File:  [Local Repository] / imach / src / imach.c
Revision 1.166: download - view: text, annotated - select for diffs
Mon Dec 22 11:40:47 2014 UTC (9 years, 5 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
*** empty log message ***

    1: /* $Id: imach.c,v 1.166 2014/12/22 11:40:47 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.166  2014/12/22 11:40:47  brouard
    5:   *** empty log message ***
    6: 
    7:   Revision 1.165  2014/12/16 11:20:36  brouard
    8:   Summary: After compiling on Visual C
    9: 
   10:   * imach.c (Module): Merging 1.61 to 1.162
   11: 
   12:   Revision 1.164  2014/12/16 10:52:11  brouard
   13:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   14: 
   15:   * imach.c (Module): Merging 1.61 to 1.162
   16: 
   17:   Revision 1.163  2014/12/16 10:30:11  brouard
   18:   * imach.c (Module): Merging 1.61 to 1.162
   19: 
   20:   Revision 1.162  2014/09/25 11:43:39  brouard
   21:   Summary: temporary backup 0.99!
   22: 
   23:   Revision 1.1  2014/09/16 11:06:58  brouard
   24:   Summary: With some code (wrong) for nlopt
   25: 
   26:   Author:
   27: 
   28:   Revision 1.161  2014/09/15 20:41:41  brouard
   29:   Summary: Problem with macro SQR on Intel compiler
   30: 
   31:   Revision 1.160  2014/09/02 09:24:05  brouard
   32:   *** empty log message ***
   33: 
   34:   Revision 1.159  2014/09/01 10:34:10  brouard
   35:   Summary: WIN32
   36:   Author: Brouard
   37: 
   38:   Revision 1.158  2014/08/27 17:11:51  brouard
   39:   *** empty log message ***
   40: 
   41:   Revision 1.157  2014/08/27 16:26:55  brouard
   42:   Summary: Preparing windows Visual studio version
   43:   Author: Brouard
   44: 
   45:   In order to compile on Visual studio, time.h is now correct and time_t
   46:   and tm struct should be used. difftime should be used but sometimes I
   47:   just make the differences in raw time format (time(&now).
   48:   Trying to suppress #ifdef LINUX
   49:   Add xdg-open for __linux in order to open default browser.
   50: 
   51:   Revision 1.156  2014/08/25 20:10:10  brouard
   52:   *** empty log message ***
   53: 
   54:   Revision 1.155  2014/08/25 18:32:34  brouard
   55:   Summary: New compile, minor changes
   56:   Author: Brouard
   57: 
   58:   Revision 1.154  2014/06/20 17:32:08  brouard
   59:   Summary: Outputs now all graphs of convergence to period prevalence
   60: 
   61:   Revision 1.153  2014/06/20 16:45:46  brouard
   62:   Summary: If 3 live state, convergence to period prevalence on same graph
   63:   Author: Brouard
   64: 
   65:   Revision 1.152  2014/06/18 17:54:09  brouard
   66:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
   67: 
   68:   Revision 1.151  2014/06/18 16:43:30  brouard
   69:   *** empty log message ***
   70: 
   71:   Revision 1.150  2014/06/18 16:42:35  brouard
   72:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   73:   Author: brouard
   74: 
   75:   Revision 1.149  2014/06/18 15:51:14  brouard
   76:   Summary: Some fixes in parameter files errors
   77:   Author: Nicolas Brouard
   78: 
   79:   Revision 1.148  2014/06/17 17:38:48  brouard
   80:   Summary: Nothing new
   81:   Author: Brouard
   82: 
   83:   Just a new packaging for OS/X version 0.98nS
   84: 
   85:   Revision 1.147  2014/06/16 10:33:11  brouard
   86:   *** empty log message ***
   87: 
   88:   Revision 1.146  2014/06/16 10:20:28  brouard
   89:   Summary: Merge
   90:   Author: Brouard
   91: 
   92:   Merge, before building revised version.
   93: 
   94:   Revision 1.145  2014/06/10 21:23:15  brouard
   95:   Summary: Debugging with valgrind
   96:   Author: Nicolas Brouard
   97: 
   98:   Lot of changes in order to output the results with some covariates
   99:   After the Edimburgh REVES conference 2014, it seems mandatory to
  100:   improve the code.
  101:   No more memory valgrind error but a lot has to be done in order to
  102:   continue the work of splitting the code into subroutines.
  103:   Also, decodemodel has been improved. Tricode is still not
  104:   optimal. nbcode should be improved. Documentation has been added in
  105:   the source code.
  106: 
  107:   Revision 1.143  2014/01/26 09:45:38  brouard
  108:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
  109: 
  110:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  111:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
  112: 
  113:   Revision 1.142  2014/01/26 03:57:36  brouard
  114:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
  115: 
  116:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  117: 
  118:   Revision 1.141  2014/01/26 02:42:01  brouard
  119:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  120: 
  121:   Revision 1.140  2011/09/02 10:37:54  brouard
  122:   Summary: times.h is ok with mingw32 now.
  123: 
  124:   Revision 1.139  2010/06/14 07:50:17  brouard
  125:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
  126:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  127: 
  128:   Revision 1.138  2010/04/30 18:19:40  brouard
  129:   *** empty log message ***
  130: 
  131:   Revision 1.137  2010/04/29 18:11:38  brouard
  132:   (Module): Checking covariates for more complex models
  133:   than V1+V2. A lot of change to be done. Unstable.
  134: 
  135:   Revision 1.136  2010/04/26 20:30:53  brouard
  136:   (Module): merging some libgsl code. Fixing computation
  137:   of likelione (using inter/intrapolation if mle = 0) in order to
  138:   get same likelihood as if mle=1.
  139:   Some cleaning of code and comments added.
  140: 
  141:   Revision 1.135  2009/10/29 15:33:14  brouard
  142:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  143: 
  144:   Revision 1.134  2009/10/29 13:18:53  brouard
  145:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  146: 
  147:   Revision 1.133  2009/07/06 10:21:25  brouard
  148:   just nforces
  149: 
  150:   Revision 1.132  2009/07/06 08:22:05  brouard
  151:   Many tings
  152: 
  153:   Revision 1.131  2009/06/20 16:22:47  brouard
  154:   Some dimensions resccaled
  155: 
  156:   Revision 1.130  2009/05/26 06:44:34  brouard
  157:   (Module): Max Covariate is now set to 20 instead of 8. A
  158:   lot of cleaning with variables initialized to 0. Trying to make
  159:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
  160: 
  161:   Revision 1.129  2007/08/31 13:49:27  lievre
  162:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
  163: 
  164:   Revision 1.128  2006/06/30 13:02:05  brouard
  165:   (Module): Clarifications on computing e.j
  166: 
  167:   Revision 1.127  2006/04/28 18:11:50  brouard
  168:   (Module): Yes the sum of survivors was wrong since
  169:   imach-114 because nhstepm was no more computed in the age
  170:   loop. Now we define nhstepma in the age loop.
  171:   (Module): In order to speed up (in case of numerous covariates) we
  172:   compute health expectancies (without variances) in a first step
  173:   and then all the health expectancies with variances or standard
  174:   deviation (needs data from the Hessian matrices) which slows the
  175:   computation.
  176:   In the future we should be able to stop the program is only health
  177:   expectancies and graph are needed without standard deviations.
  178: 
  179:   Revision 1.126  2006/04/28 17:23:28  brouard
  180:   (Module): Yes the sum of survivors was wrong since
  181:   imach-114 because nhstepm was no more computed in the age
  182:   loop. Now we define nhstepma in the age loop.
  183:   Version 0.98h
  184: 
  185:   Revision 1.125  2006/04/04 15:20:31  lievre
  186:   Errors in calculation of health expectancies. Age was not initialized.
  187:   Forecasting file added.
  188: 
  189:   Revision 1.124  2006/03/22 17:13:53  lievre
  190:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  191:   The log-likelihood is printed in the log file
  192: 
  193:   Revision 1.123  2006/03/20 10:52:43  brouard
  194:   * imach.c (Module): <title> changed, corresponds to .htm file
  195:   name. <head> headers where missing.
  196: 
  197:   * imach.c (Module): Weights can have a decimal point as for
  198:   English (a comma might work with a correct LC_NUMERIC environment,
  199:   otherwise the weight is truncated).
  200:   Modification of warning when the covariates values are not 0 or
  201:   1.
  202:   Version 0.98g
  203: 
  204:   Revision 1.122  2006/03/20 09:45:41  brouard
  205:   (Module): Weights can have a decimal point as for
  206:   English (a comma might work with a correct LC_NUMERIC environment,
  207:   otherwise the weight is truncated).
  208:   Modification of warning when the covariates values are not 0 or
  209:   1.
  210:   Version 0.98g
  211: 
  212:   Revision 1.121  2006/03/16 17:45:01  lievre
  213:   * imach.c (Module): Comments concerning covariates added
  214: 
  215:   * imach.c (Module): refinements in the computation of lli if
  216:   status=-2 in order to have more reliable computation if stepm is
  217:   not 1 month. Version 0.98f
  218: 
  219:   Revision 1.120  2006/03/16 15:10:38  lievre
  220:   (Module): refinements in the computation of lli if
  221:   status=-2 in order to have more reliable computation if stepm is
  222:   not 1 month. Version 0.98f
  223: 
  224:   Revision 1.119  2006/03/15 17:42:26  brouard
  225:   (Module): Bug if status = -2, the loglikelihood was
  226:   computed as likelihood omitting the logarithm. Version O.98e
  227: 
  228:   Revision 1.118  2006/03/14 18:20:07  brouard
  229:   (Module): varevsij Comments added explaining the second
  230:   table of variances if popbased=1 .
  231:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  232:   (Module): Function pstamp added
  233:   (Module): Version 0.98d
  234: 
  235:   Revision 1.117  2006/03/14 17:16:22  brouard
  236:   (Module): varevsij Comments added explaining the second
  237:   table of variances if popbased=1 .
  238:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  239:   (Module): Function pstamp added
  240:   (Module): Version 0.98d
  241: 
  242:   Revision 1.116  2006/03/06 10:29:27  brouard
  243:   (Module): Variance-covariance wrong links and
  244:   varian-covariance of ej. is needed (Saito).
  245: 
  246:   Revision 1.115  2006/02/27 12:17:45  brouard
  247:   (Module): One freematrix added in mlikeli! 0.98c
  248: 
  249:   Revision 1.114  2006/02/26 12:57:58  brouard
  250:   (Module): Some improvements in processing parameter
  251:   filename with strsep.
  252: 
  253:   Revision 1.113  2006/02/24 14:20:24  brouard
  254:   (Module): Memory leaks checks with valgrind and:
  255:   datafile was not closed, some imatrix were not freed and on matrix
  256:   allocation too.
  257: 
  258:   Revision 1.112  2006/01/30 09:55:26  brouard
  259:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  260: 
  261:   Revision 1.111  2006/01/25 20:38:18  brouard
  262:   (Module): Lots of cleaning and bugs added (Gompertz)
  263:   (Module): Comments can be added in data file. Missing date values
  264:   can be a simple dot '.'.
  265: 
  266:   Revision 1.110  2006/01/25 00:51:50  brouard
  267:   (Module): Lots of cleaning and bugs added (Gompertz)
  268: 
  269:   Revision 1.109  2006/01/24 19:37:15  brouard
  270:   (Module): Comments (lines starting with a #) are allowed in data.
  271: 
  272:   Revision 1.108  2006/01/19 18:05:42  lievre
  273:   Gnuplot problem appeared...
  274:   To be fixed
  275: 
  276:   Revision 1.107  2006/01/19 16:20:37  brouard
  277:   Test existence of gnuplot in imach path
  278: 
  279:   Revision 1.106  2006/01/19 13:24:36  brouard
  280:   Some cleaning and links added in html output
  281: 
  282:   Revision 1.105  2006/01/05 20:23:19  lievre
  283:   *** empty log message ***
  284: 
  285:   Revision 1.104  2005/09/30 16:11:43  lievre
  286:   (Module): sump fixed, loop imx fixed, and simplifications.
  287:   (Module): If the status is missing at the last wave but we know
  288:   that the person is alive, then we can code his/her status as -2
  289:   (instead of missing=-1 in earlier versions) and his/her
  290:   contributions to the likelihood is 1 - Prob of dying from last
  291:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  292:   the healthy state at last known wave). Version is 0.98
  293: 
  294:   Revision 1.103  2005/09/30 15:54:49  lievre
  295:   (Module): sump fixed, loop imx fixed, and simplifications.
  296: 
  297:   Revision 1.102  2004/09/15 17:31:30  brouard
  298:   Add the possibility to read data file including tab characters.
  299: 
  300:   Revision 1.101  2004/09/15 10:38:38  brouard
  301:   Fix on curr_time
  302: 
  303:   Revision 1.100  2004/07/12 18:29:06  brouard
  304:   Add version for Mac OS X. Just define UNIX in Makefile
  305: 
  306:   Revision 1.99  2004/06/05 08:57:40  brouard
  307:   *** empty log message ***
  308: 
  309:   Revision 1.98  2004/05/16 15:05:56  brouard
  310:   New version 0.97 . First attempt to estimate force of mortality
  311:   directly from the data i.e. without the need of knowing the health
  312:   state at each age, but using a Gompertz model: log u =a + b*age .
  313:   This is the basic analysis of mortality and should be done before any
  314:   other analysis, in order to test if the mortality estimated from the
  315:   cross-longitudinal survey is different from the mortality estimated
  316:   from other sources like vital statistic data.
  317: 
  318:   The same imach parameter file can be used but the option for mle should be -3.
  319: 
  320:   Agnès, who wrote this part of the code, tried to keep most of the
  321:   former routines in order to include the new code within the former code.
  322: 
  323:   The output is very simple: only an estimate of the intercept and of
  324:   the slope with 95% confident intervals.
  325: 
  326:   Current limitations:
  327:   A) Even if you enter covariates, i.e. with the
  328:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  329:   B) There is no computation of Life Expectancy nor Life Table.
  330: 
  331:   Revision 1.97  2004/02/20 13:25:42  lievre
  332:   Version 0.96d. Population forecasting command line is (temporarily)
  333:   suppressed.
  334: 
  335:   Revision 1.96  2003/07/15 15:38:55  brouard
  336:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  337:   rewritten within the same printf. Workaround: many printfs.
  338: 
  339:   Revision 1.95  2003/07/08 07:54:34  brouard
  340:   * imach.c (Repository):
  341:   (Repository): Using imachwizard code to output a more meaningful covariance
  342:   matrix (cov(a12,c31) instead of numbers.
  343: 
  344:   Revision 1.94  2003/06/27 13:00:02  brouard
  345:   Just cleaning
  346: 
  347:   Revision 1.93  2003/06/25 16:33:55  brouard
  348:   (Module): On windows (cygwin) function asctime_r doesn't
  349:   exist so I changed back to asctime which exists.
  350:   (Module): Version 0.96b
  351: 
  352:   Revision 1.92  2003/06/25 16:30:45  brouard
  353:   (Module): On windows (cygwin) function asctime_r doesn't
  354:   exist so I changed back to asctime which exists.
  355: 
  356:   Revision 1.91  2003/06/25 15:30:29  brouard
  357:   * imach.c (Repository): Duplicated warning errors corrected.
  358:   (Repository): Elapsed time after each iteration is now output. It
  359:   helps to forecast when convergence will be reached. Elapsed time
  360:   is stamped in powell.  We created a new html file for the graphs
  361:   concerning matrix of covariance. It has extension -cov.htm.
  362: 
  363:   Revision 1.90  2003/06/24 12:34:15  brouard
  364:   (Module): Some bugs corrected for windows. Also, when
  365:   mle=-1 a template is output in file "or"mypar.txt with the design
  366:   of the covariance matrix to be input.
  367: 
  368:   Revision 1.89  2003/06/24 12:30:52  brouard
  369:   (Module): Some bugs corrected for windows. Also, when
  370:   mle=-1 a template is output in file "or"mypar.txt with the design
  371:   of the covariance matrix to be input.
  372: 
  373:   Revision 1.88  2003/06/23 17:54:56  brouard
  374:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  375: 
  376:   Revision 1.87  2003/06/18 12:26:01  brouard
  377:   Version 0.96
  378: 
  379:   Revision 1.86  2003/06/17 20:04:08  brouard
  380:   (Module): Change position of html and gnuplot routines and added
  381:   routine fileappend.
  382: 
  383:   Revision 1.85  2003/06/17 13:12:43  brouard
  384:   * imach.c (Repository): Check when date of death was earlier that
  385:   current date of interview. It may happen when the death was just
  386:   prior to the death. In this case, dh was negative and likelihood
  387:   was wrong (infinity). We still send an "Error" but patch by
  388:   assuming that the date of death was just one stepm after the
  389:   interview.
  390:   (Repository): Because some people have very long ID (first column)
  391:   we changed int to long in num[] and we added a new lvector for
  392:   memory allocation. But we also truncated to 8 characters (left
  393:   truncation)
  394:   (Repository): No more line truncation errors.
  395: 
  396:   Revision 1.84  2003/06/13 21:44:43  brouard
  397:   * imach.c (Repository): Replace "freqsummary" at a correct
  398:   place. It differs from routine "prevalence" which may be called
  399:   many times. Probs is memory consuming and must be used with
  400:   parcimony.
  401:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  402: 
  403:   Revision 1.83  2003/06/10 13:39:11  lievre
  404:   *** empty log message ***
  405: 
  406:   Revision 1.82  2003/06/05 15:57:20  brouard
  407:   Add log in  imach.c and  fullversion number is now printed.
  408: 
  409: */
  410: /*
  411:    Interpolated Markov Chain
  412: 
  413:   Short summary of the programme:
  414:   
  415:   This program computes Healthy Life Expectancies from
  416:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  417:   first survey ("cross") where individuals from different ages are
  418:   interviewed on their health status or degree of disability (in the
  419:   case of a health survey which is our main interest) -2- at least a
  420:   second wave of interviews ("longitudinal") which measure each change
  421:   (if any) in individual health status.  Health expectancies are
  422:   computed from the time spent in each health state according to a
  423:   model. More health states you consider, more time is necessary to reach the
  424:   Maximum Likelihood of the parameters involved in the model.  The
  425:   simplest model is the multinomial logistic model where pij is the
  426:   probability to be observed in state j at the second wave
  427:   conditional to be observed in state i at the first wave. Therefore
  428:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  429:   'age' is age and 'sex' is a covariate. If you want to have a more
  430:   complex model than "constant and age", you should modify the program
  431:   where the markup *Covariates have to be included here again* invites
  432:   you to do it.  More covariates you add, slower the
  433:   convergence.
  434: 
  435:   The advantage of this computer programme, compared to a simple
  436:   multinomial logistic model, is clear when the delay between waves is not
  437:   identical for each individual. Also, if a individual missed an
  438:   intermediate interview, the information is lost, but taken into
  439:   account using an interpolation or extrapolation.  
  440: 
  441:   hPijx is the probability to be observed in state i at age x+h
  442:   conditional to the observed state i at age x. The delay 'h' can be
  443:   split into an exact number (nh*stepm) of unobserved intermediate
  444:   states. This elementary transition (by month, quarter,
  445:   semester or year) is modelled as a multinomial logistic.  The hPx
  446:   matrix is simply the matrix product of nh*stepm elementary matrices
  447:   and the contribution of each individual to the likelihood is simply
  448:   hPijx.
  449: 
  450:   Also this programme outputs the covariance matrix of the parameters but also
  451:   of the life expectancies. It also computes the period (stable) prevalence. 
  452:   
  453:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  454:            Institut national d'études démographiques, Paris.
  455:   This software have been partly granted by Euro-REVES, a concerted action
  456:   from the European Union.
  457:   It is copyrighted identically to a GNU software product, ie programme and
  458:   software can be distributed freely for non commercial use. Latest version
  459:   can be accessed at http://euroreves.ined.fr/imach .
  460: 
  461:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  462:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  463:   
  464:   **********************************************************************/
  465: /*
  466:   main
  467:   read parameterfile
  468:   read datafile
  469:   concatwav
  470:   freqsummary
  471:   if (mle >= 1)
  472:     mlikeli
  473:   print results files
  474:   if mle==1 
  475:      computes hessian
  476:   read end of parameter file: agemin, agemax, bage, fage, estepm
  477:       begin-prev-date,...
  478:   open gnuplot file
  479:   open html file
  480:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  481:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  482:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  483:     freexexit2 possible for memory heap.
  484: 
  485:   h Pij x                         | pij_nom  ficrestpij
  486:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  487:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  488:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  489: 
  490:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  491:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  492:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  493:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  494:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  495: 
  496:   forecasting if prevfcast==1 prevforecast call prevalence()
  497:   health expectancies
  498:   Variance-covariance of DFLE
  499:   prevalence()
  500:    movingaverage()
  501:   varevsij() 
  502:   if popbased==1 varevsij(,popbased)
  503:   total life expectancies
  504:   Variance of period (stable) prevalence
  505:  end
  506: */
  507: 
  508: #define POWELL /* Instead of NLOPT */
  509: 
  510: #include <math.h>
  511: #include <stdio.h>
  512: #include <stdlib.h>
  513: #include <string.h>
  514: 
  515: #ifdef _WIN32
  516: #include <io.h>
  517: #else
  518: #include <unistd.h>
  519: #endif
  520: 
  521: #include <limits.h>
  522: #include <sys/types.h>
  523: #include <sys/stat.h>
  524: #include <errno.h>
  525: /* extern int errno; */
  526: 
  527: /* #ifdef LINUX */
  528: /* #include <time.h> */
  529: /* #include "timeval.h" */
  530: /* #else */
  531: /* #include <sys/time.h> */
  532: /* #endif */
  533: 
  534: #include <time.h>
  535: 
  536: #ifdef GSL
  537: #include <gsl/gsl_errno.h>
  538: #include <gsl/gsl_multimin.h>
  539: #endif
  540: 
  541: #ifdef NLOPT
  542: #include <nlopt.h>
  543: typedef struct {
  544:   double (* function)(double [] );
  545: } myfunc_data ;
  546: #endif
  547: 
  548: /* #include <libintl.h> */
  549: /* #define _(String) gettext (String) */
  550: 
  551: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  552: 
  553: #define GNUPLOTPROGRAM "gnuplot"
  554: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  555: #define FILENAMELENGTH 132
  556: 
  557: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  558: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  559: 
  560: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  561: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  562: 
  563: #define NINTERVMAX 8
  564: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  565: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  566: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  567: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  568: #define MAXN 20000
  569: #define YEARM 12. /**< Number of months per year */
  570: #define AGESUP 130
  571: #define AGEBASE 40
  572: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
  573: #ifdef _WIN32
  574: #define DIRSEPARATOR '\\'
  575: #define CHARSEPARATOR "\\"
  576: #define ODIRSEPARATOR '/'
  577: #else
  578: #define DIRSEPARATOR '/'
  579: #define CHARSEPARATOR "/"
  580: #define ODIRSEPARATOR '\\'
  581: #endif
  582: 
  583: /* $Id: imach.c,v 1.166 2014/12/22 11:40:47 brouard Exp $ */
  584: /* $State: Exp $ */
  585: 
  586: char version[]="Imach version 0.99, September 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
  587: char fullversion[]="$Revision: 1.166 $ $Date: 2014/12/22 11:40:47 $"; 
  588: char strstart[80];
  589: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  590: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  591: int nvar=0, nforce=0; /* Number of variables, number of forces */
  592: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  593: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  594: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  595: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  596: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  597: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  598: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  599: int cptcov=0; /* Working variable */
  600: int npar=NPARMAX;
  601: int nlstate=2; /* Number of live states */
  602: int ndeath=1; /* Number of dead states */
  603: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  604: int popbased=0;
  605: 
  606: int *wav; /* Number of waves for this individuual 0 is possible */
  607: int maxwav=0; /* Maxim number of waves */
  608: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  609: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  610: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  611: 		   to the likelihood and the sum of weights (done by funcone)*/
  612: int mle=1, weightopt=0;
  613: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  614: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  615: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  616: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  617: int countcallfunc=0;  /* Count the number of calls to func */
  618: double jmean=1; /* Mean space between 2 waves */
  619: double **matprod2(); /* test */
  620: double **oldm, **newm, **savm; /* Working pointers to matrices */
  621: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  622: /*FILE *fic ; */ /* Used in readdata only */
  623: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  624: FILE *ficlog, *ficrespow;
  625: int globpr=0; /* Global variable for printing or not */
  626: double fretone; /* Only one call to likelihood */
  627: long ipmx=0; /* Number of contributions */
  628: double sw; /* Sum of weights */
  629: char filerespow[FILENAMELENGTH];
  630: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  631: FILE *ficresilk;
  632: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  633: FILE *ficresprobmorprev;
  634: FILE *fichtm, *fichtmcov; /* Html File */
  635: FILE *ficreseij;
  636: char filerese[FILENAMELENGTH];
  637: FILE *ficresstdeij;
  638: char fileresstde[FILENAMELENGTH];
  639: FILE *ficrescveij;
  640: char filerescve[FILENAMELENGTH];
  641: FILE  *ficresvij;
  642: char fileresv[FILENAMELENGTH];
  643: FILE  *ficresvpl;
  644: char fileresvpl[FILENAMELENGTH];
  645: char title[MAXLINE];
  646: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  647: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  648: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  649: char command[FILENAMELENGTH];
  650: int  outcmd=0;
  651: 
  652: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  653: 
  654: char filelog[FILENAMELENGTH]; /* Log file */
  655: char filerest[FILENAMELENGTH];
  656: char fileregp[FILENAMELENGTH];
  657: char popfile[FILENAMELENGTH];
  658: 
  659: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  660: 
  661: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
  662: /* struct timezone tzp; */
  663: /* extern int gettimeofday(); */
  664: struct tm tml, *gmtime(), *localtime();
  665: 
  666: extern time_t time();
  667: 
  668: struct tm start_time, end_time, curr_time, last_time, forecast_time;
  669: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
  670: struct tm tm;
  671: 
  672: char strcurr[80], strfor[80];
  673: 
  674: char *endptr;
  675: long lval;
  676: double dval;
  677: 
  678: #define NR_END 1
  679: #define FREE_ARG char*
  680: #define FTOL 1.0e-10
  681: 
  682: #define NRANSI 
  683: #define ITMAX 200 
  684: 
  685: #define TOL 2.0e-4 
  686: 
  687: #define CGOLD 0.3819660 
  688: #define ZEPS 1.0e-10 
  689: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  690: 
  691: #define GOLD 1.618034 
  692: #define GLIMIT 100.0 
  693: #define TINY 1.0e-20 
  694: 
  695: static double maxarg1,maxarg2;
  696: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  697: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  698:   
  699: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  700: #define rint(a) floor(a+0.5)
  701: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
  702: /* #define mytinydouble 1.0e-16 */
  703: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
  704: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
  705: /* static double dsqrarg; */
  706: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
  707: static double sqrarg;
  708: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  709: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  710: int agegomp= AGEGOMP;
  711: 
  712: int imx; 
  713: int stepm=1;
  714: /* Stepm, step in month: minimum step interpolation*/
  715: 
  716: int estepm;
  717: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  718: 
  719: int m,nb;
  720: long *num;
  721: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  722: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  723: double **pmmij, ***probs;
  724: double *ageexmed,*agecens;
  725: double dateintmean=0;
  726: 
  727: double *weight;
  728: int **s; /* Status */
  729: double *agedc;
  730: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  731: 		  * covar=matrix(0,NCOVMAX,1,n); 
  732: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
  733: double  idx; 
  734: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  735: int *Ndum; /** Freq of modality (tricode */
  736: int **codtab; /**< codtab=imatrix(1,100,1,10); */
  737: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  738: double *lsurv, *lpop, *tpop;
  739: 
  740: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  741: double ftolhess; /**< Tolerance for computing hessian */
  742: 
  743: /**************** split *************************/
  744: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  745: {
  746:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  747:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  748:   */ 
  749:   char	*ss;				/* pointer */
  750:   int	l1, l2;				/* length counters */
  751: 
  752:   l1 = strlen(path );			/* length of path */
  753:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  754:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  755:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  756:     strcpy( name, path );		/* we got the fullname name because no directory */
  757:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  758:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  759:     /* get current working directory */
  760:     /*    extern  char* getcwd ( char *buf , int len);*/
  761:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  762:       return( GLOCK_ERROR_GETCWD );
  763:     }
  764:     /* got dirc from getcwd*/
  765:     printf(" DIRC = %s \n",dirc);
  766:   } else {				/* strip direcotry from path */
  767:     ss++;				/* after this, the filename */
  768:     l2 = strlen( ss );			/* length of filename */
  769:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  770:     strcpy( name, ss );		/* save file name */
  771:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  772:     dirc[l1-l2] = 0;			/* add zero */
  773:     printf(" DIRC2 = %s \n",dirc);
  774:   }
  775:   /* We add a separator at the end of dirc if not exists */
  776:   l1 = strlen( dirc );			/* length of directory */
  777:   if( dirc[l1-1] != DIRSEPARATOR ){
  778:     dirc[l1] =  DIRSEPARATOR;
  779:     dirc[l1+1] = 0; 
  780:     printf(" DIRC3 = %s \n",dirc);
  781:   }
  782:   ss = strrchr( name, '.' );		/* find last / */
  783:   if (ss >0){
  784:     ss++;
  785:     strcpy(ext,ss);			/* save extension */
  786:     l1= strlen( name);
  787:     l2= strlen(ss)+1;
  788:     strncpy( finame, name, l1-l2);
  789:     finame[l1-l2]= 0;
  790:   }
  791: 
  792:   return( 0 );				/* we're done */
  793: }
  794: 
  795: 
  796: /******************************************/
  797: 
  798: void replace_back_to_slash(char *s, char*t)
  799: {
  800:   int i;
  801:   int lg=0;
  802:   i=0;
  803:   lg=strlen(t);
  804:   for(i=0; i<= lg; i++) {
  805:     (s[i] = t[i]);
  806:     if (t[i]== '\\') s[i]='/';
  807:   }
  808: }
  809: 
  810: char *trimbb(char *out, char *in)
  811: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  812:   char *s;
  813:   s=out;
  814:   while (*in != '\0'){
  815:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  816:       in++;
  817:     }
  818:     *out++ = *in++;
  819:   }
  820:   *out='\0';
  821:   return s;
  822: }
  823: 
  824: char *cutl(char *blocc, char *alocc, char *in, char occ)
  825: {
  826:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
  827:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  828:      gives blocc="abcdef2ghi" and alocc="j".
  829:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
  830:   */
  831:   char *s, *t;
  832:   t=in;s=in;
  833:   while ((*in != occ) && (*in != '\0')){
  834:     *alocc++ = *in++;
  835:   }
  836:   if( *in == occ){
  837:     *(alocc)='\0';
  838:     s=++in;
  839:   }
  840:  
  841:   if (s == t) {/* occ not found */
  842:     *(alocc-(in-s))='\0';
  843:     in=s;
  844:   }
  845:   while ( *in != '\0'){
  846:     *blocc++ = *in++;
  847:   }
  848: 
  849:   *blocc='\0';
  850:   return t;
  851: }
  852: char *cutv(char *blocc, char *alocc, char *in, char occ)
  853: {
  854:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  855:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  856:      gives blocc="abcdef2ghi" and alocc="j".
  857:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
  858:   */
  859:   char *s, *t;
  860:   t=in;s=in;
  861:   while (*in != '\0'){
  862:     while( *in == occ){
  863:       *blocc++ = *in++;
  864:       s=in;
  865:     }
  866:     *blocc++ = *in++;
  867:   }
  868:   if (s == t) /* occ not found */
  869:     *(blocc-(in-s))='\0';
  870:   else
  871:     *(blocc-(in-s)-1)='\0';
  872:   in=s;
  873:   while ( *in != '\0'){
  874:     *alocc++ = *in++;
  875:   }
  876: 
  877:   *alocc='\0';
  878:   return s;
  879: }
  880: 
  881: int nbocc(char *s, char occ)
  882: {
  883:   int i,j=0;
  884:   int lg=20;
  885:   i=0;
  886:   lg=strlen(s);
  887:   for(i=0; i<= lg; i++) {
  888:   if  (s[i] == occ ) j++;
  889:   }
  890:   return j;
  891: }
  892: 
  893: /* void cutv(char *u,char *v, char*t, char occ) */
  894: /* { */
  895: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  896: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
  897: /*      gives u="abcdef2ghi" and v="j" *\/ */
  898: /*   int i,lg,j,p=0; */
  899: /*   i=0; */
  900: /*   lg=strlen(t); */
  901: /*   for(j=0; j<=lg-1; j++) { */
  902: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
  903: /*   } */
  904: 
  905: /*   for(j=0; j<p; j++) { */
  906: /*     (u[j] = t[j]); */
  907: /*   } */
  908: /*      u[p]='\0'; */
  909: 
  910: /*    for(j=0; j<= lg; j++) { */
  911: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
  912: /*   } */
  913: /* } */
  914: 
  915: #ifdef _WIN32
  916: char * strsep(char **pp, const char *delim)
  917: {
  918:   char *p, *q;
  919:          
  920:   if ((p = *pp) == NULL)
  921:     return 0;
  922:   if ((q = strpbrk (p, delim)) != NULL)
  923:   {
  924:     *pp = q + 1;
  925:     *q = '\0';
  926:   }
  927:   else
  928:     *pp = 0;
  929:   return p;
  930: }
  931: #endif
  932: 
  933: /********************** nrerror ********************/
  934: 
  935: void nrerror(char error_text[])
  936: {
  937:   fprintf(stderr,"ERREUR ...\n");
  938:   fprintf(stderr,"%s\n",error_text);
  939:   exit(EXIT_FAILURE);
  940: }
  941: /*********************** vector *******************/
  942: double *vector(int nl, int nh)
  943: {
  944:   double *v;
  945:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  946:   if (!v) nrerror("allocation failure in vector");
  947:   return v-nl+NR_END;
  948: }
  949: 
  950: /************************ free vector ******************/
  951: void free_vector(double*v, int nl, int nh)
  952: {
  953:   free((FREE_ARG)(v+nl-NR_END));
  954: }
  955: 
  956: /************************ivector *******************************/
  957: int *ivector(long nl,long nh)
  958: {
  959:   int *v;
  960:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  961:   if (!v) nrerror("allocation failure in ivector");
  962:   return v-nl+NR_END;
  963: }
  964: 
  965: /******************free ivector **************************/
  966: void free_ivector(int *v, long nl, long nh)
  967: {
  968:   free((FREE_ARG)(v+nl-NR_END));
  969: }
  970: 
  971: /************************lvector *******************************/
  972: long *lvector(long nl,long nh)
  973: {
  974:   long *v;
  975:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  976:   if (!v) nrerror("allocation failure in ivector");
  977:   return v-nl+NR_END;
  978: }
  979: 
  980: /******************free lvector **************************/
  981: void free_lvector(long *v, long nl, long nh)
  982: {
  983:   free((FREE_ARG)(v+nl-NR_END));
  984: }
  985: 
  986: /******************* imatrix *******************************/
  987: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  988:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  989: { 
  990:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  991:   int **m; 
  992:   
  993:   /* allocate pointers to rows */ 
  994:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  995:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  996:   m += NR_END; 
  997:   m -= nrl; 
  998:   
  999:   
 1000:   /* allocate rows and set pointers to them */ 
 1001:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 1002:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 1003:   m[nrl] += NR_END; 
 1004:   m[nrl] -= ncl; 
 1005:   
 1006:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 1007:   
 1008:   /* return pointer to array of pointers to rows */ 
 1009:   return m; 
 1010: } 
 1011: 
 1012: /****************** free_imatrix *************************/
 1013: void free_imatrix(m,nrl,nrh,ncl,nch)
 1014:       int **m;
 1015:       long nch,ncl,nrh,nrl; 
 1016:      /* free an int matrix allocated by imatrix() */ 
 1017: { 
 1018:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 1019:   free((FREE_ARG) (m+nrl-NR_END)); 
 1020: } 
 1021: 
 1022: /******************* matrix *******************************/
 1023: double **matrix(long nrl, long nrh, long ncl, long nch)
 1024: {
 1025:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 1026:   double **m;
 1027: 
 1028:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1029:   if (!m) nrerror("allocation failure 1 in matrix()");
 1030:   m += NR_END;
 1031:   m -= nrl;
 1032: 
 1033:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1034:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1035:   m[nrl] += NR_END;
 1036:   m[nrl] -= ncl;
 1037: 
 1038:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1039:   return m;
 1040:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 1041: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 1042: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 1043:    */
 1044: }
 1045: 
 1046: /*************************free matrix ************************/
 1047: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 1048: {
 1049:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1050:   free((FREE_ARG)(m+nrl-NR_END));
 1051: }
 1052: 
 1053: /******************* ma3x *******************************/
 1054: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 1055: {
 1056:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 1057:   double ***m;
 1058: 
 1059:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1060:   if (!m) nrerror("allocation failure 1 in matrix()");
 1061:   m += NR_END;
 1062:   m -= nrl;
 1063: 
 1064:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1065:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1066:   m[nrl] += NR_END;
 1067:   m[nrl] -= ncl;
 1068: 
 1069:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1070: 
 1071:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 1072:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 1073:   m[nrl][ncl] += NR_END;
 1074:   m[nrl][ncl] -= nll;
 1075:   for (j=ncl+1; j<=nch; j++) 
 1076:     m[nrl][j]=m[nrl][j-1]+nlay;
 1077:   
 1078:   for (i=nrl+1; i<=nrh; i++) {
 1079:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 1080:     for (j=ncl+1; j<=nch; j++) 
 1081:       m[i][j]=m[i][j-1]+nlay;
 1082:   }
 1083:   return m; 
 1084:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 1085:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 1086:   */
 1087: }
 1088: 
 1089: /*************************free ma3x ************************/
 1090: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 1091: {
 1092:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 1093:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1094:   free((FREE_ARG)(m+nrl-NR_END));
 1095: }
 1096: 
 1097: /*************** function subdirf ***********/
 1098: char *subdirf(char fileres[])
 1099: {
 1100:   /* Caution optionfilefiname is hidden */
 1101:   strcpy(tmpout,optionfilefiname);
 1102:   strcat(tmpout,"/"); /* Add to the right */
 1103:   strcat(tmpout,fileres);
 1104:   return tmpout;
 1105: }
 1106: 
 1107: /*************** function subdirf2 ***********/
 1108: char *subdirf2(char fileres[], char *preop)
 1109: {
 1110:   
 1111:   /* Caution optionfilefiname is hidden */
 1112:   strcpy(tmpout,optionfilefiname);
 1113:   strcat(tmpout,"/");
 1114:   strcat(tmpout,preop);
 1115:   strcat(tmpout,fileres);
 1116:   return tmpout;
 1117: }
 1118: 
 1119: /*************** function subdirf3 ***********/
 1120: char *subdirf3(char fileres[], char *preop, char *preop2)
 1121: {
 1122:   
 1123:   /* Caution optionfilefiname is hidden */
 1124:   strcpy(tmpout,optionfilefiname);
 1125:   strcat(tmpout,"/");
 1126:   strcat(tmpout,preop);
 1127:   strcat(tmpout,preop2);
 1128:   strcat(tmpout,fileres);
 1129:   return tmpout;
 1130: }
 1131: 
 1132: char *asc_diff_time(long time_sec, char ascdiff[])
 1133: {
 1134:   long sec_left, days, hours, minutes;
 1135:   days = (time_sec) / (60*60*24);
 1136:   sec_left = (time_sec) % (60*60*24);
 1137:   hours = (sec_left) / (60*60) ;
 1138:   sec_left = (sec_left) %(60*60);
 1139:   minutes = (sec_left) /60;
 1140:   sec_left = (sec_left) % (60);
 1141:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1142:   return ascdiff;
 1143: }
 1144: 
 1145: /***************** f1dim *************************/
 1146: extern int ncom; 
 1147: extern double *pcom,*xicom;
 1148: extern double (*nrfunc)(double []); 
 1149:  
 1150: double f1dim(double x) 
 1151: { 
 1152:   int j; 
 1153:   double f;
 1154:   double *xt; 
 1155:  
 1156:   xt=vector(1,ncom); 
 1157:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1158:   f=(*nrfunc)(xt); 
 1159:   free_vector(xt,1,ncom); 
 1160:   return f; 
 1161: } 
 1162: 
 1163: /*****************brent *************************/
 1164: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1165: { 
 1166:   int iter; 
 1167:   double a,b,d,etemp;
 1168:   double fu=0,fv,fw,fx;
 1169:   double ftemp=0.;
 1170:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1171:   double e=0.0; 
 1172:  
 1173:   a=(ax < cx ? ax : cx); 
 1174:   b=(ax > cx ? ax : cx); 
 1175:   x=w=v=bx; 
 1176:   fw=fv=fx=(*f)(x); 
 1177:   for (iter=1;iter<=ITMAX;iter++) { 
 1178:     xm=0.5*(a+b); 
 1179:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1180:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1181:     printf(".");fflush(stdout);
 1182:     fprintf(ficlog,".");fflush(ficlog);
 1183: #ifdef DEBUGBRENT
 1184:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1185:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1186:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1187: #endif
 1188:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1189:       *xmin=x; 
 1190:       return fx; 
 1191:     } 
 1192:     ftemp=fu;
 1193:     if (fabs(e) > tol1) { 
 1194:       r=(x-w)*(fx-fv); 
 1195:       q=(x-v)*(fx-fw); 
 1196:       p=(x-v)*q-(x-w)*r; 
 1197:       q=2.0*(q-r); 
 1198:       if (q > 0.0) p = -p; 
 1199:       q=fabs(q); 
 1200:       etemp=e; 
 1201:       e=d; 
 1202:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1203: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1204:       else { 
 1205: 	d=p/q; 
 1206: 	u=x+d; 
 1207: 	if (u-a < tol2 || b-u < tol2) 
 1208: 	  d=SIGN(tol1,xm-x); 
 1209:       } 
 1210:     } else { 
 1211:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1212:     } 
 1213:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1214:     fu=(*f)(u); 
 1215:     if (fu <= fx) { 
 1216:       if (u >= x) a=x; else b=x; 
 1217:       SHFT(v,w,x,u) 
 1218: 	SHFT(fv,fw,fx,fu) 
 1219: 	} else { 
 1220: 	  if (u < x) a=u; else b=u; 
 1221: 	  if (fu <= fw || w == x) { 
 1222: 	    v=w; 
 1223: 	    w=u; 
 1224: 	    fv=fw; 
 1225: 	    fw=fu; 
 1226: 	  } else if (fu <= fv || v == x || v == w) { 
 1227: 	    v=u; 
 1228: 	    fv=fu; 
 1229: 	  } 
 1230: 	} 
 1231:   } 
 1232:   nrerror("Too many iterations in brent"); 
 1233:   *xmin=x; 
 1234:   return fx; 
 1235: } 
 1236: 
 1237: /****************** mnbrak ***********************/
 1238: 
 1239: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1240: 	    double (*func)(double)) 
 1241: { 
 1242:   double ulim,u,r,q, dum;
 1243:   double fu; 
 1244:  
 1245:   *fa=(*func)(*ax); 
 1246:   *fb=(*func)(*bx); 
 1247:   if (*fb > *fa) { 
 1248:     SHFT(dum,*ax,*bx,dum) 
 1249:       SHFT(dum,*fb,*fa,dum) 
 1250:       } 
 1251:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1252:   *fc=(*func)(*cx); 
 1253:   while (*fb > *fc) { /* Declining fa, fb, fc */
 1254:     r=(*bx-*ax)*(*fb-*fc); 
 1255:     q=(*bx-*cx)*(*fb-*fa); 
 1256:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1257:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
 1258:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
 1259:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
 1260:       fu=(*func)(u); 
 1261: #ifdef DEBUG
 1262:       /* f(x)=A(x-u)**2+f(u) */
 1263:       double A, fparabu; 
 1264:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
 1265:       fparabu= *fa - A*(*ax-u)*(*ax-u);
 1266:       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1267:       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1268: #endif 
 1269:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 1270:       fu=(*func)(u); 
 1271:       if (fu < *fc) { 
 1272: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1273: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
 1274: 	  } 
 1275:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 1276:       u=ulim; 
 1277:       fu=(*func)(u); 
 1278:     } else { 
 1279:       u=(*cx)+GOLD*(*cx-*bx); 
 1280:       fu=(*func)(u); 
 1281:     } 
 1282:     SHFT(*ax,*bx,*cx,u) 
 1283:       SHFT(*fa,*fb,*fc,fu) 
 1284:       } 
 1285: } 
 1286: 
 1287: /*************** linmin ************************/
 1288: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 1289: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
 1290: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 1291: the value of func at the returned location p . This is actually all accomplished by calling the
 1292: routines mnbrak and brent .*/
 1293: int ncom; 
 1294: double *pcom,*xicom;
 1295: double (*nrfunc)(double []); 
 1296:  
 1297: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1298: { 
 1299:   double brent(double ax, double bx, double cx, 
 1300: 	       double (*f)(double), double tol, double *xmin); 
 1301:   double f1dim(double x); 
 1302:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1303: 	      double *fc, double (*func)(double)); 
 1304:   int j; 
 1305:   double xx,xmin,bx,ax; 
 1306:   double fx,fb,fa;
 1307:  
 1308:   ncom=n; 
 1309:   pcom=vector(1,n); 
 1310:   xicom=vector(1,n); 
 1311:   nrfunc=func; 
 1312:   for (j=1;j<=n;j++) { 
 1313:     pcom[j]=p[j]; 
 1314:     xicom[j]=xi[j]; 
 1315:   } 
 1316:   ax=0.0; 
 1317:   xx=1.0; 
 1318:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
 1319:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
 1320: #ifdef DEBUG
 1321:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1322:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1323: #endif
 1324:   for (j=1;j<=n;j++) { 
 1325:     xi[j] *= xmin; 
 1326:     p[j] += xi[j]; 
 1327:   } 
 1328:   free_vector(xicom,1,n); 
 1329:   free_vector(pcom,1,n); 
 1330: } 
 1331: 
 1332: 
 1333: /*************** powell ************************/
 1334: /*
 1335: Minimization of a function func of n variables. Input consists of an initial starting point
 1336: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 1337: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
 1338: such that failure to decrease by more than this amount on one iteration signals doneness. On
 1339: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 1340: function value at p , and iter is the number of iterations taken. The routine linmin is used.
 1341:  */
 1342: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1343: 	    double (*func)(double [])) 
 1344: { 
 1345:   void linmin(double p[], double xi[], int n, double *fret, 
 1346: 	      double (*func)(double [])); 
 1347:   int i,ibig,j; 
 1348:   double del,t,*pt,*ptt,*xit;
 1349:   double fp,fptt;
 1350:   double *xits;
 1351:   int niterf, itmp;
 1352: 
 1353:   pt=vector(1,n); 
 1354:   ptt=vector(1,n); 
 1355:   xit=vector(1,n); 
 1356:   xits=vector(1,n); 
 1357:   *fret=(*func)(p); 
 1358:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1359:     rcurr_time = time(NULL);  
 1360:   for (*iter=1;;++(*iter)) { 
 1361:     fp=(*fret); 
 1362:     ibig=0; 
 1363:     del=0.0; 
 1364:     rlast_time=rcurr_time;
 1365:     /* (void) gettimeofday(&curr_time,&tzp); */
 1366:     rcurr_time = time(NULL);  
 1367:     curr_time = *localtime(&rcurr_time);
 1368:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 1369:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 1370: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 1371:    for (i=1;i<=n;i++) {
 1372:       printf(" %d %.12f",i, p[i]);
 1373:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1374:       fprintf(ficrespow," %.12lf", p[i]);
 1375:     }
 1376:     printf("\n");
 1377:     fprintf(ficlog,"\n");
 1378:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1379:     if(*iter <=3){
 1380:       tml = *localtime(&rcurr_time);
 1381:       strcpy(strcurr,asctime(&tml));
 1382:       rforecast_time=rcurr_time; 
 1383:       itmp = strlen(strcurr);
 1384:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1385: 	strcurr[itmp-1]='\0';
 1386:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1387:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1388:       for(niterf=10;niterf<=30;niterf+=10){
 1389: 	rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 1390: 	forecast_time = *localtime(&rforecast_time);
 1391: 	strcpy(strfor,asctime(&forecast_time));
 1392: 	itmp = strlen(strfor);
 1393: 	if(strfor[itmp-1]=='\n')
 1394: 	strfor[itmp-1]='\0';
 1395: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1396: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1397:       }
 1398:     }
 1399:     for (i=1;i<=n;i++) { 
 1400:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1401:       fptt=(*fret); 
 1402: #ifdef DEBUG
 1403: 	  printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1404: 	  fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1405: #endif
 1406:       printf("%d",i);fflush(stdout);
 1407:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1408:       linmin(p,xit,n,fret,func); 
 1409:       if (fabs(fptt-(*fret)) > del) { 
 1410: 	del=fabs(fptt-(*fret)); 
 1411: 	ibig=i; 
 1412:       } 
 1413: #ifdef DEBUG
 1414:       printf("%d %.12e",i,(*fret));
 1415:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1416:       for (j=1;j<=n;j++) {
 1417: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1418: 	printf(" x(%d)=%.12e",j,xit[j]);
 1419: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1420:       }
 1421:       for(j=1;j<=n;j++) {
 1422: 	printf(" p(%d)=%.12e",j,p[j]);
 1423: 	fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 1424:       }
 1425:       printf("\n");
 1426:       fprintf(ficlog,"\n");
 1427: #endif
 1428:     } /* end i */
 1429:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 1430: #ifdef DEBUG
 1431:       int k[2],l;
 1432:       k[0]=1;
 1433:       k[1]=-1;
 1434:       printf("Max: %.12e",(*func)(p));
 1435:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1436:       for (j=1;j<=n;j++) {
 1437: 	printf(" %.12e",p[j]);
 1438: 	fprintf(ficlog," %.12e",p[j]);
 1439:       }
 1440:       printf("\n");
 1441:       fprintf(ficlog,"\n");
 1442:       for(l=0;l<=1;l++) {
 1443: 	for (j=1;j<=n;j++) {
 1444: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1445: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1446: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1447: 	}
 1448: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1449: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1450:       }
 1451: #endif
 1452: 
 1453: 
 1454:       free_vector(xit,1,n); 
 1455:       free_vector(xits,1,n); 
 1456:       free_vector(ptt,1,n); 
 1457:       free_vector(pt,1,n); 
 1458:       return; 
 1459:     } 
 1460:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1461:     for (j=1;j<=n;j++) { /* Computes an extrapolated point */
 1462:       ptt[j]=2.0*p[j]-pt[j]; 
 1463:       xit[j]=p[j]-pt[j]; 
 1464:       pt[j]=p[j]; 
 1465:     } 
 1466:     fptt=(*func)(ptt); 
 1467:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 1468:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 1469:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 1470:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
 1471:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
 1472:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 1473:       /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
 1474:       /* Thus we compare delta(2h) with observed f1-f3 */
 1475:       /* or best gain on one ancient line 'del' with total  */
 1476:       /* gain f1-f2 = f1 - f2 - 'del' with del  */
 1477:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
 1478: 
 1479:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
 1480:       t= t- del*SQR(fp-fptt);
 1481:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
 1482:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
 1483: #ifdef DEBUG
 1484:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1485: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1486:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1487: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1488:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1489:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1490: #endif
 1491:       if (t < 0.0) { /* Then we use it for last direction */
 1492: 	linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
 1493: 	for (j=1;j<=n;j++) { 
 1494: 	  xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
 1495: 	  xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
 1496: 	}
 1497: 	printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1498: 	fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
 1499: 
 1500: #ifdef DEBUG
 1501: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1502: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1503: 	for(j=1;j<=n;j++){
 1504: 	  printf(" %.12e",xit[j]);
 1505: 	  fprintf(ficlog," %.12e",xit[j]);
 1506: 	}
 1507: 	printf("\n");
 1508: 	fprintf(ficlog,"\n");
 1509: #endif
 1510:       } /* end of t negative */
 1511:     } /* end if (fptt < fp)  */
 1512:   } 
 1513: } 
 1514: 
 1515: /**** Prevalence limit (stable or period prevalence)  ****************/
 1516: 
 1517: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1518: {
 1519:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1520:      matrix by transitions matrix until convergence is reached */
 1521: 
 1522:   int i, ii,j,k;
 1523:   double min, max, maxmin, maxmax,sumnew=0.;
 1524:   /* double **matprod2(); */ /* test */
 1525:   double **out, cov[NCOVMAX+1], **pmij();
 1526:   double **newm;
 1527:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1528: 
 1529:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1530:     for (j=1;j<=nlstate+ndeath;j++){
 1531:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1532:     }
 1533: 
 1534:    cov[1]=1.;
 1535:  
 1536:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1537:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1538:     newm=savm;
 1539:     /* Covariates have to be included here again */
 1540:     cov[2]=agefin;
 1541:     
 1542:     for (k=1; k<=cptcovn;k++) {
 1543:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1544:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 1545:     }
 1546:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1547:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 1548:     /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
 1549:     
 1550:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1551:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1552:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1553:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1554:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1555:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1556:     
 1557:     savm=oldm;
 1558:     oldm=newm;
 1559:     maxmax=0.;
 1560:     for(j=1;j<=nlstate;j++){
 1561:       min=1.;
 1562:       max=0.;
 1563:       for(i=1; i<=nlstate; i++) {
 1564: 	sumnew=0;
 1565: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1566: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1567:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1568: 	max=FMAX(max,prlim[i][j]);
 1569: 	min=FMIN(min,prlim[i][j]);
 1570:       }
 1571:       maxmin=max-min;
 1572:       maxmax=FMAX(maxmax,maxmin);
 1573:     }
 1574:     if(maxmax < ftolpl){
 1575:       return prlim;
 1576:     }
 1577:   }
 1578: }
 1579: 
 1580: /*************** transition probabilities ***************/ 
 1581: 
 1582: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1583: {
 1584:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1585:      computes the probability to be observed in state j being in state i by appying the
 1586:      model to the ncovmodel covariates (including constant and age).
 1587:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1588:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1589:      ncth covariate in the global vector x is given by the formula:
 1590:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1591:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1592:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1593:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1594:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1595:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1596:   */
 1597:   double s1, lnpijopii;
 1598:   /*double t34;*/
 1599:   int i,j, nc, ii, jj;
 1600: 
 1601:     for(i=1; i<= nlstate; i++){
 1602:       for(j=1; j<i;j++){
 1603: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1604: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1605: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1606: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1607: 	}
 1608: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1609: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1610:       }
 1611:       for(j=i+1; j<=nlstate+ndeath;j++){
 1612: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1613: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1614: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1615: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1616: 	}
 1617: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1618:       }
 1619:     }
 1620:     
 1621:     for(i=1; i<= nlstate; i++){
 1622:       s1=0;
 1623:       for(j=1; j<i; j++){
 1624: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1625: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1626:       }
 1627:       for(j=i+1; j<=nlstate+ndeath; j++){
 1628: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1629: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1630:       }
 1631:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1632:       ps[i][i]=1./(s1+1.);
 1633:       /* Computing other pijs */
 1634:       for(j=1; j<i; j++)
 1635: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1636:       for(j=i+1; j<=nlstate+ndeath; j++)
 1637: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1638:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1639:     } /* end i */
 1640:     
 1641:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1642:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1643: 	ps[ii][jj]=0;
 1644: 	ps[ii][ii]=1;
 1645:       }
 1646:     }
 1647:     
 1648:     
 1649:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1650:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1651:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 1652:     /*   } */
 1653:     /*   printf("\n "); */
 1654:     /* } */
 1655:     /* printf("\n ");printf("%lf ",cov[2]);*/
 1656:     /*
 1657:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1658:       goto end;*/
 1659:     return ps;
 1660: }
 1661: 
 1662: /**************** Product of 2 matrices ******************/
 1663: 
 1664: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 1665: {
 1666:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1667:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1668:   /* in, b, out are matrice of pointers which should have been initialized 
 1669:      before: only the contents of out is modified. The function returns
 1670:      a pointer to pointers identical to out */
 1671:   int i, j, k;
 1672:   for(i=nrl; i<= nrh; i++)
 1673:     for(k=ncolol; k<=ncoloh; k++){
 1674:       out[i][k]=0.;
 1675:       for(j=ncl; j<=nch; j++)
 1676:   	out[i][k] +=in[i][j]*b[j][k];
 1677:     }
 1678:   return out;
 1679: }
 1680: 
 1681: 
 1682: /************* Higher Matrix Product ***************/
 1683: 
 1684: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1685: {
 1686:   /* Computes the transition matrix starting at age 'age' over 
 1687:      'nhstepm*hstepm*stepm' months (i.e. until
 1688:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1689:      nhstepm*hstepm matrices. 
 1690:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1691:      (typically every 2 years instead of every month which is too big 
 1692:      for the memory).
 1693:      Model is determined by parameters x and covariates have to be 
 1694:      included manually here. 
 1695: 
 1696:      */
 1697: 
 1698:   int i, j, d, h, k;
 1699:   double **out, cov[NCOVMAX+1];
 1700:   double **newm;
 1701: 
 1702:   /* Hstepm could be zero and should return the unit matrix */
 1703:   for (i=1;i<=nlstate+ndeath;i++)
 1704:     for (j=1;j<=nlstate+ndeath;j++){
 1705:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1706:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1707:     }
 1708:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1709:   for(h=1; h <=nhstepm; h++){
 1710:     for(d=1; d <=hstepm; d++){
 1711:       newm=savm;
 1712:       /* Covariates have to be included here again */
 1713:       cov[1]=1.;
 1714:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1715:       for (k=1; k<=cptcovn;k++) 
 1716: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1717:       for (k=1; k<=cptcovage;k++)
 1718: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1719:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 1720: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1721: 
 1722: 
 1723:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1724:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1725:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1726: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1727:       savm=oldm;
 1728:       oldm=newm;
 1729:     }
 1730:     for(i=1; i<=nlstate+ndeath; i++)
 1731:       for(j=1;j<=nlstate+ndeath;j++) {
 1732: 	po[i][j][h]=newm[i][j];
 1733: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 1734:       }
 1735:     /*printf("h=%d ",h);*/
 1736:   } /* end h */
 1737: /*     printf("\n H=%d \n",h); */
 1738:   return po;
 1739: }
 1740: 
 1741: #ifdef NLOPT
 1742:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
 1743:   double fret;
 1744:   double *xt;
 1745:   int j;
 1746:   myfunc_data *d2 = (myfunc_data *) pd;
 1747: /* xt = (p1-1); */
 1748:   xt=vector(1,n); 
 1749:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
 1750: 
 1751:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
 1752:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 1753:   printf("Function = %.12lf ",fret);
 1754:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 1755:   printf("\n");
 1756:  free_vector(xt,1,n);
 1757:   return fret;
 1758: }
 1759: #endif
 1760: 
 1761: /*************** log-likelihood *************/
 1762: double func( double *x)
 1763: {
 1764:   int i, ii, j, k, mi, d, kk;
 1765:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1766:   double **out;
 1767:   double sw; /* Sum of weights */
 1768:   double lli; /* Individual log likelihood */
 1769:   int s1, s2;
 1770:   double bbh, survp;
 1771:   long ipmx;
 1772:   /*extern weight */
 1773:   /* We are differentiating ll according to initial status */
 1774:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1775:   /*for(i=1;i<imx;i++) 
 1776:     printf(" %d\n",s[4][i]);
 1777:   */
 1778: 
 1779:   ++countcallfunc;
 1780: 
 1781:   cov[1]=1.;
 1782: 
 1783:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1784: 
 1785:   if(mle==1){
 1786:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1787:       /* Computes the values of the ncovmodel covariates of the model
 1788: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 1789: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 1790: 	 to be observed in j being in i according to the model.
 1791:        */
 1792:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 1793: 	cov[2+k]=covar[Tvar[k]][i];
 1794:       }
 1795:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 1796: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 1797: 	 has been calculated etc */
 1798:       for(mi=1; mi<= wav[i]-1; mi++){
 1799: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1800: 	  for (j=1;j<=nlstate+ndeath;j++){
 1801: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1802: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1803: 	  }
 1804: 	for(d=0; d<dh[mi][i]; d++){
 1805: 	  newm=savm;
 1806: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1807: 	  for (kk=1; kk<=cptcovage;kk++) {
 1808: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 1809: 	  }
 1810: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1811: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1812: 	  savm=oldm;
 1813: 	  oldm=newm;
 1814: 	} /* end mult */
 1815:       
 1816: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1817: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1818: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1819: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1820: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1821: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1822: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1823: 	 * probability in order to take into account the bias as a fraction of the way
 1824: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1825: 	 * -stepm/2 to stepm/2 .
 1826: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1827: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1828: 	 */
 1829: 	s1=s[mw[mi][i]][i];
 1830: 	s2=s[mw[mi+1][i]][i];
 1831: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1832: 	/* bias bh is positive if real duration
 1833: 	 * is higher than the multiple of stepm and negative otherwise.
 1834: 	 */
 1835: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1836: 	if( s2 > nlstate){ 
 1837: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1838: 	     then the contribution to the likelihood is the probability to 
 1839: 	     die between last step unit time and current  step unit time, 
 1840: 	     which is also equal to probability to die before dh 
 1841: 	     minus probability to die before dh-stepm . 
 1842: 	     In version up to 0.92 likelihood was computed
 1843: 	as if date of death was unknown. Death was treated as any other
 1844: 	health state: the date of the interview describes the actual state
 1845: 	and not the date of a change in health state. The former idea was
 1846: 	to consider that at each interview the state was recorded
 1847: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1848: 	introduced the exact date of death then we should have modified
 1849: 	the contribution of an exact death to the likelihood. This new
 1850: 	contribution is smaller and very dependent of the step unit
 1851: 	stepm. It is no more the probability to die between last interview
 1852: 	and month of death but the probability to survive from last
 1853: 	interview up to one month before death multiplied by the
 1854: 	probability to die within a month. Thanks to Chris
 1855: 	Jackson for correcting this bug.  Former versions increased
 1856: 	mortality artificially. The bad side is that we add another loop
 1857: 	which slows down the processing. The difference can be up to 10%
 1858: 	lower mortality.
 1859: 	  */
 1860: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1861: 
 1862: 
 1863: 	} else if  (s2==-2) {
 1864: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1865: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1866: 	  /*survp += out[s1][j]; */
 1867: 	  lli= log(survp);
 1868: 	}
 1869: 	
 1870:  	else if  (s2==-4) { 
 1871: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 1872: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1873:  	  lli= log(survp); 
 1874:  	} 
 1875: 
 1876:  	else if  (s2==-5) { 
 1877:  	  for (j=1,survp=0. ; j<=2; j++)  
 1878: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1879:  	  lli= log(survp); 
 1880:  	} 
 1881: 	
 1882: 	else{
 1883: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1884: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1885: 	} 
 1886: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1887: 	/*if(lli ==000.0)*/
 1888: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1889:   	ipmx +=1;
 1890: 	sw += weight[i];
 1891: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1892:       } /* end of wave */
 1893:     } /* end of individual */
 1894:   }  else if(mle==2){
 1895:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1896:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1897:       for(mi=1; mi<= wav[i]-1; mi++){
 1898: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1899: 	  for (j=1;j<=nlstate+ndeath;j++){
 1900: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1901: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1902: 	  }
 1903: 	for(d=0; d<=dh[mi][i]; d++){
 1904: 	  newm=savm;
 1905: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1906: 	  for (kk=1; kk<=cptcovage;kk++) {
 1907: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1908: 	  }
 1909: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1910: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1911: 	  savm=oldm;
 1912: 	  oldm=newm;
 1913: 	} /* end mult */
 1914:       
 1915: 	s1=s[mw[mi][i]][i];
 1916: 	s2=s[mw[mi+1][i]][i];
 1917: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1918: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1919: 	ipmx +=1;
 1920: 	sw += weight[i];
 1921: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1922:       } /* end of wave */
 1923:     } /* end of individual */
 1924:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1925:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1926:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1927:       for(mi=1; mi<= wav[i]-1; mi++){
 1928: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1929: 	  for (j=1;j<=nlstate+ndeath;j++){
 1930: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1931: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1932: 	  }
 1933: 	for(d=0; d<dh[mi][i]; d++){
 1934: 	  newm=savm;
 1935: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1936: 	  for (kk=1; kk<=cptcovage;kk++) {
 1937: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1938: 	  }
 1939: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1940: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1941: 	  savm=oldm;
 1942: 	  oldm=newm;
 1943: 	} /* end mult */
 1944:       
 1945: 	s1=s[mw[mi][i]][i];
 1946: 	s2=s[mw[mi+1][i]][i];
 1947: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1948: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1949: 	ipmx +=1;
 1950: 	sw += weight[i];
 1951: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1952:       } /* end of wave */
 1953:     } /* end of individual */
 1954:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1955:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1956:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1957:       for(mi=1; mi<= wav[i]-1; mi++){
 1958: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1959: 	  for (j=1;j<=nlstate+ndeath;j++){
 1960: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1961: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1962: 	  }
 1963: 	for(d=0; d<dh[mi][i]; d++){
 1964: 	  newm=savm;
 1965: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1966: 	  for (kk=1; kk<=cptcovage;kk++) {
 1967: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1968: 	  }
 1969: 	
 1970: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1971: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1972: 	  savm=oldm;
 1973: 	  oldm=newm;
 1974: 	} /* end mult */
 1975:       
 1976: 	s1=s[mw[mi][i]][i];
 1977: 	s2=s[mw[mi+1][i]][i];
 1978: 	if( s2 > nlstate){ 
 1979: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1980: 	}else{
 1981: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1982: 	}
 1983: 	ipmx +=1;
 1984: 	sw += weight[i];
 1985: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1986: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1987:       } /* end of wave */
 1988:     } /* end of individual */
 1989:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1990:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1991:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1992:       for(mi=1; mi<= wav[i]-1; mi++){
 1993: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1994: 	  for (j=1;j<=nlstate+ndeath;j++){
 1995: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1996: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1997: 	  }
 1998: 	for(d=0; d<dh[mi][i]; d++){
 1999: 	  newm=savm;
 2000: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2001: 	  for (kk=1; kk<=cptcovage;kk++) {
 2002: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2003: 	  }
 2004: 	
 2005: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2006: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2007: 	  savm=oldm;
 2008: 	  oldm=newm;
 2009: 	} /* end mult */
 2010:       
 2011: 	s1=s[mw[mi][i]][i];
 2012: 	s2=s[mw[mi+1][i]][i];
 2013: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2014: 	ipmx +=1;
 2015: 	sw += weight[i];
 2016: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2017: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 2018:       } /* end of wave */
 2019:     } /* end of individual */
 2020:   } /* End of if */
 2021:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2022:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2023:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2024:   return -l;
 2025: }
 2026: 
 2027: /*************** log-likelihood *************/
 2028: double funcone( double *x)
 2029: {
 2030:   /* Same as likeli but slower because of a lot of printf and if */
 2031:   int i, ii, j, k, mi, d, kk;
 2032:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 2033:   double **out;
 2034:   double lli; /* Individual log likelihood */
 2035:   double llt;
 2036:   int s1, s2;
 2037:   double bbh, survp;
 2038:   /*extern weight */
 2039:   /* We are differentiating ll according to initial status */
 2040:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 2041:   /*for(i=1;i<imx;i++) 
 2042:     printf(" %d\n",s[4][i]);
 2043:   */
 2044:   cov[1]=1.;
 2045: 
 2046:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 2047: 
 2048:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2049:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2050:     for(mi=1; mi<= wav[i]-1; mi++){
 2051:       for (ii=1;ii<=nlstate+ndeath;ii++)
 2052: 	for (j=1;j<=nlstate+ndeath;j++){
 2053: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2054: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2055: 	}
 2056:       for(d=0; d<dh[mi][i]; d++){
 2057: 	newm=savm;
 2058: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2059: 	for (kk=1; kk<=cptcovage;kk++) {
 2060: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2061: 	}
 2062: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 2063: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2064: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2065: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 2066: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 2067: 	savm=oldm;
 2068: 	oldm=newm;
 2069:       } /* end mult */
 2070:       
 2071:       s1=s[mw[mi][i]][i];
 2072:       s2=s[mw[mi+1][i]][i];
 2073:       bbh=(double)bh[mi][i]/(double)stepm; 
 2074:       /* bias is positive if real duration
 2075:        * is higher than the multiple of stepm and negative otherwise.
 2076:        */
 2077:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 2078: 	lli=log(out[s1][s2] - savm[s1][s2]);
 2079:       } else if  (s2==-2) {
 2080: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 2081: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2082: 	lli= log(survp);
 2083:       }else if (mle==1){
 2084: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2085:       } else if(mle==2){
 2086: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2087:       } else if(mle==3){  /* exponential inter-extrapolation */
 2088: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2089:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 2090: 	lli=log(out[s1][s2]); /* Original formula */
 2091:       } else{  /* mle=0 back to 1 */
 2092: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2093: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 2094:       } /* End of if */
 2095:       ipmx +=1;
 2096:       sw += weight[i];
 2097:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2098:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2099:       if(globpr){
 2100: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 2101:  %11.6f %11.6f %11.6f ", \
 2102: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 2103: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 2104: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 2105: 	  llt +=ll[k]*gipmx/gsw;
 2106: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 2107: 	}
 2108: 	fprintf(ficresilk," %10.6f\n", -llt);
 2109:       }
 2110:     } /* end of wave */
 2111:   } /* end of individual */
 2112:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2113:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2114:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2115:   if(globpr==0){ /* First time we count the contributions and weights */
 2116:     gipmx=ipmx;
 2117:     gsw=sw;
 2118:   }
 2119:   return -l;
 2120: }
 2121: 
 2122: 
 2123: /*************** function likelione ***********/
 2124: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 2125: {
 2126:   /* This routine should help understanding what is done with 
 2127:      the selection of individuals/waves and
 2128:      to check the exact contribution to the likelihood.
 2129:      Plotting could be done.
 2130:    */
 2131:   int k;
 2132: 
 2133:   if(*globpri !=0){ /* Just counts and sums, no printings */
 2134:     strcpy(fileresilk,"ilk"); 
 2135:     strcat(fileresilk,fileres);
 2136:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 2137:       printf("Problem with resultfile: %s\n", fileresilk);
 2138:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 2139:     }
 2140:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 2141:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 2142:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 2143:     for(k=1; k<=nlstate; k++) 
 2144:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 2145:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 2146:   }
 2147: 
 2148:   *fretone=(*funcone)(p);
 2149:   if(*globpri !=0){
 2150:     fclose(ficresilk);
 2151:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 2152:     fflush(fichtm); 
 2153:   } 
 2154:   return;
 2155: }
 2156: 
 2157: 
 2158: /*********** Maximum Likelihood Estimation ***************/
 2159: 
 2160: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 2161: {
 2162:   int i,j, iter=0;
 2163:   double **xi;
 2164:   double fret;
 2165:   double fretone; /* Only one call to likelihood */
 2166:   /*  char filerespow[FILENAMELENGTH];*/
 2167: 
 2168: #ifdef NLOPT
 2169:   int creturn;
 2170:   nlopt_opt opt;
 2171:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 2172:   double *lb;
 2173:   double minf; /* the minimum objective value, upon return */
 2174:   double * p1; /* Shifted parameters from 0 instead of 1 */
 2175:   myfunc_data dinst, *d = &dinst;
 2176: #endif
 2177: 
 2178: 
 2179:   xi=matrix(1,npar,1,npar);
 2180:   for (i=1;i<=npar;i++)
 2181:     for (j=1;j<=npar;j++)
 2182:       xi[i][j]=(i==j ? 1.0 : 0.0);
 2183:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 2184:   strcpy(filerespow,"pow"); 
 2185:   strcat(filerespow,fileres);
 2186:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 2187:     printf("Problem with resultfile: %s\n", filerespow);
 2188:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 2189:   }
 2190:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 2191:   for (i=1;i<=nlstate;i++)
 2192:     for(j=1;j<=nlstate+ndeath;j++)
 2193:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2194:   fprintf(ficrespow,"\n");
 2195: #ifdef POWELL
 2196:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2197: #endif
 2198: 
 2199: #ifdef NLOPT
 2200: #ifdef NEWUOA
 2201:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
 2202: #else
 2203:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
 2204: #endif
 2205:   lb=vector(0,npar-1);
 2206:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 2207:   nlopt_set_lower_bounds(opt, lb);
 2208:   nlopt_set_initial_step1(opt, 0.1);
 2209:   
 2210:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 2211:   d->function = func;
 2212:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
 2213:   nlopt_set_min_objective(opt, myfunc, d);
 2214:   nlopt_set_xtol_rel(opt, ftol);
 2215:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 2216:     printf("nlopt failed! %d\n",creturn); 
 2217:   }
 2218:   else {
 2219:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
 2220:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 2221:     iter=1; /* not equal */
 2222:   }
 2223:   nlopt_destroy(opt);
 2224: #endif
 2225:   free_matrix(xi,1,npar,1,npar);
 2226:   fclose(ficrespow);
 2227:   printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2228:   fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2229:   fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2230: 
 2231: }
 2232: 
 2233: /**** Computes Hessian and covariance matrix ***/
 2234: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2235: {
 2236:   double  **a,**y,*x,pd;
 2237:   double **hess;
 2238:   int i, j;
 2239:   int *indx;
 2240: 
 2241:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2242:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2243:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2244:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2245:   double gompertz(double p[]);
 2246:   hess=matrix(1,npar,1,npar);
 2247: 
 2248:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2249:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2250:   for (i=1;i<=npar;i++){
 2251:     printf("%d",i);fflush(stdout);
 2252:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2253:    
 2254:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2255:     
 2256:     /*  printf(" %f ",p[i]);
 2257: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2258:   }
 2259:   
 2260:   for (i=1;i<=npar;i++) {
 2261:     for (j=1;j<=npar;j++)  {
 2262:       if (j>i) { 
 2263: 	printf(".%d%d",i,j);fflush(stdout);
 2264: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2265: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2266: 	
 2267: 	hess[j][i]=hess[i][j];    
 2268: 	/*printf(" %lf ",hess[i][j]);*/
 2269:       }
 2270:     }
 2271:   }
 2272:   printf("\n");
 2273:   fprintf(ficlog,"\n");
 2274: 
 2275:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2276:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2277:   
 2278:   a=matrix(1,npar,1,npar);
 2279:   y=matrix(1,npar,1,npar);
 2280:   x=vector(1,npar);
 2281:   indx=ivector(1,npar);
 2282:   for (i=1;i<=npar;i++)
 2283:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2284:   ludcmp(a,npar,indx,&pd);
 2285: 
 2286:   for (j=1;j<=npar;j++) {
 2287:     for (i=1;i<=npar;i++) x[i]=0;
 2288:     x[j]=1;
 2289:     lubksb(a,npar,indx,x);
 2290:     for (i=1;i<=npar;i++){ 
 2291:       matcov[i][j]=x[i];
 2292:     }
 2293:   }
 2294: 
 2295:   printf("\n#Hessian matrix#\n");
 2296:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2297:   for (i=1;i<=npar;i++) { 
 2298:     for (j=1;j<=npar;j++) { 
 2299:       printf("%.3e ",hess[i][j]);
 2300:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2301:     }
 2302:     printf("\n");
 2303:     fprintf(ficlog,"\n");
 2304:   }
 2305: 
 2306:   /* Recompute Inverse */
 2307:   for (i=1;i<=npar;i++)
 2308:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2309:   ludcmp(a,npar,indx,&pd);
 2310: 
 2311:   /*  printf("\n#Hessian matrix recomputed#\n");
 2312: 
 2313:   for (j=1;j<=npar;j++) {
 2314:     for (i=1;i<=npar;i++) x[i]=0;
 2315:     x[j]=1;
 2316:     lubksb(a,npar,indx,x);
 2317:     for (i=1;i<=npar;i++){ 
 2318:       y[i][j]=x[i];
 2319:       printf("%.3e ",y[i][j]);
 2320:       fprintf(ficlog,"%.3e ",y[i][j]);
 2321:     }
 2322:     printf("\n");
 2323:     fprintf(ficlog,"\n");
 2324:   }
 2325:   */
 2326: 
 2327:   free_matrix(a,1,npar,1,npar);
 2328:   free_matrix(y,1,npar,1,npar);
 2329:   free_vector(x,1,npar);
 2330:   free_ivector(indx,1,npar);
 2331:   free_matrix(hess,1,npar,1,npar);
 2332: 
 2333: 
 2334: }
 2335: 
 2336: /*************** hessian matrix ****************/
 2337: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2338: {
 2339:   int i;
 2340:   int l=1, lmax=20;
 2341:   double k1,k2;
 2342:   double p2[MAXPARM+1]; /* identical to x */
 2343:   double res;
 2344:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2345:   double fx;
 2346:   int k=0,kmax=10;
 2347:   double l1;
 2348: 
 2349:   fx=func(x);
 2350:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2351:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2352:     l1=pow(10,l);
 2353:     delts=delt;
 2354:     for(k=1 ; k <kmax; k=k+1){
 2355:       delt = delta*(l1*k);
 2356:       p2[theta]=x[theta] +delt;
 2357:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2358:       p2[theta]=x[theta]-delt;
 2359:       k2=func(p2)-fx;
 2360:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2361:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2362:       
 2363: #ifdef DEBUGHESS
 2364:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2365:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2366: #endif
 2367:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2368:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2369: 	k=kmax;
 2370:       }
 2371:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2372: 	k=kmax; l=lmax*10;
 2373:       }
 2374:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2375: 	delts=delt;
 2376:       }
 2377:     }
 2378:   }
 2379:   delti[theta]=delts;
 2380:   return res; 
 2381:   
 2382: }
 2383: 
 2384: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2385: {
 2386:   int i;
 2387:   int l=1, lmax=20;
 2388:   double k1,k2,k3,k4,res,fx;
 2389:   double p2[MAXPARM+1];
 2390:   int k;
 2391: 
 2392:   fx=func(x);
 2393:   for (k=1; k<=2; k++) {
 2394:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2395:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2396:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2397:     k1=func(p2)-fx;
 2398:   
 2399:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2400:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2401:     k2=func(p2)-fx;
 2402:   
 2403:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2404:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2405:     k3=func(p2)-fx;
 2406:   
 2407:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2408:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2409:     k4=func(p2)-fx;
 2410:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2411: #ifdef DEBUG
 2412:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2413:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2414: #endif
 2415:   }
 2416:   return res;
 2417: }
 2418: 
 2419: /************** Inverse of matrix **************/
 2420: void ludcmp(double **a, int n, int *indx, double *d) 
 2421: { 
 2422:   int i,imax,j,k; 
 2423:   double big,dum,sum,temp; 
 2424:   double *vv; 
 2425:  
 2426:   vv=vector(1,n); 
 2427:   *d=1.0; 
 2428:   for (i=1;i<=n;i++) { 
 2429:     big=0.0; 
 2430:     for (j=1;j<=n;j++) 
 2431:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2432:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2433:     vv[i]=1.0/big; 
 2434:   } 
 2435:   for (j=1;j<=n;j++) { 
 2436:     for (i=1;i<j;i++) { 
 2437:       sum=a[i][j]; 
 2438:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2439:       a[i][j]=sum; 
 2440:     } 
 2441:     big=0.0; 
 2442:     for (i=j;i<=n;i++) { 
 2443:       sum=a[i][j]; 
 2444:       for (k=1;k<j;k++) 
 2445: 	sum -= a[i][k]*a[k][j]; 
 2446:       a[i][j]=sum; 
 2447:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2448: 	big=dum; 
 2449: 	imax=i; 
 2450:       } 
 2451:     } 
 2452:     if (j != imax) { 
 2453:       for (k=1;k<=n;k++) { 
 2454: 	dum=a[imax][k]; 
 2455: 	a[imax][k]=a[j][k]; 
 2456: 	a[j][k]=dum; 
 2457:       } 
 2458:       *d = -(*d); 
 2459:       vv[imax]=vv[j]; 
 2460:     } 
 2461:     indx[j]=imax; 
 2462:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2463:     if (j != n) { 
 2464:       dum=1.0/(a[j][j]); 
 2465:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2466:     } 
 2467:   } 
 2468:   free_vector(vv,1,n);  /* Doesn't work */
 2469: ;
 2470: } 
 2471: 
 2472: void lubksb(double **a, int n, int *indx, double b[]) 
 2473: { 
 2474:   int i,ii=0,ip,j; 
 2475:   double sum; 
 2476:  
 2477:   for (i=1;i<=n;i++) { 
 2478:     ip=indx[i]; 
 2479:     sum=b[ip]; 
 2480:     b[ip]=b[i]; 
 2481:     if (ii) 
 2482:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2483:     else if (sum) ii=i; 
 2484:     b[i]=sum; 
 2485:   } 
 2486:   for (i=n;i>=1;i--) { 
 2487:     sum=b[i]; 
 2488:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2489:     b[i]=sum/a[i][i]; 
 2490:   } 
 2491: } 
 2492: 
 2493: void pstamp(FILE *fichier)
 2494: {
 2495:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2496: }
 2497: 
 2498: /************ Frequencies ********************/
 2499: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2500: {  /* Some frequencies */
 2501:   
 2502:   int i, m, jk, j1, bool, z1,j;
 2503:   int first;
 2504:   double ***freq; /* Frequencies */
 2505:   double *pp, **prop;
 2506:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2507:   char fileresp[FILENAMELENGTH];
 2508:   
 2509:   pp=vector(1,nlstate);
 2510:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2511:   strcpy(fileresp,"p");
 2512:   strcat(fileresp,fileres);
 2513:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2514:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2515:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2516:     exit(0);
 2517:   }
 2518:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2519:   j1=0;
 2520:   
 2521:   j=cptcoveff;
 2522:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2523: 
 2524:   first=1;
 2525: 
 2526:   /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
 2527:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
 2528:   /*    j1++;
 2529: */
 2530:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2531:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2532: 	scanf("%d", i);*/
 2533:       for (i=-5; i<=nlstate+ndeath; i++)  
 2534: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2535: 	  for(m=iagemin; m <= iagemax+3; m++)
 2536: 	    freq[i][jk][m]=0;
 2537:       
 2538:       for (i=1; i<=nlstate; i++)  
 2539: 	for(m=iagemin; m <= iagemax+3; m++)
 2540: 	  prop[i][m]=0;
 2541:       
 2542:       dateintsum=0;
 2543:       k2cpt=0;
 2544:       for (i=1; i<=imx; i++) {
 2545: 	bool=1;
 2546: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2547: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2548:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 2549:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2550:               bool=0;
 2551:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 2552:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 2553:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 2554:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 2555:             } 
 2556: 	}
 2557:  
 2558: 	if (bool==1){
 2559: 	  for(m=firstpass; m<=lastpass; m++){
 2560: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2561: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2562: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2563: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2564: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2565: 	      if (m<lastpass) {
 2566: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2567: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2568: 	      }
 2569: 	      
 2570: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2571: 		dateintsum=dateintsum+k2;
 2572: 		k2cpt++;
 2573: 	      }
 2574: 	      /*}*/
 2575: 	  }
 2576: 	}
 2577:       } /* end i */
 2578:        
 2579:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2580:       pstamp(ficresp);
 2581:       if  (cptcovn>0) {
 2582: 	fprintf(ficresp, "\n#********** Variable "); 
 2583: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2584: 	fprintf(ficresp, "**********\n#");
 2585: 	fprintf(ficlog, "\n#********** Variable "); 
 2586: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2587: 	fprintf(ficlog, "**********\n#");
 2588:       }
 2589:       for(i=1; i<=nlstate;i++) 
 2590: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2591:       fprintf(ficresp, "\n");
 2592:       
 2593:       for(i=iagemin; i <= iagemax+3; i++){
 2594: 	if(i==iagemax+3){
 2595: 	  fprintf(ficlog,"Total");
 2596: 	}else{
 2597: 	  if(first==1){
 2598: 	    first=0;
 2599: 	    printf("See log file for details...\n");
 2600: 	  }
 2601: 	  fprintf(ficlog,"Age %d", i);
 2602: 	}
 2603: 	for(jk=1; jk <=nlstate ; jk++){
 2604: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2605: 	    pp[jk] += freq[jk][m][i]; 
 2606: 	}
 2607: 	for(jk=1; jk <=nlstate ; jk++){
 2608: 	  for(m=-1, pos=0; m <=0 ; m++)
 2609: 	    pos += freq[jk][m][i];
 2610: 	  if(pp[jk]>=1.e-10){
 2611: 	    if(first==1){
 2612: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2613: 	    }
 2614: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2615: 	  }else{
 2616: 	    if(first==1)
 2617: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2618: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2619: 	  }
 2620: 	}
 2621: 
 2622: 	for(jk=1; jk <=nlstate ; jk++){
 2623: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2624: 	    pp[jk] += freq[jk][m][i];
 2625: 	}	
 2626: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2627: 	  pos += pp[jk];
 2628: 	  posprop += prop[jk][i];
 2629: 	}
 2630: 	for(jk=1; jk <=nlstate ; jk++){
 2631: 	  if(pos>=1.e-5){
 2632: 	    if(first==1)
 2633: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2634: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2635: 	  }else{
 2636: 	    if(first==1)
 2637: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2638: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2639: 	  }
 2640: 	  if( i <= iagemax){
 2641: 	    if(pos>=1.e-5){
 2642: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2643: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2644: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2645: 	    }
 2646: 	    else
 2647: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2648: 	  }
 2649: 	}
 2650: 	
 2651: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2652: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2653: 	    if(freq[jk][m][i] !=0 ) {
 2654: 	    if(first==1)
 2655: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2656: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2657: 	    }
 2658: 	if(i <= iagemax)
 2659: 	  fprintf(ficresp,"\n");
 2660: 	if(first==1)
 2661: 	  printf("Others in log...\n");
 2662: 	fprintf(ficlog,"\n");
 2663:       }
 2664:       /*}*/
 2665:   }
 2666:   dateintmean=dateintsum/k2cpt; 
 2667:  
 2668:   fclose(ficresp);
 2669:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2670:   free_vector(pp,1,nlstate);
 2671:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2672:   /* End of Freq */
 2673: }
 2674: 
 2675: /************ Prevalence ********************/
 2676: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2677: {  
 2678:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2679:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2680:      We still use firstpass and lastpass as another selection.
 2681:   */
 2682:  
 2683:   int i, m, jk, j1, bool, z1,j;
 2684: 
 2685:   double **prop;
 2686:   double posprop; 
 2687:   double  y2; /* in fractional years */
 2688:   int iagemin, iagemax;
 2689:   int first; /** to stop verbosity which is redirected to log file */
 2690: 
 2691:   iagemin= (int) agemin;
 2692:   iagemax= (int) agemax;
 2693:   /*pp=vector(1,nlstate);*/
 2694:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2695:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2696:   j1=0;
 2697:   
 2698:   /*j=cptcoveff;*/
 2699:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2700:   
 2701:   first=1;
 2702:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 2703:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 2704:       j1++;*/
 2705:       
 2706:       for (i=1; i<=nlstate; i++)  
 2707: 	for(m=iagemin; m <= iagemax+3; m++)
 2708: 	  prop[i][m]=0.0;
 2709:      
 2710:       for (i=1; i<=imx; i++) { /* Each individual */
 2711: 	bool=1;
 2712: 	if  (cptcovn>0) {
 2713: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2714: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2715: 	      bool=0;
 2716: 	} 
 2717: 	if (bool==1) { 
 2718: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2719: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2720: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2721: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2722: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2723: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2724:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2725: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2726:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2727:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2728:  	      } 
 2729: 	    }
 2730: 	  } /* end selection of waves */
 2731: 	}
 2732:       }
 2733:       for(i=iagemin; i <= iagemax+3; i++){  
 2734:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2735:  	  posprop += prop[jk][i]; 
 2736:  	} 
 2737: 	
 2738:  	for(jk=1; jk <=nlstate ; jk++){	    
 2739:  	  if( i <=  iagemax){ 
 2740:  	    if(posprop>=1.e-5){ 
 2741:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2742:  	    } else{
 2743: 	      if(first==1){
 2744: 		first=0;
 2745: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 2746: 	      }
 2747: 	    }
 2748:  	  } 
 2749:  	}/* end jk */ 
 2750:       }/* end i */ 
 2751:     /*} *//* end i1 */
 2752:   } /* end j1 */
 2753:   
 2754:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2755:   /*free_vector(pp,1,nlstate);*/
 2756:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2757: }  /* End of prevalence */
 2758: 
 2759: /************* Waves Concatenation ***************/
 2760: 
 2761: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2762: {
 2763:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2764:      Death is a valid wave (if date is known).
 2765:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2766:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2767:      and mw[mi+1][i]. dh depends on stepm.
 2768:      */
 2769: 
 2770:   int i, mi, m;
 2771:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2772:      double sum=0., jmean=0.;*/
 2773:   int first;
 2774:   int j, k=0,jk, ju, jl;
 2775:   double sum=0.;
 2776:   first=0;
 2777:   jmin=100000;
 2778:   jmax=-1;
 2779:   jmean=0.;
 2780:   for(i=1; i<=imx; i++){
 2781:     mi=0;
 2782:     m=firstpass;
 2783:     while(s[m][i] <= nlstate){
 2784:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2785: 	mw[++mi][i]=m;
 2786:       if(m >=lastpass)
 2787: 	break;
 2788:       else
 2789: 	m++;
 2790:     }/* end while */
 2791:     if (s[m][i] > nlstate){
 2792:       mi++;	/* Death is another wave */
 2793:       /* if(mi==0)  never been interviewed correctly before death */
 2794: 	 /* Only death is a correct wave */
 2795:       mw[mi][i]=m;
 2796:     }
 2797: 
 2798:     wav[i]=mi;
 2799:     if(mi==0){
 2800:       nbwarn++;
 2801:       if(first==0){
 2802: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2803: 	first=1;
 2804:       }
 2805:       if(first==1){
 2806: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2807:       }
 2808:     } /* end mi==0 */
 2809:   } /* End individuals */
 2810: 
 2811:   for(i=1; i<=imx; i++){
 2812:     for(mi=1; mi<wav[i];mi++){
 2813:       if (stepm <=0)
 2814: 	dh[mi][i]=1;
 2815:       else{
 2816: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2817: 	  if (agedc[i] < 2*AGESUP) {
 2818: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2819: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2820: 	    else if(j<0){
 2821: 	      nberr++;
 2822: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2823: 	      j=1; /* Temporary Dangerous patch */
 2824: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2825: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2826: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2827: 	    }
 2828: 	    k=k+1;
 2829: 	    if (j >= jmax){
 2830: 	      jmax=j;
 2831: 	      ijmax=i;
 2832: 	    }
 2833: 	    if (j <= jmin){
 2834: 	      jmin=j;
 2835: 	      ijmin=i;
 2836: 	    }
 2837: 	    sum=sum+j;
 2838: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2839: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2840: 	  }
 2841: 	}
 2842: 	else{
 2843: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2844: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2845: 
 2846: 	  k=k+1;
 2847: 	  if (j >= jmax) {
 2848: 	    jmax=j;
 2849: 	    ijmax=i;
 2850: 	  }
 2851: 	  else if (j <= jmin){
 2852: 	    jmin=j;
 2853: 	    ijmin=i;
 2854: 	  }
 2855: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2856: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2857: 	  if(j<0){
 2858: 	    nberr++;
 2859: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2860: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2861: 	  }
 2862: 	  sum=sum+j;
 2863: 	}
 2864: 	jk= j/stepm;
 2865: 	jl= j -jk*stepm;
 2866: 	ju= j -(jk+1)*stepm;
 2867: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2868: 	  if(jl==0){
 2869: 	    dh[mi][i]=jk;
 2870: 	    bh[mi][i]=0;
 2871: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2872: 		  * to avoid the price of an extra matrix product in likelihood */
 2873: 	    dh[mi][i]=jk+1;
 2874: 	    bh[mi][i]=ju;
 2875: 	  }
 2876: 	}else{
 2877: 	  if(jl <= -ju){
 2878: 	    dh[mi][i]=jk;
 2879: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2880: 				 * is higher than the multiple of stepm and negative otherwise.
 2881: 				 */
 2882: 	  }
 2883: 	  else{
 2884: 	    dh[mi][i]=jk+1;
 2885: 	    bh[mi][i]=ju;
 2886: 	  }
 2887: 	  if(dh[mi][i]==0){
 2888: 	    dh[mi][i]=1; /* At least one step */
 2889: 	    bh[mi][i]=ju; /* At least one step */
 2890: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2891: 	  }
 2892: 	} /* end if mle */
 2893:       }
 2894:     } /* end wave */
 2895:   }
 2896:   jmean=sum/k;
 2897:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 2898:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 2899:  }
 2900: 
 2901: /*********** Tricode ****************************/
 2902: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 2903: {
 2904:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 2905:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 2906:   /* Boring subroutine which should only output nbcode[Tvar[j]][k]
 2907:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 2908:   /* nbcode[Tvar[j]][1]= 
 2909:   */
 2910: 
 2911:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 2912:   int modmaxcovj=0; /* Modality max of covariates j */
 2913:   int cptcode=0; /* Modality max of covariates j */
 2914:   int modmincovj=0; /* Modality min of covariates j */
 2915: 
 2916: 
 2917:   cptcoveff=0; 
 2918:  
 2919:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
 2920:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 2921: 
 2922:   /* Loop on covariates without age and products */
 2923:   for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
 2924:     for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 2925: 			       modality of this covariate Vj*/ 
 2926:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 2927: 				    * If product of Vn*Vm, still boolean *:
 2928: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 2929: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 2930:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 2931: 				      modality of the nth covariate of individual i. */
 2932:       if (ij > modmaxcovj)
 2933:         modmaxcovj=ij; 
 2934:       else if (ij < modmincovj) 
 2935: 	modmincovj=ij; 
 2936:       if ((ij < -1) && (ij > NCOVMAX)){
 2937: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 2938: 	exit(1);
 2939:       }else
 2940:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 2941:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 2942:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2943:       /* getting the maximum value of the modality of the covariate
 2944: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 2945: 	 female is 1, then modmaxcovj=1.*/
 2946:     }
 2947:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 2948:     cptcode=modmaxcovj;
 2949:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 2950:    /*for (i=0; i<=cptcode; i++) {*/
 2951:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 2952:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
 2953:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 2954: 	ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
 2955:       }
 2956:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 2957: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 2958:     } /* Ndum[-1] number of undefined modalities */
 2959: 
 2960:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 2961:     /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 2962:     /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
 2963:        modmincovj=3; modmaxcovj = 7;
 2964:        There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 2965:        which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 2966:        variables V1_1 and V1_2.
 2967:        nbcode[Tvar[j]][ij]=k;
 2968:        nbcode[Tvar[j]][1]=0;
 2969:        nbcode[Tvar[j]][2]=1;
 2970:        nbcode[Tvar[j]][3]=2;
 2971:     */
 2972:     ij=1; /* ij is similar to i but can jumps over null modalities */
 2973:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
 2974:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
 2975: 	/*recode from 0 */
 2976: 	if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 2977: 	  nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 2978: 				     k is a modality. If we have model=V1+V1*sex 
 2979: 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2980: 	  ij++;
 2981: 	}
 2982: 	if (ij > ncodemax[j]) break; 
 2983:       }  /* end of loop on */
 2984:     } /* end of loop on modality */ 
 2985:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 2986:   
 2987:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 2988:   
 2989:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
 2990:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 2991:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 2992:    Ndum[ij]++; 
 2993:  } 
 2994: 
 2995:  ij=1;
 2996:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 2997:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 2998:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2999:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 3000:      Tvaraff[ij]=i; /*For printing (unclear) */
 3001:      ij++;
 3002:    }else
 3003:        Tvaraff[ij]=0;
 3004:  }
 3005:  ij--;
 3006:  cptcoveff=ij; /*Number of total covariates*/
 3007: 
 3008: }
 3009: 
 3010: 
 3011: /*********** Health Expectancies ****************/
 3012: 
 3013: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 3014: 
 3015: {
 3016:   /* Health expectancies, no variances */
 3017:   int i, j, nhstepm, hstepm, h, nstepm;
 3018:   int nhstepma, nstepma; /* Decreasing with age */
 3019:   double age, agelim, hf;
 3020:   double ***p3mat;
 3021:   double eip;
 3022: 
 3023:   pstamp(ficreseij);
 3024:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 3025:   fprintf(ficreseij,"# Age");
 3026:   for(i=1; i<=nlstate;i++){
 3027:     for(j=1; j<=nlstate;j++){
 3028:       fprintf(ficreseij," e%1d%1d ",i,j);
 3029:     }
 3030:     fprintf(ficreseij," e%1d. ",i);
 3031:   }
 3032:   fprintf(ficreseij,"\n");
 3033: 
 3034:   
 3035:   if(estepm < stepm){
 3036:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3037:   }
 3038:   else  hstepm=estepm;   
 3039:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3040:    * This is mainly to measure the difference between two models: for example
 3041:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3042:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3043:    * progression in between and thus overestimating or underestimating according
 3044:    * to the curvature of the survival function. If, for the same date, we 
 3045:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3046:    * to compare the new estimate of Life expectancy with the same linear 
 3047:    * hypothesis. A more precise result, taking into account a more precise
 3048:    * curvature will be obtained if estepm is as small as stepm. */
 3049: 
 3050:   /* For example we decided to compute the life expectancy with the smallest unit */
 3051:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3052:      nhstepm is the number of hstepm from age to agelim 
 3053:      nstepm is the number of stepm from age to agelin. 
 3054:      Look at hpijx to understand the reason of that which relies in memory size
 3055:      and note for a fixed period like estepm months */
 3056:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3057:      survival function given by stepm (the optimization length). Unfortunately it
 3058:      means that if the survival funtion is printed only each two years of age and if
 3059:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3060:      results. So we changed our mind and took the option of the best precision.
 3061:   */
 3062:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3063: 
 3064:   agelim=AGESUP;
 3065:   /* If stepm=6 months */
 3066:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 3067:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 3068:     
 3069: /* nhstepm age range expressed in number of stepm */
 3070:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3071:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3072:   /* if (stepm >= YEARM) hstepm=1;*/
 3073:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3074:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3075: 
 3076:   for (age=bage; age<=fage; age ++){ 
 3077:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3078:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3079:     /* if (stepm >= YEARM) hstepm=1;*/
 3080:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3081: 
 3082:     /* If stepm=6 months */
 3083:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3084:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3085:     
 3086:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3087:     
 3088:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3089:     
 3090:     printf("%d|",(int)age);fflush(stdout);
 3091:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3092:     
 3093:     /* Computing expectancies */
 3094:     for(i=1; i<=nlstate;i++)
 3095:       for(j=1; j<=nlstate;j++)
 3096: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3097: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 3098: 	  
 3099: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3100: 
 3101: 	}
 3102: 
 3103:     fprintf(ficreseij,"%3.0f",age );
 3104:     for(i=1; i<=nlstate;i++){
 3105:       eip=0;
 3106:       for(j=1; j<=nlstate;j++){
 3107: 	eip +=eij[i][j][(int)age];
 3108: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 3109:       }
 3110:       fprintf(ficreseij,"%9.4f", eip );
 3111:     }
 3112:     fprintf(ficreseij,"\n");
 3113:     
 3114:   }
 3115:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3116:   printf("\n");
 3117:   fprintf(ficlog,"\n");
 3118:   
 3119: }
 3120: 
 3121: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 3122: 
 3123: {
 3124:   /* Covariances of health expectancies eij and of total life expectancies according
 3125:    to initial status i, ei. .
 3126:   */
 3127:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 3128:   int nhstepma, nstepma; /* Decreasing with age */
 3129:   double age, agelim, hf;
 3130:   double ***p3matp, ***p3matm, ***varhe;
 3131:   double **dnewm,**doldm;
 3132:   double *xp, *xm;
 3133:   double **gp, **gm;
 3134:   double ***gradg, ***trgradg;
 3135:   int theta;
 3136: 
 3137:   double eip, vip;
 3138: 
 3139:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 3140:   xp=vector(1,npar);
 3141:   xm=vector(1,npar);
 3142:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 3143:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 3144:   
 3145:   pstamp(ficresstdeij);
 3146:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 3147:   fprintf(ficresstdeij,"# Age");
 3148:   for(i=1; i<=nlstate;i++){
 3149:     for(j=1; j<=nlstate;j++)
 3150:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 3151:     fprintf(ficresstdeij," e%1d. ",i);
 3152:   }
 3153:   fprintf(ficresstdeij,"\n");
 3154: 
 3155:   pstamp(ficrescveij);
 3156:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 3157:   fprintf(ficrescveij,"# Age");
 3158:   for(i=1; i<=nlstate;i++)
 3159:     for(j=1; j<=nlstate;j++){
 3160:       cptj= (j-1)*nlstate+i;
 3161:       for(i2=1; i2<=nlstate;i2++)
 3162: 	for(j2=1; j2<=nlstate;j2++){
 3163: 	  cptj2= (j2-1)*nlstate+i2;
 3164: 	  if(cptj2 <= cptj)
 3165: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 3166: 	}
 3167:     }
 3168:   fprintf(ficrescveij,"\n");
 3169:   
 3170:   if(estepm < stepm){
 3171:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3172:   }
 3173:   else  hstepm=estepm;   
 3174:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3175:    * This is mainly to measure the difference between two models: for example
 3176:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3177:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3178:    * progression in between and thus overestimating or underestimating according
 3179:    * to the curvature of the survival function. If, for the same date, we 
 3180:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3181:    * to compare the new estimate of Life expectancy with the same linear 
 3182:    * hypothesis. A more precise result, taking into account a more precise
 3183:    * curvature will be obtained if estepm is as small as stepm. */
 3184: 
 3185:   /* For example we decided to compute the life expectancy with the smallest unit */
 3186:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3187:      nhstepm is the number of hstepm from age to agelim 
 3188:      nstepm is the number of stepm from age to agelin. 
 3189:      Look at hpijx to understand the reason of that which relies in memory size
 3190:      and note for a fixed period like estepm months */
 3191:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3192:      survival function given by stepm (the optimization length). Unfortunately it
 3193:      means that if the survival funtion is printed only each two years of age and if
 3194:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3195:      results. So we changed our mind and took the option of the best precision.
 3196:   */
 3197:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3198: 
 3199:   /* If stepm=6 months */
 3200:   /* nhstepm age range expressed in number of stepm */
 3201:   agelim=AGESUP;
 3202:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 3203:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3204:   /* if (stepm >= YEARM) hstepm=1;*/
 3205:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3206:   
 3207:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3208:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3209:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 3210:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 3211:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 3212:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 3213: 
 3214:   for (age=bage; age<=fage; age ++){ 
 3215:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3216:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3217:     /* if (stepm >= YEARM) hstepm=1;*/
 3218:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3219: 
 3220:     /* If stepm=6 months */
 3221:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3222:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3223:     
 3224:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3225: 
 3226:     /* Computing  Variances of health expectancies */
 3227:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3228:        decrease memory allocation */
 3229:     for(theta=1; theta <=npar; theta++){
 3230:       for(i=1; i<=npar; i++){ 
 3231: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3232: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3233:       }
 3234:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3235:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3236:   
 3237:       for(j=1; j<= nlstate; j++){
 3238: 	for(i=1; i<=nlstate; i++){
 3239: 	  for(h=0; h<=nhstepm-1; h++){
 3240: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3241: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3242: 	  }
 3243: 	}
 3244:       }
 3245:      
 3246:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3247: 	for(h=0; h<=nhstepm-1; h++){
 3248: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3249: 	}
 3250:     }/* End theta */
 3251:     
 3252:     
 3253:     for(h=0; h<=nhstepm-1; h++)
 3254:       for(j=1; j<=nlstate*nlstate;j++)
 3255: 	for(theta=1; theta <=npar; theta++)
 3256: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3257:     
 3258: 
 3259:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3260:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3261: 	varhe[ij][ji][(int)age] =0.;
 3262: 
 3263:      printf("%d|",(int)age);fflush(stdout);
 3264:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3265:      for(h=0;h<=nhstepm-1;h++){
 3266:       for(k=0;k<=nhstepm-1;k++){
 3267: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3268: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3269: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3270: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3271: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3272:       }
 3273:     }
 3274: 
 3275:     /* Computing expectancies */
 3276:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3277:     for(i=1; i<=nlstate;i++)
 3278:       for(j=1; j<=nlstate;j++)
 3279: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3280: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3281: 	  
 3282: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3283: 
 3284: 	}
 3285: 
 3286:     fprintf(ficresstdeij,"%3.0f",age );
 3287:     for(i=1; i<=nlstate;i++){
 3288:       eip=0.;
 3289:       vip=0.;
 3290:       for(j=1; j<=nlstate;j++){
 3291: 	eip += eij[i][j][(int)age];
 3292: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3293: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3294: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3295:       }
 3296:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3297:     }
 3298:     fprintf(ficresstdeij,"\n");
 3299: 
 3300:     fprintf(ficrescveij,"%3.0f",age );
 3301:     for(i=1; i<=nlstate;i++)
 3302:       for(j=1; j<=nlstate;j++){
 3303: 	cptj= (j-1)*nlstate+i;
 3304: 	for(i2=1; i2<=nlstate;i2++)
 3305: 	  for(j2=1; j2<=nlstate;j2++){
 3306: 	    cptj2= (j2-1)*nlstate+i2;
 3307: 	    if(cptj2 <= cptj)
 3308: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3309: 	  }
 3310:       }
 3311:     fprintf(ficrescveij,"\n");
 3312:    
 3313:   }
 3314:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3315:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3316:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3317:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3318:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3319:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3320:   printf("\n");
 3321:   fprintf(ficlog,"\n");
 3322: 
 3323:   free_vector(xm,1,npar);
 3324:   free_vector(xp,1,npar);
 3325:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3326:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3327:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3328: }
 3329: 
 3330: /************ Variance ******************/
 3331: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3332: {
 3333:   /* Variance of health expectancies */
 3334:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3335:   /* double **newm;*/
 3336:   double **dnewm,**doldm;
 3337:   double **dnewmp,**doldmp;
 3338:   int i, j, nhstepm, hstepm, h, nstepm ;
 3339:   int k;
 3340:   double *xp;
 3341:   double **gp, **gm;  /* for var eij */
 3342:   double ***gradg, ***trgradg; /*for var eij */
 3343:   double **gradgp, **trgradgp; /* for var p point j */
 3344:   double *gpp, *gmp; /* for var p point j */
 3345:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3346:   double ***p3mat;
 3347:   double age,agelim, hf;
 3348:   double ***mobaverage;
 3349:   int theta;
 3350:   char digit[4];
 3351:   char digitp[25];
 3352: 
 3353:   char fileresprobmorprev[FILENAMELENGTH];
 3354: 
 3355:   if(popbased==1){
 3356:     if(mobilav!=0)
 3357:       strcpy(digitp,"-populbased-mobilav-");
 3358:     else strcpy(digitp,"-populbased-nomobil-");
 3359:   }
 3360:   else 
 3361:     strcpy(digitp,"-stablbased-");
 3362: 
 3363:   if (mobilav!=0) {
 3364:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3365:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3366:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3367:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3368:     }
 3369:   }
 3370: 
 3371:   strcpy(fileresprobmorprev,"prmorprev"); 
 3372:   sprintf(digit,"%-d",ij);
 3373:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3374:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3375:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3376:   strcat(fileresprobmorprev,fileres);
 3377:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3378:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3379:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3380:   }
 3381:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3382:  
 3383:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3384:   pstamp(ficresprobmorprev);
 3385:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3386:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3387:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3388:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3389:     for(i=1; i<=nlstate;i++)
 3390:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3391:   }  
 3392:   fprintf(ficresprobmorprev,"\n");
 3393:   fprintf(ficgp,"\n# Routine varevsij");
 3394:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3395:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3396:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3397: /*   } */
 3398:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3399:   pstamp(ficresvij);
 3400:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3401:   if(popbased==1)
 3402:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3403:   else
 3404:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3405:   fprintf(ficresvij,"# Age");
 3406:   for(i=1; i<=nlstate;i++)
 3407:     for(j=1; j<=nlstate;j++)
 3408:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3409:   fprintf(ficresvij,"\n");
 3410: 
 3411:   xp=vector(1,npar);
 3412:   dnewm=matrix(1,nlstate,1,npar);
 3413:   doldm=matrix(1,nlstate,1,nlstate);
 3414:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3415:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3416: 
 3417:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3418:   gpp=vector(nlstate+1,nlstate+ndeath);
 3419:   gmp=vector(nlstate+1,nlstate+ndeath);
 3420:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3421:   
 3422:   if(estepm < stepm){
 3423:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3424:   }
 3425:   else  hstepm=estepm;   
 3426:   /* For example we decided to compute the life expectancy with the smallest unit */
 3427:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3428:      nhstepm is the number of hstepm from age to agelim 
 3429:      nstepm is the number of stepm from age to agelin. 
 3430:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3431:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3432:      survival function given by stepm (the optimization length). Unfortunately it
 3433:      means that if the survival funtion is printed every two years of age and if
 3434:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3435:      results. So we changed our mind and took the option of the best precision.
 3436:   */
 3437:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3438:   agelim = AGESUP;
 3439:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3440:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3441:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3442:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3443:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3444:     gp=matrix(0,nhstepm,1,nlstate);
 3445:     gm=matrix(0,nhstepm,1,nlstate);
 3446: 
 3447: 
 3448:     for(theta=1; theta <=npar; theta++){
 3449:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3450: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3451:       }
 3452:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3453:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3454: 
 3455:       if (popbased==1) {
 3456: 	if(mobilav ==0){
 3457: 	  for(i=1; i<=nlstate;i++)
 3458: 	    prlim[i][i]=probs[(int)age][i][ij];
 3459: 	}else{ /* mobilav */ 
 3460: 	  for(i=1; i<=nlstate;i++)
 3461: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3462: 	}
 3463:       }
 3464:   
 3465:       for(j=1; j<= nlstate; j++){
 3466: 	for(h=0; h<=nhstepm; h++){
 3467: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3468: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3469: 	}
 3470:       }
 3471:       /* This for computing probability of death (h=1 means
 3472:          computed over hstepm matrices product = hstepm*stepm months) 
 3473:          as a weighted average of prlim.
 3474:       */
 3475:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3476: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3477: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3478:       }    
 3479:       /* end probability of death */
 3480: 
 3481:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3482: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3483:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3484:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3485:  
 3486:       if (popbased==1) {
 3487: 	if(mobilav ==0){
 3488: 	  for(i=1; i<=nlstate;i++)
 3489: 	    prlim[i][i]=probs[(int)age][i][ij];
 3490: 	}else{ /* mobilav */ 
 3491: 	  for(i=1; i<=nlstate;i++)
 3492: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3493: 	}
 3494:       }
 3495: 
 3496:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3497: 	for(h=0; h<=nhstepm; h++){
 3498: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3499: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3500: 	}
 3501:       }
 3502:       /* This for computing probability of death (h=1 means
 3503:          computed over hstepm matrices product = hstepm*stepm months) 
 3504:          as a weighted average of prlim.
 3505:       */
 3506:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3507: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3508:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3509:       }    
 3510:       /* end probability of death */
 3511: 
 3512:       for(j=1; j<= nlstate; j++) /* vareij */
 3513: 	for(h=0; h<=nhstepm; h++){
 3514: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3515: 	}
 3516: 
 3517:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3518: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3519:       }
 3520: 
 3521:     } /* End theta */
 3522: 
 3523:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3524: 
 3525:     for(h=0; h<=nhstepm; h++) /* veij */
 3526:       for(j=1; j<=nlstate;j++)
 3527: 	for(theta=1; theta <=npar; theta++)
 3528: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3529: 
 3530:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3531:       for(theta=1; theta <=npar; theta++)
 3532: 	trgradgp[j][theta]=gradgp[theta][j];
 3533:   
 3534: 
 3535:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3536:     for(i=1;i<=nlstate;i++)
 3537:       for(j=1;j<=nlstate;j++)
 3538: 	vareij[i][j][(int)age] =0.;
 3539: 
 3540:     for(h=0;h<=nhstepm;h++){
 3541:       for(k=0;k<=nhstepm;k++){
 3542: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3543: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3544: 	for(i=1;i<=nlstate;i++)
 3545: 	  for(j=1;j<=nlstate;j++)
 3546: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3547:       }
 3548:     }
 3549:   
 3550:     /* pptj */
 3551:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3552:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3553:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3554:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3555: 	varppt[j][i]=doldmp[j][i];
 3556:     /* end ppptj */
 3557:     /*  x centered again */
 3558:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3559:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3560:  
 3561:     if (popbased==1) {
 3562:       if(mobilav ==0){
 3563: 	for(i=1; i<=nlstate;i++)
 3564: 	  prlim[i][i]=probs[(int)age][i][ij];
 3565:       }else{ /* mobilav */ 
 3566: 	for(i=1; i<=nlstate;i++)
 3567: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3568:       }
 3569:     }
 3570:              
 3571:     /* This for computing probability of death (h=1 means
 3572:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3573:        as a weighted average of prlim.
 3574:     */
 3575:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3576:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 3577: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 3578:     }    
 3579:     /* end probability of death */
 3580: 
 3581:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 3582:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3583:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 3584:       for(i=1; i<=nlstate;i++){
 3585: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 3586:       }
 3587:     } 
 3588:     fprintf(ficresprobmorprev,"\n");
 3589: 
 3590:     fprintf(ficresvij,"%.0f ",age );
 3591:     for(i=1; i<=nlstate;i++)
 3592:       for(j=1; j<=nlstate;j++){
 3593: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 3594:       }
 3595:     fprintf(ficresvij,"\n");
 3596:     free_matrix(gp,0,nhstepm,1,nlstate);
 3597:     free_matrix(gm,0,nhstepm,1,nlstate);
 3598:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 3599:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 3600:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3601:   } /* End age */
 3602:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 3603:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 3604:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3605:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3606:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 3607:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3608:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3609: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3610: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3611: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3612:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 3613:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 3614:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 3615:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3616:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3617:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3618: */
 3619: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3620:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3621: 
 3622:   free_vector(xp,1,npar);
 3623:   free_matrix(doldm,1,nlstate,1,nlstate);
 3624:   free_matrix(dnewm,1,nlstate,1,npar);
 3625:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3626:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3627:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3628:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3629:   fclose(ficresprobmorprev);
 3630:   fflush(ficgp);
 3631:   fflush(fichtm); 
 3632: }  /* end varevsij */
 3633: 
 3634: /************ Variance of prevlim ******************/
 3635: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3636: {
 3637:   /* Variance of prevalence limit */
 3638:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3639: 
 3640:   double **dnewm,**doldm;
 3641:   int i, j, nhstepm, hstepm;
 3642:   double *xp;
 3643:   double *gp, *gm;
 3644:   double **gradg, **trgradg;
 3645:   double age,agelim;
 3646:   int theta;
 3647:   
 3648:   pstamp(ficresvpl);
 3649:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3650:   fprintf(ficresvpl,"# Age");
 3651:   for(i=1; i<=nlstate;i++)
 3652:       fprintf(ficresvpl," %1d-%1d",i,i);
 3653:   fprintf(ficresvpl,"\n");
 3654: 
 3655:   xp=vector(1,npar);
 3656:   dnewm=matrix(1,nlstate,1,npar);
 3657:   doldm=matrix(1,nlstate,1,nlstate);
 3658:   
 3659:   hstepm=1*YEARM; /* Every year of age */
 3660:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3661:   agelim = AGESUP;
 3662:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3663:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3664:     if (stepm >= YEARM) hstepm=1;
 3665:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3666:     gradg=matrix(1,npar,1,nlstate);
 3667:     gp=vector(1,nlstate);
 3668:     gm=vector(1,nlstate);
 3669: 
 3670:     for(theta=1; theta <=npar; theta++){
 3671:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3672: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3673:       }
 3674:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3675:       for(i=1;i<=nlstate;i++)
 3676: 	gp[i] = prlim[i][i];
 3677:     
 3678:       for(i=1; i<=npar; i++) /* Computes gradient */
 3679: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3680:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3681:       for(i=1;i<=nlstate;i++)
 3682: 	gm[i] = prlim[i][i];
 3683: 
 3684:       for(i=1;i<=nlstate;i++)
 3685: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3686:     } /* End theta */
 3687: 
 3688:     trgradg =matrix(1,nlstate,1,npar);
 3689: 
 3690:     for(j=1; j<=nlstate;j++)
 3691:       for(theta=1; theta <=npar; theta++)
 3692: 	trgradg[j][theta]=gradg[theta][j];
 3693: 
 3694:     for(i=1;i<=nlstate;i++)
 3695:       varpl[i][(int)age] =0.;
 3696:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3697:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3698:     for(i=1;i<=nlstate;i++)
 3699:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3700: 
 3701:     fprintf(ficresvpl,"%.0f ",age );
 3702:     for(i=1; i<=nlstate;i++)
 3703:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3704:     fprintf(ficresvpl,"\n");
 3705:     free_vector(gp,1,nlstate);
 3706:     free_vector(gm,1,nlstate);
 3707:     free_matrix(gradg,1,npar,1,nlstate);
 3708:     free_matrix(trgradg,1,nlstate,1,npar);
 3709:   } /* End age */
 3710: 
 3711:   free_vector(xp,1,npar);
 3712:   free_matrix(doldm,1,nlstate,1,npar);
 3713:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3714: 
 3715: }
 3716: 
 3717: /************ Variance of one-step probabilities  ******************/
 3718: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3719: {
 3720:   int i, j=0,  k1, l1, tj;
 3721:   int k2, l2, j1,  z1;
 3722:   int k=0, l;
 3723:   int first=1, first1, first2;
 3724:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3725:   double **dnewm,**doldm;
 3726:   double *xp;
 3727:   double *gp, *gm;
 3728:   double **gradg, **trgradg;
 3729:   double **mu;
 3730:   double age, cov[NCOVMAX+1];
 3731:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3732:   int theta;
 3733:   char fileresprob[FILENAMELENGTH];
 3734:   char fileresprobcov[FILENAMELENGTH];
 3735:   char fileresprobcor[FILENAMELENGTH];
 3736:   double ***varpij;
 3737: 
 3738:   strcpy(fileresprob,"prob"); 
 3739:   strcat(fileresprob,fileres);
 3740:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3741:     printf("Problem with resultfile: %s\n", fileresprob);
 3742:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3743:   }
 3744:   strcpy(fileresprobcov,"probcov"); 
 3745:   strcat(fileresprobcov,fileres);
 3746:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3747:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3748:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3749:   }
 3750:   strcpy(fileresprobcor,"probcor"); 
 3751:   strcat(fileresprobcor,fileres);
 3752:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3753:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3754:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3755:   }
 3756:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3757:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3758:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3759:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3760:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3761:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3762:   pstamp(ficresprob);
 3763:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3764:   fprintf(ficresprob,"# Age");
 3765:   pstamp(ficresprobcov);
 3766:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3767:   fprintf(ficresprobcov,"# Age");
 3768:   pstamp(ficresprobcor);
 3769:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3770:   fprintf(ficresprobcor,"# Age");
 3771: 
 3772: 
 3773:   for(i=1; i<=nlstate;i++)
 3774:     for(j=1; j<=(nlstate+ndeath);j++){
 3775:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3776:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3777:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3778:     }  
 3779:  /* fprintf(ficresprob,"\n");
 3780:   fprintf(ficresprobcov,"\n");
 3781:   fprintf(ficresprobcor,"\n");
 3782:  */
 3783:   xp=vector(1,npar);
 3784:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3785:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3786:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3787:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3788:   first=1;
 3789:   fprintf(ficgp,"\n# Routine varprob");
 3790:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3791:   fprintf(fichtm,"\n");
 3792: 
 3793:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3794:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3795:   file %s<br>\n",optionfilehtmcov);
 3796:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3797: and drawn. It helps understanding how is the covariance between two incidences.\
 3798:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3799:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3800: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3801: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3802: standard deviations wide on each axis. <br>\
 3803:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3804:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3805: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3806: 
 3807:   cov[1]=1;
 3808:   /* tj=cptcoveff; */
 3809:   tj = (int) pow(2,cptcoveff);
 3810:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3811:   j1=0;
 3812:   for(j1=1; j1<=tj;j1++){
 3813:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 3814:     /*j1++;*/
 3815:       if  (cptcovn>0) {
 3816: 	fprintf(ficresprob, "\n#********** Variable "); 
 3817: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3818: 	fprintf(ficresprob, "**********\n#\n");
 3819: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3820: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3821: 	fprintf(ficresprobcov, "**********\n#\n");
 3822: 	
 3823: 	fprintf(ficgp, "\n#********** Variable "); 
 3824: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3825: 	fprintf(ficgp, "**********\n#\n");
 3826: 	
 3827: 	
 3828: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3829: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3830: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3831: 	
 3832: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3833: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3834: 	fprintf(ficresprobcor, "**********\n#");    
 3835:       }
 3836:       
 3837:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3838:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3839:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 3840:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 3841:       for (age=bage; age<=fage; age ++){ 
 3842: 	cov[2]=age;
 3843: 	for (k=1; k<=cptcovn;k++) {
 3844: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
 3845: 							 * 1  1 1 1 1
 3846: 							 * 2  2 1 1 1
 3847: 							 * 3  1 2 1 1
 3848: 							 */
 3849: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 3850: 	}
 3851: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3852: 	for (k=1; k<=cptcovprod;k++)
 3853: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3854: 	
 3855:     
 3856: 	for(theta=1; theta <=npar; theta++){
 3857: 	  for(i=1; i<=npar; i++)
 3858: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3859: 	  
 3860: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3861: 	  
 3862: 	  k=0;
 3863: 	  for(i=1; i<= (nlstate); i++){
 3864: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3865: 	      k=k+1;
 3866: 	      gp[k]=pmmij[i][j];
 3867: 	    }
 3868: 	  }
 3869: 	  
 3870: 	  for(i=1; i<=npar; i++)
 3871: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3872:     
 3873: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3874: 	  k=0;
 3875: 	  for(i=1; i<=(nlstate); i++){
 3876: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3877: 	      k=k+1;
 3878: 	      gm[k]=pmmij[i][j];
 3879: 	    }
 3880: 	  }
 3881:      
 3882: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3883: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3884: 	}
 3885: 
 3886: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3887: 	  for(theta=1; theta <=npar; theta++)
 3888: 	    trgradg[j][theta]=gradg[theta][j];
 3889: 	
 3890: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3891: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3892: 
 3893: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3894: 	
 3895: 	k=0;
 3896: 	for(i=1; i<=(nlstate); i++){
 3897: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3898: 	    k=k+1;
 3899: 	    mu[k][(int) age]=pmmij[i][j];
 3900: 	  }
 3901: 	}
 3902:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3903: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3904: 	    varpij[i][j][(int)age] = doldm[i][j];
 3905: 
 3906: 	/*printf("\n%d ",(int)age);
 3907: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3908: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3909: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3910: 	  }*/
 3911: 
 3912: 	fprintf(ficresprob,"\n%d ",(int)age);
 3913: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3914: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3915: 
 3916: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3917: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3918: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3919: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3920: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3921: 	}
 3922: 	i=0;
 3923: 	for (k=1; k<=(nlstate);k++){
 3924:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3925:  	    i++;
 3926: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3927: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3928: 	    for (j=1; j<=i;j++){
 3929: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 3930: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3931: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3932: 	    }
 3933: 	  }
 3934: 	}/* end of loop for state */
 3935:       } /* end of loop for age */
 3936:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 3937:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 3938:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3939:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3940:       
 3941:       /* Confidence intervalle of pij  */
 3942:       /*
 3943: 	fprintf(ficgp,"\nunset parametric;unset label");
 3944: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3945: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3946: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3947: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3948: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3949: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3950:       */
 3951: 
 3952:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3953:       first1=1;first2=2;
 3954:       for (k2=1; k2<=(nlstate);k2++){
 3955: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3956: 	  if(l2==k2) continue;
 3957: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3958: 	  for (k1=1; k1<=(nlstate);k1++){
 3959: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3960: 	      if(l1==k1) continue;
 3961: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3962: 	      if(i<=j) continue;
 3963: 	      for (age=bage; age<=fage; age ++){ 
 3964: 		if ((int)age %5==0){
 3965: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3966: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3967: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3968: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3969: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3970: 		  c12=cv12/sqrt(v1*v2);
 3971: 		  /* Computing eigen value of matrix of covariance */
 3972: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3973: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3974: 		  if ((lc2 <0) || (lc1 <0) ){
 3975: 		    if(first2==1){
 3976: 		      first1=0;
 3977: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 3978: 		    }
 3979: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 3980: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 3981: 		    /* lc2=fabs(lc2); */
 3982: 		  }
 3983: 
 3984: 		  /* Eigen vectors */
 3985: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3986: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3987: 		  v21=(lc1-v1)/cv12*v11;
 3988: 		  v12=-v21;
 3989: 		  v22=v11;
 3990: 		  tnalp=v21/v11;
 3991: 		  if(first1==1){
 3992: 		    first1=0;
 3993: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3994: 		  }
 3995: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3996: 		  /*printf(fignu*/
 3997: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3998: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3999: 		  if(first==1){
 4000: 		    first=0;
 4001:  		    fprintf(ficgp,"\nset parametric;unset label");
 4002: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 4003: 		    fprintf(ficgp,"\nset ter png small size 320, 240");
 4004: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 4005:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 4006: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 4007: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 4008: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4009: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4010: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 4011: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4012: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4013: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4014: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4015: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4016: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4017: 		  }else{
 4018: 		    first=0;
 4019: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 4020: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4021: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4022: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4023: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4024: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4025: 		  }/* if first */
 4026: 		} /* age mod 5 */
 4027: 	      } /* end loop age */
 4028: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4029: 	      first=1;
 4030: 	    } /*l12 */
 4031: 	  } /* k12 */
 4032: 	} /*l1 */
 4033:       }/* k1 */
 4034:       /* } /* loop covariates */
 4035:   }
 4036:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 4037:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 4038:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 4039:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 4040:   free_vector(xp,1,npar);
 4041:   fclose(ficresprob);
 4042:   fclose(ficresprobcov);
 4043:   fclose(ficresprobcor);
 4044:   fflush(ficgp);
 4045:   fflush(fichtmcov);
 4046: }
 4047: 
 4048: 
 4049: /******************* Printing html file ***********/
 4050: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 4051: 		  int lastpass, int stepm, int weightopt, char model[],\
 4052: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 4053: 		  int popforecast, int estepm ,\
 4054: 		  double jprev1, double mprev1,double anprev1, \
 4055: 		  double jprev2, double mprev2,double anprev2){
 4056:   int jj1, k1, i1, cpt;
 4057: 
 4058:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 4059:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 4060: </ul>");
 4061:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 4062:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 4063: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 4064:    fprintf(fichtm,"\
 4065:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 4066: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 4067:    fprintf(fichtm,"\
 4068:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 4069: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 4070:    fprintf(fichtm,"\
 4071:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 4072:    <a href=\"%s\">%s</a> <br>\n",
 4073: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 4074:    fprintf(fichtm,"\
 4075:  - Population projections by age and states: \
 4076:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 4077: 
 4078: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 4079: 
 4080:  m=pow(2,cptcoveff);
 4081:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4082: 
 4083:  jj1=0;
 4084:  for(k1=1; k1<=m;k1++){
 4085:    for(i1=1; i1<=ncodemax[k1];i1++){
 4086:      jj1++;
 4087:      if (cptcovn > 0) {
 4088:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4089:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4090: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4091:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4092:      }
 4093:      /* Pij */
 4094:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
 4095: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 4096:      /* Quasi-incidences */
 4097:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 4098:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
 4099: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 4100:        /* Period (stable) prevalence in each health state */
 4101:        for(cpt=1; cpt<=nlstate;cpt++){
 4102: 	 fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
 4103: <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 4104:        }
 4105:      for(cpt=1; cpt<=nlstate;cpt++) {
 4106:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 4107: <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 4108:      }
 4109:    } /* end i1 */
 4110:  }/* End k1 */
 4111:  fprintf(fichtm,"</ul>");
 4112: 
 4113: 
 4114:  fprintf(fichtm,"\
 4115: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 4116:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 4117: 
 4118:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4119: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 4120:  fprintf(fichtm,"\
 4121:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4122: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 4123: 
 4124:  fprintf(fichtm,"\
 4125:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4126: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 4127:  fprintf(fichtm,"\
 4128:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 4129:    <a href=\"%s\">%s</a> <br>\n</li>",
 4130: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 4131:  fprintf(fichtm,"\
 4132:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 4133:    <a href=\"%s\">%s</a> <br>\n</li>",
 4134: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 4135:  fprintf(fichtm,"\
 4136:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 4137: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 4138:  fprintf(fichtm,"\
 4139:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 4140: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 4141:  fprintf(fichtm,"\
 4142:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 4143: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 4144: 
 4145: /*  if(popforecast==1) fprintf(fichtm,"\n */
 4146: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 4147: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 4148: /* 	<br>",fileres,fileres,fileres,fileres); */
 4149: /*  else  */
 4150: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 4151:  fflush(fichtm);
 4152:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 4153: 
 4154:  m=pow(2,cptcoveff);
 4155:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4156: 
 4157:  jj1=0;
 4158:  for(k1=1; k1<=m;k1++){
 4159:    for(i1=1; i1<=ncodemax[k1];i1++){
 4160:      jj1++;
 4161:      if (cptcovn > 0) {
 4162:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4163:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4164: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4165:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4166:      }
 4167:      for(cpt=1; cpt<=nlstate;cpt++) {
 4168:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 4169: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
 4170: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 4171:      }
 4172:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 4173: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 4174: true period expectancies (those weighted with period prevalences are also\
 4175:  drawn in addition to the population based expectancies computed using\
 4176:  observed and cahotic prevalences: %s%d.png<br>\
 4177: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 4178:    } /* end i1 */
 4179:  }/* End k1 */
 4180:  fprintf(fichtm,"</ul>");
 4181:  fflush(fichtm);
 4182: }
 4183: 
 4184: /******************* Gnuplot file **************/
 4185: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4186: 
 4187:   char dirfileres[132],optfileres[132];
 4188:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 4189:   int ng=0;
 4190: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 4191: /*     printf("Problem with file %s",optionfilegnuplot); */
 4192: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 4193: /*   } */
 4194: 
 4195:   /*#ifdef windows */
 4196:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4197:     /*#endif */
 4198:   m=pow(2,cptcoveff);
 4199: 
 4200:   strcpy(dirfileres,optionfilefiname);
 4201:   strcpy(optfileres,"vpl");
 4202:  /* 1eme*/
 4203:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
 4204:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 4205:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 4206:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 4207:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 4208:      fprintf(ficgp,"set xlabel \"Age\" \n\
 4209: set ylabel \"Probability\" \n\
 4210: set ter png small size 320, 240\n\
 4211: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 4212: 
 4213:      for (i=1; i<= nlstate ; i ++) {
 4214:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4215:        else        fprintf(ficgp," \%%*lf (\%%*lf)");
 4216:      }
 4217:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 4218:      for (i=1; i<= nlstate ; i ++) {
 4219:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4220:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 4221:      } 
 4222:      fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4223:      for (i=1; i<= nlstate ; i ++) {
 4224:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4225:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 4226:      }  
 4227:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4228:    }
 4229:   }
 4230:   /*2 eme*/
 4231:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
 4232:   for (k1=1; k1<= m ; k1 ++) { 
 4233:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 4234:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
 4235:     
 4236:     for (i=1; i<= nlstate+1 ; i ++) {
 4237:       k=2*i;
 4238:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4239:       for (j=1; j<= nlstate+1 ; j ++) {
 4240: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4241: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4242:       }   
 4243:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4244:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4245:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4246:       for (j=1; j<= nlstate+1 ; j ++) {
 4247: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4248: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4249:       }   
 4250:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4251:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4252:       for (j=1; j<= nlstate+1 ; j ++) {
 4253: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4254: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4255:       }   
 4256:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4257:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4258:     }
 4259:   }
 4260:   
 4261:   /*3eme*/
 4262:   
 4263:   for (k1=1; k1<= m ; k1 ++) { 
 4264:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4265:       /*       k=2+nlstate*(2*cpt-2); */
 4266:       k=2+(nlstate+1)*(cpt-1);
 4267:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4268:       fprintf(ficgp,"set ter png small size 320, 240\n\
 4269: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4270:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4271: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4272: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4273: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4274: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4275: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4276: 	
 4277:       */
 4278:       for (i=1; i< nlstate ; i ++) {
 4279: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4280: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4281: 	
 4282:       } 
 4283:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4284:     }
 4285:   }
 4286:   
 4287:   /* CV preval stable (period) */
 4288:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
 4289:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
 4290:       k=3;
 4291:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
 4292:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4293:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4294: set ter png small size 320, 240\n\
 4295: unset log y\n\
 4296: plot [%.f:%.f]  ", ageminpar, agemaxpar);
 4297:       for (i=1; i<= nlstate ; i ++){
 4298: 	if(i==1)
 4299: 	  fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
 4300: 	else
 4301: 	  fprintf(ficgp,", '' ");
 4302: 	l=(nlstate+ndeath)*(i-1)+1;
 4303: 	fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
 4304: 	for (j=1; j<= (nlstate-1) ; j ++)
 4305: 	  fprintf(ficgp,"+$%d",k+l+j);
 4306: 	fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
 4307:       } /* nlstate */
 4308:       fprintf(ficgp,"\n");
 4309:     } /* end cpt state*/ 
 4310:   } /* end covariate */  
 4311:   
 4312:   /* proba elementaires */
 4313:   for(i=1,jk=1; i <=nlstate; i++){
 4314:     for(k=1; k <=(nlstate+ndeath); k++){
 4315:       if (k != i) {
 4316: 	for(j=1; j <=ncovmodel; j++){
 4317: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 4318: 	  jk++; 
 4319: 	  fprintf(ficgp,"\n");
 4320: 	}
 4321:       }
 4322:     }
 4323:    }
 4324:   /*goto avoid;*/
 4325:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4326:      for(jk=1; jk <=m; jk++) {
 4327:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4328:        if (ng==2)
 4329: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4330:        else
 4331: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 4332:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4333:        i=1;
 4334:        for(k2=1; k2<=nlstate; k2++) {
 4335: 	 k3=i;
 4336: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4337: 	   if (k != k2){
 4338: 	     if(ng==2)
 4339: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4340: 	     else
 4341: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4342: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4343: 	     for(j=3; j <=ncovmodel; j++) {
 4344: 	       /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
 4345: 	       /* 	 /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
 4346: 	       /* 	 ij++; */
 4347: 	       /* } */
 4348: 	       /* else */
 4349: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4350: 	     }
 4351: 	     fprintf(ficgp,")/(1");
 4352: 	     
 4353: 	     for(k1=1; k1 <=nlstate; k1++){   
 4354: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4355: 	       ij=1;
 4356: 	       for(j=3; j <=ncovmodel; j++){
 4357: 		 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
 4358: 		 /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
 4359: 		 /*   ij++; */
 4360: 		 /* } */
 4361: 		 /* else */
 4362: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4363: 	       }
 4364: 	       fprintf(ficgp,")");
 4365: 	     }
 4366: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4367: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4368: 	     i=i+ncovmodel;
 4369: 	   }
 4370: 	 } /* end k */
 4371:        } /* end k2 */
 4372:      } /* end jk */
 4373:    } /* end ng */
 4374:  /* avoid: */
 4375:    fflush(ficgp); 
 4376: }  /* end gnuplot */
 4377: 
 4378: 
 4379: /*************** Moving average **************/
 4380: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4381: 
 4382:   int i, cpt, cptcod;
 4383:   int modcovmax =1;
 4384:   int mobilavrange, mob;
 4385:   double age;
 4386: 
 4387:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4388: 			   a covariate has 2 modalities */
 4389:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4390: 
 4391:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4392:     if(mobilav==1) mobilavrange=5; /* default */
 4393:     else mobilavrange=mobilav;
 4394:     for (age=bage; age<=fage; age++)
 4395:       for (i=1; i<=nlstate;i++)
 4396: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4397: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4398:     /* We keep the original values on the extreme ages bage, fage and for 
 4399:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4400:        we use a 5 terms etc. until the borders are no more concerned. 
 4401:     */ 
 4402:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4403:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4404: 	for (i=1; i<=nlstate;i++){
 4405: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4406: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4407: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4408: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4409: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4410: 	      }
 4411: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4412: 	  }
 4413: 	}
 4414:       }/* end age */
 4415:     }/* end mob */
 4416:   }else return -1;
 4417:   return 0;
 4418: }/* End movingaverage */
 4419: 
 4420: 
 4421: /************** Forecasting ******************/
 4422: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4423:   /* proj1, year, month, day of starting projection 
 4424:      agemin, agemax range of age
 4425:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4426:      anproj2 year of en of projection (same day and month as proj1).
 4427:   */
 4428:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
 4429:   double agec; /* generic age */
 4430:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4431:   double *popeffectif,*popcount;
 4432:   double ***p3mat;
 4433:   double ***mobaverage;
 4434:   char fileresf[FILENAMELENGTH];
 4435: 
 4436:   agelim=AGESUP;
 4437:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4438:  
 4439:   strcpy(fileresf,"f"); 
 4440:   strcat(fileresf,fileres);
 4441:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4442:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4443:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4444:   }
 4445:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4446:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4447: 
 4448:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4449: 
 4450:   if (mobilav!=0) {
 4451:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4452:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4453:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4454:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4455:     }
 4456:   }
 4457: 
 4458:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4459:   if (stepm<=12) stepsize=1;
 4460:   if(estepm < stepm){
 4461:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4462:   }
 4463:   else  hstepm=estepm;   
 4464: 
 4465:   hstepm=hstepm/stepm; 
 4466:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4467:                                fractional in yp1 */
 4468:   anprojmean=yp;
 4469:   yp2=modf((yp1*12),&yp);
 4470:   mprojmean=yp;
 4471:   yp1=modf((yp2*30.5),&yp);
 4472:   jprojmean=yp;
 4473:   if(jprojmean==0) jprojmean=1;
 4474:   if(mprojmean==0) jprojmean=1;
 4475: 
 4476:   i1=cptcoveff;
 4477:   if (cptcovn < 1){i1=1;}
 4478:   
 4479:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4480:   
 4481:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4482: 
 4483: /* 	      if (h==(int)(YEARM*yearp)){ */
 4484:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4485:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4486:       k=k+1;
 4487:       fprintf(ficresf,"\n#******");
 4488:       for(j=1;j<=cptcoveff;j++) {
 4489: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4490:       }
 4491:       fprintf(ficresf,"******\n");
 4492:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4493:       for(j=1; j<=nlstate+ndeath;j++){ 
 4494: 	for(i=1; i<=nlstate;i++) 	      
 4495:           fprintf(ficresf," p%d%d",i,j);
 4496: 	fprintf(ficresf," p.%d",j);
 4497:       }
 4498:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4499: 	fprintf(ficresf,"\n");
 4500: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4501: 
 4502:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4503: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4504: 	  nhstepm = nhstepm/hstepm; 
 4505: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4506: 	  oldm=oldms;savm=savms;
 4507: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4508: 	
 4509: 	  for (h=0; h<=nhstepm; h++){
 4510: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4511:               fprintf(ficresf,"\n");
 4512:               for(j=1;j<=cptcoveff;j++) 
 4513:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4514: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4515: 	    } 
 4516: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4517: 	      ppij=0.;
 4518: 	      for(i=1; i<=nlstate;i++) {
 4519: 		if (mobilav==1) 
 4520: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4521: 		else {
 4522: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4523: 		}
 4524: 		if (h*hstepm/YEARM*stepm== yearp) {
 4525: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4526: 		}
 4527: 	      } /* end i */
 4528: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4529: 		fprintf(ficresf," %.3f", ppij);
 4530: 	      }
 4531: 	    }/* end j */
 4532: 	  } /* end h */
 4533: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4534: 	} /* end agec */
 4535:       } /* end yearp */
 4536:     } /* end cptcod */
 4537:   } /* end  cptcov */
 4538:        
 4539:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4540: 
 4541:   fclose(ficresf);
 4542: }
 4543: 
 4544: /************** Forecasting *****not tested NB*************/
 4545: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 4546:   
 4547:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 4548:   int *popage;
 4549:   double calagedatem, agelim, kk1, kk2;
 4550:   double *popeffectif,*popcount;
 4551:   double ***p3mat,***tabpop,***tabpopprev;
 4552:   double ***mobaverage;
 4553:   char filerespop[FILENAMELENGTH];
 4554: 
 4555:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4556:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4557:   agelim=AGESUP;
 4558:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 4559:   
 4560:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4561:   
 4562:   
 4563:   strcpy(filerespop,"pop"); 
 4564:   strcat(filerespop,fileres);
 4565:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 4566:     printf("Problem with forecast resultfile: %s\n", filerespop);
 4567:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 4568:   }
 4569:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 4570:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 4571: 
 4572:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4573: 
 4574:   if (mobilav!=0) {
 4575:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4576:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4577:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4578:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4579:     }
 4580:   }
 4581: 
 4582:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4583:   if (stepm<=12) stepsize=1;
 4584:   
 4585:   agelim=AGESUP;
 4586:   
 4587:   hstepm=1;
 4588:   hstepm=hstepm/stepm; 
 4589:   
 4590:   if (popforecast==1) {
 4591:     if((ficpop=fopen(popfile,"r"))==NULL) {
 4592:       printf("Problem with population file : %s\n",popfile);exit(0);
 4593:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 4594:     } 
 4595:     popage=ivector(0,AGESUP);
 4596:     popeffectif=vector(0,AGESUP);
 4597:     popcount=vector(0,AGESUP);
 4598:     
 4599:     i=1;   
 4600:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 4601:    
 4602:     imx=i;
 4603:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 4604:   }
 4605: 
 4606:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 4607:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4608:       k=k+1;
 4609:       fprintf(ficrespop,"\n#******");
 4610:       for(j=1;j<=cptcoveff;j++) {
 4611: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4612:       }
 4613:       fprintf(ficrespop,"******\n");
 4614:       fprintf(ficrespop,"# Age");
 4615:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 4616:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 4617:       
 4618:       for (cpt=0; cpt<=0;cpt++) { 
 4619: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4620: 	
 4621:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4622: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4623: 	  nhstepm = nhstepm/hstepm; 
 4624: 	  
 4625: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4626: 	  oldm=oldms;savm=savms;
 4627: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4628: 	
 4629: 	  for (h=0; h<=nhstepm; h++){
 4630: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4631: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4632: 	    } 
 4633: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4634: 	      kk1=0.;kk2=0;
 4635: 	      for(i=1; i<=nlstate;i++) {	      
 4636: 		if (mobilav==1) 
 4637: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4638: 		else {
 4639: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4640: 		}
 4641: 	      }
 4642: 	      if (h==(int)(calagedatem+12*cpt)){
 4643: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4644: 		  /*fprintf(ficrespop," %.3f", kk1);
 4645: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4646: 	      }
 4647: 	    }
 4648: 	    for(i=1; i<=nlstate;i++){
 4649: 	      kk1=0.;
 4650: 		for(j=1; j<=nlstate;j++){
 4651: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4652: 		}
 4653: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4654: 	    }
 4655: 
 4656: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4657: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4658: 	  }
 4659: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4660: 	}
 4661:       }
 4662:  
 4663:   /******/
 4664: 
 4665:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4666: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4667: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4668: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4669: 	  nhstepm = nhstepm/hstepm; 
 4670: 	  
 4671: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4672: 	  oldm=oldms;savm=savms;
 4673: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4674: 	  for (h=0; h<=nhstepm; h++){
 4675: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4676: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4677: 	    } 
 4678: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4679: 	      kk1=0.;kk2=0;
 4680: 	      for(i=1; i<=nlstate;i++) {	      
 4681: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4682: 	      }
 4683: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4684: 	    }
 4685: 	  }
 4686: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4687: 	}
 4688:       }
 4689:    } 
 4690:   }
 4691:  
 4692:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4693: 
 4694:   if (popforecast==1) {
 4695:     free_ivector(popage,0,AGESUP);
 4696:     free_vector(popeffectif,0,AGESUP);
 4697:     free_vector(popcount,0,AGESUP);
 4698:   }
 4699:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4700:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4701:   fclose(ficrespop);
 4702: } /* End of popforecast */
 4703: 
 4704: int fileappend(FILE *fichier, char *optionfich)
 4705: {
 4706:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4707:     printf("Problem with file: %s\n", optionfich);
 4708:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4709:     return (0);
 4710:   }
 4711:   fflush(fichier);
 4712:   return (1);
 4713: }
 4714: 
 4715: 
 4716: /**************** function prwizard **********************/
 4717: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4718: {
 4719: 
 4720:   /* Wizard to print covariance matrix template */
 4721: 
 4722:   char ca[32], cb[32];
 4723:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
 4724:   int numlinepar;
 4725: 
 4726:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4727:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4728:   for(i=1; i <=nlstate; i++){
 4729:     jj=0;
 4730:     for(j=1; j <=nlstate+ndeath; j++){
 4731:       if(j==i) continue;
 4732:       jj++;
 4733:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4734:       printf("%1d%1d",i,j);
 4735:       fprintf(ficparo,"%1d%1d",i,j);
 4736:       for(k=1; k<=ncovmodel;k++){
 4737: 	/* 	  printf(" %lf",param[i][j][k]); */
 4738: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4739: 	printf(" 0.");
 4740: 	fprintf(ficparo," 0.");
 4741:       }
 4742:       printf("\n");
 4743:       fprintf(ficparo,"\n");
 4744:     }
 4745:   }
 4746:   printf("# Scales (for hessian or gradient estimation)\n");
 4747:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4748:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4749:   for(i=1; i <=nlstate; i++){
 4750:     jj=0;
 4751:     for(j=1; j <=nlstate+ndeath; j++){
 4752:       if(j==i) continue;
 4753:       jj++;
 4754:       fprintf(ficparo,"%1d%1d",i,j);
 4755:       printf("%1d%1d",i,j);
 4756:       fflush(stdout);
 4757:       for(k=1; k<=ncovmodel;k++){
 4758: 	/* 	printf(" %le",delti3[i][j][k]); */
 4759: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4760: 	printf(" 0.");
 4761: 	fprintf(ficparo," 0.");
 4762:       }
 4763:       numlinepar++;
 4764:       printf("\n");
 4765:       fprintf(ficparo,"\n");
 4766:     }
 4767:   }
 4768:   printf("# Covariance matrix\n");
 4769: /* # 121 Var(a12)\n\ */
 4770: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4771: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4772: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4773: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4774: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4775: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4776: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4777:   fflush(stdout);
 4778:   fprintf(ficparo,"# Covariance matrix\n");
 4779:   /* # 121 Var(a12)\n\ */
 4780:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4781:   /* #   ...\n\ */
 4782:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4783:   
 4784:   for(itimes=1;itimes<=2;itimes++){
 4785:     jj=0;
 4786:     for(i=1; i <=nlstate; i++){
 4787:       for(j=1; j <=nlstate+ndeath; j++){
 4788: 	if(j==i) continue;
 4789: 	for(k=1; k<=ncovmodel;k++){
 4790: 	  jj++;
 4791: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4792: 	  if(itimes==1){
 4793: 	    printf("#%1d%1d%d",i,j,k);
 4794: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4795: 	  }else{
 4796: 	    printf("%1d%1d%d",i,j,k);
 4797: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4798: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4799: 	  }
 4800: 	  ll=0;
 4801: 	  for(li=1;li <=nlstate; li++){
 4802: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 4803: 	      if(lj==li) continue;
 4804: 	      for(lk=1;lk<=ncovmodel;lk++){
 4805: 		ll++;
 4806: 		if(ll<=jj){
 4807: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 4808: 		  if(ll<jj){
 4809: 		    if(itimes==1){
 4810: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4811: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4812: 		    }else{
 4813: 		      printf(" 0.");
 4814: 		      fprintf(ficparo," 0.");
 4815: 		    }
 4816: 		  }else{
 4817: 		    if(itimes==1){
 4818: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4819: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4820: 		    }else{
 4821: 		      printf(" 0.");
 4822: 		      fprintf(ficparo," 0.");
 4823: 		    }
 4824: 		  }
 4825: 		}
 4826: 	      } /* end lk */
 4827: 	    } /* end lj */
 4828: 	  } /* end li */
 4829: 	  printf("\n");
 4830: 	  fprintf(ficparo,"\n");
 4831: 	  numlinepar++;
 4832: 	} /* end k*/
 4833:       } /*end j */
 4834:     } /* end i */
 4835:   } /* end itimes */
 4836: 
 4837: } /* end of prwizard */
 4838: /******************* Gompertz Likelihood ******************************/
 4839: double gompertz(double x[])
 4840: { 
 4841:   double A,B,L=0.0,sump=0.,num=0.;
 4842:   int i,n=0; /* n is the size of the sample */
 4843: 
 4844:   for (i=0;i<=imx-1 ; i++) {
 4845:     sump=sump+weight[i];
 4846:     /*    sump=sump+1;*/
 4847:     num=num+1;
 4848:   }
 4849:  
 4850:  
 4851:   /* for (i=0; i<=imx; i++) 
 4852:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4853: 
 4854:   for (i=1;i<=imx ; i++)
 4855:     {
 4856:       if (cens[i] == 1 && wav[i]>1)
 4857: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4858:       
 4859:       if (cens[i] == 0 && wav[i]>1)
 4860: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4861: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4862:       
 4863:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4864:       if (wav[i] > 1 ) { /* ??? */
 4865: 	L=L+A*weight[i];
 4866: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4867:       }
 4868:     }
 4869: 
 4870:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4871:  
 4872:   return -2*L*num/sump;
 4873: }
 4874: 
 4875: #ifdef GSL
 4876: /******************* Gompertz_f Likelihood ******************************/
 4877: double gompertz_f(const gsl_vector *v, void *params)
 4878: { 
 4879:   double A,B,LL=0.0,sump=0.,num=0.;
 4880:   double *x= (double *) v->data;
 4881:   int i,n=0; /* n is the size of the sample */
 4882: 
 4883:   for (i=0;i<=imx-1 ; i++) {
 4884:     sump=sump+weight[i];
 4885:     /*    sump=sump+1;*/
 4886:     num=num+1;
 4887:   }
 4888:  
 4889:  
 4890:   /* for (i=0; i<=imx; i++) 
 4891:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4892:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 4893:   for (i=1;i<=imx ; i++)
 4894:     {
 4895:       if (cens[i] == 1 && wav[i]>1)
 4896: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 4897:       
 4898:       if (cens[i] == 0 && wav[i]>1)
 4899: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 4900: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 4901:       
 4902:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4903:       if (wav[i] > 1 ) { /* ??? */
 4904: 	LL=LL+A*weight[i];
 4905: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4906:       }
 4907:     }
 4908: 
 4909:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4910:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 4911:  
 4912:   return -2*LL*num/sump;
 4913: }
 4914: #endif
 4915: 
 4916: /******************* Printing html file ***********/
 4917: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 4918: 		  int lastpass, int stepm, int weightopt, char model[],\
 4919: 		  int imx,  double p[],double **matcov,double agemortsup){
 4920:   int i,k;
 4921: 
 4922:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 4923:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 4924:   for (i=1;i<=2;i++) 
 4925:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 4926:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 4927:   fprintf(fichtm,"</ul>");
 4928: 
 4929: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 4930: 
 4931:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 4932: 
 4933:  for (k=agegomp;k<(agemortsup-2);k++) 
 4934:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 4935: 
 4936:  
 4937:   fflush(fichtm);
 4938: }
 4939: 
 4940: /******************* Gnuplot file **************/
 4941: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4942: 
 4943:   char dirfileres[132],optfileres[132];
 4944: 
 4945:   int ng;
 4946: 
 4947: 
 4948:   /*#ifdef windows */
 4949:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4950:     /*#endif */
 4951: 
 4952: 
 4953:   strcpy(dirfileres,optionfilefiname);
 4954:   strcpy(optfileres,"vpl");
 4955:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 4956:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 4957:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
 4958:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 4959:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 4960: 
 4961: } 
 4962: 
 4963: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 4964: {
 4965: 
 4966:   /*-------- data file ----------*/
 4967:   FILE *fic;
 4968:   char dummy[]="                         ";
 4969:   int i=0, j=0, n=0;
 4970:   int linei, month, year,iout;
 4971:   char line[MAXLINE], linetmp[MAXLINE];
 4972:   char stra[MAXLINE], strb[MAXLINE];
 4973:   char *stratrunc;
 4974:   int lstra;
 4975: 
 4976: 
 4977:   if((fic=fopen(datafile,"r"))==NULL)    {
 4978:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 4979:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 4980:   }
 4981: 
 4982:   i=1;
 4983:   linei=0;
 4984:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 4985:     linei=linei+1;
 4986:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 4987:       if(line[j] == '\t')
 4988: 	line[j] = ' ';
 4989:     }
 4990:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 4991:       ;
 4992:     };
 4993:     line[j+1]=0;  /* Trims blanks at end of line */
 4994:     if(line[0]=='#'){
 4995:       fprintf(ficlog,"Comment line\n%s\n",line);
 4996:       printf("Comment line\n%s\n",line);
 4997:       continue;
 4998:     }
 4999:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 5000:     strcpy(line, linetmp);
 5001:   
 5002: 
 5003:     for (j=maxwav;j>=1;j--){
 5004:       cutv(stra, strb, line, ' '); 
 5005:       if(strb[0]=='.') { /* Missing status */
 5006: 	lval=-1;
 5007:       }else{
 5008: 	errno=0;
 5009: 	lval=strtol(strb,&endptr,10); 
 5010:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 5011: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5012: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 5013: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 5014: 	  return 1;
 5015: 	}
 5016:       }
 5017:       s[j][i]=lval;
 5018:       
 5019:       strcpy(line,stra);
 5020:       cutv(stra, strb,line,' ');
 5021:       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 5022:       }
 5023:       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 5024: 	month=99;
 5025: 	year=9999;
 5026:       }else{
 5027: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 5028: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 5029: 	return 1;
 5030:       }
 5031:       anint[j][i]= (double) year; 
 5032:       mint[j][i]= (double)month; 
 5033:       strcpy(line,stra);
 5034:     } /* ENd Waves */
 5035:     
 5036:     cutv(stra, strb,line,' '); 
 5037:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 5038:     }
 5039:     else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 5040:       month=99;
 5041:       year=9999;
 5042:     }else{
 5043:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5044: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5045: 	return 1;
 5046:     }
 5047:     andc[i]=(double) year; 
 5048:     moisdc[i]=(double) month; 
 5049:     strcpy(line,stra);
 5050:     
 5051:     cutv(stra, strb,line,' '); 
 5052:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 5053:     }
 5054:     else  if(iout=sscanf(strb,"%s.", dummy) != 0){
 5055:       month=99;
 5056:       year=9999;
 5057:     }else{
 5058:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5059:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5060: 	return 1;
 5061:     }
 5062:     if (year==9999) {
 5063:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 5064:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5065: 	return 1;
 5066: 
 5067:     }
 5068:     annais[i]=(double)(year);
 5069:     moisnais[i]=(double)(month); 
 5070:     strcpy(line,stra);
 5071:     
 5072:     cutv(stra, strb,line,' '); 
 5073:     errno=0;
 5074:     dval=strtod(strb,&endptr); 
 5075:     if( strb[0]=='\0' || (*endptr != '\0')){
 5076:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5077:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5078:       fflush(ficlog);
 5079:       return 1;
 5080:     }
 5081:     weight[i]=dval; 
 5082:     strcpy(line,stra);
 5083:     
 5084:     for (j=ncovcol;j>=1;j--){
 5085:       cutv(stra, strb,line,' '); 
 5086:       if(strb[0]=='.') { /* Missing status */
 5087: 	lval=-1;
 5088:       }else{
 5089: 	errno=0;
 5090: 	lval=strtol(strb,&endptr,10); 
 5091: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5092: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 5093: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 5094: 	  return 1;
 5095: 	}
 5096:       }
 5097:       if(lval <-1 || lval >1){
 5098: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5099:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5100:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5101:  For example, for multinomial values like 1, 2 and 3,\n \
 5102:  build V1=0 V2=0 for the reference value (1),\n \
 5103:         V1=1 V2=0 for (2) \n \
 5104:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5105:  output of IMaCh is often meaningless.\n \
 5106:  Exiting.\n",lval,linei, i,line,j);
 5107: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5108:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5109:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5110:  For example, for multinomial values like 1, 2 and 3,\n \
 5111:  build V1=0 V2=0 for the reference value (1),\n \
 5112:         V1=1 V2=0 for (2) \n \
 5113:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5114:  output of IMaCh is often meaningless.\n \
 5115:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 5116: 	return 1;
 5117:       }
 5118:       covar[j][i]=(double)(lval);
 5119:       strcpy(line,stra);
 5120:     }  
 5121:     lstra=strlen(stra);
 5122:      
 5123:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 5124:       stratrunc = &(stra[lstra-9]);
 5125:       num[i]=atol(stratrunc);
 5126:     }
 5127:     else
 5128:       num[i]=atol(stra);
 5129:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 5130:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 5131:     
 5132:     i=i+1;
 5133:   } /* End loop reading  data */
 5134: 
 5135:   *imax=i-1; /* Number of individuals */
 5136:   fclose(fic);
 5137:  
 5138:   return (0);
 5139:   /* endread: */
 5140:     printf("Exiting readdata: ");
 5141:     fclose(fic);
 5142:     return (1);
 5143: 
 5144: 
 5145: 
 5146: }
 5147: void removespace(char *str) {
 5148:   char *p1 = str, *p2 = str;
 5149:   do
 5150:     while (*p2 == ' ')
 5151:       p2++;
 5152:   while (*p1++ = *p2++);
 5153: }
 5154: 
 5155: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 5156:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
 5157:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
 5158:    * - cptcovn or number of covariates k of the models excluding age*products =6
 5159:    * - cptcovage number of covariates with age*products =2
 5160:    * - cptcovs number of simple covariates
 5161:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 5162:    *     which is a new column after the 9 (ncovcol) variables. 
 5163:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 5164:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 5165:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 5166:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 5167:  */
 5168: {
 5169:   int i, j, k, ks;
 5170:   int  j1, k1, k2;
 5171:   char modelsav[80];
 5172:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 5173: 
 5174:   /*removespace(model);*/
 5175:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 5176:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 5177:     j=nbocc(model,'+'); /**< j=Number of '+' */
 5178:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
 5179:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
 5180:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
 5181:                   /* including age products which are counted in cptcovage.
 5182: 		  /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
 5183:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 5184:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 5185:     strcpy(modelsav,model); 
 5186:     if (strstr(model,"AGE") !=0){
 5187:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
 5188:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
 5189:       return 1;
 5190:     }
 5191:     if (strstr(model,"v") !=0){
 5192:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 5193:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 5194:       return 1;
 5195:     }
 5196:     
 5197:     /*   Design
 5198:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 5199:      *  <          ncovcol=8                >
 5200:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 5201:      *   k=  1    2      3       4     5       6      7        8
 5202:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 5203:      *  covar[k,i], value of kth covariate if not including age for individual i:
 5204:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 5205:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 5206:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 5207:      *  Tage[++cptcovage]=k
 5208:      *       if products, new covar are created after ncovcol with k1
 5209:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 5210:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 5211:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 5212:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 5213:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 5214:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 5215:      *  <          ncovcol=8                >
 5216:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 5217:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 5218:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5219:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5220:      * p Tprod[1]@2={                         6, 5}
 5221:      *p Tvard[1][1]@4= {7, 8, 5, 6}
 5222:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5223:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5224:      *How to reorganize?
 5225:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5226:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5227:      *       {2,   1,     4,      8,    5,      6,     3,       7}
 5228:      * Struct []
 5229:      */
 5230: 
 5231:     /* This loop fills the array Tvar from the string 'model'.*/
 5232:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5233:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5234:     /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5235:     /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5236:     /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5237:     /* 	k=1 Tvar[1]=2 (from V2) */
 5238:     /* 	k=5 Tvar[5] */
 5239:     /* for (k=1; k<=cptcovn;k++) { */
 5240:     /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 5241:     /* 	} */
 5242:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 5243:     /*
 5244:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5245:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5246:         Tvar[k]=0;
 5247:     cptcovage=0;
 5248:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5249:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5250: 				     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5251:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5252:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5253:       /*scanf("%d",i);*/
 5254:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5255: 	cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5256: 	if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5257: 	  /* covar is not filled and then is empty */
 5258: 	  cptcovprod--;
 5259: 	  cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5260: 	  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
 5261: 	  cptcovage++; /* Sums the number of covariates which include age as a product */
 5262: 	  Tage[cptcovage]=k;  /* Tage[1] = 4 */
 5263: 	  /*printf("stre=%s ", stre);*/
 5264: 	} else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5265: 	  cptcovprod--;
 5266: 	  cutl(stre,strb,strc,'V');
 5267: 	  Tvar[k]=atoi(stre);
 5268: 	  cptcovage++;
 5269: 	  Tage[cptcovage]=k;
 5270: 	} else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5271: 	  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5272: 	  cptcovn++;
 5273: 	  cptcovprodnoage++;k1++;
 5274: 	  cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5275: 	  Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5276: 				  because this model-covariate is a construction we invent a new column
 5277: 				  ncovcol + k1
 5278: 				  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5279: 				  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5280: 	  cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5281: 	  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5282: 	  Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5283: 	  Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5284: 	  k2=k2+2;
 5285: 	  Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5286: 	  Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5287: 	  for (i=1; i<=lastobs;i++){
 5288: 	    /* Computes the new covariate which is a product of
 5289: 	       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5290: 	    covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5291: 	  }
 5292: 	} /* End age is not in the model */
 5293:       } /* End if model includes a product */
 5294:       else { /* no more sum */
 5295: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5296:        /*  scanf("%d",i);*/
 5297: 	cutl(strd,strc,strb,'V');
 5298: 	ks++; /**< Number of simple covariates */
 5299: 	cptcovn++;
 5300: 	Tvar[k]=atoi(strd);
 5301:       }
 5302:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5303:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5304: 	scanf("%d",i);*/
 5305:     } /* end of loop + */
 5306:   } /* end model */
 5307:   
 5308:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5309:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5310: 
 5311:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5312:   printf("cptcovprod=%d ", cptcovprod);
 5313:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5314: 
 5315:   scanf("%d ",i);*/
 5316: 
 5317: 
 5318:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5319:   /*endread:*/
 5320:     printf("Exiting decodemodel: ");
 5321:     return (1);
 5322: }
 5323: 
 5324: calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5325: {
 5326:   int i, m;
 5327: 
 5328:   for (i=1; i<=imx; i++) {
 5329:     for(m=2; (m<= maxwav); m++) {
 5330:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5331: 	anint[m][i]=9999;
 5332: 	s[m][i]=-1;
 5333:       }
 5334:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5335: 	*nberr++;
 5336: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 5337: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 5338: 	s[m][i]=-1;
 5339:       }
 5340:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5341: 	*nberr++;
 5342: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5343: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5344: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5345:       }
 5346:     }
 5347:   }
 5348: 
 5349:   for (i=1; i<=imx; i++)  {
 5350:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5351:     for(m=firstpass; (m<= lastpass); m++){
 5352:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5353: 	if (s[m][i] >= nlstate+1) {
 5354: 	  if(agedc[i]>0)
 5355: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 5356: 	      agev[m][i]=agedc[i];
 5357: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5358: 	    else {
 5359: 	      if ((int)andc[i]!=9999){
 5360: 		nbwarn++;
 5361: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5362: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5363: 		agev[m][i]=-1;
 5364: 	      }
 5365: 	    }
 5366: 	}
 5367: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5368: 				 years but with the precision of a month */
 5369: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5370: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5371: 	    agev[m][i]=1;
 5372: 	  else if(agev[m][i] < *agemin){ 
 5373: 	    *agemin=agev[m][i];
 5374: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5375: 	  }
 5376: 	  else if(agev[m][i] >*agemax){
 5377: 	    *agemax=agev[m][i];
 5378: 	    /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
 5379: 	  }
 5380: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5381: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5382: 	}
 5383: 	else { /* =9 */
 5384: 	  agev[m][i]=1;
 5385: 	  s[m][i]=-1;
 5386: 	}
 5387:       }
 5388:       else /*= 0 Unknown */
 5389: 	agev[m][i]=1;
 5390:     }
 5391:     
 5392:   }
 5393:   for (i=1; i<=imx; i++)  {
 5394:     for(m=firstpass; (m<=lastpass); m++){
 5395:       if (s[m][i] > (nlstate+ndeath)) {
 5396: 	*nberr++;
 5397: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5398: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5399: 	return 1;
 5400:       }
 5401:     }
 5402:   }
 5403: 
 5404:   /*for (i=1; i<=imx; i++){
 5405:   for (m=firstpass; (m<lastpass); m++){
 5406:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5407: }
 5408: 
 5409: }*/
 5410: 
 5411: 
 5412:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5413:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5414: 
 5415:   return (0);
 5416:  /* endread:*/
 5417:     printf("Exiting calandcheckages: ");
 5418:     return (1);
 5419: }
 5420: 
 5421: 
 5422: /***********************************************/
 5423: /**************** Main Program *****************/
 5424: /***********************************************/
 5425: 
 5426: int main(int argc, char *argv[])
 5427: {
 5428: #ifdef GSL
 5429:   const gsl_multimin_fminimizer_type *T;
 5430:   size_t iteri = 0, it;
 5431:   int rval = GSL_CONTINUE;
 5432:   int status = GSL_SUCCESS;
 5433:   double ssval;
 5434: #endif
 5435:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 5436:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
 5437: 
 5438:   int jj, ll, li, lj, lk;
 5439:   int numlinepar=0; /* Current linenumber of parameter file */
 5440:   int itimes;
 5441:   int NDIM=2;
 5442:   int vpopbased=0;
 5443: 
 5444:   char ca[32], cb[32];
 5445:   /*  FILE *fichtm; *//* Html File */
 5446:   /* FILE *ficgp;*/ /*Gnuplot File */
 5447:   struct stat info;
 5448:   double agedeb;
 5449:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 5450: 
 5451:   double fret;
 5452:   double dum; /* Dummy variable */
 5453:   double ***p3mat;
 5454:   double ***mobaverage;
 5455: 
 5456:   char line[MAXLINE];
 5457:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 5458:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 5459:   char *tok, *val; /* pathtot */
 5460:   int firstobs=1, lastobs=10;
 5461:   int c,  h , cpt;
 5462:   int jl;
 5463:   int i1, j1, jk, stepsize;
 5464:   int *tab; 
 5465:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 5466:   int mobilav=0,popforecast=0;
 5467:   int hstepm, nhstepm;
 5468:   int agemortsup;
 5469:   float  sumlpop=0.;
 5470:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 5471:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 5472: 
 5473:   double bage=0, fage=110, age, agelim, agebase;
 5474:   double ftolpl=FTOL;
 5475:   double **prlim;
 5476:   double ***param; /* Matrix of parameters */
 5477:   double  *p;
 5478:   double **matcov; /* Matrix of covariance */
 5479:   double ***delti3; /* Scale */
 5480:   double *delti; /* Scale */
 5481:   double ***eij, ***vareij;
 5482:   double **varpl; /* Variances of prevalence limits by age */
 5483:   double *epj, vepp;
 5484: 
 5485:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 5486:   double **ximort;
 5487:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 5488:   int *dcwave;
 5489: 
 5490:   char z[1]="c";
 5491: 
 5492:   /*char  *strt;*/
 5493:   char strtend[80];
 5494: 
 5495: 
 5496: /*   setlocale (LC_ALL, ""); */
 5497: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 5498: /*   textdomain (PACKAGE); */
 5499: /*   setlocale (LC_CTYPE, ""); */
 5500: /*   setlocale (LC_MESSAGES, ""); */
 5501: 
 5502:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 5503:   rstart_time = time(NULL);  
 5504:   /*  (void) gettimeofday(&start_time,&tzp);*/
 5505:   start_time = *localtime(&rstart_time);
 5506:   curr_time=start_time;
 5507:   /*tml = *localtime(&start_time.tm_sec);*/
 5508:   /* strcpy(strstart,asctime(&tml)); */
 5509:   strcpy(strstart,asctime(&start_time));
 5510: 
 5511: /*  printf("Localtime (at start)=%s",strstart); */
 5512: /*  tp.tm_sec = tp.tm_sec +86400; */
 5513: /*  tm = *localtime(&start_time.tm_sec); */
 5514: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 5515: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 5516: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 5517: /*   tp.tm_sec = mktime(&tmg); */
 5518: /*   strt=asctime(&tmg); */
 5519: /*   printf("Time(after) =%s",strstart);  */
 5520: /*  (void) time (&time_value);
 5521: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 5522: *  tm = *localtime(&time_value);
 5523: *  strstart=asctime(&tm);
 5524: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 5525: */
 5526: 
 5527:   nberr=0; /* Number of errors and warnings */
 5528:   nbwarn=0;
 5529:   getcwd(pathcd, size);
 5530: 
 5531:   printf("\n%s\n%s",version,fullversion);
 5532:   if(argc <=1){
 5533:     printf("\nEnter the parameter file name: ");
 5534:     fgets(pathr,FILENAMELENGTH,stdin);
 5535:     i=strlen(pathr);
 5536:     if(pathr[i-1]=='\n')
 5537:       pathr[i-1]='\0';
 5538:     i=strlen(pathr);
 5539:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
 5540:       pathr[i-1]='\0';
 5541:    for (tok = pathr; tok != NULL; ){
 5542:       printf("Pathr |%s|\n",pathr);
 5543:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 5544:       printf("val= |%s| pathr=%s\n",val,pathr);
 5545:       strcpy (pathtot, val);
 5546:       if(pathr[0] == '\0') break; /* Dirty */
 5547:     }
 5548:   }
 5549:   else{
 5550:     strcpy(pathtot,argv[1]);
 5551:   }
 5552:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 5553:   /*cygwin_split_path(pathtot,path,optionfile);
 5554:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 5555:   /* cutv(path,optionfile,pathtot,'\\');*/
 5556: 
 5557:   /* Split argv[0], imach program to get pathimach */
 5558:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 5559:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5560:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5561:  /*   strcpy(pathimach,argv[0]); */
 5562:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 5563:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 5564:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 5565:   chdir(path); /* Can be a relative path */
 5566:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 5567:     printf("Current directory %s!\n",pathcd);
 5568:   strcpy(command,"mkdir ");
 5569:   strcat(command,optionfilefiname);
 5570:   if((outcmd=system(command)) != 0){
 5571:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 5572:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 5573:     /* fclose(ficlog); */
 5574: /*     exit(1); */
 5575:   }
 5576: /*   if((imk=mkdir(optionfilefiname))<0){ */
 5577: /*     perror("mkdir"); */
 5578: /*   } */
 5579: 
 5580:   /*-------- arguments in the command line --------*/
 5581: 
 5582:   /* Log file */
 5583:   strcat(filelog, optionfilefiname);
 5584:   strcat(filelog,".log");    /* */
 5585:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 5586:     printf("Problem with logfile %s\n",filelog);
 5587:     goto end;
 5588:   }
 5589:   fprintf(ficlog,"Log filename:%s\n",filelog);
 5590:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 5591:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 5592:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 5593:  path=%s \n\
 5594:  optionfile=%s\n\
 5595:  optionfilext=%s\n\
 5596:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 5597: 
 5598:   printf("Local time (at start):%s",strstart);
 5599:   fprintf(ficlog,"Local time (at start): %s",strstart);
 5600:   fflush(ficlog);
 5601: /*   (void) gettimeofday(&curr_time,&tzp); */
 5602: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
 5603: 
 5604:   /* */
 5605:   strcpy(fileres,"r");
 5606:   strcat(fileres, optionfilefiname);
 5607:   strcat(fileres,".txt");    /* Other files have txt extension */
 5608: 
 5609:   /*---------arguments file --------*/
 5610: 
 5611:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 5612:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 5613:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 5614:     fflush(ficlog);
 5615:     /* goto end; */
 5616:     exit(70); 
 5617:   }
 5618: 
 5619: 
 5620: 
 5621:   strcpy(filereso,"o");
 5622:   strcat(filereso,fileres);
 5623:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 5624:     printf("Problem with Output resultfile: %s\n", filereso);
 5625:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 5626:     fflush(ficlog);
 5627:     goto end;
 5628:   }
 5629: 
 5630:   /* Reads comments: lines beginning with '#' */
 5631:   numlinepar=0;
 5632:   while((c=getc(ficpar))=='#' && c!= EOF){
 5633:     ungetc(c,ficpar);
 5634:     fgets(line, MAXLINE, ficpar);
 5635:     numlinepar++;
 5636:     fputs(line,stdout);
 5637:     fputs(line,ficparo);
 5638:     fputs(line,ficlog);
 5639:   }
 5640:   ungetc(c,ficpar);
 5641: 
 5642:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 5643:   numlinepar++;
 5644:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 5645:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5646:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5647:   fflush(ficlog);
 5648:   while((c=getc(ficpar))=='#' && c!= EOF){
 5649:     ungetc(c,ficpar);
 5650:     fgets(line, MAXLINE, ficpar);
 5651:     numlinepar++;
 5652:     fputs(line, stdout);
 5653:     //puts(line);
 5654:     fputs(line,ficparo);
 5655:     fputs(line,ficlog);
 5656:   }
 5657:   ungetc(c,ficpar);
 5658: 
 5659:    
 5660:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 5661:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 5662:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 5663:      v1+v2*age+v2*v3 makes cptcovn = 3
 5664:   */
 5665:   if (strlen(model)>1) 
 5666:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
 5667:   else
 5668:     ncovmodel=2;
 5669:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 5670:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 5671:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 5672:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 5673:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5674:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5675:     fflush(stdout);
 5676:     fclose (ficlog);
 5677:     goto end;
 5678:   }
 5679:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5680:   delti=delti3[1][1];
 5681:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 5682:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 5683:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5684:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5685:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5686:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5687:     fclose (ficparo);
 5688:     fclose (ficlog);
 5689:     goto end;
 5690:     exit(0);
 5691:   }
 5692:   else if(mle==-3) {
 5693:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5694:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5695:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5696:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5697:     matcov=matrix(1,npar,1,npar);
 5698:   }
 5699:   else{
 5700:     /* Read guessed parameters */
 5701:     /* Reads comments: lines beginning with '#' */
 5702:     while((c=getc(ficpar))=='#' && c!= EOF){
 5703:       ungetc(c,ficpar);
 5704:       fgets(line, MAXLINE, ficpar);
 5705:       numlinepar++;
 5706:       fputs(line,stdout);
 5707:       fputs(line,ficparo);
 5708:       fputs(line,ficlog);
 5709:     }
 5710:     ungetc(c,ficpar);
 5711:     
 5712:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5713:     for(i=1; i <=nlstate; i++){
 5714:       j=0;
 5715:       for(jj=1; jj <=nlstate+ndeath; jj++){
 5716: 	if(jj==i) continue;
 5717: 	j++;
 5718: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5719: 	if ((i1 != i) && (j1 != j)){
 5720: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 5721: It might be a problem of design; if ncovcol and the model are correct\n \
 5722: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 5723: 	  exit(1);
 5724: 	}
 5725: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5726: 	if(mle==1)
 5727: 	  printf("%1d%1d",i,j);
 5728: 	fprintf(ficlog,"%1d%1d",i,j);
 5729: 	for(k=1; k<=ncovmodel;k++){
 5730: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 5731: 	  if(mle==1){
 5732: 	    printf(" %lf",param[i][j][k]);
 5733: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5734: 	  }
 5735: 	  else
 5736: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5737: 	  fprintf(ficparo," %lf",param[i][j][k]);
 5738: 	}
 5739: 	fscanf(ficpar,"\n");
 5740: 	numlinepar++;
 5741: 	if(mle==1)
 5742: 	  printf("\n");
 5743: 	fprintf(ficlog,"\n");
 5744: 	fprintf(ficparo,"\n");
 5745:       }
 5746:     }  
 5747:     fflush(ficlog);
 5748: 
 5749:     /* Reads scales values */
 5750:     p=param[1][1];
 5751:     
 5752:     /* Reads comments: lines beginning with '#' */
 5753:     while((c=getc(ficpar))=='#' && c!= EOF){
 5754:       ungetc(c,ficpar);
 5755:       fgets(line, MAXLINE, ficpar);
 5756:       numlinepar++;
 5757:       fputs(line,stdout);
 5758:       fputs(line,ficparo);
 5759:       fputs(line,ficlog);
 5760:     }
 5761:     ungetc(c,ficpar);
 5762: 
 5763:     for(i=1; i <=nlstate; i++){
 5764:       for(j=1; j <=nlstate+ndeath-1; j++){
 5765: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5766: 	if ( (i1-i) * (j1-j) != 0){
 5767: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 5768: 	  exit(1);
 5769: 	}
 5770: 	printf("%1d%1d",i,j);
 5771: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5772: 	fprintf(ficlog,"%1d%1d",i1,j1);
 5773: 	for(k=1; k<=ncovmodel;k++){
 5774: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 5775: 	  printf(" %le",delti3[i][j][k]);
 5776: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 5777: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 5778: 	}
 5779: 	fscanf(ficpar,"\n");
 5780: 	numlinepar++;
 5781: 	printf("\n");
 5782: 	fprintf(ficparo,"\n");
 5783: 	fprintf(ficlog,"\n");
 5784:       }
 5785:     }
 5786:     fflush(ficlog);
 5787: 
 5788:     /* Reads covariance matrix */
 5789:     delti=delti3[1][1];
 5790: 
 5791: 
 5792:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 5793:   
 5794:     /* Reads comments: lines beginning with '#' */
 5795:     while((c=getc(ficpar))=='#' && c!= EOF){
 5796:       ungetc(c,ficpar);
 5797:       fgets(line, MAXLINE, ficpar);
 5798:       numlinepar++;
 5799:       fputs(line,stdout);
 5800:       fputs(line,ficparo);
 5801:       fputs(line,ficlog);
 5802:     }
 5803:     ungetc(c,ficpar);
 5804:   
 5805:     matcov=matrix(1,npar,1,npar);
 5806:     for(i=1; i <=npar; i++)
 5807:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 5808:       
 5809:     for(i=1; i <=npar; i++){
 5810:       fscanf(ficpar,"%s",str);
 5811:       if(mle==1)
 5812: 	printf("%s",str);
 5813:       fprintf(ficlog,"%s",str);
 5814:       fprintf(ficparo,"%s",str);
 5815:       for(j=1; j <=i; j++){
 5816: 	fscanf(ficpar," %le",&matcov[i][j]);
 5817: 	if(mle==1){
 5818: 	  printf(" %.5le",matcov[i][j]);
 5819: 	}
 5820: 	fprintf(ficlog," %.5le",matcov[i][j]);
 5821: 	fprintf(ficparo," %.5le",matcov[i][j]);
 5822:       }
 5823:       fscanf(ficpar,"\n");
 5824:       numlinepar++;
 5825:       if(mle==1)
 5826: 	printf("\n");
 5827:       fprintf(ficlog,"\n");
 5828:       fprintf(ficparo,"\n");
 5829:     }
 5830:     for(i=1; i <=npar; i++)
 5831:       for(j=i+1;j<=npar;j++)
 5832: 	matcov[i][j]=matcov[j][i];
 5833:     
 5834:     if(mle==1)
 5835:       printf("\n");
 5836:     fprintf(ficlog,"\n");
 5837:     
 5838:     fflush(ficlog);
 5839:     
 5840:     /*-------- Rewriting parameter file ----------*/
 5841:     strcpy(rfileres,"r");    /* "Rparameterfile */
 5842:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 5843:     strcat(rfileres,".");    /* */
 5844:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 5845:     if((ficres =fopen(rfileres,"w"))==NULL) {
 5846:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 5847:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 5848:     }
 5849:     fprintf(ficres,"#%s\n",version);
 5850:   }    /* End of mle != -3 */
 5851: 
 5852: 
 5853:   n= lastobs;
 5854:   num=lvector(1,n);
 5855:   moisnais=vector(1,n);
 5856:   annais=vector(1,n);
 5857:   moisdc=vector(1,n);
 5858:   andc=vector(1,n);
 5859:   agedc=vector(1,n);
 5860:   cod=ivector(1,n);
 5861:   weight=vector(1,n);
 5862:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 5863:   mint=matrix(1,maxwav,1,n);
 5864:   anint=matrix(1,maxwav,1,n);
 5865:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 5866:   tab=ivector(1,NCOVMAX);
 5867:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 5868: 
 5869:   /* Reads data from file datafile */
 5870:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 5871:     goto end;
 5872: 
 5873:   /* Calculation of the number of parameters from char model */
 5874:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 5875: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 5876: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 5877: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 5878: 	k=1 Tvar[1]=2 (from V2)
 5879:     */
 5880:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 5881:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 5882:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 5883:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 5884:   */
 5885:   /* For model-covariate k tells which data-covariate to use but
 5886:     because this model-covariate is a construction we invent a new column
 5887:     ncovcol + k1
 5888:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 5889:     Tvar[3=V1*V4]=4+1 etc */
 5890:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 5891:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 5892:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 5893:   */
 5894:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 5895:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 5896: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 5897: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 5898:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 5899: 			 4 covariates (3 plus signs)
 5900: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 5901: 		      */  
 5902: 
 5903:   if(decodemodel(model, lastobs) == 1)
 5904:     goto end;
 5905: 
 5906:   if((double)(lastobs-imx)/(double)imx > 1.10){
 5907:     nbwarn++;
 5908:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5909:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5910:   }
 5911:     /*  if(mle==1){*/
 5912:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 5913:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 5914:   }
 5915: 
 5916:     /*-calculation of age at interview from date of interview and age at death -*/
 5917:   agev=matrix(1,maxwav,1,imx);
 5918: 
 5919:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 5920:     goto end;
 5921: 
 5922: 
 5923:   agegomp=(int)agemin;
 5924:   free_vector(moisnais,1,n);
 5925:   free_vector(annais,1,n);
 5926:   /* free_matrix(mint,1,maxwav,1,n);
 5927:      free_matrix(anint,1,maxwav,1,n);*/
 5928:   free_vector(moisdc,1,n);
 5929:   free_vector(andc,1,n);
 5930:   /* */
 5931:   
 5932:   wav=ivector(1,imx);
 5933:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 5934:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 5935:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 5936:    
 5937:   /* Concatenates waves */
 5938:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 5939:   /* */
 5940:  
 5941:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 5942: 
 5943:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 5944:   ncodemax[1]=1;
 5945:   Ndum =ivector(-1,NCOVMAX);  
 5946:   if (ncovmodel > 2)
 5947:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 5948: 
 5949:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 5950:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
 5951:   h=0;
 5952: 
 5953: 
 5954:   /*if (cptcovn > 0) */
 5955:       
 5956:  
 5957:   m=pow(2,cptcoveff);
 5958:  
 5959:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 5960:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 5961:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
 5962: 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 5963: 	  h++;
 5964: 	  if (h>m) 
 5965: 	    h=1;
 5966: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 5967: 	   *     h     1     2     3     4
 5968: 	   *______________________________  
 5969: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 5970: 	   *     2     2     1     1     1
 5971: 	   *     3 i=2 1     2     1     1
 5972: 	   *     4     2     2     1     1
 5973: 	   *     5 i=3 1 i=2 1     2     1
 5974: 	   *     6     2     1     2     1
 5975: 	   *     7 i=4 1     2     2     1
 5976: 	   *     8     2     2     2     1
 5977: 	   *     9 i=5 1 i=3 1 i=2 1     1
 5978: 	   *    10     2     1     1     1
 5979: 	   *    11 i=6 1     2     1     1
 5980: 	   *    12     2     2     1     1
 5981: 	   *    13 i=7 1 i=4 1     2     1    
 5982: 	   *    14     2     1     2     1
 5983: 	   *    15 i=8 1     2     2     1
 5984: 	   *    16     2     2     2     1
 5985: 	   */
 5986: 	  codtab[h][k]=j;
 5987: 	  /*codtab[h][Tvar[k]]=j;*/
 5988: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 5989: 	} 
 5990:       }
 5991:     }
 5992:   } 
 5993:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 5994:      codtab[1][2]=1;codtab[2][2]=2; */
 5995:   /* for(i=1; i <=m ;i++){ 
 5996:      for(k=1; k <=cptcovn; k++){
 5997:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 5998:      }
 5999:      printf("\n");
 6000:      }
 6001:      scanf("%d",i);*/
 6002: 
 6003:  free_ivector(Ndum,-1,NCOVMAX);
 6004: 
 6005: 
 6006:     
 6007:   /*------------ gnuplot -------------*/
 6008:   strcpy(optionfilegnuplot,optionfilefiname);
 6009:   if(mle==-3)
 6010:     strcat(optionfilegnuplot,"-mort");
 6011:   strcat(optionfilegnuplot,".gp");
 6012: 
 6013:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 6014:     printf("Problem with file %s",optionfilegnuplot);
 6015:   }
 6016:   else{
 6017:     fprintf(ficgp,"\n# %s\n", version); 
 6018:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 6019:     //fprintf(ficgp,"set missing 'NaNq'\n");
 6020:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 6021:   }
 6022:   /*  fclose(ficgp);*/
 6023:   /*--------- index.htm --------*/
 6024: 
 6025:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 6026:   if(mle==-3)
 6027:     strcat(optionfilehtm,"-mort");
 6028:   strcat(optionfilehtm,".htm");
 6029:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 6030:     printf("Problem with %s \n",optionfilehtm);
 6031:     exit(0);
 6032:   }
 6033: 
 6034:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 6035:   strcat(optionfilehtmcov,"-cov.htm");
 6036:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 6037:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 6038:   }
 6039:   else{
 6040:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6041: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6042: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 6043: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 6044:   }
 6045: 
 6046:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6047: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6048: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 6049: \n\
 6050: <hr  size=\"2\" color=\"#EC5E5E\">\
 6051:  <ul><li><h4>Parameter files</h4>\n\
 6052:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 6053:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 6054:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 6055:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 6056:  - Date and time at start: %s</ul>\n",\
 6057: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 6058: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 6059: 	  fileres,fileres,\
 6060: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 6061:   fflush(fichtm);
 6062: 
 6063:   strcpy(pathr,path);
 6064:   strcat(pathr,optionfilefiname);
 6065:   chdir(optionfilefiname); /* Move to directory named optionfile */
 6066:   
 6067:   /* Calculates basic frequencies. Computes observed prevalence at single age
 6068:      and prints on file fileres'p'. */
 6069:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 6070: 
 6071:   fprintf(fichtm,"\n");
 6072:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 6073: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 6074: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 6075: 	  imx,agemin,agemax,jmin,jmax,jmean);
 6076:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6077:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6078:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6079:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6080:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 6081:     
 6082:    
 6083:   /* For Powell, parameters are in a vector p[] starting at p[1]
 6084:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 6085:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 6086: 
 6087:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 6088: 
 6089:   if (mle==-3){
 6090:     ximort=matrix(1,NDIM,1,NDIM); 
 6091: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 6092:     cens=ivector(1,n);
 6093:     ageexmed=vector(1,n);
 6094:     agecens=vector(1,n);
 6095:     dcwave=ivector(1,n);
 6096:  
 6097:     for (i=1; i<=imx; i++){
 6098:       dcwave[i]=-1;
 6099:       for (m=firstpass; m<=lastpass; m++)
 6100: 	if (s[m][i]>nlstate) {
 6101: 	  dcwave[i]=m;
 6102: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 6103: 	  break;
 6104: 	}
 6105:     }
 6106: 
 6107:     for (i=1; i<=imx; i++) {
 6108:       if (wav[i]>0){
 6109: 	ageexmed[i]=agev[mw[1][i]][i];
 6110: 	j=wav[i];
 6111: 	agecens[i]=1.; 
 6112: 
 6113: 	if (ageexmed[i]> 1 && wav[i] > 0){
 6114: 	  agecens[i]=agev[mw[j][i]][i];
 6115: 	  cens[i]= 1;
 6116: 	}else if (ageexmed[i]< 1) 
 6117: 	  cens[i]= -1;
 6118: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 6119: 	  cens[i]=0 ;
 6120:       }
 6121:       else cens[i]=-1;
 6122:     }
 6123:     
 6124:     for (i=1;i<=NDIM;i++) {
 6125:       for (j=1;j<=NDIM;j++)
 6126: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 6127:     }
 6128:     
 6129:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 6130:     /*printf("%lf %lf", p[1], p[2]);*/
 6131:     
 6132:     
 6133: #ifdef GSL
 6134:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 6135: #else
 6136:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 6137: #endif
 6138:     strcpy(filerespow,"pow-mort"); 
 6139:     strcat(filerespow,fileres);
 6140:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 6141:       printf("Problem with resultfile: %s\n", filerespow);
 6142:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 6143:     }
 6144: #ifdef GSL
 6145:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 6146: #else
 6147:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 6148: #endif
 6149:     /*  for (i=1;i<=nlstate;i++)
 6150: 	for(j=1;j<=nlstate+ndeath;j++)
 6151: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 6152:     */
 6153:     fprintf(ficrespow,"\n");
 6154: #ifdef GSL
 6155:     /* gsl starts here */ 
 6156:     T = gsl_multimin_fminimizer_nmsimplex;
 6157:     gsl_multimin_fminimizer *sfm = NULL;
 6158:     gsl_vector *ss, *x;
 6159:     gsl_multimin_function minex_func;
 6160: 
 6161:     /* Initial vertex size vector */
 6162:     ss = gsl_vector_alloc (NDIM);
 6163:     
 6164:     if (ss == NULL){
 6165:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 6166:     }
 6167:     /* Set all step sizes to 1 */
 6168:     gsl_vector_set_all (ss, 0.001);
 6169: 
 6170:     /* Starting point */
 6171:     
 6172:     x = gsl_vector_alloc (NDIM);
 6173:     
 6174:     if (x == NULL){
 6175:       gsl_vector_free(ss);
 6176:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 6177:     }
 6178:   
 6179:     /* Initialize method and iterate */
 6180:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 6181: /*     gsl_vector_set(x, 0, 0.0268); */
 6182: /*     gsl_vector_set(x, 1, 0.083); */
 6183:     gsl_vector_set(x, 0, p[1]);
 6184:     gsl_vector_set(x, 1, p[2]);
 6185: 
 6186:     minex_func.f = &gompertz_f;
 6187:     minex_func.n = NDIM;
 6188:     minex_func.params = (void *)&p; /* ??? */
 6189:     
 6190:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 6191:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 6192:     
 6193:     printf("Iterations beginning .....\n\n");
 6194:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 6195: 
 6196:     iteri=0;
 6197:     while (rval == GSL_CONTINUE){
 6198:       iteri++;
 6199:       status = gsl_multimin_fminimizer_iterate(sfm);
 6200:       
 6201:       if (status) printf("error: %s\n", gsl_strerror (status));
 6202:       fflush(0);
 6203:       
 6204:       if (status) 
 6205:         break;
 6206:       
 6207:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 6208:       ssval = gsl_multimin_fminimizer_size (sfm);
 6209:       
 6210:       if (rval == GSL_SUCCESS)
 6211:         printf ("converged to a local maximum at\n");
 6212:       
 6213:       printf("%5d ", iteri);
 6214:       for (it = 0; it < NDIM; it++){
 6215: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 6216:       }
 6217:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 6218:     }
 6219:     
 6220:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 6221:     
 6222:     gsl_vector_free(x); /* initial values */
 6223:     gsl_vector_free(ss); /* inital step size */
 6224:     for (it=0; it<NDIM; it++){
 6225:       p[it+1]=gsl_vector_get(sfm->x,it);
 6226:       fprintf(ficrespow," %.12lf", p[it]);
 6227:     }
 6228:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 6229: #endif
 6230: #ifdef POWELL
 6231:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 6232: #endif  
 6233:     fclose(ficrespow);
 6234:     
 6235:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 6236: 
 6237:     for(i=1; i <=NDIM; i++)
 6238:       for(j=i+1;j<=NDIM;j++)
 6239: 	matcov[i][j]=matcov[j][i];
 6240:     
 6241:     printf("\nCovariance matrix\n ");
 6242:     for(i=1; i <=NDIM; i++) {
 6243:       for(j=1;j<=NDIM;j++){ 
 6244: 	printf("%f ",matcov[i][j]);
 6245:       }
 6246:       printf("\n ");
 6247:     }
 6248:     
 6249:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 6250:     for (i=1;i<=NDIM;i++) 
 6251:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 6252: 
 6253:     lsurv=vector(1,AGESUP);
 6254:     lpop=vector(1,AGESUP);
 6255:     tpop=vector(1,AGESUP);
 6256:     lsurv[agegomp]=100000;
 6257:     
 6258:     for (k=agegomp;k<=AGESUP;k++) {
 6259:       agemortsup=k;
 6260:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 6261:     }
 6262:     
 6263:     for (k=agegomp;k<agemortsup;k++)
 6264:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 6265:     
 6266:     for (k=agegomp;k<agemortsup;k++){
 6267:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 6268:       sumlpop=sumlpop+lpop[k];
 6269:     }
 6270:     
 6271:     tpop[agegomp]=sumlpop;
 6272:     for (k=agegomp;k<(agemortsup-3);k++){
 6273:       /*  tpop[k+1]=2;*/
 6274:       tpop[k+1]=tpop[k]-lpop[k];
 6275:     }
 6276:     
 6277:     
 6278:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 6279:     for (k=agegomp;k<(agemortsup-2);k++) 
 6280:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 6281:     
 6282:     
 6283:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6284:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6285:     
 6286:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 6287: 		     stepm, weightopt,\
 6288: 		     model,imx,p,matcov,agemortsup);
 6289:     
 6290:     free_vector(lsurv,1,AGESUP);
 6291:     free_vector(lpop,1,AGESUP);
 6292:     free_vector(tpop,1,AGESUP);
 6293: #ifdef GSL
 6294:     free_ivector(cens,1,n);
 6295:     free_vector(agecens,1,n);
 6296:     free_ivector(dcwave,1,n);
 6297:     free_matrix(ximort,1,NDIM,1,NDIM);
 6298: #endif
 6299:   } /* Endof if mle==-3 */
 6300:   
 6301:   else{ /* For mle >=1 */
 6302:     globpr=0;/* debug */
 6303:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6304:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6305:     for (k=1; k<=npar;k++)
 6306:       printf(" %d %8.5f",k,p[k]);
 6307:     printf("\n");
 6308:     globpr=1; /* to print the contributions */
 6309:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6310:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6311:     for (k=1; k<=npar;k++)
 6312:       printf(" %d %8.5f",k,p[k]);
 6313:     printf("\n");
 6314:     if(mle>=1){ /* Could be 1 or 2 */
 6315:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 6316:     }
 6317:     
 6318:     /*--------- results files --------------*/
 6319:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 6320:     
 6321:     
 6322:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6323:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6324:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6325:     for(i=1,jk=1; i <=nlstate; i++){
 6326:       for(k=1; k <=(nlstate+ndeath); k++){
 6327: 	if (k != i) {
 6328: 	  printf("%d%d ",i,k);
 6329: 	  fprintf(ficlog,"%d%d ",i,k);
 6330: 	  fprintf(ficres,"%1d%1d ",i,k);
 6331: 	  for(j=1; j <=ncovmodel; j++){
 6332: 	    printf("%lf ",p[jk]);
 6333: 	    fprintf(ficlog,"%lf ",p[jk]);
 6334: 	    fprintf(ficres,"%lf ",p[jk]);
 6335: 	    jk++; 
 6336: 	  }
 6337: 	  printf("\n");
 6338: 	  fprintf(ficlog,"\n");
 6339: 	  fprintf(ficres,"\n");
 6340: 	}
 6341:       }
 6342:     }
 6343:     if(mle!=0){
 6344:       /* Computing hessian and covariance matrix */
 6345:       ftolhess=ftol; /* Usually correct */
 6346:       hesscov(matcov, p, npar, delti, ftolhess, func);
 6347:     }
 6348:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 6349:     printf("# Scales (for hessian or gradient estimation)\n");
 6350:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 6351:     for(i=1,jk=1; i <=nlstate; i++){
 6352:       for(j=1; j <=nlstate+ndeath; j++){
 6353: 	if (j!=i) {
 6354: 	  fprintf(ficres,"%1d%1d",i,j);
 6355: 	  printf("%1d%1d",i,j);
 6356: 	  fprintf(ficlog,"%1d%1d",i,j);
 6357: 	  for(k=1; k<=ncovmodel;k++){
 6358: 	    printf(" %.5e",delti[jk]);
 6359: 	    fprintf(ficlog," %.5e",delti[jk]);
 6360: 	    fprintf(ficres," %.5e",delti[jk]);
 6361: 	    jk++;
 6362: 	  }
 6363: 	  printf("\n");
 6364: 	  fprintf(ficlog,"\n");
 6365: 	  fprintf(ficres,"\n");
 6366: 	}
 6367:       }
 6368:     }
 6369:     
 6370:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6371:     if(mle>=1)
 6372:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6373:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6374:     /* # 121 Var(a12)\n\ */
 6375:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 6376:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 6377:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 6378:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 6379:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 6380:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 6381:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 6382:     
 6383:     
 6384:     /* Just to have a covariance matrix which will be more understandable
 6385:        even is we still don't want to manage dictionary of variables
 6386:     */
 6387:     for(itimes=1;itimes<=2;itimes++){
 6388:       jj=0;
 6389:       for(i=1; i <=nlstate; i++){
 6390: 	for(j=1; j <=nlstate+ndeath; j++){
 6391: 	  if(j==i) continue;
 6392: 	  for(k=1; k<=ncovmodel;k++){
 6393: 	    jj++;
 6394: 	    ca[0]= k+'a'-1;ca[1]='\0';
 6395: 	    if(itimes==1){
 6396: 	      if(mle>=1)
 6397: 		printf("#%1d%1d%d",i,j,k);
 6398: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 6399: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 6400: 	    }else{
 6401: 	      if(mle>=1)
 6402: 		printf("%1d%1d%d",i,j,k);
 6403: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 6404: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 6405: 	    }
 6406: 	    ll=0;
 6407: 	    for(li=1;li <=nlstate; li++){
 6408: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 6409: 		if(lj==li) continue;
 6410: 		for(lk=1;lk<=ncovmodel;lk++){
 6411: 		  ll++;
 6412: 		  if(ll<=jj){
 6413: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 6414: 		    if(ll<jj){
 6415: 		      if(itimes==1){
 6416: 			if(mle>=1)
 6417: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6418: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6419: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6420: 		      }else{
 6421: 			if(mle>=1)
 6422: 			  printf(" %.5e",matcov[jj][ll]); 
 6423: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6424: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6425: 		      }
 6426: 		    }else{
 6427: 		      if(itimes==1){
 6428: 			if(mle>=1)
 6429: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 6430: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 6431: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 6432: 		      }else{
 6433: 			if(mle>=1)
 6434: 			  printf(" %.5e",matcov[jj][ll]); 
 6435: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6436: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6437: 		      }
 6438: 		    }
 6439: 		  }
 6440: 		} /* end lk */
 6441: 	      } /* end lj */
 6442: 	    } /* end li */
 6443: 	    if(mle>=1)
 6444: 	      printf("\n");
 6445: 	    fprintf(ficlog,"\n");
 6446: 	    fprintf(ficres,"\n");
 6447: 	    numlinepar++;
 6448: 	  } /* end k*/
 6449: 	} /*end j */
 6450:       } /* end i */
 6451:     } /* end itimes */
 6452:     
 6453:     fflush(ficlog);
 6454:     fflush(ficres);
 6455:     
 6456:     while((c=getc(ficpar))=='#' && c!= EOF){
 6457:       ungetc(c,ficpar);
 6458:       fgets(line, MAXLINE, ficpar);
 6459:       fputs(line,stdout);
 6460:       fputs(line,ficparo);
 6461:     }
 6462:     ungetc(c,ficpar);
 6463:     
 6464:     estepm=0;
 6465:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 6466:     if (estepm==0 || estepm < stepm) estepm=stepm;
 6467:     if (fage <= 2) {
 6468:       bage = ageminpar;
 6469:       fage = agemaxpar;
 6470:     }
 6471:     
 6472:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 6473:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6474:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6475:     
 6476:     while((c=getc(ficpar))=='#' && c!= EOF){
 6477:       ungetc(c,ficpar);
 6478:       fgets(line, MAXLINE, ficpar);
 6479:       fputs(line,stdout);
 6480:       fputs(line,ficparo);
 6481:     }
 6482:     ungetc(c,ficpar);
 6483:     
 6484:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 6485:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6486:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6487:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6488:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6489:     
 6490:     while((c=getc(ficpar))=='#' && c!= EOF){
 6491:       ungetc(c,ficpar);
 6492:       fgets(line, MAXLINE, ficpar);
 6493:       fputs(line,stdout);
 6494:       fputs(line,ficparo);
 6495:     }
 6496:     ungetc(c,ficpar);
 6497:     
 6498:     
 6499:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 6500:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 6501:     
 6502:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 6503:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 6504:     fprintf(ficres,"pop_based=%d\n",popbased);   
 6505:     
 6506:     while((c=getc(ficpar))=='#' && c!= EOF){
 6507:       ungetc(c,ficpar);
 6508:       fgets(line, MAXLINE, ficpar);
 6509:       fputs(line,stdout);
 6510:       fputs(line,ficparo);
 6511:     }
 6512:     ungetc(c,ficpar);
 6513:     
 6514:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 6515:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6516:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6517:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6518:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6519:     /* day and month of proj2 are not used but only year anproj2.*/
 6520:     
 6521:     
 6522:     
 6523:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 6524:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 6525:     
 6526:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6527:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6528:     
 6529:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 6530: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 6531: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 6532:       
 6533:    /*------------ free_vector  -------------*/
 6534:    /*  chdir(path); */
 6535:  
 6536:     free_ivector(wav,1,imx);
 6537:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 6538:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 6539:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 6540:     free_lvector(num,1,n);
 6541:     free_vector(agedc,1,n);
 6542:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 6543:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 6544:     fclose(ficparo);
 6545:     fclose(ficres);
 6546: 
 6547: 
 6548:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 6549: #include "prevlim.h"  /* Use ficrespl, ficlog */
 6550:     fclose(ficrespl);
 6551: 
 6552: #ifdef FREEEXIT2
 6553: #include "freeexit2.h"
 6554: #endif
 6555: 
 6556:     /*------------- h Pij x at various ages ------------*/
 6557: #include "hpijx.h"
 6558:     fclose(ficrespij);
 6559: 
 6560:   /*-------------- Variance of one-step probabilities---*/
 6561:     k=1;
 6562:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 6563: 
 6564: 
 6565:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6566:     for(i=1;i<=AGESUP;i++)
 6567:       for(j=1;j<=NCOVMAX;j++)
 6568: 	for(k=1;k<=NCOVMAX;k++)
 6569: 	  probs[i][j][k]=0.;
 6570: 
 6571:     /*---------- Forecasting ------------------*/
 6572:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 6573:     if(prevfcast==1){
 6574:       /*    if(stepm ==1){*/
 6575:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 6576:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 6577:       /*      }  */
 6578:       /*      else{ */
 6579:       /*        erreur=108; */
 6580:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6581:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6582:       /*      } */
 6583:     }
 6584:   
 6585: 
 6586:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 6587: 
 6588:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 6589:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 6590: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 6591:     */
 6592: 
 6593:     if (mobilav!=0) {
 6594:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6595:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 6596: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 6597: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 6598:       }
 6599:     }
 6600: 
 6601: 
 6602:     /*---------- Health expectancies, no variances ------------*/
 6603: 
 6604:     strcpy(filerese,"e");
 6605:     strcat(filerese,fileres);
 6606:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 6607:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6608:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6609:     }
 6610:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 6611:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 6612:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6613:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6614:           
 6615:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6616: 	fprintf(ficreseij,"\n#****** ");
 6617: 	for(j=1;j<=cptcoveff;j++) {
 6618: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6619: 	}
 6620: 	fprintf(ficreseij,"******\n");
 6621: 
 6622: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6623: 	oldm=oldms;savm=savms;
 6624: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 6625:       
 6626: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6627:       /*}*/
 6628:     }
 6629:     fclose(ficreseij);
 6630: 
 6631: 
 6632:     /*---------- Health expectancies and variances ------------*/
 6633: 
 6634: 
 6635:     strcpy(filerest,"t");
 6636:     strcat(filerest,fileres);
 6637:     if((ficrest=fopen(filerest,"w"))==NULL) {
 6638:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 6639:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 6640:     }
 6641:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6642:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6643: 
 6644: 
 6645:     strcpy(fileresstde,"stde");
 6646:     strcat(fileresstde,fileres);
 6647:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 6648:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6649:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6650:     }
 6651:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6652:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6653: 
 6654:     strcpy(filerescve,"cve");
 6655:     strcat(filerescve,fileres);
 6656:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 6657:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6658:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6659:     }
 6660:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6661:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6662: 
 6663:     strcpy(fileresv,"v");
 6664:     strcat(fileresv,fileres);
 6665:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 6666:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 6667:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 6668:     }
 6669:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6670:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6671: 
 6672:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6673:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6674:           
 6675:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6676:     	fprintf(ficrest,"\n#****** ");
 6677: 	for(j=1;j<=cptcoveff;j++) 
 6678: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6679: 	fprintf(ficrest,"******\n");
 6680: 
 6681: 	fprintf(ficresstdeij,"\n#****** ");
 6682: 	fprintf(ficrescveij,"\n#****** ");
 6683: 	for(j=1;j<=cptcoveff;j++) {
 6684: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6685: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6686: 	}
 6687: 	fprintf(ficresstdeij,"******\n");
 6688: 	fprintf(ficrescveij,"******\n");
 6689: 
 6690: 	fprintf(ficresvij,"\n#****** ");
 6691: 	for(j=1;j<=cptcoveff;j++) 
 6692: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6693: 	fprintf(ficresvij,"******\n");
 6694: 
 6695: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6696: 	oldm=oldms;savm=savms;
 6697: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 6698: 	/*
 6699: 	 */
 6700: 	/* goto endfree; */
 6701:  
 6702: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6703: 	pstamp(ficrest);
 6704: 
 6705: 
 6706: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 6707: 	  oldm=oldms;savm=savms; /* Segmentation fault */
 6708: 	  cptcod= 0; /* To be deleted */
 6709: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
 6710: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 6711: 	  if(vpopbased==1)
 6712: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 6713: 	  else
 6714: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 6715: 	  fprintf(ficrest,"# Age e.. (std) ");
 6716: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 6717: 	  fprintf(ficrest,"\n");
 6718: 
 6719: 	  epj=vector(1,nlstate+1);
 6720: 	  for(age=bage; age <=fage ;age++){
 6721: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 6722: 	    if (vpopbased==1) {
 6723: 	      if(mobilav ==0){
 6724: 		for(i=1; i<=nlstate;i++)
 6725: 		  prlim[i][i]=probs[(int)age][i][k];
 6726: 	      }else{ /* mobilav */ 
 6727: 		for(i=1; i<=nlstate;i++)
 6728: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 6729: 	      }
 6730: 	    }
 6731: 	
 6732: 	    fprintf(ficrest," %4.0f",age);
 6733: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 6734: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 6735: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 6736: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 6737: 	      }
 6738: 	      epj[nlstate+1] +=epj[j];
 6739: 	    }
 6740: 
 6741: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 6742: 	      for(j=1;j <=nlstate;j++)
 6743: 		vepp += vareij[i][j][(int)age];
 6744: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 6745: 	    for(j=1;j <=nlstate;j++){
 6746: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 6747: 	    }
 6748: 	    fprintf(ficrest,"\n");
 6749: 	  }
 6750: 	}
 6751: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6752: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6753: 	free_vector(epj,1,nlstate+1);
 6754:       /*}*/
 6755:     }
 6756:     free_vector(weight,1,n);
 6757:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 6758:     free_imatrix(s,1,maxwav+1,1,n);
 6759:     free_matrix(anint,1,maxwav,1,n); 
 6760:     free_matrix(mint,1,maxwav,1,n);
 6761:     free_ivector(cod,1,n);
 6762:     free_ivector(tab,1,NCOVMAX);
 6763:     fclose(ficresstdeij);
 6764:     fclose(ficrescveij);
 6765:     fclose(ficresvij);
 6766:     fclose(ficrest);
 6767:     fclose(ficpar);
 6768:   
 6769:     /*------- Variance of period (stable) prevalence------*/   
 6770: 
 6771:     strcpy(fileresvpl,"vpl");
 6772:     strcat(fileresvpl,fileres);
 6773:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 6774:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 6775:       exit(0);
 6776:     }
 6777:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 6778: 
 6779:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6780:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6781:           
 6782:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6783:     	fprintf(ficresvpl,"\n#****** ");
 6784: 	for(j=1;j<=cptcoveff;j++) 
 6785: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6786: 	fprintf(ficresvpl,"******\n");
 6787:       
 6788: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 6789: 	oldm=oldms;savm=savms;
 6790: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 6791: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 6792:       /*}*/
 6793:     }
 6794: 
 6795:     fclose(ficresvpl);
 6796: 
 6797:     /*---------- End : free ----------------*/
 6798:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6799:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6800:   }  /* mle==-3 arrives here for freeing */
 6801:  /* endfree:*/
 6802:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 6803:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 6804:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6805:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6806:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6807:     free_matrix(covar,0,NCOVMAX,1,n);
 6808:     free_matrix(matcov,1,npar,1,npar);
 6809:     /*free_vector(delti,1,npar);*/
 6810:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6811:     free_matrix(agev,1,maxwav,1,imx);
 6812:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 6813: 
 6814:     free_ivector(ncodemax,1,NCOVMAX);
 6815:     free_ivector(Tvar,1,NCOVMAX);
 6816:     free_ivector(Tprod,1,NCOVMAX);
 6817:     free_ivector(Tvaraff,1,NCOVMAX);
 6818:     free_ivector(Tage,1,NCOVMAX);
 6819: 
 6820:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 6821:     free_imatrix(codtab,1,100,1,10);
 6822:   fflush(fichtm);
 6823:   fflush(ficgp);
 6824:   
 6825: 
 6826:   if((nberr >0) || (nbwarn>0)){
 6827:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 6828:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 6829:   }else{
 6830:     printf("End of Imach\n");
 6831:     fprintf(ficlog,"End of Imach\n");
 6832:   }
 6833:   printf("See log file on %s\n",filelog);
 6834:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 6835:   /*(void) gettimeofday(&end_time,&tzp);*/
 6836:   rend_time = time(NULL);  
 6837:   end_time = *localtime(&rend_time);
 6838:   /* tml = *localtime(&end_time.tm_sec); */
 6839:   strcpy(strtend,asctime(&end_time));
 6840:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 6841:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 6842:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 6843: 
 6844:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 6845:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 6846:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 6847:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 6848: /*   if(fileappend(fichtm,optionfilehtm)){ */
 6849:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6850:   fclose(fichtm);
 6851:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6852:   fclose(fichtmcov);
 6853:   fclose(ficgp);
 6854:   fclose(ficlog);
 6855:   /*------ End -----------*/
 6856: 
 6857: 
 6858:    printf("Before Current directory %s!\n",pathcd);
 6859:    if(chdir(pathcd) != 0)
 6860:     printf("Can't move to directory %s!\n",path);
 6861:   if(getcwd(pathcd,MAXLINE) > 0)
 6862:     printf("Current directory %s!\n",pathcd);
 6863:   /*strcat(plotcmd,CHARSEPARATOR);*/
 6864:   sprintf(plotcmd,"gnuplot");
 6865: #ifdef _WIN32
 6866:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 6867: #endif
 6868:   if(!stat(plotcmd,&info)){
 6869:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 6870:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 6871:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 6872:     }else
 6873:       strcpy(pplotcmd,plotcmd);
 6874: #ifdef __unix
 6875:     strcpy(plotcmd,GNUPLOTPROGRAM);
 6876:     if(!stat(plotcmd,&info)){
 6877:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 6878:     }else
 6879:       strcpy(pplotcmd,plotcmd);
 6880: #endif
 6881:   }else
 6882:     strcpy(pplotcmd,plotcmd);
 6883:   
 6884:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 6885:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
 6886: 
 6887:   if((outcmd=system(plotcmd)) != 0){
 6888:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
 6889:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
 6890:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
 6891:     if((outcmd=system(plotcmd)) != 0)
 6892:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
 6893:   }
 6894:   printf(" Successful, please wait...");
 6895:   while (z[0] != 'q') {
 6896:     /* chdir(path); */
 6897:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
 6898:     scanf("%s",z);
 6899: /*     if (z[0] == 'c') system("./imach"); */
 6900:     if (z[0] == 'e') {
 6901: #ifdef __APPLE__
 6902:       sprintf(pplotcmd, "open %s", optionfilehtm);
 6903: #elif __linux
 6904:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
 6905: #else
 6906:       sprintf(pplotcmd, "%s", optionfilehtm);
 6907: #endif
 6908:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
 6909:       system(pplotcmd);
 6910:     }
 6911:     else if (z[0] == 'g') system(plotcmd);
 6912:     else if (z[0] == 'q') exit(0);
 6913:   }
 6914:   end:
 6915:   while (z[0] != 'q') {
 6916:     printf("\nType  q for exiting: ");
 6917:     scanf("%s",z);
 6918:   }
 6919: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>