mainly to measure the difference between two models: for example
 3055:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3056:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3057:    * progression in between and thus overestimating or underestimating according
 3058:    * to the curvature of the survival function. If, for the same date, we 
 3059:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3060:    * to compare the new estimate of Life expectancy with the same linear 
 3061:    * hypothesis. A more precise result, taking into account a more precise
 3062:    * curvature will be obtained if estepm is as small as stepm. */
 3063: 
 3064:   /* For example we decided to compute the life expectancy with the smallest unit */
 3065:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3066:      nhstepm is the number of hstepm from age to agelim 
 3067:      nstepm is the number of stepm from age to agelin. 
 3068:      Look at hpijx to understand the reason of that which relies in memory size
 3069:      and note for a fixed period like estepm months */
 3070:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3071:      survival function given by stepm (the optimization length). Unfortunately it
 3072:      means that if the survival funtion is printed only each two years of age and if
 3073:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3074:      results. So we changed our mind and took the option of the best precision.
 3075:   */
 3076:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3077: 
 3078:   /* If stepm=6 months */
 3079:   /* nhstepm age range expressed in number of stepm */
 3080:   agelim=AGESUP;
 3081:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 3082:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3083:   /* if (stepm >= YEARM) hstepm=1;*/
 3084:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3085:   
 3086:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3087:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3088:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 3089:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 3090:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 3091:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 3092: 
 3093:   for (age=bage; age<=fage; age ++){ 
 3094:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3095:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3096:     /* if (stepm >= YEARM) hstepm=1;*/
 3097:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3098: 
 3099:     /* If stepm=6 months */
 3100:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3101:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3102:     
 3103:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3104: 
 3105:     /* Computing  Variances of health expectancies */
 3106:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3107:        decrease memory allocation */
 3108:     for(theta=1; theta <=npar; theta++){
 3109:       for(i=1; i<=npar; i++){ 
 3110: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3111: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3112:       }
 3113:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3114:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3115:   
 3116:       for(j=1; j<= nlstate; j++){
 3117: 	for(i=1; i<=nlstate; i++){
 3118: 	  for(h=0; h<=nhstepm-1; h++){
 3119: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3120: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3121: 	  }
 3122: 	}
 3123:       }
 3124:      
 3125:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3126: 	for(h=0; h<=nhstepm-1; h++){
 3127: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3128: 	}
 3129:     }/* End theta */
 3130:     
 3131:     
 3132:     for(h=0; h<=nhstepm-1; h++)
 3133:       for(j=1; j<=nlstate*nlstate;j++)
 3134: 	for(theta=1; theta <=npar; theta++)
 3135: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3136:     
 3137: 
 3138:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3139:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3140: 	varhe[ij][ji][(int)age] =0.;
 3141: 
 3142:      printf("%d|",(int)age);fflush(stdout);
 3143:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3144:      for(h=0;h<=nhstepm-1;h++){
 3145:       for(k=0;k<=nhstepm-1;k++){
 3146: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3147: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3148: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3149: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3150: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3151:       }
 3152:     }
 3153: 
 3154:     /* Computing expectancies */
 3155:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3156:     for(i=1; i<=nlstate;i++)
 3157:       for(j=1; j<=nlstate;j++)
 3158: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3159: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3160: 	  
 3161: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3162: 
 3163: 	}
 3164: 
 3165:     fprintf(ficresstdeij,"%3.0f",age );
 3166:     for(i=1; i<=nlstate;i++){
 3167:       eip=0.;
 3168:       vip=0.;
 3169:       for(j=1; j<=nlstate;j++){
 3170: 	eip += eij[i][j][(int)age];
 3171: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3172: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3173: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3174:       }
 3175:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3176:     }
 3177:     fprintf(ficresstdeij,"\n");
 3178: 
 3179:     fprintf(ficrescveij,"%3.0f",age );
 3180:     for(i=1; i<=nlstate;i++)
 3181:       for(j=1; j<=nlstate;j++){
 3182: 	cptj= (j-1)*nlstate+i;
 3183: 	for(i2=1; i2<=nlstate;i2++)
 3184: 	  for(j2=1; j2<=nlstate;j2++){
 3185: 	    cptj2= (j2-1)*nlstate+i2;
 3186: 	    if(cptj2 <= cptj)
 3187: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3188: 	  }
 3189:       }
 3190:     fprintf(ficrescveij,"\n");
 3191:    
 3192:   }
 3193:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3194:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3195:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3196:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3197:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3198:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3199:   printf("\n");
 3200:   fprintf(ficlog,"\n");
 3201: 
 3202:   free_vector(xm,1,npar);
 3203:   free_vector(xp,1,npar);
 3204:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3205:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3206:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3207: }
 3208: 
 3209: /************ Variance ******************/
 3210: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3211: {
 3212:   /* Variance of health expectancies */
 3213:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3214:   /* double **newm;*/
 3215:   double **dnewm,**doldm;
 3216:   double **dnewmp,**doldmp;
 3217:   int i, j, nhstepm, hstepm, h, nstepm ;
 3218:   int k, cptcode;
 3219:   double *xp;
 3220:   double **gp, **gm;  /* for var eij */
 3221:   double ***gradg, ***trgradg; /*for var eij */
 3222:   double **gradgp, **trgradgp; /* for var p point j */
 3223:   double *gpp, *gmp; /* for var p point j */
 3224:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3225:   double ***p3mat;
 3226:   double age,agelim, hf;
 3227:   double ***mobaverage;
 3228:   int theta;
 3229:   char digit[4];
 3230:   char digitp[25];
 3231: 
 3232:   char fileresprobmorprev[FILENAMELENGTH];
 3233: 
 3234:   if(popbased==1){
 3235:     if(mobilav!=0)
 3236:       strcpy(digitp,"-populbased-mobilav-");
 3237:     else strcpy(digitp,"-populbased-nomobil-");
 3238:   }
 3239:   else 
 3240:     strcpy(digitp,"-stablbased-");
 3241: 
 3242:   if (mobilav!=0) {
 3243:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3244:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3245:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3246:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3247:     }
 3248:   }
 3249: 
 3250:   strcpy(fileresprobmorprev,"prmorprev"); 
 3251:   sprintf(digit,"%-d",ij);
 3252:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3253:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3254:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3255:   strcat(fileresprobmorprev,fileres);
 3256:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3257:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3258:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3259:   }
 3260:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3261:  
 3262:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3263:   pstamp(ficresprobmorprev);
 3264:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3265:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3266:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3267:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3268:     for(i=1; i<=nlstate;i++)
 3269:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3270:   }  
 3271:   fprintf(ficresprobmorprev,"\n");
 3272:   fprintf(ficgp,"\n# Routine varevsij");
 3273:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3274:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3275:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3276: /*   } */
 3277:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3278:   pstamp(ficresvij);
 3279:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3280:   if(popbased==1)
 3281:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3282:   else
 3283:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3284:   fprintf(ficresvij,"# Age");
 3285:   for(i=1; i<=nlstate;i++)
 3286:     for(j=1; j<=nlstate;j++)
 3287:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3288:   fprintf(ficresvij,"\n");
 3289: 
 3290:   xp=vector(1,npar);
 3291:   dnewm=matrix(1,nlstate,1,npar);
 3292:   doldm=matrix(1,nlstate,1,nlstate);
 3293:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3294:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3295: 
 3296:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3297:   gpp=vector(nlstate+1,nlstate+ndeath);
 3298:   gmp=vector(nlstate+1,nlstate+ndeath);
 3299:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3300:   
 3301:   if(estepm < stepm){
 3302:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3303:   }
 3304:   else  hstepm=estepm;   
 3305:   /* For example we decided to compute the life expectancy with the smallest unit */
 3306:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3307:      nhstepm is the number of hstepm from age to agelim 
 3308:      nstepm is the number of stepm from age to agelin. 
 3309:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3310:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3311:      survival function given by stepm (the optimization length). Unfortunately it
 3312:      means that if the survival funtion is printed every two years of age and if
 3313:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3314:      results. So we changed our mind and took the option of the best precision.
 3315:   */
 3316:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3317:   agelim = AGESUP;
 3318:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3319:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3320:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3321:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3322:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3323:     gp=matrix(0,nhstepm,1,nlstate);
 3324:     gm=matrix(0,nhstepm,1,nlstate);
 3325: 
 3326: 
 3327:     for(theta=1; theta <=npar; theta++){
 3328:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3329: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3330:       }
 3331:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3332:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3333: 
 3334:       if (popbased==1) {
 3335: 	if(mobilav ==0){
 3336: 	  for(i=1; i<=nlstate;i++)
 3337: 	    prlim[i][i]=probs[(int)age][i][ij];
 3338: 	}else{ /* mobilav */ 
 3339: 	  for(i=1; i<=nlstate;i++)
 3340: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3341: 	}
 3342:       }
 3343:   
 3344:       for(j=1; j<= nlstate; j++){
 3345: 	for(h=0; h<=nhstepm; h++){
 3346: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3347: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3348: 	}
 3349:       }
 3350:       /* This for computing probability of death (h=1 means
 3351:          computed over hstepm matrices product = hstepm*stepm months) 
 3352:          as a weighted average of prlim.
 3353:       */
 3354:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3355: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3356: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3357:       }    
 3358:       /* end probability of death */
 3359: 
 3360:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3361: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3362:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3363:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3364:  
 3365:       if (popbased==1) {
 3366: 	if(mobilav ==0){
 3367: 	  for(i=1; i<=nlstate;i++)
 3368: 	    prlim[i][i]=probs[(int)age][i][ij];
 3369: 	}else{ /* mobilav */ 
 3370: 	  for(i=1; i<=nlstate;i++)
 3371: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3372: 	}
 3373:       }
 3374: 
 3375:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3376: 	for(h=0; h<=nhstepm; h++){
 3377: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3378: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3379: 	}
 3380:       }
 3381:       /* This for computing probability of death (h=1 means
 3382:          computed over hstepm matrices product = hstepm*stepm months) 
 3383:          as a weighted average of prlim.
 3384:       */
 3385:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3386: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3387:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3388:       }    
 3389:       /* end probability of death */
 3390: 
 3391:       for(j=1; j<= nlstate; j++) /* vareij */
 3392: 	for(h=0; h<=nhstepm; h++){
 3393: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3394: 	}
 3395: 
 3396:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3397: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3398:       }
 3399: 
 3400:     } /* End theta */
 3401: 
 3402:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3403: 
 3404:     for(h=0; h<=nhstepm; h++) /* veij */
 3405:       for(j=1; j<=nlstate;j++)
 3406: 	for(theta=1; theta <=npar; theta++)
 3407: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3408: 
 3409:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3410:       for(theta=1; theta <=npar; theta++)
 3411: 	trgradgp[j][theta]=gradgp[theta][j];
 3412:   
 3413: 
 3414:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3415:     for(i=1;i<=nlstate;i++)
 3416:       for(j=1;j<=nlstate;j++)
 3417: 	vareij[i][j][(int)age] =0.;
 3418: 
 3419:     for(h=0;h<=nhstepm;h++){
 3420:       for(k=0;k<=nhstepm;k++){
 3421: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3422: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3423: 	for(i=1;i<=nlstate;i++)
 3424: 	  for(j=1;j<=nlstate;j++)
 3425: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3426:       }
 3427:     }
 3428:   
 3429:     /* pptj */
 3430:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3431:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3432:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3433:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3434: 	varppt[j][i]=doldmp[j][i];
 3435:     /* end ppptj */
 3436:     /*  x centered again */
 3437:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3438:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3439:  
 3440:     if (popbased==1) {
 3441:       if(mobilav ==0){
 3442: 	for(i=1; i<=nlstate;i++)
 3443: 	  prlim[i][i]=probs[(int)age][i][ij];
 3444:       }else{ /* mobilav */ 
 3445: 	for(i=1; i<=nlstate;i++)
 3446: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3447:       }
 3448:     }
 3449:              
 3450:     /* This for computing probability of death (h=1 means
 3451:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3452:        as a weighted average of prlim.
 3453:     */
 3454:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3455:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 3456: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 3457:     }    
 3458:     /* end probability of death */
 3459: 
 3460:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 3461:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3462:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 3463:       for(i=1; i<=nlstate;i++){
 3464: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 3465:       }
 3466:     } 
 3467:     fprintf(ficresprobmorprev,"\n");
 3468: 
 3469:     fprintf(ficresvij,"%.0f ",age );
 3470:     for(i=1; i<=nlstate;i++)
 3471:       for(j=1; j<=nlstate;j++){
 3472: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 3473:       }
 3474:     fprintf(ficresvij,"\n");
 3475:     free_matrix(gp,0,nhstepm,1,nlstate);
 3476:     free_matrix(gm,0,nhstepm,1,nlstate);
 3477:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 3478:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 3479:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3480:   } /* End age */
 3481:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 3482:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 3483:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3484:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3485:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 3486:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3487:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3488: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3489: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3490: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3491:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 3492:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 3493:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 3494:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3495:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3496:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3497: */
 3498: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3499:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3500: 
 3501:   free_vector(xp,1,npar);
 3502:   free_matrix(doldm,1,nlstate,1,nlstate);
 3503:   free_matrix(dnewm,1,nlstate,1,npar);
 3504:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3505:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3506:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3507:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3508:   fclose(ficresprobmorprev);
 3509:   fflush(ficgp);
 3510:   fflush(fichtm); 
 3511: }  /* end varevsij */
 3512: 
 3513: /************ Variance of prevlim ******************/
 3514: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3515: {
 3516:   /* Variance of prevalence limit */
 3517:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3518:   double **newm;
 3519:   double **dnewm,**doldm;
 3520:   int i, j, nhstepm, hstepm;
 3521:   int k, cptcode;
 3522:   double *xp;
 3523:   double *gp, *gm;
 3524:   double **gradg, **trgradg;
 3525:   double age,agelim;
 3526:   int theta;
 3527:   
 3528:   pstamp(ficresvpl);
 3529:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3530:   fprintf(ficresvpl,"# Age");
 3531:   for(i=1; i<=nlstate;i++)
 3532:       fprintf(ficresvpl," %1d-%1d",i,i);
 3533:   fprintf(ficresvpl,"\n");
 3534: 
 3535:   xp=vector(1,npar);
 3536:   dnewm=matrix(1,nlstate,1,npar);
 3537:   doldm=matrix(1,nlstate,1,nlstate);
 3538:   
 3539:   hstepm=1*YEARM; /* Every year of age */
 3540:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3541:   agelim = AGESUP;
 3542:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3543:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3544:     if (stepm >= YEARM) hstepm=1;
 3545:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3546:     gradg=matrix(1,npar,1,nlstate);
 3547:     gp=vector(1,nlstate);
 3548:     gm=vector(1,nlstate);
 3549: 
 3550:     for(theta=1; theta <=npar; theta++){
 3551:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3552: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3553:       }
 3554:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3555:       for(i=1;i<=nlstate;i++)
 3556: 	gp[i] = prlim[i][i];
 3557:     
 3558:       for(i=1; i<=npar; i++) /* Computes gradient */
 3559: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3560:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3561:       for(i=1;i<=nlstate;i++)
 3562: 	gm[i] = prlim[i][i];
 3563: 
 3564:       for(i=1;i<=nlstate;i++)
 3565: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3566:     } /* End theta */
 3567: 
 3568:     trgradg =matrix(1,nlstate,1,npar);
 3569: 
 3570:     for(j=1; j<=nlstate;j++)
 3571:       for(theta=1; theta <=npar; theta++)
 3572: 	trgradg[j][theta]=gradg[theta][j];
 3573: 
 3574:     for(i=1;i<=nlstate;i++)
 3575:       varpl[i][(int)age] =0.;
 3576:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3577:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3578:     for(i=1;i<=nlstate;i++)
 3579:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3580: 
 3581:     fprintf(ficresvpl,"%.0f ",age );
 3582:     for(i=1; i<=nlstate;i++)
 3583:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3584:     fprintf(ficresvpl,"\n");
 3585:     free_vector(gp,1,nlstate);
 3586:     free_vector(gm,1,nlstate);
 3587:     free_matrix(gradg,1,npar,1,nlstate);
 3588:     free_matrix(trgradg,1,nlstate,1,npar);
 3589:   } /* End age */
 3590: 
 3591:   free_vector(xp,1,npar);
 3592:   free_matrix(doldm,1,nlstate,1,npar);
 3593:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3594: 
 3595: }
 3596: 
 3597: /************ Variance of one-step probabilities  ******************/
 3598: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3599: {
 3600:   int i, j=0,  i1, k1, l1, t, tj;
 3601:   int k2, l2, j1,  z1;
 3602:   int k=0,l, cptcode;
 3603:   int first=1, first1, first2;
 3604:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3605:   double **dnewm,**doldm;
 3606:   double *xp;
 3607:   double *gp, *gm;
 3608:   double **gradg, **trgradg;
 3609:   double **mu;
 3610:   double age,agelim, cov[NCOVMAX+1];
 3611:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3612:   int theta;
 3613:   char fileresprob[FILENAMELENGTH];
 3614:   char fileresprobcov[FILENAMELENGTH];
 3615:   char fileresprobcor[FILENAMELENGTH];
 3616:   double ***varpij;
 3617: 
 3618:   strcpy(fileresprob,"prob"); 
 3619:   strcat(fileresprob,fileres);
 3620:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3621:     printf("Problem with resultfile: %s\n", fileresprob);
 3622:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3623:   }
 3624:   strcpy(fileresprobcov,"probcov"); 
 3625:   strcat(fileresprobcov,fileres);
 3626:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3627:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3628:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3629:   }
 3630:   strcpy(fileresprobcor,"probcor"); 
 3631:   strcat(fileresprobcor,fileres);
 3632:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3633:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3634:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3635:   }
 3636:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3637:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3638:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3639:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3640:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3641:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3642:   pstamp(ficresprob);
 3643:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3644:   fprintf(ficresprob,"# Age");
 3645:   pstamp(ficresprobcov);
 3646:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3647:   fprintf(ficresprobcov,"# Age");
 3648:   pstamp(ficresprobcor);
 3649:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3650:   fprintf(ficresprobcor,"# Age");
 3651: 
 3652: 
 3653:   for(i=1; i<=nlstate;i++)
 3654:     for(j=1; j<=(nlstate+ndeath);j++){
 3655:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3656:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3657:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3658:     }  
 3659:  /* fprintf(ficresprob,"\n");
 3660:   fprintf(ficresprobcov,"\n");
 3661:   fprintf(ficresprobcor,"\n");
 3662:  */
 3663:   xp=vector(1,npar);
 3664:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3665:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3666:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3667:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3668:   first=1;
 3669:   fprintf(ficgp,"\n# Routine varprob");
 3670:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3671:   fprintf(fichtm,"\n");
 3672: 
 3673:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3674:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3675:   file %s<br>\n",optionfilehtmcov);
 3676:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3677: and drawn. It helps understanding how is the covariance between two incidences.\
 3678:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3679:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3680: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3681: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3682: standard deviations wide on each axis. <br>\
 3683:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3684:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3685: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3686: 
 3687:   cov[1]=1;
 3688:   /* tj=cptcoveff; */
 3689:   tj = (int) pow(2,cptcoveff);
 3690:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3691:   j1=0;
 3692:   for(j1=1; j1<=tj;j1++){
 3693:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 3694:     /*j1++;*/
 3695:       if  (cptcovn>0) {
 3696: 	fprintf(ficresprob, "\n#********** Variable "); 
 3697: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3698: 	fprintf(ficresprob, "**********\n#\n");
 3699: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3700: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3701: 	fprintf(ficresprobcov, "**********\n#\n");
 3702: 	
 3703: 	fprintf(ficgp, "\n#********** Variable "); 
 3704: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3705: 	fprintf(ficgp, "**********\n#\n");
 3706: 	
 3707: 	
 3708: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3709: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3710: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3711: 	
 3712: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3713: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3714: 	fprintf(ficresprobcor, "**********\n#");    
 3715:       }
 3716:       
 3717:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3718:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3719:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 3720:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 3721:       for (age=bage; age<=fage; age ++){ 
 3722: 	cov[2]=age;
 3723: 	for (k=1; k<=cptcovn;k++) {
 3724: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
 3725: 							 * 1  1 1 1 1
 3726: 							 * 2  2 1 1 1
 3727: 							 * 3  1 2 1 1
 3728: 							 */
 3729: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 3730: 	}
 3731: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3732: 	for (k=1; k<=cptcovprod;k++)
 3733: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3734: 	
 3735:     
 3736: 	for(theta=1; theta <=npar; theta++){
 3737: 	  for(i=1; i<=npar; i++)
 3738: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3739: 	  
 3740: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3741: 	  
 3742: 	  k=0;
 3743: 	  for(i=1; i<= (nlstate); i++){
 3744: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3745: 	      k=k+1;
 3746: 	      gp[k]=pmmij[i][j];
 3747: 	    }
 3748: 	  }
 3749: 	  
 3750: 	  for(i=1; i<=npar; i++)
 3751: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3752:     
 3753: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3754: 	  k=0;
 3755: 	  for(i=1; i<=(nlstate); i++){
 3756: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3757: 	      k=k+1;
 3758: 	      gm[k]=pmmij[i][j];
 3759: 	    }
 3760: 	  }
 3761:      
 3762: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3763: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3764: 	}
 3765: 
 3766: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3767: 	  for(theta=1; theta <=npar; theta++)
 3768: 	    trgradg[j][theta]=gradg[theta][j];
 3769: 	
 3770: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3771: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3772: 
 3773: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3774: 	
 3775: 	k=0;
 3776: 	for(i=1; i<=(nlstate); i++){
 3777: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3778: 	    k=k+1;
 3779: 	    mu[k][(int) age]=pmmij[i][j];
 3780: 	  }
 3781: 	}
 3782:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3783: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3784: 	    varpij[i][j][(int)age] = doldm[i][j];
 3785: 
 3786: 	/*printf("\n%d ",(int)age);
 3787: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3788: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3789: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3790: 	  }*/
 3791: 
 3792: 	fprintf(ficresprob,"\n%d ",(int)age);
 3793: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3794: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3795: 
 3796: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3797: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3798: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3799: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3800: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3801: 	}
 3802: 	i=0;
 3803: 	for (k=1; k<=(nlstate);k++){
 3804:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3805:  	    i++;
 3806: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3807: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3808: 	    for (j=1; j<=i;j++){
 3809: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 3810: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3811: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3812: 	    }
 3813: 	  }
 3814: 	}/* end of loop for state */
 3815:       } /* end of loop for age */
 3816:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 3817:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 3818:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3819:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3820:       
 3821:       /* Confidence intervalle of pij  */
 3822:       /*
 3823: 	fprintf(ficgp,"\nunset parametric;unset label");
 3824: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3825: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3826: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3827: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3828: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3829: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3830:       */
 3831: 
 3832:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3833:       first1=1;first2=2;
 3834:       for (k2=1; k2<=(nlstate);k2++){
 3835: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3836: 	  if(l2==k2) continue;
 3837: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3838: 	  for (k1=1; k1<=(nlstate);k1++){
 3839: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3840: 	      if(l1==k1) continue;
 3841: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3842: 	      if(i<=j) continue;
 3843: 	      for (age=bage; age<=fage; age ++){ 
 3844: 		if ((int)age %5==0){
 3845: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3846: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3847: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3848: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3849: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3850: 		  c12=cv12/sqrt(v1*v2);
 3851: 		  /* Computing eigen value of matrix of covariance */
 3852: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3853: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3854: 		  if ((lc2 <0) || (lc1 <0) ){
 3855: 		    if(first2==1){
 3856: 		      first1=0;
 3857: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 3858: 		    }
 3859: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 3860: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 3861: 		    /* lc2=fabs(lc2); */
 3862: 		  }
 3863: 
 3864: 		  /* Eigen vectors */
 3865: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3866: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3867: 		  v21=(lc1-v1)/cv12*v11;
 3868: 		  v12=-v21;
 3869: 		  v22=v11;
 3870: 		  tnalp=v21/v11;
 3871: 		  if(first1==1){
 3872: 		    first1=0;
 3873: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3874: 		  }
 3875: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3876: 		  /*printf(fignu*/
 3877: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3878: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3879: 		  if(first==1){
 3880: 		    first=0;
 3881:  		    fprintf(ficgp,"\nset parametric;unset label");
 3882: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3883: 		    fprintf(ficgp,"\nset ter png small size 320, 240");
 3884: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3885:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3886: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3887: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3888: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3889: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3890: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3891: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3892: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3893: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3894: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3895: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3896: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3897: 		  }else{
 3898: 		    first=0;
 3899: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3900: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3901: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3902: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3903: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3904: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3905: 		  }/* if first */
 3906: 		} /* age mod 5 */
 3907: 	      } /* end loop age */
 3908: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3909: 	      first=1;
 3910: 	    } /*l12 */
 3911: 	  } /* k12 */
 3912: 	} /*l1 */
 3913:       }/* k1 */
 3914:       /* } /* loop covariates */
 3915:   }
 3916:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3917:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3918:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3919:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 3920:   free_vector(xp,1,npar);
 3921:   fclose(ficresprob);
 3922:   fclose(ficresprobcov);
 3923:   fclose(ficresprobcor);
 3924:   fflush(ficgp);
 3925:   fflush(fichtmcov);
 3926: }
 3927: 
 3928: 
 3929: /******************* Printing html file ***********/
 3930: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3931: 		  int lastpass, int stepm, int weightopt, char model[],\
 3932: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3933: 		  int popforecast, int estepm ,\
 3934: 		  double jprev1, double mprev1,double anprev1, \
 3935: 		  double jprev2, double mprev2,double anprev2){
 3936:   int jj1, k1, i1, cpt;
 3937: 
 3938:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 3939:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 3940: </ul>");
 3941:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 3942:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 3943: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 3944:    fprintf(fichtm,"\
 3945:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 3946: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 3947:    fprintf(fichtm,"\
 3948:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 3949: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 3950:    fprintf(fichtm,"\
 3951:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 3952:    <a href=\"%s\">%s</a> <br>\n",
 3953: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3954:    fprintf(fichtm,"\
 3955:  - Population projections by age and states: \
 3956:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 3957: 
 3958: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3959: 
 3960:  m=pow(2,cptcoveff);
 3961:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3962: 
 3963:  jj1=0;
 3964:  for(k1=1; k1<=m;k1++){
 3965:    for(i1=1; i1<=ncodemax[k1];i1++){
 3966:      jj1++;
 3967:      if (cptcovn > 0) {
 3968:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3969:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3970: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3971:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3972:      }
 3973:      /* Pij */
 3974:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
 3975: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3976:      /* Quasi-incidences */
 3977:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3978:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
 3979: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3980:        /* Period (stable) prevalence in each health state */
 3981:        for(cpt=1; cpt<=nlstate;cpt++){
 3982: 	 fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
 3983: <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3984:        }
 3985:      for(cpt=1; cpt<=nlstate;cpt++) {
 3986:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 3987: <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3988:      }
 3989:    } /* end i1 */
 3990:  }/* End k1 */
 3991:  fprintf(fichtm,"</ul>");
 3992: 
 3993: 
 3994:  fprintf(fichtm,"\
 3995: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 3996:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 3997: 
 3998:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3999: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 4000:  fprintf(fichtm,"\
 4001:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4002: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 4003: 
 4004:  fprintf(fichtm,"\
 4005:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4006: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 4007:  fprintf(fichtm,"\
 4008:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 4009:    <a href=\"%s\">%s</a> <br>\n</li>",
 4010: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 4011:  fprintf(fichtm,"\
 4012:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 4013:    <a href=\"%s\">%s</a> <br>\n</li>",
 4014: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 4015:  fprintf(fichtm,"\
 4016:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 4017: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 4018:  fprintf(fichtm,"\
 4019:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 4020: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 4021:  fprintf(fichtm,"\
 4022:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 4023: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 4024: 
 4025: /*  if(popforecast==1) fprintf(fichtm,"\n */
 4026: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 4027: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 4028: /* 	<br>",fileres,fileres,fileres,fileres); */
 4029: /*  else  */
 4030: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 4031:  fflush(fichtm);
 4032:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 4033: 
 4034:  m=pow(2,cptcoveff);
 4035:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4036: 
 4037:  jj1=0;
 4038:  for(k1=1; k1<=m;k1++){
 4039:    for(i1=1; i1<=ncodemax[k1];i1++){
 4040:      jj1++;
 4041:      if (cptcovn > 0) {
 4042:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4043:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4044: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4045:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4046:      }
 4047:      for(cpt=1; cpt<=nlstate;cpt++) {
 4048:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 4049: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
 4050: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 4051:      }
 4052:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 4053: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 4054: true period expectancies (those weighted with period prevalences are also\
 4055:  drawn in addition to the population based expectancies computed using\
 4056:  observed and cahotic prevalences: %s%d.png<br>\
 4057: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 4058:    } /* end i1 */
 4059:  }/* End k1 */
 4060:  fprintf(fichtm,"</ul>");
 4061:  fflush(fichtm);
 4062: }
 4063: 
 4064: /******************* Gnuplot file **************/
 4065: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4066: 
 4067:   char dirfileres[132],optfileres[132];
 4068:   int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 4069:   int ng=0;
 4070: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 4071: /*     printf("Problem with file %s",optionfilegnuplot); */
 4072: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 4073: /*   } */
 4074: 
 4075:   /*#ifdef windows */
 4076:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4077:     /*#endif */
 4078:   m=pow(2,cptcoveff);
 4079: 
 4080:   strcpy(dirfileres,optionfilefiname);
 4081:   strcpy(optfileres,"vpl");
 4082:  /* 1eme*/
 4083:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
 4084:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 4085:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 4086:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 4087:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 4088:      fprintf(ficgp,"set xlabel \"Age\" \n\
 4089: set ylabel \"Probability\" \n\
 4090: set ter png small size 320, 240\n\
 4091: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 4092: 
 4093:      for (i=1; i<= nlstate ; i ++) {
 4094:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4095:        else        fprintf(ficgp," \%%*lf (\%%*lf)");
 4096:      }
 4097:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 4098:      for (i=1; i<= nlstate ; i ++) {
 4099:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4100:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 4101:      } 
 4102:      fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4103:      for (i=1; i<= nlstate ; i ++) {
 4104:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4105:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 4106:      }  
 4107:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4108:    }
 4109:   }
 4110:   /*2 eme*/
 4111:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
 4112:   for (k1=1; k1<= m ; k1 ++) { 
 4113:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 4114:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
 4115:     
 4116:     for (i=1; i<= nlstate+1 ; i ++) {
 4117:       k=2*i;
 4118:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4119:       for (j=1; j<= nlstate+1 ; j ++) {
 4120: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4121: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4122:       }   
 4123:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4124:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4125:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4126:       for (j=1; j<= nlstate+1 ; j ++) {
 4127: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4128: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4129:       }   
 4130:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4131:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4132:       for (j=1; j<= nlstate+1 ; j ++) {
 4133: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4134: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4135:       }   
 4136:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4137:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4138:     }
 4139:   }
 4140:   
 4141:   /*3eme*/
 4142:   
 4143:   for (k1=1; k1<= m ; k1 ++) { 
 4144:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4145:       /*       k=2+nlstate*(2*cpt-2); */
 4146:       k=2+(nlstate+1)*(cpt-1);
 4147:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4148:       fprintf(ficgp,"set ter png small size 320, 240\n\
 4149: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4150:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4151: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4152: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4153: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4154: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4155: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4156: 	
 4157:       */
 4158:       for (i=1; i< nlstate ; i ++) {
 4159: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4160: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4161: 	
 4162:       } 
 4163:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4164:     }
 4165:   }
 4166:   
 4167:   /* CV preval stable (period) */
 4168:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
 4169:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
 4170:       k=3;
 4171:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
 4172:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4173:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4174: set ter png small size 320, 240\n\
 4175: unset log y\n\
 4176: plot [%.f:%.f]  ", ageminpar, agemaxpar);
 4177:       for (i=1; i<= nlstate ; i ++){
 4178: 	if(i==1)
 4179: 	  fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
 4180: 	else
 4181: 	  fprintf(ficgp,", '' ");
 4182: 	l=(nlstate+ndeath)*(i-1)+1;
 4183: 	fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
 4184: 	for (j=1; j<= (nlstate-1) ; j ++)
 4185: 	  fprintf(ficgp,"+$%d",k+l+j);
 4186: 	fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
 4187:       } /* nlstate */
 4188:       fprintf(ficgp,"\n");
 4189:     } /* end cpt state*/ 
 4190:   } /* end covariate */  
 4191:   
 4192:   /* proba elementaires */
 4193:   for(i=1,jk=1; i <=nlstate; i++){
 4194:     for(k=1; k <=(nlstate+ndeath); k++){
 4195:       if (k != i) {
 4196: 	for(j=1; j <=ncovmodel; j++){
 4197: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 4198: 	  jk++; 
 4199: 	  fprintf(ficgp,"\n");
 4200: 	}
 4201:       }
 4202:     }
 4203:    }
 4204:   /*goto avoid;*/
 4205:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4206:      for(jk=1; jk <=m; jk++) {
 4207:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4208:        if (ng==2)
 4209: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4210:        else
 4211: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 4212:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4213:        i=1;
 4214:        for(k2=1; k2<=nlstate; k2++) {
 4215: 	 k3=i;
 4216: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4217: 	   if (k != k2){
 4218: 	     if(ng==2)
 4219: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4220: 	     else
 4221: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4222: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4223: 	     for(j=3; j <=ncovmodel; j++) {
 4224: 	       /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
 4225: 	       /* 	 /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
 4226: 	       /* 	 ij++; */
 4227: 	       /* } */
 4228: 	       /* else */
 4229: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4230: 	     }
 4231: 	     fprintf(ficgp,")/(1");
 4232: 	     
 4233: 	     for(k1=1; k1 <=nlstate; k1++){   
 4234: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4235: 	       ij=1;
 4236: 	       for(j=3; j <=ncovmodel; j++){
 4237: 		 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
 4238: 		 /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
 4239: 		 /*   ij++; */
 4240: 		 /* } */
 4241: 		 /* else */
 4242: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4243: 	       }
 4244: 	       fprintf(ficgp,")");
 4245: 	     }
 4246: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4247: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4248: 	     i=i+ncovmodel;
 4249: 	   }
 4250: 	 } /* end k */
 4251:        } /* end k2 */
 4252:      } /* end jk */
 4253:    } /* end ng */
 4254:  avoid:
 4255:    fflush(ficgp); 
 4256: }  /* end gnuplot */
 4257: 
 4258: 
 4259: /*************** Moving average **************/
 4260: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4261: 
 4262:   int i, cpt, cptcod;
 4263:   int modcovmax =1;
 4264:   int mobilavrange, mob;
 4265:   double age;
 4266: 
 4267:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4268: 			   a covariate has 2 modalities */
 4269:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4270: 
 4271:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4272:     if(mobilav==1) mobilavrange=5; /* default */
 4273:     else mobilavrange=mobilav;
 4274:     for (age=bage; age<=fage; age++)
 4275:       for (i=1; i<=nlstate;i++)
 4276: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4277: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4278:     /* We keep the original values on the extreme ages bage, fage and for 
 4279:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4280:        we use a 5 terms etc. until the borders are no more concerned. 
 4281:     */ 
 4282:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4283:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4284: 	for (i=1; i<=nlstate;i++){
 4285: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4286: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4287: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4288: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4289: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4290: 	      }
 4291: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4292: 	  }
 4293: 	}
 4294:       }/* end age */
 4295:     }/* end mob */
 4296:   }else return -1;
 4297:   return 0;
 4298: }/* End movingaverage */
 4299: 
 4300: 
 4301: /************** Forecasting ******************/
 4302: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4303:   /* proj1, year, month, day of starting projection 
 4304:      agemin, agemax range of age
 4305:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4306:      anproj2 year of en of projection (same day and month as proj1).
 4307:   */
 4308:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 4309:   int *popage;
 4310:   double agec; /* generic age */
 4311:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4312:   double *popeffectif,*popcount;
 4313:   double ***p3mat;
 4314:   double ***mobaverage;
 4315:   char fileresf[FILENAMELENGTH];
 4316: 
 4317:   agelim=AGESUP;
 4318:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4319:  
 4320:   strcpy(fileresf,"f"); 
 4321:   strcat(fileresf,fileres);
 4322:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4323:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4324:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4325:   }
 4326:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4327:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4328: 
 4329:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4330: 
 4331:   if (mobilav!=0) {
 4332:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4333:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4334:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4335:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4336:     }
 4337:   }
 4338: 
 4339:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4340:   if (stepm<=12) stepsize=1;
 4341:   if(estepm < stepm){
 4342:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4343:   }
 4344:   else  hstepm=estepm;   
 4345: 
 4346:   hstepm=hstepm/stepm; 
 4347:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4348:                                fractional in yp1 */
 4349:   anprojmean=yp;
 4350:   yp2=modf((yp1*12),&yp);
 4351:   mprojmean=yp;
 4352:   yp1=modf((yp2*30.5),&yp);
 4353:   jprojmean=yp;
 4354:   if(jprojmean==0) jprojmean=1;
 4355:   if(mprojmean==0) jprojmean=1;
 4356: 
 4357:   i1=cptcoveff;
 4358:   if (cptcovn < 1){i1=1;}
 4359:   
 4360:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4361:   
 4362:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4363: 
 4364: /* 	      if (h==(int)(YEARM*yearp)){ */
 4365:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4366:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4367:       k=k+1;
 4368:       fprintf(ficresf,"\n#******");
 4369:       for(j=1;j<=cptcoveff;j++) {
 4370: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4371:       }
 4372:       fprintf(ficresf,"******\n");
 4373:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4374:       for(j=1; j<=nlstate+ndeath;j++){ 
 4375: 	for(i=1; i<=nlstate;i++) 	      
 4376:           fprintf(ficresf," p%d%d",i,j);
 4377: 	fprintf(ficresf," p.%d",j);
 4378:       }
 4379:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4380: 	fprintf(ficresf,"\n");
 4381: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4382: 
 4383:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4384: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4385: 	  nhstepm = nhstepm/hstepm; 
 4386: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4387: 	  oldm=oldms;savm=savms;
 4388: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4389: 	
 4390: 	  for (h=0; h<=nhstepm; h++){
 4391: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4392:               fprintf(ficresf,"\n");
 4393:               for(j=1;j<=cptcoveff;j++) 
 4394:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4395: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4396: 	    } 
 4397: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4398: 	      ppij=0.;
 4399: 	      for(i=1; i<=nlstate;i++) {
 4400: 		if (mobilav==1) 
 4401: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4402: 		else {
 4403: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4404: 		}
 4405: 		if (h*hstepm/YEARM*stepm== yearp) {
 4406: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4407: 		}
 4408: 	      } /* end i */
 4409: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4410: 		fprintf(ficresf," %.3f", ppij);
 4411: 	      }
 4412: 	    }/* end j */
 4413: 	  } /* end h */
 4414: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4415: 	} /* end agec */
 4416:       } /* end yearp */
 4417:     } /* end cptcod */
 4418:   } /* end  cptcov */
 4419:        
 4420:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4421: 
 4422:   fclose(ficresf);
 4423: }
 4424: 
 4425: /************** Forecasting *****not tested NB*************/
 4426: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 4427:   
 4428:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 4429:   int *popage;
 4430:   double calagedatem, agelim, kk1, kk2;
 4431:   double *popeffectif,*popcount;
 4432:   double ***p3mat,***tabpop,***tabpopprev;
 4433:   double ***mobaverage;
 4434:   char filerespop[FILENAMELENGTH];
 4435: 
 4436:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4437:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4438:   agelim=AGESUP;
 4439:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 4440:   
 4441:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4442:   
 4443:   
 4444:   strcpy(filerespop,"pop"); 
 4445:   strcat(filerespop,fileres);
 4446:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 4447:     printf("Problem with forecast resultfile: %s\n", filerespop);
 4448:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 4449:   }
 4450:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 4451:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 4452: 
 4453:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4454: 
 4455:   if (mobilav!=0) {
 4456:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4457:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4458:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4459:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4460:     }
 4461:   }
 4462: 
 4463:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4464:   if (stepm<=12) stepsize=1;
 4465:   
 4466:   agelim=AGESUP;
 4467:   
 4468:   hstepm=1;
 4469:   hstepm=hstepm/stepm; 
 4470:   
 4471:   if (popforecast==1) {
 4472:     if((ficpop=fopen(popfile,"r"))==NULL) {
 4473:       printf("Problem with population file : %s\n",popfile);exit(0);
 4474:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 4475:     } 
 4476:     popage=ivector(0,AGESUP);
 4477:     popeffectif=vector(0,AGESUP);
 4478:     popcount=vector(0,AGESUP);
 4479:     
 4480:     i=1;   
 4481:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 4482:    
 4483:     imx=i;
 4484:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 4485:   }
 4486: 
 4487:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 4488:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4489:       k=k+1;
 4490:       fprintf(ficrespop,"\n#******");
 4491:       for(j=1;j<=cptcoveff;j++) {
 4492: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4493:       }
 4494:       fprintf(ficrespop,"******\n");
 4495:       fprintf(ficrespop,"# Age");
 4496:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 4497:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 4498:       
 4499:       for (cpt=0; cpt<=0;cpt++) { 
 4500: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4501: 	
 4502:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4503: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4504: 	  nhstepm = nhstepm/hstepm; 
 4505: 	  
 4506: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4507: 	  oldm=oldms;savm=savms;
 4508: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4509: 	
 4510: 	  for (h=0; h<=nhstepm; h++){
 4511: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4512: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4513: 	    } 
 4514: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4515: 	      kk1=0.;kk2=0;
 4516: 	      for(i=1; i<=nlstate;i++) {	      
 4517: 		if (mobilav==1) 
 4518: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4519: 		else {
 4520: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4521: 		}
 4522: 	      }
 4523: 	      if (h==(int)(calagedatem+12*cpt)){
 4524: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4525: 		  /*fprintf(ficrespop," %.3f", kk1);
 4526: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4527: 	      }
 4528: 	    }
 4529: 	    for(i=1; i<=nlstate;i++){
 4530: 	      kk1=0.;
 4531: 		for(j=1; j<=nlstate;j++){
 4532: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4533: 		}
 4534: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4535: 	    }
 4536: 
 4537: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4538: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4539: 	  }
 4540: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4541: 	}
 4542:       }
 4543:  
 4544:   /******/
 4545: 
 4546:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4547: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4548: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4549: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4550: 	  nhstepm = nhstepm/hstepm; 
 4551: 	  
 4552: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4553: 	  oldm=oldms;savm=savms;
 4554: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4555: 	  for (h=0; h<=nhstepm; h++){
 4556: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4557: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4558: 	    } 
 4559: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4560: 	      kk1=0.;kk2=0;
 4561: 	      for(i=1; i<=nlstate;i++) {	      
 4562: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4563: 	      }
 4564: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4565: 	    }
 4566: 	  }
 4567: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4568: 	}
 4569:       }
 4570:    } 
 4571:   }
 4572:  
 4573:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4574: 
 4575:   if (popforecast==1) {
 4576:     free_ivector(popage,0,AGESUP);
 4577:     free_vector(popeffectif,0,AGESUP);
 4578:     free_vector(popcount,0,AGESUP);
 4579:   }
 4580:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4581:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4582:   fclose(ficrespop);
 4583: } /* End of popforecast */
 4584: 
 4585: int fileappend(FILE *fichier, char *optionfich)
 4586: {
 4587:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4588:     printf("Problem with file: %s\n", optionfich);
 4589:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4590:     return (0);
 4591:   }
 4592:   fflush(fichier);
 4593:   return (1);
 4594: }
 4595: 
 4596: 
 4597: /**************** function prwizard **********************/
 4598: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4599: {
 4600: 
 4601:   /* Wizard to print covariance matrix template */
 4602: 
 4603:   char ca[32], cb[32], cc[32];
 4604:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 4605:   int numlinepar;
 4606: 
 4607:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4608:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4609:   for(i=1; i <=nlstate; i++){
 4610:     jj=0;
 4611:     for(j=1; j <=nlstate+ndeath; j++){
 4612:       if(j==i) continue;
 4613:       jj++;
 4614:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4615:       printf("%1d%1d",i,j);
 4616:       fprintf(ficparo,"%1d%1d",i,j);
 4617:       for(k=1; k<=ncovmodel;k++){
 4618: 	/* 	  printf(" %lf",param[i][j][k]); */
 4619: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4620: 	printf(" 0.");
 4621: 	fprintf(ficparo," 0.");
 4622:       }
 4623:       printf("\n");
 4624:       fprintf(ficparo,"\n");
 4625:     }
 4626:   }
 4627:   printf("# Scales (for hessian or gradient estimation)\n");
 4628:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4629:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4630:   for(i=1; i <=nlstate; i++){
 4631:     jj=0;
 4632:     for(j=1; j <=nlstate+ndeath; j++){
 4633:       if(j==i) continue;
 4634:       jj++;
 4635:       fprintf(ficparo,"%1d%1d",i,j);
 4636:       printf("%1d%1d",i,j);
 4637:       fflush(stdout);
 4638:       for(k=1; k<=ncovmodel;k++){
 4639: 	/* 	printf(" %le",delti3[i][j][k]); */
 4640: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4641: 	printf(" 0.");
 4642: 	fprintf(ficparo," 0.");
 4643:       }
 4644:       numlinepar++;
 4645:       printf("\n");
 4646:       fprintf(ficparo,"\n");
 4647:     }
 4648:   }
 4649:   printf("# Covariance matrix\n");
 4650: /* # 121 Var(a12)\n\ */
 4651: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4652: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4653: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4654: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4655: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4656: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4657: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4658:   fflush(stdout);
 4659:   fprintf(ficparo,"# Covariance matrix\n");
 4660:   /* # 121 Var(a12)\n\ */
 4661:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4662:   /* #   ...\n\ */
 4663:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4664:   
 4665:   for(itimes=1;itimes<=2;itimes++){
 4666:     jj=0;
 4667:     for(i=1; i <=nlstate; i++){
 4668:       for(j=1; j <=nlstate+ndeath; j++){
 4669: 	if(j==i) continue;
 4670: 	for(k=1; k<=ncovmodel;k++){
 4671: 	  jj++;
 4672: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4673: 	  if(itimes==1){
 4674: 	    printf("#%1d%1d%d",i,j,k);
 4675: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4676: 	  }else{
 4677: 	    printf("%1d%1d%d",i,j,k);
 4678: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4679: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4680: 	  }
 4681: 	  ll=0;
 4682: 	  for(li=1;li <=nlstate; li++){
 4683: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 4684: 	      if(lj==li) continue;
 4685: 	      for(lk=1;lk<=ncovmodel;lk++){
 4686: 		ll++;
 4687: 		if(ll<=jj){
 4688: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 4689: 		  if(ll<jj){
 4690: 		    if(itimes==1){
 4691: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4692: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4693: 		    }else{
 4694: 		      printf(" 0.");
 4695: 		      fprintf(ficparo," 0.");
 4696: 		    }
 4697: 		  }else{
 4698: 		    if(itimes==1){
 4699: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4700: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4701: 		    }else{
 4702: 		      printf(" 0.");
 4703: 		      fprintf(ficparo," 0.");
 4704: 		    }
 4705: 		  }
 4706: 		}
 4707: 	      } /* end lk */
 4708: 	    } /* end lj */
 4709: 	  } /* end li */
 4710: 	  printf("\n");
 4711: 	  fprintf(ficparo,"\n");
 4712: 	  numlinepar++;
 4713: 	} /* end k*/
 4714:       } /*end j */
 4715:     } /* end i */
 4716:   } /* end itimes */
 4717: 
 4718: } /* end of prwizard */
 4719: /******************* Gompertz Likelihood ******************************/
 4720: double gompertz(double x[])
 4721: { 
 4722:   double A,B,L=0.0,sump=0.,num=0.;
 4723:   int i,n=0; /* n is the size of the sample */
 4724: 
 4725:   for (i=0;i<=imx-1 ; i++) {
 4726:     sump=sump+weight[i];
 4727:     /*    sump=sump+1;*/
 4728:     num=num+1;
 4729:   }
 4730:  
 4731:  
 4732:   /* for (i=0; i<=imx; i++) 
 4733:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4734: 
 4735:   for (i=1;i<=imx ; i++)
 4736:     {
 4737:       if (cens[i] == 1 && wav[i]>1)
 4738: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4739:       
 4740:       if (cens[i] == 0 && wav[i]>1)
 4741: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4742: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4743:       
 4744:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4745:       if (wav[i] > 1 ) { /* ??? */
 4746: 	L=L+A*weight[i];
 4747: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4748:       }
 4749:     }
 4750: 
 4751:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4752:  
 4753:   return -2*L*num/sump;
 4754: }
 4755: 
 4756: #ifdef GSL
 4757: /******************* Gompertz_f Likelihood ******************************/
 4758: double gompertz_f(const gsl_vector *v, void *params)
 4759: { 
 4760:   double A,B,LL=0.0,sump=0.,num=0.;
 4761:   double *x= (double *) v->data;
 4762:   int i,n=0; /* n is the size of the sample */
 4763: 
 4764:   for (i=0;i<=imx-1 ; i++) {
 4765:     sump=sump+weight[i];
 4766:     /*    sump=sump+1;*/
 4767:     num=num+1;
 4768:   }
 4769:  
 4770:  
 4771:   /* for (i=0; i<=imx; i++) 
 4772:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4773:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 4774:   for (i=1;i<=imx ; i++)
 4775:     {
 4776:       if (cens[i] == 1 && wav[i]>1)
 4777: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 4778:       
 4779:       if (cens[i] == 0 && wav[i]>1)
 4780: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 4781: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 4782:       
 4783:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4784:       if (wav[i] > 1 ) { /* ??? */
 4785: 	LL=LL+A*weight[i];
 4786: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4787:       }
 4788:     }
 4789: 
 4790:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4791:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 4792:  
 4793:   return -2*LL*num/sump;
 4794: }
 4795: #endif
 4796: 
 4797: /******************* Printing html file ***********/
 4798: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 4799: 		  int lastpass, int stepm, int weightopt, char model[],\
 4800: 		  int imx,  double p[],double **matcov,double agemortsup){
 4801:   int i,k;
 4802: 
 4803:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 4804:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 4805:   for (i=1;i<=2;i++) 
 4806:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 4807:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 4808:   fprintf(fichtm,"</ul>");
 4809: 
 4810: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 4811: 
 4812:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 4813: 
 4814:  for (k=agegomp;k<(agemortsup-2);k++) 
 4815:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 4816: 
 4817:  
 4818:   fflush(fichtm);
 4819: }
 4820: 
 4821: /******************* Gnuplot file **************/
 4822: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4823: 
 4824:   char dirfileres[132],optfileres[132];
 4825:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 4826:   int ng;
 4827: 
 4828: 
 4829:   /*#ifdef windows */
 4830:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4831:     /*#endif */
 4832: 
 4833: 
 4834:   strcpy(dirfileres,optionfilefiname);
 4835:   strcpy(optfileres,"vpl");
 4836:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 4837:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 4838:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
 4839:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 4840:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 4841: 
 4842: } 
 4843: 
 4844: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 4845: {
 4846: 
 4847:   /*-------- data file ----------*/
 4848:   FILE *fic;
 4849:   char dummy[]="                         ";
 4850:   int i, j, n;
 4851:   int linei, month, year,iout;
 4852:   char line[MAXLINE], linetmp[MAXLINE];
 4853:   char stra[80], strb[80];
 4854:   char *stratrunc;
 4855:   int lstra;
 4856: 
 4857: 
 4858:   if((fic=fopen(datafile,"r"))==NULL)    {
 4859:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 4860:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 4861:   }
 4862: 
 4863:   i=1;
 4864:   linei=0;
 4865:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 4866:     linei=linei+1;
 4867:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 4868:       if(line[j] == '\t')
 4869: 	line[j] = ' ';
 4870:     }
 4871:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 4872:       ;
 4873:     };
 4874:     line[j+1]=0;  /* Trims blanks at end of line */
 4875:     if(line[0]=='#'){
 4876:       fprintf(ficlog,"Comment line\n%s\n",line);
 4877:       printf("Comment line\n%s\n",line);
 4878:       continue;
 4879:     }
 4880:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 4881:     for (j=0; line[j]!='\0';j++){
 4882:       line[j]=linetmp[j];
 4883:     }
 4884:   
 4885: 
 4886:     for (j=maxwav;j>=1;j--){
 4887:       cutv(stra, strb, line, ' '); 
 4888:       if(strb[0]=='.') { /* Missing status */
 4889: 	lval=-1;
 4890:       }else{
 4891: 	errno=0;
 4892: 	lval=strtol(strb,&endptr,10); 
 4893:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 4894: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4895: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 4896: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 4897: 	  return 1;
 4898: 	}
 4899:       }
 4900:       s[j][i]=lval;
 4901:       
 4902:       strcpy(line,stra);
 4903:       cutv(stra, strb,line,' ');
 4904:       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4905:       }
 4906:       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 4907: 	month=99;
 4908: 	year=9999;
 4909:       }else{
 4910: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 4911: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 4912: 	return 1;
 4913:       }
 4914:       anint[j][i]= (double) year; 
 4915:       mint[j][i]= (double)month; 
 4916:       strcpy(line,stra);
 4917:     } /* ENd Waves */
 4918:     
 4919:     cutv(stra, strb,line,' '); 
 4920:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4921:     }
 4922:     else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 4923:       month=99;
 4924:       year=9999;
 4925:     }else{
 4926:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 4927: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4928: 	return 1;
 4929:     }
 4930:     andc[i]=(double) year; 
 4931:     moisdc[i]=(double) month; 
 4932:     strcpy(line,stra);
 4933:     
 4934:     cutv(stra, strb,line,' '); 
 4935:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4936:     }
 4937:     else  if(iout=sscanf(strb,"%s.", dummy) != 0){
 4938:       month=99;
 4939:       year=9999;
 4940:     }else{
 4941:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 4942:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4943: 	return 1;
 4944:     }
 4945:     if (year==9999) {
 4946:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 4947:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4948: 	return 1;
 4949: 
 4950:     }
 4951:     annais[i]=(double)(year);
 4952:     moisnais[i]=(double)(month); 
 4953:     strcpy(line,stra);
 4954:     
 4955:     cutv(stra, strb,line,' '); 
 4956:     errno=0;
 4957:     dval=strtod(strb,&endptr); 
 4958:     if( strb[0]=='\0' || (*endptr != '\0')){
 4959:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 4960:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 4961:       fflush(ficlog);
 4962:       return 1;
 4963:     }
 4964:     weight[i]=dval; 
 4965:     strcpy(line,stra);
 4966:     
 4967:     for (j=ncovcol;j>=1;j--){
 4968:       cutv(stra, strb,line,' '); 
 4969:       if(strb[0]=='.') { /* Missing status */
 4970: 	lval=-1;
 4971:       }else{
 4972: 	errno=0;
 4973: 	lval=strtol(strb,&endptr,10); 
 4974: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4975: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 4976: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 4977: 	  return 1;
 4978: 	}
 4979:       }
 4980:       if(lval <-1 || lval >1){
 4981: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 4982:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 4983:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 4984:  For example, for multinomial values like 1, 2 and 3,\n \
 4985:  build V1=0 V2=0 for the reference value (1),\n \
 4986:         V1=1 V2=0 for (2) \n \
 4987:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 4988:  output of IMaCh is often meaningless.\n \
 4989:  Exiting.\n",lval,linei, i,line,j);
 4990: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 4991:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 4992:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 4993:  For example, for multinomial values like 1, 2 and 3,\n \
 4994:  build V1=0 V2=0 for the reference value (1),\n \
 4995:         V1=1 V2=0 for (2) \n \
 4996:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 4997:  output of IMaCh is often meaningless.\n \
 4998:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 4999: 	return 1;
 5000:       }
 5001:       covar[j][i]=(double)(lval);
 5002:       strcpy(line,stra);
 5003:     }  
 5004:     lstra=strlen(stra);
 5005:      
 5006:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 5007:       stratrunc = &(stra[lstra-9]);
 5008:       num[i]=atol(stratrunc);
 5009:     }
 5010:     else
 5011:       num[i]=atol(stra);
 5012:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 5013:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 5014:     
 5015:     i=i+1;
 5016:   } /* End loop reading  data */
 5017: 
 5018:   *imax=i-1; /* Number of individuals */
 5019:   fclose(fic);
 5020:  
 5021:   return (0);
 5022:   endread:
 5023:     printf("Exiting readdata: ");
 5024:     fclose(fic);
 5025:     return (1);
 5026: 
 5027: 
 5028: 
 5029: }
 5030: void removespace(char *str) {
 5031:   char *p1 = str, *p2 = str;
 5032:   do
 5033:     while (*p2 == ' ')
 5034:       p2++;
 5035:   while (*p1++ = *p2++);
 5036: }
 5037: 
 5038: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 5039:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
 5040:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
 5041:    * - cptcovn or number of covariates k of the models excluding age*products =6
 5042:    * - cptcovage number of covariates with age*products =2
 5043:    * - cptcovs number of simple covariates
 5044:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 5045:    *     which is a new column after the 9 (ncovcol) variables. 
 5046:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 5047:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 5048:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 5049:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 5050:  */
 5051: {
 5052:   int i, j, k, ks;
 5053:   int i1, j1, k1, k2;
 5054:   char modelsav[80];
 5055:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 5056: 
 5057:   /*removespace(model);*/
 5058:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 5059:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 5060:     j=nbocc(model,'+'); /**< j=Number of '+' */
 5061:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
 5062:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
 5063:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
 5064:                   /* including age products which are counted in cptcovage.
 5065: 		  /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
 5066:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 5067:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 5068:     strcpy(modelsav,model); 
 5069:     if (strstr(model,"AGE") !=0){
 5070:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
 5071:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
 5072:       return 1;
 5073:     }
 5074:     if (strstr(model,"v") !=0){
 5075:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 5076:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 5077:       return 1;
 5078:     }
 5079:     
 5080:     /*   Design
 5081:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 5082:      *  <          ncovcol=8                >
 5083:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 5084:      *   k=  1    2      3       4     5       6      7        8
 5085:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 5086:      *  covar[k,i], value of kth covariate if not including age for individual i:
 5087:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 5088:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 5089:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 5090:      *  Tage[++cptcovage]=k
 5091:      *       if products, new covar are created after ncovcol with k1
 5092:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 5093:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 5094:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 5095:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 5096:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 5097:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 5098:      *  <          ncovcol=8                >
 5099:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 5100:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 5101:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5102:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5103:      * p Tprod[1]@2={                         6, 5}
 5104:      *p Tvard[1][1]@4= {7, 8, 5, 6}
 5105:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5106:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5107:      *How to reorganize?
 5108:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5109:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5110:      *       {2,   1,     4,      8,    5,      6,     3,       7}
 5111:      * Struct []
 5112:      */
 5113: 
 5114:     /* This loop fills the array Tvar from the string 'model'.*/
 5115:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5116:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5117:     /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5118:     /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5119:     /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5120:     /* 	k=1 Tvar[1]=2 (from V2) */
 5121:     /* 	k=5 Tvar[5] */
 5122:     /* for (k=1; k<=cptcovn;k++) { */
 5123:     /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 5124:     /* 	} */
 5125:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 5126:     /*
 5127:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5128:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5129:         Tvar[k]=0;
 5130:     cptcovage=0;
 5131:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5132:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5133: 				     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5134:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5135:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5136:       /*scanf("%d",i);*/
 5137:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5138: 	cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5139: 	if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5140: 	  /* covar is not filled and then is empty */
 5141: 	  cptcovprod--;
 5142: 	  cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5143: 	  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
 5144: 	  cptcovage++; /* Sums the number of covariates which include age as a product */
 5145: 	  Tage[cptcovage]=k;  /* Tage[1] = 4 */
 5146: 	  /*printf("stre=%s ", stre);*/
 5147: 	} else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5148: 	  cptcovprod--;
 5149: 	  cutl(stre,strb,strc,'V');
 5150: 	  Tvar[k]=atoi(stre);
 5151: 	  cptcovage++;
 5152: 	  Tage[cptcovage]=k;
 5153: 	} else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5154: 	  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5155: 	  cptcovn++;
 5156: 	  cptcovprodnoage++;k1++;
 5157: 	  cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5158: 	  Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5159: 				  because this model-covariate is a construction we invent a new column
 5160: 				  ncovcol + k1
 5161: 				  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5162: 				  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5163: 	  cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5164: 	  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5165: 	  Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5166: 	  Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5167: 	  k2=k2+2;
 5168: 	  Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5169: 	  Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5170: 	  for (i=1; i<=lastobs;i++){
 5171: 	    /* Computes the new covariate which is a product of
 5172: 	       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5173: 	    covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5174: 	  }
 5175: 	} /* End age is not in the model */
 5176:       } /* End if model includes a product */
 5177:       else { /* no more sum */
 5178: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5179:        /*  scanf("%d",i);*/
 5180: 	cutl(strd,strc,strb,'V');
 5181: 	ks++; /**< Number of simple covariates */
 5182: 	cptcovn++;
 5183: 	Tvar[k]=atoi(strd);
 5184:       }
 5185:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5186:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5187: 	scanf("%d",i);*/
 5188:     } /* end of loop + */
 5189:   } /* end model */
 5190:   
 5191:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5192:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5193: 
 5194:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5195:   printf("cptcovprod=%d ", cptcovprod);
 5196:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5197: 
 5198:   scanf("%d ",i);*/
 5199: 
 5200: 
 5201:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5202:   endread:
 5203:     printf("Exiting decodemodel: ");
 5204:     return (1);
 5205: }
 5206: 
 5207: calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5208: {
 5209:   int i, m;
 5210: 
 5211:   for (i=1; i<=imx; i++) {
 5212:     for(m=2; (m<= maxwav); m++) {
 5213:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5214: 	anint[m][i]=9999;
 5215: 	s[m][i]=-1;
 5216:       }
 5217:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5218: 	*nberr++;
 5219: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 5220: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 5221: 	s[m][i]=-1;
 5222:       }
 5223:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5224: 	*nberr++;
 5225: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5226: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5227: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5228:       }
 5229:     }
 5230:   }
 5231: 
 5232:   for (i=1; i<=imx; i++)  {
 5233:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5234:     for(m=firstpass; (m<= lastpass); m++){
 5235:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5236: 	if (s[m][i] >= nlstate+1) {
 5237: 	  if(agedc[i]>0)
 5238: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 5239: 	      agev[m][i]=agedc[i];
 5240: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5241: 	    else {
 5242: 	      if ((int)andc[i]!=9999){
 5243: 		nbwarn++;
 5244: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5245: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5246: 		agev[m][i]=-1;
 5247: 	      }
 5248: 	    }
 5249: 	}
 5250: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5251: 				 years but with the precision of a month */
 5252: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5253: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5254: 	    agev[m][i]=1;
 5255: 	  else if(agev[m][i] < *agemin){ 
 5256: 	    *agemin=agev[m][i];
 5257: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5258: 	  }
 5259: 	  else if(agev[m][i] >*agemax){
 5260: 	    *agemax=agev[m][i];
 5261: 	    /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
 5262: 	  }
 5263: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5264: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5265: 	}
 5266: 	else { /* =9 */
 5267: 	  agev[m][i]=1;
 5268: 	  s[m][i]=-1;
 5269: 	}
 5270:       }
 5271:       else /*= 0 Unknown */
 5272: 	agev[m][i]=1;
 5273:     }
 5274:     
 5275:   }
 5276:   for (i=1; i<=imx; i++)  {
 5277:     for(m=firstpass; (m<=lastpass); m++){
 5278:       if (s[m][i] > (nlstate+ndeath)) {
 5279: 	*nberr++;
 5280: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5281: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5282: 	return 1;
 5283:       }
 5284:     }
 5285:   }
 5286: 
 5287:   /*for (i=1; i<=imx; i++){
 5288:   for (m=firstpass; (m<lastpass); m++){
 5289:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5290: }
 5291: 
 5292: }*/
 5293: 
 5294: 
 5295:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5296:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5297: 
 5298:   return (0);
 5299:   endread:
 5300:     printf("Exiting calandcheckages: ");
 5301:     return (1);
 5302: }
 5303: 
 5304: 
 5305: /***********************************************/
 5306: /**************** Main Program *****************/
 5307: /***********************************************/
 5308: 
 5309: int main(int argc, char *argv[])
 5310: {
 5311: #ifdef GSL
 5312:   const gsl_multimin_fminimizer_type *T;
 5313:   size_t iteri = 0, it;
 5314:   int rval = GSL_CONTINUE;
 5315:   int status = GSL_SUCCESS;
 5316:   double ssval;
 5317: #endif
 5318:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 5319:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 5320:   int linei, month, year,iout;
 5321:   int jj, ll, li, lj, lk, imk;
 5322:   int numlinepar=0; /* Current linenumber of parameter file */
 5323:   int itimes;
 5324:   int NDIM=2;
 5325:   int vpopbased=0;
 5326: 
 5327:   char ca[32], cb[32], cc[32];
 5328:   /*  FILE *fichtm; *//* Html File */
 5329:   /* FILE *ficgp;*/ /*Gnuplot File */
 5330:   struct stat info;
 5331:   double agedeb, agefin,hf;
 5332:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 5333: 
 5334:   double fret;
 5335:   double **xi,tmp,delta;
 5336: 
 5337:   double dum; /* Dummy variable */
 5338:   double ***p3mat;
 5339:   double ***mobaverage;
 5340:   int *indx;
 5341:   char line[MAXLINE], linepar[MAXLINE];
 5342:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 5343:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 5344:   char **bp, *tok, *val; /* pathtot */
 5345:   int firstobs=1, lastobs=10;
 5346:   int sdeb, sfin; /* Status at beginning and end */
 5347:   int c,  h , cpt,l;
 5348:   int ju,jl, mi;
 5349:   int i1,j1, jk,aa,bb, stepsize, ij;
 5350:   int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
 5351:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 5352:   int mobilav=0,popforecast=0;
 5353:   int hstepm, nhstepm;
 5354:   int agemortsup;
 5355:   float  sumlpop=0.;
 5356:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 5357:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 5358: 
 5359:   double bage, fage, age, agelim, agebase;
 5360:   double ftolpl=FTOL;
 5361:   double **prlim;
 5362:   double ***param; /* Matrix of parameters */
 5363:   double  *p;
 5364:   double **matcov; /* Matrix of covariance */
 5365:   double ***delti3; /* Scale */
 5366:   double *delti; /* Scale */
 5367:   double ***eij, ***vareij;
 5368:   double **varpl; /* Variances of prevalence limits by age */
 5369:   double *epj, vepp;
 5370:   double kk1, kk2;
 5371:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 5372:   double **ximort;
 5373:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 5374:   int *dcwave;
 5375: 
 5376:   char z[1]="c", occ;
 5377: 
 5378:   /*char  *strt;*/
 5379:   char strtend[80];
 5380: 
 5381:   long total_usecs;
 5382:  
 5383: /*   setlocale (LC_ALL, ""); */
 5384: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 5385: /*   textdomain (PACKAGE); */
 5386: /*   setlocale (LC_CTYPE, ""); */
 5387: /*   setlocale (LC_MESSAGES, ""); */
 5388: 
 5389:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 5390:   rstart_time = time(NULL);  
 5391:   /*  (void) gettimeofday(&start_time,&tzp);*/
 5392:   start_time = *localtime(&rstart_time);
 5393:   curr_time=start_time;
 5394:   /*tml = *localtime(&start_time.tm_sec);*/
 5395:   /* strcpy(strstart,asctime(&tml)); */
 5396:   strcpy(strstart,asctime(&start_time));
 5397: 
 5398: /*  printf("Localtime (at start)=%s",strstart); */
 5399: /*  tp.tm_sec = tp.tm_sec +86400; */
 5400: /*  tm = *localtime(&start_time.tm_sec); */
 5401: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 5402: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 5403: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 5404: /*   tp.tm_sec = mktime(&tmg); */
 5405: /*   strt=asctime(&tmg); */
 5406: /*   printf("Time(after) =%s",strstart);  */
 5407: /*  (void) time (&time_value);
 5408: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 5409: *  tm = *localtime(&time_value);
 5410: *  strstart=asctime(&tm);
 5411: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 5412: */
 5413: 
 5414:   nberr=0; /* Number of errors and warnings */
 5415:   nbwarn=0;
 5416:   getcwd(pathcd, size);
 5417: 
 5418:   printf("\n%s\n%s",version,fullversion);
 5419:   if(argc <=1){
 5420:     printf("\nEnter the parameter file name: ");
 5421:     fgets(pathr,FILENAMELENGTH,stdin);
 5422:     i=strlen(pathr);
 5423:     if(pathr[i-1]=='\n')
 5424:       pathr[i-1]='\0';
 5425:     i=strlen(pathr);
 5426:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
 5427:       pathr[i-1]='\0';
 5428:    for (tok = pathr; tok != NULL; ){
 5429:       printf("Pathr |%s|\n",pathr);
 5430:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 5431:       printf("val= |%s| pathr=%s\n",val,pathr);
 5432:       strcpy (pathtot, val);
 5433:       if(pathr[0] == '\0') break; /* Dirty */
 5434:     }
 5435:   }
 5436:   else{
 5437:     strcpy(pathtot,argv[1]);
 5438:   }
 5439:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 5440:   /*cygwin_split_path(pathtot,path,optionfile);
 5441:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 5442:   /* cutv(path,optionfile,pathtot,'\\');*/
 5443: 
 5444:   /* Split argv[0], imach program to get pathimach */
 5445:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 5446:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5447:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5448:  /*   strcpy(pathimach,argv[0]); */
 5449:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 5450:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 5451:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 5452:   chdir(path); /* Can be a relative path */
 5453:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 5454:     printf("Current directory %s!\n",pathcd);
 5455:   strcpy(command,"mkdir ");
 5456:   strcat(command,optionfilefiname);
 5457:   if((outcmd=system(command)) != 0){
 5458:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 5459:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 5460:     /* fclose(ficlog); */
 5461: /*     exit(1); */
 5462:   }
 5463: /*   if((imk=mkdir(optionfilefiname))<0){ */
 5464: /*     perror("mkdir"); */
 5465: /*   } */
 5466: 
 5467:   /*-------- arguments in the command line --------*/
 5468: 
 5469:   /* Log file */
 5470:   strcat(filelog, optionfilefiname);
 5471:   strcat(filelog,".log");    /* */
 5472:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 5473:     printf("Problem with logfile %s\n",filelog);
 5474:     goto end;
 5475:   }
 5476:   fprintf(ficlog,"Log filename:%s\n",filelog);
 5477:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 5478:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 5479:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 5480:  path=%s \n\
 5481:  optionfile=%s\n\
 5482:  optionfilext=%s\n\
 5483:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 5484: 
 5485:   printf("Local time (at start):%s",strstart);
 5486:   fprintf(ficlog,"Local time (at start): %s",strstart);
 5487:   fflush(ficlog);
 5488: /*   (void) gettimeofday(&curr_time,&tzp); */
 5489: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
 5490: 
 5491:   /* */
 5492:   strcpy(fileres,"r");
 5493:   strcat(fileres, optionfilefiname);
 5494:   strcat(fileres,".txt");    /* Other files have txt extension */
 5495: 
 5496:   /*---------arguments file --------*/
 5497: 
 5498:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 5499:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 5500:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 5501:     fflush(ficlog);
 5502:     /* goto end; */
 5503:     exit(70); 
 5504:   }
 5505: 
 5506: 
 5507: 
 5508:   strcpy(filereso,"o");
 5509:   strcat(filereso,fileres);
 5510:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 5511:     printf("Problem with Output resultfile: %s\n", filereso);
 5512:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 5513:     fflush(ficlog);
 5514:     goto end;
 5515:   }
 5516: 
 5517:   /* Reads comments: lines beginning with '#' */
 5518:   numlinepar=0;
 5519:   while((c=getc(ficpar))=='#' && c!= EOF){
 5520:     ungetc(c,ficpar);
 5521:     fgets(line, MAXLINE, ficpar);
 5522:     numlinepar++;
 5523:     fputs(line,stdout);
 5524:     fputs(line,ficparo);
 5525:     fputs(line,ficlog);
 5526:   }
 5527:   ungetc(c,ficpar);
 5528: 
 5529:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 5530:   numlinepar++;
 5531:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 5532:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5533:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5534:   fflush(ficlog);
 5535:   while((c=getc(ficpar))=='#' && c!= EOF){
 5536:     ungetc(c,ficpar);
 5537:     fgets(line, MAXLINE, ficpar);
 5538:     numlinepar++;
 5539:     fputs(line, stdout);
 5540:     //puts(line);
 5541:     fputs(line,ficparo);
 5542:     fputs(line,ficlog);
 5543:   }
 5544:   ungetc(c,ficpar);
 5545: 
 5546:    
 5547:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 5548:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 5549:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 5550:      v1+v2*age+v2*v3 makes cptcovn = 3
 5551:   */
 5552:   if (strlen(model)>1) 
 5553:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
 5554:   else
 5555:     ncovmodel=2;
 5556:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 5557:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 5558:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 5559:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 5560:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5561:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5562:     fflush(stdout);
 5563:     fclose (ficlog);
 5564:     goto end;
 5565:   }
 5566:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5567:   delti=delti3[1][1];
 5568:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 5569:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 5570:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5571:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5572:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5573:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5574:     fclose (ficparo);
 5575:     fclose (ficlog);
 5576:     goto end;
 5577:     exit(0);
 5578:   }
 5579:   else if(mle==-3) {
 5580:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5581:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5582:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5583:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5584:     matcov=matrix(1,npar,1,npar);
 5585:   }
 5586:   else{
 5587:     /* Read guessed parameters */
 5588:     /* Reads comments: lines beginning with '#' */
 5589:     while((c=getc(ficpar))=='#' && c!= EOF){
 5590:       ungetc(c,ficpar);
 5591:       fgets(line, MAXLINE, ficpar);
 5592:       numlinepar++;
 5593:       fputs(line,stdout);
 5594:       fputs(line,ficparo);
 5595:       fputs(line,ficlog);
 5596:     }
 5597:     ungetc(c,ficpar);
 5598:     
 5599:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5600:     for(i=1; i <=nlstate; i++){
 5601:       j=0;
 5602:       for(jj=1; jj <=nlstate+ndeath; jj++){
 5603: 	if(jj==i) continue;
 5604: 	j++;
 5605: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5606: 	if ((i1 != i) && (j1 != j)){
 5607: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 5608: It might be a problem of design; if ncovcol and the model are correct\n \
 5609: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 5610: 	  exit(1);
 5611: 	}
 5612: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5613: 	if(mle==1)
 5614: 	  printf("%1d%1d",i,j);
 5615: 	fprintf(ficlog,"%1d%1d",i,j);
 5616: 	for(k=1; k<=ncovmodel;k++){
 5617: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 5618: 	  if(mle==1){
 5619: 	    printf(" %lf",param[i][j][k]);
 5620: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5621: 	  }
 5622: 	  else
 5623: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5624: 	  fprintf(ficparo," %lf",param[i][j][k]);
 5625: 	}
 5626: 	fscanf(ficpar,"\n");
 5627: 	numlinepar++;
 5628: 	if(mle==1)
 5629: 	  printf("\n");
 5630: 	fprintf(ficlog,"\n");
 5631: 	fprintf(ficparo,"\n");
 5632:       }
 5633:     }  
 5634:     fflush(ficlog);
 5635: 
 5636:     /* Reads scales values */
 5637:     p=param[1][1];
 5638:     
 5639:     /* Reads comments: lines beginning with '#' */
 5640:     while((c=getc(ficpar))=='#' && c!= EOF){
 5641:       ungetc(c,ficpar);
 5642:       fgets(line, MAXLINE, ficpar);
 5643:       numlinepar++;
 5644:       fputs(line,stdout);
 5645:       fputs(line,ficparo);
 5646:       fputs(line,ficlog);
 5647:     }
 5648:     ungetc(c,ficpar);
 5649: 
 5650:     for(i=1; i <=nlstate; i++){
 5651:       for(j=1; j <=nlstate+ndeath-1; j++){
 5652: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5653: 	if ((i1-i)*(j1-j)!=0){
 5654: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 5655: 	  exit(1);
 5656: 	}
 5657: 	printf("%1d%1d",i,j);
 5658: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5659: 	fprintf(ficlog,"%1d%1d",i1,j1);
 5660: 	for(k=1; k<=ncovmodel;k++){
 5661: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 5662: 	  printf(" %le",delti3[i][j][k]);
 5663: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 5664: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 5665: 	}
 5666: 	fscanf(ficpar,"\n");
 5667: 	numlinepar++;
 5668: 	printf("\n");
 5669: 	fprintf(ficparo,"\n");
 5670: 	fprintf(ficlog,"\n");
 5671:       }
 5672:     }
 5673:     fflush(ficlog);
 5674: 
 5675:     /* Reads covariance matrix */
 5676:     delti=delti3[1][1];
 5677: 
 5678: 
 5679:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 5680:   
 5681:     /* Reads comments: lines beginning with '#' */
 5682:     while((c=getc(ficpar))=='#' && c!= EOF){
 5683:       ungetc(c,ficpar);
 5684:       fgets(line, MAXLINE, ficpar);
 5685:       numlinepar++;
 5686:       fputs(line,stdout);
 5687:       fputs(line,ficparo);
 5688:       fputs(line,ficlog);
 5689:     }
 5690:     ungetc(c,ficpar);
 5691:   
 5692:     matcov=matrix(1,npar,1,npar);
 5693:     for(i=1; i <=npar; i++)
 5694:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 5695:       
 5696:     for(i=1; i <=npar; i++){
 5697:       fscanf(ficpar,"%s",str);
 5698:       if(mle==1)
 5699: 	printf("%s",str);
 5700:       fprintf(ficlog,"%s",str);
 5701:       fprintf(ficparo,"%s",str);
 5702:       for(j=1; j <=i; j++){
 5703: 	fscanf(ficpar," %le",&matcov[i][j]);
 5704: 	if(mle==1){
 5705: 	  printf(" %.5le",matcov[i][j]);
 5706: 	}
 5707: 	fprintf(ficlog," %.5le",matcov[i][j]);
 5708: 	fprintf(ficparo," %.5le",matcov[i][j]);
 5709:       }
 5710:       fscanf(ficpar,"\n");
 5711:       numlinepar++;
 5712:       if(mle==1)
 5713: 	printf("\n");
 5714:       fprintf(ficlog,"\n");
 5715:       fprintf(ficparo,"\n");
 5716:     }
 5717:     for(i=1; i <=npar; i++)
 5718:       for(j=i+1;j<=npar;j++)
 5719: 	matcov[i][j]=matcov[j][i];
 5720:     
 5721:     if(mle==1)
 5722:       printf("\n");
 5723:     fprintf(ficlog,"\n");
 5724:     
 5725:     fflush(ficlog);
 5726:     
 5727:     /*-------- Rewriting parameter file ----------*/
 5728:     strcpy(rfileres,"r");    /* "Rparameterfile */
 5729:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 5730:     strcat(rfileres,".");    /* */
 5731:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 5732:     if((ficres =fopen(rfileres,"w"))==NULL) {
 5733:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 5734:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 5735:     }
 5736:     fprintf(ficres,"#%s\n",version);
 5737:   }    /* End of mle != -3 */
 5738: 
 5739: 
 5740:   n= lastobs;
 5741:   num=lvector(1,n);
 5742:   moisnais=vector(1,n);
 5743:   annais=vector(1,n);
 5744:   moisdc=vector(1,n);
 5745:   andc=vector(1,n);
 5746:   agedc=vector(1,n);
 5747:   cod=ivector(1,n);
 5748:   weight=vector(1,n);
 5749:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 5750:   mint=matrix(1,maxwav,1,n);
 5751:   anint=matrix(1,maxwav,1,n);
 5752:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 5753:   tab=ivector(1,NCOVMAX);
 5754:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 5755: 
 5756:   /* Reads data from file datafile */
 5757:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 5758:     goto end;
 5759: 
 5760:   /* Calculation of the number of parameters from char model */
 5761:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 5762: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 5763: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 5764: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 5765: 	k=1 Tvar[1]=2 (from V2)
 5766:     */
 5767:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 5768:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 5769:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 5770:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 5771:   */
 5772:   /* For model-covariate k tells which data-covariate to use but
 5773:     because this model-covariate is a construction we invent a new column
 5774:     ncovcol + k1
 5775:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 5776:     Tvar[3=V1*V4]=4+1 etc */
 5777:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 5778:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 5779:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 5780:   */
 5781:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 5782:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 5783: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 5784: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 5785:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 5786: 			 4 covariates (3 plus signs)
 5787: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 5788: 		      */  
 5789: 
 5790:   if(decodemodel(model, lastobs) == 1)
 5791:     goto end;
 5792: 
 5793:   if((double)(lastobs-imx)/(double)imx > 1.10){
 5794:     nbwarn++;
 5795:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5796:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5797:   }
 5798:     /*  if(mle==1){*/
 5799:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 5800:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 5801:   }
 5802: 
 5803:     /*-calculation of age at interview from date of interview and age at death -*/
 5804:   agev=matrix(1,maxwav,1,imx);
 5805: 
 5806:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 5807:     goto end;
 5808: 
 5809: 
 5810:   agegomp=(int)agemin;
 5811:   free_vector(moisnais,1,n);
 5812:   free_vector(annais,1,n);
 5813:   /* free_matrix(mint,1,maxwav,1,n);
 5814:      free_matrix(anint,1,maxwav,1,n);*/
 5815:   free_vector(moisdc,1,n);
 5816:   free_vector(andc,1,n);
 5817:   /* */
 5818:   
 5819:   wav=ivector(1,imx);
 5820:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 5821:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 5822:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 5823:    
 5824:   /* Concatenates waves */
 5825:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 5826:   /* */
 5827:  
 5828:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 5829: 
 5830:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 5831:   ncodemax[1]=1;
 5832:   Ndum =ivector(-1,NCOVMAX);  
 5833:   if (ncovmodel > 2)
 5834:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 5835: 
 5836:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 5837:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
 5838:   h=0;
 5839: 
 5840: 
 5841:   /*if (cptcovn > 0) */
 5842:       
 5843:  
 5844:   m=pow(2,cptcoveff);
 5845:  
 5846:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 5847:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 5848:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
 5849: 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 5850: 	  h++;
 5851: 	  if (h>m) 
 5852: 	    h=1;
 5853: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 5854: 	   *     h     1     2     3     4
 5855: 	   *______________________________  
 5856: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 5857: 	   *     2     2     1     1     1
 5858: 	   *     3 i=2 1     2     1     1
 5859: 	   *     4     2     2     1     1
 5860: 	   *     5 i=3 1 i=2 1     2     1
 5861: 	   *     6     2     1     2     1
 5862: 	   *     7 i=4 1     2     2     1
 5863: 	   *     8     2     2     2     1
 5864: 	   *     9 i=5 1 i=3 1 i=2 1     1
 5865: 	   *    10     2     1     1     1
 5866: 	   *    11 i=6 1     2     1     1
 5867: 	   *    12     2     2     1     1
 5868: 	   *    13 i=7 1 i=4 1     2     1    
 5869: 	   *    14     2     1     2     1
 5870: 	   *    15 i=8 1     2     2     1
 5871: 	   *    16     2     2     2     1
 5872: 	   */
 5873: 	  codtab[h][k]=j;
 5874: 	  /*codtab[h][Tvar[k]]=j;*/
 5875: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 5876: 	} 
 5877:       }
 5878:     }
 5879:   } 
 5880:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 5881:      codtab[1][2]=1;codtab[2][2]=2; */
 5882:   /* for(i=1; i <=m ;i++){ 
 5883:      for(k=1; k <=cptcovn; k++){
 5884:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 5885:      }
 5886:      printf("\n");
 5887:      }
 5888:      scanf("%d",i);*/
 5889: 
 5890:  free_ivector(Ndum,-1,NCOVMAX);
 5891: 
 5892: 
 5893:     
 5894:   /*------------ gnuplot -------------*/
 5895:   strcpy(optionfilegnuplot,optionfilefiname);
 5896:   if(mle==-3)
 5897:     strcat(optionfilegnuplot,"-mort");
 5898:   strcat(optionfilegnuplot,".gp");
 5899: 
 5900:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 5901:     printf("Problem with file %s",optionfilegnuplot);
 5902:   }
 5903:   else{
 5904:     fprintf(ficgp,"\n# %s\n", version); 
 5905:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 5906:     //fprintf(ficgp,"set missing 'NaNq'\n");
 5907:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 5908:   }
 5909:   /*  fclose(ficgp);*/
 5910:   /*--------- index.htm --------*/
 5911: 
 5912:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 5913:   if(mle==-3)
 5914:     strcat(optionfilehtm,"-mort");
 5915:   strcat(optionfilehtm,".htm");
 5916:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 5917:     printf("Problem with %s \n",optionfilehtm);
 5918:     exit(0);
 5919:   }
 5920: 
 5921:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 5922:   strcat(optionfilehtmcov,"-cov.htm");
 5923:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 5924:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 5925:   }
 5926:   else{
 5927:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 5928: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 5929: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 5930: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 5931:   }
 5932: 
 5933:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 5934: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 5935: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 5936: \n\
 5937: <hr  size=\"2\" color=\"#EC5E5E\">\
 5938:  <ul><li><h4>Parameter files</h4>\n\
 5939:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 5940:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 5941:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 5942:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 5943:  - Date and time at start: %s</ul>\n",\
 5944: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 5945: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 5946: 	  fileres,fileres,\
 5947: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 5948:   fflush(fichtm);
 5949: 
 5950:   strcpy(pathr,path);
 5951:   strcat(pathr,optionfilefiname);
 5952:   chdir(optionfilefiname); /* Move to directory named optionfile */
 5953:   
 5954:   /* Calculates basic frequencies. Computes observed prevalence at single age
 5955:      and prints on file fileres'p'. */
 5956:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 5957: 
 5958:   fprintf(fichtm,"\n");
 5959:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 5960: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 5961: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 5962: 	  imx,agemin,agemax,jmin,jmax,jmean);
 5963:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5964:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5965:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5966:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5967:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 5968:     
 5969:    
 5970:   /* For Powell, parameters are in a vector p[] starting at p[1]
 5971:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 5972:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 5973: 
 5974:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 5975: 
 5976:   if (mle==-3){
 5977:     ximort=matrix(1,NDIM,1,NDIM); 
 5978: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 5979:     cens=ivector(1,n);
 5980:     ageexmed=vector(1,n);
 5981:     agecens=vector(1,n);
 5982:     dcwave=ivector(1,n);
 5983:  
 5984:     for (i=1; i<=imx; i++){
 5985:       dcwave[i]=-1;
 5986:       for (m=firstpass; m<=lastpass; m++)
 5987: 	if (s[m][i]>nlstate) {
 5988: 	  dcwave[i]=m;
 5989: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 5990: 	  break;
 5991: 	}
 5992:     }
 5993: 
 5994:     for (i=1; i<=imx; i++) {
 5995:       if (wav[i]>0){
 5996: 	ageexmed[i]=agev[mw[1][i]][i];
 5997: 	j=wav[i];
 5998: 	agecens[i]=1.; 
 5999: 
 6000: 	if (ageexmed[i]> 1 && wav[i] > 0){
 6001: 	  agecens[i]=agev[mw[j][i]][i];
 6002: 	  cens[i]= 1;
 6003: 	}else if (ageexmed[i]< 1) 
 6004: 	  cens[i]= -1;
 6005: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 6006: 	  cens[i]=0 ;
 6007:       }
 6008:       else cens[i]=-1;
 6009:     }
 6010:     
 6011:     for (i=1;i<=NDIM;i++) {
 6012:       for (j=1;j<=NDIM;j++)
 6013: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 6014:     }
 6015:     
 6016:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 6017:     /*printf("%lf %lf", p[1], p[2]);*/
 6018:     
 6019:     
 6020: #ifdef GSL
 6021:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 6022: #elsedef
 6023:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 6024: #endif
 6025:     strcpy(filerespow,"pow-mort"); 
 6026:     strcat(filerespow,fileres);
 6027:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 6028:       printf("Problem with resultfile: %s\n", filerespow);
 6029:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 6030:     }
 6031: #ifdef GSL
 6032:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 6033: #elsedef
 6034:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 6035: #endif
 6036:     /*  for (i=1;i<=nlstate;i++)
 6037: 	for(j=1;j<=nlstate+ndeath;j++)
 6038: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 6039:     */
 6040:     fprintf(ficrespow,"\n");
 6041: #ifdef GSL
 6042:     /* gsl starts here */ 
 6043:     T = gsl_multimin_fminimizer_nmsimplex;
 6044:     gsl_multimin_fminimizer *sfm = NULL;
 6045:     gsl_vector *ss, *x;
 6046:     gsl_multimin_function minex_func;
 6047: 
 6048:     /* Initial vertex size vector */
 6049:     ss = gsl_vector_alloc (NDIM);
 6050:     
 6051:     if (ss == NULL){
 6052:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 6053:     }
 6054:     /* Set all step sizes to 1 */
 6055:     gsl_vector_set_all (ss, 0.001);
 6056: 
 6057:     /* Starting point */
 6058:     
 6059:     x = gsl_vector_alloc (NDIM);
 6060:     
 6061:     if (x == NULL){
 6062:       gsl_vector_free(ss);
 6063:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 6064:     }
 6065:   
 6066:     /* Initialize method and iterate */
 6067:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 6068: /*     gsl_vector_set(x, 0, 0.0268); */
 6069: /*     gsl_vector_set(x, 1, 0.083); */
 6070:     gsl_vector_set(x, 0, p[1]);
 6071:     gsl_vector_set(x, 1, p[2]);
 6072: 
 6073:     minex_func.f = &gompertz_f;
 6074:     minex_func.n = NDIM;
 6075:     minex_func.params = (void *)&p; /* ??? */
 6076:     
 6077:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 6078:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 6079:     
 6080:     printf("Iterations beginning .....\n\n");
 6081:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 6082: 
 6083:     iteri=0;
 6084:     while (rval == GSL_CONTINUE){
 6085:       iteri++;
 6086:       status = gsl_multimin_fminimizer_iterate(sfm);
 6087:       
 6088:       if (status) printf("error: %s\n", gsl_strerror (status));
 6089:       fflush(0);
 6090:       
 6091:       if (status) 
 6092:         break;
 6093:       
 6094:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 6095:       ssval = gsl_multimin_fminimizer_size (sfm);
 6096:       
 6097:       if (rval == GSL_SUCCESS)
 6098:         printf ("converged to a local maximum at\n");
 6099:       
 6100:       printf("%5d ", iteri);
 6101:       for (it = 0; it < NDIM; it++){
 6102: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 6103:       }
 6104:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 6105:     }
 6106:     
 6107:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 6108:     
 6109:     gsl_vector_free(x); /* initial values */
 6110:     gsl_vector_free(ss); /* inital step size */
 6111:     for (it=0; it<NDIM; it++){
 6112:       p[it+1]=gsl_vector_get(sfm->x,it);
 6113:       fprintf(ficrespow," %.12lf", p[it]);
 6114:     }
 6115:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 6116: #endif
 6117: #ifdef POWELL
 6118:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 6119: #endif  
 6120:     fclose(ficrespow);
 6121:     
 6122:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 6123: 
 6124:     for(i=1; i <=NDIM; i++)
 6125:       for(j=i+1;j<=NDIM;j++)
 6126: 	matcov[i][j]=matcov[j][i];
 6127:     
 6128:     printf("\nCovariance matrix\n ");
 6129:     for(i=1; i <=NDIM; i++) {
 6130:       for(j=1;j<=NDIM;j++){ 
 6131: 	printf("%f ",matcov[i][j]);
 6132:       }
 6133:       printf("\n ");
 6134:     }
 6135:     
 6136:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 6137:     for (i=1;i<=NDIM;i++) 
 6138:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 6139: 
 6140:     lsurv=vector(1,AGESUP);
 6141:     lpop=vector(1,AGESUP);
 6142:     tpop=vector(1,AGESUP);
 6143:     lsurv[agegomp]=100000;
 6144:     
 6145:     for (k=agegomp;k<=AGESUP;k++) {
 6146:       agemortsup=k;
 6147:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 6148:     }
 6149:     
 6150:     for (k=agegomp;k<agemortsup;k++)
 6151:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 6152:     
 6153:     for (k=agegomp;k<agemortsup;k++){
 6154:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 6155:       sumlpop=sumlpop+lpop[k];
 6156:     }
 6157:     
 6158:     tpop[agegomp]=sumlpop;
 6159:     for (k=agegomp;k<(agemortsup-3);k++){
 6160:       /*  tpop[k+1]=2;*/
 6161:       tpop[k+1]=tpop[k]-lpop[k];
 6162:     }
 6163:     
 6164:     
 6165:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 6166:     for (k=agegomp;k<(agemortsup-2);k++) 
 6167:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 6168:     
 6169:     
 6170:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6171:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6172:     
 6173:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 6174: 		     stepm, weightopt,\
 6175: 		     model,imx,p,matcov,agemortsup);
 6176:     
 6177:     free_vector(lsurv,1,AGESUP);
 6178:     free_vector(lpop,1,AGESUP);
 6179:     free_vector(tpop,1,AGESUP);
 6180: #ifdef GSL
 6181:     free_ivector(cens,1,n);
 6182:     free_vector(agecens,1,n);
 6183:     free_ivector(dcwave,1,n);
 6184:     free_matrix(ximort,1,NDIM,1,NDIM);
 6185: #endif
 6186:   } /* Endof if mle==-3 */
 6187:   
 6188:   else{ /* For mle >=1 */
 6189:     globpr=0;/* debug */
 6190:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6191:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6192:     for (k=1; k<=npar;k++)
 6193:       printf(" %d %8.5f",k,p[k]);
 6194:     printf("\n");
 6195:     globpr=1; /* to print the contributions */
 6196:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6197:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6198:     for (k=1; k<=npar;k++)
 6199:       printf(" %d %8.5f",k,p[k]);
 6200:     printf("\n");
 6201:     if(mle>=1){ /* Could be 1 or 2 */
 6202:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 6203:     }
 6204:     
 6205:     /*--------- results files --------------*/
 6206:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 6207:     
 6208:     
 6209:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6210:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6211:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6212:     for(i=1,jk=1; i <=nlstate; i++){
 6213:       for(k=1; k <=(nlstate+ndeath); k++){
 6214: 	if (k != i) {
 6215: 	  printf("%d%d ",i,k);
 6216: 	  fprintf(ficlog,"%d%d ",i,k);
 6217: 	  fprintf(ficres,"%1d%1d ",i,k);
 6218: 	  for(j=1; j <=ncovmodel; j++){
 6219: 	    printf("%lf ",p[jk]);
 6220: 	    fprintf(ficlog,"%lf ",p[jk]);
 6221: 	    fprintf(ficres,"%lf ",p[jk]);
 6222: 	    jk++; 
 6223: 	  }
 6224: 	  printf("\n");
 6225: 	  fprintf(ficlog,"\n");
 6226: 	  fprintf(ficres,"\n");
 6227: 	}
 6228:       }
 6229:     }
 6230:     if(mle!=0){
 6231:       /* Computing hessian and covariance matrix */
 6232:       ftolhess=ftol; /* Usually correct */
 6233:       hesscov(matcov, p, npar, delti, ftolhess, func);
 6234:     }
 6235:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 6236:     printf("# Scales (for hessian or gradient estimation)\n");
 6237:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 6238:     for(i=1,jk=1; i <=nlstate; i++){
 6239:       for(j=1; j <=nlstate+ndeath; j++){
 6240: 	if (j!=i) {
 6241: 	  fprintf(ficres,"%1d%1d",i,j);
 6242: 	  printf("%1d%1d",i,j);
 6243: 	  fprintf(ficlog,"%1d%1d",i,j);
 6244: 	  for(k=1; k<=ncovmodel;k++){
 6245: 	    printf(" %.5e",delti[jk]);
 6246: 	    fprintf(ficlog," %.5e",delti[jk]);
 6247: 	    fprintf(ficres," %.5e",delti[jk]);
 6248: 	    jk++;
 6249: 	  }
 6250: 	  printf("\n");
 6251: 	  fprintf(ficlog,"\n");
 6252: 	  fprintf(ficres,"\n");
 6253: 	}
 6254:       }
 6255:     }
 6256:     
 6257:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6258:     if(mle>=1)
 6259:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6260:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6261:     /* # 121 Var(a12)\n\ */
 6262:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 6263:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 6264:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 6265:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 6266:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 6267:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 6268:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 6269:     
 6270:     
 6271:     /* Just to have a covariance matrix which will be more understandable
 6272:        even is we still don't want to manage dictionary of variables
 6273:     */
 6274:     for(itimes=1;itimes<=2;itimes++){
 6275:       jj=0;
 6276:       for(i=1; i <=nlstate; i++){
 6277: 	for(j=1; j <=nlstate+ndeath; j++){
 6278: 	  if(j==i) continue;
 6279: 	  for(k=1; k<=ncovmodel;k++){
 6280: 	    jj++;
 6281: 	    ca[0]= k+'a'-1;ca[1]='\0';
 6282: 	    if(itimes==1){
 6283: 	      if(mle>=1)
 6284: 		printf("#%1d%1d%d",i,j,k);
 6285: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 6286: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 6287: 	    }else{
 6288: 	      if(mle>=1)
 6289: 		printf("%1d%1d%d",i,j,k);
 6290: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 6291: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 6292: 	    }
 6293: 	    ll=0;
 6294: 	    for(li=1;li <=nlstate; li++){
 6295: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 6296: 		if(lj==li) continue;
 6297: 		for(lk=1;lk<=ncovmodel;lk++){
 6298: 		  ll++;
 6299: 		  if(ll<=jj){
 6300: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 6301: 		    if(ll<jj){
 6302: 		      if(itimes==1){
 6303: 			if(mle>=1)
 6304: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6305: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6306: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6307: 		      }else{
 6308: 			if(mle>=1)
 6309: 			  printf(" %.5e",matcov[jj][ll]); 
 6310: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6311: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6312: 		      }
 6313: 		    }else{
 6314: 		      if(itimes==1){
 6315: 			if(mle>=1)
 6316: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 6317: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 6318: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 6319: 		      }else{
 6320: 			if(mle>=1)
 6321: 			  printf(" %.5e",matcov[jj][ll]); 
 6322: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6323: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6324: 		      }
 6325: 		    }
 6326: 		  }
 6327: 		} /* end lk */
 6328: 	      } /* end lj */
 6329: 	    } /* end li */
 6330: 	    if(mle>=1)
 6331: 	      printf("\n");
 6332: 	    fprintf(ficlog,"\n");
 6333: 	    fprintf(ficres,"\n");
 6334: 	    numlinepar++;
 6335: 	  } /* end k*/
 6336: 	} /*end j */
 6337:       } /* end i */
 6338:     } /* end itimes */
 6339:     
 6340:     fflush(ficlog);
 6341:     fflush(ficres);
 6342:     
 6343:     while((c=getc(ficpar))=='#' && c!= EOF){
 6344:       ungetc(c,ficpar);
 6345:       fgets(line, MAXLINE, ficpar);
 6346:       fputs(line,stdout);
 6347:       fputs(line,ficparo);
 6348:     }
 6349:     ungetc(c,ficpar);
 6350:     
 6351:     estepm=0;
 6352:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 6353:     if (estepm==0 || estepm < stepm) estepm=stepm;
 6354:     if (fage <= 2) {
 6355:       bage = ageminpar;
 6356:       fage = agemaxpar;
 6357:     }
 6358:     
 6359:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 6360:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6361:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6362:     
 6363:     while((c=getc(ficpar))=='#' && c!= EOF){
 6364:       ungetc(c,ficpar);
 6365:       fgets(line, MAXLINE, ficpar);
 6366:       fputs(line,stdout);
 6367:       fputs(line,ficparo);
 6368:     }
 6369:     ungetc(c,ficpar);
 6370:     
 6371:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 6372:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6373:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6374:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6375:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6376:     
 6377:     while((c=getc(ficpar))=='#' && c!= EOF){
 6378:       ungetc(c,ficpar);
 6379:       fgets(line, MAXLINE, ficpar);
 6380:       fputs(line,stdout);
 6381:       fputs(line,ficparo);
 6382:     }
 6383:     ungetc(c,ficpar);
 6384:     
 6385:     
 6386:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 6387:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 6388:     
 6389:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 6390:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 6391:     fprintf(ficres,"pop_based=%d\n",popbased);   
 6392:     
 6393:     while((c=getc(ficpar))=='#' && c!= EOF){
 6394:       ungetc(c,ficpar);
 6395:       fgets(line, MAXLINE, ficpar);
 6396:       fputs(line,stdout);
 6397:       fputs(line,ficparo);
 6398:     }
 6399:     ungetc(c,ficpar);
 6400:     
 6401:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 6402:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6403:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6404:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6405:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6406:     /* day and month of proj2 are not used but only year anproj2.*/
 6407:     
 6408:     
 6409:     
 6410:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 6411:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 6412:     
 6413:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6414:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6415:     
 6416:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 6417: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 6418: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 6419:       
 6420:    /*------------ free_vector  -------------*/
 6421:    /*  chdir(path); */
 6422:  
 6423:     free_ivector(wav,1,imx);
 6424:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 6425:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 6426:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 6427:     free_lvector(num,1,n);
 6428:     free_vector(agedc,1,n);
 6429:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 6430:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 6431:     fclose(ficparo);
 6432:     fclose(ficres);
 6433: 
 6434: 
 6435:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 6436: #include "prevlim.h"  /* Use ficrespl, ficlog */
 6437:     fclose(ficrespl);
 6438: 
 6439: #ifdef FREEEXIT2
 6440: #include "freeexit2.h"
 6441: #endif
 6442: 
 6443:     /*------------- h Pij x at various ages ------------*/
 6444: #include "hpijx.h"
 6445:     fclose(ficrespij);
 6446: 
 6447:   /*-------------- Variance of one-step probabilities---*/
 6448:     k=1;
 6449:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 6450: 
 6451: 
 6452:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6453:     for(i=1;i<=AGESUP;i++)
 6454:       for(j=1;j<=NCOVMAX;j++)
 6455: 	for(k=1;k<=NCOVMAX;k++)
 6456: 	  probs[i][j][k]=0.;
 6457: 
 6458:     /*---------- Forecasting ------------------*/
 6459:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 6460:     if(prevfcast==1){
 6461:       /*    if(stepm ==1){*/
 6462:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 6463:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 6464:       /*      }  */
 6465:       /*      else{ */
 6466:       /*        erreur=108; */
 6467:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6468:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6469:       /*      } */
 6470:     }
 6471:   
 6472: 
 6473:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 6474: 
 6475:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 6476:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 6477: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 6478:     */
 6479: 
 6480:     if (mobilav!=0) {
 6481:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6482:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 6483: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 6484: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 6485:       }
 6486:     }
 6487: 
 6488: 
 6489:     /*---------- Health expectancies, no variances ------------*/
 6490: 
 6491:     strcpy(filerese,"e");
 6492:     strcat(filerese,fileres);
 6493:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 6494:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6495:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6496:     }
 6497:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 6498:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 6499:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6500:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6501:           
 6502:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6503: 	fprintf(ficreseij,"\n#****** ");
 6504: 	for(j=1;j<=cptcoveff;j++) {
 6505: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6506: 	}
 6507: 	fprintf(ficreseij,"******\n");
 6508: 
 6509: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6510: 	oldm=oldms;savm=savms;
 6511: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 6512:       
 6513: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6514:       /*}*/
 6515:     }
 6516:     fclose(ficreseij);
 6517: 
 6518: 
 6519:     /*---------- Health expectancies and variances ------------*/
 6520: 
 6521: 
 6522:     strcpy(filerest,"t");
 6523:     strcat(filerest,fileres);
 6524:     if((ficrest=fopen(filerest,"w"))==NULL) {
 6525:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 6526:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 6527:     }
 6528:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6529:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6530: 
 6531: 
 6532:     strcpy(fileresstde,"stde");
 6533:     strcat(fileresstde,fileres);
 6534:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 6535:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6536:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6537:     }
 6538:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6539:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6540: 
 6541:     strcpy(filerescve,"cve");
 6542:     strcat(filerescve,fileres);
 6543:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 6544:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6545:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6546:     }
 6547:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6548:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6549: 
 6550:     strcpy(fileresv,"v");
 6551:     strcat(fileresv,fileres);
 6552:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 6553:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 6554:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 6555:     }
 6556:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6557:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6558: 
 6559:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6560:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6561:           
 6562:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6563:     	fprintf(ficrest,"\n#****** ");
 6564: 	for(j=1;j<=cptcoveff;j++) 
 6565: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6566: 	fprintf(ficrest,"******\n");
 6567: 
 6568: 	fprintf(ficresstdeij,"\n#****** ");
 6569: 	fprintf(ficrescveij,"\n#****** ");
 6570: 	for(j=1;j<=cptcoveff;j++) {
 6571: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6572: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6573: 	}
 6574: 	fprintf(ficresstdeij,"******\n");
 6575: 	fprintf(ficrescveij,"******\n");
 6576: 
 6577: 	fprintf(ficresvij,"\n#****** ");
 6578: 	for(j=1;j<=cptcoveff;j++) 
 6579: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6580: 	fprintf(ficresvij,"******\n");
 6581: 
 6582: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6583: 	oldm=oldms;savm=savms;
 6584: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 6585: 	/*
 6586: 	 */
 6587: 	/* goto endfree; */
 6588:  
 6589: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6590: 	pstamp(ficrest);
 6591: 
 6592: 
 6593: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 6594: 	  oldm=oldms;savm=savms; /* Segmentation fault */
 6595: 	  cptcod= 0; /* To be deleted */
 6596: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
 6597: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 6598: 	  if(vpopbased==1)
 6599: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 6600: 	  else
 6601: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 6602: 	  fprintf(ficrest,"# Age e.. (std) ");
 6603: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 6604: 	  fprintf(ficrest,"\n");
 6605: 
 6606: 	  epj=vector(1,nlstate+1);
 6607: 	  for(age=bage; age <=fage ;age++){
 6608: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 6609: 	    if (vpopbased==1) {
 6610: 	      if(mobilav ==0){
 6611: 		for(i=1; i<=nlstate;i++)
 6612: 		  prlim[i][i]=probs[(int)age][i][k];
 6613: 	      }else{ /* mobilav */ 
 6614: 		for(i=1; i<=nlstate;i++)
 6615: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 6616: 	      }
 6617: 	    }
 6618: 	
 6619: 	    fprintf(ficrest," %4.0f",age);
 6620: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 6621: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 6622: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 6623: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 6624: 	      }
 6625: 	      epj[nlstate+1] +=epj[j];
 6626: 	    }
 6627: 
 6628: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 6629: 	      for(j=1;j <=nlstate;j++)
 6630: 		vepp += vareij[i][j][(int)age];
 6631: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 6632: 	    for(j=1;j <=nlstate;j++){
 6633: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 6634: 	    }
 6635: 	    fprintf(ficrest,"\n");
 6636: 	  }
 6637: 	}
 6638: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6639: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6640: 	free_vector(epj,1,nlstate+1);
 6641:       /*}*/
 6642:     }
 6643:     free_vector(weight,1,n);
 6644:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 6645:     free_imatrix(s,1,maxwav+1,1,n);
 6646:     free_matrix(anint,1,maxwav,1,n); 
 6647:     free_matrix(mint,1,maxwav,1,n);
 6648:     free_ivector(cod,1,n);
 6649:     free_ivector(tab,1,NCOVMAX);
 6650:     fclose(ficresstdeij);
 6651:     fclose(ficrescveij);
 6652:     fclose(ficresvij);
 6653:     fclose(ficrest);
 6654:     fclose(ficpar);
 6655:   
 6656:     /*------- Variance of period (stable) prevalence------*/   
 6657: 
 6658:     strcpy(fileresvpl,"vpl");
 6659:     strcat(fileresvpl,fileres);
 6660:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 6661:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 6662:       exit(0);
 6663:     }
 6664:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 6665: 
 6666:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6667:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6668:           
 6669:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6670:     	fprintf(ficresvpl,"\n#****** ");
 6671: 	for(j=1;j<=cptcoveff;j++) 
 6672: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6673: 	fprintf(ficresvpl,"******\n");
 6674:       
 6675: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 6676: 	oldm=oldms;savm=savms;
 6677: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 6678: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 6679:       /*}*/
 6680:     }
 6681: 
 6682:     fclose(ficresvpl);
 6683: 
 6684:     /*---------- End : free ----------------*/
 6685:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6686:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6687:   }  /* mle==-3 arrives here for freeing */
 6688:  endfree:
 6689:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 6690:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 6691:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6692:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6693:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6694:     free_matrix(covar,0,NCOVMAX,1,n);
 6695:     free_matrix(matcov,1,npar,1,npar);
 6696:     /*free_vector(delti,1,npar);*/
 6697:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6698:     free_matrix(agev,1,maxwav,1,imx);
 6699:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 6700: 
 6701:     free_ivector(ncodemax,1,NCOVMAX);
 6702:     free_ivector(Tvar,1,NCOVMAX);
 6703:     free_ivector(Tprod,1,NCOVMAX);
 6704:     free_ivector(Tvaraff,1,NCOVMAX);
 6705:     free_ivector(Tage,1,NCOVMAX);
 6706: 
 6707:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 6708:     free_imatrix(codtab,1,100,1,10);
 6709:   fflush(fichtm);
 6710:   fflush(ficgp);
 6711:   
 6712: 
 6713:   if((nberr >0) || (nbwarn>0)){
 6714:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 6715:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 6716:   }else{
 6717:     printf("End of Imach\n");
 6718:     fprintf(ficlog,"End of Imach\n");
 6719:   }
 6720:   printf("See log file on %s\n",filelog);
 6721:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 6722:   /*(void) gettimeofday(&end_time,&tzp);*/
 6723:   rend_time = time(NULL);  
 6724:   end_time = *localtime(&rend_time);
 6725:   /* tml = *localtime(&end_time.tm_sec); */
 6726:   strcpy(strtend,asctime(&end_time));
 6727:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 6728:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 6729:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 6730: 
 6731:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 6732:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 6733:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 6734:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 6735: /*   if(fileappend(fichtm,optionfilehtm)){ */
 6736:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6737:   fclose(fichtm);
 6738:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6739:   fclose(fichtmcov);
 6740:   fclose(ficgp);
 6741:   fclose(ficlog);
 6742:   /*------ End -----------*/
 6743: 
 6744: 
 6745:    printf("Before Current directory %s!\n",pathcd);
 6746:    if(chdir(pathcd) != 0)
 6747:     printf("Can't move to directory %s!\n",path);
 6748:   if(getcwd(pathcd,MAXLINE) > 0)
 6749:     printf("Current directory %s!\n",pathcd);
 6750:   /*strcat(plotcmd,CHARSEPARATOR);*/
 6751:   sprintf(plotcmd,"gnuplot");
 6752: #ifdef _WIN32
 6753:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 6754: #endif
 6755:   if(!stat(plotcmd,&info)){
 6756:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 6757:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 6758:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 6759:     }else
 6760:       strcpy(pplotcmd,plotcmd);
 6761: #ifdef __unix
 6762:     strcpy(plotcmd,GNUPLOTPROGRAM);
 6763:     if(!stat(plotcmd,&info)){
 6764:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 6765:     }else
 6766:       strcpy(pplotcmd,plotcmd);
 6767: #endif
 6768:   }else
 6769:     strcpy(pplotcmd,plotcmd);
 6770:   
 6771:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 6772:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
 6773: 
 6774:   if((outcmd=system(plotcmd)) != 0){
 6775:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
 6776:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
 6777:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
 6778:     if((outcmd=system(plotcmd)) != 0)
 6779:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
 6780:   }
 6781:   printf(" Successful, please wait...");
 6782:   while (z[0] != 'q') {
 6783:     /* chdir(path); */
 6784:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
 6785:     scanf("%s",z);
 6786: /*     if (z[0] == 'c') system("./imach"); */
 6787:     if (z[0] == 'e') {
 6788: #ifdef __APPLE__
 6789:       sprintf(pplotcmd, "open %s", optionfilehtm);
 6790: #elif __linux
 6791:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
 6792: #else
 6793:       sprintf(pplotcmd, "%s", optionfilehtm);
 6794: #endif
 6795:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
 6796:       system(pplotcmd);
 6797:     }
 6798:     else if (z[0] == 'g') system(plotcmd);
 6799:     else if (z[0] == 'q') exit(0);
 6800:   }
 6801:   end:
 6802:   while (z[0] != 'q') {
 6803:     printf("\nType  q for exiting: ");
 6804:     scanf("%s",z);
 6805:   }
 6806: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>