File:  [Local Repository] / imach / src / imach.c
Revision 1.181: download - view: text, annotated - select for diffs
Wed Feb 11 23:22:24 2015 UTC (9 years, 4 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
Summary: Comments on Powell added

Author:

    1: /* $Id: imach.c,v 1.181 2015/02/11 23:22:24 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.181  2015/02/11 23:22:24  brouard
    5:   Summary: Comments on Powell added
    6: 
    7:   Author:
    8: 
    9:   Revision 1.180  2015/02/11 17:33:45  brouard
   10:   Summary: Finishing move from main to function (hpijx and prevalence_limit)
   11: 
   12:   Revision 1.179  2015/01/04 09:57:06  brouard
   13:   Summary: back to OS/X
   14: 
   15:   Revision 1.178  2015/01/04 09:35:48  brouard
   16:   *** empty log message ***
   17: 
   18:   Revision 1.177  2015/01/03 18:40:56  brouard
   19:   Summary: Still testing ilc32 on OSX
   20: 
   21:   Revision 1.176  2015/01/03 16:45:04  brouard
   22:   *** empty log message ***
   23: 
   24:   Revision 1.175  2015/01/03 16:33:42  brouard
   25:   *** empty log message ***
   26: 
   27:   Revision 1.174  2015/01/03 16:15:49  brouard
   28:   Summary: Still in cross-compilation
   29: 
   30:   Revision 1.173  2015/01/03 12:06:26  brouard
   31:   Summary: trying to detect cross-compilation
   32: 
   33:   Revision 1.172  2014/12/27 12:07:47  brouard
   34:   Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   35: 
   36:   Revision 1.171  2014/12/23 13:26:59  brouard
   37:   Summary: Back from Visual C
   38: 
   39:   Still problem with utsname.h on Windows
   40: 
   41:   Revision 1.170  2014/12/23 11:17:12  brouard
   42:   Summary: Cleaning some \%% back to %%
   43: 
   44:   The escape was mandatory for a specific compiler (which one?), but too many warnings.
   45: 
   46:   Revision 1.169  2014/12/22 23:08:31  brouard
   47:   Summary: 0.98p
   48: 
   49:   Outputs some informations on compiler used, OS etc. Testing on different platforms.
   50: 
   51:   Revision 1.168  2014/12/22 15:17:42  brouard
   52:   Summary: update
   53: 
   54:   Revision 1.167  2014/12/22 13:50:56  brouard
   55:   Summary: Testing uname and compiler version and if compiled 32 or 64
   56: 
   57:   Testing on Linux 64
   58: 
   59:   Revision 1.166  2014/12/22 11:40:47  brouard
   60:   *** empty log message ***
   61: 
   62:   Revision 1.165  2014/12/16 11:20:36  brouard
   63:   Summary: After compiling on Visual C
   64: 
   65:   * imach.c (Module): Merging 1.61 to 1.162
   66: 
   67:   Revision 1.164  2014/12/16 10:52:11  brouard
   68:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   69: 
   70:   * imach.c (Module): Merging 1.61 to 1.162
   71: 
   72:   Revision 1.163  2014/12/16 10:30:11  brouard
   73:   * imach.c (Module): Merging 1.61 to 1.162
   74: 
   75:   Revision 1.162  2014/09/25 11:43:39  brouard
   76:   Summary: temporary backup 0.99!
   77: 
   78:   Revision 1.1  2014/09/16 11:06:58  brouard
   79:   Summary: With some code (wrong) for nlopt
   80: 
   81:   Author:
   82: 
   83:   Revision 1.161  2014/09/15 20:41:41  brouard
   84:   Summary: Problem with macro SQR on Intel compiler
   85: 
   86:   Revision 1.160  2014/09/02 09:24:05  brouard
   87:   *** empty log message ***
   88: 
   89:   Revision 1.159  2014/09/01 10:34:10  brouard
   90:   Summary: WIN32
   91:   Author: Brouard
   92: 
   93:   Revision 1.158  2014/08/27 17:11:51  brouard
   94:   *** empty log message ***
   95: 
   96:   Revision 1.157  2014/08/27 16:26:55  brouard
   97:   Summary: Preparing windows Visual studio version
   98:   Author: Brouard
   99: 
  100:   In order to compile on Visual studio, time.h is now correct and time_t
  101:   and tm struct should be used. difftime should be used but sometimes I
  102:   just make the differences in raw time format (time(&now).
  103:   Trying to suppress #ifdef LINUX
  104:   Add xdg-open for __linux in order to open default browser.
  105: 
  106:   Revision 1.156  2014/08/25 20:10:10  brouard
  107:   *** empty log message ***
  108: 
  109:   Revision 1.155  2014/08/25 18:32:34  brouard
  110:   Summary: New compile, minor changes
  111:   Author: Brouard
  112: 
  113:   Revision 1.154  2014/06/20 17:32:08  brouard
  114:   Summary: Outputs now all graphs of convergence to period prevalence
  115: 
  116:   Revision 1.153  2014/06/20 16:45:46  brouard
  117:   Summary: If 3 live state, convergence to period prevalence on same graph
  118:   Author: Brouard
  119: 
  120:   Revision 1.152  2014/06/18 17:54:09  brouard
  121:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
  122: 
  123:   Revision 1.151  2014/06/18 16:43:30  brouard
  124:   *** empty log message ***
  125: 
  126:   Revision 1.150  2014/06/18 16:42:35  brouard
  127:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
  128:   Author: brouard
  129: 
  130:   Revision 1.149  2014/06/18 15:51:14  brouard
  131:   Summary: Some fixes in parameter files errors
  132:   Author: Nicolas Brouard
  133: 
  134:   Revision 1.148  2014/06/17 17:38:48  brouard
  135:   Summary: Nothing new
  136:   Author: Brouard
  137: 
  138:   Just a new packaging for OS/X version 0.98nS
  139: 
  140:   Revision 1.147  2014/06/16 10:33:11  brouard
  141:   *** empty log message ***
  142: 
  143:   Revision 1.146  2014/06/16 10:20:28  brouard
  144:   Summary: Merge
  145:   Author: Brouard
  146: 
  147:   Merge, before building revised version.
  148: 
  149:   Revision 1.145  2014/06/10 21:23:15  brouard
  150:   Summary: Debugging with valgrind
  151:   Author: Nicolas Brouard
  152: 
  153:   Lot of changes in order to output the results with some covariates
  154:   After the Edimburgh REVES conference 2014, it seems mandatory to
  155:   improve the code.
  156:   No more memory valgrind error but a lot has to be done in order to
  157:   continue the work of splitting the code into subroutines.
  158:   Also, decodemodel has been improved. Tricode is still not
  159:   optimal. nbcode should be improved. Documentation has been added in
  160:   the source code.
  161: 
  162:   Revision 1.143  2014/01/26 09:45:38  brouard
  163:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
  164: 
  165:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  166:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
  167: 
  168:   Revision 1.142  2014/01/26 03:57:36  brouard
  169:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
  170: 
  171:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  172: 
  173:   Revision 1.141  2014/01/26 02:42:01  brouard
  174:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  175: 
  176:   Revision 1.140  2011/09/02 10:37:54  brouard
  177:   Summary: times.h is ok with mingw32 now.
  178: 
  179:   Revision 1.139  2010/06/14 07:50:17  brouard
  180:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
  181:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  182: 
  183:   Revision 1.138  2010/04/30 18:19:40  brouard
  184:   *** empty log message ***
  185: 
  186:   Revision 1.137  2010/04/29 18:11:38  brouard
  187:   (Module): Checking covariates for more complex models
  188:   than V1+V2. A lot of change to be done. Unstable.
  189: 
  190:   Revision 1.136  2010/04/26 20:30:53  brouard
  191:   (Module): merging some libgsl code. Fixing computation
  192:   of likelione (using inter/intrapolation if mle = 0) in order to
  193:   get same likelihood as if mle=1.
  194:   Some cleaning of code and comments added.
  195: 
  196:   Revision 1.135  2009/10/29 15:33:14  brouard
  197:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  198: 
  199:   Revision 1.134  2009/10/29 13:18:53  brouard
  200:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  201: 
  202:   Revision 1.133  2009/07/06 10:21:25  brouard
  203:   just nforces
  204: 
  205:   Revision 1.132  2009/07/06 08:22:05  brouard
  206:   Many tings
  207: 
  208:   Revision 1.131  2009/06/20 16:22:47  brouard
  209:   Some dimensions resccaled
  210: 
  211:   Revision 1.130  2009/05/26 06:44:34  brouard
  212:   (Module): Max Covariate is now set to 20 instead of 8. A
  213:   lot of cleaning with variables initialized to 0. Trying to make
  214:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
  215: 
  216:   Revision 1.129  2007/08/31 13:49:27  lievre
  217:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
  218: 
  219:   Revision 1.128  2006/06/30 13:02:05  brouard
  220:   (Module): Clarifications on computing e.j
  221: 
  222:   Revision 1.127  2006/04/28 18:11:50  brouard
  223:   (Module): Yes the sum of survivors was wrong since
  224:   imach-114 because nhstepm was no more computed in the age
  225:   loop. Now we define nhstepma in the age loop.
  226:   (Module): In order to speed up (in case of numerous covariates) we
  227:   compute health expectancies (without variances) in a first step
  228:   and then all the health expectancies with variances or standard
  229:   deviation (needs data from the Hessian matrices) which slows the
  230:   computation.
  231:   In the future we should be able to stop the program is only health
  232:   expectancies and graph are needed without standard deviations.
  233: 
  234:   Revision 1.126  2006/04/28 17:23:28  brouard
  235:   (Module): Yes the sum of survivors was wrong since
  236:   imach-114 because nhstepm was no more computed in the age
  237:   loop. Now we define nhstepma in the age loop.
  238:   Version 0.98h
  239: 
  240:   Revision 1.125  2006/04/04 15:20:31  lievre
  241:   Errors in calculation of health expectancies. Age was not initialized.
  242:   Forecasting file added.
  243: 
  244:   Revision 1.124  2006/03/22 17:13:53  lievre
  245:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  246:   The log-likelihood is printed in the log file
  247: 
  248:   Revision 1.123  2006/03/20 10:52:43  brouard
  249:   * imach.c (Module): <title> changed, corresponds to .htm file
  250:   name. <head> headers where missing.
  251: 
  252:   * imach.c (Module): Weights can have a decimal point as for
  253:   English (a comma might work with a correct LC_NUMERIC environment,
  254:   otherwise the weight is truncated).
  255:   Modification of warning when the covariates values are not 0 or
  256:   1.
  257:   Version 0.98g
  258: 
  259:   Revision 1.122  2006/03/20 09:45:41  brouard
  260:   (Module): Weights can have a decimal point as for
  261:   English (a comma might work with a correct LC_NUMERIC environment,
  262:   otherwise the weight is truncated).
  263:   Modification of warning when the covariates values are not 0 or
  264:   1.
  265:   Version 0.98g
  266: 
  267:   Revision 1.121  2006/03/16 17:45:01  lievre
  268:   * imach.c (Module): Comments concerning covariates added
  269: 
  270:   * imach.c (Module): refinements in the computation of lli if
  271:   status=-2 in order to have more reliable computation if stepm is
  272:   not 1 month. Version 0.98f
  273: 
  274:   Revision 1.120  2006/03/16 15:10:38  lievre
  275:   (Module): refinements in the computation of lli if
  276:   status=-2 in order to have more reliable computation if stepm is
  277:   not 1 month. Version 0.98f
  278: 
  279:   Revision 1.119  2006/03/15 17:42:26  brouard
  280:   (Module): Bug if status = -2, the loglikelihood was
  281:   computed as likelihood omitting the logarithm. Version O.98e
  282: 
  283:   Revision 1.118  2006/03/14 18:20:07  brouard
  284:   (Module): varevsij Comments added explaining the second
  285:   table of variances if popbased=1 .
  286:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  287:   (Module): Function pstamp added
  288:   (Module): Version 0.98d
  289: 
  290:   Revision 1.117  2006/03/14 17:16:22  brouard
  291:   (Module): varevsij Comments added explaining the second
  292:   table of variances if popbased=1 .
  293:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  294:   (Module): Function pstamp added
  295:   (Module): Version 0.98d
  296: 
  297:   Revision 1.116  2006/03/06 10:29:27  brouard
  298:   (Module): Variance-covariance wrong links and
  299:   varian-covariance of ej. is needed (Saito).
  300: 
  301:   Revision 1.115  2006/02/27 12:17:45  brouard
  302:   (Module): One freematrix added in mlikeli! 0.98c
  303: 
  304:   Revision 1.114  2006/02/26 12:57:58  brouard
  305:   (Module): Some improvements in processing parameter
  306:   filename with strsep.
  307: 
  308:   Revision 1.113  2006/02/24 14:20:24  brouard
  309:   (Module): Memory leaks checks with valgrind and:
  310:   datafile was not closed, some imatrix were not freed and on matrix
  311:   allocation too.
  312: 
  313:   Revision 1.112  2006/01/30 09:55:26  brouard
  314:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  315: 
  316:   Revision 1.111  2006/01/25 20:38:18  brouard
  317:   (Module): Lots of cleaning and bugs added (Gompertz)
  318:   (Module): Comments can be added in data file. Missing date values
  319:   can be a simple dot '.'.
  320: 
  321:   Revision 1.110  2006/01/25 00:51:50  brouard
  322:   (Module): Lots of cleaning and bugs added (Gompertz)
  323: 
  324:   Revision 1.109  2006/01/24 19:37:15  brouard
  325:   (Module): Comments (lines starting with a #) are allowed in data.
  326: 
  327:   Revision 1.108  2006/01/19 18:05:42  lievre
  328:   Gnuplot problem appeared...
  329:   To be fixed
  330: 
  331:   Revision 1.107  2006/01/19 16:20:37  brouard
  332:   Test existence of gnuplot in imach path
  333: 
  334:   Revision 1.106  2006/01/19 13:24:36  brouard
  335:   Some cleaning and links added in html output
  336: 
  337:   Revision 1.105  2006/01/05 20:23:19  lievre
  338:   *** empty log message ***
  339: 
  340:   Revision 1.104  2005/09/30 16:11:43  lievre
  341:   (Module): sump fixed, loop imx fixed, and simplifications.
  342:   (Module): If the status is missing at the last wave but we know
  343:   that the person is alive, then we can code his/her status as -2
  344:   (instead of missing=-1 in earlier versions) and his/her
  345:   contributions to the likelihood is 1 - Prob of dying from last
  346:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  347:   the healthy state at last known wave). Version is 0.98
  348: 
  349:   Revision 1.103  2005/09/30 15:54:49  lievre
  350:   (Module): sump fixed, loop imx fixed, and simplifications.
  351: 
  352:   Revision 1.102  2004/09/15 17:31:30  brouard
  353:   Add the possibility to read data file including tab characters.
  354: 
  355:   Revision 1.101  2004/09/15 10:38:38  brouard
  356:   Fix on curr_time
  357: 
  358:   Revision 1.100  2004/07/12 18:29:06  brouard
  359:   Add version for Mac OS X. Just define UNIX in Makefile
  360: 
  361:   Revision 1.99  2004/06/05 08:57:40  brouard
  362:   *** empty log message ***
  363: 
  364:   Revision 1.98  2004/05/16 15:05:56  brouard
  365:   New version 0.97 . First attempt to estimate force of mortality
  366:   directly from the data i.e. without the need of knowing the health
  367:   state at each age, but using a Gompertz model: log u =a + b*age .
  368:   This is the basic analysis of mortality and should be done before any
  369:   other analysis, in order to test if the mortality estimated from the
  370:   cross-longitudinal survey is different from the mortality estimated
  371:   from other sources like vital statistic data.
  372: 
  373:   The same imach parameter file can be used but the option for mle should be -3.
  374: 
  375:   Agnès, who wrote this part of the code, tried to keep most of the
  376:   former routines in order to include the new code within the former code.
  377: 
  378:   The output is very simple: only an estimate of the intercept and of
  379:   the slope with 95% confident intervals.
  380: 
  381:   Current limitations:
  382:   A) Even if you enter covariates, i.e. with the
  383:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  384:   B) There is no computation of Life Expectancy nor Life Table.
  385: 
  386:   Revision 1.97  2004/02/20 13:25:42  lievre
  387:   Version 0.96d. Population forecasting command line is (temporarily)
  388:   suppressed.
  389: 
  390:   Revision 1.96  2003/07/15 15:38:55  brouard
  391:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  392:   rewritten within the same printf. Workaround: many printfs.
  393: 
  394:   Revision 1.95  2003/07/08 07:54:34  brouard
  395:   * imach.c (Repository):
  396:   (Repository): Using imachwizard code to output a more meaningful covariance
  397:   matrix (cov(a12,c31) instead of numbers.
  398: 
  399:   Revision 1.94  2003/06/27 13:00:02  brouard
  400:   Just cleaning
  401: 
  402:   Revision 1.93  2003/06/25 16:33:55  brouard
  403:   (Module): On windows (cygwin) function asctime_r doesn't
  404:   exist so I changed back to asctime which exists.
  405:   (Module): Version 0.96b
  406: 
  407:   Revision 1.92  2003/06/25 16:30:45  brouard
  408:   (Module): On windows (cygwin) function asctime_r doesn't
  409:   exist so I changed back to asctime which exists.
  410: 
  411:   Revision 1.91  2003/06/25 15:30:29  brouard
  412:   * imach.c (Repository): Duplicated warning errors corrected.
  413:   (Repository): Elapsed time after each iteration is now output. It
  414:   helps to forecast when convergence will be reached. Elapsed time
  415:   is stamped in powell.  We created a new html file for the graphs
  416:   concerning matrix of covariance. It has extension -cov.htm.
  417: 
  418:   Revision 1.90  2003/06/24 12:34:15  brouard
  419:   (Module): Some bugs corrected for windows. Also, when
  420:   mle=-1 a template is output in file "or"mypar.txt with the design
  421:   of the covariance matrix to be input.
  422: 
  423:   Revision 1.89  2003/06/24 12:30:52  brouard
  424:   (Module): Some bugs corrected for windows. Also, when
  425:   mle=-1 a template is output in file "or"mypar.txt with the design
  426:   of the covariance matrix to be input.
  427: 
  428:   Revision 1.88  2003/06/23 17:54:56  brouard
  429:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  430: 
  431:   Revision 1.87  2003/06/18 12:26:01  brouard
  432:   Version 0.96
  433: 
  434:   Revision 1.86  2003/06/17 20:04:08  brouard
  435:   (Module): Change position of html and gnuplot routines and added
  436:   routine fileappend.
  437: 
  438:   Revision 1.85  2003/06/17 13:12:43  brouard
  439:   * imach.c (Repository): Check when date of death was earlier that
  440:   current date of interview. It may happen when the death was just
  441:   prior to the death. In this case, dh was negative and likelihood
  442:   was wrong (infinity). We still send an "Error" but patch by
  443:   assuming that the date of death was just one stepm after the
  444:   interview.
  445:   (Repository): Because some people have very long ID (first column)
  446:   we changed int to long in num[] and we added a new lvector for
  447:   memory allocation. But we also truncated to 8 characters (left
  448:   truncation)
  449:   (Repository): No more line truncation errors.
  450: 
  451:   Revision 1.84  2003/06/13 21:44:43  brouard
  452:   * imach.c (Repository): Replace "freqsummary" at a correct
  453:   place. It differs from routine "prevalence" which may be called
  454:   many times. Probs is memory consuming and must be used with
  455:   parcimony.
  456:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  457: 
  458:   Revision 1.83  2003/06/10 13:39:11  lievre
  459:   *** empty log message ***
  460: 
  461:   Revision 1.82  2003/06/05 15:57:20  brouard
  462:   Add log in  imach.c and  fullversion number is now printed.
  463: 
  464: */
  465: /*
  466:    Interpolated Markov Chain
  467: 
  468:   Short summary of the programme:
  469:   
  470:   This program computes Healthy Life Expectancies from
  471:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  472:   first survey ("cross") where individuals from different ages are
  473:   interviewed on their health status or degree of disability (in the
  474:   case of a health survey which is our main interest) -2- at least a
  475:   second wave of interviews ("longitudinal") which measure each change
  476:   (if any) in individual health status.  Health expectancies are
  477:   computed from the time spent in each health state according to a
  478:   model. More health states you consider, more time is necessary to reach the
  479:   Maximum Likelihood of the parameters involved in the model.  The
  480:   simplest model is the multinomial logistic model where pij is the
  481:   probability to be observed in state j at the second wave
  482:   conditional to be observed in state i at the first wave. Therefore
  483:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  484:   'age' is age and 'sex' is a covariate. If you want to have a more
  485:   complex model than "constant and age", you should modify the program
  486:   where the markup *Covariates have to be included here again* invites
  487:   you to do it.  More covariates you add, slower the
  488:   convergence.
  489: 
  490:   The advantage of this computer programme, compared to a simple
  491:   multinomial logistic model, is clear when the delay between waves is not
  492:   identical for each individual. Also, if a individual missed an
  493:   intermediate interview, the information is lost, but taken into
  494:   account using an interpolation or extrapolation.  
  495: 
  496:   hPijx is the probability to be observed in state i at age x+h
  497:   conditional to the observed state i at age x. The delay 'h' can be
  498:   split into an exact number (nh*stepm) of unobserved intermediate
  499:   states. This elementary transition (by month, quarter,
  500:   semester or year) is modelled as a multinomial logistic.  The hPx
  501:   matrix is simply the matrix product of nh*stepm elementary matrices
  502:   and the contribution of each individual to the likelihood is simply
  503:   hPijx.
  504: 
  505:   Also this programme outputs the covariance matrix of the parameters but also
  506:   of the life expectancies. It also computes the period (stable) prevalence. 
  507:   
  508:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  509:            Institut national d'études démographiques, Paris.
  510:   This software have been partly granted by Euro-REVES, a concerted action
  511:   from the European Union.
  512:   It is copyrighted identically to a GNU software product, ie programme and
  513:   software can be distributed freely for non commercial use. Latest version
  514:   can be accessed at http://euroreves.ined.fr/imach .
  515: 
  516:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  517:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  518:   
  519:   **********************************************************************/
  520: /*
  521:   main
  522:   read parameterfile
  523:   read datafile
  524:   concatwav
  525:   freqsummary
  526:   if (mle >= 1)
  527:     mlikeli
  528:   print results files
  529:   if mle==1 
  530:      computes hessian
  531:   read end of parameter file: agemin, agemax, bage, fage, estepm
  532:       begin-prev-date,...
  533:   open gnuplot file
  534:   open html file
  535:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  536:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  537:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  538:     freexexit2 possible for memory heap.
  539: 
  540:   h Pij x                         | pij_nom  ficrestpij
  541:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  542:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  543:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  544: 
  545:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  546:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  547:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  548:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  549:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  550: 
  551:   forecasting if prevfcast==1 prevforecast call prevalence()
  552:   health expectancies
  553:   Variance-covariance of DFLE
  554:   prevalence()
  555:    movingaverage()
  556:   varevsij() 
  557:   if popbased==1 varevsij(,popbased)
  558:   total life expectancies
  559:   Variance of period (stable) prevalence
  560:  end
  561: */
  562: 
  563: #define POWELL /* Instead of NLOPT */
  564: #define POWELLDIRECT /* Directest to decide new direction instead of Powell test */
  565: 
  566: #include <math.h>
  567: #include <stdio.h>
  568: #include <stdlib.h>
  569: #include <string.h>
  570: 
  571: #ifdef _WIN32
  572: #include <io.h>
  573: #include <windows.h>
  574: #include <tchar.h>
  575: #else
  576: #include <unistd.h>
  577: #endif
  578: 
  579: #include <limits.h>
  580: #include <sys/types.h>
  581: 
  582: #if defined(__GNUC__)
  583: #include <sys/utsname.h> /* Doesn't work on Windows */
  584: #endif
  585: 
  586: #include <sys/stat.h>
  587: #include <errno.h>
  588: /* extern int errno; */
  589: 
  590: /* #ifdef LINUX */
  591: /* #include <time.h> */
  592: /* #include "timeval.h" */
  593: /* #else */
  594: /* #include <sys/time.h> */
  595: /* #endif */
  596: 
  597: #include <time.h>
  598: 
  599: #ifdef GSL
  600: #include <gsl/gsl_errno.h>
  601: #include <gsl/gsl_multimin.h>
  602: #endif
  603: 
  604: 
  605: #ifdef NLOPT
  606: #include <nlopt.h>
  607: typedef struct {
  608:   double (* function)(double [] );
  609: } myfunc_data ;
  610: #endif
  611: 
  612: /* #include <libintl.h> */
  613: /* #define _(String) gettext (String) */
  614: 
  615: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  616: 
  617: #define GNUPLOTPROGRAM "gnuplot"
  618: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  619: #define FILENAMELENGTH 132
  620: 
  621: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  622: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  623: 
  624: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  625: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  626: 
  627: #define NINTERVMAX 8
  628: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  629: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  630: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  631: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  632: #define MAXN 20000
  633: #define YEARM 12. /**< Number of months per year */
  634: #define AGESUP 130
  635: #define AGEBASE 40
  636: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
  637: #ifdef _WIN32
  638: #define DIRSEPARATOR '\\'
  639: #define CHARSEPARATOR "\\"
  640: #define ODIRSEPARATOR '/'
  641: #else
  642: #define DIRSEPARATOR '/'
  643: #define CHARSEPARATOR "/"
  644: #define ODIRSEPARATOR '\\'
  645: #endif
  646: 
  647: /* $Id: imach.c,v 1.181 2015/02/11 23:22:24 brouard Exp $ */
  648: /* $State: Exp $ */
  649: 
  650: char version[]="Imach version 0.98p, Février 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
  651: char fullversion[]="$Revision: 1.181 $ $Date: 2015/02/11 23:22:24 $"; 
  652: char strstart[80];
  653: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  654: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  655: int nvar=0, nforce=0; /* Number of variables, number of forces */
  656: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  657: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  658: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  659: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  660: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  661: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  662: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  663: int cptcov=0; /* Working variable */
  664: int npar=NPARMAX;
  665: int nlstate=2; /* Number of live states */
  666: int ndeath=1; /* Number of dead states */
  667: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  668: int popbased=0;
  669: 
  670: int *wav; /* Number of waves for this individuual 0 is possible */
  671: int maxwav=0; /* Maxim number of waves */
  672: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  673: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  674: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  675: 		   to the likelihood and the sum of weights (done by funcone)*/
  676: int mle=1, weightopt=0;
  677: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  678: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  679: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  680: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  681: int countcallfunc=0;  /* Count the number of calls to func */
  682: double jmean=1; /* Mean space between 2 waves */
  683: double **matprod2(); /* test */
  684: double **oldm, **newm, **savm; /* Working pointers to matrices */
  685: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  686: /*FILE *fic ; */ /* Used in readdata only */
  687: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  688: FILE *ficlog, *ficrespow;
  689: int globpr=0; /* Global variable for printing or not */
  690: double fretone; /* Only one call to likelihood */
  691: long ipmx=0; /* Number of contributions */
  692: double sw; /* Sum of weights */
  693: char filerespow[FILENAMELENGTH];
  694: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  695: FILE *ficresilk;
  696: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  697: FILE *ficresprobmorprev;
  698: FILE *fichtm, *fichtmcov; /* Html File */
  699: FILE *ficreseij;
  700: char filerese[FILENAMELENGTH];
  701: FILE *ficresstdeij;
  702: char fileresstde[FILENAMELENGTH];
  703: FILE *ficrescveij;
  704: char filerescve[FILENAMELENGTH];
  705: FILE  *ficresvij;
  706: char fileresv[FILENAMELENGTH];
  707: FILE  *ficresvpl;
  708: char fileresvpl[FILENAMELENGTH];
  709: char title[MAXLINE];
  710: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  711: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  712: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  713: char command[FILENAMELENGTH];
  714: int  outcmd=0;
  715: 
  716: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  717: 
  718: char filelog[FILENAMELENGTH]; /* Log file */
  719: char filerest[FILENAMELENGTH];
  720: char fileregp[FILENAMELENGTH];
  721: char popfile[FILENAMELENGTH];
  722: 
  723: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  724: 
  725: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
  726: /* struct timezone tzp; */
  727: /* extern int gettimeofday(); */
  728: struct tm tml, *gmtime(), *localtime();
  729: 
  730: extern time_t time();
  731: 
  732: struct tm start_time, end_time, curr_time, last_time, forecast_time;
  733: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
  734: struct tm tm;
  735: 
  736: char strcurr[80], strfor[80];
  737: 
  738: char *endptr;
  739: long lval;
  740: double dval;
  741: 
  742: #define NR_END 1
  743: #define FREE_ARG char*
  744: #define FTOL 1.0e-10
  745: 
  746: #define NRANSI 
  747: #define ITMAX 200 
  748: 
  749: #define TOL 2.0e-4 
  750: 
  751: #define CGOLD 0.3819660 
  752: #define ZEPS 1.0e-10 
  753: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  754: 
  755: #define GOLD 1.618034 
  756: #define GLIMIT 100.0 
  757: #define TINY 1.0e-20 
  758: 
  759: static double maxarg1,maxarg2;
  760: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  761: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  762:   
  763: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  764: #define rint(a) floor(a+0.5)
  765: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
  766: /* #define mytinydouble 1.0e-16 */
  767: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
  768: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
  769: /* static double dsqrarg; */
  770: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
  771: static double sqrarg;
  772: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  773: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  774: int agegomp= AGEGOMP;
  775: 
  776: int imx; 
  777: int stepm=1;
  778: /* Stepm, step in month: minimum step interpolation*/
  779: 
  780: int estepm;
  781: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  782: 
  783: int m,nb;
  784: long *num;
  785: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  786: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  787: double **pmmij, ***probs;
  788: double *ageexmed,*agecens;
  789: double dateintmean=0;
  790: 
  791: double *weight;
  792: int **s; /* Status */
  793: double *agedc;
  794: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  795: 		  * covar=matrix(0,NCOVMAX,1,n); 
  796: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
  797: double  idx; 
  798: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  799: int *Ndum; /** Freq of modality (tricode */
  800: int **codtab; /**< codtab=imatrix(1,100,1,10); */
  801: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  802: double *lsurv, *lpop, *tpop;
  803: 
  804: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  805: double ftolhess; /**< Tolerance for computing hessian */
  806: 
  807: /**************** split *************************/
  808: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  809: {
  810:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  811:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  812:   */ 
  813:   char	*ss;				/* pointer */
  814:   int	l1, l2;				/* length counters */
  815: 
  816:   l1 = strlen(path );			/* length of path */
  817:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  818:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  819:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  820:     strcpy( name, path );		/* we got the fullname name because no directory */
  821:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  822:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  823:     /* get current working directory */
  824:     /*    extern  char* getcwd ( char *buf , int len);*/
  825:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  826:       return( GLOCK_ERROR_GETCWD );
  827:     }
  828:     /* got dirc from getcwd*/
  829:     printf(" DIRC = %s \n",dirc);
  830:   } else {				/* strip direcotry from path */
  831:     ss++;				/* after this, the filename */
  832:     l2 = strlen( ss );			/* length of filename */
  833:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  834:     strcpy( name, ss );		/* save file name */
  835:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  836:     dirc[l1-l2] = 0;			/* add zero */
  837:     printf(" DIRC2 = %s \n",dirc);
  838:   }
  839:   /* We add a separator at the end of dirc if not exists */
  840:   l1 = strlen( dirc );			/* length of directory */
  841:   if( dirc[l1-1] != DIRSEPARATOR ){
  842:     dirc[l1] =  DIRSEPARATOR;
  843:     dirc[l1+1] = 0; 
  844:     printf(" DIRC3 = %s \n",dirc);
  845:   }
  846:   ss = strrchr( name, '.' );		/* find last / */
  847:   if (ss >0){
  848:     ss++;
  849:     strcpy(ext,ss);			/* save extension */
  850:     l1= strlen( name);
  851:     l2= strlen(ss)+1;
  852:     strncpy( finame, name, l1-l2);
  853:     finame[l1-l2]= 0;
  854:   }
  855: 
  856:   return( 0 );				/* we're done */
  857: }
  858: 
  859: 
  860: /******************************************/
  861: 
  862: void replace_back_to_slash(char *s, char*t)
  863: {
  864:   int i;
  865:   int lg=0;
  866:   i=0;
  867:   lg=strlen(t);
  868:   for(i=0; i<= lg; i++) {
  869:     (s[i] = t[i]);
  870:     if (t[i]== '\\') s[i]='/';
  871:   }
  872: }
  873: 
  874: char *trimbb(char *out, char *in)
  875: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  876:   char *s;
  877:   s=out;
  878:   while (*in != '\0'){
  879:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  880:       in++;
  881:     }
  882:     *out++ = *in++;
  883:   }
  884:   *out='\0';
  885:   return s;
  886: }
  887: 
  888: char *cutl(char *blocc, char *alocc, char *in, char occ)
  889: {
  890:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
  891:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  892:      gives blocc="abcdef2ghi" and alocc="j".
  893:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
  894:   */
  895:   char *s, *t;
  896:   t=in;s=in;
  897:   while ((*in != occ) && (*in != '\0')){
  898:     *alocc++ = *in++;
  899:   }
  900:   if( *in == occ){
  901:     *(alocc)='\0';
  902:     s=++in;
  903:   }
  904:  
  905:   if (s == t) {/* occ not found */
  906:     *(alocc-(in-s))='\0';
  907:     in=s;
  908:   }
  909:   while ( *in != '\0'){
  910:     *blocc++ = *in++;
  911:   }
  912: 
  913:   *blocc='\0';
  914:   return t;
  915: }
  916: char *cutv(char *blocc, char *alocc, char *in, char occ)
  917: {
  918:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  919:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  920:      gives blocc="abcdef2ghi" and alocc="j".
  921:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
  922:   */
  923:   char *s, *t;
  924:   t=in;s=in;
  925:   while (*in != '\0'){
  926:     while( *in == occ){
  927:       *blocc++ = *in++;
  928:       s=in;
  929:     }
  930:     *blocc++ = *in++;
  931:   }
  932:   if (s == t) /* occ not found */
  933:     *(blocc-(in-s))='\0';
  934:   else
  935:     *(blocc-(in-s)-1)='\0';
  936:   in=s;
  937:   while ( *in != '\0'){
  938:     *alocc++ = *in++;
  939:   }
  940: 
  941:   *alocc='\0';
  942:   return s;
  943: }
  944: 
  945: int nbocc(char *s, char occ)
  946: {
  947:   int i,j=0;
  948:   int lg=20;
  949:   i=0;
  950:   lg=strlen(s);
  951:   for(i=0; i<= lg; i++) {
  952:   if  (s[i] == occ ) j++;
  953:   }
  954:   return j;
  955: }
  956: 
  957: /* void cutv(char *u,char *v, char*t, char occ) */
  958: /* { */
  959: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  960: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
  961: /*      gives u="abcdef2ghi" and v="j" *\/ */
  962: /*   int i,lg,j,p=0; */
  963: /*   i=0; */
  964: /*   lg=strlen(t); */
  965: /*   for(j=0; j<=lg-1; j++) { */
  966: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
  967: /*   } */
  968: 
  969: /*   for(j=0; j<p; j++) { */
  970: /*     (u[j] = t[j]); */
  971: /*   } */
  972: /*      u[p]='\0'; */
  973: 
  974: /*    for(j=0; j<= lg; j++) { */
  975: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
  976: /*   } */
  977: /* } */
  978: 
  979: #ifdef _WIN32
  980: char * strsep(char **pp, const char *delim)
  981: {
  982:   char *p, *q;
  983:          
  984:   if ((p = *pp) == NULL)
  985:     return 0;
  986:   if ((q = strpbrk (p, delim)) != NULL)
  987:   {
  988:     *pp = q + 1;
  989:     *q = '\0';
  990:   }
  991:   else
  992:     *pp = 0;
  993:   return p;
  994: }
  995: #endif
  996: 
  997: /********************** nrerror ********************/
  998: 
  999: void nrerror(char error_text[])
 1000: {
 1001:   fprintf(stderr,"ERREUR ...\n");
 1002:   fprintf(stderr,"%s\n",error_text);
 1003:   exit(EXIT_FAILURE);
 1004: }
 1005: /*********************** vector *******************/
 1006: double *vector(int nl, int nh)
 1007: {
 1008:   double *v;
 1009:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 1010:   if (!v) nrerror("allocation failure in vector");
 1011:   return v-nl+NR_END;
 1012: }
 1013: 
 1014: /************************ free vector ******************/
 1015: void free_vector(double*v, int nl, int nh)
 1016: {
 1017:   free((FREE_ARG)(v+nl-NR_END));
 1018: }
 1019: 
 1020: /************************ivector *******************************/
 1021: int *ivector(long nl,long nh)
 1022: {
 1023:   int *v;
 1024:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 1025:   if (!v) nrerror("allocation failure in ivector");
 1026:   return v-nl+NR_END;
 1027: }
 1028: 
 1029: /******************free ivector **************************/
 1030: void free_ivector(int *v, long nl, long nh)
 1031: {
 1032:   free((FREE_ARG)(v+nl-NR_END));
 1033: }
 1034: 
 1035: /************************lvector *******************************/
 1036: long *lvector(long nl,long nh)
 1037: {
 1038:   long *v;
 1039:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 1040:   if (!v) nrerror("allocation failure in ivector");
 1041:   return v-nl+NR_END;
 1042: }
 1043: 
 1044: /******************free lvector **************************/
 1045: void free_lvector(long *v, long nl, long nh)
 1046: {
 1047:   free((FREE_ARG)(v+nl-NR_END));
 1048: }
 1049: 
 1050: /******************* imatrix *******************************/
 1051: int **imatrix(long nrl, long nrh, long ncl, long nch) 
 1052:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 1053: { 
 1054:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 1055:   int **m; 
 1056:   
 1057:   /* allocate pointers to rows */ 
 1058:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 1059:   if (!m) nrerror("allocation failure 1 in matrix()"); 
 1060:   m += NR_END; 
 1061:   m -= nrl; 
 1062:   
 1063:   
 1064:   /* allocate rows and set pointers to them */ 
 1065:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 1066:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 1067:   m[nrl] += NR_END; 
 1068:   m[nrl] -= ncl; 
 1069:   
 1070:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 1071:   
 1072:   /* return pointer to array of pointers to rows */ 
 1073:   return m; 
 1074: } 
 1075: 
 1076: /****************** free_imatrix *************************/
 1077: void free_imatrix(m,nrl,nrh,ncl,nch)
 1078:       int **m;
 1079:       long nch,ncl,nrh,nrl; 
 1080:      /* free an int matrix allocated by imatrix() */ 
 1081: { 
 1082:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 1083:   free((FREE_ARG) (m+nrl-NR_END)); 
 1084: } 
 1085: 
 1086: /******************* matrix *******************************/
 1087: double **matrix(long nrl, long nrh, long ncl, long nch)
 1088: {
 1089:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 1090:   double **m;
 1091: 
 1092:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1093:   if (!m) nrerror("allocation failure 1 in matrix()");
 1094:   m += NR_END;
 1095:   m -= nrl;
 1096: 
 1097:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1098:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1099:   m[nrl] += NR_END;
 1100:   m[nrl] -= ncl;
 1101: 
 1102:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1103:   return m;
 1104:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 1105: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 1106: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 1107:    */
 1108: }
 1109: 
 1110: /*************************free matrix ************************/
 1111: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 1112: {
 1113:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1114:   free((FREE_ARG)(m+nrl-NR_END));
 1115: }
 1116: 
 1117: /******************* ma3x *******************************/
 1118: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 1119: {
 1120:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 1121:   double ***m;
 1122: 
 1123:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1124:   if (!m) nrerror("allocation failure 1 in matrix()");
 1125:   m += NR_END;
 1126:   m -= nrl;
 1127: 
 1128:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1129:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1130:   m[nrl] += NR_END;
 1131:   m[nrl] -= ncl;
 1132: 
 1133:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1134: 
 1135:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 1136:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 1137:   m[nrl][ncl] += NR_END;
 1138:   m[nrl][ncl] -= nll;
 1139:   for (j=ncl+1; j<=nch; j++) 
 1140:     m[nrl][j]=m[nrl][j-1]+nlay;
 1141:   
 1142:   for (i=nrl+1; i<=nrh; i++) {
 1143:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 1144:     for (j=ncl+1; j<=nch; j++) 
 1145:       m[i][j]=m[i][j-1]+nlay;
 1146:   }
 1147:   return m; 
 1148:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 1149:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 1150:   */
 1151: }
 1152: 
 1153: /*************************free ma3x ************************/
 1154: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 1155: {
 1156:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 1157:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1158:   free((FREE_ARG)(m+nrl-NR_END));
 1159: }
 1160: 
 1161: /*************** function subdirf ***********/
 1162: char *subdirf(char fileres[])
 1163: {
 1164:   /* Caution optionfilefiname is hidden */
 1165:   strcpy(tmpout,optionfilefiname);
 1166:   strcat(tmpout,"/"); /* Add to the right */
 1167:   strcat(tmpout,fileres);
 1168:   return tmpout;
 1169: }
 1170: 
 1171: /*************** function subdirf2 ***********/
 1172: char *subdirf2(char fileres[], char *preop)
 1173: {
 1174:   
 1175:   /* Caution optionfilefiname is hidden */
 1176:   strcpy(tmpout,optionfilefiname);
 1177:   strcat(tmpout,"/");
 1178:   strcat(tmpout,preop);
 1179:   strcat(tmpout,fileres);
 1180:   return tmpout;
 1181: }
 1182: 
 1183: /*************** function subdirf3 ***********/
 1184: char *subdirf3(char fileres[], char *preop, char *preop2)
 1185: {
 1186:   
 1187:   /* Caution optionfilefiname is hidden */
 1188:   strcpy(tmpout,optionfilefiname);
 1189:   strcat(tmpout,"/");
 1190:   strcat(tmpout,preop);
 1191:   strcat(tmpout,preop2);
 1192:   strcat(tmpout,fileres);
 1193:   return tmpout;
 1194: }
 1195: 
 1196: char *asc_diff_time(long time_sec, char ascdiff[])
 1197: {
 1198:   long sec_left, days, hours, minutes;
 1199:   days = (time_sec) / (60*60*24);
 1200:   sec_left = (time_sec) % (60*60*24);
 1201:   hours = (sec_left) / (60*60) ;
 1202:   sec_left = (sec_left) %(60*60);
 1203:   minutes = (sec_left) /60;
 1204:   sec_left = (sec_left) % (60);
 1205:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1206:   return ascdiff;
 1207: }
 1208: 
 1209: /***************** f1dim *************************/
 1210: extern int ncom; 
 1211: extern double *pcom,*xicom;
 1212: extern double (*nrfunc)(double []); 
 1213:  
 1214: double f1dim(double x) 
 1215: { 
 1216:   int j; 
 1217:   double f;
 1218:   double *xt; 
 1219:  
 1220:   xt=vector(1,ncom); 
 1221:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1222:   f=(*nrfunc)(xt); 
 1223:   free_vector(xt,1,ncom); 
 1224:   return f; 
 1225: } 
 1226: 
 1227: /*****************brent *************************/
 1228: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1229: { 
 1230:   int iter; 
 1231:   double a,b,d,etemp;
 1232:   double fu=0,fv,fw,fx;
 1233:   double ftemp=0.;
 1234:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1235:   double e=0.0; 
 1236:  
 1237:   a=(ax < cx ? ax : cx); 
 1238:   b=(ax > cx ? ax : cx); 
 1239:   x=w=v=bx; 
 1240:   fw=fv=fx=(*f)(x); 
 1241:   for (iter=1;iter<=ITMAX;iter++) { 
 1242:     xm=0.5*(a+b); 
 1243:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1244:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1245:     printf(".");fflush(stdout);
 1246:     fprintf(ficlog,".");fflush(ficlog);
 1247: #ifdef DEBUGBRENT
 1248:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1249:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1250:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1251: #endif
 1252:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1253:       *xmin=x; 
 1254:       return fx; 
 1255:     } 
 1256:     ftemp=fu;
 1257:     if (fabs(e) > tol1) { 
 1258:       r=(x-w)*(fx-fv); 
 1259:       q=(x-v)*(fx-fw); 
 1260:       p=(x-v)*q-(x-w)*r; 
 1261:       q=2.0*(q-r); 
 1262:       if (q > 0.0) p = -p; 
 1263:       q=fabs(q); 
 1264:       etemp=e; 
 1265:       e=d; 
 1266:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1267: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1268:       else { 
 1269: 	d=p/q; 
 1270: 	u=x+d; 
 1271: 	if (u-a < tol2 || b-u < tol2) 
 1272: 	  d=SIGN(tol1,xm-x); 
 1273:       } 
 1274:     } else { 
 1275:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1276:     } 
 1277:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1278:     fu=(*f)(u); 
 1279:     if (fu <= fx) { 
 1280:       if (u >= x) a=x; else b=x; 
 1281:       SHFT(v,w,x,u) 
 1282: 	SHFT(fv,fw,fx,fu) 
 1283: 	} else { 
 1284: 	  if (u < x) a=u; else b=u; 
 1285: 	  if (fu <= fw || w == x) { 
 1286: 	    v=w; 
 1287: 	    w=u; 
 1288: 	    fv=fw; 
 1289: 	    fw=fu; 
 1290: 	  } else if (fu <= fv || v == x || v == w) { 
 1291: 	    v=u; 
 1292: 	    fv=fu; 
 1293: 	  } 
 1294: 	} 
 1295:   } 
 1296:   nrerror("Too many iterations in brent"); 
 1297:   *xmin=x; 
 1298:   return fx; 
 1299: } 
 1300: 
 1301: /****************** mnbrak ***********************/
 1302: 
 1303: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1304: 	    double (*func)(double)) 
 1305: { 
 1306:   double ulim,u,r,q, dum;
 1307:   double fu; 
 1308:  
 1309:   *fa=(*func)(*ax); 
 1310:   *fb=(*func)(*bx); 
 1311:   if (*fb > *fa) { 
 1312:     SHFT(dum,*ax,*bx,dum) 
 1313:       SHFT(dum,*fb,*fa,dum) 
 1314:       } 
 1315:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1316:   *fc=(*func)(*cx); 
 1317:   while (*fb > *fc) { /* Declining fa, fb, fc */
 1318:     r=(*bx-*ax)*(*fb-*fc); 
 1319:     q=(*bx-*cx)*(*fb-*fa); 
 1320:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1321:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
 1322:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
 1323:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
 1324:       fu=(*func)(u); 
 1325: #ifdef DEBUG
 1326:       /* f(x)=A(x-u)**2+f(u) */
 1327:       double A, fparabu; 
 1328:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
 1329:       fparabu= *fa - A*(*ax-u)*(*ax-u);
 1330:       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1331:       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1332: #endif 
 1333:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 1334:       fu=(*func)(u); 
 1335:       if (fu < *fc) { 
 1336: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1337: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
 1338: 	  } 
 1339:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 1340:       u=ulim; 
 1341:       fu=(*func)(u); 
 1342:     } else { 
 1343:       u=(*cx)+GOLD*(*cx-*bx); 
 1344:       fu=(*func)(u); 
 1345:     } 
 1346:     SHFT(*ax,*bx,*cx,u) 
 1347:       SHFT(*fa,*fb,*fc,fu) 
 1348:       } 
 1349: } 
 1350: 
 1351: /*************** linmin ************************/
 1352: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 1353: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
 1354: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 1355: the value of func at the returned location p . This is actually all accomplished by calling the
 1356: routines mnbrak and brent .*/
 1357: int ncom; 
 1358: double *pcom,*xicom;
 1359: double (*nrfunc)(double []); 
 1360:  
 1361: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1362: { 
 1363:   double brent(double ax, double bx, double cx, 
 1364: 	       double (*f)(double), double tol, double *xmin); 
 1365:   double f1dim(double x); 
 1366:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1367: 	      double *fc, double (*func)(double)); 
 1368:   int j; 
 1369:   double xx,xmin,bx,ax; 
 1370:   double fx,fb,fa;
 1371:  
 1372:   ncom=n; 
 1373:   pcom=vector(1,n); 
 1374:   xicom=vector(1,n); 
 1375:   nrfunc=func; 
 1376:   for (j=1;j<=n;j++) { 
 1377:     pcom[j]=p[j]; 
 1378:     xicom[j]=xi[j]; 
 1379:   } 
 1380:   ax=0.0; 
 1381:   xx=1.0; 
 1382:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
 1383:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
 1384: #ifdef DEBUG
 1385:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1386:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1387: #endif
 1388:   for (j=1;j<=n;j++) { 
 1389:     xi[j] *= xmin; 
 1390:     p[j] += xi[j]; 
 1391:   } 
 1392:   free_vector(xicom,1,n); 
 1393:   free_vector(pcom,1,n); 
 1394: } 
 1395: 
 1396: 
 1397: /*************** powell ************************/
 1398: /*
 1399: Minimization of a function func of n variables. Input consists of an initial starting point
 1400: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 1401: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
 1402: such that failure to decrease by more than this amount on one iteration signals doneness. On
 1403: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 1404: function value at p , and iter is the number of iterations taken. The routine linmin is used.
 1405:  */
 1406: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1407: 	    double (*func)(double [])) 
 1408: { 
 1409:   void linmin(double p[], double xi[], int n, double *fret, 
 1410: 	      double (*func)(double [])); 
 1411:   int i,ibig,j; 
 1412:   double del,t,*pt,*ptt,*xit;
 1413:   double directest;
 1414:   double fp,fptt;
 1415:   double *xits;
 1416:   int niterf, itmp;
 1417: 
 1418:   pt=vector(1,n); 
 1419:   ptt=vector(1,n); 
 1420:   xit=vector(1,n); 
 1421:   xits=vector(1,n); 
 1422:   *fret=(*func)(p); 
 1423:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1424:     rcurr_time = time(NULL);  
 1425:   for (*iter=1;;++(*iter)) { 
 1426:     fp=(*fret); 
 1427:     ibig=0; 
 1428:     del=0.0; 
 1429:     rlast_time=rcurr_time;
 1430:     /* (void) gettimeofday(&curr_time,&tzp); */
 1431:     rcurr_time = time(NULL);  
 1432:     curr_time = *localtime(&rcurr_time);
 1433:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 1434:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 1435: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 1436:    for (i=1;i<=n;i++) {
 1437:       printf(" %d %.12f",i, p[i]);
 1438:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1439:       fprintf(ficrespow," %.12lf", p[i]);
 1440:     }
 1441:     printf("\n");
 1442:     fprintf(ficlog,"\n");
 1443:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1444:     if(*iter <=3){
 1445:       tml = *localtime(&rcurr_time);
 1446:       strcpy(strcurr,asctime(&tml));
 1447:       rforecast_time=rcurr_time; 
 1448:       itmp = strlen(strcurr);
 1449:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1450: 	strcurr[itmp-1]='\0';
 1451:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1452:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1453:       for(niterf=10;niterf<=30;niterf+=10){
 1454: 	rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 1455: 	forecast_time = *localtime(&rforecast_time);
 1456: 	strcpy(strfor,asctime(&forecast_time));
 1457: 	itmp = strlen(strfor);
 1458: 	if(strfor[itmp-1]=='\n')
 1459: 	strfor[itmp-1]='\0';
 1460: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1461: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1462:       }
 1463:     }
 1464:     for (i=1;i<=n;i++) { 
 1465:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1466:       fptt=(*fret); 
 1467: #ifdef DEBUG
 1468: 	  printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1469: 	  fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1470: #endif
 1471:       printf("%d",i);fflush(stdout);
 1472:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1473:       linmin(p,xit,n,fret,func); 
 1474:       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
 1475: 				       because that direction will be replaced unless the gain del is small
 1476: 				      in comparison with the 'probable' gain, mu^2, with the last average direction.
 1477: 				      Unless the n directions are conjugate some gain in the determinant may be obtained
 1478: 				      with the new direction.
 1479: 				      */
 1480: 	del=fabs(fptt-(*fret)); 
 1481: 	ibig=i; 
 1482:       } 
 1483: #ifdef DEBUG
 1484:       printf("%d %.12e",i,(*fret));
 1485:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1486:       for (j=1;j<=n;j++) {
 1487: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1488: 	printf(" x(%d)=%.12e",j,xit[j]);
 1489: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1490:       }
 1491:       for(j=1;j<=n;j++) {
 1492: 	printf(" p(%d)=%.12e",j,p[j]);
 1493: 	fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 1494:       }
 1495:       printf("\n");
 1496:       fprintf(ficlog,"\n");
 1497: #endif
 1498:     } /* end i */
 1499:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 1500: #ifdef DEBUG
 1501:       int k[2],l;
 1502:       k[0]=1;
 1503:       k[1]=-1;
 1504:       printf("Max: %.12e",(*func)(p));
 1505:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1506:       for (j=1;j<=n;j++) {
 1507: 	printf(" %.12e",p[j]);
 1508: 	fprintf(ficlog," %.12e",p[j]);
 1509:       }
 1510:       printf("\n");
 1511:       fprintf(ficlog,"\n");
 1512:       for(l=0;l<=1;l++) {
 1513: 	for (j=1;j<=n;j++) {
 1514: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1515: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1516: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1517: 	}
 1518: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1519: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1520:       }
 1521: #endif
 1522: 
 1523: 
 1524:       free_vector(xit,1,n); 
 1525:       free_vector(xits,1,n); 
 1526:       free_vector(ptt,1,n); 
 1527:       free_vector(pt,1,n); 
 1528:       return; 
 1529:     } 
 1530:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1531:     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
 1532:       ptt[j]=2.0*p[j]-pt[j]; 
 1533:       xit[j]=p[j]-pt[j]; 
 1534:       pt[j]=p[j]; 
 1535:     } 
 1536:     fptt=(*func)(ptt); /* f_3 */
 1537:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 1538:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 1539:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 1540:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
 1541:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
 1542:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 1543:       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
 1544:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
 1545: 
 1546:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
 1547:       t= t- del*SQR(fp-fptt);
 1548:       directest = SQR(fp-2.0*(*fret)+fptt) - 2.0 * del; /* If del was big enough we change it for a new direction */
 1549: #ifdef DEBUG
 1550:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1551:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1552:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1553: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1554:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1555: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1556:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1557:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1558: #endif
 1559: #ifdef POWELLDIRECT
 1560:       if (directest < 0.0) { /* Then we use it for new direction */
 1561: #else
 1562:       if (t < 0.0) { /* Then we use it for new direction */
 1563: #endif
 1564: 	linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
 1565: 	for (j=1;j<=n;j++) { 
 1566: 	  xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
 1567: 	  xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
 1568: 	}
 1569: 	printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1570: 	fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1571: 
 1572: #ifdef DEBUG
 1573: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1574: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1575: 	for(j=1;j<=n;j++){
 1576: 	  printf(" %.12e",xit[j]);
 1577: 	  fprintf(ficlog," %.12e",xit[j]);
 1578: 	}
 1579: 	printf("\n");
 1580: 	fprintf(ficlog,"\n");
 1581: #endif
 1582:       } /* end of t negative */
 1583:     } /* end if (fptt < fp)  */
 1584:   } 
 1585: } 
 1586: 
 1587: /**** Prevalence limit (stable or period prevalence)  ****************/
 1588: 
 1589: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1590: {
 1591:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1592:      matrix by transitions matrix until convergence is reached */
 1593:   
 1594:   int i, ii,j,k;
 1595:   double min, max, maxmin, maxmax,sumnew=0.;
 1596:   /* double **matprod2(); */ /* test */
 1597:   double **out, cov[NCOVMAX+1], **pmij();
 1598:   double **newm;
 1599:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1600:   
 1601:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1602:     for (j=1;j<=nlstate+ndeath;j++){
 1603:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1604:     }
 1605:   
 1606:   cov[1]=1.;
 1607:   
 1608:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1609:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1610:     newm=savm;
 1611:     /* Covariates have to be included here again */
 1612:     cov[2]=agefin;
 1613:     
 1614:     for (k=1; k<=cptcovn;k++) {
 1615:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1616:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 1617:     }
 1618:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1619:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 1620:     /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
 1621:     
 1622:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1623:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1624:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1625:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1626:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1627:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1628:     
 1629:     savm=oldm;
 1630:     oldm=newm;
 1631:     maxmax=0.;
 1632:     for(j=1;j<=nlstate;j++){
 1633:       min=1.;
 1634:       max=0.;
 1635:       for(i=1; i<=nlstate; i++) {
 1636: 	sumnew=0;
 1637: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1638: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1639:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1640: 	max=FMAX(max,prlim[i][j]);
 1641: 	min=FMIN(min,prlim[i][j]);
 1642:       }
 1643:       maxmin=max-min;
 1644:       maxmax=FMAX(maxmax,maxmin);
 1645:     } /* j loop */
 1646:     if(maxmax < ftolpl){
 1647:       return prlim;
 1648:     }
 1649:   } /* age loop */
 1650:   return prlim; /* should not reach here */
 1651: }
 1652: 
 1653: /*************** transition probabilities ***************/ 
 1654: 
 1655: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1656: {
 1657:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1658:      computes the probability to be observed in state j being in state i by appying the
 1659:      model to the ncovmodel covariates (including constant and age).
 1660:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1661:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1662:      ncth covariate in the global vector x is given by the formula:
 1663:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1664:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1665:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1666:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1667:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1668:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1669:   */
 1670:   double s1, lnpijopii;
 1671:   /*double t34;*/
 1672:   int i,j, nc, ii, jj;
 1673: 
 1674:     for(i=1; i<= nlstate; i++){
 1675:       for(j=1; j<i;j++){
 1676: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1677: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1678: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1679: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1680: 	}
 1681: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1682: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1683:       }
 1684:       for(j=i+1; j<=nlstate+ndeath;j++){
 1685: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1686: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1687: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1688: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1689: 	}
 1690: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1691:       }
 1692:     }
 1693:     
 1694:     for(i=1; i<= nlstate; i++){
 1695:       s1=0;
 1696:       for(j=1; j<i; j++){
 1697: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1698: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1699:       }
 1700:       for(j=i+1; j<=nlstate+ndeath; j++){
 1701: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1702: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1703:       }
 1704:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1705:       ps[i][i]=1./(s1+1.);
 1706:       /* Computing other pijs */
 1707:       for(j=1; j<i; j++)
 1708: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1709:       for(j=i+1; j<=nlstate+ndeath; j++)
 1710: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1711:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1712:     } /* end i */
 1713:     
 1714:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1715:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1716: 	ps[ii][jj]=0;
 1717: 	ps[ii][ii]=1;
 1718:       }
 1719:     }
 1720:     
 1721:     
 1722:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1723:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1724:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 1725:     /*   } */
 1726:     /*   printf("\n "); */
 1727:     /* } */
 1728:     /* printf("\n ");printf("%lf ",cov[2]);*/
 1729:     /*
 1730:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1731:       goto end;*/
 1732:     return ps;
 1733: }
 1734: 
 1735: /**************** Product of 2 matrices ******************/
 1736: 
 1737: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 1738: {
 1739:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1740:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1741:   /* in, b, out are matrice of pointers which should have been initialized 
 1742:      before: only the contents of out is modified. The function returns
 1743:      a pointer to pointers identical to out */
 1744:   int i, j, k;
 1745:   for(i=nrl; i<= nrh; i++)
 1746:     for(k=ncolol; k<=ncoloh; k++){
 1747:       out[i][k]=0.;
 1748:       for(j=ncl; j<=nch; j++)
 1749:   	out[i][k] +=in[i][j]*b[j][k];
 1750:     }
 1751:   return out;
 1752: }
 1753: 
 1754: 
 1755: /************* Higher Matrix Product ***************/
 1756: 
 1757: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1758: {
 1759:   /* Computes the transition matrix starting at age 'age' over 
 1760:      'nhstepm*hstepm*stepm' months (i.e. until
 1761:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1762:      nhstepm*hstepm matrices. 
 1763:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1764:      (typically every 2 years instead of every month which is too big 
 1765:      for the memory).
 1766:      Model is determined by parameters x and covariates have to be 
 1767:      included manually here. 
 1768: 
 1769:      */
 1770: 
 1771:   int i, j, d, h, k;
 1772:   double **out, cov[NCOVMAX+1];
 1773:   double **newm;
 1774: 
 1775:   /* Hstepm could be zero and should return the unit matrix */
 1776:   for (i=1;i<=nlstate+ndeath;i++)
 1777:     for (j=1;j<=nlstate+ndeath;j++){
 1778:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1779:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1780:     }
 1781:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1782:   for(h=1; h <=nhstepm; h++){
 1783:     for(d=1; d <=hstepm; d++){
 1784:       newm=savm;
 1785:       /* Covariates have to be included here again */
 1786:       cov[1]=1.;
 1787:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1788:       for (k=1; k<=cptcovn;k++) 
 1789: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1790:       for (k=1; k<=cptcovage;k++)
 1791: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1792:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 1793: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1794: 
 1795: 
 1796:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1797:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1798:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1799: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1800:       savm=oldm;
 1801:       oldm=newm;
 1802:     }
 1803:     for(i=1; i<=nlstate+ndeath; i++)
 1804:       for(j=1;j<=nlstate+ndeath;j++) {
 1805: 	po[i][j][h]=newm[i][j];
 1806: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 1807:       }
 1808:     /*printf("h=%d ",h);*/
 1809:   } /* end h */
 1810: /*     printf("\n H=%d \n",h); */
 1811:   return po;
 1812: }
 1813: 
 1814: #ifdef NLOPT
 1815:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
 1816:   double fret;
 1817:   double *xt;
 1818:   int j;
 1819:   myfunc_data *d2 = (myfunc_data *) pd;
 1820: /* xt = (p1-1); */
 1821:   xt=vector(1,n); 
 1822:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
 1823: 
 1824:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
 1825:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 1826:   printf("Function = %.12lf ",fret);
 1827:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 1828:   printf("\n");
 1829:  free_vector(xt,1,n);
 1830:   return fret;
 1831: }
 1832: #endif
 1833: 
 1834: /*************** log-likelihood *************/
 1835: double func( double *x)
 1836: {
 1837:   int i, ii, j, k, mi, d, kk;
 1838:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1839:   double **out;
 1840:   double sw; /* Sum of weights */
 1841:   double lli; /* Individual log likelihood */
 1842:   int s1, s2;
 1843:   double bbh, survp;
 1844:   long ipmx;
 1845:   /*extern weight */
 1846:   /* We are differentiating ll according to initial status */
 1847:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1848:   /*for(i=1;i<imx;i++) 
 1849:     printf(" %d\n",s[4][i]);
 1850:   */
 1851: 
 1852:   ++countcallfunc;
 1853: 
 1854:   cov[1]=1.;
 1855: 
 1856:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1857: 
 1858:   if(mle==1){
 1859:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1860:       /* Computes the values of the ncovmodel covariates of the model
 1861: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 1862: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 1863: 	 to be observed in j being in i according to the model.
 1864:        */
 1865:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 1866: 	cov[2+k]=covar[Tvar[k]][i];
 1867:       }
 1868:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 1869: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 1870: 	 has been calculated etc */
 1871:       for(mi=1; mi<= wav[i]-1; mi++){
 1872: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1873: 	  for (j=1;j<=nlstate+ndeath;j++){
 1874: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1875: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1876: 	  }
 1877: 	for(d=0; d<dh[mi][i]; d++){
 1878: 	  newm=savm;
 1879: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1880: 	  for (kk=1; kk<=cptcovage;kk++) {
 1881: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 1882: 	  }
 1883: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1884: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1885: 	  savm=oldm;
 1886: 	  oldm=newm;
 1887: 	} /* end mult */
 1888:       
 1889: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1890: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1891: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1892: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1893: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1894: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1895: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1896: 	 * probability in order to take into account the bias as a fraction of the way
 1897: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1898: 	 * -stepm/2 to stepm/2 .
 1899: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1900: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1901: 	 */
 1902: 	s1=s[mw[mi][i]][i];
 1903: 	s2=s[mw[mi+1][i]][i];
 1904: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1905: 	/* bias bh is positive if real duration
 1906: 	 * is higher than the multiple of stepm and negative otherwise.
 1907: 	 */
 1908: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1909: 	if( s2 > nlstate){ 
 1910: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1911: 	     then the contribution to the likelihood is the probability to 
 1912: 	     die between last step unit time and current  step unit time, 
 1913: 	     which is also equal to probability to die before dh 
 1914: 	     minus probability to die before dh-stepm . 
 1915: 	     In version up to 0.92 likelihood was computed
 1916: 	as if date of death was unknown. Death was treated as any other
 1917: 	health state: the date of the interview describes the actual state
 1918: 	and not the date of a change in health state. The former idea was
 1919: 	to consider that at each interview the state was recorded
 1920: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1921: 	introduced the exact date of death then we should have modified
 1922: 	the contribution of an exact death to the likelihood. This new
 1923: 	contribution is smaller and very dependent of the step unit
 1924: 	stepm. It is no more the probability to die between last interview
 1925: 	and month of death but the probability to survive from last
 1926: 	interview up to one month before death multiplied by the
 1927: 	probability to die within a month. Thanks to Chris
 1928: 	Jackson for correcting this bug.  Former versions increased
 1929: 	mortality artificially. The bad side is that we add another loop
 1930: 	which slows down the processing. The difference can be up to 10%
 1931: 	lower mortality.
 1932: 	  */
 1933: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1934: 
 1935: 
 1936: 	} else if  (s2==-2) {
 1937: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1938: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1939: 	  /*survp += out[s1][j]; */
 1940: 	  lli= log(survp);
 1941: 	}
 1942: 	
 1943:  	else if  (s2==-4) { 
 1944: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 1945: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1946:  	  lli= log(survp); 
 1947:  	} 
 1948: 
 1949:  	else if  (s2==-5) { 
 1950:  	  for (j=1,survp=0. ; j<=2; j++)  
 1951: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1952:  	  lli= log(survp); 
 1953:  	} 
 1954: 	
 1955: 	else{
 1956: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1957: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1958: 	} 
 1959: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1960: 	/*if(lli ==000.0)*/
 1961: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1962:   	ipmx +=1;
 1963: 	sw += weight[i];
 1964: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1965:       } /* end of wave */
 1966:     } /* end of individual */
 1967:   }  else if(mle==2){
 1968:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1969:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1970:       for(mi=1; mi<= wav[i]-1; mi++){
 1971: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1972: 	  for (j=1;j<=nlstate+ndeath;j++){
 1973: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1974: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1975: 	  }
 1976: 	for(d=0; d<=dh[mi][i]; d++){
 1977: 	  newm=savm;
 1978: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1979: 	  for (kk=1; kk<=cptcovage;kk++) {
 1980: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1981: 	  }
 1982: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1983: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1984: 	  savm=oldm;
 1985: 	  oldm=newm;
 1986: 	} /* end mult */
 1987:       
 1988: 	s1=s[mw[mi][i]][i];
 1989: 	s2=s[mw[mi+1][i]][i];
 1990: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1991: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1992: 	ipmx +=1;
 1993: 	sw += weight[i];
 1994: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1995:       } /* end of wave */
 1996:     } /* end of individual */
 1997:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1998:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1999:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2000:       for(mi=1; mi<= wav[i]-1; mi++){
 2001: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2002: 	  for (j=1;j<=nlstate+ndeath;j++){
 2003: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2004: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2005: 	  }
 2006: 	for(d=0; d<dh[mi][i]; d++){
 2007: 	  newm=savm;
 2008: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2009: 	  for (kk=1; kk<=cptcovage;kk++) {
 2010: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2011: 	  }
 2012: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2013: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2014: 	  savm=oldm;
 2015: 	  oldm=newm;
 2016: 	} /* end mult */
 2017:       
 2018: 	s1=s[mw[mi][i]][i];
 2019: 	s2=s[mw[mi+1][i]][i];
 2020: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2021: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2022: 	ipmx +=1;
 2023: 	sw += weight[i];
 2024: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2025:       } /* end of wave */
 2026:     } /* end of individual */
 2027:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 2028:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2029:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2030:       for(mi=1; mi<= wav[i]-1; mi++){
 2031: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2032: 	  for (j=1;j<=nlstate+ndeath;j++){
 2033: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2034: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2035: 	  }
 2036: 	for(d=0; d<dh[mi][i]; d++){
 2037: 	  newm=savm;
 2038: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2039: 	  for (kk=1; kk<=cptcovage;kk++) {
 2040: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2041: 	  }
 2042: 	
 2043: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2044: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2045: 	  savm=oldm;
 2046: 	  oldm=newm;
 2047: 	} /* end mult */
 2048:       
 2049: 	s1=s[mw[mi][i]][i];
 2050: 	s2=s[mw[mi+1][i]][i];
 2051: 	if( s2 > nlstate){ 
 2052: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 2053: 	}else{
 2054: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2055: 	}
 2056: 	ipmx +=1;
 2057: 	sw += weight[i];
 2058: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2059: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2060:       } /* end of wave */
 2061:     } /* end of individual */
 2062:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 2063:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2064:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2065:       for(mi=1; mi<= wav[i]-1; mi++){
 2066: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2067: 	  for (j=1;j<=nlstate+ndeath;j++){
 2068: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2069: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2070: 	  }
 2071: 	for(d=0; d<dh[mi][i]; d++){
 2072: 	  newm=savm;
 2073: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2074: 	  for (kk=1; kk<=cptcovage;kk++) {
 2075: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2076: 	  }
 2077: 	
 2078: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2079: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2080: 	  savm=oldm;
 2081: 	  oldm=newm;
 2082: 	} /* end mult */
 2083:       
 2084: 	s1=s[mw[mi][i]][i];
 2085: 	s2=s[mw[mi+1][i]][i];
 2086: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2087: 	ipmx +=1;
 2088: 	sw += weight[i];
 2089: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2090: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 2091:       } /* end of wave */
 2092:     } /* end of individual */
 2093:   } /* End of if */
 2094:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2095:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2096:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2097:   return -l;
 2098: }
 2099: 
 2100: /*************** log-likelihood *************/
 2101: double funcone( double *x)
 2102: {
 2103:   /* Same as likeli but slower because of a lot of printf and if */
 2104:   int i, ii, j, k, mi, d, kk;
 2105:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 2106:   double **out;
 2107:   double lli; /* Individual log likelihood */
 2108:   double llt;
 2109:   int s1, s2;
 2110:   double bbh, survp;
 2111:   /*extern weight */
 2112:   /* We are differentiating ll according to initial status */
 2113:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 2114:   /*for(i=1;i<imx;i++) 
 2115:     printf(" %d\n",s[4][i]);
 2116:   */
 2117:   cov[1]=1.;
 2118: 
 2119:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 2120: 
 2121:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2122:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2123:     for(mi=1; mi<= wav[i]-1; mi++){
 2124:       for (ii=1;ii<=nlstate+ndeath;ii++)
 2125: 	for (j=1;j<=nlstate+ndeath;j++){
 2126: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2127: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2128: 	}
 2129:       for(d=0; d<dh[mi][i]; d++){
 2130: 	newm=savm;
 2131: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2132: 	for (kk=1; kk<=cptcovage;kk++) {
 2133: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2134: 	}
 2135: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 2136: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2137: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2138: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 2139: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 2140: 	savm=oldm;
 2141: 	oldm=newm;
 2142:       } /* end mult */
 2143:       
 2144:       s1=s[mw[mi][i]][i];
 2145:       s2=s[mw[mi+1][i]][i];
 2146:       bbh=(double)bh[mi][i]/(double)stepm; 
 2147:       /* bias is positive if real duration
 2148:        * is higher than the multiple of stepm and negative otherwise.
 2149:        */
 2150:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 2151: 	lli=log(out[s1][s2] - savm[s1][s2]);
 2152:       } else if  (s2==-2) {
 2153: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 2154: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2155: 	lli= log(survp);
 2156:       }else if (mle==1){
 2157: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2158:       } else if(mle==2){
 2159: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2160:       } else if(mle==3){  /* exponential inter-extrapolation */
 2161: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2162:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 2163: 	lli=log(out[s1][s2]); /* Original formula */
 2164:       } else{  /* mle=0 back to 1 */
 2165: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2166: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 2167:       } /* End of if */
 2168:       ipmx +=1;
 2169:       sw += weight[i];
 2170:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2171:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2172:       if(globpr){
 2173: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 2174:  %11.6f %11.6f %11.6f ", \
 2175: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 2176: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 2177: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 2178: 	  llt +=ll[k]*gipmx/gsw;
 2179: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 2180: 	}
 2181: 	fprintf(ficresilk," %10.6f\n", -llt);
 2182:       }
 2183:     } /* end of wave */
 2184:   } /* end of individual */
 2185:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2186:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2187:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2188:   if(globpr==0){ /* First time we count the contributions and weights */
 2189:     gipmx=ipmx;
 2190:     gsw=sw;
 2191:   }
 2192:   return -l;
 2193: }
 2194: 
 2195: 
 2196: /*************** function likelione ***********/
 2197: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 2198: {
 2199:   /* This routine should help understanding what is done with 
 2200:      the selection of individuals/waves and
 2201:      to check the exact contribution to the likelihood.
 2202:      Plotting could be done.
 2203:    */
 2204:   int k;
 2205: 
 2206:   if(*globpri !=0){ /* Just counts and sums, no printings */
 2207:     strcpy(fileresilk,"ilk"); 
 2208:     strcat(fileresilk,fileres);
 2209:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 2210:       printf("Problem with resultfile: %s\n", fileresilk);
 2211:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 2212:     }
 2213:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 2214:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 2215:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 2216:     for(k=1; k<=nlstate; k++) 
 2217:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 2218:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 2219:   }
 2220: 
 2221:   *fretone=(*funcone)(p);
 2222:   if(*globpri !=0){
 2223:     fclose(ficresilk);
 2224:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 2225:     fflush(fichtm); 
 2226:   } 
 2227:   return;
 2228: }
 2229: 
 2230: 
 2231: /*********** Maximum Likelihood Estimation ***************/
 2232: 
 2233: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 2234: {
 2235:   int i,j, iter=0;
 2236:   double **xi;
 2237:   double fret;
 2238:   double fretone; /* Only one call to likelihood */
 2239:   /*  char filerespow[FILENAMELENGTH];*/
 2240: 
 2241: #ifdef NLOPT
 2242:   int creturn;
 2243:   nlopt_opt opt;
 2244:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 2245:   double *lb;
 2246:   double minf; /* the minimum objective value, upon return */
 2247:   double * p1; /* Shifted parameters from 0 instead of 1 */
 2248:   myfunc_data dinst, *d = &dinst;
 2249: #endif
 2250: 
 2251: 
 2252:   xi=matrix(1,npar,1,npar);
 2253:   for (i=1;i<=npar;i++)
 2254:     for (j=1;j<=npar;j++)
 2255:       xi[i][j]=(i==j ? 1.0 : 0.0);
 2256:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 2257:   strcpy(filerespow,"pow"); 
 2258:   strcat(filerespow,fileres);
 2259:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 2260:     printf("Problem with resultfile: %s\n", filerespow);
 2261:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 2262:   }
 2263:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 2264:   for (i=1;i<=nlstate;i++)
 2265:     for(j=1;j<=nlstate+ndeath;j++)
 2266:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2267:   fprintf(ficrespow,"\n");
 2268: #ifdef POWELL
 2269:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2270: #endif
 2271: 
 2272: #ifdef NLOPT
 2273: #ifdef NEWUOA
 2274:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
 2275: #else
 2276:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
 2277: #endif
 2278:   lb=vector(0,npar-1);
 2279:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 2280:   nlopt_set_lower_bounds(opt, lb);
 2281:   nlopt_set_initial_step1(opt, 0.1);
 2282:   
 2283:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 2284:   d->function = func;
 2285:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
 2286:   nlopt_set_min_objective(opt, myfunc, d);
 2287:   nlopt_set_xtol_rel(opt, ftol);
 2288:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 2289:     printf("nlopt failed! %d\n",creturn); 
 2290:   }
 2291:   else {
 2292:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
 2293:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 2294:     iter=1; /* not equal */
 2295:   }
 2296:   nlopt_destroy(opt);
 2297: #endif
 2298:   free_matrix(xi,1,npar,1,npar);
 2299:   fclose(ficrespow);
 2300:   printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2301:   fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2302:   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2303: 
 2304: }
 2305: 
 2306: /**** Computes Hessian and covariance matrix ***/
 2307: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2308: {
 2309:   double  **a,**y,*x,pd;
 2310:   double **hess;
 2311:   int i, j;
 2312:   int *indx;
 2313: 
 2314:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2315:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2316:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2317:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2318:   double gompertz(double p[]);
 2319:   hess=matrix(1,npar,1,npar);
 2320: 
 2321:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2322:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2323:   for (i=1;i<=npar;i++){
 2324:     printf("%d",i);fflush(stdout);
 2325:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2326:    
 2327:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2328:     
 2329:     /*  printf(" %f ",p[i]);
 2330: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2331:   }
 2332:   
 2333:   for (i=1;i<=npar;i++) {
 2334:     for (j=1;j<=npar;j++)  {
 2335:       if (j>i) { 
 2336: 	printf(".%d%d",i,j);fflush(stdout);
 2337: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2338: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2339: 	
 2340: 	hess[j][i]=hess[i][j];    
 2341: 	/*printf(" %lf ",hess[i][j]);*/
 2342:       }
 2343:     }
 2344:   }
 2345:   printf("\n");
 2346:   fprintf(ficlog,"\n");
 2347: 
 2348:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2349:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2350:   
 2351:   a=matrix(1,npar,1,npar);
 2352:   y=matrix(1,npar,1,npar);
 2353:   x=vector(1,npar);
 2354:   indx=ivector(1,npar);
 2355:   for (i=1;i<=npar;i++)
 2356:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2357:   ludcmp(a,npar,indx,&pd);
 2358: 
 2359:   for (j=1;j<=npar;j++) {
 2360:     for (i=1;i<=npar;i++) x[i]=0;
 2361:     x[j]=1;
 2362:     lubksb(a,npar,indx,x);
 2363:     for (i=1;i<=npar;i++){ 
 2364:       matcov[i][j]=x[i];
 2365:     }
 2366:   }
 2367: 
 2368:   printf("\n#Hessian matrix#\n");
 2369:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2370:   for (i=1;i<=npar;i++) { 
 2371:     for (j=1;j<=npar;j++) { 
 2372:       printf("%.3e ",hess[i][j]);
 2373:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2374:     }
 2375:     printf("\n");
 2376:     fprintf(ficlog,"\n");
 2377:   }
 2378: 
 2379:   /* Recompute Inverse */
 2380:   for (i=1;i<=npar;i++)
 2381:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2382:   ludcmp(a,npar,indx,&pd);
 2383: 
 2384:   /*  printf("\n#Hessian matrix recomputed#\n");
 2385: 
 2386:   for (j=1;j<=npar;j++) {
 2387:     for (i=1;i<=npar;i++) x[i]=0;
 2388:     x[j]=1;
 2389:     lubksb(a,npar,indx,x);
 2390:     for (i=1;i<=npar;i++){ 
 2391:       y[i][j]=x[i];
 2392:       printf("%.3e ",y[i][j]);
 2393:       fprintf(ficlog,"%.3e ",y[i][j]);
 2394:     }
 2395:     printf("\n");
 2396:     fprintf(ficlog,"\n");
 2397:   }
 2398:   */
 2399: 
 2400:   free_matrix(a,1,npar,1,npar);
 2401:   free_matrix(y,1,npar,1,npar);
 2402:   free_vector(x,1,npar);
 2403:   free_ivector(indx,1,npar);
 2404:   free_matrix(hess,1,npar,1,npar);
 2405: 
 2406: 
 2407: }
 2408: 
 2409: /*************** hessian matrix ****************/
 2410: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2411: {
 2412:   int i;
 2413:   int l=1, lmax=20;
 2414:   double k1,k2;
 2415:   double p2[MAXPARM+1]; /* identical to x */
 2416:   double res;
 2417:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2418:   double fx;
 2419:   int k=0,kmax=10;
 2420:   double l1;
 2421: 
 2422:   fx=func(x);
 2423:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2424:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2425:     l1=pow(10,l);
 2426:     delts=delt;
 2427:     for(k=1 ; k <kmax; k=k+1){
 2428:       delt = delta*(l1*k);
 2429:       p2[theta]=x[theta] +delt;
 2430:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2431:       p2[theta]=x[theta]-delt;
 2432:       k2=func(p2)-fx;
 2433:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2434:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2435:       
 2436: #ifdef DEBUGHESS
 2437:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2438:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2439: #endif
 2440:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2441:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2442: 	k=kmax;
 2443:       }
 2444:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2445: 	k=kmax; l=lmax*10;
 2446:       }
 2447:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2448: 	delts=delt;
 2449:       }
 2450:     }
 2451:   }
 2452:   delti[theta]=delts;
 2453:   return res; 
 2454:   
 2455: }
 2456: 
 2457: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2458: {
 2459:   int i;
 2460:   int l=1, lmax=20;
 2461:   double k1,k2,k3,k4,res,fx;
 2462:   double p2[MAXPARM+1];
 2463:   int k;
 2464: 
 2465:   fx=func(x);
 2466:   for (k=1; k<=2; k++) {
 2467:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2468:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2469:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2470:     k1=func(p2)-fx;
 2471:   
 2472:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2473:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2474:     k2=func(p2)-fx;
 2475:   
 2476:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2477:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2478:     k3=func(p2)-fx;
 2479:   
 2480:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2481:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2482:     k4=func(p2)-fx;
 2483:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2484: #ifdef DEBUG
 2485:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2486:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2487: #endif
 2488:   }
 2489:   return res;
 2490: }
 2491: 
 2492: /************** Inverse of matrix **************/
 2493: void ludcmp(double **a, int n, int *indx, double *d) 
 2494: { 
 2495:   int i,imax,j,k; 
 2496:   double big,dum,sum,temp; 
 2497:   double *vv; 
 2498:  
 2499:   vv=vector(1,n); 
 2500:   *d=1.0; 
 2501:   for (i=1;i<=n;i++) { 
 2502:     big=0.0; 
 2503:     for (j=1;j<=n;j++) 
 2504:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2505:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2506:     vv[i]=1.0/big; 
 2507:   } 
 2508:   for (j=1;j<=n;j++) { 
 2509:     for (i=1;i<j;i++) { 
 2510:       sum=a[i][j]; 
 2511:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2512:       a[i][j]=sum; 
 2513:     } 
 2514:     big=0.0; 
 2515:     for (i=j;i<=n;i++) { 
 2516:       sum=a[i][j]; 
 2517:       for (k=1;k<j;k++) 
 2518: 	sum -= a[i][k]*a[k][j]; 
 2519:       a[i][j]=sum; 
 2520:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2521: 	big=dum; 
 2522: 	imax=i; 
 2523:       } 
 2524:     } 
 2525:     if (j != imax) { 
 2526:       for (k=1;k<=n;k++) { 
 2527: 	dum=a[imax][k]; 
 2528: 	a[imax][k]=a[j][k]; 
 2529: 	a[j][k]=dum; 
 2530:       } 
 2531:       *d = -(*d); 
 2532:       vv[imax]=vv[j]; 
 2533:     } 
 2534:     indx[j]=imax; 
 2535:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2536:     if (j != n) { 
 2537:       dum=1.0/(a[j][j]); 
 2538:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2539:     } 
 2540:   } 
 2541:   free_vector(vv,1,n);  /* Doesn't work */
 2542: ;
 2543: } 
 2544: 
 2545: void lubksb(double **a, int n, int *indx, double b[]) 
 2546: { 
 2547:   int i,ii=0,ip,j; 
 2548:   double sum; 
 2549:  
 2550:   for (i=1;i<=n;i++) { 
 2551:     ip=indx[i]; 
 2552:     sum=b[ip]; 
 2553:     b[ip]=b[i]; 
 2554:     if (ii) 
 2555:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2556:     else if (sum) ii=i; 
 2557:     b[i]=sum; 
 2558:   } 
 2559:   for (i=n;i>=1;i--) { 
 2560:     sum=b[i]; 
 2561:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2562:     b[i]=sum/a[i][i]; 
 2563:   } 
 2564: } 
 2565: 
 2566: void pstamp(FILE *fichier)
 2567: {
 2568:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2569: }
 2570: 
 2571: /************ Frequencies ********************/
 2572: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2573: {  /* Some frequencies */
 2574:   
 2575:   int i, m, jk, j1, bool, z1,j;
 2576:   int first;
 2577:   double ***freq; /* Frequencies */
 2578:   double *pp, **prop;
 2579:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2580:   char fileresp[FILENAMELENGTH];
 2581:   
 2582:   pp=vector(1,nlstate);
 2583:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2584:   strcpy(fileresp,"p");
 2585:   strcat(fileresp,fileres);
 2586:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2587:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2588:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2589:     exit(0);
 2590:   }
 2591:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2592:   j1=0;
 2593:   
 2594:   j=cptcoveff;
 2595:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2596: 
 2597:   first=1;
 2598: 
 2599:   /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
 2600:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
 2601:   /*    j1++; */
 2602:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2603:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2604: 	scanf("%d", i);*/
 2605:       for (i=-5; i<=nlstate+ndeath; i++)  
 2606: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2607: 	  for(m=iagemin; m <= iagemax+3; m++)
 2608: 	    freq[i][jk][m]=0;
 2609:       
 2610:       for (i=1; i<=nlstate; i++)  
 2611: 	for(m=iagemin; m <= iagemax+3; m++)
 2612: 	  prop[i][m]=0;
 2613:       
 2614:       dateintsum=0;
 2615:       k2cpt=0;
 2616:       for (i=1; i<=imx; i++) {
 2617: 	bool=1;
 2618: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2619: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2620:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 2621:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2622:               bool=0;
 2623:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 2624:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 2625:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 2626:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 2627:             } 
 2628: 	}
 2629:  
 2630: 	if (bool==1){
 2631: 	  for(m=firstpass; m<=lastpass; m++){
 2632: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2633: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2634: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2635: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2636: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2637: 	      if (m<lastpass) {
 2638: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2639: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2640: 	      }
 2641: 	      
 2642: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2643: 		dateintsum=dateintsum+k2;
 2644: 		k2cpt++;
 2645: 	      }
 2646: 	      /*}*/
 2647: 	  }
 2648: 	}
 2649:       } /* end i */
 2650:        
 2651:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2652:       pstamp(ficresp);
 2653:       if  (cptcovn>0) {
 2654: 	fprintf(ficresp, "\n#********** Variable "); 
 2655: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2656: 	fprintf(ficresp, "**********\n#");
 2657: 	fprintf(ficlog, "\n#********** Variable "); 
 2658: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2659: 	fprintf(ficlog, "**********\n#");
 2660:       }
 2661:       for(i=1; i<=nlstate;i++) 
 2662: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2663:       fprintf(ficresp, "\n");
 2664:       
 2665:       for(i=iagemin; i <= iagemax+3; i++){
 2666: 	if(i==iagemax+3){
 2667: 	  fprintf(ficlog,"Total");
 2668: 	}else{
 2669: 	  if(first==1){
 2670: 	    first=0;
 2671: 	    printf("See log file for details...\n");
 2672: 	  }
 2673: 	  fprintf(ficlog,"Age %d", i);
 2674: 	}
 2675: 	for(jk=1; jk <=nlstate ; jk++){
 2676: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2677: 	    pp[jk] += freq[jk][m][i]; 
 2678: 	}
 2679: 	for(jk=1; jk <=nlstate ; jk++){
 2680: 	  for(m=-1, pos=0; m <=0 ; m++)
 2681: 	    pos += freq[jk][m][i];
 2682: 	  if(pp[jk]>=1.e-10){
 2683: 	    if(first==1){
 2684: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2685: 	    }
 2686: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2687: 	  }else{
 2688: 	    if(first==1)
 2689: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2690: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2691: 	  }
 2692: 	}
 2693: 
 2694: 	for(jk=1; jk <=nlstate ; jk++){
 2695: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2696: 	    pp[jk] += freq[jk][m][i];
 2697: 	}	
 2698: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2699: 	  pos += pp[jk];
 2700: 	  posprop += prop[jk][i];
 2701: 	}
 2702: 	for(jk=1; jk <=nlstate ; jk++){
 2703: 	  if(pos>=1.e-5){
 2704: 	    if(first==1)
 2705: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2706: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2707: 	  }else{
 2708: 	    if(first==1)
 2709: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2710: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2711: 	  }
 2712: 	  if( i <= iagemax){
 2713: 	    if(pos>=1.e-5){
 2714: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2715: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2716: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2717: 	    }
 2718: 	    else
 2719: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2720: 	  }
 2721: 	}
 2722: 	
 2723: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2724: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2725: 	    if(freq[jk][m][i] !=0 ) {
 2726: 	    if(first==1)
 2727: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2728: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2729: 	    }
 2730: 	if(i <= iagemax)
 2731: 	  fprintf(ficresp,"\n");
 2732: 	if(first==1)
 2733: 	  printf("Others in log...\n");
 2734: 	fprintf(ficlog,"\n");
 2735:       }
 2736:       /*}*/
 2737:   }
 2738:   dateintmean=dateintsum/k2cpt; 
 2739:  
 2740:   fclose(ficresp);
 2741:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2742:   free_vector(pp,1,nlstate);
 2743:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2744:   /* End of Freq */
 2745: }
 2746: 
 2747: /************ Prevalence ********************/
 2748: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2749: {  
 2750:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2751:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2752:      We still use firstpass and lastpass as another selection.
 2753:   */
 2754:  
 2755:   int i, m, jk, j1, bool, z1,j;
 2756: 
 2757:   double **prop;
 2758:   double posprop; 
 2759:   double  y2; /* in fractional years */
 2760:   int iagemin, iagemax;
 2761:   int first; /** to stop verbosity which is redirected to log file */
 2762: 
 2763:   iagemin= (int) agemin;
 2764:   iagemax= (int) agemax;
 2765:   /*pp=vector(1,nlstate);*/
 2766:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2767:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2768:   j1=0;
 2769:   
 2770:   /*j=cptcoveff;*/
 2771:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2772:   
 2773:   first=1;
 2774:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 2775:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 2776:       j1++;*/
 2777:       
 2778:       for (i=1; i<=nlstate; i++)  
 2779: 	for(m=iagemin; m <= iagemax+3; m++)
 2780: 	  prop[i][m]=0.0;
 2781:      
 2782:       for (i=1; i<=imx; i++) { /* Each individual */
 2783: 	bool=1;
 2784: 	if  (cptcovn>0) {
 2785: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2786: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2787: 	      bool=0;
 2788: 	} 
 2789: 	if (bool==1) { 
 2790: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2791: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2792: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2793: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2794: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2795: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2796:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2797: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2798:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2799:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2800:  	      } 
 2801: 	    }
 2802: 	  } /* end selection of waves */
 2803: 	}
 2804:       }
 2805:       for(i=iagemin; i <= iagemax+3; i++){  
 2806:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2807:  	  posprop += prop[jk][i]; 
 2808:  	} 
 2809: 	
 2810:  	for(jk=1; jk <=nlstate ; jk++){	    
 2811:  	  if( i <=  iagemax){ 
 2812:  	    if(posprop>=1.e-5){ 
 2813:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2814:  	    } else{
 2815: 	      if(first==1){
 2816: 		first=0;
 2817: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 2818: 	      }
 2819: 	    }
 2820:  	  } 
 2821:  	}/* end jk */ 
 2822:       }/* end i */ 
 2823:     /*} *//* end i1 */
 2824:   } /* end j1 */
 2825:   
 2826:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2827:   /*free_vector(pp,1,nlstate);*/
 2828:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2829: }  /* End of prevalence */
 2830: 
 2831: /************* Waves Concatenation ***************/
 2832: 
 2833: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2834: {
 2835:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2836:      Death is a valid wave (if date is known).
 2837:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2838:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2839:      and mw[mi+1][i]. dh depends on stepm.
 2840:      */
 2841: 
 2842:   int i, mi, m;
 2843:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2844:      double sum=0., jmean=0.;*/
 2845:   int first;
 2846:   int j, k=0,jk, ju, jl;
 2847:   double sum=0.;
 2848:   first=0;
 2849:   jmin=100000;
 2850:   jmax=-1;
 2851:   jmean=0.;
 2852:   for(i=1; i<=imx; i++){
 2853:     mi=0;
 2854:     m=firstpass;
 2855:     while(s[m][i] <= nlstate){
 2856:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2857: 	mw[++mi][i]=m;
 2858:       if(m >=lastpass)
 2859: 	break;
 2860:       else
 2861: 	m++;
 2862:     }/* end while */
 2863:     if (s[m][i] > nlstate){
 2864:       mi++;	/* Death is another wave */
 2865:       /* if(mi==0)  never been interviewed correctly before death */
 2866: 	 /* Only death is a correct wave */
 2867:       mw[mi][i]=m;
 2868:     }
 2869: 
 2870:     wav[i]=mi;
 2871:     if(mi==0){
 2872:       nbwarn++;
 2873:       if(first==0){
 2874: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2875: 	first=1;
 2876:       }
 2877:       if(first==1){
 2878: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2879:       }
 2880:     } /* end mi==0 */
 2881:   } /* End individuals */
 2882: 
 2883:   for(i=1; i<=imx; i++){
 2884:     for(mi=1; mi<wav[i];mi++){
 2885:       if (stepm <=0)
 2886: 	dh[mi][i]=1;
 2887:       else{
 2888: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2889: 	  if (agedc[i] < 2*AGESUP) {
 2890: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2891: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2892: 	    else if(j<0){
 2893: 	      nberr++;
 2894: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2895: 	      j=1; /* Temporary Dangerous patch */
 2896: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2897: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2898: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2899: 	    }
 2900: 	    k=k+1;
 2901: 	    if (j >= jmax){
 2902: 	      jmax=j;
 2903: 	      ijmax=i;
 2904: 	    }
 2905: 	    if (j <= jmin){
 2906: 	      jmin=j;
 2907: 	      ijmin=i;
 2908: 	    }
 2909: 	    sum=sum+j;
 2910: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2911: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2912: 	  }
 2913: 	}
 2914: 	else{
 2915: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2916: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2917: 
 2918: 	  k=k+1;
 2919: 	  if (j >= jmax) {
 2920: 	    jmax=j;
 2921: 	    ijmax=i;
 2922: 	  }
 2923: 	  else if (j <= jmin){
 2924: 	    jmin=j;
 2925: 	    ijmin=i;
 2926: 	  }
 2927: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2928: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2929: 	  if(j<0){
 2930: 	    nberr++;
 2931: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2932: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2933: 	  }
 2934: 	  sum=sum+j;
 2935: 	}
 2936: 	jk= j/stepm;
 2937: 	jl= j -jk*stepm;
 2938: 	ju= j -(jk+1)*stepm;
 2939: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2940: 	  if(jl==0){
 2941: 	    dh[mi][i]=jk;
 2942: 	    bh[mi][i]=0;
 2943: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2944: 		  * to avoid the price of an extra matrix product in likelihood */
 2945: 	    dh[mi][i]=jk+1;
 2946: 	    bh[mi][i]=ju;
 2947: 	  }
 2948: 	}else{
 2949: 	  if(jl <= -ju){
 2950: 	    dh[mi][i]=jk;
 2951: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2952: 				 * is higher than the multiple of stepm and negative otherwise.
 2953: 				 */
 2954: 	  }
 2955: 	  else{
 2956: 	    dh[mi][i]=jk+1;
 2957: 	    bh[mi][i]=ju;
 2958: 	  }
 2959: 	  if(dh[mi][i]==0){
 2960: 	    dh[mi][i]=1; /* At least one step */
 2961: 	    bh[mi][i]=ju; /* At least one step */
 2962: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2963: 	  }
 2964: 	} /* end if mle */
 2965:       }
 2966:     } /* end wave */
 2967:   }
 2968:   jmean=sum/k;
 2969:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 2970:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 2971:  }
 2972: 
 2973: /*********** Tricode ****************************/
 2974: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 2975: {
 2976:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 2977:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 2978:    * Boring subroutine which should only output nbcode[Tvar[j]][k]
 2979:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 2980:    * nbcode[Tvar[j]][1]= 
 2981:   */
 2982: 
 2983:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 2984:   int modmaxcovj=0; /* Modality max of covariates j */
 2985:   int cptcode=0; /* Modality max of covariates j */
 2986:   int modmincovj=0; /* Modality min of covariates j */
 2987: 
 2988: 
 2989:   cptcoveff=0; 
 2990:  
 2991:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
 2992:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 2993: 
 2994:   /* Loop on covariates without age and products */
 2995:   for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
 2996:     for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 2997: 			       modality of this covariate Vj*/ 
 2998:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 2999: 				    * If product of Vn*Vm, still boolean *:
 3000: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 3001: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 3002:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 3003: 				      modality of the nth covariate of individual i. */
 3004:       if (ij > modmaxcovj)
 3005:         modmaxcovj=ij; 
 3006:       else if (ij < modmincovj) 
 3007: 	modmincovj=ij; 
 3008:       if ((ij < -1) && (ij > NCOVMAX)){
 3009: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 3010: 	exit(1);
 3011:       }else
 3012:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 3013:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 3014:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 3015:       /* getting the maximum value of the modality of the covariate
 3016: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 3017: 	 female is 1, then modmaxcovj=1.*/
 3018:     }
 3019:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 3020:     cptcode=modmaxcovj;
 3021:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 3022:    /*for (i=0; i<=cptcode; i++) {*/
 3023:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 3024:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
 3025:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 3026: 	ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
 3027:       }
 3028:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 3029: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 3030:     } /* Ndum[-1] number of undefined modalities */
 3031: 
 3032:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 3033:     /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 3034:     /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
 3035:        modmincovj=3; modmaxcovj = 7;
 3036:        There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 3037:        which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 3038:        variables V1_1 and V1_2.
 3039:        nbcode[Tvar[j]][ij]=k;
 3040:        nbcode[Tvar[j]][1]=0;
 3041:        nbcode[Tvar[j]][2]=1;
 3042:        nbcode[Tvar[j]][3]=2;
 3043:     */
 3044:     ij=1; /* ij is similar to i but can jumps over null modalities */
 3045:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
 3046:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
 3047: 	/*recode from 0 */
 3048: 	if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 3049: 	  nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 3050: 				     k is a modality. If we have model=V1+V1*sex 
 3051: 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 3052: 	  ij++;
 3053: 	}
 3054: 	if (ij > ncodemax[j]) break; 
 3055:       }  /* end of loop on */
 3056:     } /* end of loop on modality */ 
 3057:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 3058:   
 3059:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 3060:   
 3061:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
 3062:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 3063:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 3064:    Ndum[ij]++; 
 3065:  } 
 3066: 
 3067:  ij=1;
 3068:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 3069:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 3070:    if((Ndum[i]!=0) && (i<=ncovcol)){
 3071:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 3072:      Tvaraff[ij]=i; /*For printing (unclear) */
 3073:      ij++;
 3074:    }else
 3075:        Tvaraff[ij]=0;
 3076:  }
 3077:  ij--;
 3078:  cptcoveff=ij; /*Number of total covariates*/
 3079: 
 3080: }
 3081: 
 3082: 
 3083: /*********** Health Expectancies ****************/
 3084: 
 3085: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 3086: 
 3087: {
 3088:   /* Health expectancies, no variances */
 3089:   int i, j, nhstepm, hstepm, h, nstepm;
 3090:   int nhstepma, nstepma; /* Decreasing with age */
 3091:   double age, agelim, hf;
 3092:   double ***p3mat;
 3093:   double eip;
 3094: 
 3095:   pstamp(ficreseij);
 3096:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 3097:   fprintf(ficreseij,"# Age");
 3098:   for(i=1; i<=nlstate;i++){
 3099:     for(j=1; j<=nlstate;j++){
 3100:       fprintf(ficreseij," e%1d%1d ",i,j);
 3101:     }
 3102:     fprintf(ficreseij," e%1d. ",i);
 3103:   }
 3104:   fprintf(ficreseij,"\n");
 3105: 
 3106:   
 3107:   if(estepm < stepm){
 3108:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3109:   }
 3110:   else  hstepm=estepm;   
 3111:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3112:    * This is mainly to measure the difference between two models: for example
 3113:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3114:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3115:    * progression in between and thus overestimating or underestimating according
 3116:    * to the curvature of the survival function. If, for the same date, we 
 3117:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3118:    * to compare the new estimate of Life expectancy with the same linear 
 3119:    * hypothesis. A more precise result, taking into account a more precise
 3120:    * curvature will be obtained if estepm is as small as stepm. */
 3121: 
 3122:   /* For example we decided to compute the life expectancy with the smallest unit */
 3123:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3124:      nhstepm is the number of hstepm from age to agelim 
 3125:      nstepm is the number of stepm from age to agelin. 
 3126:      Look at hpijx to understand the reason of that which relies in memory size
 3127:      and note for a fixed period like estepm months */
 3128:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3129:      survival function given by stepm (the optimization length). Unfortunately it
 3130:      means that if the survival funtion is printed only each two years of age and if
 3131:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3132:      results. So we changed our mind and took the option of the best precision.
 3133:   */
 3134:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3135: 
 3136:   agelim=AGESUP;
 3137:   /* If stepm=6 months */
 3138:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 3139:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 3140:     
 3141: /* nhstepm age range expressed in number of stepm */
 3142:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3143:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3144:   /* if (stepm >= YEARM) hstepm=1;*/
 3145:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3146:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3147: 
 3148:   for (age=bage; age<=fage; age ++){ 
 3149:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3150:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3151:     /* if (stepm >= YEARM) hstepm=1;*/
 3152:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3153: 
 3154:     /* If stepm=6 months */
 3155:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3156:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3157:     
 3158:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3159:     
 3160:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3161:     
 3162:     printf("%d|",(int)age);fflush(stdout);
 3163:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3164:     
 3165:     /* Computing expectancies */
 3166:     for(i=1; i<=nlstate;i++)
 3167:       for(j=1; j<=nlstate;j++)
 3168: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3169: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 3170: 	  
 3171: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3172: 
 3173: 	}
 3174: 
 3175:     fprintf(ficreseij,"%3.0f",age );
 3176:     for(i=1; i<=nlstate;i++){
 3177:       eip=0;
 3178:       for(j=1; j<=nlstate;j++){
 3179: 	eip +=eij[i][j][(int)age];
 3180: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 3181:       }
 3182:       fprintf(ficreseij,"%9.4f", eip );
 3183:     }
 3184:     fprintf(ficreseij,"\n");
 3185:     
 3186:   }
 3187:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3188:   printf("\n");
 3189:   fprintf(ficlog,"\n");
 3190:   
 3191: }
 3192: 
 3193: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 3194: 
 3195: {
 3196:   /* Covariances of health expectancies eij and of total life expectancies according
 3197:    to initial status i, ei. .
 3198:   */
 3199:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 3200:   int nhstepma, nstepma; /* Decreasing with age */
 3201:   double age, agelim, hf;
 3202:   double ***p3matp, ***p3matm, ***varhe;
 3203:   double **dnewm,**doldm;
 3204:   double *xp, *xm;
 3205:   double **gp, **gm;
 3206:   double ***gradg, ***trgradg;
 3207:   int theta;
 3208: 
 3209:   double eip, vip;
 3210: 
 3211:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 3212:   xp=vector(1,npar);
 3213:   xm=vector(1,npar);
 3214:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 3215:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 3216:   
 3217:   pstamp(ficresstdeij);
 3218:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 3219:   fprintf(ficresstdeij,"# Age");
 3220:   for(i=1; i<=nlstate;i++){
 3221:     for(j=1; j<=nlstate;j++)
 3222:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 3223:     fprintf(ficresstdeij," e%1d. ",i);
 3224:   }
 3225:   fprintf(ficresstdeij,"\n");
 3226: 
 3227:   pstamp(ficrescveij);
 3228:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 3229:   fprintf(ficrescveij,"# Age");
 3230:   for(i=1; i<=nlstate;i++)
 3231:     for(j=1; j<=nlstate;j++){
 3232:       cptj= (j-1)*nlstate+i;
 3233:       for(i2=1; i2<=nlstate;i2++)
 3234: 	for(j2=1; j2<=nlstate;j2++){
 3235: 	  cptj2= (j2-1)*nlstate+i2;
 3236: 	  if(cptj2 <= cptj)
 3237: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 3238: 	}
 3239:     }
 3240:   fprintf(ficrescveij,"\n");
 3241:   
 3242:   if(estepm < stepm){
 3243:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3244:   }
 3245:   else  hstepm=estepm;   
 3246:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3247:    * This is mainly to measure the difference between two models: for example
 3248:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3249:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3250:    * progression in between and thus overestimating or underestimating according
 3251:    * to the curvature of the survival function. If, for the same date, we 
 3252:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3253:    * to compare the new estimate of Life expectancy with the same linear 
 3254:    * hypothesis. A more precise result, taking into account a more precise
 3255:    * curvature will be obtained if estepm is as small as stepm. */
 3256: 
 3257:   /* For example we decided to compute the life expectancy with the smallest unit */
 3258:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3259:      nhstepm is the number of hstepm from age to agelim 
 3260:      nstepm is the number of stepm from age to agelin. 
 3261:      Look at hpijx to understand the reason of that which relies in memory size
 3262:      and note for a fixed period like estepm months */
 3263:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3264:      survival function given by stepm (the optimization length). Unfortunately it
 3265:      means that if the survival funtion is printed only each two years of age and if
 3266:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3267:      results. So we changed our mind and took the option of the best precision.
 3268:   */
 3269:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3270: 
 3271:   /* If stepm=6 months */
 3272:   /* nhstepm age range expressed in number of stepm */
 3273:   agelim=AGESUP;
 3274:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 3275:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3276:   /* if (stepm >= YEARM) hstepm=1;*/
 3277:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3278:   
 3279:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3280:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3281:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 3282:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 3283:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 3284:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 3285: 
 3286:   for (age=bage; age<=fage; age ++){ 
 3287:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3288:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3289:     /* if (stepm >= YEARM) hstepm=1;*/
 3290:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3291: 
 3292:     /* If stepm=6 months */
 3293:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3294:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3295:     
 3296:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3297: 
 3298:     /* Computing  Variances of health expectancies */
 3299:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3300:        decrease memory allocation */
 3301:     for(theta=1; theta <=npar; theta++){
 3302:       for(i=1; i<=npar; i++){ 
 3303: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3304: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3305:       }
 3306:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3307:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3308:   
 3309:       for(j=1; j<= nlstate; j++){
 3310: 	for(i=1; i<=nlstate; i++){
 3311: 	  for(h=0; h<=nhstepm-1; h++){
 3312: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3313: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3314: 	  }
 3315: 	}
 3316:       }
 3317:      
 3318:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3319: 	for(h=0; h<=nhstepm-1; h++){
 3320: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3321: 	}
 3322:     }/* End theta */
 3323:     
 3324:     
 3325:     for(h=0; h<=nhstepm-1; h++)
 3326:       for(j=1; j<=nlstate*nlstate;j++)
 3327: 	for(theta=1; theta <=npar; theta++)
 3328: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3329:     
 3330: 
 3331:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3332:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3333: 	varhe[ij][ji][(int)age] =0.;
 3334: 
 3335:      printf("%d|",(int)age);fflush(stdout);
 3336:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3337:      for(h=0;h<=nhstepm-1;h++){
 3338:       for(k=0;k<=nhstepm-1;k++){
 3339: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3340: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3341: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3342: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3343: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3344:       }
 3345:     }
 3346: 
 3347:     /* Computing expectancies */
 3348:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3349:     for(i=1; i<=nlstate;i++)
 3350:       for(j=1; j<=nlstate;j++)
 3351: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3352: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3353: 	  
 3354: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3355: 
 3356: 	}
 3357: 
 3358:     fprintf(ficresstdeij,"%3.0f",age );
 3359:     for(i=1; i<=nlstate;i++){
 3360:       eip=0.;
 3361:       vip=0.;
 3362:       for(j=1; j<=nlstate;j++){
 3363: 	eip += eij[i][j][(int)age];
 3364: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3365: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3366: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3367:       }
 3368:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3369:     }
 3370:     fprintf(ficresstdeij,"\n");
 3371: 
 3372:     fprintf(ficrescveij,"%3.0f",age );
 3373:     for(i=1; i<=nlstate;i++)
 3374:       for(j=1; j<=nlstate;j++){
 3375: 	cptj= (j-1)*nlstate+i;
 3376: 	for(i2=1; i2<=nlstate;i2++)
 3377: 	  for(j2=1; j2<=nlstate;j2++){
 3378: 	    cptj2= (j2-1)*nlstate+i2;
 3379: 	    if(cptj2 <= cptj)
 3380: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3381: 	  }
 3382:       }
 3383:     fprintf(ficrescveij,"\n");
 3384:    
 3385:   }
 3386:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3387:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3388:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3389:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3390:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3391:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3392:   printf("\n");
 3393:   fprintf(ficlog,"\n");
 3394: 
 3395:   free_vector(xm,1,npar);
 3396:   free_vector(xp,1,npar);
 3397:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3398:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3399:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3400: }
 3401: 
 3402: /************ Variance ******************/
 3403: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3404: {
 3405:   /* Variance of health expectancies */
 3406:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3407:   /* double **newm;*/
 3408:   /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
 3409:   
 3410:   int movingaverage();
 3411:   double **dnewm,**doldm;
 3412:   double **dnewmp,**doldmp;
 3413:   int i, j, nhstepm, hstepm, h, nstepm ;
 3414:   int k;
 3415:   double *xp;
 3416:   double **gp, **gm;  /* for var eij */
 3417:   double ***gradg, ***trgradg; /*for var eij */
 3418:   double **gradgp, **trgradgp; /* for var p point j */
 3419:   double *gpp, *gmp; /* for var p point j */
 3420:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3421:   double ***p3mat;
 3422:   double age,agelim, hf;
 3423:   double ***mobaverage;
 3424:   int theta;
 3425:   char digit[4];
 3426:   char digitp[25];
 3427: 
 3428:   char fileresprobmorprev[FILENAMELENGTH];
 3429: 
 3430:   if(popbased==1){
 3431:     if(mobilav!=0)
 3432:       strcpy(digitp,"-populbased-mobilav-");
 3433:     else strcpy(digitp,"-populbased-nomobil-");
 3434:   }
 3435:   else 
 3436:     strcpy(digitp,"-stablbased-");
 3437: 
 3438:   if (mobilav!=0) {
 3439:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3440:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3441:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3442:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3443:     }
 3444:   }
 3445: 
 3446:   strcpy(fileresprobmorprev,"prmorprev"); 
 3447:   sprintf(digit,"%-d",ij);
 3448:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3449:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3450:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3451:   strcat(fileresprobmorprev,fileres);
 3452:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3453:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3454:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3455:   }
 3456:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3457:  
 3458:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3459:   pstamp(ficresprobmorprev);
 3460:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3461:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3462:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3463:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3464:     for(i=1; i<=nlstate;i++)
 3465:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3466:   }  
 3467:   fprintf(ficresprobmorprev,"\n");
 3468:   fprintf(ficgp,"\n# Routine varevsij");
 3469:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3470:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3471:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3472: /*   } */
 3473:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3474:   pstamp(ficresvij);
 3475:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3476:   if(popbased==1)
 3477:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3478:   else
 3479:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3480:   fprintf(ficresvij,"# Age");
 3481:   for(i=1; i<=nlstate;i++)
 3482:     for(j=1; j<=nlstate;j++)
 3483:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3484:   fprintf(ficresvij,"\n");
 3485: 
 3486:   xp=vector(1,npar);
 3487:   dnewm=matrix(1,nlstate,1,npar);
 3488:   doldm=matrix(1,nlstate,1,nlstate);
 3489:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3490:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3491: 
 3492:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3493:   gpp=vector(nlstate+1,nlstate+ndeath);
 3494:   gmp=vector(nlstate+1,nlstate+ndeath);
 3495:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3496:   
 3497:   if(estepm < stepm){
 3498:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3499:   }
 3500:   else  hstepm=estepm;   
 3501:   /* For example we decided to compute the life expectancy with the smallest unit */
 3502:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3503:      nhstepm is the number of hstepm from age to agelim 
 3504:      nstepm is the number of stepm from age to agelin. 
 3505:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3506:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3507:      survival function given by stepm (the optimization length). Unfortunately it
 3508:      means that if the survival funtion is printed every two years of age and if
 3509:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3510:      results. So we changed our mind and took the option of the best precision.
 3511:   */
 3512:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3513:   agelim = AGESUP;
 3514:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3515:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3516:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3517:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3518:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3519:     gp=matrix(0,nhstepm,1,nlstate);
 3520:     gm=matrix(0,nhstepm,1,nlstate);
 3521: 
 3522: 
 3523:     for(theta=1; theta <=npar; theta++){
 3524:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3525: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3526:       }
 3527:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3528:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3529: 
 3530:       if (popbased==1) {
 3531: 	if(mobilav ==0){
 3532: 	  for(i=1; i<=nlstate;i++)
 3533: 	    prlim[i][i]=probs[(int)age][i][ij];
 3534: 	}else{ /* mobilav */ 
 3535: 	  for(i=1; i<=nlstate;i++)
 3536: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3537: 	}
 3538:       }
 3539:   
 3540:       for(j=1; j<= nlstate; j++){
 3541: 	for(h=0; h<=nhstepm; h++){
 3542: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3543: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3544: 	}
 3545:       }
 3546:       /* This for computing probability of death (h=1 means
 3547:          computed over hstepm matrices product = hstepm*stepm months) 
 3548:          as a weighted average of prlim.
 3549:       */
 3550:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3551: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3552: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3553:       }    
 3554:       /* end probability of death */
 3555: 
 3556:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3557: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3558:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3559:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3560:  
 3561:       if (popbased==1) {
 3562: 	if(mobilav ==0){
 3563: 	  for(i=1; i<=nlstate;i++)
 3564: 	    prlim[i][i]=probs[(int)age][i][ij];
 3565: 	}else{ /* mobilav */ 
 3566: 	  for(i=1; i<=nlstate;i++)
 3567: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3568: 	}
 3569:       }
 3570: 
 3571:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3572: 	for(h=0; h<=nhstepm; h++){
 3573: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3574: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3575: 	}
 3576:       }
 3577:       /* This for computing probability of death (h=1 means
 3578:          computed over hstepm matrices product = hstepm*stepm months) 
 3579:          as a weighted average of prlim.
 3580:       */
 3581:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3582: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3583:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3584:       }    
 3585:       /* end probability of death */
 3586: 
 3587:       for(j=1; j<= nlstate; j++) /* vareij */
 3588: 	for(h=0; h<=nhstepm; h++){
 3589: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3590: 	}
 3591: 
 3592:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3593: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3594:       }
 3595: 
 3596:     } /* End theta */
 3597: 
 3598:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3599: 
 3600:     for(h=0; h<=nhstepm; h++) /* veij */
 3601:       for(j=1; j<=nlstate;j++)
 3602: 	for(theta=1; theta <=npar; theta++)
 3603: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3604: 
 3605:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3606:       for(theta=1; theta <=npar; theta++)
 3607: 	trgradgp[j][theta]=gradgp[theta][j];
 3608:   
 3609: 
 3610:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3611:     for(i=1;i<=nlstate;i++)
 3612:       for(j=1;j<=nlstate;j++)
 3613: 	vareij[i][j][(int)age] =0.;
 3614: 
 3615:     for(h=0;h<=nhstepm;h++){
 3616:       for(k=0;k<=nhstepm;k++){
 3617: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3618: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3619: 	for(i=1;i<=nlstate;i++)
 3620: 	  for(j=1;j<=nlstate;j++)
 3621: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3622:       }
 3623:     }
 3624:   
 3625:     /* pptj */
 3626:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3627:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3628:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3629:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3630: 	varppt[j][i]=doldmp[j][i];
 3631:     /* end ppptj */
 3632:     /*  x centered again */
 3633:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3634:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3635:  
 3636:     if (popbased==1) {
 3637:       if(mobilav ==0){
 3638: 	for(i=1; i<=nlstate;i++)
 3639: 	  prlim[i][i]=probs[(int)age][i][ij];
 3640:       }else{ /* mobilav */ 
 3641: 	for(i=1; i<=nlstate;i++)
 3642: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3643:       }
 3644:     }
 3645:              
 3646:     /* This for computing probability of death (h=1 means
 3647:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3648:        as a weighted average of prlim.
 3649:     */
 3650:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3651:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 3652: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 3653:     }    
 3654:     /* end probability of death */
 3655: 
 3656:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 3657:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3658:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 3659:       for(i=1; i<=nlstate;i++){
 3660: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 3661:       }
 3662:     } 
 3663:     fprintf(ficresprobmorprev,"\n");
 3664: 
 3665:     fprintf(ficresvij,"%.0f ",age );
 3666:     for(i=1; i<=nlstate;i++)
 3667:       for(j=1; j<=nlstate;j++){
 3668: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 3669:       }
 3670:     fprintf(ficresvij,"\n");
 3671:     free_matrix(gp,0,nhstepm,1,nlstate);
 3672:     free_matrix(gm,0,nhstepm,1,nlstate);
 3673:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 3674:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 3675:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3676:   } /* End age */
 3677:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 3678:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 3679:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3680:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3681:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 3682:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3683:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3684: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3685: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3686: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3687:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 3688:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 3689:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 3690:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3691:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3692:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3693: */
 3694: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3695:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3696: 
 3697:   free_vector(xp,1,npar);
 3698:   free_matrix(doldm,1,nlstate,1,nlstate);
 3699:   free_matrix(dnewm,1,nlstate,1,npar);
 3700:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3701:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3702:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3703:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3704:   fclose(ficresprobmorprev);
 3705:   fflush(ficgp);
 3706:   fflush(fichtm); 
 3707: }  /* end varevsij */
 3708: 
 3709: /************ Variance of prevlim ******************/
 3710: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3711: {
 3712:   /* Variance of prevalence limit */
 3713:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3714: 
 3715:   double **dnewm,**doldm;
 3716:   int i, j, nhstepm, hstepm;
 3717:   double *xp;
 3718:   double *gp, *gm;
 3719:   double **gradg, **trgradg;
 3720:   double age,agelim;
 3721:   int theta;
 3722:   
 3723:   pstamp(ficresvpl);
 3724:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3725:   fprintf(ficresvpl,"# Age");
 3726:   for(i=1; i<=nlstate;i++)
 3727:       fprintf(ficresvpl," %1d-%1d",i,i);
 3728:   fprintf(ficresvpl,"\n");
 3729: 
 3730:   xp=vector(1,npar);
 3731:   dnewm=matrix(1,nlstate,1,npar);
 3732:   doldm=matrix(1,nlstate,1,nlstate);
 3733:   
 3734:   hstepm=1*YEARM; /* Every year of age */
 3735:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3736:   agelim = AGESUP;
 3737:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3738:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3739:     if (stepm >= YEARM) hstepm=1;
 3740:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3741:     gradg=matrix(1,npar,1,nlstate);
 3742:     gp=vector(1,nlstate);
 3743:     gm=vector(1,nlstate);
 3744: 
 3745:     for(theta=1; theta <=npar; theta++){
 3746:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3747: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3748:       }
 3749:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3750:       for(i=1;i<=nlstate;i++)
 3751: 	gp[i] = prlim[i][i];
 3752:     
 3753:       for(i=1; i<=npar; i++) /* Computes gradient */
 3754: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3755:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3756:       for(i=1;i<=nlstate;i++)
 3757: 	gm[i] = prlim[i][i];
 3758: 
 3759:       for(i=1;i<=nlstate;i++)
 3760: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3761:     } /* End theta */
 3762: 
 3763:     trgradg =matrix(1,nlstate,1,npar);
 3764: 
 3765:     for(j=1; j<=nlstate;j++)
 3766:       for(theta=1; theta <=npar; theta++)
 3767: 	trgradg[j][theta]=gradg[theta][j];
 3768: 
 3769:     for(i=1;i<=nlstate;i++)
 3770:       varpl[i][(int)age] =0.;
 3771:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3772:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3773:     for(i=1;i<=nlstate;i++)
 3774:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3775: 
 3776:     fprintf(ficresvpl,"%.0f ",age );
 3777:     for(i=1; i<=nlstate;i++)
 3778:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3779:     fprintf(ficresvpl,"\n");
 3780:     free_vector(gp,1,nlstate);
 3781:     free_vector(gm,1,nlstate);
 3782:     free_matrix(gradg,1,npar,1,nlstate);
 3783:     free_matrix(trgradg,1,nlstate,1,npar);
 3784:   } /* End age */
 3785: 
 3786:   free_vector(xp,1,npar);
 3787:   free_matrix(doldm,1,nlstate,1,npar);
 3788:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3789: 
 3790: }
 3791: 
 3792: /************ Variance of one-step probabilities  ******************/
 3793: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3794: {
 3795:   int i, j=0,  k1, l1, tj;
 3796:   int k2, l2, j1,  z1;
 3797:   int k=0, l;
 3798:   int first=1, first1, first2;
 3799:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3800:   double **dnewm,**doldm;
 3801:   double *xp;
 3802:   double *gp, *gm;
 3803:   double **gradg, **trgradg;
 3804:   double **mu;
 3805:   double age, cov[NCOVMAX+1];
 3806:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3807:   int theta;
 3808:   char fileresprob[FILENAMELENGTH];
 3809:   char fileresprobcov[FILENAMELENGTH];
 3810:   char fileresprobcor[FILENAMELENGTH];
 3811:   double ***varpij;
 3812: 
 3813:   strcpy(fileresprob,"prob"); 
 3814:   strcat(fileresprob,fileres);
 3815:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3816:     printf("Problem with resultfile: %s\n", fileresprob);
 3817:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3818:   }
 3819:   strcpy(fileresprobcov,"probcov"); 
 3820:   strcat(fileresprobcov,fileres);
 3821:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3822:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3823:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3824:   }
 3825:   strcpy(fileresprobcor,"probcor"); 
 3826:   strcat(fileresprobcor,fileres);
 3827:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3828:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3829:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3830:   }
 3831:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3832:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3833:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3834:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3835:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3836:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3837:   pstamp(ficresprob);
 3838:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3839:   fprintf(ficresprob,"# Age");
 3840:   pstamp(ficresprobcov);
 3841:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3842:   fprintf(ficresprobcov,"# Age");
 3843:   pstamp(ficresprobcor);
 3844:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3845:   fprintf(ficresprobcor,"# Age");
 3846: 
 3847: 
 3848:   for(i=1; i<=nlstate;i++)
 3849:     for(j=1; j<=(nlstate+ndeath);j++){
 3850:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3851:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3852:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3853:     }  
 3854:  /* fprintf(ficresprob,"\n");
 3855:   fprintf(ficresprobcov,"\n");
 3856:   fprintf(ficresprobcor,"\n");
 3857:  */
 3858:   xp=vector(1,npar);
 3859:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3860:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3861:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3862:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3863:   first=1;
 3864:   fprintf(ficgp,"\n# Routine varprob");
 3865:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3866:   fprintf(fichtm,"\n");
 3867: 
 3868:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3869:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3870:   file %s<br>\n",optionfilehtmcov);
 3871:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3872: and drawn. It helps understanding how is the covariance between two incidences.\
 3873:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3874:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3875: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3876: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3877: standard deviations wide on each axis. <br>\
 3878:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3879:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3880: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3881: 
 3882:   cov[1]=1;
 3883:   /* tj=cptcoveff; */
 3884:   tj = (int) pow(2,cptcoveff);
 3885:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3886:   j1=0;
 3887:   for(j1=1; j1<=tj;j1++){
 3888:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 3889:     /*j1++;*/
 3890:       if  (cptcovn>0) {
 3891: 	fprintf(ficresprob, "\n#********** Variable "); 
 3892: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3893: 	fprintf(ficresprob, "**********\n#\n");
 3894: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3895: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3896: 	fprintf(ficresprobcov, "**********\n#\n");
 3897: 	
 3898: 	fprintf(ficgp, "\n#********** Variable "); 
 3899: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3900: 	fprintf(ficgp, "**********\n#\n");
 3901: 	
 3902: 	
 3903: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3904: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3905: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3906: 	
 3907: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3908: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3909: 	fprintf(ficresprobcor, "**********\n#");    
 3910:       }
 3911:       
 3912:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3913:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3914:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 3915:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 3916:       for (age=bage; age<=fage; age ++){ 
 3917: 	cov[2]=age;
 3918: 	for (k=1; k<=cptcovn;k++) {
 3919: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
 3920: 							 * 1  1 1 1 1
 3921: 							 * 2  2 1 1 1
 3922: 							 * 3  1 2 1 1
 3923: 							 */
 3924: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 3925: 	}
 3926: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3927: 	for (k=1; k<=cptcovprod;k++)
 3928: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3929: 	
 3930:     
 3931: 	for(theta=1; theta <=npar; theta++){
 3932: 	  for(i=1; i<=npar; i++)
 3933: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3934: 	  
 3935: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3936: 	  
 3937: 	  k=0;
 3938: 	  for(i=1; i<= (nlstate); i++){
 3939: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3940: 	      k=k+1;
 3941: 	      gp[k]=pmmij[i][j];
 3942: 	    }
 3943: 	  }
 3944: 	  
 3945: 	  for(i=1; i<=npar; i++)
 3946: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3947:     
 3948: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3949: 	  k=0;
 3950: 	  for(i=1; i<=(nlstate); i++){
 3951: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3952: 	      k=k+1;
 3953: 	      gm[k]=pmmij[i][j];
 3954: 	    }
 3955: 	  }
 3956:      
 3957: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3958: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3959: 	}
 3960: 
 3961: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3962: 	  for(theta=1; theta <=npar; theta++)
 3963: 	    trgradg[j][theta]=gradg[theta][j];
 3964: 	
 3965: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3966: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3967: 
 3968: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3969: 	
 3970: 	k=0;
 3971: 	for(i=1; i<=(nlstate); i++){
 3972: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3973: 	    k=k+1;
 3974: 	    mu[k][(int) age]=pmmij[i][j];
 3975: 	  }
 3976: 	}
 3977:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3978: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3979: 	    varpij[i][j][(int)age] = doldm[i][j];
 3980: 
 3981: 	/*printf("\n%d ",(int)age);
 3982: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3983: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3984: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3985: 	  }*/
 3986: 
 3987: 	fprintf(ficresprob,"\n%d ",(int)age);
 3988: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3989: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3990: 
 3991: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3992: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3993: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3994: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3995: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3996: 	}
 3997: 	i=0;
 3998: 	for (k=1; k<=(nlstate);k++){
 3999:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 4000:  	    i++;
 4001: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 4002: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 4003: 	    for (j=1; j<=i;j++){
 4004: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 4005: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 4006: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 4007: 	    }
 4008: 	  }
 4009: 	}/* end of loop for state */
 4010:       } /* end of loop for age */
 4011:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 4012:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 4013:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4014:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4015:       
 4016:       /* Confidence intervalle of pij  */
 4017:       /*
 4018: 	fprintf(ficgp,"\nunset parametric;unset label");
 4019: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 4020: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 4021: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 4022: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 4023: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 4024: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 4025:       */
 4026: 
 4027:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 4028:       first1=1;first2=2;
 4029:       for (k2=1; k2<=(nlstate);k2++){
 4030: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 4031: 	  if(l2==k2) continue;
 4032: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 4033: 	  for (k1=1; k1<=(nlstate);k1++){
 4034: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 4035: 	      if(l1==k1) continue;
 4036: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 4037: 	      if(i<=j) continue;
 4038: 	      for (age=bage; age<=fage; age ++){ 
 4039: 		if ((int)age %5==0){
 4040: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 4041: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4042: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4043: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 4044: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 4045: 		  c12=cv12/sqrt(v1*v2);
 4046: 		  /* Computing eigen value of matrix of covariance */
 4047: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4048: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4049: 		  if ((lc2 <0) || (lc1 <0) ){
 4050: 		    if(first2==1){
 4051: 		      first1=0;
 4052: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 4053: 		    }
 4054: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 4055: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 4056: 		    /* lc2=fabs(lc2); */
 4057: 		  }
 4058: 
 4059: 		  /* Eigen vectors */
 4060: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 4061: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 4062: 		  v21=(lc1-v1)/cv12*v11;
 4063: 		  v12=-v21;
 4064: 		  v22=v11;
 4065: 		  tnalp=v21/v11;
 4066: 		  if(first1==1){
 4067: 		    first1=0;
 4068: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4069: 		  }
 4070: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4071: 		  /*printf(fignu*/
 4072: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 4073: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 4074: 		  if(first==1){
 4075: 		    first=0;
 4076:  		    fprintf(ficgp,"\nset parametric;unset label");
 4077: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 4078: 		    fprintf(ficgp,"\nset ter png small size 320, 240");
 4079: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 4080:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 4081: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 4082: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 4083: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4084: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4085: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 4086: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4087: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4088: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4089: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4090: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4091: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4092: 		  }else{
 4093: 		    first=0;
 4094: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 4095: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4096: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4097: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4098: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4099: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4100: 		  }/* if first */
 4101: 		} /* age mod 5 */
 4102: 	      } /* end loop age */
 4103: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4104: 	      first=1;
 4105: 	    } /*l12 */
 4106: 	  } /* k12 */
 4107: 	} /*l1 */
 4108:       }/* k1 */
 4109:       /* } */ /* loop covariates */
 4110:   }
 4111:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 4112:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 4113:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 4114:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 4115:   free_vector(xp,1,npar);
 4116:   fclose(ficresprob);
 4117:   fclose(ficresprobcov);
 4118:   fclose(ficresprobcor);
 4119:   fflush(ficgp);
 4120:   fflush(fichtmcov);
 4121: }
 4122: 
 4123: 
 4124: /******************* Printing html file ***********/
 4125: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 4126: 		  int lastpass, int stepm, int weightopt, char model[],\
 4127: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 4128: 		  int popforecast, int estepm ,\
 4129: 		  double jprev1, double mprev1,double anprev1, \
 4130: 		  double jprev2, double mprev2,double anprev2){
 4131:   int jj1, k1, i1, cpt;
 4132: 
 4133:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 4134:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 4135: </ul>");
 4136:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 4137:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 4138: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 4139:    fprintf(fichtm,"\
 4140:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 4141: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 4142:    fprintf(fichtm,"\
 4143:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 4144: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 4145:    fprintf(fichtm,"\
 4146:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 4147:    <a href=\"%s\">%s</a> <br>\n",
 4148: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 4149:    fprintf(fichtm,"\
 4150:  - Population projections by age and states: \
 4151:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 4152: 
 4153: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 4154: 
 4155:  m=pow(2,cptcoveff);
 4156:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4157: 
 4158:  jj1=0;
 4159:  for(k1=1; k1<=m;k1++){
 4160:    for(i1=1; i1<=ncodemax[k1];i1++){
 4161:      jj1++;
 4162:      if (cptcovn > 0) {
 4163:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4164:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4165: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4166:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4167:      }
 4168:      /* Pij */
 4169:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
 4170: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 4171:      /* Quasi-incidences */
 4172:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 4173:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
 4174: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 4175:        /* Period (stable) prevalence in each health state */
 4176:        for(cpt=1; cpt<=nlstate;cpt++){
 4177: 	 fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
 4178: <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 4179:        }
 4180:      for(cpt=1; cpt<=nlstate;cpt++) {
 4181:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 4182: <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 4183:      }
 4184:    } /* end i1 */
 4185:  }/* End k1 */
 4186:  fprintf(fichtm,"</ul>");
 4187: 
 4188: 
 4189:  fprintf(fichtm,"\
 4190: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 4191:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 4192: 
 4193:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4194: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 4195:  fprintf(fichtm,"\
 4196:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4197: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 4198: 
 4199:  fprintf(fichtm,"\
 4200:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4201: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 4202:  fprintf(fichtm,"\
 4203:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 4204:    <a href=\"%s\">%s</a> <br>\n</li>",
 4205: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 4206:  fprintf(fichtm,"\
 4207:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 4208:    <a href=\"%s\">%s</a> <br>\n</li>",
 4209: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 4210:  fprintf(fichtm,"\
 4211:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 4212: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 4213:  fprintf(fichtm,"\
 4214:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 4215: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 4216:  fprintf(fichtm,"\
 4217:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 4218: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 4219: 
 4220: /*  if(popforecast==1) fprintf(fichtm,"\n */
 4221: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 4222: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 4223: /* 	<br>",fileres,fileres,fileres,fileres); */
 4224: /*  else  */
 4225: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 4226:  fflush(fichtm);
 4227:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 4228: 
 4229:  m=pow(2,cptcoveff);
 4230:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4231: 
 4232:  jj1=0;
 4233:  for(k1=1; k1<=m;k1++){
 4234:    for(i1=1; i1<=ncodemax[k1];i1++){
 4235:      jj1++;
 4236:      if (cptcovn > 0) {
 4237:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4238:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4239: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4240:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4241:      }
 4242:      for(cpt=1; cpt<=nlstate;cpt++) {
 4243:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 4244: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
 4245: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 4246:      }
 4247:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 4248: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 4249: true period expectancies (those weighted with period prevalences are also\
 4250:  drawn in addition to the population based expectancies computed using\
 4251:  observed and cahotic prevalences: %s%d.png<br>\
 4252: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 4253:    } /* end i1 */
 4254:  }/* End k1 */
 4255:  fprintf(fichtm,"</ul>");
 4256:  fflush(fichtm);
 4257: }
 4258: 
 4259: /******************* Gnuplot file **************/
 4260: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4261: 
 4262:   char dirfileres[132],optfileres[132];
 4263:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 4264:   int ng=0;
 4265: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 4266: /*     printf("Problem with file %s",optionfilegnuplot); */
 4267: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 4268: /*   } */
 4269: 
 4270:   /*#ifdef windows */
 4271:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4272:     /*#endif */
 4273:   m=pow(2,cptcoveff);
 4274: 
 4275:   strcpy(dirfileres,optionfilefiname);
 4276:   strcpy(optfileres,"vpl");
 4277:  /* 1eme*/
 4278:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
 4279:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 4280:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 4281:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 4282:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 4283:      fprintf(ficgp,"set xlabel \"Age\" \n\
 4284: set ylabel \"Probability\" \n\
 4285: set ter png small size 320, 240\n\
 4286: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 4287: 
 4288:      for (i=1; i<= nlstate ; i ++) {
 4289:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4290:        else        fprintf(ficgp," %%*lf (%%*lf)");
 4291:      }
 4292:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 4293:      for (i=1; i<= nlstate ; i ++) {
 4294:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4295:        else fprintf(ficgp," %%*lf (%%*lf)");
 4296:      } 
 4297:      fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4298:      for (i=1; i<= nlstate ; i ++) {
 4299:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4300:        else fprintf(ficgp," %%*lf (%%*lf)");
 4301:      }  
 4302:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4303:    }
 4304:   }
 4305:   /*2 eme*/
 4306:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
 4307:   for (k1=1; k1<= m ; k1 ++) { 
 4308:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 4309:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
 4310:     
 4311:     for (i=1; i<= nlstate+1 ; i ++) {
 4312:       k=2*i;
 4313:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4314:       for (j=1; j<= nlstate+1 ; j ++) {
 4315: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4316: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4317:       }   
 4318:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4319:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4320:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4321:       for (j=1; j<= nlstate+1 ; j ++) {
 4322: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4323: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4324:       }   
 4325:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4326:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4327:       for (j=1; j<= nlstate+1 ; j ++) {
 4328: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4329: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4330:       }   
 4331:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4332:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4333:     }
 4334:   }
 4335:   
 4336:   /*3eme*/
 4337:   
 4338:   for (k1=1; k1<= m ; k1 ++) { 
 4339:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4340:       /*       k=2+nlstate*(2*cpt-2); */
 4341:       k=2+(nlstate+1)*(cpt-1);
 4342:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4343:       fprintf(ficgp,"set ter png small size 320, 240\n\
 4344: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4345:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4346: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4347: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4348: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4349: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4350: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4351: 	
 4352:       */
 4353:       for (i=1; i< nlstate ; i ++) {
 4354: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4355: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4356: 	
 4357:       } 
 4358:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4359:     }
 4360:   }
 4361:   
 4362:   /* CV preval stable (period) */
 4363:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
 4364:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
 4365:       k=3;
 4366:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
 4367:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4368:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4369: set ter png small size 320, 240\n\
 4370: unset log y\n\
 4371: plot [%.f:%.f]  ", ageminpar, agemaxpar);
 4372:       for (i=1; i<= nlstate ; i ++){
 4373: 	if(i==1)
 4374: 	  fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
 4375: 	else
 4376: 	  fprintf(ficgp,", '' ");
 4377: 	l=(nlstate+ndeath)*(i-1)+1;
 4378: 	fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
 4379: 	for (j=1; j<= (nlstate-1) ; j ++)
 4380: 	  fprintf(ficgp,"+$%d",k+l+j);
 4381: 	fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
 4382:       } /* nlstate */
 4383:       fprintf(ficgp,"\n");
 4384:     } /* end cpt state*/ 
 4385:   } /* end covariate */  
 4386:   
 4387:   /* proba elementaires */
 4388:   for(i=1,jk=1; i <=nlstate; i++){
 4389:     for(k=1; k <=(nlstate+ndeath); k++){
 4390:       if (k != i) {
 4391: 	for(j=1; j <=ncovmodel; j++){
 4392: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 4393: 	  jk++; 
 4394: 	  fprintf(ficgp,"\n");
 4395: 	}
 4396:       }
 4397:     }
 4398:    }
 4399:   /*goto avoid;*/
 4400:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4401:      for(jk=1; jk <=m; jk++) {
 4402:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4403:        if (ng==2)
 4404: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4405:        else
 4406: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 4407:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4408:        i=1;
 4409:        for(k2=1; k2<=nlstate; k2++) {
 4410: 	 k3=i;
 4411: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4412: 	   if (k != k2){
 4413: 	     if(ng==2)
 4414: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4415: 	     else
 4416: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4417: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4418: 	     for(j=3; j <=ncovmodel; j++) {
 4419: 	       /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
 4420: 	       /* 	 /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
 4421: 	       /* 	 ij++; */
 4422: 	       /* } */
 4423: 	       /* else */
 4424: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4425: 	     }
 4426: 	     fprintf(ficgp,")/(1");
 4427: 	     
 4428: 	     for(k1=1; k1 <=nlstate; k1++){   
 4429: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4430: 	       ij=1;
 4431: 	       for(j=3; j <=ncovmodel; j++){
 4432: 		 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
 4433: 		 /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
 4434: 		 /*   ij++; */
 4435: 		 /* } */
 4436: 		 /* else */
 4437: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4438: 	       }
 4439: 	       fprintf(ficgp,")");
 4440: 	     }
 4441: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4442: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4443: 	     i=i+ncovmodel;
 4444: 	   }
 4445: 	 } /* end k */
 4446:        } /* end k2 */
 4447:      } /* end jk */
 4448:    } /* end ng */
 4449:  /* avoid: */
 4450:    fflush(ficgp); 
 4451: }  /* end gnuplot */
 4452: 
 4453: 
 4454: /*************** Moving average **************/
 4455: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4456: 
 4457:   int i, cpt, cptcod;
 4458:   int modcovmax =1;
 4459:   int mobilavrange, mob;
 4460:   double age;
 4461: 
 4462:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4463: 			   a covariate has 2 modalities */
 4464:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4465: 
 4466:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4467:     if(mobilav==1) mobilavrange=5; /* default */
 4468:     else mobilavrange=mobilav;
 4469:     for (age=bage; age<=fage; age++)
 4470:       for (i=1; i<=nlstate;i++)
 4471: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4472: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4473:     /* We keep the original values on the extreme ages bage, fage and for 
 4474:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4475:        we use a 5 terms etc. until the borders are no more concerned. 
 4476:     */ 
 4477:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4478:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4479: 	for (i=1; i<=nlstate;i++){
 4480: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4481: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4482: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4483: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4484: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4485: 	      }
 4486: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4487: 	  }
 4488: 	}
 4489:       }/* end age */
 4490:     }/* end mob */
 4491:   }else return -1;
 4492:   return 0;
 4493: }/* End movingaverage */
 4494: 
 4495: 
 4496: /************** Forecasting ******************/
 4497: void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4498:   /* proj1, year, month, day of starting projection 
 4499:      agemin, agemax range of age
 4500:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4501:      anproj2 year of en of projection (same day and month as proj1).
 4502:   */
 4503:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
 4504:   double agec; /* generic age */
 4505:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4506:   double *popeffectif,*popcount;
 4507:   double ***p3mat;
 4508:   double ***mobaverage;
 4509:   char fileresf[FILENAMELENGTH];
 4510: 
 4511:   agelim=AGESUP;
 4512:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4513:  
 4514:   strcpy(fileresf,"f"); 
 4515:   strcat(fileresf,fileres);
 4516:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4517:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4518:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4519:   }
 4520:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4521:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4522: 
 4523:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4524: 
 4525:   if (mobilav!=0) {
 4526:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4527:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4528:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4529:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4530:     }
 4531:   }
 4532: 
 4533:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4534:   if (stepm<=12) stepsize=1;
 4535:   if(estepm < stepm){
 4536:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4537:   }
 4538:   else  hstepm=estepm;   
 4539: 
 4540:   hstepm=hstepm/stepm; 
 4541:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4542:                                fractional in yp1 */
 4543:   anprojmean=yp;
 4544:   yp2=modf((yp1*12),&yp);
 4545:   mprojmean=yp;
 4546:   yp1=modf((yp2*30.5),&yp);
 4547:   jprojmean=yp;
 4548:   if(jprojmean==0) jprojmean=1;
 4549:   if(mprojmean==0) jprojmean=1;
 4550: 
 4551:   i1=cptcoveff;
 4552:   if (cptcovn < 1){i1=1;}
 4553:   
 4554:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4555:   
 4556:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4557: 
 4558: /* 	      if (h==(int)(YEARM*yearp)){ */
 4559:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4560:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4561:       k=k+1;
 4562:       fprintf(ficresf,"\n#******");
 4563:       for(j=1;j<=cptcoveff;j++) {
 4564: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4565:       }
 4566:       fprintf(ficresf,"******\n");
 4567:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4568:       for(j=1; j<=nlstate+ndeath;j++){ 
 4569: 	for(i=1; i<=nlstate;i++) 	      
 4570:           fprintf(ficresf," p%d%d",i,j);
 4571: 	fprintf(ficresf," p.%d",j);
 4572:       }
 4573:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4574: 	fprintf(ficresf,"\n");
 4575: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4576: 
 4577:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4578: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4579: 	  nhstepm = nhstepm/hstepm; 
 4580: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4581: 	  oldm=oldms;savm=savms;
 4582: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4583: 	
 4584: 	  for (h=0; h<=nhstepm; h++){
 4585: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4586:               fprintf(ficresf,"\n");
 4587:               for(j=1;j<=cptcoveff;j++) 
 4588:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4589: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4590: 	    } 
 4591: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4592: 	      ppij=0.;
 4593: 	      for(i=1; i<=nlstate;i++) {
 4594: 		if (mobilav==1) 
 4595: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4596: 		else {
 4597: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4598: 		}
 4599: 		if (h*hstepm/YEARM*stepm== yearp) {
 4600: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4601: 		}
 4602: 	      } /* end i */
 4603: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4604: 		fprintf(ficresf," %.3f", ppij);
 4605: 	      }
 4606: 	    }/* end j */
 4607: 	  } /* end h */
 4608: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4609: 	} /* end agec */
 4610:       } /* end yearp */
 4611:     } /* end cptcod */
 4612:   } /* end  cptcov */
 4613:        
 4614:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4615: 
 4616:   fclose(ficresf);
 4617: }
 4618: 
 4619: /************** Forecasting *****not tested NB*************/
 4620: void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 4621:   
 4622:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 4623:   int *popage;
 4624:   double calagedatem, agelim, kk1, kk2;
 4625:   double *popeffectif,*popcount;
 4626:   double ***p3mat,***tabpop,***tabpopprev;
 4627:   double ***mobaverage;
 4628:   char filerespop[FILENAMELENGTH];
 4629: 
 4630:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4631:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4632:   agelim=AGESUP;
 4633:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 4634:   
 4635:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4636:   
 4637:   
 4638:   strcpy(filerespop,"pop"); 
 4639:   strcat(filerespop,fileres);
 4640:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 4641:     printf("Problem with forecast resultfile: %s\n", filerespop);
 4642:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 4643:   }
 4644:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 4645:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 4646: 
 4647:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4648: 
 4649:   if (mobilav!=0) {
 4650:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4651:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4652:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4653:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4654:     }
 4655:   }
 4656: 
 4657:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4658:   if (stepm<=12) stepsize=1;
 4659:   
 4660:   agelim=AGESUP;
 4661:   
 4662:   hstepm=1;
 4663:   hstepm=hstepm/stepm; 
 4664:   
 4665:   if (popforecast==1) {
 4666:     if((ficpop=fopen(popfile,"r"))==NULL) {
 4667:       printf("Problem with population file : %s\n",popfile);exit(0);
 4668:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 4669:     } 
 4670:     popage=ivector(0,AGESUP);
 4671:     popeffectif=vector(0,AGESUP);
 4672:     popcount=vector(0,AGESUP);
 4673:     
 4674:     i=1;   
 4675:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 4676:    
 4677:     imx=i;
 4678:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 4679:   }
 4680: 
 4681:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 4682:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4683:       k=k+1;
 4684:       fprintf(ficrespop,"\n#******");
 4685:       for(j=1;j<=cptcoveff;j++) {
 4686: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4687:       }
 4688:       fprintf(ficrespop,"******\n");
 4689:       fprintf(ficrespop,"# Age");
 4690:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 4691:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 4692:       
 4693:       for (cpt=0; cpt<=0;cpt++) { 
 4694: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4695: 	
 4696:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4697: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4698: 	  nhstepm = nhstepm/hstepm; 
 4699: 	  
 4700: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4701: 	  oldm=oldms;savm=savms;
 4702: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4703: 	
 4704: 	  for (h=0; h<=nhstepm; h++){
 4705: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4706: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4707: 	    } 
 4708: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4709: 	      kk1=0.;kk2=0;
 4710: 	      for(i=1; i<=nlstate;i++) {	      
 4711: 		if (mobilav==1) 
 4712: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4713: 		else {
 4714: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4715: 		}
 4716: 	      }
 4717: 	      if (h==(int)(calagedatem+12*cpt)){
 4718: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4719: 		  /*fprintf(ficrespop," %.3f", kk1);
 4720: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4721: 	      }
 4722: 	    }
 4723: 	    for(i=1; i<=nlstate;i++){
 4724: 	      kk1=0.;
 4725: 		for(j=1; j<=nlstate;j++){
 4726: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4727: 		}
 4728: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4729: 	    }
 4730: 
 4731: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4732: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4733: 	  }
 4734: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4735: 	}
 4736:       }
 4737:  
 4738:   /******/
 4739: 
 4740:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4741: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4742: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4743: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4744: 	  nhstepm = nhstepm/hstepm; 
 4745: 	  
 4746: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4747: 	  oldm=oldms;savm=savms;
 4748: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4749: 	  for (h=0; h<=nhstepm; h++){
 4750: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4751: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4752: 	    } 
 4753: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4754: 	      kk1=0.;kk2=0;
 4755: 	      for(i=1; i<=nlstate;i++) {	      
 4756: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4757: 	      }
 4758: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4759: 	    }
 4760: 	  }
 4761: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4762: 	}
 4763:       }
 4764:    } 
 4765:   }
 4766:  
 4767:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4768: 
 4769:   if (popforecast==1) {
 4770:     free_ivector(popage,0,AGESUP);
 4771:     free_vector(popeffectif,0,AGESUP);
 4772:     free_vector(popcount,0,AGESUP);
 4773:   }
 4774:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4775:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4776:   fclose(ficrespop);
 4777: } /* End of popforecast */
 4778: 
 4779: int fileappend(FILE *fichier, char *optionfich)
 4780: {
 4781:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4782:     printf("Problem with file: %s\n", optionfich);
 4783:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4784:     return (0);
 4785:   }
 4786:   fflush(fichier);
 4787:   return (1);
 4788: }
 4789: 
 4790: 
 4791: /**************** function prwizard **********************/
 4792: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4793: {
 4794: 
 4795:   /* Wizard to print covariance matrix template */
 4796: 
 4797:   char ca[32], cb[32];
 4798:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
 4799:   int numlinepar;
 4800: 
 4801:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4802:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4803:   for(i=1; i <=nlstate; i++){
 4804:     jj=0;
 4805:     for(j=1; j <=nlstate+ndeath; j++){
 4806:       if(j==i) continue;
 4807:       jj++;
 4808:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4809:       printf("%1d%1d",i,j);
 4810:       fprintf(ficparo,"%1d%1d",i,j);
 4811:       for(k=1; k<=ncovmodel;k++){
 4812: 	/* 	  printf(" %lf",param[i][j][k]); */
 4813: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4814: 	printf(" 0.");
 4815: 	fprintf(ficparo," 0.");
 4816:       }
 4817:       printf("\n");
 4818:       fprintf(ficparo,"\n");
 4819:     }
 4820:   }
 4821:   printf("# Scales (for hessian or gradient estimation)\n");
 4822:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4823:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4824:   for(i=1; i <=nlstate; i++){
 4825:     jj=0;
 4826:     for(j=1; j <=nlstate+ndeath; j++){
 4827:       if(j==i) continue;
 4828:       jj++;
 4829:       fprintf(ficparo,"%1d%1d",i,j);
 4830:       printf("%1d%1d",i,j);
 4831:       fflush(stdout);
 4832:       for(k=1; k<=ncovmodel;k++){
 4833: 	/* 	printf(" %le",delti3[i][j][k]); */
 4834: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4835: 	printf(" 0.");
 4836: 	fprintf(ficparo," 0.");
 4837:       }
 4838:       numlinepar++;
 4839:       printf("\n");
 4840:       fprintf(ficparo,"\n");
 4841:     }
 4842:   }
 4843:   printf("# Covariance matrix\n");
 4844: /* # 121 Var(a12)\n\ */
 4845: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4846: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4847: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4848: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4849: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4850: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4851: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4852:   fflush(stdout);
 4853:   fprintf(ficparo,"# Covariance matrix\n");
 4854:   /* # 121 Var(a12)\n\ */
 4855:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4856:   /* #   ...\n\ */
 4857:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4858:   
 4859:   for(itimes=1;itimes<=2;itimes++){
 4860:     jj=0;
 4861:     for(i=1; i <=nlstate; i++){
 4862:       for(j=1; j <=nlstate+ndeath; j++){
 4863: 	if(j==i) continue;
 4864: 	for(k=1; k<=ncovmodel;k++){
 4865: 	  jj++;
 4866: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4867: 	  if(itimes==1){
 4868: 	    printf("#%1d%1d%d",i,j,k);
 4869: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4870: 	  }else{
 4871: 	    printf("%1d%1d%d",i,j,k);
 4872: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4873: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4874: 	  }
 4875: 	  ll=0;
 4876: 	  for(li=1;li <=nlstate; li++){
 4877: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 4878: 	      if(lj==li) continue;
 4879: 	      for(lk=1;lk<=ncovmodel;lk++){
 4880: 		ll++;
 4881: 		if(ll<=jj){
 4882: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 4883: 		  if(ll<jj){
 4884: 		    if(itimes==1){
 4885: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4886: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4887: 		    }else{
 4888: 		      printf(" 0.");
 4889: 		      fprintf(ficparo," 0.");
 4890: 		    }
 4891: 		  }else{
 4892: 		    if(itimes==1){
 4893: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4894: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4895: 		    }else{
 4896: 		      printf(" 0.");
 4897: 		      fprintf(ficparo," 0.");
 4898: 		    }
 4899: 		  }
 4900: 		}
 4901: 	      } /* end lk */
 4902: 	    } /* end lj */
 4903: 	  } /* end li */
 4904: 	  printf("\n");
 4905: 	  fprintf(ficparo,"\n");
 4906: 	  numlinepar++;
 4907: 	} /* end k*/
 4908:       } /*end j */
 4909:     } /* end i */
 4910:   } /* end itimes */
 4911: 
 4912: } /* end of prwizard */
 4913: /******************* Gompertz Likelihood ******************************/
 4914: double gompertz(double x[])
 4915: { 
 4916:   double A,B,L=0.0,sump=0.,num=0.;
 4917:   int i,n=0; /* n is the size of the sample */
 4918: 
 4919:   for (i=0;i<=imx-1 ; i++) {
 4920:     sump=sump+weight[i];
 4921:     /*    sump=sump+1;*/
 4922:     num=num+1;
 4923:   }
 4924:  
 4925:  
 4926:   /* for (i=0; i<=imx; i++) 
 4927:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4928: 
 4929:   for (i=1;i<=imx ; i++)
 4930:     {
 4931:       if (cens[i] == 1 && wav[i]>1)
 4932: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4933:       
 4934:       if (cens[i] == 0 && wav[i]>1)
 4935: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4936: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4937:       
 4938:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4939:       if (wav[i] > 1 ) { /* ??? */
 4940: 	L=L+A*weight[i];
 4941: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4942:       }
 4943:     }
 4944: 
 4945:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4946:  
 4947:   return -2*L*num/sump;
 4948: }
 4949: 
 4950: #ifdef GSL
 4951: /******************* Gompertz_f Likelihood ******************************/
 4952: double gompertz_f(const gsl_vector *v, void *params)
 4953: { 
 4954:   double A,B,LL=0.0,sump=0.,num=0.;
 4955:   double *x= (double *) v->data;
 4956:   int i,n=0; /* n is the size of the sample */
 4957: 
 4958:   for (i=0;i<=imx-1 ; i++) {
 4959:     sump=sump+weight[i];
 4960:     /*    sump=sump+1;*/
 4961:     num=num+1;
 4962:   }
 4963:  
 4964:  
 4965:   /* for (i=0; i<=imx; i++) 
 4966:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4967:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 4968:   for (i=1;i<=imx ; i++)
 4969:     {
 4970:       if (cens[i] == 1 && wav[i]>1)
 4971: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 4972:       
 4973:       if (cens[i] == 0 && wav[i]>1)
 4974: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 4975: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 4976:       
 4977:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4978:       if (wav[i] > 1 ) { /* ??? */
 4979: 	LL=LL+A*weight[i];
 4980: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4981:       }
 4982:     }
 4983: 
 4984:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4985:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 4986:  
 4987:   return -2*LL*num/sump;
 4988: }
 4989: #endif
 4990: 
 4991: /******************* Printing html file ***********/
 4992: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 4993: 		  int lastpass, int stepm, int weightopt, char model[],\
 4994: 		  int imx,  double p[],double **matcov,double agemortsup){
 4995:   int i,k;
 4996: 
 4997:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 4998:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 4999:   for (i=1;i<=2;i++) 
 5000:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 5001:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 5002:   fprintf(fichtm,"</ul>");
 5003: 
 5004: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 5005: 
 5006:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 5007: 
 5008:  for (k=agegomp;k<(agemortsup-2);k++) 
 5009:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 5010: 
 5011:  
 5012:   fflush(fichtm);
 5013: }
 5014: 
 5015: /******************* Gnuplot file **************/
 5016: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 5017: 
 5018:   char dirfileres[132],optfileres[132];
 5019: 
 5020:   int ng;
 5021: 
 5022: 
 5023:   /*#ifdef windows */
 5024:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 5025:     /*#endif */
 5026: 
 5027: 
 5028:   strcpy(dirfileres,optionfilefiname);
 5029:   strcpy(optfileres,"vpl");
 5030:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 5031:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 5032:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
 5033:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 5034:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 5035: 
 5036: } 
 5037: 
 5038: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 5039: {
 5040: 
 5041:   /*-------- data file ----------*/
 5042:   FILE *fic;
 5043:   char dummy[]="                         ";
 5044:   int i=0, j=0, n=0;
 5045:   int linei, month, year,iout;
 5046:   char line[MAXLINE], linetmp[MAXLINE];
 5047:   char stra[MAXLINE], strb[MAXLINE];
 5048:   char *stratrunc;
 5049:   int lstra;
 5050: 
 5051: 
 5052:   if((fic=fopen(datafile,"r"))==NULL)    {
 5053:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 5054:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 5055:   }
 5056: 
 5057:   i=1;
 5058:   linei=0;
 5059:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 5060:     linei=linei+1;
 5061:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 5062:       if(line[j] == '\t')
 5063: 	line[j] = ' ';
 5064:     }
 5065:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 5066:       ;
 5067:     };
 5068:     line[j+1]=0;  /* Trims blanks at end of line */
 5069:     if(line[0]=='#'){
 5070:       fprintf(ficlog,"Comment line\n%s\n",line);
 5071:       printf("Comment line\n%s\n",line);
 5072:       continue;
 5073:     }
 5074:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 5075:     strcpy(line, linetmp);
 5076:   
 5077: 
 5078:     for (j=maxwav;j>=1;j--){
 5079:       cutv(stra, strb, line, ' '); 
 5080:       if(strb[0]=='.') { /* Missing status */
 5081: 	lval=-1;
 5082:       }else{
 5083: 	errno=0;
 5084: 	lval=strtol(strb,&endptr,10); 
 5085:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 5086: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5087: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 5088: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 5089: 	  return 1;
 5090: 	}
 5091:       }
 5092:       s[j][i]=lval;
 5093:       
 5094:       strcpy(line,stra);
 5095:       cutv(stra, strb,line,' ');
 5096:       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5097:       }
 5098:       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5099: 	month=99;
 5100: 	year=9999;
 5101:       }else{
 5102: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 5103: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 5104: 	return 1;
 5105:       }
 5106:       anint[j][i]= (double) year; 
 5107:       mint[j][i]= (double)month; 
 5108:       strcpy(line,stra);
 5109:     } /* ENd Waves */
 5110:     
 5111:     cutv(stra, strb,line,' '); 
 5112:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5113:     }
 5114:     else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5115:       month=99;
 5116:       year=9999;
 5117:     }else{
 5118:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5119: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5120: 	return 1;
 5121:     }
 5122:     andc[i]=(double) year; 
 5123:     moisdc[i]=(double) month; 
 5124:     strcpy(line,stra);
 5125:     
 5126:     cutv(stra, strb,line,' '); 
 5127:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5128:     }
 5129:     else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
 5130:       month=99;
 5131:       year=9999;
 5132:     }else{
 5133:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5134:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5135: 	return 1;
 5136:     }
 5137:     if (year==9999) {
 5138:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 5139:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5140: 	return 1;
 5141: 
 5142:     }
 5143:     annais[i]=(double)(year);
 5144:     moisnais[i]=(double)(month); 
 5145:     strcpy(line,stra);
 5146:     
 5147:     cutv(stra, strb,line,' '); 
 5148:     errno=0;
 5149:     dval=strtod(strb,&endptr); 
 5150:     if( strb[0]=='\0' || (*endptr != '\0')){
 5151:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5152:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5153:       fflush(ficlog);
 5154:       return 1;
 5155:     }
 5156:     weight[i]=dval; 
 5157:     strcpy(line,stra);
 5158:     
 5159:     for (j=ncovcol;j>=1;j--){
 5160:       cutv(stra, strb,line,' '); 
 5161:       if(strb[0]=='.') { /* Missing status */
 5162: 	lval=-1;
 5163:       }else{
 5164: 	errno=0;
 5165: 	lval=strtol(strb,&endptr,10); 
 5166: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5167: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 5168: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 5169: 	  return 1;
 5170: 	}
 5171:       }
 5172:       if(lval <-1 || lval >1){
 5173: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5174:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5175:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5176:  For example, for multinomial values like 1, 2 and 3,\n \
 5177:  build V1=0 V2=0 for the reference value (1),\n \
 5178:         V1=1 V2=0 for (2) \n \
 5179:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5180:  output of IMaCh is often meaningless.\n \
 5181:  Exiting.\n",lval,linei, i,line,j);
 5182: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5183:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5184:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5185:  For example, for multinomial values like 1, 2 and 3,\n \
 5186:  build V1=0 V2=0 for the reference value (1),\n \
 5187:         V1=1 V2=0 for (2) \n \
 5188:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5189:  output of IMaCh is often meaningless.\n \
 5190:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 5191: 	return 1;
 5192:       }
 5193:       covar[j][i]=(double)(lval);
 5194:       strcpy(line,stra);
 5195:     }  
 5196:     lstra=strlen(stra);
 5197:      
 5198:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 5199:       stratrunc = &(stra[lstra-9]);
 5200:       num[i]=atol(stratrunc);
 5201:     }
 5202:     else
 5203:       num[i]=atol(stra);
 5204:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 5205:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 5206:     
 5207:     i=i+1;
 5208:   } /* End loop reading  data */
 5209: 
 5210:   *imax=i-1; /* Number of individuals */
 5211:   fclose(fic);
 5212:  
 5213:   return (0);
 5214:   /* endread: */
 5215:     printf("Exiting readdata: ");
 5216:     fclose(fic);
 5217:     return (1);
 5218: 
 5219: 
 5220: 
 5221: }
 5222: void removespace(char *str) {
 5223:   char *p1 = str, *p2 = str;
 5224:   do
 5225:     while (*p2 == ' ')
 5226:       p2++;
 5227:   while (*p1++ == *p2++);
 5228: }
 5229: 
 5230: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 5231:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
 5232:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
 5233:    * - cptcovn or number of covariates k of the models excluding age*products =6
 5234:    * - cptcovage number of covariates with age*products =2
 5235:    * - cptcovs number of simple covariates
 5236:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 5237:    *     which is a new column after the 9 (ncovcol) variables. 
 5238:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 5239:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 5240:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 5241:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 5242:  */
 5243: {
 5244:   int i, j, k, ks;
 5245:   int  j1, k1, k2;
 5246:   char modelsav[80];
 5247:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 5248: 
 5249:   /*removespace(model);*/
 5250:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 5251:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 5252:     j=nbocc(model,'+'); /**< j=Number of '+' */
 5253:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
 5254:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
 5255:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
 5256:                   /* including age products which are counted in cptcovage.
 5257: 		  * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
 5258:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 5259:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 5260:     strcpy(modelsav,model); 
 5261:     if (strstr(model,"AGE") !=0){
 5262:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
 5263:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
 5264:       return 1;
 5265:     }
 5266:     if (strstr(model,"v") !=0){
 5267:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 5268:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 5269:       return 1;
 5270:     }
 5271:     
 5272:     /*   Design
 5273:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 5274:      *  <          ncovcol=8                >
 5275:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 5276:      *   k=  1    2      3       4     5       6      7        8
 5277:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 5278:      *  covar[k,i], value of kth covariate if not including age for individual i:
 5279:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 5280:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 5281:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 5282:      *  Tage[++cptcovage]=k
 5283:      *       if products, new covar are created after ncovcol with k1
 5284:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 5285:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 5286:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 5287:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 5288:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 5289:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 5290:      *  <          ncovcol=8                >
 5291:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 5292:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 5293:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5294:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5295:      * p Tprod[1]@2={                         6, 5}
 5296:      *p Tvard[1][1]@4= {7, 8, 5, 6}
 5297:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5298:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5299:      *How to reorganize?
 5300:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5301:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5302:      *       {2,   1,     4,      8,    5,      6,     3,       7}
 5303:      * Struct []
 5304:      */
 5305: 
 5306:     /* This loop fills the array Tvar from the string 'model'.*/
 5307:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5308:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5309:     /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5310:     /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5311:     /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5312:     /* 	k=1 Tvar[1]=2 (from V2) */
 5313:     /* 	k=5 Tvar[5] */
 5314:     /* for (k=1; k<=cptcovn;k++) { */
 5315:     /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 5316:     /* 	} */
 5317:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 5318:     /*
 5319:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5320:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5321:         Tvar[k]=0;
 5322:     cptcovage=0;
 5323:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5324:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5325: 				     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5326:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5327:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5328:       /*scanf("%d",i);*/
 5329:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5330: 	cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5331: 	if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5332: 	  /* covar is not filled and then is empty */
 5333: 	  cptcovprod--;
 5334: 	  cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5335: 	  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
 5336: 	  cptcovage++; /* Sums the number of covariates which include age as a product */
 5337: 	  Tage[cptcovage]=k;  /* Tage[1] = 4 */
 5338: 	  /*printf("stre=%s ", stre);*/
 5339: 	} else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5340: 	  cptcovprod--;
 5341: 	  cutl(stre,strb,strc,'V');
 5342: 	  Tvar[k]=atoi(stre);
 5343: 	  cptcovage++;
 5344: 	  Tage[cptcovage]=k;
 5345: 	} else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5346: 	  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5347: 	  cptcovn++;
 5348: 	  cptcovprodnoage++;k1++;
 5349: 	  cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5350: 	  Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5351: 				  because this model-covariate is a construction we invent a new column
 5352: 				  ncovcol + k1
 5353: 				  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5354: 				  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5355: 	  cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5356: 	  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5357: 	  Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5358: 	  Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5359: 	  k2=k2+2;
 5360: 	  Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5361: 	  Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5362: 	  for (i=1; i<=lastobs;i++){
 5363: 	    /* Computes the new covariate which is a product of
 5364: 	       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5365: 	    covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5366: 	  }
 5367: 	} /* End age is not in the model */
 5368:       } /* End if model includes a product */
 5369:       else { /* no more sum */
 5370: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5371:        /*  scanf("%d",i);*/
 5372: 	cutl(strd,strc,strb,'V');
 5373: 	ks++; /**< Number of simple covariates */
 5374: 	cptcovn++;
 5375: 	Tvar[k]=atoi(strd);
 5376:       }
 5377:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5378:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5379: 	scanf("%d",i);*/
 5380:     } /* end of loop + */
 5381:   } /* end model */
 5382:   
 5383:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5384:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5385: 
 5386:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5387:   printf("cptcovprod=%d ", cptcovprod);
 5388:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5389: 
 5390:   scanf("%d ",i);*/
 5391: 
 5392: 
 5393:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5394:   /*endread:*/
 5395:     printf("Exiting decodemodel: ");
 5396:     return (1);
 5397: }
 5398: 
 5399: int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5400: {
 5401:   int i, m;
 5402: 
 5403:   for (i=1; i<=imx; i++) {
 5404:     for(m=2; (m<= maxwav); m++) {
 5405:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5406: 	anint[m][i]=9999;
 5407: 	s[m][i]=-1;
 5408:       }
 5409:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5410: 	*nberr = *nberr + 1;
 5411: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5412: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5413: 	s[m][i]=-1;
 5414:       }
 5415:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5416: 	(*nberr)++;
 5417: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5418: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5419: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5420:       }
 5421:     }
 5422:   }
 5423: 
 5424:   for (i=1; i<=imx; i++)  {
 5425:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5426:     for(m=firstpass; (m<= lastpass); m++){
 5427:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5428: 	if (s[m][i] >= nlstate+1) {
 5429: 	  if(agedc[i]>0){
 5430: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
 5431: 	      agev[m][i]=agedc[i];
 5432: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5433: 	    }else {
 5434: 	      if ((int)andc[i]!=9999){
 5435: 		nbwarn++;
 5436: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5437: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5438: 		agev[m][i]=-1;
 5439: 	      }
 5440: 	    }
 5441: 	  } /* agedc > 0 */
 5442: 	}
 5443: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5444: 				 years but with the precision of a month */
 5445: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5446: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5447: 	    agev[m][i]=1;
 5448: 	  else if(agev[m][i] < *agemin){ 
 5449: 	    *agemin=agev[m][i];
 5450: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5451: 	  }
 5452: 	  else if(agev[m][i] >*agemax){
 5453: 	    *agemax=agev[m][i];
 5454: 	    /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
 5455: 	  }
 5456: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5457: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5458: 	}
 5459: 	else { /* =9 */
 5460: 	  agev[m][i]=1;
 5461: 	  s[m][i]=-1;
 5462: 	}
 5463:       }
 5464:       else /*= 0 Unknown */
 5465: 	agev[m][i]=1;
 5466:     }
 5467:     
 5468:   }
 5469:   for (i=1; i<=imx; i++)  {
 5470:     for(m=firstpass; (m<=lastpass); m++){
 5471:       if (s[m][i] > (nlstate+ndeath)) {
 5472: 	(*nberr)++;
 5473: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5474: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5475: 	return 1;
 5476:       }
 5477:     }
 5478:   }
 5479: 
 5480:   /*for (i=1; i<=imx; i++){
 5481:   for (m=firstpass; (m<lastpass); m++){
 5482:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5483: }
 5484: 
 5485: }*/
 5486: 
 5487: 
 5488:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5489:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5490: 
 5491:   return (0);
 5492:  /* endread:*/
 5493:     printf("Exiting calandcheckages: ");
 5494:     return (1);
 5495: }
 5496: 
 5497: #if defined(_MSC_VER)
 5498: /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5499: /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5500: //#include "stdafx.h"
 5501: //#include <stdio.h>
 5502: //#include <tchar.h>
 5503: //#include <windows.h>
 5504: //#include <iostream>
 5505: typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
 5506: 
 5507: LPFN_ISWOW64PROCESS fnIsWow64Process;
 5508: 
 5509: BOOL IsWow64()
 5510: {
 5511: 	BOOL bIsWow64 = FALSE;
 5512: 
 5513: 	//typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
 5514: 	//  (HANDLE, PBOOL);
 5515: 
 5516: 	//LPFN_ISWOW64PROCESS fnIsWow64Process;
 5517: 
 5518: 	HMODULE module = GetModuleHandle(_T("kernel32"));
 5519: 	const char funcName[] = "IsWow64Process";
 5520: 	fnIsWow64Process = (LPFN_ISWOW64PROCESS)
 5521: 		GetProcAddress(module, funcName);
 5522: 
 5523: 	if (NULL != fnIsWow64Process)
 5524: 	{
 5525: 		if (!fnIsWow64Process(GetCurrentProcess(),
 5526: 			&bIsWow64))
 5527: 			//throw std::exception("Unknown error");
 5528: 			printf("Unknown error\n");
 5529: 	}
 5530: 	return bIsWow64 != FALSE;
 5531: }
 5532: #endif
 5533: 
 5534: void syscompilerinfo()
 5535:  {
 5536:    /* #include "syscompilerinfo.h"*/
 5537: 
 5538: #if defined __INTEL_COMPILER
 5539: #if defined(__GNUC__)
 5540: 	struct utsname sysInfo;  /* For Intel on Linux and OS/X */
 5541: #endif
 5542: #elif defined(__GNUC__) 
 5543: #ifndef  __APPLE__
 5544: #include <gnu/libc-version.h>  /* Only on gnu */
 5545: #endif
 5546:    struct utsname sysInfo;
 5547:    int cross = CROSS;
 5548:    if (cross){
 5549: 	   printf("Cross-");
 5550: 	   fprintf(ficlog, "Cross-");
 5551:    }
 5552: #endif
 5553: 
 5554: #include <stdint.h>
 5555: 
 5556:    printf("Compiled with:");fprintf(ficlog,"Compiled with:");
 5557: #if defined(__clang__)
 5558:    printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM");	/* Clang/LLVM. ---------------------------------------------- */
 5559: #endif
 5560: #if defined(__ICC) || defined(__INTEL_COMPILER)
 5561:    printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
 5562: #endif
 5563: #if defined(__GNUC__) || defined(__GNUG__)
 5564:    printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
 5565: #endif
 5566: #if defined(__HP_cc) || defined(__HP_aCC)
 5567:    printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
 5568: #endif
 5569: #if defined(__IBMC__) || defined(__IBMCPP__)
 5570:    printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
 5571: #endif
 5572: #if defined(_MSC_VER)
 5573:    printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
 5574: #endif
 5575: #if defined(__PGI)
 5576:    printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
 5577: #endif
 5578: #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
 5579:    printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
 5580: #endif
 5581:    printf(" for ");fprintf(ficlog," for ");
 5582:    
 5583: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
 5584: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
 5585:     // Windows (x64 and x86)
 5586:    printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
 5587: #elif __unix__ // all unices, not all compilers
 5588:     // Unix
 5589:    printf("Unix ");fprintf(ficlog,"Unix ");
 5590: #elif __linux__
 5591:     // linux
 5592:    printf("linux ");fprintf(ficlog,"linux ");
 5593: #elif __APPLE__
 5594:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
 5595:    printf("Mac OS ");fprintf(ficlog,"Mac OS ");
 5596: #endif
 5597: 
 5598: /*  __MINGW32__	  */
 5599: /*  __CYGWIN__	 */
 5600: /* __MINGW64__  */
 5601: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
 5602: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
 5603: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
 5604: /* _WIN64  // Defined for applications for Win64. */
 5605: /* _M_X64 // Defined for compilations that target x64 processors. */
 5606: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
 5607: 
 5608: #if UINTPTR_MAX == 0xffffffff
 5609:    printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
 5610: #elif UINTPTR_MAX == 0xffffffffffffffff
 5611:    printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
 5612: #else
 5613:    printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
 5614: #endif
 5615: 
 5616: #if defined(__GNUC__)
 5617: # if defined(__GNUC_PATCHLEVEL__)
 5618: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 5619:                             + __GNUC_MINOR__ * 100 \
 5620:                             + __GNUC_PATCHLEVEL__)
 5621: # else
 5622: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 5623:                             + __GNUC_MINOR__ * 100)
 5624: # endif
 5625:    printf(" using GNU C version %d.\n", __GNUC_VERSION__);
 5626:    fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
 5627: 
 5628:    if (uname(&sysInfo) != -1) {
 5629:      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 5630:      fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 5631:    }
 5632:    else
 5633:       perror("uname() error");
 5634:    //#ifndef __INTEL_COMPILER 
 5635: #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
 5636:    printf("GNU libc version: %s\n", gnu_get_libc_version()); 
 5637:    fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
 5638: #endif
 5639: #endif
 5640: 
 5641:    //   void main()
 5642:    //   {
 5643: #if defined(_MSC_VER)
 5644:    if (IsWow64()){
 5645: 	   printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 5646: 	   fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 5647:    }
 5648:    else{
 5649: 	   printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 5650: 	   fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 5651:    }
 5652:    //	   printf("\nPress Enter to continue...");
 5653:    //	   getchar();
 5654:    //   }
 5655: 
 5656: #endif
 5657:    
 5658: 
 5659:  }
 5660: 
 5661: int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
 5662:   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 5663:   int i, j, k, i1 ;
 5664:   double ftolpl = 1.e-10;
 5665:   double age, agebase, agelim;
 5666: 
 5667:     strcpy(filerespl,"pl");
 5668:     strcat(filerespl,fileres);
 5669:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 5670:       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 5671:       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 5672:     }
 5673:     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 5674:     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 5675:     pstamp(ficrespl);
 5676:     fprintf(ficrespl,"# Period (stable) prevalence \n");
 5677:     fprintf(ficrespl,"#Age ");
 5678:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5679:     fprintf(ficrespl,"\n");
 5680:   
 5681:     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
 5682: 
 5683:     agebase=ageminpar;
 5684:     agelim=agemaxpar;
 5685: 
 5686:     i1=pow(2,cptcoveff);
 5687:     if (cptcovn < 1){i1=1;}
 5688: 
 5689:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5690:     /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
 5691:       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5692: 	k=k+1;
 5693: 	/* to clean */
 5694: 	//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
 5695: 	fprintf(ficrespl,"\n#******");
 5696: 	printf("\n#******");
 5697: 	fprintf(ficlog,"\n#******");
 5698: 	for(j=1;j<=cptcoveff;j++) {
 5699: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5700: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5701: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5702: 	}
 5703: 	fprintf(ficrespl,"******\n");
 5704: 	printf("******\n");
 5705: 	fprintf(ficlog,"******\n");
 5706: 
 5707: 	fprintf(ficrespl,"#Age ");
 5708: 	for(j=1;j<=cptcoveff;j++) {
 5709: 	  fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5710: 	}
 5711: 	for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5712: 	fprintf(ficrespl,"\n");
 5713: 	
 5714: 	for (age=agebase; age<=agelim; age++){
 5715: 	/* for (age=agebase; age<=agebase; age++){ */
 5716: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5717: 	  fprintf(ficrespl,"%.0f ",age );
 5718: 	  for(j=1;j<=cptcoveff;j++)
 5719: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5720: 	  for(i=1; i<=nlstate;i++)
 5721: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 5722: 	  fprintf(ficrespl,"\n");
 5723: 	} /* Age */
 5724: 	/* was end of cptcod */
 5725:     } /* cptcov */
 5726: }
 5727: 
 5728: int hPijx(double *p, int bage, int fage){
 5729:     /*------------- h Pij x at various ages ------------*/
 5730: 
 5731:   int stepsize;
 5732:   int agelim;
 5733:   int hstepm;
 5734:   int nhstepm;
 5735:   int h, i, i1, j, k;
 5736: 
 5737:   double agedeb;
 5738:   double ***p3mat;
 5739: 
 5740:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 5741:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 5742:       printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
 5743:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
 5744:     }
 5745:     printf("Computing pij: result on file '%s' \n", filerespij);
 5746:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 5747:   
 5748:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 5749:     /*if (stepm<=24) stepsize=2;*/
 5750: 
 5751:     agelim=AGESUP;
 5752:     hstepm=stepsize*YEARM; /* Every year of age */
 5753:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 5754: 
 5755:     /* hstepm=1;   aff par mois*/
 5756:     pstamp(ficrespij);
 5757:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 5758:     i1= pow(2,cptcoveff);
 5759:    for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5760:       /*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 5761:     	k=k+1; 
 5762:     /* for (k=1; k <= (int) pow(2,cptcoveff); k++){*/
 5763: 	fprintf(ficrespij,"\n#****** ");
 5764: 	for(j=1;j<=cptcoveff;j++) 
 5765: 	  fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5766: 	fprintf(ficrespij,"******\n");
 5767: 	
 5768: 	for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 5769: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 5770: 	  nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 5771: 
 5772: 	  /*	  nhstepm=nhstepm*YEARM; aff par mois*/
 5773: 
 5774: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5775: 	  oldm=oldms;savm=savms;
 5776: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5777: 	  fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 5778: 	  for(i=1; i<=nlstate;i++)
 5779: 	    for(j=1; j<=nlstate+ndeath;j++)
 5780: 	      fprintf(ficrespij," %1d-%1d",i,j);
 5781: 	  fprintf(ficrespij,"\n");
 5782: 	  for (h=0; h<=nhstepm; h++){
 5783: 	    /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
 5784: 	    fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
 5785: 	    for(i=1; i<=nlstate;i++)
 5786: 	      for(j=1; j<=nlstate+ndeath;j++)
 5787: 		fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 5788: 	    fprintf(ficrespij,"\n");
 5789: 	  }
 5790: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5791: 	  fprintf(ficrespij,"\n");
 5792: 	}
 5793:       /*}*/
 5794:     }
 5795: }
 5796: 
 5797: 
 5798: /***********************************************/
 5799: /**************** Main Program *****************/
 5800: /***********************************************/
 5801: 
 5802: int main(int argc, char *argv[])
 5803: {
 5804: #ifdef GSL
 5805:   const gsl_multimin_fminimizer_type *T;
 5806:   size_t iteri = 0, it;
 5807:   int rval = GSL_CONTINUE;
 5808:   int status = GSL_SUCCESS;
 5809:   double ssval;
 5810: #endif
 5811:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 5812:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
 5813: 
 5814:   int jj, ll, li, lj, lk;
 5815:   int numlinepar=0; /* Current linenumber of parameter file */
 5816:   int itimes;
 5817:   int NDIM=2;
 5818:   int vpopbased=0;
 5819: 
 5820:   char ca[32], cb[32];
 5821:   /*  FILE *fichtm; *//* Html File */
 5822:   /* FILE *ficgp;*/ /*Gnuplot File */
 5823:   struct stat info;
 5824:   double agedeb;
 5825:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 5826: 
 5827:   double fret;
 5828:   double dum; /* Dummy variable */
 5829:   double ***p3mat;
 5830:   double ***mobaverage;
 5831: 
 5832:   char line[MAXLINE];
 5833:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 5834:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 5835:   char *tok, *val; /* pathtot */
 5836:   int firstobs=1, lastobs=10;
 5837:   int c,  h , cpt;
 5838:   int jl;
 5839:   int i1, j1, jk, stepsize;
 5840:   int *tab; 
 5841:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 5842:   int mobilav=0,popforecast=0;
 5843:   int hstepm, nhstepm;
 5844:   int agemortsup;
 5845:   float  sumlpop=0.;
 5846:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 5847:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 5848: 
 5849:   double bage=0, fage=110, age, agelim, agebase;
 5850:   double ftolpl=FTOL;
 5851:   double **prlim;
 5852:   double ***param; /* Matrix of parameters */
 5853:   double  *p;
 5854:   double **matcov; /* Matrix of covariance */
 5855:   double ***delti3; /* Scale */
 5856:   double *delti; /* Scale */
 5857:   double ***eij, ***vareij;
 5858:   double **varpl; /* Variances of prevalence limits by age */
 5859:   double *epj, vepp;
 5860: 
 5861:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 5862:   double **ximort;
 5863:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 5864:   int *dcwave;
 5865: 
 5866:   char z[1]="c";
 5867: 
 5868:   /*char  *strt;*/
 5869:   char strtend[80];
 5870: 
 5871: 
 5872: /*   setlocale (LC_ALL, ""); */
 5873: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 5874: /*   textdomain (PACKAGE); */
 5875: /*   setlocale (LC_CTYPE, ""); */
 5876: /*   setlocale (LC_MESSAGES, ""); */
 5877: 
 5878:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 5879:   rstart_time = time(NULL);  
 5880:   /*  (void) gettimeofday(&start_time,&tzp);*/
 5881:   start_time = *localtime(&rstart_time);
 5882:   curr_time=start_time;
 5883:   /*tml = *localtime(&start_time.tm_sec);*/
 5884:   /* strcpy(strstart,asctime(&tml)); */
 5885:   strcpy(strstart,asctime(&start_time));
 5886: 
 5887: /*  printf("Localtime (at start)=%s",strstart); */
 5888: /*  tp.tm_sec = tp.tm_sec +86400; */
 5889: /*  tm = *localtime(&start_time.tm_sec); */
 5890: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 5891: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 5892: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 5893: /*   tp.tm_sec = mktime(&tmg); */
 5894: /*   strt=asctime(&tmg); */
 5895: /*   printf("Time(after) =%s",strstart);  */
 5896: /*  (void) time (&time_value);
 5897: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 5898: *  tm = *localtime(&time_value);
 5899: *  strstart=asctime(&tm);
 5900: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 5901: */
 5902: 
 5903:   nberr=0; /* Number of errors and warnings */
 5904:   nbwarn=0;
 5905:   getcwd(pathcd, size);
 5906: 
 5907:   printf("\n%s\n%s",version,fullversion);
 5908:   if(argc <=1){
 5909:     printf("\nEnter the parameter file name: ");
 5910:     fgets(pathr,FILENAMELENGTH,stdin);
 5911:     i=strlen(pathr);
 5912:     if(pathr[i-1]=='\n')
 5913:       pathr[i-1]='\0';
 5914:     i=strlen(pathr);
 5915:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
 5916:       pathr[i-1]='\0';
 5917:    for (tok = pathr; tok != NULL; ){
 5918:       printf("Pathr |%s|\n",pathr);
 5919:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 5920:       printf("val= |%s| pathr=%s\n",val,pathr);
 5921:       strcpy (pathtot, val);
 5922:       if(pathr[0] == '\0') break; /* Dirty */
 5923:     }
 5924:   }
 5925:   else{
 5926:     strcpy(pathtot,argv[1]);
 5927:   }
 5928:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 5929:   /*cygwin_split_path(pathtot,path,optionfile);
 5930:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 5931:   /* cutv(path,optionfile,pathtot,'\\');*/
 5932: 
 5933:   /* Split argv[0], imach program to get pathimach */
 5934:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 5935:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5936:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5937:  /*   strcpy(pathimach,argv[0]); */
 5938:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 5939:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 5940:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 5941:   chdir(path); /* Can be a relative path */
 5942:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 5943:     printf("Current directory %s!\n",pathcd);
 5944:   strcpy(command,"mkdir ");
 5945:   strcat(command,optionfilefiname);
 5946:   if((outcmd=system(command)) != 0){
 5947:     printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
 5948:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 5949:     /* fclose(ficlog); */
 5950: /*     exit(1); */
 5951:   }
 5952: /*   if((imk=mkdir(optionfilefiname))<0){ */
 5953: /*     perror("mkdir"); */
 5954: /*   } */
 5955: 
 5956:   /*-------- arguments in the command line --------*/
 5957: 
 5958:   /* Log file */
 5959:   strcat(filelog, optionfilefiname);
 5960:   strcat(filelog,".log");    /* */
 5961:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 5962:     printf("Problem with logfile %s\n",filelog);
 5963:     goto end;
 5964:   }
 5965:   fprintf(ficlog,"Log filename:%s\n",filelog);
 5966:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 5967:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 5968:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 5969:  path=%s \n\
 5970:  optionfile=%s\n\
 5971:  optionfilext=%s\n\
 5972:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 5973: 
 5974:   syscompilerinfo();
 5975: 
 5976:   printf("Local time (at start):%s",strstart);
 5977:   fprintf(ficlog,"Local time (at start): %s",strstart);
 5978:   fflush(ficlog);
 5979: /*   (void) gettimeofday(&curr_time,&tzp); */
 5980: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
 5981: 
 5982:   /* */
 5983:   strcpy(fileres,"r");
 5984:   strcat(fileres, optionfilefiname);
 5985:   strcat(fileres,".txt");    /* Other files have txt extension */
 5986: 
 5987:   /*---------arguments file --------*/
 5988: 
 5989:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 5990:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 5991:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 5992:     fflush(ficlog);
 5993:     /* goto end; */
 5994:     exit(70); 
 5995:   }
 5996: 
 5997: 
 5998: 
 5999:   strcpy(filereso,"o");
 6000:   strcat(filereso,fileres);
 6001:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 6002:     printf("Problem with Output resultfile: %s\n", filereso);
 6003:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 6004:     fflush(ficlog);
 6005:     goto end;
 6006:   }
 6007: 
 6008:   /* Reads comments: lines beginning with '#' */
 6009:   numlinepar=0;
 6010:   while((c=getc(ficpar))=='#' && c!= EOF){
 6011:     ungetc(c,ficpar);
 6012:     fgets(line, MAXLINE, ficpar);
 6013:     numlinepar++;
 6014:     fputs(line,stdout);
 6015:     fputs(line,ficparo);
 6016:     fputs(line,ficlog);
 6017:   }
 6018:   ungetc(c,ficpar);
 6019: 
 6020:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 6021:   numlinepar++;
 6022:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 6023:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6024:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6025:   fflush(ficlog);
 6026:   while((c=getc(ficpar))=='#' && c!= EOF){
 6027:     ungetc(c,ficpar);
 6028:     fgets(line, MAXLINE, ficpar);
 6029:     numlinepar++;
 6030:     fputs(line, stdout);
 6031:     //puts(line);
 6032:     fputs(line,ficparo);
 6033:     fputs(line,ficlog);
 6034:   }
 6035:   ungetc(c,ficpar);
 6036: 
 6037:    
 6038:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 6039:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 6040:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 6041:      v1+v2*age+v2*v3 makes cptcovn = 3
 6042:   */
 6043:   if (strlen(model)>1) 
 6044:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
 6045:   else
 6046:     ncovmodel=2;
 6047:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 6048:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 6049:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 6050:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 6051:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6052:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6053:     fflush(stdout);
 6054:     fclose (ficlog);
 6055:     goto end;
 6056:   }
 6057:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6058:   delti=delti3[1][1];
 6059:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 6060:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 6061:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6062:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6063:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6064:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6065:     fclose (ficparo);
 6066:     fclose (ficlog);
 6067:     goto end;
 6068:     exit(0);
 6069:   }
 6070:   else if(mle==-3) {
 6071:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6072:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6073:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6074:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6075:     matcov=matrix(1,npar,1,npar);
 6076:   }
 6077:   else{
 6078:     /* Read guessed parameters */
 6079:     /* Reads comments: lines beginning with '#' */
 6080:     while((c=getc(ficpar))=='#' && c!= EOF){
 6081:       ungetc(c,ficpar);
 6082:       fgets(line, MAXLINE, ficpar);
 6083:       numlinepar++;
 6084:       fputs(line,stdout);
 6085:       fputs(line,ficparo);
 6086:       fputs(line,ficlog);
 6087:     }
 6088:     ungetc(c,ficpar);
 6089:     
 6090:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6091:     for(i=1; i <=nlstate; i++){
 6092:       j=0;
 6093:       for(jj=1; jj <=nlstate+ndeath; jj++){
 6094: 	if(jj==i) continue;
 6095: 	j++;
 6096: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6097: 	if ((i1 != i) && (j1 != j)){
 6098: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 6099: It might be a problem of design; if ncovcol and the model are correct\n \
 6100: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 6101: 	  exit(1);
 6102: 	}
 6103: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6104: 	if(mle==1)
 6105: 	  printf("%1d%1d",i,j);
 6106: 	fprintf(ficlog,"%1d%1d",i,j);
 6107: 	for(k=1; k<=ncovmodel;k++){
 6108: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 6109: 	  if(mle==1){
 6110: 	    printf(" %lf",param[i][j][k]);
 6111: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6112: 	  }
 6113: 	  else
 6114: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6115: 	  fprintf(ficparo," %lf",param[i][j][k]);
 6116: 	}
 6117: 	fscanf(ficpar,"\n");
 6118: 	numlinepar++;
 6119: 	if(mle==1)
 6120: 	  printf("\n");
 6121: 	fprintf(ficlog,"\n");
 6122: 	fprintf(ficparo,"\n");
 6123:       }
 6124:     }  
 6125:     fflush(ficlog);
 6126: 
 6127:     /* Reads scales values */
 6128:     p=param[1][1];
 6129:     
 6130:     /* Reads comments: lines beginning with '#' */
 6131:     while((c=getc(ficpar))=='#' && c!= EOF){
 6132:       ungetc(c,ficpar);
 6133:       fgets(line, MAXLINE, ficpar);
 6134:       numlinepar++;
 6135:       fputs(line,stdout);
 6136:       fputs(line,ficparo);
 6137:       fputs(line,ficlog);
 6138:     }
 6139:     ungetc(c,ficpar);
 6140: 
 6141:     for(i=1; i <=nlstate; i++){
 6142:       for(j=1; j <=nlstate+ndeath-1; j++){
 6143: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6144: 	if ( (i1-i) * (j1-j) != 0){
 6145: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 6146: 	  exit(1);
 6147: 	}
 6148: 	printf("%1d%1d",i,j);
 6149: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6150: 	fprintf(ficlog,"%1d%1d",i1,j1);
 6151: 	for(k=1; k<=ncovmodel;k++){
 6152: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 6153: 	  printf(" %le",delti3[i][j][k]);
 6154: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 6155: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 6156: 	}
 6157: 	fscanf(ficpar,"\n");
 6158: 	numlinepar++;
 6159: 	printf("\n");
 6160: 	fprintf(ficparo,"\n");
 6161: 	fprintf(ficlog,"\n");
 6162:       }
 6163:     }
 6164:     fflush(ficlog);
 6165: 
 6166:     /* Reads covariance matrix */
 6167:     delti=delti3[1][1];
 6168: 
 6169: 
 6170:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 6171:   
 6172:     /* Reads comments: lines beginning with '#' */
 6173:     while((c=getc(ficpar))=='#' && c!= EOF){
 6174:       ungetc(c,ficpar);
 6175:       fgets(line, MAXLINE, ficpar);
 6176:       numlinepar++;
 6177:       fputs(line,stdout);
 6178:       fputs(line,ficparo);
 6179:       fputs(line,ficlog);
 6180:     }
 6181:     ungetc(c,ficpar);
 6182:   
 6183:     matcov=matrix(1,npar,1,npar);
 6184:     for(i=1; i <=npar; i++)
 6185:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 6186:       
 6187:     for(i=1; i <=npar; i++){
 6188:       fscanf(ficpar,"%s",str);
 6189:       if(mle==1)
 6190: 	printf("%s",str);
 6191:       fprintf(ficlog,"%s",str);
 6192:       fprintf(ficparo,"%s",str);
 6193:       for(j=1; j <=i; j++){
 6194: 	fscanf(ficpar," %le",&matcov[i][j]);
 6195: 	if(mle==1){
 6196: 	  printf(" %.5le",matcov[i][j]);
 6197: 	}
 6198: 	fprintf(ficlog," %.5le",matcov[i][j]);
 6199: 	fprintf(ficparo," %.5le",matcov[i][j]);
 6200:       }
 6201:       fscanf(ficpar,"\n");
 6202:       numlinepar++;
 6203:       if(mle==1)
 6204: 	printf("\n");
 6205:       fprintf(ficlog,"\n");
 6206:       fprintf(ficparo,"\n");
 6207:     }
 6208:     for(i=1; i <=npar; i++)
 6209:       for(j=i+1;j<=npar;j++)
 6210: 	matcov[i][j]=matcov[j][i];
 6211:     
 6212:     if(mle==1)
 6213:       printf("\n");
 6214:     fprintf(ficlog,"\n");
 6215:     
 6216:     fflush(ficlog);
 6217:     
 6218:     /*-------- Rewriting parameter file ----------*/
 6219:     strcpy(rfileres,"r");    /* "Rparameterfile */
 6220:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 6221:     strcat(rfileres,".");    /* */
 6222:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 6223:     if((ficres =fopen(rfileres,"w"))==NULL) {
 6224:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 6225:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 6226:     }
 6227:     fprintf(ficres,"#%s\n",version);
 6228:   }    /* End of mle != -3 */
 6229: 
 6230: 
 6231:   n= lastobs;
 6232:   num=lvector(1,n);
 6233:   moisnais=vector(1,n);
 6234:   annais=vector(1,n);
 6235:   moisdc=vector(1,n);
 6236:   andc=vector(1,n);
 6237:   agedc=vector(1,n);
 6238:   cod=ivector(1,n);
 6239:   weight=vector(1,n);
 6240:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 6241:   mint=matrix(1,maxwav,1,n);
 6242:   anint=matrix(1,maxwav,1,n);
 6243:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 6244:   tab=ivector(1,NCOVMAX);
 6245:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 6246: 
 6247:   /* Reads data from file datafile */
 6248:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 6249:     goto end;
 6250: 
 6251:   /* Calculation of the number of parameters from char model */
 6252:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 6253: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 6254: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 6255: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 6256: 	k=1 Tvar[1]=2 (from V2)
 6257:     */
 6258:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 6259:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 6260:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 6261:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 6262:   */
 6263:   /* For model-covariate k tells which data-covariate to use but
 6264:     because this model-covariate is a construction we invent a new column
 6265:     ncovcol + k1
 6266:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 6267:     Tvar[3=V1*V4]=4+1 etc */
 6268:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 6269:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 6270:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 6271:   */
 6272:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 6273:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 6274: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 6275: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 6276:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 6277: 			 4 covariates (3 plus signs)
 6278: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 6279: 		      */  
 6280: 
 6281:   if(decodemodel(model, lastobs) == 1)
 6282:     goto end;
 6283: 
 6284:   if((double)(lastobs-imx)/(double)imx > 1.10){
 6285:     nbwarn++;
 6286:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6287:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6288:   }
 6289:     /*  if(mle==1){*/
 6290:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 6291:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 6292:   }
 6293: 
 6294:     /*-calculation of age at interview from date of interview and age at death -*/
 6295:   agev=matrix(1,maxwav,1,imx);
 6296: 
 6297:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 6298:     goto end;
 6299: 
 6300: 
 6301:   agegomp=(int)agemin;
 6302:   free_vector(moisnais,1,n);
 6303:   free_vector(annais,1,n);
 6304:   /* free_matrix(mint,1,maxwav,1,n);
 6305:      free_matrix(anint,1,maxwav,1,n);*/
 6306:   free_vector(moisdc,1,n);
 6307:   free_vector(andc,1,n);
 6308:   /* */
 6309:   
 6310:   wav=ivector(1,imx);
 6311:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 6312:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 6313:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 6314:    
 6315:   /* Concatenates waves */
 6316:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 6317:   /* */
 6318:  
 6319:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 6320: 
 6321:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 6322:   ncodemax[1]=1;
 6323:   Ndum =ivector(-1,NCOVMAX);  
 6324:   if (ncovmodel > 2)
 6325:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 6326: 
 6327:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 6328:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
 6329:   h=0;
 6330: 
 6331: 
 6332:   /*if (cptcovn > 0) */
 6333:       
 6334:  
 6335:   m=pow(2,cptcoveff);
 6336:  
 6337:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 6338:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 6339:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
 6340: 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 6341: 	  h++;
 6342: 	  if (h>m) 
 6343: 	    h=1;
 6344: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 6345: 	   *     h     1     2     3     4
 6346: 	   *______________________________  
 6347: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 6348: 	   *     2     2     1     1     1
 6349: 	   *     3 i=2 1     2     1     1
 6350: 	   *     4     2     2     1     1
 6351: 	   *     5 i=3 1 i=2 1     2     1
 6352: 	   *     6     2     1     2     1
 6353: 	   *     7 i=4 1     2     2     1
 6354: 	   *     8     2     2     2     1
 6355: 	   *     9 i=5 1 i=3 1 i=2 1     1
 6356: 	   *    10     2     1     1     1
 6357: 	   *    11 i=6 1     2     1     1
 6358: 	   *    12     2     2     1     1
 6359: 	   *    13 i=7 1 i=4 1     2     1    
 6360: 	   *    14     2     1     2     1
 6361: 	   *    15 i=8 1     2     2     1
 6362: 	   *    16     2     2     2     1
 6363: 	   */
 6364: 	  codtab[h][k]=j;
 6365: 	  /*codtab[h][Tvar[k]]=j;*/
 6366: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 6367: 	} 
 6368:       }
 6369:     }
 6370:   } 
 6371:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 6372:      codtab[1][2]=1;codtab[2][2]=2; */
 6373:   /* for(i=1; i <=m ;i++){ 
 6374:      for(k=1; k <=cptcovn; k++){
 6375:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 6376:      }
 6377:      printf("\n");
 6378:      }
 6379:      scanf("%d",i);*/
 6380: 
 6381:  free_ivector(Ndum,-1,NCOVMAX);
 6382: 
 6383: 
 6384:     
 6385:   /*------------ gnuplot -------------*/
 6386:   strcpy(optionfilegnuplot,optionfilefiname);
 6387:   if(mle==-3)
 6388:     strcat(optionfilegnuplot,"-mort");
 6389:   strcat(optionfilegnuplot,".gp");
 6390: 
 6391:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 6392:     printf("Problem with file %s",optionfilegnuplot);
 6393:   }
 6394:   else{
 6395:     fprintf(ficgp,"\n# %s\n", version); 
 6396:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 6397:     //fprintf(ficgp,"set missing 'NaNq'\n");
 6398:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 6399:   }
 6400:   /*  fclose(ficgp);*/
 6401:   /*--------- index.htm --------*/
 6402: 
 6403:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 6404:   if(mle==-3)
 6405:     strcat(optionfilehtm,"-mort");
 6406:   strcat(optionfilehtm,".htm");
 6407:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 6408:     printf("Problem with %s \n",optionfilehtm);
 6409:     exit(0);
 6410:   }
 6411: 
 6412:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 6413:   strcat(optionfilehtmcov,"-cov.htm");
 6414:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 6415:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 6416:   }
 6417:   else{
 6418:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6419: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6420: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 6421: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 6422:   }
 6423: 
 6424:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6425: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6426: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 6427: \n\
 6428: <hr  size=\"2\" color=\"#EC5E5E\">\
 6429:  <ul><li><h4>Parameter files</h4>\n\
 6430:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 6431:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 6432:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 6433:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 6434:  - Date and time at start: %s</ul>\n",\
 6435: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 6436: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 6437: 	  fileres,fileres,\
 6438: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 6439:   fflush(fichtm);
 6440: 
 6441:   strcpy(pathr,path);
 6442:   strcat(pathr,optionfilefiname);
 6443:   chdir(optionfilefiname); /* Move to directory named optionfile */
 6444:   
 6445:   /* Calculates basic frequencies. Computes observed prevalence at single age
 6446:      and prints on file fileres'p'. */
 6447:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 6448: 
 6449:   fprintf(fichtm,"\n");
 6450:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 6451: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 6452: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 6453: 	  imx,agemin,agemax,jmin,jmax,jmean);
 6454:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6455:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6456:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6457:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6458:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 6459:     
 6460:    
 6461:   /* For Powell, parameters are in a vector p[] starting at p[1]
 6462:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 6463:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 6464: 
 6465:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 6466: 
 6467:   if (mle==-3){
 6468:     ximort=matrix(1,NDIM,1,NDIM); 
 6469: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 6470:     cens=ivector(1,n);
 6471:     ageexmed=vector(1,n);
 6472:     agecens=vector(1,n);
 6473:     dcwave=ivector(1,n);
 6474:  
 6475:     for (i=1; i<=imx; i++){
 6476:       dcwave[i]=-1;
 6477:       for (m=firstpass; m<=lastpass; m++)
 6478: 	if (s[m][i]>nlstate) {
 6479: 	  dcwave[i]=m;
 6480: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 6481: 	  break;
 6482: 	}
 6483:     }
 6484: 
 6485:     for (i=1; i<=imx; i++) {
 6486:       if (wav[i]>0){
 6487: 	ageexmed[i]=agev[mw[1][i]][i];
 6488: 	j=wav[i];
 6489: 	agecens[i]=1.; 
 6490: 
 6491: 	if (ageexmed[i]> 1 && wav[i] > 0){
 6492: 	  agecens[i]=agev[mw[j][i]][i];
 6493: 	  cens[i]= 1;
 6494: 	}else if (ageexmed[i]< 1) 
 6495: 	  cens[i]= -1;
 6496: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 6497: 	  cens[i]=0 ;
 6498:       }
 6499:       else cens[i]=-1;
 6500:     }
 6501:     
 6502:     for (i=1;i<=NDIM;i++) {
 6503:       for (j=1;j<=NDIM;j++)
 6504: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 6505:     }
 6506:     
 6507:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 6508:     /*printf("%lf %lf", p[1], p[2]);*/
 6509:     
 6510:     
 6511: #ifdef GSL
 6512:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 6513: #else
 6514:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 6515: #endif
 6516:     strcpy(filerespow,"pow-mort"); 
 6517:     strcat(filerespow,fileres);
 6518:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 6519:       printf("Problem with resultfile: %s\n", filerespow);
 6520:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 6521:     }
 6522: #ifdef GSL
 6523:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 6524: #else
 6525:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 6526: #endif
 6527:     /*  for (i=1;i<=nlstate;i++)
 6528: 	for(j=1;j<=nlstate+ndeath;j++)
 6529: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 6530:     */
 6531:     fprintf(ficrespow,"\n");
 6532: #ifdef GSL
 6533:     /* gsl starts here */ 
 6534:     T = gsl_multimin_fminimizer_nmsimplex;
 6535:     gsl_multimin_fminimizer *sfm = NULL;
 6536:     gsl_vector *ss, *x;
 6537:     gsl_multimin_function minex_func;
 6538: 
 6539:     /* Initial vertex size vector */
 6540:     ss = gsl_vector_alloc (NDIM);
 6541:     
 6542:     if (ss == NULL){
 6543:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 6544:     }
 6545:     /* Set all step sizes to 1 */
 6546:     gsl_vector_set_all (ss, 0.001);
 6547: 
 6548:     /* Starting point */
 6549:     
 6550:     x = gsl_vector_alloc (NDIM);
 6551:     
 6552:     if (x == NULL){
 6553:       gsl_vector_free(ss);
 6554:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 6555:     }
 6556:   
 6557:     /* Initialize method and iterate */
 6558:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 6559: /*     gsl_vector_set(x, 0, 0.0268); */
 6560: /*     gsl_vector_set(x, 1, 0.083); */
 6561:     gsl_vector_set(x, 0, p[1]);
 6562:     gsl_vector_set(x, 1, p[2]);
 6563: 
 6564:     minex_func.f = &gompertz_f;
 6565:     minex_func.n = NDIM;
 6566:     minex_func.params = (void *)&p; /* ??? */
 6567:     
 6568:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 6569:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 6570:     
 6571:     printf("Iterations beginning .....\n\n");
 6572:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 6573: 
 6574:     iteri=0;
 6575:     while (rval == GSL_CONTINUE){
 6576:       iteri++;
 6577:       status = gsl_multimin_fminimizer_iterate(sfm);
 6578:       
 6579:       if (status) printf("error: %s\n", gsl_strerror (status));
 6580:       fflush(0);
 6581:       
 6582:       if (status) 
 6583:         break;
 6584:       
 6585:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 6586:       ssval = gsl_multimin_fminimizer_size (sfm);
 6587:       
 6588:       if (rval == GSL_SUCCESS)
 6589:         printf ("converged to a local maximum at\n");
 6590:       
 6591:       printf("%5d ", iteri);
 6592:       for (it = 0; it < NDIM; it++){
 6593: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 6594:       }
 6595:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 6596:     }
 6597:     
 6598:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 6599:     
 6600:     gsl_vector_free(x); /* initial values */
 6601:     gsl_vector_free(ss); /* inital step size */
 6602:     for (it=0; it<NDIM; it++){
 6603:       p[it+1]=gsl_vector_get(sfm->x,it);
 6604:       fprintf(ficrespow," %.12lf", p[it]);
 6605:     }
 6606:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 6607: #endif
 6608: #ifdef POWELL
 6609:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 6610: #endif  
 6611:     fclose(ficrespow);
 6612:     
 6613:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 6614: 
 6615:     for(i=1; i <=NDIM; i++)
 6616:       for(j=i+1;j<=NDIM;j++)
 6617: 	matcov[i][j]=matcov[j][i];
 6618:     
 6619:     printf("\nCovariance matrix\n ");
 6620:     for(i=1; i <=NDIM; i++) {
 6621:       for(j=1;j<=NDIM;j++){ 
 6622: 	printf("%f ",matcov[i][j]);
 6623:       }
 6624:       printf("\n ");
 6625:     }
 6626:     
 6627:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 6628:     for (i=1;i<=NDIM;i++) 
 6629:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 6630: 
 6631:     lsurv=vector(1,AGESUP);
 6632:     lpop=vector(1,AGESUP);
 6633:     tpop=vector(1,AGESUP);
 6634:     lsurv[agegomp]=100000;
 6635:     
 6636:     for (k=agegomp;k<=AGESUP;k++) {
 6637:       agemortsup=k;
 6638:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 6639:     }
 6640:     
 6641:     for (k=agegomp;k<agemortsup;k++)
 6642:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 6643:     
 6644:     for (k=agegomp;k<agemortsup;k++){
 6645:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 6646:       sumlpop=sumlpop+lpop[k];
 6647:     }
 6648:     
 6649:     tpop[agegomp]=sumlpop;
 6650:     for (k=agegomp;k<(agemortsup-3);k++){
 6651:       /*  tpop[k+1]=2;*/
 6652:       tpop[k+1]=tpop[k]-lpop[k];
 6653:     }
 6654:     
 6655:     
 6656:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 6657:     for (k=agegomp;k<(agemortsup-2);k++) 
 6658:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 6659:     
 6660:     
 6661:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6662:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6663:     
 6664:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 6665: 		     stepm, weightopt,\
 6666: 		     model,imx,p,matcov,agemortsup);
 6667:     
 6668:     free_vector(lsurv,1,AGESUP);
 6669:     free_vector(lpop,1,AGESUP);
 6670:     free_vector(tpop,1,AGESUP);
 6671: #ifdef GSL
 6672:     free_ivector(cens,1,n);
 6673:     free_vector(agecens,1,n);
 6674:     free_ivector(dcwave,1,n);
 6675:     free_matrix(ximort,1,NDIM,1,NDIM);
 6676: #endif
 6677:   } /* Endof if mle==-3 */
 6678:   
 6679:   else{ /* For mle >=1 */
 6680:     globpr=0;/* debug */
 6681:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6682:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6683:     for (k=1; k<=npar;k++)
 6684:       printf(" %d %8.5f",k,p[k]);
 6685:     printf("\n");
 6686:     globpr=1; /* to print the contributions */
 6687:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6688:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6689:     for (k=1; k<=npar;k++)
 6690:       printf(" %d %8.5f",k,p[k]);
 6691:     printf("\n");
 6692:     if(mle>=1){ /* Could be 1 or 2 */
 6693:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 6694:     }
 6695:     
 6696:     /*--------- results files --------------*/
 6697:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 6698:     
 6699:     
 6700:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6701:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6702:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6703:     for(i=1,jk=1; i <=nlstate; i++){
 6704:       for(k=1; k <=(nlstate+ndeath); k++){
 6705: 	if (k != i) {
 6706: 	  printf("%d%d ",i,k);
 6707: 	  fprintf(ficlog,"%d%d ",i,k);
 6708: 	  fprintf(ficres,"%1d%1d ",i,k);
 6709: 	  for(j=1; j <=ncovmodel; j++){
 6710: 	    printf("%lf ",p[jk]);
 6711: 	    fprintf(ficlog,"%lf ",p[jk]);
 6712: 	    fprintf(ficres,"%lf ",p[jk]);
 6713: 	    jk++; 
 6714: 	  }
 6715: 	  printf("\n");
 6716: 	  fprintf(ficlog,"\n");
 6717: 	  fprintf(ficres,"\n");
 6718: 	}
 6719:       }
 6720:     }
 6721:     if(mle!=0){
 6722:       /* Computing hessian and covariance matrix */
 6723:       ftolhess=ftol; /* Usually correct */
 6724:       hesscov(matcov, p, npar, delti, ftolhess, func);
 6725:     }
 6726:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 6727:     printf("# Scales (for hessian or gradient estimation)\n");
 6728:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 6729:     for(i=1,jk=1; i <=nlstate; i++){
 6730:       for(j=1; j <=nlstate+ndeath; j++){
 6731: 	if (j!=i) {
 6732: 	  fprintf(ficres,"%1d%1d",i,j);
 6733: 	  printf("%1d%1d",i,j);
 6734: 	  fprintf(ficlog,"%1d%1d",i,j);
 6735: 	  for(k=1; k<=ncovmodel;k++){
 6736: 	    printf(" %.5e",delti[jk]);
 6737: 	    fprintf(ficlog," %.5e",delti[jk]);
 6738: 	    fprintf(ficres," %.5e",delti[jk]);
 6739: 	    jk++;
 6740: 	  }
 6741: 	  printf("\n");
 6742: 	  fprintf(ficlog,"\n");
 6743: 	  fprintf(ficres,"\n");
 6744: 	}
 6745:       }
 6746:     }
 6747:     
 6748:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6749:     if(mle>=1)
 6750:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6751:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6752:     /* # 121 Var(a12)\n\ */
 6753:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 6754:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 6755:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 6756:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 6757:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 6758:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 6759:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 6760:     
 6761:     
 6762:     /* Just to have a covariance matrix which will be more understandable
 6763:        even is we still don't want to manage dictionary of variables
 6764:     */
 6765:     for(itimes=1;itimes<=2;itimes++){
 6766:       jj=0;
 6767:       for(i=1; i <=nlstate; i++){
 6768: 	for(j=1; j <=nlstate+ndeath; j++){
 6769: 	  if(j==i) continue;
 6770: 	  for(k=1; k<=ncovmodel;k++){
 6771: 	    jj++;
 6772: 	    ca[0]= k+'a'-1;ca[1]='\0';
 6773: 	    if(itimes==1){
 6774: 	      if(mle>=1)
 6775: 		printf("#%1d%1d%d",i,j,k);
 6776: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 6777: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 6778: 	    }else{
 6779: 	      if(mle>=1)
 6780: 		printf("%1d%1d%d",i,j,k);
 6781: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 6782: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 6783: 	    }
 6784: 	    ll=0;
 6785: 	    for(li=1;li <=nlstate; li++){
 6786: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 6787: 		if(lj==li) continue;
 6788: 		for(lk=1;lk<=ncovmodel;lk++){
 6789: 		  ll++;
 6790: 		  if(ll<=jj){
 6791: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 6792: 		    if(ll<jj){
 6793: 		      if(itimes==1){
 6794: 			if(mle>=1)
 6795: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6796: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6797: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6798: 		      }else{
 6799: 			if(mle>=1)
 6800: 			  printf(" %.5e",matcov[jj][ll]); 
 6801: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6802: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6803: 		      }
 6804: 		    }else{
 6805: 		      if(itimes==1){
 6806: 			if(mle>=1)
 6807: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 6808: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 6809: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 6810: 		      }else{
 6811: 			if(mle>=1)
 6812: 			  printf(" %.5e",matcov[jj][ll]); 
 6813: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6814: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6815: 		      }
 6816: 		    }
 6817: 		  }
 6818: 		} /* end lk */
 6819: 	      } /* end lj */
 6820: 	    } /* end li */
 6821: 	    if(mle>=1)
 6822: 	      printf("\n");
 6823: 	    fprintf(ficlog,"\n");
 6824: 	    fprintf(ficres,"\n");
 6825: 	    numlinepar++;
 6826: 	  } /* end k*/
 6827: 	} /*end j */
 6828:       } /* end i */
 6829:     } /* end itimes */
 6830:     
 6831:     fflush(ficlog);
 6832:     fflush(ficres);
 6833:     
 6834:     while((c=getc(ficpar))=='#' && c!= EOF){
 6835:       ungetc(c,ficpar);
 6836:       fgets(line, MAXLINE, ficpar);
 6837:       fputs(line,stdout);
 6838:       fputs(line,ficparo);
 6839:     }
 6840:     ungetc(c,ficpar);
 6841:     
 6842:     estepm=0;
 6843:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 6844:     if (estepm==0 || estepm < stepm) estepm=stepm;
 6845:     if (fage <= 2) {
 6846:       bage = ageminpar;
 6847:       fage = agemaxpar;
 6848:     }
 6849:     
 6850:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 6851:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6852:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6853:     
 6854:     while((c=getc(ficpar))=='#' && c!= EOF){
 6855:       ungetc(c,ficpar);
 6856:       fgets(line, MAXLINE, ficpar);
 6857:       fputs(line,stdout);
 6858:       fputs(line,ficparo);
 6859:     }
 6860:     ungetc(c,ficpar);
 6861:     
 6862:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 6863:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6864:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6865:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6866:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6867:     
 6868:     while((c=getc(ficpar))=='#' && c!= EOF){
 6869:       ungetc(c,ficpar);
 6870:       fgets(line, MAXLINE, ficpar);
 6871:       fputs(line,stdout);
 6872:       fputs(line,ficparo);
 6873:     }
 6874:     ungetc(c,ficpar);
 6875:     
 6876:     
 6877:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 6878:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 6879:     
 6880:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 6881:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 6882:     fprintf(ficres,"pop_based=%d\n",popbased);   
 6883:     
 6884:     while((c=getc(ficpar))=='#' && c!= EOF){
 6885:       ungetc(c,ficpar);
 6886:       fgets(line, MAXLINE, ficpar);
 6887:       fputs(line,stdout);
 6888:       fputs(line,ficparo);
 6889:     }
 6890:     ungetc(c,ficpar);
 6891:     
 6892:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 6893:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6894:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6895:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6896:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6897:     /* day and month of proj2 are not used but only year anproj2.*/
 6898:     
 6899:     
 6900:     
 6901:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 6902:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 6903:     
 6904:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6905:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6906:     
 6907:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 6908: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 6909: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 6910:       
 6911:    /*------------ free_vector  -------------*/
 6912:    /*  chdir(path); */
 6913:  
 6914:     free_ivector(wav,1,imx);
 6915:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 6916:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 6917:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 6918:     free_lvector(num,1,n);
 6919:     free_vector(agedc,1,n);
 6920:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 6921:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 6922:     fclose(ficparo);
 6923:     fclose(ficres);
 6924: 
 6925: 
 6926:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 6927:     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
 6928:     prlim=matrix(1,nlstate,1,nlstate);
 6929:     prevalence_limit(p, prlim,  ageminpar, agemaxpar);
 6930:     fclose(ficrespl);
 6931: 
 6932: #ifdef FREEEXIT2
 6933: #include "freeexit2.h"
 6934: #endif
 6935: 
 6936:     /*------------- h Pij x at various ages ------------*/
 6937:     /*#include "hpijx.h"*/
 6938:     hPijx(p, bage, fage);
 6939:     fclose(ficrespij);
 6940: 
 6941:   /*-------------- Variance of one-step probabilities---*/
 6942:     k=1;
 6943:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 6944: 
 6945: 
 6946:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6947:     for(i=1;i<=AGESUP;i++)
 6948:       for(j=1;j<=NCOVMAX;j++)
 6949: 	for(k=1;k<=NCOVMAX;k++)
 6950: 	  probs[i][j][k]=0.;
 6951: 
 6952:     /*---------- Forecasting ------------------*/
 6953:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 6954:     if(prevfcast==1){
 6955:       /*    if(stepm ==1){*/
 6956:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 6957:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 6958:       /*      }  */
 6959:       /*      else{ */
 6960:       /*        erreur=108; */
 6961:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6962:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6963:       /*      } */
 6964:     }
 6965:   
 6966: 
 6967:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 6968: 
 6969:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 6970:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 6971: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 6972:     */
 6973: 
 6974:     if (mobilav!=0) {
 6975:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6976:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 6977: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 6978: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 6979:       }
 6980:     }
 6981: 
 6982: 
 6983:     /*---------- Health expectancies, no variances ------------*/
 6984: 
 6985:     strcpy(filerese,"e");
 6986:     strcat(filerese,fileres);
 6987:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 6988:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6989:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6990:     }
 6991:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 6992:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 6993:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6994:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6995:           
 6996:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6997: 	fprintf(ficreseij,"\n#****** ");
 6998: 	for(j=1;j<=cptcoveff;j++) {
 6999: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7000: 	}
 7001: 	fprintf(ficreseij,"******\n");
 7002: 
 7003: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7004: 	oldm=oldms;savm=savms;
 7005: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 7006:       
 7007: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7008:       /*}*/
 7009:     }
 7010:     fclose(ficreseij);
 7011: 
 7012: 
 7013:     /*---------- Health expectancies and variances ------------*/
 7014: 
 7015: 
 7016:     strcpy(filerest,"t");
 7017:     strcat(filerest,fileres);
 7018:     if((ficrest=fopen(filerest,"w"))==NULL) {
 7019:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 7020:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 7021:     }
 7022:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7023:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7024: 
 7025: 
 7026:     strcpy(fileresstde,"stde");
 7027:     strcat(fileresstde,fileres);
 7028:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 7029:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7030:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7031:     }
 7032:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7033:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7034: 
 7035:     strcpy(filerescve,"cve");
 7036:     strcat(filerescve,fileres);
 7037:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 7038:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7039:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7040:     }
 7041:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7042:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7043: 
 7044:     strcpy(fileresv,"v");
 7045:     strcat(fileresv,fileres);
 7046:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 7047:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 7048:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 7049:     }
 7050:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7051:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7052: 
 7053:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7054:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7055:           
 7056:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7057:     	fprintf(ficrest,"\n#****** ");
 7058: 	for(j=1;j<=cptcoveff;j++) 
 7059: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7060: 	fprintf(ficrest,"******\n");
 7061: 
 7062: 	fprintf(ficresstdeij,"\n#****** ");
 7063: 	fprintf(ficrescveij,"\n#****** ");
 7064: 	for(j=1;j<=cptcoveff;j++) {
 7065: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7066: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7067: 	}
 7068: 	fprintf(ficresstdeij,"******\n");
 7069: 	fprintf(ficrescveij,"******\n");
 7070: 
 7071: 	fprintf(ficresvij,"\n#****** ");
 7072: 	for(j=1;j<=cptcoveff;j++) 
 7073: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7074: 	fprintf(ficresvij,"******\n");
 7075: 
 7076: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7077: 	oldm=oldms;savm=savms;
 7078: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 7079: 	/*
 7080: 	 */
 7081: 	/* goto endfree; */
 7082:  
 7083: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7084: 	pstamp(ficrest);
 7085: 
 7086: 
 7087: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 7088: 	  oldm=oldms;savm=savms; /* Segmentation fault */
 7089: 	  cptcod= 0; /* To be deleted */
 7090: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
 7091: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 7092: 	  if(vpopbased==1)
 7093: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 7094: 	  else
 7095: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 7096: 	  fprintf(ficrest,"# Age e.. (std) ");
 7097: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 7098: 	  fprintf(ficrest,"\n");
 7099: 
 7100: 	  epj=vector(1,nlstate+1);
 7101: 	  for(age=bage; age <=fage ;age++){
 7102: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 7103: 	    if (vpopbased==1) {
 7104: 	      if(mobilav ==0){
 7105: 		for(i=1; i<=nlstate;i++)
 7106: 		  prlim[i][i]=probs[(int)age][i][k];
 7107: 	      }else{ /* mobilav */ 
 7108: 		for(i=1; i<=nlstate;i++)
 7109: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 7110: 	      }
 7111: 	    }
 7112: 	
 7113: 	    fprintf(ficrest," %4.0f",age);
 7114: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 7115: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 7116: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 7117: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 7118: 	      }
 7119: 	      epj[nlstate+1] +=epj[j];
 7120: 	    }
 7121: 
 7122: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 7123: 	      for(j=1;j <=nlstate;j++)
 7124: 		vepp += vareij[i][j][(int)age];
 7125: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 7126: 	    for(j=1;j <=nlstate;j++){
 7127: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 7128: 	    }
 7129: 	    fprintf(ficrest,"\n");
 7130: 	  }
 7131: 	}
 7132: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7133: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7134: 	free_vector(epj,1,nlstate+1);
 7135:       /*}*/
 7136:     }
 7137:     free_vector(weight,1,n);
 7138:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 7139:     free_imatrix(s,1,maxwav+1,1,n);
 7140:     free_matrix(anint,1,maxwav,1,n); 
 7141:     free_matrix(mint,1,maxwav,1,n);
 7142:     free_ivector(cod,1,n);
 7143:     free_ivector(tab,1,NCOVMAX);
 7144:     fclose(ficresstdeij);
 7145:     fclose(ficrescveij);
 7146:     fclose(ficresvij);
 7147:     fclose(ficrest);
 7148:     fclose(ficpar);
 7149:   
 7150:     /*------- Variance of period (stable) prevalence------*/   
 7151: 
 7152:     strcpy(fileresvpl,"vpl");
 7153:     strcat(fileresvpl,fileres);
 7154:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 7155:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 7156:       exit(0);
 7157:     }
 7158:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 7159: 
 7160:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7161:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7162:           
 7163:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7164:     	fprintf(ficresvpl,"\n#****** ");
 7165: 	for(j=1;j<=cptcoveff;j++) 
 7166: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7167: 	fprintf(ficresvpl,"******\n");
 7168:       
 7169: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 7170: 	oldm=oldms;savm=savms;
 7171: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 7172: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 7173:       /*}*/
 7174:     }
 7175: 
 7176:     fclose(ficresvpl);
 7177: 
 7178:     /*---------- End : free ----------------*/
 7179:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7180:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7181:   }  /* mle==-3 arrives here for freeing */
 7182:  /* endfree:*/
 7183:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 7184:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 7185:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7186:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7187:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7188:     free_matrix(covar,0,NCOVMAX,1,n);
 7189:     free_matrix(matcov,1,npar,1,npar);
 7190:     /*free_vector(delti,1,npar);*/
 7191:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 7192:     free_matrix(agev,1,maxwav,1,imx);
 7193:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 7194: 
 7195:     free_ivector(ncodemax,1,NCOVMAX);
 7196:     free_ivector(Tvar,1,NCOVMAX);
 7197:     free_ivector(Tprod,1,NCOVMAX);
 7198:     free_ivector(Tvaraff,1,NCOVMAX);
 7199:     free_ivector(Tage,1,NCOVMAX);
 7200: 
 7201:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 7202:     free_imatrix(codtab,1,100,1,10);
 7203:   fflush(fichtm);
 7204:   fflush(ficgp);
 7205:   
 7206: 
 7207:   if((nberr >0) || (nbwarn>0)){
 7208:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 7209:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 7210:   }else{
 7211:     printf("End of Imach\n");
 7212:     fprintf(ficlog,"End of Imach\n");
 7213:   }
 7214:   printf("See log file on %s\n",filelog);
 7215:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 7216:   /*(void) gettimeofday(&end_time,&tzp);*/
 7217:   rend_time = time(NULL);  
 7218:   end_time = *localtime(&rend_time);
 7219:   /* tml = *localtime(&end_time.tm_sec); */
 7220:   strcpy(strtend,asctime(&end_time));
 7221:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 7222:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 7223:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7224: 
 7225:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7226:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7227:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7228:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 7229: /*   if(fileappend(fichtm,optionfilehtm)){ */
 7230:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7231:   fclose(fichtm);
 7232:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7233:   fclose(fichtmcov);
 7234:   fclose(ficgp);
 7235:   fclose(ficlog);
 7236:   /*------ End -----------*/
 7237: 
 7238: 
 7239:    printf("Before Current directory %s!\n",pathcd);
 7240:    if(chdir(pathcd) != 0)
 7241:     printf("Can't move to directory %s!\n",path);
 7242:   if(getcwd(pathcd,MAXLINE) > 0)
 7243:     printf("Current directory %s!\n",pathcd);
 7244:   /*strcat(plotcmd,CHARSEPARATOR);*/
 7245:   sprintf(plotcmd,"gnuplot");
 7246: #ifdef _WIN32
 7247:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 7248: #endif
 7249:   if(!stat(plotcmd,&info)){
 7250:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7251:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 7252:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 7253:     }else
 7254:       strcpy(pplotcmd,plotcmd);
 7255: #ifdef __unix
 7256:     strcpy(plotcmd,GNUPLOTPROGRAM);
 7257:     if(!stat(plotcmd,&info)){
 7258:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7259:     }else
 7260:       strcpy(pplotcmd,plotcmd);
 7261: #endif
 7262:   }else
 7263:     strcpy(pplotcmd,plotcmd);
 7264:   
 7265:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 7266:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
 7267: 
 7268:   if((outcmd=system(plotcmd)) != 0){
 7269:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
 7270:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
 7271:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
 7272:     if((outcmd=system(plotcmd)) != 0)
 7273:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
 7274:   }
 7275:   printf(" Successful, please wait...");
 7276:   while (z[0] != 'q') {
 7277:     /* chdir(path); */
 7278:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
 7279:     scanf("%s",z);
 7280: /*     if (z[0] == 'c') system("./imach"); */
 7281:     if (z[0] == 'e') {
 7282: #ifdef __APPLE__
 7283:       sprintf(pplotcmd, "open %s", optionfilehtm);
 7284: #elif __linux
 7285:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
 7286: #else
 7287:       sprintf(pplotcmd, "%s", optionfilehtm);
 7288: #endif
 7289:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
 7290:       system(pplotcmd);
 7291:     }
 7292:     else if (z[0] == 'g') system(plotcmd);
 7293:     else if (z[0] == 'q') exit(0);
 7294:   }
 7295:   end:
 7296:   while (z[0] != 'q') {
 7297:     printf("\nType  q for exiting: ");
 7298:     scanf("%s",z);
 7299:   }
 7300: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>