File:  [Local Repository] / imach / src / imach.c
Revision 1.182: download - view: text, annotated - select for diffs
Thu Feb 12 08:19:57 2015 UTC (9 years, 4 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
Summary: Trying to keep directest which seems simpler and more general
Author: Nicolas Brouard

    1: /* $Id: imach.c,v 1.182 2015/02/12 08:19:57 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.182  2015/02/12 08:19:57  brouard
    5:   Summary: Trying to keep directest which seems simpler and more general
    6:   Author: Nicolas Brouard
    7: 
    8:   Revision 1.181  2015/02/11 23:22:24  brouard
    9:   Summary: Comments on Powell added
   10: 
   11:   Author:
   12: 
   13:   Revision 1.180  2015/02/11 17:33:45  brouard
   14:   Summary: Finishing move from main to function (hpijx and prevalence_limit)
   15: 
   16:   Revision 1.179  2015/01/04 09:57:06  brouard
   17:   Summary: back to OS/X
   18: 
   19:   Revision 1.178  2015/01/04 09:35:48  brouard
   20:   *** empty log message ***
   21: 
   22:   Revision 1.177  2015/01/03 18:40:56  brouard
   23:   Summary: Still testing ilc32 on OSX
   24: 
   25:   Revision 1.176  2015/01/03 16:45:04  brouard
   26:   *** empty log message ***
   27: 
   28:   Revision 1.175  2015/01/03 16:33:42  brouard
   29:   *** empty log message ***
   30: 
   31:   Revision 1.174  2015/01/03 16:15:49  brouard
   32:   Summary: Still in cross-compilation
   33: 
   34:   Revision 1.173  2015/01/03 12:06:26  brouard
   35:   Summary: trying to detect cross-compilation
   36: 
   37:   Revision 1.172  2014/12/27 12:07:47  brouard
   38:   Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   39: 
   40:   Revision 1.171  2014/12/23 13:26:59  brouard
   41:   Summary: Back from Visual C
   42: 
   43:   Still problem with utsname.h on Windows
   44: 
   45:   Revision 1.170  2014/12/23 11:17:12  brouard
   46:   Summary: Cleaning some \%% back to %%
   47: 
   48:   The escape was mandatory for a specific compiler (which one?), but too many warnings.
   49: 
   50:   Revision 1.169  2014/12/22 23:08:31  brouard
   51:   Summary: 0.98p
   52: 
   53:   Outputs some informations on compiler used, OS etc. Testing on different platforms.
   54: 
   55:   Revision 1.168  2014/12/22 15:17:42  brouard
   56:   Summary: update
   57: 
   58:   Revision 1.167  2014/12/22 13:50:56  brouard
   59:   Summary: Testing uname and compiler version and if compiled 32 or 64
   60: 
   61:   Testing on Linux 64
   62: 
   63:   Revision 1.166  2014/12/22 11:40:47  brouard
   64:   *** empty log message ***
   65: 
   66:   Revision 1.165  2014/12/16 11:20:36  brouard
   67:   Summary: After compiling on Visual C
   68: 
   69:   * imach.c (Module): Merging 1.61 to 1.162
   70: 
   71:   Revision 1.164  2014/12/16 10:52:11  brouard
   72:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   73: 
   74:   * imach.c (Module): Merging 1.61 to 1.162
   75: 
   76:   Revision 1.163  2014/12/16 10:30:11  brouard
   77:   * imach.c (Module): Merging 1.61 to 1.162
   78: 
   79:   Revision 1.162  2014/09/25 11:43:39  brouard
   80:   Summary: temporary backup 0.99!
   81: 
   82:   Revision 1.1  2014/09/16 11:06:58  brouard
   83:   Summary: With some code (wrong) for nlopt
   84: 
   85:   Author:
   86: 
   87:   Revision 1.161  2014/09/15 20:41:41  brouard
   88:   Summary: Problem with macro SQR on Intel compiler
   89: 
   90:   Revision 1.160  2014/09/02 09:24:05  brouard
   91:   *** empty log message ***
   92: 
   93:   Revision 1.159  2014/09/01 10:34:10  brouard
   94:   Summary: WIN32
   95:   Author: Brouard
   96: 
   97:   Revision 1.158  2014/08/27 17:11:51  brouard
   98:   *** empty log message ***
   99: 
  100:   Revision 1.157  2014/08/27 16:26:55  brouard
  101:   Summary: Preparing windows Visual studio version
  102:   Author: Brouard
  103: 
  104:   In order to compile on Visual studio, time.h is now correct and time_t
  105:   and tm struct should be used. difftime should be used but sometimes I
  106:   just make the differences in raw time format (time(&now).
  107:   Trying to suppress #ifdef LINUX
  108:   Add xdg-open for __linux in order to open default browser.
  109: 
  110:   Revision 1.156  2014/08/25 20:10:10  brouard
  111:   *** empty log message ***
  112: 
  113:   Revision 1.155  2014/08/25 18:32:34  brouard
  114:   Summary: New compile, minor changes
  115:   Author: Brouard
  116: 
  117:   Revision 1.154  2014/06/20 17:32:08  brouard
  118:   Summary: Outputs now all graphs of convergence to period prevalence
  119: 
  120:   Revision 1.153  2014/06/20 16:45:46  brouard
  121:   Summary: If 3 live state, convergence to period prevalence on same graph
  122:   Author: Brouard
  123: 
  124:   Revision 1.152  2014/06/18 17:54:09  brouard
  125:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
  126: 
  127:   Revision 1.151  2014/06/18 16:43:30  brouard
  128:   *** empty log message ***
  129: 
  130:   Revision 1.150  2014/06/18 16:42:35  brouard
  131:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
  132:   Author: brouard
  133: 
  134:   Revision 1.149  2014/06/18 15:51:14  brouard
  135:   Summary: Some fixes in parameter files errors
  136:   Author: Nicolas Brouard
  137: 
  138:   Revision 1.148  2014/06/17 17:38:48  brouard
  139:   Summary: Nothing new
  140:   Author: Brouard
  141: 
  142:   Just a new packaging for OS/X version 0.98nS
  143: 
  144:   Revision 1.147  2014/06/16 10:33:11  brouard
  145:   *** empty log message ***
  146: 
  147:   Revision 1.146  2014/06/16 10:20:28  brouard
  148:   Summary: Merge
  149:   Author: Brouard
  150: 
  151:   Merge, before building revised version.
  152: 
  153:   Revision 1.145  2014/06/10 21:23:15  brouard
  154:   Summary: Debugging with valgrind
  155:   Author: Nicolas Brouard
  156: 
  157:   Lot of changes in order to output the results with some covariates
  158:   After the Edimburgh REVES conference 2014, it seems mandatory to
  159:   improve the code.
  160:   No more memory valgrind error but a lot has to be done in order to
  161:   continue the work of splitting the code into subroutines.
  162:   Also, decodemodel has been improved. Tricode is still not
  163:   optimal. nbcode should be improved. Documentation has been added in
  164:   the source code.
  165: 
  166:   Revision 1.143  2014/01/26 09:45:38  brouard
  167:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
  168: 
  169:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  170:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
  171: 
  172:   Revision 1.142  2014/01/26 03:57:36  brouard
  173:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
  174: 
  175:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  176: 
  177:   Revision 1.141  2014/01/26 02:42:01  brouard
  178:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  179: 
  180:   Revision 1.140  2011/09/02 10:37:54  brouard
  181:   Summary: times.h is ok with mingw32 now.
  182: 
  183:   Revision 1.139  2010/06/14 07:50:17  brouard
  184:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
  185:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  186: 
  187:   Revision 1.138  2010/04/30 18:19:40  brouard
  188:   *** empty log message ***
  189: 
  190:   Revision 1.137  2010/04/29 18:11:38  brouard
  191:   (Module): Checking covariates for more complex models
  192:   than V1+V2. A lot of change to be done. Unstable.
  193: 
  194:   Revision 1.136  2010/04/26 20:30:53  brouard
  195:   (Module): merging some libgsl code. Fixing computation
  196:   of likelione (using inter/intrapolation if mle = 0) in order to
  197:   get same likelihood as if mle=1.
  198:   Some cleaning of code and comments added.
  199: 
  200:   Revision 1.135  2009/10/29 15:33:14  brouard
  201:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  202: 
  203:   Revision 1.134  2009/10/29 13:18:53  brouard
  204:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  205: 
  206:   Revision 1.133  2009/07/06 10:21:25  brouard
  207:   just nforces
  208: 
  209:   Revision 1.132  2009/07/06 08:22:05  brouard
  210:   Many tings
  211: 
  212:   Revision 1.131  2009/06/20 16:22:47  brouard
  213:   Some dimensions resccaled
  214: 
  215:   Revision 1.130  2009/05/26 06:44:34  brouard
  216:   (Module): Max Covariate is now set to 20 instead of 8. A
  217:   lot of cleaning with variables initialized to 0. Trying to make
  218:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
  219: 
  220:   Revision 1.129  2007/08/31 13:49:27  lievre
  221:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
  222: 
  223:   Revision 1.128  2006/06/30 13:02:05  brouard
  224:   (Module): Clarifications on computing e.j
  225: 
  226:   Revision 1.127  2006/04/28 18:11:50  brouard
  227:   (Module): Yes the sum of survivors was wrong since
  228:   imach-114 because nhstepm was no more computed in the age
  229:   loop. Now we define nhstepma in the age loop.
  230:   (Module): In order to speed up (in case of numerous covariates) we
  231:   compute health expectancies (without variances) in a first step
  232:   and then all the health expectancies with variances or standard
  233:   deviation (needs data from the Hessian matrices) which slows the
  234:   computation.
  235:   In the future we should be able to stop the program is only health
  236:   expectancies and graph are needed without standard deviations.
  237: 
  238:   Revision 1.126  2006/04/28 17:23:28  brouard
  239:   (Module): Yes the sum of survivors was wrong since
  240:   imach-114 because nhstepm was no more computed in the age
  241:   loop. Now we define nhstepma in the age loop.
  242:   Version 0.98h
  243: 
  244:   Revision 1.125  2006/04/04 15:20:31  lievre
  245:   Errors in calculation of health expectancies. Age was not initialized.
  246:   Forecasting file added.
  247: 
  248:   Revision 1.124  2006/03/22 17:13:53  lievre
  249:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  250:   The log-likelihood is printed in the log file
  251: 
  252:   Revision 1.123  2006/03/20 10:52:43  brouard
  253:   * imach.c (Module): <title> changed, corresponds to .htm file
  254:   name. <head> headers where missing.
  255: 
  256:   * imach.c (Module): Weights can have a decimal point as for
  257:   English (a comma might work with a correct LC_NUMERIC environment,
  258:   otherwise the weight is truncated).
  259:   Modification of warning when the covariates values are not 0 or
  260:   1.
  261:   Version 0.98g
  262: 
  263:   Revision 1.122  2006/03/20 09:45:41  brouard
  264:   (Module): Weights can have a decimal point as for
  265:   English (a comma might work with a correct LC_NUMERIC environment,
  266:   otherwise the weight is truncated).
  267:   Modification of warning when the covariates values are not 0 or
  268:   1.
  269:   Version 0.98g
  270: 
  271:   Revision 1.121  2006/03/16 17:45:01  lievre
  272:   * imach.c (Module): Comments concerning covariates added
  273: 
  274:   * imach.c (Module): refinements in the computation of lli if
  275:   status=-2 in order to have more reliable computation if stepm is
  276:   not 1 month. Version 0.98f
  277: 
  278:   Revision 1.120  2006/03/16 15:10:38  lievre
  279:   (Module): refinements in the computation of lli if
  280:   status=-2 in order to have more reliable computation if stepm is
  281:   not 1 month. Version 0.98f
  282: 
  283:   Revision 1.119  2006/03/15 17:42:26  brouard
  284:   (Module): Bug if status = -2, the loglikelihood was
  285:   computed as likelihood omitting the logarithm. Version O.98e
  286: 
  287:   Revision 1.118  2006/03/14 18:20:07  brouard
  288:   (Module): varevsij Comments added explaining the second
  289:   table of variances if popbased=1 .
  290:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  291:   (Module): Function pstamp added
  292:   (Module): Version 0.98d
  293: 
  294:   Revision 1.117  2006/03/14 17:16:22  brouard
  295:   (Module): varevsij Comments added explaining the second
  296:   table of variances if popbased=1 .
  297:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  298:   (Module): Function pstamp added
  299:   (Module): Version 0.98d
  300: 
  301:   Revision 1.116  2006/03/06 10:29:27  brouard
  302:   (Module): Variance-covariance wrong links and
  303:   varian-covariance of ej. is needed (Saito).
  304: 
  305:   Revision 1.115  2006/02/27 12:17:45  brouard
  306:   (Module): One freematrix added in mlikeli! 0.98c
  307: 
  308:   Revision 1.114  2006/02/26 12:57:58  brouard
  309:   (Module): Some improvements in processing parameter
  310:   filename with strsep.
  311: 
  312:   Revision 1.113  2006/02/24 14:20:24  brouard
  313:   (Module): Memory leaks checks with valgrind and:
  314:   datafile was not closed, some imatrix were not freed and on matrix
  315:   allocation too.
  316: 
  317:   Revision 1.112  2006/01/30 09:55:26  brouard
  318:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  319: 
  320:   Revision 1.111  2006/01/25 20:38:18  brouard
  321:   (Module): Lots of cleaning and bugs added (Gompertz)
  322:   (Module): Comments can be added in data file. Missing date values
  323:   can be a simple dot '.'.
  324: 
  325:   Revision 1.110  2006/01/25 00:51:50  brouard
  326:   (Module): Lots of cleaning and bugs added (Gompertz)
  327: 
  328:   Revision 1.109  2006/01/24 19:37:15  brouard
  329:   (Module): Comments (lines starting with a #) are allowed in data.
  330: 
  331:   Revision 1.108  2006/01/19 18:05:42  lievre
  332:   Gnuplot problem appeared...
  333:   To be fixed
  334: 
  335:   Revision 1.107  2006/01/19 16:20:37  brouard
  336:   Test existence of gnuplot in imach path
  337: 
  338:   Revision 1.106  2006/01/19 13:24:36  brouard
  339:   Some cleaning and links added in html output
  340: 
  341:   Revision 1.105  2006/01/05 20:23:19  lievre
  342:   *** empty log message ***
  343: 
  344:   Revision 1.104  2005/09/30 16:11:43  lievre
  345:   (Module): sump fixed, loop imx fixed, and simplifications.
  346:   (Module): If the status is missing at the last wave but we know
  347:   that the person is alive, then we can code his/her status as -2
  348:   (instead of missing=-1 in earlier versions) and his/her
  349:   contributions to the likelihood is 1 - Prob of dying from last
  350:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  351:   the healthy state at last known wave). Version is 0.98
  352: 
  353:   Revision 1.103  2005/09/30 15:54:49  lievre
  354:   (Module): sump fixed, loop imx fixed, and simplifications.
  355: 
  356:   Revision 1.102  2004/09/15 17:31:30  brouard
  357:   Add the possibility to read data file including tab characters.
  358: 
  359:   Revision 1.101  2004/09/15 10:38:38  brouard
  360:   Fix on curr_time
  361: 
  362:   Revision 1.100  2004/07/12 18:29:06  brouard
  363:   Add version for Mac OS X. Just define UNIX in Makefile
  364: 
  365:   Revision 1.99  2004/06/05 08:57:40  brouard
  366:   *** empty log message ***
  367: 
  368:   Revision 1.98  2004/05/16 15:05:56  brouard
  369:   New version 0.97 . First attempt to estimate force of mortality
  370:   directly from the data i.e. without the need of knowing the health
  371:   state at each age, but using a Gompertz model: log u =a + b*age .
  372:   This is the basic analysis of mortality and should be done before any
  373:   other analysis, in order to test if the mortality estimated from the
  374:   cross-longitudinal survey is different from the mortality estimated
  375:   from other sources like vital statistic data.
  376: 
  377:   The same imach parameter file can be used but the option for mle should be -3.
  378: 
  379:   Agnès, who wrote this part of the code, tried to keep most of the
  380:   former routines in order to include the new code within the former code.
  381: 
  382:   The output is very simple: only an estimate of the intercept and of
  383:   the slope with 95% confident intervals.
  384: 
  385:   Current limitations:
  386:   A) Even if you enter covariates, i.e. with the
  387:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  388:   B) There is no computation of Life Expectancy nor Life Table.
  389: 
  390:   Revision 1.97  2004/02/20 13:25:42  lievre
  391:   Version 0.96d. Population forecasting command line is (temporarily)
  392:   suppressed.
  393: 
  394:   Revision 1.96  2003/07/15 15:38:55  brouard
  395:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  396:   rewritten within the same printf. Workaround: many printfs.
  397: 
  398:   Revision 1.95  2003/07/08 07:54:34  brouard
  399:   * imach.c (Repository):
  400:   (Repository): Using imachwizard code to output a more meaningful covariance
  401:   matrix (cov(a12,c31) instead of numbers.
  402: 
  403:   Revision 1.94  2003/06/27 13:00:02  brouard
  404:   Just cleaning
  405: 
  406:   Revision 1.93  2003/06/25 16:33:55  brouard
  407:   (Module): On windows (cygwin) function asctime_r doesn't
  408:   exist so I changed back to asctime which exists.
  409:   (Module): Version 0.96b
  410: 
  411:   Revision 1.92  2003/06/25 16:30:45  brouard
  412:   (Module): On windows (cygwin) function asctime_r doesn't
  413:   exist so I changed back to asctime which exists.
  414: 
  415:   Revision 1.91  2003/06/25 15:30:29  brouard
  416:   * imach.c (Repository): Duplicated warning errors corrected.
  417:   (Repository): Elapsed time after each iteration is now output. It
  418:   helps to forecast when convergence will be reached. Elapsed time
  419:   is stamped in powell.  We created a new html file for the graphs
  420:   concerning matrix of covariance. It has extension -cov.htm.
  421: 
  422:   Revision 1.90  2003/06/24 12:34:15  brouard
  423:   (Module): Some bugs corrected for windows. Also, when
  424:   mle=-1 a template is output in file "or"mypar.txt with the design
  425:   of the covariance matrix to be input.
  426: 
  427:   Revision 1.89  2003/06/24 12:30:52  brouard
  428:   (Module): Some bugs corrected for windows. Also, when
  429:   mle=-1 a template is output in file "or"mypar.txt with the design
  430:   of the covariance matrix to be input.
  431: 
  432:   Revision 1.88  2003/06/23 17:54:56  brouard
  433:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  434: 
  435:   Revision 1.87  2003/06/18 12:26:01  brouard
  436:   Version 0.96
  437: 
  438:   Revision 1.86  2003/06/17 20:04:08  brouard
  439:   (Module): Change position of html and gnuplot routines and added
  440:   routine fileappend.
  441: 
  442:   Revision 1.85  2003/06/17 13:12:43  brouard
  443:   * imach.c (Repository): Check when date of death was earlier that
  444:   current date of interview. It may happen when the death was just
  445:   prior to the death. In this case, dh was negative and likelihood
  446:   was wrong (infinity). We still send an "Error" but patch by
  447:   assuming that the date of death was just one stepm after the
  448:   interview.
  449:   (Repository): Because some people have very long ID (first column)
  450:   we changed int to long in num[] and we added a new lvector for
  451:   memory allocation. But we also truncated to 8 characters (left
  452:   truncation)
  453:   (Repository): No more line truncation errors.
  454: 
  455:   Revision 1.84  2003/06/13 21:44:43  brouard
  456:   * imach.c (Repository): Replace "freqsummary" at a correct
  457:   place. It differs from routine "prevalence" which may be called
  458:   many times. Probs is memory consuming and must be used with
  459:   parcimony.
  460:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  461: 
  462:   Revision 1.83  2003/06/10 13:39:11  lievre
  463:   *** empty log message ***
  464: 
  465:   Revision 1.82  2003/06/05 15:57:20  brouard
  466:   Add log in  imach.c and  fullversion number is now printed.
  467: 
  468: */
  469: /*
  470:    Interpolated Markov Chain
  471: 
  472:   Short summary of the programme:
  473:   
  474:   This program computes Healthy Life Expectancies from
  475:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  476:   first survey ("cross") where individuals from different ages are
  477:   interviewed on their health status or degree of disability (in the
  478:   case of a health survey which is our main interest) -2- at least a
  479:   second wave of interviews ("longitudinal") which measure each change
  480:   (if any) in individual health status.  Health expectancies are
  481:   computed from the time spent in each health state according to a
  482:   model. More health states you consider, more time is necessary to reach the
  483:   Maximum Likelihood of the parameters involved in the model.  The
  484:   simplest model is the multinomial logistic model where pij is the
  485:   probability to be observed in state j at the second wave
  486:   conditional to be observed in state i at the first wave. Therefore
  487:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  488:   'age' is age and 'sex' is a covariate. If you want to have a more
  489:   complex model than "constant and age", you should modify the program
  490:   where the markup *Covariates have to be included here again* invites
  491:   you to do it.  More covariates you add, slower the
  492:   convergence.
  493: 
  494:   The advantage of this computer programme, compared to a simple
  495:   multinomial logistic model, is clear when the delay between waves is not
  496:   identical for each individual. Also, if a individual missed an
  497:   intermediate interview, the information is lost, but taken into
  498:   account using an interpolation or extrapolation.  
  499: 
  500:   hPijx is the probability to be observed in state i at age x+h
  501:   conditional to the observed state i at age x. The delay 'h' can be
  502:   split into an exact number (nh*stepm) of unobserved intermediate
  503:   states. This elementary transition (by month, quarter,
  504:   semester or year) is modelled as a multinomial logistic.  The hPx
  505:   matrix is simply the matrix product of nh*stepm elementary matrices
  506:   and the contribution of each individual to the likelihood is simply
  507:   hPijx.
  508: 
  509:   Also this programme outputs the covariance matrix of the parameters but also
  510:   of the life expectancies. It also computes the period (stable) prevalence. 
  511:   
  512:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  513:            Institut national d'études démographiques, Paris.
  514:   This software have been partly granted by Euro-REVES, a concerted action
  515:   from the European Union.
  516:   It is copyrighted identically to a GNU software product, ie programme and
  517:   software can be distributed freely for non commercial use. Latest version
  518:   can be accessed at http://euroreves.ined.fr/imach .
  519: 
  520:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  521:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  522:   
  523:   **********************************************************************/
  524: /*
  525:   main
  526:   read parameterfile
  527:   read datafile
  528:   concatwav
  529:   freqsummary
  530:   if (mle >= 1)
  531:     mlikeli
  532:   print results files
  533:   if mle==1 
  534:      computes hessian
  535:   read end of parameter file: agemin, agemax, bage, fage, estepm
  536:       begin-prev-date,...
  537:   open gnuplot file
  538:   open html file
  539:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  540:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  541:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  542:     freexexit2 possible for memory heap.
  543: 
  544:   h Pij x                         | pij_nom  ficrestpij
  545:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  546:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  547:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  548: 
  549:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  550:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  551:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  552:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  553:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  554: 
  555:   forecasting if prevfcast==1 prevforecast call prevalence()
  556:   health expectancies
  557:   Variance-covariance of DFLE
  558:   prevalence()
  559:    movingaverage()
  560:   varevsij() 
  561:   if popbased==1 varevsij(,popbased)
  562:   total life expectancies
  563:   Variance of period (stable) prevalence
  564:  end
  565: */
  566: 
  567: #define POWELL /* Instead of NLOPT */
  568: #define POWELLDIRECT /* Directest to decide new direction instead of Powell test */
  569: 
  570: #include <math.h>
  571: #include <stdio.h>
  572: #include <stdlib.h>
  573: #include <string.h>
  574: 
  575: #ifdef _WIN32
  576: #include <io.h>
  577: #include <windows.h>
  578: #include <tchar.h>
  579: #else
  580: #include <unistd.h>
  581: #endif
  582: 
  583: #include <limits.h>
  584: #include <sys/types.h>
  585: 
  586: #if defined(__GNUC__)
  587: #include <sys/utsname.h> /* Doesn't work on Windows */
  588: #endif
  589: 
  590: #include <sys/stat.h>
  591: #include <errno.h>
  592: /* extern int errno; */
  593: 
  594: /* #ifdef LINUX */
  595: /* #include <time.h> */
  596: /* #include "timeval.h" */
  597: /* #else */
  598: /* #include <sys/time.h> */
  599: /* #endif */
  600: 
  601: #include <time.h>
  602: 
  603: #ifdef GSL
  604: #include <gsl/gsl_errno.h>
  605: #include <gsl/gsl_multimin.h>
  606: #endif
  607: 
  608: 
  609: #ifdef NLOPT
  610: #include <nlopt.h>
  611: typedef struct {
  612:   double (* function)(double [] );
  613: } myfunc_data ;
  614: #endif
  615: 
  616: /* #include <libintl.h> */
  617: /* #define _(String) gettext (String) */
  618: 
  619: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  620: 
  621: #define GNUPLOTPROGRAM "gnuplot"
  622: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  623: #define FILENAMELENGTH 132
  624: 
  625: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  626: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  627: 
  628: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  629: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  630: 
  631: #define NINTERVMAX 8
  632: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  633: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  634: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  635: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  636: #define MAXN 20000
  637: #define YEARM 12. /**< Number of months per year */
  638: #define AGESUP 130
  639: #define AGEBASE 40
  640: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
  641: #ifdef _WIN32
  642: #define DIRSEPARATOR '\\'
  643: #define CHARSEPARATOR "\\"
  644: #define ODIRSEPARATOR '/'
  645: #else
  646: #define DIRSEPARATOR '/'
  647: #define CHARSEPARATOR "/"
  648: #define ODIRSEPARATOR '\\'
  649: #endif
  650: 
  651: /* $Id: imach.c,v 1.182 2015/02/12 08:19:57 brouard Exp $ */
  652: /* $State: Exp $ */
  653: 
  654: char version[]="Imach version 0.98p, Février 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
  655: char fullversion[]="$Revision: 1.182 $ $Date: 2015/02/12 08:19:57 $"; 
  656: char strstart[80];
  657: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  658: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  659: int nvar=0, nforce=0; /* Number of variables, number of forces */
  660: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  661: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  662: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  663: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  664: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  665: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  666: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  667: int cptcov=0; /* Working variable */
  668: int npar=NPARMAX;
  669: int nlstate=2; /* Number of live states */
  670: int ndeath=1; /* Number of dead states */
  671: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  672: int popbased=0;
  673: 
  674: int *wav; /* Number of waves for this individuual 0 is possible */
  675: int maxwav=0; /* Maxim number of waves */
  676: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  677: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  678: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  679: 		   to the likelihood and the sum of weights (done by funcone)*/
  680: int mle=1, weightopt=0;
  681: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  682: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  683: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  684: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  685: int countcallfunc=0;  /* Count the number of calls to func */
  686: double jmean=1; /* Mean space between 2 waves */
  687: double **matprod2(); /* test */
  688: double **oldm, **newm, **savm; /* Working pointers to matrices */
  689: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  690: /*FILE *fic ; */ /* Used in readdata only */
  691: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  692: FILE *ficlog, *ficrespow;
  693: int globpr=0; /* Global variable for printing or not */
  694: double fretone; /* Only one call to likelihood */
  695: long ipmx=0; /* Number of contributions */
  696: double sw; /* Sum of weights */
  697: char filerespow[FILENAMELENGTH];
  698: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  699: FILE *ficresilk;
  700: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  701: FILE *ficresprobmorprev;
  702: FILE *fichtm, *fichtmcov; /* Html File */
  703: FILE *ficreseij;
  704: char filerese[FILENAMELENGTH];
  705: FILE *ficresstdeij;
  706: char fileresstde[FILENAMELENGTH];
  707: FILE *ficrescveij;
  708: char filerescve[FILENAMELENGTH];
  709: FILE  *ficresvij;
  710: char fileresv[FILENAMELENGTH];
  711: FILE  *ficresvpl;
  712: char fileresvpl[FILENAMELENGTH];
  713: char title[MAXLINE];
  714: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  715: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  716: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  717: char command[FILENAMELENGTH];
  718: int  outcmd=0;
  719: 
  720: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  721: 
  722: char filelog[FILENAMELENGTH]; /* Log file */
  723: char filerest[FILENAMELENGTH];
  724: char fileregp[FILENAMELENGTH];
  725: char popfile[FILENAMELENGTH];
  726: 
  727: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  728: 
  729: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
  730: /* struct timezone tzp; */
  731: /* extern int gettimeofday(); */
  732: struct tm tml, *gmtime(), *localtime();
  733: 
  734: extern time_t time();
  735: 
  736: struct tm start_time, end_time, curr_time, last_time, forecast_time;
  737: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
  738: struct tm tm;
  739: 
  740: char strcurr[80], strfor[80];
  741: 
  742: char *endptr;
  743: long lval;
  744: double dval;
  745: 
  746: #define NR_END 1
  747: #define FREE_ARG char*
  748: #define FTOL 1.0e-10
  749: 
  750: #define NRANSI 
  751: #define ITMAX 200 
  752: 
  753: #define TOL 2.0e-4 
  754: 
  755: #define CGOLD 0.3819660 
  756: #define ZEPS 1.0e-10 
  757: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  758: 
  759: #define GOLD 1.618034 
  760: #define GLIMIT 100.0 
  761: #define TINY 1.0e-20 
  762: 
  763: static double maxarg1,maxarg2;
  764: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  765: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  766:   
  767: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  768: #define rint(a) floor(a+0.5)
  769: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
  770: /* #define mytinydouble 1.0e-16 */
  771: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
  772: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
  773: /* static double dsqrarg; */
  774: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
  775: static double sqrarg;
  776: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  777: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  778: int agegomp= AGEGOMP;
  779: 
  780: int imx; 
  781: int stepm=1;
  782: /* Stepm, step in month: minimum step interpolation*/
  783: 
  784: int estepm;
  785: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  786: 
  787: int m,nb;
  788: long *num;
  789: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  790: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  791: double **pmmij, ***probs;
  792: double *ageexmed,*agecens;
  793: double dateintmean=0;
  794: 
  795: double *weight;
  796: int **s; /* Status */
  797: double *agedc;
  798: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  799: 		  * covar=matrix(0,NCOVMAX,1,n); 
  800: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
  801: double  idx; 
  802: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  803: int *Ndum; /** Freq of modality (tricode */
  804: int **codtab; /**< codtab=imatrix(1,100,1,10); */
  805: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  806: double *lsurv, *lpop, *tpop;
  807: 
  808: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  809: double ftolhess; /**< Tolerance for computing hessian */
  810: 
  811: /**************** split *************************/
  812: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  813: {
  814:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  815:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  816:   */ 
  817:   char	*ss;				/* pointer */
  818:   int	l1, l2;				/* length counters */
  819: 
  820:   l1 = strlen(path );			/* length of path */
  821:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  822:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  823:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  824:     strcpy( name, path );		/* we got the fullname name because no directory */
  825:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  826:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  827:     /* get current working directory */
  828:     /*    extern  char* getcwd ( char *buf , int len);*/
  829:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  830:       return( GLOCK_ERROR_GETCWD );
  831:     }
  832:     /* got dirc from getcwd*/
  833:     printf(" DIRC = %s \n",dirc);
  834:   } else {				/* strip direcotry from path */
  835:     ss++;				/* after this, the filename */
  836:     l2 = strlen( ss );			/* length of filename */
  837:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  838:     strcpy( name, ss );		/* save file name */
  839:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  840:     dirc[l1-l2] = 0;			/* add zero */
  841:     printf(" DIRC2 = %s \n",dirc);
  842:   }
  843:   /* We add a separator at the end of dirc if not exists */
  844:   l1 = strlen( dirc );			/* length of directory */
  845:   if( dirc[l1-1] != DIRSEPARATOR ){
  846:     dirc[l1] =  DIRSEPARATOR;
  847:     dirc[l1+1] = 0; 
  848:     printf(" DIRC3 = %s \n",dirc);
  849:   }
  850:   ss = strrchr( name, '.' );		/* find last / */
  851:   if (ss >0){
  852:     ss++;
  853:     strcpy(ext,ss);			/* save extension */
  854:     l1= strlen( name);
  855:     l2= strlen(ss)+1;
  856:     strncpy( finame, name, l1-l2);
  857:     finame[l1-l2]= 0;
  858:   }
  859: 
  860:   return( 0 );				/* we're done */
  861: }
  862: 
  863: 
  864: /******************************************/
  865: 
  866: void replace_back_to_slash(char *s, char*t)
  867: {
  868:   int i;
  869:   int lg=0;
  870:   i=0;
  871:   lg=strlen(t);
  872:   for(i=0; i<= lg; i++) {
  873:     (s[i] = t[i]);
  874:     if (t[i]== '\\') s[i]='/';
  875:   }
  876: }
  877: 
  878: char *trimbb(char *out, char *in)
  879: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  880:   char *s;
  881:   s=out;
  882:   while (*in != '\0'){
  883:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  884:       in++;
  885:     }
  886:     *out++ = *in++;
  887:   }
  888:   *out='\0';
  889:   return s;
  890: }
  891: 
  892: char *cutl(char *blocc, char *alocc, char *in, char occ)
  893: {
  894:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
  895:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  896:      gives blocc="abcdef2ghi" and alocc="j".
  897:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
  898:   */
  899:   char *s, *t;
  900:   t=in;s=in;
  901:   while ((*in != occ) && (*in != '\0')){
  902:     *alocc++ = *in++;
  903:   }
  904:   if( *in == occ){
  905:     *(alocc)='\0';
  906:     s=++in;
  907:   }
  908:  
  909:   if (s == t) {/* occ not found */
  910:     *(alocc-(in-s))='\0';
  911:     in=s;
  912:   }
  913:   while ( *in != '\0'){
  914:     *blocc++ = *in++;
  915:   }
  916: 
  917:   *blocc='\0';
  918:   return t;
  919: }
  920: char *cutv(char *blocc, char *alocc, char *in, char occ)
  921: {
  922:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  923:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  924:      gives blocc="abcdef2ghi" and alocc="j".
  925:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
  926:   */
  927:   char *s, *t;
  928:   t=in;s=in;
  929:   while (*in != '\0'){
  930:     while( *in == occ){
  931:       *blocc++ = *in++;
  932:       s=in;
  933:     }
  934:     *blocc++ = *in++;
  935:   }
  936:   if (s == t) /* occ not found */
  937:     *(blocc-(in-s))='\0';
  938:   else
  939:     *(blocc-(in-s)-1)='\0';
  940:   in=s;
  941:   while ( *in != '\0'){
  942:     *alocc++ = *in++;
  943:   }
  944: 
  945:   *alocc='\0';
  946:   return s;
  947: }
  948: 
  949: int nbocc(char *s, char occ)
  950: {
  951:   int i,j=0;
  952:   int lg=20;
  953:   i=0;
  954:   lg=strlen(s);
  955:   for(i=0; i<= lg; i++) {
  956:   if  (s[i] == occ ) j++;
  957:   }
  958:   return j;
  959: }
  960: 
  961: /* void cutv(char *u,char *v, char*t, char occ) */
  962: /* { */
  963: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  964: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
  965: /*      gives u="abcdef2ghi" and v="j" *\/ */
  966: /*   int i,lg,j,p=0; */
  967: /*   i=0; */
  968: /*   lg=strlen(t); */
  969: /*   for(j=0; j<=lg-1; j++) { */
  970: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
  971: /*   } */
  972: 
  973: /*   for(j=0; j<p; j++) { */
  974: /*     (u[j] = t[j]); */
  975: /*   } */
  976: /*      u[p]='\0'; */
  977: 
  978: /*    for(j=0; j<= lg; j++) { */
  979: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
  980: /*   } */
  981: /* } */
  982: 
  983: #ifdef _WIN32
  984: char * strsep(char **pp, const char *delim)
  985: {
  986:   char *p, *q;
  987:          
  988:   if ((p = *pp) == NULL)
  989:     return 0;
  990:   if ((q = strpbrk (p, delim)) != NULL)
  991:   {
  992:     *pp = q + 1;
  993:     *q = '\0';
  994:   }
  995:   else
  996:     *pp = 0;
  997:   return p;
  998: }
  999: #endif
 1000: 
 1001: /********************** nrerror ********************/
 1002: 
 1003: void nrerror(char error_text[])
 1004: {
 1005:   fprintf(stderr,"ERREUR ...\n");
 1006:   fprintf(stderr,"%s\n",error_text);
 1007:   exit(EXIT_FAILURE);
 1008: }
 1009: /*********************** vector *******************/
 1010: double *vector(int nl, int nh)
 1011: {
 1012:   double *v;
 1013:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 1014:   if (!v) nrerror("allocation failure in vector");
 1015:   return v-nl+NR_END;
 1016: }
 1017: 
 1018: /************************ free vector ******************/
 1019: void free_vector(double*v, int nl, int nh)
 1020: {
 1021:   free((FREE_ARG)(v+nl-NR_END));
 1022: }
 1023: 
 1024: /************************ivector *******************************/
 1025: int *ivector(long nl,long nh)
 1026: {
 1027:   int *v;
 1028:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 1029:   if (!v) nrerror("allocation failure in ivector");
 1030:   return v-nl+NR_END;
 1031: }
 1032: 
 1033: /******************free ivector **************************/
 1034: void free_ivector(int *v, long nl, long nh)
 1035: {
 1036:   free((FREE_ARG)(v+nl-NR_END));
 1037: }
 1038: 
 1039: /************************lvector *******************************/
 1040: long *lvector(long nl,long nh)
 1041: {
 1042:   long *v;
 1043:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 1044:   if (!v) nrerror("allocation failure in ivector");
 1045:   return v-nl+NR_END;
 1046: }
 1047: 
 1048: /******************free lvector **************************/
 1049: void free_lvector(long *v, long nl, long nh)
 1050: {
 1051:   free((FREE_ARG)(v+nl-NR_END));
 1052: }
 1053: 
 1054: /******************* imatrix *******************************/
 1055: int **imatrix(long nrl, long nrh, long ncl, long nch) 
 1056:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 1057: { 
 1058:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 1059:   int **m; 
 1060:   
 1061:   /* allocate pointers to rows */ 
 1062:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 1063:   if (!m) nrerror("allocation failure 1 in matrix()"); 
 1064:   m += NR_END; 
 1065:   m -= nrl; 
 1066:   
 1067:   
 1068:   /* allocate rows and set pointers to them */ 
 1069:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 1070:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 1071:   m[nrl] += NR_END; 
 1072:   m[nrl] -= ncl; 
 1073:   
 1074:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 1075:   
 1076:   /* return pointer to array of pointers to rows */ 
 1077:   return m; 
 1078: } 
 1079: 
 1080: /****************** free_imatrix *************************/
 1081: void free_imatrix(m,nrl,nrh,ncl,nch)
 1082:       int **m;
 1083:       long nch,ncl,nrh,nrl; 
 1084:      /* free an int matrix allocated by imatrix() */ 
 1085: { 
 1086:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 1087:   free((FREE_ARG) (m+nrl-NR_END)); 
 1088: } 
 1089: 
 1090: /******************* matrix *******************************/
 1091: double **matrix(long nrl, long nrh, long ncl, long nch)
 1092: {
 1093:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 1094:   double **m;
 1095: 
 1096:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1097:   if (!m) nrerror("allocation failure 1 in matrix()");
 1098:   m += NR_END;
 1099:   m -= nrl;
 1100: 
 1101:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1102:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1103:   m[nrl] += NR_END;
 1104:   m[nrl] -= ncl;
 1105: 
 1106:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1107:   return m;
 1108:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 1109: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 1110: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 1111:    */
 1112: }
 1113: 
 1114: /*************************free matrix ************************/
 1115: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 1116: {
 1117:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1118:   free((FREE_ARG)(m+nrl-NR_END));
 1119: }
 1120: 
 1121: /******************* ma3x *******************************/
 1122: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 1123: {
 1124:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 1125:   double ***m;
 1126: 
 1127:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1128:   if (!m) nrerror("allocation failure 1 in matrix()");
 1129:   m += NR_END;
 1130:   m -= nrl;
 1131: 
 1132:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1133:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1134:   m[nrl] += NR_END;
 1135:   m[nrl] -= ncl;
 1136: 
 1137:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1138: 
 1139:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 1140:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 1141:   m[nrl][ncl] += NR_END;
 1142:   m[nrl][ncl] -= nll;
 1143:   for (j=ncl+1; j<=nch; j++) 
 1144:     m[nrl][j]=m[nrl][j-1]+nlay;
 1145:   
 1146:   for (i=nrl+1; i<=nrh; i++) {
 1147:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 1148:     for (j=ncl+1; j<=nch; j++) 
 1149:       m[i][j]=m[i][j-1]+nlay;
 1150:   }
 1151:   return m; 
 1152:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 1153:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 1154:   */
 1155: }
 1156: 
 1157: /*************************free ma3x ************************/
 1158: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 1159: {
 1160:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 1161:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1162:   free((FREE_ARG)(m+nrl-NR_END));
 1163: }
 1164: 
 1165: /*************** function subdirf ***********/
 1166: char *subdirf(char fileres[])
 1167: {
 1168:   /* Caution optionfilefiname is hidden */
 1169:   strcpy(tmpout,optionfilefiname);
 1170:   strcat(tmpout,"/"); /* Add to the right */
 1171:   strcat(tmpout,fileres);
 1172:   return tmpout;
 1173: }
 1174: 
 1175: /*************** function subdirf2 ***********/
 1176: char *subdirf2(char fileres[], char *preop)
 1177: {
 1178:   
 1179:   /* Caution optionfilefiname is hidden */
 1180:   strcpy(tmpout,optionfilefiname);
 1181:   strcat(tmpout,"/");
 1182:   strcat(tmpout,preop);
 1183:   strcat(tmpout,fileres);
 1184:   return tmpout;
 1185: }
 1186: 
 1187: /*************** function subdirf3 ***********/
 1188: char *subdirf3(char fileres[], char *preop, char *preop2)
 1189: {
 1190:   
 1191:   /* Caution optionfilefiname is hidden */
 1192:   strcpy(tmpout,optionfilefiname);
 1193:   strcat(tmpout,"/");
 1194:   strcat(tmpout,preop);
 1195:   strcat(tmpout,preop2);
 1196:   strcat(tmpout,fileres);
 1197:   return tmpout;
 1198: }
 1199: 
 1200: char *asc_diff_time(long time_sec, char ascdiff[])
 1201: {
 1202:   long sec_left, days, hours, minutes;
 1203:   days = (time_sec) / (60*60*24);
 1204:   sec_left = (time_sec) % (60*60*24);
 1205:   hours = (sec_left) / (60*60) ;
 1206:   sec_left = (sec_left) %(60*60);
 1207:   minutes = (sec_left) /60;
 1208:   sec_left = (sec_left) % (60);
 1209:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1210:   return ascdiff;
 1211: }
 1212: 
 1213: /***************** f1dim *************************/
 1214: extern int ncom; 
 1215: extern double *pcom,*xicom;
 1216: extern double (*nrfunc)(double []); 
 1217:  
 1218: double f1dim(double x) 
 1219: { 
 1220:   int j; 
 1221:   double f;
 1222:   double *xt; 
 1223:  
 1224:   xt=vector(1,ncom); 
 1225:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1226:   f=(*nrfunc)(xt); 
 1227:   free_vector(xt,1,ncom); 
 1228:   return f; 
 1229: } 
 1230: 
 1231: /*****************brent *************************/
 1232: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1233: { 
 1234:   int iter; 
 1235:   double a,b,d,etemp;
 1236:   double fu=0,fv,fw,fx;
 1237:   double ftemp=0.;
 1238:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1239:   double e=0.0; 
 1240:  
 1241:   a=(ax < cx ? ax : cx); 
 1242:   b=(ax > cx ? ax : cx); 
 1243:   x=w=v=bx; 
 1244:   fw=fv=fx=(*f)(x); 
 1245:   for (iter=1;iter<=ITMAX;iter++) { 
 1246:     xm=0.5*(a+b); 
 1247:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1248:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1249:     printf(".");fflush(stdout);
 1250:     fprintf(ficlog,".");fflush(ficlog);
 1251: #ifdef DEBUGBRENT
 1252:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1253:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1254:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1255: #endif
 1256:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1257:       *xmin=x; 
 1258:       return fx; 
 1259:     } 
 1260:     ftemp=fu;
 1261:     if (fabs(e) > tol1) { 
 1262:       r=(x-w)*(fx-fv); 
 1263:       q=(x-v)*(fx-fw); 
 1264:       p=(x-v)*q-(x-w)*r; 
 1265:       q=2.0*(q-r); 
 1266:       if (q > 0.0) p = -p; 
 1267:       q=fabs(q); 
 1268:       etemp=e; 
 1269:       e=d; 
 1270:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1271: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1272:       else { 
 1273: 	d=p/q; 
 1274: 	u=x+d; 
 1275: 	if (u-a < tol2 || b-u < tol2) 
 1276: 	  d=SIGN(tol1,xm-x); 
 1277:       } 
 1278:     } else { 
 1279:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1280:     } 
 1281:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1282:     fu=(*f)(u); 
 1283:     if (fu <= fx) { 
 1284:       if (u >= x) a=x; else b=x; 
 1285:       SHFT(v,w,x,u) 
 1286: 	SHFT(fv,fw,fx,fu) 
 1287: 	} else { 
 1288: 	  if (u < x) a=u; else b=u; 
 1289: 	  if (fu <= fw || w == x) { 
 1290: 	    v=w; 
 1291: 	    w=u; 
 1292: 	    fv=fw; 
 1293: 	    fw=fu; 
 1294: 	  } else if (fu <= fv || v == x || v == w) { 
 1295: 	    v=u; 
 1296: 	    fv=fu; 
 1297: 	  } 
 1298: 	} 
 1299:   } 
 1300:   nrerror("Too many iterations in brent"); 
 1301:   *xmin=x; 
 1302:   return fx; 
 1303: } 
 1304: 
 1305: /****************** mnbrak ***********************/
 1306: 
 1307: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1308: 	    double (*func)(double)) 
 1309: { 
 1310:   double ulim,u,r,q, dum;
 1311:   double fu; 
 1312:  
 1313:   *fa=(*func)(*ax); 
 1314:   *fb=(*func)(*bx); 
 1315:   if (*fb > *fa) { 
 1316:     SHFT(dum,*ax,*bx,dum) 
 1317:       SHFT(dum,*fb,*fa,dum) 
 1318:       } 
 1319:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1320:   *fc=(*func)(*cx); 
 1321:   while (*fb > *fc) { /* Declining fa, fb, fc */
 1322:     r=(*bx-*ax)*(*fb-*fc); 
 1323:     q=(*bx-*cx)*(*fb-*fa); 
 1324:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1325:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
 1326:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
 1327:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
 1328:       fu=(*func)(u); 
 1329: #ifdef DEBUG
 1330:       /* f(x)=A(x-u)**2+f(u) */
 1331:       double A, fparabu; 
 1332:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
 1333:       fparabu= *fa - A*(*ax-u)*(*ax-u);
 1334:       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1335:       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1336: #endif 
 1337:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 1338:       fu=(*func)(u); 
 1339:       if (fu < *fc) { 
 1340: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1341: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
 1342: 	  } 
 1343:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 1344:       u=ulim; 
 1345:       fu=(*func)(u); 
 1346:     } else { 
 1347:       u=(*cx)+GOLD*(*cx-*bx); 
 1348:       fu=(*func)(u); 
 1349:     } 
 1350:     SHFT(*ax,*bx,*cx,u) 
 1351:       SHFT(*fa,*fb,*fc,fu) 
 1352:       } 
 1353: } 
 1354: 
 1355: /*************** linmin ************************/
 1356: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 1357: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
 1358: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 1359: the value of func at the returned location p . This is actually all accomplished by calling the
 1360: routines mnbrak and brent .*/
 1361: int ncom; 
 1362: double *pcom,*xicom;
 1363: double (*nrfunc)(double []); 
 1364:  
 1365: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1366: { 
 1367:   double brent(double ax, double bx, double cx, 
 1368: 	       double (*f)(double), double tol, double *xmin); 
 1369:   double f1dim(double x); 
 1370:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1371: 	      double *fc, double (*func)(double)); 
 1372:   int j; 
 1373:   double xx,xmin,bx,ax; 
 1374:   double fx,fb,fa;
 1375:  
 1376:   ncom=n; 
 1377:   pcom=vector(1,n); 
 1378:   xicom=vector(1,n); 
 1379:   nrfunc=func; 
 1380:   for (j=1;j<=n;j++) { 
 1381:     pcom[j]=p[j]; 
 1382:     xicom[j]=xi[j]; 
 1383:   } 
 1384:   ax=0.0; 
 1385:   xx=1.0; 
 1386:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
 1387:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
 1388: #ifdef DEBUG
 1389:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1390:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1391: #endif
 1392:   for (j=1;j<=n;j++) { 
 1393:     xi[j] *= xmin; 
 1394:     p[j] += xi[j]; 
 1395:   } 
 1396:   free_vector(xicom,1,n); 
 1397:   free_vector(pcom,1,n); 
 1398: } 
 1399: 
 1400: 
 1401: /*************** powell ************************/
 1402: /*
 1403: Minimization of a function func of n variables. Input consists of an initial starting point
 1404: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 1405: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
 1406: such that failure to decrease by more than this amount on one iteration signals doneness. On
 1407: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 1408: function value at p , and iter is the number of iterations taken. The routine linmin is used.
 1409:  */
 1410: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1411: 	    double (*func)(double [])) 
 1412: { 
 1413:   void linmin(double p[], double xi[], int n, double *fret, 
 1414: 	      double (*func)(double [])); 
 1415:   int i,ibig,j; 
 1416:   double del,t,*pt,*ptt,*xit;
 1417:   double directest;
 1418:   double fp,fptt;
 1419:   double *xits;
 1420:   int niterf, itmp;
 1421: 
 1422:   pt=vector(1,n); 
 1423:   ptt=vector(1,n); 
 1424:   xit=vector(1,n); 
 1425:   xits=vector(1,n); 
 1426:   *fret=(*func)(p); 
 1427:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1428:     rcurr_time = time(NULL);  
 1429:   for (*iter=1;;++(*iter)) { 
 1430:     fp=(*fret); 
 1431:     ibig=0; 
 1432:     del=0.0; 
 1433:     rlast_time=rcurr_time;
 1434:     /* (void) gettimeofday(&curr_time,&tzp); */
 1435:     rcurr_time = time(NULL);  
 1436:     curr_time = *localtime(&rcurr_time);
 1437:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 1438:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 1439: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 1440:    for (i=1;i<=n;i++) {
 1441:       printf(" %d %.12f",i, p[i]);
 1442:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1443:       fprintf(ficrespow," %.12lf", p[i]);
 1444:     }
 1445:     printf("\n");
 1446:     fprintf(ficlog,"\n");
 1447:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1448:     if(*iter <=3){
 1449:       tml = *localtime(&rcurr_time);
 1450:       strcpy(strcurr,asctime(&tml));
 1451:       rforecast_time=rcurr_time; 
 1452:       itmp = strlen(strcurr);
 1453:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1454: 	strcurr[itmp-1]='\0';
 1455:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1456:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1457:       for(niterf=10;niterf<=30;niterf+=10){
 1458: 	rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 1459: 	forecast_time = *localtime(&rforecast_time);
 1460: 	strcpy(strfor,asctime(&forecast_time));
 1461: 	itmp = strlen(strfor);
 1462: 	if(strfor[itmp-1]=='\n')
 1463: 	strfor[itmp-1]='\0';
 1464: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1465: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1466:       }
 1467:     }
 1468:     for (i=1;i<=n;i++) { 
 1469:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1470:       fptt=(*fret); 
 1471: #ifdef DEBUG
 1472: 	  printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1473: 	  fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1474: #endif
 1475:       printf("%d",i);fflush(stdout);
 1476:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1477:       linmin(p,xit,n,fret,func); 
 1478:       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
 1479: 				       because that direction will be replaced unless the gain del is small
 1480: 				      in comparison with the 'probable' gain, mu^2, with the last average direction.
 1481: 				      Unless the n directions are conjugate some gain in the determinant may be obtained
 1482: 				      with the new direction.
 1483: 				      */
 1484: 	del=fabs(fptt-(*fret)); 
 1485: 	ibig=i; 
 1486:       } 
 1487: #ifdef DEBUG
 1488:       printf("%d %.12e",i,(*fret));
 1489:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1490:       for (j=1;j<=n;j++) {
 1491: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1492: 	printf(" x(%d)=%.12e",j,xit[j]);
 1493: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1494:       }
 1495:       for(j=1;j<=n;j++) {
 1496: 	printf(" p(%d)=%.12e",j,p[j]);
 1497: 	fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 1498:       }
 1499:       printf("\n");
 1500:       fprintf(ficlog,"\n");
 1501: #endif
 1502:     } /* end i */
 1503:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
 1504: #ifdef DEBUG
 1505:       int k[2],l;
 1506:       k[0]=1;
 1507:       k[1]=-1;
 1508:       printf("Max: %.12e",(*func)(p));
 1509:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1510:       for (j=1;j<=n;j++) {
 1511: 	printf(" %.12e",p[j]);
 1512: 	fprintf(ficlog," %.12e",p[j]);
 1513:       }
 1514:       printf("\n");
 1515:       fprintf(ficlog,"\n");
 1516:       for(l=0;l<=1;l++) {
 1517: 	for (j=1;j<=n;j++) {
 1518: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1519: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1520: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1521: 	}
 1522: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1523: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1524:       }
 1525: #endif
 1526: 
 1527: 
 1528:       free_vector(xit,1,n); 
 1529:       free_vector(xits,1,n); 
 1530:       free_vector(ptt,1,n); 
 1531:       free_vector(pt,1,n); 
 1532:       return; 
 1533:     } 
 1534:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1535:     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
 1536:       ptt[j]=2.0*p[j]-pt[j]; 
 1537:       xit[j]=p[j]-pt[j]; 
 1538:       pt[j]=p[j]; 
 1539:     } 
 1540:     fptt=(*func)(ptt); /* f_3 */
 1541:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 1542:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 1543:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 1544:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
 1545:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
 1546:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 1547:       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
 1548:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
 1549: 
 1550:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line */
 1551:       t= t- del*SQR(fp-fptt);
 1552:       directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
 1553: #ifdef DEBUG
 1554:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1555:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1556:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1557: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1558:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1559: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1560:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1561:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1562: #endif
 1563: #ifdef POWELLDIRECT
 1564:       if (directest*t < 0.0) { /* Contradiction between both tests */
 1565:       printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt);
 1566:       printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
 1567:       fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt);
 1568:       fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
 1569:     } 
 1570:       if (directest < 0.0) { /* Then we use it for new direction */
 1571: #else
 1572:       if (t < 0.0) { /* Then we use it for new direction */
 1573: #endif
 1574: 	linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
 1575: 	for (j=1;j<=n;j++) { 
 1576: 	  xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
 1577: 	  xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
 1578: 	}
 1579: 	printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1580: 	fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1581: 
 1582: #ifdef DEBUG
 1583: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1584: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1585: 	for(j=1;j<=n;j++){
 1586: 	  printf(" %.12e",xit[j]);
 1587: 	  fprintf(ficlog," %.12e",xit[j]);
 1588: 	}
 1589: 	printf("\n");
 1590: 	fprintf(ficlog,"\n");
 1591: #endif
 1592:       } /* end of t negative */
 1593:     } /* end if (fptt < fp)  */
 1594:   } 
 1595: } 
 1596: 
 1597: /**** Prevalence limit (stable or period prevalence)  ****************/
 1598: 
 1599: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1600: {
 1601:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1602:      matrix by transitions matrix until convergence is reached */
 1603:   
 1604:   int i, ii,j,k;
 1605:   double min, max, maxmin, maxmax,sumnew=0.;
 1606:   /* double **matprod2(); */ /* test */
 1607:   double **out, cov[NCOVMAX+1], **pmij();
 1608:   double **newm;
 1609:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1610:   
 1611:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1612:     for (j=1;j<=nlstate+ndeath;j++){
 1613:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1614:     }
 1615:   
 1616:   cov[1]=1.;
 1617:   
 1618:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1619:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1620:     newm=savm;
 1621:     /* Covariates have to be included here again */
 1622:     cov[2]=agefin;
 1623:     
 1624:     for (k=1; k<=cptcovn;k++) {
 1625:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1626:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 1627:     }
 1628:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1629:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 1630:     /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
 1631:     
 1632:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1633:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1634:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1635:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1636:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1637:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1638:     
 1639:     savm=oldm;
 1640:     oldm=newm;
 1641:     maxmax=0.;
 1642:     for(j=1;j<=nlstate;j++){
 1643:       min=1.;
 1644:       max=0.;
 1645:       for(i=1; i<=nlstate; i++) {
 1646: 	sumnew=0;
 1647: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1648: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1649:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1650: 	max=FMAX(max,prlim[i][j]);
 1651: 	min=FMIN(min,prlim[i][j]);
 1652:       }
 1653:       maxmin=max-min;
 1654:       maxmax=FMAX(maxmax,maxmin);
 1655:     } /* j loop */
 1656:     if(maxmax < ftolpl){
 1657:       return prlim;
 1658:     }
 1659:   } /* age loop */
 1660:   return prlim; /* should not reach here */
 1661: }
 1662: 
 1663: /*************** transition probabilities ***************/ 
 1664: 
 1665: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1666: {
 1667:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1668:      computes the probability to be observed in state j being in state i by appying the
 1669:      model to the ncovmodel covariates (including constant and age).
 1670:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1671:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1672:      ncth covariate in the global vector x is given by the formula:
 1673:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1674:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1675:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1676:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1677:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1678:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1679:   */
 1680:   double s1, lnpijopii;
 1681:   /*double t34;*/
 1682:   int i,j, nc, ii, jj;
 1683: 
 1684:     for(i=1; i<= nlstate; i++){
 1685:       for(j=1; j<i;j++){
 1686: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1687: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1688: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1689: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1690: 	}
 1691: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1692: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1693:       }
 1694:       for(j=i+1; j<=nlstate+ndeath;j++){
 1695: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1696: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1697: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1698: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1699: 	}
 1700: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1701:       }
 1702:     }
 1703:     
 1704:     for(i=1; i<= nlstate; i++){
 1705:       s1=0;
 1706:       for(j=1; j<i; j++){
 1707: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1708: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1709:       }
 1710:       for(j=i+1; j<=nlstate+ndeath; j++){
 1711: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1712: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1713:       }
 1714:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1715:       ps[i][i]=1./(s1+1.);
 1716:       /* Computing other pijs */
 1717:       for(j=1; j<i; j++)
 1718: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1719:       for(j=i+1; j<=nlstate+ndeath; j++)
 1720: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1721:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1722:     } /* end i */
 1723:     
 1724:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1725:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1726: 	ps[ii][jj]=0;
 1727: 	ps[ii][ii]=1;
 1728:       }
 1729:     }
 1730:     
 1731:     
 1732:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1733:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1734:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 1735:     /*   } */
 1736:     /*   printf("\n "); */
 1737:     /* } */
 1738:     /* printf("\n ");printf("%lf ",cov[2]);*/
 1739:     /*
 1740:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1741:       goto end;*/
 1742:     return ps;
 1743: }
 1744: 
 1745: /**************** Product of 2 matrices ******************/
 1746: 
 1747: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 1748: {
 1749:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1750:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1751:   /* in, b, out are matrice of pointers which should have been initialized 
 1752:      before: only the contents of out is modified. The function returns
 1753:      a pointer to pointers identical to out */
 1754:   int i, j, k;
 1755:   for(i=nrl; i<= nrh; i++)
 1756:     for(k=ncolol; k<=ncoloh; k++){
 1757:       out[i][k]=0.;
 1758:       for(j=ncl; j<=nch; j++)
 1759:   	out[i][k] +=in[i][j]*b[j][k];
 1760:     }
 1761:   return out;
 1762: }
 1763: 
 1764: 
 1765: /************* Higher Matrix Product ***************/
 1766: 
 1767: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1768: {
 1769:   /* Computes the transition matrix starting at age 'age' over 
 1770:      'nhstepm*hstepm*stepm' months (i.e. until
 1771:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1772:      nhstepm*hstepm matrices. 
 1773:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1774:      (typically every 2 years instead of every month which is too big 
 1775:      for the memory).
 1776:      Model is determined by parameters x and covariates have to be 
 1777:      included manually here. 
 1778: 
 1779:      */
 1780: 
 1781:   int i, j, d, h, k;
 1782:   double **out, cov[NCOVMAX+1];
 1783:   double **newm;
 1784: 
 1785:   /* Hstepm could be zero and should return the unit matrix */
 1786:   for (i=1;i<=nlstate+ndeath;i++)
 1787:     for (j=1;j<=nlstate+ndeath;j++){
 1788:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1789:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1790:     }
 1791:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1792:   for(h=1; h <=nhstepm; h++){
 1793:     for(d=1; d <=hstepm; d++){
 1794:       newm=savm;
 1795:       /* Covariates have to be included here again */
 1796:       cov[1]=1.;
 1797:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1798:       for (k=1; k<=cptcovn;k++) 
 1799: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1800:       for (k=1; k<=cptcovage;k++)
 1801: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1802:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 1803: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1804: 
 1805: 
 1806:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1807:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1808:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1809: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1810:       savm=oldm;
 1811:       oldm=newm;
 1812:     }
 1813:     for(i=1; i<=nlstate+ndeath; i++)
 1814:       for(j=1;j<=nlstate+ndeath;j++) {
 1815: 	po[i][j][h]=newm[i][j];
 1816: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 1817:       }
 1818:     /*printf("h=%d ",h);*/
 1819:   } /* end h */
 1820: /*     printf("\n H=%d \n",h); */
 1821:   return po;
 1822: }
 1823: 
 1824: #ifdef NLOPT
 1825:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
 1826:   double fret;
 1827:   double *xt;
 1828:   int j;
 1829:   myfunc_data *d2 = (myfunc_data *) pd;
 1830: /* xt = (p1-1); */
 1831:   xt=vector(1,n); 
 1832:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
 1833: 
 1834:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
 1835:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 1836:   printf("Function = %.12lf ",fret);
 1837:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 1838:   printf("\n");
 1839:  free_vector(xt,1,n);
 1840:   return fret;
 1841: }
 1842: #endif
 1843: 
 1844: /*************** log-likelihood *************/
 1845: double func( double *x)
 1846: {
 1847:   int i, ii, j, k, mi, d, kk;
 1848:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1849:   double **out;
 1850:   double sw; /* Sum of weights */
 1851:   double lli; /* Individual log likelihood */
 1852:   int s1, s2;
 1853:   double bbh, survp;
 1854:   long ipmx;
 1855:   /*extern weight */
 1856:   /* We are differentiating ll according to initial status */
 1857:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1858:   /*for(i=1;i<imx;i++) 
 1859:     printf(" %d\n",s[4][i]);
 1860:   */
 1861: 
 1862:   ++countcallfunc;
 1863: 
 1864:   cov[1]=1.;
 1865: 
 1866:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1867: 
 1868:   if(mle==1){
 1869:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1870:       /* Computes the values of the ncovmodel covariates of the model
 1871: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 1872: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 1873: 	 to be observed in j being in i according to the model.
 1874:        */
 1875:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 1876: 	cov[2+k]=covar[Tvar[k]][i];
 1877:       }
 1878:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 1879: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 1880: 	 has been calculated etc */
 1881:       for(mi=1; mi<= wav[i]-1; mi++){
 1882: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1883: 	  for (j=1;j<=nlstate+ndeath;j++){
 1884: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1885: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1886: 	  }
 1887: 	for(d=0; d<dh[mi][i]; d++){
 1888: 	  newm=savm;
 1889: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1890: 	  for (kk=1; kk<=cptcovage;kk++) {
 1891: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 1892: 	  }
 1893: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1894: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1895: 	  savm=oldm;
 1896: 	  oldm=newm;
 1897: 	} /* end mult */
 1898:       
 1899: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1900: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1901: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1902: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1903: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1904: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1905: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1906: 	 * probability in order to take into account the bias as a fraction of the way
 1907: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1908: 	 * -stepm/2 to stepm/2 .
 1909: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1910: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1911: 	 */
 1912: 	s1=s[mw[mi][i]][i];
 1913: 	s2=s[mw[mi+1][i]][i];
 1914: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1915: 	/* bias bh is positive if real duration
 1916: 	 * is higher than the multiple of stepm and negative otherwise.
 1917: 	 */
 1918: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1919: 	if( s2 > nlstate){ 
 1920: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1921: 	     then the contribution to the likelihood is the probability to 
 1922: 	     die between last step unit time and current  step unit time, 
 1923: 	     which is also equal to probability to die before dh 
 1924: 	     minus probability to die before dh-stepm . 
 1925: 	     In version up to 0.92 likelihood was computed
 1926: 	as if date of death was unknown. Death was treated as any other
 1927: 	health state: the date of the interview describes the actual state
 1928: 	and not the date of a change in health state. The former idea was
 1929: 	to consider that at each interview the state was recorded
 1930: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1931: 	introduced the exact date of death then we should have modified
 1932: 	the contribution of an exact death to the likelihood. This new
 1933: 	contribution is smaller and very dependent of the step unit
 1934: 	stepm. It is no more the probability to die between last interview
 1935: 	and month of death but the probability to survive from last
 1936: 	interview up to one month before death multiplied by the
 1937: 	probability to die within a month. Thanks to Chris
 1938: 	Jackson for correcting this bug.  Former versions increased
 1939: 	mortality artificially. The bad side is that we add another loop
 1940: 	which slows down the processing. The difference can be up to 10%
 1941: 	lower mortality.
 1942: 	  */
 1943: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1944: 
 1945: 
 1946: 	} else if  (s2==-2) {
 1947: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1948: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1949: 	  /*survp += out[s1][j]; */
 1950: 	  lli= log(survp);
 1951: 	}
 1952: 	
 1953:  	else if  (s2==-4) { 
 1954: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 1955: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1956:  	  lli= log(survp); 
 1957:  	} 
 1958: 
 1959:  	else if  (s2==-5) { 
 1960:  	  for (j=1,survp=0. ; j<=2; j++)  
 1961: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1962:  	  lli= log(survp); 
 1963:  	} 
 1964: 	
 1965: 	else{
 1966: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1967: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1968: 	} 
 1969: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1970: 	/*if(lli ==000.0)*/
 1971: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1972:   	ipmx +=1;
 1973: 	sw += weight[i];
 1974: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1975:       } /* end of wave */
 1976:     } /* end of individual */
 1977:   }  else if(mle==2){
 1978:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1979:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1980:       for(mi=1; mi<= wav[i]-1; mi++){
 1981: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1982: 	  for (j=1;j<=nlstate+ndeath;j++){
 1983: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1984: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1985: 	  }
 1986: 	for(d=0; d<=dh[mi][i]; d++){
 1987: 	  newm=savm;
 1988: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1989: 	  for (kk=1; kk<=cptcovage;kk++) {
 1990: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1991: 	  }
 1992: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1993: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1994: 	  savm=oldm;
 1995: 	  oldm=newm;
 1996: 	} /* end mult */
 1997:       
 1998: 	s1=s[mw[mi][i]][i];
 1999: 	s2=s[mw[mi+1][i]][i];
 2000: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2001: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2002: 	ipmx +=1;
 2003: 	sw += weight[i];
 2004: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2005:       } /* end of wave */
 2006:     } /* end of individual */
 2007:   }  else if(mle==3){  /* exponential inter-extrapolation */
 2008:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2009:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2010:       for(mi=1; mi<= wav[i]-1; mi++){
 2011: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2012: 	  for (j=1;j<=nlstate+ndeath;j++){
 2013: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2014: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2015: 	  }
 2016: 	for(d=0; d<dh[mi][i]; d++){
 2017: 	  newm=savm;
 2018: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2019: 	  for (kk=1; kk<=cptcovage;kk++) {
 2020: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2021: 	  }
 2022: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2023: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2024: 	  savm=oldm;
 2025: 	  oldm=newm;
 2026: 	} /* end mult */
 2027:       
 2028: 	s1=s[mw[mi][i]][i];
 2029: 	s2=s[mw[mi+1][i]][i];
 2030: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2031: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2032: 	ipmx +=1;
 2033: 	sw += weight[i];
 2034: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2035:       } /* end of wave */
 2036:     } /* end of individual */
 2037:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 2038:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2039:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2040:       for(mi=1; mi<= wav[i]-1; mi++){
 2041: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2042: 	  for (j=1;j<=nlstate+ndeath;j++){
 2043: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2044: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2045: 	  }
 2046: 	for(d=0; d<dh[mi][i]; d++){
 2047: 	  newm=savm;
 2048: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2049: 	  for (kk=1; kk<=cptcovage;kk++) {
 2050: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2051: 	  }
 2052: 	
 2053: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2054: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2055: 	  savm=oldm;
 2056: 	  oldm=newm;
 2057: 	} /* end mult */
 2058:       
 2059: 	s1=s[mw[mi][i]][i];
 2060: 	s2=s[mw[mi+1][i]][i];
 2061: 	if( s2 > nlstate){ 
 2062: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 2063: 	}else{
 2064: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2065: 	}
 2066: 	ipmx +=1;
 2067: 	sw += weight[i];
 2068: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2069: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2070:       } /* end of wave */
 2071:     } /* end of individual */
 2072:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 2073:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2074:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2075:       for(mi=1; mi<= wav[i]-1; mi++){
 2076: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2077: 	  for (j=1;j<=nlstate+ndeath;j++){
 2078: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2079: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2080: 	  }
 2081: 	for(d=0; d<dh[mi][i]; d++){
 2082: 	  newm=savm;
 2083: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2084: 	  for (kk=1; kk<=cptcovage;kk++) {
 2085: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2086: 	  }
 2087: 	
 2088: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2089: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2090: 	  savm=oldm;
 2091: 	  oldm=newm;
 2092: 	} /* end mult */
 2093:       
 2094: 	s1=s[mw[mi][i]][i];
 2095: 	s2=s[mw[mi+1][i]][i];
 2096: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2097: 	ipmx +=1;
 2098: 	sw += weight[i];
 2099: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2100: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 2101:       } /* end of wave */
 2102:     } /* end of individual */
 2103:   } /* End of if */
 2104:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2105:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2106:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2107:   return -l;
 2108: }
 2109: 
 2110: /*************** log-likelihood *************/
 2111: double funcone( double *x)
 2112: {
 2113:   /* Same as likeli but slower because of a lot of printf and if */
 2114:   int i, ii, j, k, mi, d, kk;
 2115:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 2116:   double **out;
 2117:   double lli; /* Individual log likelihood */
 2118:   double llt;
 2119:   int s1, s2;
 2120:   double bbh, survp;
 2121:   /*extern weight */
 2122:   /* We are differentiating ll according to initial status */
 2123:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 2124:   /*for(i=1;i<imx;i++) 
 2125:     printf(" %d\n",s[4][i]);
 2126:   */
 2127:   cov[1]=1.;
 2128: 
 2129:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 2130: 
 2131:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2132:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2133:     for(mi=1; mi<= wav[i]-1; mi++){
 2134:       for (ii=1;ii<=nlstate+ndeath;ii++)
 2135: 	for (j=1;j<=nlstate+ndeath;j++){
 2136: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2137: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2138: 	}
 2139:       for(d=0; d<dh[mi][i]; d++){
 2140: 	newm=savm;
 2141: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2142: 	for (kk=1; kk<=cptcovage;kk++) {
 2143: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2144: 	}
 2145: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 2146: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2147: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2148: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 2149: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 2150: 	savm=oldm;
 2151: 	oldm=newm;
 2152:       } /* end mult */
 2153:       
 2154:       s1=s[mw[mi][i]][i];
 2155:       s2=s[mw[mi+1][i]][i];
 2156:       bbh=(double)bh[mi][i]/(double)stepm; 
 2157:       /* bias is positive if real duration
 2158:        * is higher than the multiple of stepm and negative otherwise.
 2159:        */
 2160:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 2161: 	lli=log(out[s1][s2] - savm[s1][s2]);
 2162:       } else if  (s2==-2) {
 2163: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 2164: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2165: 	lli= log(survp);
 2166:       }else if (mle==1){
 2167: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2168:       } else if(mle==2){
 2169: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2170:       } else if(mle==3){  /* exponential inter-extrapolation */
 2171: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2172:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 2173: 	lli=log(out[s1][s2]); /* Original formula */
 2174:       } else{  /* mle=0 back to 1 */
 2175: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2176: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 2177:       } /* End of if */
 2178:       ipmx +=1;
 2179:       sw += weight[i];
 2180:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2181:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2182:       if(globpr){
 2183: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 2184:  %11.6f %11.6f %11.6f ", \
 2185: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 2186: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 2187: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 2188: 	  llt +=ll[k]*gipmx/gsw;
 2189: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 2190: 	}
 2191: 	fprintf(ficresilk," %10.6f\n", -llt);
 2192:       }
 2193:     } /* end of wave */
 2194:   } /* end of individual */
 2195:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2196:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2197:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2198:   if(globpr==0){ /* First time we count the contributions and weights */
 2199:     gipmx=ipmx;
 2200:     gsw=sw;
 2201:   }
 2202:   return -l;
 2203: }
 2204: 
 2205: 
 2206: /*************** function likelione ***********/
 2207: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 2208: {
 2209:   /* This routine should help understanding what is done with 
 2210:      the selection of individuals/waves and
 2211:      to check the exact contribution to the likelihood.
 2212:      Plotting could be done.
 2213:    */
 2214:   int k;
 2215: 
 2216:   if(*globpri !=0){ /* Just counts and sums, no printings */
 2217:     strcpy(fileresilk,"ilk"); 
 2218:     strcat(fileresilk,fileres);
 2219:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 2220:       printf("Problem with resultfile: %s\n", fileresilk);
 2221:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 2222:     }
 2223:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 2224:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 2225:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 2226:     for(k=1; k<=nlstate; k++) 
 2227:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 2228:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 2229:   }
 2230: 
 2231:   *fretone=(*funcone)(p);
 2232:   if(*globpri !=0){
 2233:     fclose(ficresilk);
 2234:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 2235:     fflush(fichtm); 
 2236:   } 
 2237:   return;
 2238: }
 2239: 
 2240: 
 2241: /*********** Maximum Likelihood Estimation ***************/
 2242: 
 2243: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 2244: {
 2245:   int i,j, iter=0;
 2246:   double **xi;
 2247:   double fret;
 2248:   double fretone; /* Only one call to likelihood */
 2249:   /*  char filerespow[FILENAMELENGTH];*/
 2250: 
 2251: #ifdef NLOPT
 2252:   int creturn;
 2253:   nlopt_opt opt;
 2254:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 2255:   double *lb;
 2256:   double minf; /* the minimum objective value, upon return */
 2257:   double * p1; /* Shifted parameters from 0 instead of 1 */
 2258:   myfunc_data dinst, *d = &dinst;
 2259: #endif
 2260: 
 2261: 
 2262:   xi=matrix(1,npar,1,npar);
 2263:   for (i=1;i<=npar;i++)
 2264:     for (j=1;j<=npar;j++)
 2265:       xi[i][j]=(i==j ? 1.0 : 0.0);
 2266:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 2267:   strcpy(filerespow,"pow"); 
 2268:   strcat(filerespow,fileres);
 2269:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 2270:     printf("Problem with resultfile: %s\n", filerespow);
 2271:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 2272:   }
 2273:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 2274:   for (i=1;i<=nlstate;i++)
 2275:     for(j=1;j<=nlstate+ndeath;j++)
 2276:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2277:   fprintf(ficrespow,"\n");
 2278: #ifdef POWELL
 2279:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2280: #endif
 2281: 
 2282: #ifdef NLOPT
 2283: #ifdef NEWUOA
 2284:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
 2285: #else
 2286:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
 2287: #endif
 2288:   lb=vector(0,npar-1);
 2289:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 2290:   nlopt_set_lower_bounds(opt, lb);
 2291:   nlopt_set_initial_step1(opt, 0.1);
 2292:   
 2293:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 2294:   d->function = func;
 2295:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
 2296:   nlopt_set_min_objective(opt, myfunc, d);
 2297:   nlopt_set_xtol_rel(opt, ftol);
 2298:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 2299:     printf("nlopt failed! %d\n",creturn); 
 2300:   }
 2301:   else {
 2302:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
 2303:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 2304:     iter=1; /* not equal */
 2305:   }
 2306:   nlopt_destroy(opt);
 2307: #endif
 2308:   free_matrix(xi,1,npar,1,npar);
 2309:   fclose(ficrespow);
 2310:   printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2311:   fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2312:   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2313: 
 2314: }
 2315: 
 2316: /**** Computes Hessian and covariance matrix ***/
 2317: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2318: {
 2319:   double  **a,**y,*x,pd;
 2320:   double **hess;
 2321:   int i, j;
 2322:   int *indx;
 2323: 
 2324:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2325:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2326:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2327:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2328:   double gompertz(double p[]);
 2329:   hess=matrix(1,npar,1,npar);
 2330: 
 2331:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2332:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2333:   for (i=1;i<=npar;i++){
 2334:     printf("%d",i);fflush(stdout);
 2335:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2336:    
 2337:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2338:     
 2339:     /*  printf(" %f ",p[i]);
 2340: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2341:   }
 2342:   
 2343:   for (i=1;i<=npar;i++) {
 2344:     for (j=1;j<=npar;j++)  {
 2345:       if (j>i) { 
 2346: 	printf(".%d%d",i,j);fflush(stdout);
 2347: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2348: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2349: 	
 2350: 	hess[j][i]=hess[i][j];    
 2351: 	/*printf(" %lf ",hess[i][j]);*/
 2352:       }
 2353:     }
 2354:   }
 2355:   printf("\n");
 2356:   fprintf(ficlog,"\n");
 2357: 
 2358:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2359:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2360:   
 2361:   a=matrix(1,npar,1,npar);
 2362:   y=matrix(1,npar,1,npar);
 2363:   x=vector(1,npar);
 2364:   indx=ivector(1,npar);
 2365:   for (i=1;i<=npar;i++)
 2366:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2367:   ludcmp(a,npar,indx,&pd);
 2368: 
 2369:   for (j=1;j<=npar;j++) {
 2370:     for (i=1;i<=npar;i++) x[i]=0;
 2371:     x[j]=1;
 2372:     lubksb(a,npar,indx,x);
 2373:     for (i=1;i<=npar;i++){ 
 2374:       matcov[i][j]=x[i];
 2375:     }
 2376:   }
 2377: 
 2378:   printf("\n#Hessian matrix#\n");
 2379:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2380:   for (i=1;i<=npar;i++) { 
 2381:     for (j=1;j<=npar;j++) { 
 2382:       printf("%.3e ",hess[i][j]);
 2383:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2384:     }
 2385:     printf("\n");
 2386:     fprintf(ficlog,"\n");
 2387:   }
 2388: 
 2389:   /* Recompute Inverse */
 2390:   for (i=1;i<=npar;i++)
 2391:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2392:   ludcmp(a,npar,indx,&pd);
 2393: 
 2394:   /*  printf("\n#Hessian matrix recomputed#\n");
 2395: 
 2396:   for (j=1;j<=npar;j++) {
 2397:     for (i=1;i<=npar;i++) x[i]=0;
 2398:     x[j]=1;
 2399:     lubksb(a,npar,indx,x);
 2400:     for (i=1;i<=npar;i++){ 
 2401:       y[i][j]=x[i];
 2402:       printf("%.3e ",y[i][j]);
 2403:       fprintf(ficlog,"%.3e ",y[i][j]);
 2404:     }
 2405:     printf("\n");
 2406:     fprintf(ficlog,"\n");
 2407:   }
 2408:   */
 2409: 
 2410:   free_matrix(a,1,npar,1,npar);
 2411:   free_matrix(y,1,npar,1,npar);
 2412:   free_vector(x,1,npar);
 2413:   free_ivector(indx,1,npar);
 2414:   free_matrix(hess,1,npar,1,npar);
 2415: 
 2416: 
 2417: }
 2418: 
 2419: /*************** hessian matrix ****************/
 2420: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2421: {
 2422:   int i;
 2423:   int l=1, lmax=20;
 2424:   double k1,k2;
 2425:   double p2[MAXPARM+1]; /* identical to x */
 2426:   double res;
 2427:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2428:   double fx;
 2429:   int k=0,kmax=10;
 2430:   double l1;
 2431: 
 2432:   fx=func(x);
 2433:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2434:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2435:     l1=pow(10,l);
 2436:     delts=delt;
 2437:     for(k=1 ; k <kmax; k=k+1){
 2438:       delt = delta*(l1*k);
 2439:       p2[theta]=x[theta] +delt;
 2440:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2441:       p2[theta]=x[theta]-delt;
 2442:       k2=func(p2)-fx;
 2443:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2444:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2445:       
 2446: #ifdef DEBUGHESS
 2447:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2448:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2449: #endif
 2450:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2451:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2452: 	k=kmax;
 2453:       }
 2454:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2455: 	k=kmax; l=lmax*10;
 2456:       }
 2457:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2458: 	delts=delt;
 2459:       }
 2460:     }
 2461:   }
 2462:   delti[theta]=delts;
 2463:   return res; 
 2464:   
 2465: }
 2466: 
 2467: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2468: {
 2469:   int i;
 2470:   int l=1, lmax=20;
 2471:   double k1,k2,k3,k4,res,fx;
 2472:   double p2[MAXPARM+1];
 2473:   int k;
 2474: 
 2475:   fx=func(x);
 2476:   for (k=1; k<=2; k++) {
 2477:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2478:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2479:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2480:     k1=func(p2)-fx;
 2481:   
 2482:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2483:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2484:     k2=func(p2)-fx;
 2485:   
 2486:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2487:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2488:     k3=func(p2)-fx;
 2489:   
 2490:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2491:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2492:     k4=func(p2)-fx;
 2493:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2494: #ifdef DEBUG
 2495:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2496:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2497: #endif
 2498:   }
 2499:   return res;
 2500: }
 2501: 
 2502: /************** Inverse of matrix **************/
 2503: void ludcmp(double **a, int n, int *indx, double *d) 
 2504: { 
 2505:   int i,imax,j,k; 
 2506:   double big,dum,sum,temp; 
 2507:   double *vv; 
 2508:  
 2509:   vv=vector(1,n); 
 2510:   *d=1.0; 
 2511:   for (i=1;i<=n;i++) { 
 2512:     big=0.0; 
 2513:     for (j=1;j<=n;j++) 
 2514:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2515:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2516:     vv[i]=1.0/big; 
 2517:   } 
 2518:   for (j=1;j<=n;j++) { 
 2519:     for (i=1;i<j;i++) { 
 2520:       sum=a[i][j]; 
 2521:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2522:       a[i][j]=sum; 
 2523:     } 
 2524:     big=0.0; 
 2525:     for (i=j;i<=n;i++) { 
 2526:       sum=a[i][j]; 
 2527:       for (k=1;k<j;k++) 
 2528: 	sum -= a[i][k]*a[k][j]; 
 2529:       a[i][j]=sum; 
 2530:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2531: 	big=dum; 
 2532: 	imax=i; 
 2533:       } 
 2534:     } 
 2535:     if (j != imax) { 
 2536:       for (k=1;k<=n;k++) { 
 2537: 	dum=a[imax][k]; 
 2538: 	a[imax][k]=a[j][k]; 
 2539: 	a[j][k]=dum; 
 2540:       } 
 2541:       *d = -(*d); 
 2542:       vv[imax]=vv[j]; 
 2543:     } 
 2544:     indx[j]=imax; 
 2545:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2546:     if (j != n) { 
 2547:       dum=1.0/(a[j][j]); 
 2548:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2549:     } 
 2550:   } 
 2551:   free_vector(vv,1,n);  /* Doesn't work */
 2552: ;
 2553: } 
 2554: 
 2555: void lubksb(double **a, int n, int *indx, double b[]) 
 2556: { 
 2557:   int i,ii=0,ip,j; 
 2558:   double sum; 
 2559:  
 2560:   for (i=1;i<=n;i++) { 
 2561:     ip=indx[i]; 
 2562:     sum=b[ip]; 
 2563:     b[ip]=b[i]; 
 2564:     if (ii) 
 2565:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2566:     else if (sum) ii=i; 
 2567:     b[i]=sum; 
 2568:   } 
 2569:   for (i=n;i>=1;i--) { 
 2570:     sum=b[i]; 
 2571:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2572:     b[i]=sum/a[i][i]; 
 2573:   } 
 2574: } 
 2575: 
 2576: void pstamp(FILE *fichier)
 2577: {
 2578:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2579: }
 2580: 
 2581: /************ Frequencies ********************/
 2582: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2583: {  /* Some frequencies */
 2584:   
 2585:   int i, m, jk, j1, bool, z1,j;
 2586:   int first;
 2587:   double ***freq; /* Frequencies */
 2588:   double *pp, **prop;
 2589:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2590:   char fileresp[FILENAMELENGTH];
 2591:   
 2592:   pp=vector(1,nlstate);
 2593:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2594:   strcpy(fileresp,"p");
 2595:   strcat(fileresp,fileres);
 2596:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2597:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2598:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2599:     exit(0);
 2600:   }
 2601:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2602:   j1=0;
 2603:   
 2604:   j=cptcoveff;
 2605:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2606: 
 2607:   first=1;
 2608: 
 2609:   /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
 2610:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
 2611:   /*    j1++; */
 2612:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2613:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2614: 	scanf("%d", i);*/
 2615:       for (i=-5; i<=nlstate+ndeath; i++)  
 2616: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2617: 	  for(m=iagemin; m <= iagemax+3; m++)
 2618: 	    freq[i][jk][m]=0;
 2619:       
 2620:       for (i=1; i<=nlstate; i++)  
 2621: 	for(m=iagemin; m <= iagemax+3; m++)
 2622: 	  prop[i][m]=0;
 2623:       
 2624:       dateintsum=0;
 2625:       k2cpt=0;
 2626:       for (i=1; i<=imx; i++) {
 2627: 	bool=1;
 2628: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2629: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2630:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 2631:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2632:               bool=0;
 2633:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 2634:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 2635:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 2636:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 2637:             } 
 2638: 	}
 2639:  
 2640: 	if (bool==1){
 2641: 	  for(m=firstpass; m<=lastpass; m++){
 2642: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2643: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2644: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2645: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2646: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2647: 	      if (m<lastpass) {
 2648: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2649: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2650: 	      }
 2651: 	      
 2652: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2653: 		dateintsum=dateintsum+k2;
 2654: 		k2cpt++;
 2655: 	      }
 2656: 	      /*}*/
 2657: 	  }
 2658: 	}
 2659:       } /* end i */
 2660:        
 2661:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2662:       pstamp(ficresp);
 2663:       if  (cptcovn>0) {
 2664: 	fprintf(ficresp, "\n#********** Variable "); 
 2665: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2666: 	fprintf(ficresp, "**********\n#");
 2667: 	fprintf(ficlog, "\n#********** Variable "); 
 2668: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2669: 	fprintf(ficlog, "**********\n#");
 2670:       }
 2671:       for(i=1; i<=nlstate;i++) 
 2672: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2673:       fprintf(ficresp, "\n");
 2674:       
 2675:       for(i=iagemin; i <= iagemax+3; i++){
 2676: 	if(i==iagemax+3){
 2677: 	  fprintf(ficlog,"Total");
 2678: 	}else{
 2679: 	  if(first==1){
 2680: 	    first=0;
 2681: 	    printf("See log file for details...\n");
 2682: 	  }
 2683: 	  fprintf(ficlog,"Age %d", i);
 2684: 	}
 2685: 	for(jk=1; jk <=nlstate ; jk++){
 2686: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2687: 	    pp[jk] += freq[jk][m][i]; 
 2688: 	}
 2689: 	for(jk=1; jk <=nlstate ; jk++){
 2690: 	  for(m=-1, pos=0; m <=0 ; m++)
 2691: 	    pos += freq[jk][m][i];
 2692: 	  if(pp[jk]>=1.e-10){
 2693: 	    if(first==1){
 2694: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2695: 	    }
 2696: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2697: 	  }else{
 2698: 	    if(first==1)
 2699: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2700: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2701: 	  }
 2702: 	}
 2703: 
 2704: 	for(jk=1; jk <=nlstate ; jk++){
 2705: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2706: 	    pp[jk] += freq[jk][m][i];
 2707: 	}	
 2708: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2709: 	  pos += pp[jk];
 2710: 	  posprop += prop[jk][i];
 2711: 	}
 2712: 	for(jk=1; jk <=nlstate ; jk++){
 2713: 	  if(pos>=1.e-5){
 2714: 	    if(first==1)
 2715: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2716: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2717: 	  }else{
 2718: 	    if(first==1)
 2719: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2720: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2721: 	  }
 2722: 	  if( i <= iagemax){
 2723: 	    if(pos>=1.e-5){
 2724: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2725: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2726: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2727: 	    }
 2728: 	    else
 2729: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2730: 	  }
 2731: 	}
 2732: 	
 2733: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2734: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2735: 	    if(freq[jk][m][i] !=0 ) {
 2736: 	    if(first==1)
 2737: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2738: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2739: 	    }
 2740: 	if(i <= iagemax)
 2741: 	  fprintf(ficresp,"\n");
 2742: 	if(first==1)
 2743: 	  printf("Others in log...\n");
 2744: 	fprintf(ficlog,"\n");
 2745:       }
 2746:       /*}*/
 2747:   }
 2748:   dateintmean=dateintsum/k2cpt; 
 2749:  
 2750:   fclose(ficresp);
 2751:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2752:   free_vector(pp,1,nlstate);
 2753:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2754:   /* End of Freq */
 2755: }
 2756: 
 2757: /************ Prevalence ********************/
 2758: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2759: {  
 2760:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2761:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2762:      We still use firstpass and lastpass as another selection.
 2763:   */
 2764:  
 2765:   int i, m, jk, j1, bool, z1,j;
 2766: 
 2767:   double **prop;
 2768:   double posprop; 
 2769:   double  y2; /* in fractional years */
 2770:   int iagemin, iagemax;
 2771:   int first; /** to stop verbosity which is redirected to log file */
 2772: 
 2773:   iagemin= (int) agemin;
 2774:   iagemax= (int) agemax;
 2775:   /*pp=vector(1,nlstate);*/
 2776:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2777:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2778:   j1=0;
 2779:   
 2780:   /*j=cptcoveff;*/
 2781:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2782:   
 2783:   first=1;
 2784:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 2785:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 2786:       j1++;*/
 2787:       
 2788:       for (i=1; i<=nlstate; i++)  
 2789: 	for(m=iagemin; m <= iagemax+3; m++)
 2790: 	  prop[i][m]=0.0;
 2791:      
 2792:       for (i=1; i<=imx; i++) { /* Each individual */
 2793: 	bool=1;
 2794: 	if  (cptcovn>0) {
 2795: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2796: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2797: 	      bool=0;
 2798: 	} 
 2799: 	if (bool==1) { 
 2800: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2801: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2802: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2803: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2804: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2805: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2806:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2807: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2808:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2809:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2810:  	      } 
 2811: 	    }
 2812: 	  } /* end selection of waves */
 2813: 	}
 2814:       }
 2815:       for(i=iagemin; i <= iagemax+3; i++){  
 2816:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2817:  	  posprop += prop[jk][i]; 
 2818:  	} 
 2819: 	
 2820:  	for(jk=1; jk <=nlstate ; jk++){	    
 2821:  	  if( i <=  iagemax){ 
 2822:  	    if(posprop>=1.e-5){ 
 2823:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2824:  	    } else{
 2825: 	      if(first==1){
 2826: 		first=0;
 2827: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 2828: 	      }
 2829: 	    }
 2830:  	  } 
 2831:  	}/* end jk */ 
 2832:       }/* end i */ 
 2833:     /*} *//* end i1 */
 2834:   } /* end j1 */
 2835:   
 2836:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2837:   /*free_vector(pp,1,nlstate);*/
 2838:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2839: }  /* End of prevalence */
 2840: 
 2841: /************* Waves Concatenation ***************/
 2842: 
 2843: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2844: {
 2845:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2846:      Death is a valid wave (if date is known).
 2847:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2848:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2849:      and mw[mi+1][i]. dh depends on stepm.
 2850:      */
 2851: 
 2852:   int i, mi, m;
 2853:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2854:      double sum=0., jmean=0.;*/
 2855:   int first;
 2856:   int j, k=0,jk, ju, jl;
 2857:   double sum=0.;
 2858:   first=0;
 2859:   jmin=100000;
 2860:   jmax=-1;
 2861:   jmean=0.;
 2862:   for(i=1; i<=imx; i++){
 2863:     mi=0;
 2864:     m=firstpass;
 2865:     while(s[m][i] <= nlstate){
 2866:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2867: 	mw[++mi][i]=m;
 2868:       if(m >=lastpass)
 2869: 	break;
 2870:       else
 2871: 	m++;
 2872:     }/* end while */
 2873:     if (s[m][i] > nlstate){
 2874:       mi++;	/* Death is another wave */
 2875:       /* if(mi==0)  never been interviewed correctly before death */
 2876: 	 /* Only death is a correct wave */
 2877:       mw[mi][i]=m;
 2878:     }
 2879: 
 2880:     wav[i]=mi;
 2881:     if(mi==0){
 2882:       nbwarn++;
 2883:       if(first==0){
 2884: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2885: 	first=1;
 2886:       }
 2887:       if(first==1){
 2888: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2889:       }
 2890:     } /* end mi==0 */
 2891:   } /* End individuals */
 2892: 
 2893:   for(i=1; i<=imx; i++){
 2894:     for(mi=1; mi<wav[i];mi++){
 2895:       if (stepm <=0)
 2896: 	dh[mi][i]=1;
 2897:       else{
 2898: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2899: 	  if (agedc[i] < 2*AGESUP) {
 2900: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2901: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2902: 	    else if(j<0){
 2903: 	      nberr++;
 2904: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2905: 	      j=1; /* Temporary Dangerous patch */
 2906: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2907: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2908: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2909: 	    }
 2910: 	    k=k+1;
 2911: 	    if (j >= jmax){
 2912: 	      jmax=j;
 2913: 	      ijmax=i;
 2914: 	    }
 2915: 	    if (j <= jmin){
 2916: 	      jmin=j;
 2917: 	      ijmin=i;
 2918: 	    }
 2919: 	    sum=sum+j;
 2920: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2921: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2922: 	  }
 2923: 	}
 2924: 	else{
 2925: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2926: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2927: 
 2928: 	  k=k+1;
 2929: 	  if (j >= jmax) {
 2930: 	    jmax=j;
 2931: 	    ijmax=i;
 2932: 	  }
 2933: 	  else if (j <= jmin){
 2934: 	    jmin=j;
 2935: 	    ijmin=i;
 2936: 	  }
 2937: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2938: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2939: 	  if(j<0){
 2940: 	    nberr++;
 2941: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2942: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2943: 	  }
 2944: 	  sum=sum+j;
 2945: 	}
 2946: 	jk= j/stepm;
 2947: 	jl= j -jk*stepm;
 2948: 	ju= j -(jk+1)*stepm;
 2949: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2950: 	  if(jl==0){
 2951: 	    dh[mi][i]=jk;
 2952: 	    bh[mi][i]=0;
 2953: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2954: 		  * to avoid the price of an extra matrix product in likelihood */
 2955: 	    dh[mi][i]=jk+1;
 2956: 	    bh[mi][i]=ju;
 2957: 	  }
 2958: 	}else{
 2959: 	  if(jl <= -ju){
 2960: 	    dh[mi][i]=jk;
 2961: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2962: 				 * is higher than the multiple of stepm and negative otherwise.
 2963: 				 */
 2964: 	  }
 2965: 	  else{
 2966: 	    dh[mi][i]=jk+1;
 2967: 	    bh[mi][i]=ju;
 2968: 	  }
 2969: 	  if(dh[mi][i]==0){
 2970: 	    dh[mi][i]=1; /* At least one step */
 2971: 	    bh[mi][i]=ju; /* At least one step */
 2972: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2973: 	  }
 2974: 	} /* end if mle */
 2975:       }
 2976:     } /* end wave */
 2977:   }
 2978:   jmean=sum/k;
 2979:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 2980:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 2981:  }
 2982: 
 2983: /*********** Tricode ****************************/
 2984: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 2985: {
 2986:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 2987:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 2988:    * Boring subroutine which should only output nbcode[Tvar[j]][k]
 2989:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 2990:    * nbcode[Tvar[j]][1]= 
 2991:   */
 2992: 
 2993:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 2994:   int modmaxcovj=0; /* Modality max of covariates j */
 2995:   int cptcode=0; /* Modality max of covariates j */
 2996:   int modmincovj=0; /* Modality min of covariates j */
 2997: 
 2998: 
 2999:   cptcoveff=0; 
 3000:  
 3001:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
 3002:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 3003: 
 3004:   /* Loop on covariates without age and products */
 3005:   for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
 3006:     for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 3007: 			       modality of this covariate Vj*/ 
 3008:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 3009: 				    * If product of Vn*Vm, still boolean *:
 3010: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 3011: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 3012:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 3013: 				      modality of the nth covariate of individual i. */
 3014:       if (ij > modmaxcovj)
 3015:         modmaxcovj=ij; 
 3016:       else if (ij < modmincovj) 
 3017: 	modmincovj=ij; 
 3018:       if ((ij < -1) && (ij > NCOVMAX)){
 3019: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 3020: 	exit(1);
 3021:       }else
 3022:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 3023:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 3024:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 3025:       /* getting the maximum value of the modality of the covariate
 3026: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 3027: 	 female is 1, then modmaxcovj=1.*/
 3028:     }
 3029:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 3030:     cptcode=modmaxcovj;
 3031:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 3032:    /*for (i=0; i<=cptcode; i++) {*/
 3033:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 3034:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
 3035:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 3036: 	ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
 3037:       }
 3038:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 3039: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 3040:     } /* Ndum[-1] number of undefined modalities */
 3041: 
 3042:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 3043:     /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 3044:     /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
 3045:        modmincovj=3; modmaxcovj = 7;
 3046:        There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 3047:        which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 3048:        variables V1_1 and V1_2.
 3049:        nbcode[Tvar[j]][ij]=k;
 3050:        nbcode[Tvar[j]][1]=0;
 3051:        nbcode[Tvar[j]][2]=1;
 3052:        nbcode[Tvar[j]][3]=2;
 3053:     */
 3054:     ij=1; /* ij is similar to i but can jumps over null modalities */
 3055:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
 3056:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
 3057: 	/*recode from 0 */
 3058: 	if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 3059: 	  nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 3060: 				     k is a modality. If we have model=V1+V1*sex 
 3061: 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 3062: 	  ij++;
 3063: 	}
 3064: 	if (ij > ncodemax[j]) break; 
 3065:       }  /* end of loop on */
 3066:     } /* end of loop on modality */ 
 3067:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 3068:   
 3069:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 3070:   
 3071:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
 3072:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 3073:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 3074:    Ndum[ij]++; 
 3075:  } 
 3076: 
 3077:  ij=1;
 3078:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 3079:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 3080:    if((Ndum[i]!=0) && (i<=ncovcol)){
 3081:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 3082:      Tvaraff[ij]=i; /*For printing (unclear) */
 3083:      ij++;
 3084:    }else
 3085:        Tvaraff[ij]=0;
 3086:  }
 3087:  ij--;
 3088:  cptcoveff=ij; /*Number of total covariates*/
 3089: 
 3090: }
 3091: 
 3092: 
 3093: /*********** Health Expectancies ****************/
 3094: 
 3095: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 3096: 
 3097: {
 3098:   /* Health expectancies, no variances */
 3099:   int i, j, nhstepm, hstepm, h, nstepm;
 3100:   int nhstepma, nstepma; /* Decreasing with age */
 3101:   double age, agelim, hf;
 3102:   double ***p3mat;
 3103:   double eip;
 3104: 
 3105:   pstamp(ficreseij);
 3106:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 3107:   fprintf(ficreseij,"# Age");
 3108:   for(i=1; i<=nlstate;i++){
 3109:     for(j=1; j<=nlstate;j++){
 3110:       fprintf(ficreseij," e%1d%1d ",i,j);
 3111:     }
 3112:     fprintf(ficreseij," e%1d. ",i);
 3113:   }
 3114:   fprintf(ficreseij,"\n");
 3115: 
 3116:   
 3117:   if(estepm < stepm){
 3118:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3119:   }
 3120:   else  hstepm=estepm;   
 3121:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3122:    * This is mainly to measure the difference between two models: for example
 3123:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3124:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3125:    * progression in between and thus overestimating or underestimating according
 3126:    * to the curvature of the survival function. If, for the same date, we 
 3127:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3128:    * to compare the new estimate of Life expectancy with the same linear 
 3129:    * hypothesis. A more precise result, taking into account a more precise
 3130:    * curvature will be obtained if estepm is as small as stepm. */
 3131: 
 3132:   /* For example we decided to compute the life expectancy with the smallest unit */
 3133:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3134:      nhstepm is the number of hstepm from age to agelim 
 3135:      nstepm is the number of stepm from age to agelin. 
 3136:      Look at hpijx to understand the reason of that which relies in memory size
 3137:      and note for a fixed period like estepm months */
 3138:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3139:      survival function given by stepm (the optimization length). Unfortunately it
 3140:      means that if the survival funtion is printed only each two years of age and if
 3141:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3142:      results. So we changed our mind and took the option of the best precision.
 3143:   */
 3144:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3145: 
 3146:   agelim=AGESUP;
 3147:   /* If stepm=6 months */
 3148:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 3149:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 3150:     
 3151: /* nhstepm age range expressed in number of stepm */
 3152:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3153:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3154:   /* if (stepm >= YEARM) hstepm=1;*/
 3155:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3156:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3157: 
 3158:   for (age=bage; age<=fage; age ++){ 
 3159:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3160:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3161:     /* if (stepm >= YEARM) hstepm=1;*/
 3162:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3163: 
 3164:     /* If stepm=6 months */
 3165:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3166:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3167:     
 3168:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3169:     
 3170:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3171:     
 3172:     printf("%d|",(int)age);fflush(stdout);
 3173:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3174:     
 3175:     /* Computing expectancies */
 3176:     for(i=1; i<=nlstate;i++)
 3177:       for(j=1; j<=nlstate;j++)
 3178: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3179: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 3180: 	  
 3181: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3182: 
 3183: 	}
 3184: 
 3185:     fprintf(ficreseij,"%3.0f",age );
 3186:     for(i=1; i<=nlstate;i++){
 3187:       eip=0;
 3188:       for(j=1; j<=nlstate;j++){
 3189: 	eip +=eij[i][j][(int)age];
 3190: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 3191:       }
 3192:       fprintf(ficreseij,"%9.4f", eip );
 3193:     }
 3194:     fprintf(ficreseij,"\n");
 3195:     
 3196:   }
 3197:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3198:   printf("\n");
 3199:   fprintf(ficlog,"\n");
 3200:   
 3201: }
 3202: 
 3203: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 3204: 
 3205: {
 3206:   /* Covariances of health expectancies eij and of total life expectancies according
 3207:    to initial status i, ei. .
 3208:   */
 3209:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 3210:   int nhstepma, nstepma; /* Decreasing with age */
 3211:   double age, agelim, hf;
 3212:   double ***p3matp, ***p3matm, ***varhe;
 3213:   double **dnewm,**doldm;
 3214:   double *xp, *xm;
 3215:   double **gp, **gm;
 3216:   double ***gradg, ***trgradg;
 3217:   int theta;
 3218: 
 3219:   double eip, vip;
 3220: 
 3221:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 3222:   xp=vector(1,npar);
 3223:   xm=vector(1,npar);
 3224:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 3225:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 3226:   
 3227:   pstamp(ficresstdeij);
 3228:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 3229:   fprintf(ficresstdeij,"# Age");
 3230:   for(i=1; i<=nlstate;i++){
 3231:     for(j=1; j<=nlstate;j++)
 3232:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 3233:     fprintf(ficresstdeij," e%1d. ",i);
 3234:   }
 3235:   fprintf(ficresstdeij,"\n");
 3236: 
 3237:   pstamp(ficrescveij);
 3238:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 3239:   fprintf(ficrescveij,"# Age");
 3240:   for(i=1; i<=nlstate;i++)
 3241:     for(j=1; j<=nlstate;j++){
 3242:       cptj= (j-1)*nlstate+i;
 3243:       for(i2=1; i2<=nlstate;i2++)
 3244: 	for(j2=1; j2<=nlstate;j2++){
 3245: 	  cptj2= (j2-1)*nlstate+i2;
 3246: 	  if(cptj2 <= cptj)
 3247: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 3248: 	}
 3249:     }
 3250:   fprintf(ficrescveij,"\n");
 3251:   
 3252:   if(estepm < stepm){
 3253:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3254:   }
 3255:   else  hstepm=estepm;   
 3256:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3257:    * This is mainly to measure the difference between two models: for example
 3258:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3259:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3260:    * progression in between and thus overestimating or underestimating according
 3261:    * to the curvature of the survival function. If, for the same date, we 
 3262:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3263:    * to compare the new estimate of Life expectancy with the same linear 
 3264:    * hypothesis. A more precise result, taking into account a more precise
 3265:    * curvature will be obtained if estepm is as small as stepm. */
 3266: 
 3267:   /* For example we decided to compute the life expectancy with the smallest unit */
 3268:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3269:      nhstepm is the number of hstepm from age to agelim 
 3270:      nstepm is the number of stepm from age to agelin. 
 3271:      Look at hpijx to understand the reason of that which relies in memory size
 3272:      and note for a fixed period like estepm months */
 3273:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3274:      survival function given by stepm (the optimization length). Unfortunately it
 3275:      means that if the survival funtion is printed only each two years of age and if
 3276:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3277:      results. So we changed our mind and took the option of the best precision.
 3278:   */
 3279:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3280: 
 3281:   /* If stepm=6 months */
 3282:   /* nhstepm age range expressed in number of stepm */
 3283:   agelim=AGESUP;
 3284:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 3285:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3286:   /* if (stepm >= YEARM) hstepm=1;*/
 3287:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3288:   
 3289:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3290:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3291:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 3292:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 3293:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 3294:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 3295: 
 3296:   for (age=bage; age<=fage; age ++){ 
 3297:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3298:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3299:     /* if (stepm >= YEARM) hstepm=1;*/
 3300:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3301: 
 3302:     /* If stepm=6 months */
 3303:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3304:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3305:     
 3306:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3307: 
 3308:     /* Computing  Variances of health expectancies */
 3309:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3310:        decrease memory allocation */
 3311:     for(theta=1; theta <=npar; theta++){
 3312:       for(i=1; i<=npar; i++){ 
 3313: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3314: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3315:       }
 3316:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3317:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3318:   
 3319:       for(j=1; j<= nlstate; j++){
 3320: 	for(i=1; i<=nlstate; i++){
 3321: 	  for(h=0; h<=nhstepm-1; h++){
 3322: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3323: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3324: 	  }
 3325: 	}
 3326:       }
 3327:      
 3328:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3329: 	for(h=0; h<=nhstepm-1; h++){
 3330: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3331: 	}
 3332:     }/* End theta */
 3333:     
 3334:     
 3335:     for(h=0; h<=nhstepm-1; h++)
 3336:       for(j=1; j<=nlstate*nlstate;j++)
 3337: 	for(theta=1; theta <=npar; theta++)
 3338: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3339:     
 3340: 
 3341:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3342:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3343: 	varhe[ij][ji][(int)age] =0.;
 3344: 
 3345:      printf("%d|",(int)age);fflush(stdout);
 3346:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3347:      for(h=0;h<=nhstepm-1;h++){
 3348:       for(k=0;k<=nhstepm-1;k++){
 3349: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3350: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3351: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3352: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3353: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3354:       }
 3355:     }
 3356: 
 3357:     /* Computing expectancies */
 3358:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3359:     for(i=1; i<=nlstate;i++)
 3360:       for(j=1; j<=nlstate;j++)
 3361: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3362: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3363: 	  
 3364: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3365: 
 3366: 	}
 3367: 
 3368:     fprintf(ficresstdeij,"%3.0f",age );
 3369:     for(i=1; i<=nlstate;i++){
 3370:       eip=0.;
 3371:       vip=0.;
 3372:       for(j=1; j<=nlstate;j++){
 3373: 	eip += eij[i][j][(int)age];
 3374: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3375: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3376: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3377:       }
 3378:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3379:     }
 3380:     fprintf(ficresstdeij,"\n");
 3381: 
 3382:     fprintf(ficrescveij,"%3.0f",age );
 3383:     for(i=1; i<=nlstate;i++)
 3384:       for(j=1; j<=nlstate;j++){
 3385: 	cptj= (j-1)*nlstate+i;
 3386: 	for(i2=1; i2<=nlstate;i2++)
 3387: 	  for(j2=1; j2<=nlstate;j2++){
 3388: 	    cptj2= (j2-1)*nlstate+i2;
 3389: 	    if(cptj2 <= cptj)
 3390: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3391: 	  }
 3392:       }
 3393:     fprintf(ficrescveij,"\n");
 3394:    
 3395:   }
 3396:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3397:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3398:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3399:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3400:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3401:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3402:   printf("\n");
 3403:   fprintf(ficlog,"\n");
 3404: 
 3405:   free_vector(xm,1,npar);
 3406:   free_vector(xp,1,npar);
 3407:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3408:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3409:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3410: }
 3411: 
 3412: /************ Variance ******************/
 3413: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3414: {
 3415:   /* Variance of health expectancies */
 3416:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3417:   /* double **newm;*/
 3418:   /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
 3419:   
 3420:   int movingaverage();
 3421:   double **dnewm,**doldm;
 3422:   double **dnewmp,**doldmp;
 3423:   int i, j, nhstepm, hstepm, h, nstepm ;
 3424:   int k;
 3425:   double *xp;
 3426:   double **gp, **gm;  /* for var eij */
 3427:   double ***gradg, ***trgradg; /*for var eij */
 3428:   double **gradgp, **trgradgp; /* for var p point j */
 3429:   double *gpp, *gmp; /* for var p point j */
 3430:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3431:   double ***p3mat;
 3432:   double age,agelim, hf;
 3433:   double ***mobaverage;
 3434:   int theta;
 3435:   char digit[4];
 3436:   char digitp[25];
 3437: 
 3438:   char fileresprobmorprev[FILENAMELENGTH];
 3439: 
 3440:   if(popbased==1){
 3441:     if(mobilav!=0)
 3442:       strcpy(digitp,"-populbased-mobilav-");
 3443:     else strcpy(digitp,"-populbased-nomobil-");
 3444:   }
 3445:   else 
 3446:     strcpy(digitp,"-stablbased-");
 3447: 
 3448:   if (mobilav!=0) {
 3449:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3450:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3451:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3452:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3453:     }
 3454:   }
 3455: 
 3456:   strcpy(fileresprobmorprev,"prmorprev"); 
 3457:   sprintf(digit,"%-d",ij);
 3458:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3459:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3460:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3461:   strcat(fileresprobmorprev,fileres);
 3462:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3463:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3464:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3465:   }
 3466:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3467:  
 3468:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3469:   pstamp(ficresprobmorprev);
 3470:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3471:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3472:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3473:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3474:     for(i=1; i<=nlstate;i++)
 3475:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3476:   }  
 3477:   fprintf(ficresprobmorprev,"\n");
 3478:   fprintf(ficgp,"\n# Routine varevsij");
 3479:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3480:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3481:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3482: /*   } */
 3483:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3484:   pstamp(ficresvij);
 3485:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3486:   if(popbased==1)
 3487:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3488:   else
 3489:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3490:   fprintf(ficresvij,"# Age");
 3491:   for(i=1; i<=nlstate;i++)
 3492:     for(j=1; j<=nlstate;j++)
 3493:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3494:   fprintf(ficresvij,"\n");
 3495: 
 3496:   xp=vector(1,npar);
 3497:   dnewm=matrix(1,nlstate,1,npar);
 3498:   doldm=matrix(1,nlstate,1,nlstate);
 3499:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3500:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3501: 
 3502:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3503:   gpp=vector(nlstate+1,nlstate+ndeath);
 3504:   gmp=vector(nlstate+1,nlstate+ndeath);
 3505:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3506:   
 3507:   if(estepm < stepm){
 3508:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3509:   }
 3510:   else  hstepm=estepm;   
 3511:   /* For example we decided to compute the life expectancy with the smallest unit */
 3512:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3513:      nhstepm is the number of hstepm from age to agelim 
 3514:      nstepm is the number of stepm from age to agelin. 
 3515:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3516:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3517:      survival function given by stepm (the optimization length). Unfortunately it
 3518:      means that if the survival funtion is printed every two years of age and if
 3519:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3520:      results. So we changed our mind and took the option of the best precision.
 3521:   */
 3522:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3523:   agelim = AGESUP;
 3524:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3525:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3526:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3527:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3528:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3529:     gp=matrix(0,nhstepm,1,nlstate);
 3530:     gm=matrix(0,nhstepm,1,nlstate);
 3531: 
 3532: 
 3533:     for(theta=1; theta <=npar; theta++){
 3534:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3535: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3536:       }
 3537:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3538:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3539: 
 3540:       if (popbased==1) {
 3541: 	if(mobilav ==0){
 3542: 	  for(i=1; i<=nlstate;i++)
 3543: 	    prlim[i][i]=probs[(int)age][i][ij];
 3544: 	}else{ /* mobilav */ 
 3545: 	  for(i=1; i<=nlstate;i++)
 3546: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3547: 	}
 3548:       }
 3549:   
 3550:       for(j=1; j<= nlstate; j++){
 3551: 	for(h=0; h<=nhstepm; h++){
 3552: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3553: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3554: 	}
 3555:       }
 3556:       /* This for computing probability of death (h=1 means
 3557:          computed over hstepm matrices product = hstepm*stepm months) 
 3558:          as a weighted average of prlim.
 3559:       */
 3560:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3561: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3562: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3563:       }    
 3564:       /* end probability of death */
 3565: 
 3566:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3567: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3568:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3569:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3570:  
 3571:       if (popbased==1) {
 3572: 	if(mobilav ==0){
 3573: 	  for(i=1; i<=nlstate;i++)
 3574: 	    prlim[i][i]=probs[(int)age][i][ij];
 3575: 	}else{ /* mobilav */ 
 3576: 	  for(i=1; i<=nlstate;i++)
 3577: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3578: 	}
 3579:       }
 3580: 
 3581:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3582: 	for(h=0; h<=nhstepm; h++){
 3583: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3584: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3585: 	}
 3586:       }
 3587:       /* This for computing probability of death (h=1 means
 3588:          computed over hstepm matrices product = hstepm*stepm months) 
 3589:          as a weighted average of prlim.
 3590:       */
 3591:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3592: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3593:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3594:       }    
 3595:       /* end probability of death */
 3596: 
 3597:       for(j=1; j<= nlstate; j++) /* vareij */
 3598: 	for(h=0; h<=nhstepm; h++){
 3599: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3600: 	}
 3601: 
 3602:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3603: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3604:       }
 3605: 
 3606:     } /* End theta */
 3607: 
 3608:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3609: 
 3610:     for(h=0; h<=nhstepm; h++) /* veij */
 3611:       for(j=1; j<=nlstate;j++)
 3612: 	for(theta=1; theta <=npar; theta++)
 3613: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3614: 
 3615:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3616:       for(theta=1; theta <=npar; theta++)
 3617: 	trgradgp[j][theta]=gradgp[theta][j];
 3618:   
 3619: 
 3620:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3621:     for(i=1;i<=nlstate;i++)
 3622:       for(j=1;j<=nlstate;j++)
 3623: 	vareij[i][j][(int)age] =0.;
 3624: 
 3625:     for(h=0;h<=nhstepm;h++){
 3626:       for(k=0;k<=nhstepm;k++){
 3627: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3628: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3629: 	for(i=1;i<=nlstate;i++)
 3630: 	  for(j=1;j<=nlstate;j++)
 3631: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3632:       }
 3633:     }
 3634:   
 3635:     /* pptj */
 3636:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3637:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3638:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3639:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3640: 	varppt[j][i]=doldmp[j][i];
 3641:     /* end ppptj */
 3642:     /*  x centered again */
 3643:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3644:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3645:  
 3646:     if (popbased==1) {
 3647:       if(mobilav ==0){
 3648: 	for(i=1; i<=nlstate;i++)
 3649: 	  prlim[i][i]=probs[(int)age][i][ij];
 3650:       }else{ /* mobilav */ 
 3651: 	for(i=1; i<=nlstate;i++)
 3652: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3653:       }
 3654:     }
 3655:              
 3656:     /* This for computing probability of death (h=1 means
 3657:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3658:        as a weighted average of prlim.
 3659:     */
 3660:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3661:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 3662: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 3663:     }    
 3664:     /* end probability of death */
 3665: 
 3666:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 3667:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3668:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 3669:       for(i=1; i<=nlstate;i++){
 3670: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 3671:       }
 3672:     } 
 3673:     fprintf(ficresprobmorprev,"\n");
 3674: 
 3675:     fprintf(ficresvij,"%.0f ",age );
 3676:     for(i=1; i<=nlstate;i++)
 3677:       for(j=1; j<=nlstate;j++){
 3678: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 3679:       }
 3680:     fprintf(ficresvij,"\n");
 3681:     free_matrix(gp,0,nhstepm,1,nlstate);
 3682:     free_matrix(gm,0,nhstepm,1,nlstate);
 3683:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 3684:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 3685:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3686:   } /* End age */
 3687:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 3688:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 3689:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3690:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3691:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 3692:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3693:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3694: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3695: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3696: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3697:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 3698:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 3699:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 3700:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3701:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3702:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3703: */
 3704: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3705:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3706: 
 3707:   free_vector(xp,1,npar);
 3708:   free_matrix(doldm,1,nlstate,1,nlstate);
 3709:   free_matrix(dnewm,1,nlstate,1,npar);
 3710:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3711:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3712:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3713:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3714:   fclose(ficresprobmorprev);
 3715:   fflush(ficgp);
 3716:   fflush(fichtm); 
 3717: }  /* end varevsij */
 3718: 
 3719: /************ Variance of prevlim ******************/
 3720: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3721: {
 3722:   /* Variance of prevalence limit */
 3723:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3724: 
 3725:   double **dnewm,**doldm;
 3726:   int i, j, nhstepm, hstepm;
 3727:   double *xp;
 3728:   double *gp, *gm;
 3729:   double **gradg, **trgradg;
 3730:   double age,agelim;
 3731:   int theta;
 3732:   
 3733:   pstamp(ficresvpl);
 3734:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3735:   fprintf(ficresvpl,"# Age");
 3736:   for(i=1; i<=nlstate;i++)
 3737:       fprintf(ficresvpl," %1d-%1d",i,i);
 3738:   fprintf(ficresvpl,"\n");
 3739: 
 3740:   xp=vector(1,npar);
 3741:   dnewm=matrix(1,nlstate,1,npar);
 3742:   doldm=matrix(1,nlstate,1,nlstate);
 3743:   
 3744:   hstepm=1*YEARM; /* Every year of age */
 3745:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3746:   agelim = AGESUP;
 3747:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3748:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3749:     if (stepm >= YEARM) hstepm=1;
 3750:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3751:     gradg=matrix(1,npar,1,nlstate);
 3752:     gp=vector(1,nlstate);
 3753:     gm=vector(1,nlstate);
 3754: 
 3755:     for(theta=1; theta <=npar; theta++){
 3756:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3757: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3758:       }
 3759:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3760:       for(i=1;i<=nlstate;i++)
 3761: 	gp[i] = prlim[i][i];
 3762:     
 3763:       for(i=1; i<=npar; i++) /* Computes gradient */
 3764: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3765:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3766:       for(i=1;i<=nlstate;i++)
 3767: 	gm[i] = prlim[i][i];
 3768: 
 3769:       for(i=1;i<=nlstate;i++)
 3770: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3771:     } /* End theta */
 3772: 
 3773:     trgradg =matrix(1,nlstate,1,npar);
 3774: 
 3775:     for(j=1; j<=nlstate;j++)
 3776:       for(theta=1; theta <=npar; theta++)
 3777: 	trgradg[j][theta]=gradg[theta][j];
 3778: 
 3779:     for(i=1;i<=nlstate;i++)
 3780:       varpl[i][(int)age] =0.;
 3781:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3782:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3783:     for(i=1;i<=nlstate;i++)
 3784:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3785: 
 3786:     fprintf(ficresvpl,"%.0f ",age );
 3787:     for(i=1; i<=nlstate;i++)
 3788:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3789:     fprintf(ficresvpl,"\n");
 3790:     free_vector(gp,1,nlstate);
 3791:     free_vector(gm,1,nlstate);
 3792:     free_matrix(gradg,1,npar,1,nlstate);
 3793:     free_matrix(trgradg,1,nlstate,1,npar);
 3794:   } /* End age */
 3795: 
 3796:   free_vector(xp,1,npar);
 3797:   free_matrix(doldm,1,nlstate,1,npar);
 3798:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3799: 
 3800: }
 3801: 
 3802: /************ Variance of one-step probabilities  ******************/
 3803: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3804: {
 3805:   int i, j=0,  k1, l1, tj;
 3806:   int k2, l2, j1,  z1;
 3807:   int k=0, l;
 3808:   int first=1, first1, first2;
 3809:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3810:   double **dnewm,**doldm;
 3811:   double *xp;
 3812:   double *gp, *gm;
 3813:   double **gradg, **trgradg;
 3814:   double **mu;
 3815:   double age, cov[NCOVMAX+1];
 3816:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3817:   int theta;
 3818:   char fileresprob[FILENAMELENGTH];
 3819:   char fileresprobcov[FILENAMELENGTH];
 3820:   char fileresprobcor[FILENAMELENGTH];
 3821:   double ***varpij;
 3822: 
 3823:   strcpy(fileresprob,"prob"); 
 3824:   strcat(fileresprob,fileres);
 3825:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3826:     printf("Problem with resultfile: %s\n", fileresprob);
 3827:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3828:   }
 3829:   strcpy(fileresprobcov,"probcov"); 
 3830:   strcat(fileresprobcov,fileres);
 3831:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3832:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3833:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3834:   }
 3835:   strcpy(fileresprobcor,"probcor"); 
 3836:   strcat(fileresprobcor,fileres);
 3837:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3838:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3839:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3840:   }
 3841:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3842:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3843:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3844:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3845:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3846:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3847:   pstamp(ficresprob);
 3848:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3849:   fprintf(ficresprob,"# Age");
 3850:   pstamp(ficresprobcov);
 3851:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3852:   fprintf(ficresprobcov,"# Age");
 3853:   pstamp(ficresprobcor);
 3854:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3855:   fprintf(ficresprobcor,"# Age");
 3856: 
 3857: 
 3858:   for(i=1; i<=nlstate;i++)
 3859:     for(j=1; j<=(nlstate+ndeath);j++){
 3860:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3861:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3862:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3863:     }  
 3864:  /* fprintf(ficresprob,"\n");
 3865:   fprintf(ficresprobcov,"\n");
 3866:   fprintf(ficresprobcor,"\n");
 3867:  */
 3868:   xp=vector(1,npar);
 3869:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3870:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3871:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3872:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3873:   first=1;
 3874:   fprintf(ficgp,"\n# Routine varprob");
 3875:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3876:   fprintf(fichtm,"\n");
 3877: 
 3878:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3879:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3880:   file %s<br>\n",optionfilehtmcov);
 3881:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3882: and drawn. It helps understanding how is the covariance between two incidences.\
 3883:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3884:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3885: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3886: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3887: standard deviations wide on each axis. <br>\
 3888:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3889:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3890: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3891: 
 3892:   cov[1]=1;
 3893:   /* tj=cptcoveff; */
 3894:   tj = (int) pow(2,cptcoveff);
 3895:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3896:   j1=0;
 3897:   for(j1=1; j1<=tj;j1++){
 3898:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 3899:     /*j1++;*/
 3900:       if  (cptcovn>0) {
 3901: 	fprintf(ficresprob, "\n#********** Variable "); 
 3902: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3903: 	fprintf(ficresprob, "**********\n#\n");
 3904: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3905: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3906: 	fprintf(ficresprobcov, "**********\n#\n");
 3907: 	
 3908: 	fprintf(ficgp, "\n#********** Variable "); 
 3909: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3910: 	fprintf(ficgp, "**********\n#\n");
 3911: 	
 3912: 	
 3913: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3914: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3915: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3916: 	
 3917: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3918: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3919: 	fprintf(ficresprobcor, "**********\n#");    
 3920:       }
 3921:       
 3922:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3923:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3924:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 3925:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 3926:       for (age=bage; age<=fage; age ++){ 
 3927: 	cov[2]=age;
 3928: 	for (k=1; k<=cptcovn;k++) {
 3929: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
 3930: 							 * 1  1 1 1 1
 3931: 							 * 2  2 1 1 1
 3932: 							 * 3  1 2 1 1
 3933: 							 */
 3934: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 3935: 	}
 3936: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3937: 	for (k=1; k<=cptcovprod;k++)
 3938: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3939: 	
 3940:     
 3941: 	for(theta=1; theta <=npar; theta++){
 3942: 	  for(i=1; i<=npar; i++)
 3943: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3944: 	  
 3945: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3946: 	  
 3947: 	  k=0;
 3948: 	  for(i=1; i<= (nlstate); i++){
 3949: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3950: 	      k=k+1;
 3951: 	      gp[k]=pmmij[i][j];
 3952: 	    }
 3953: 	  }
 3954: 	  
 3955: 	  for(i=1; i<=npar; i++)
 3956: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3957:     
 3958: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3959: 	  k=0;
 3960: 	  for(i=1; i<=(nlstate); i++){
 3961: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3962: 	      k=k+1;
 3963: 	      gm[k]=pmmij[i][j];
 3964: 	    }
 3965: 	  }
 3966:      
 3967: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3968: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3969: 	}
 3970: 
 3971: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3972: 	  for(theta=1; theta <=npar; theta++)
 3973: 	    trgradg[j][theta]=gradg[theta][j];
 3974: 	
 3975: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3976: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3977: 
 3978: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3979: 	
 3980: 	k=0;
 3981: 	for(i=1; i<=(nlstate); i++){
 3982: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3983: 	    k=k+1;
 3984: 	    mu[k][(int) age]=pmmij[i][j];
 3985: 	  }
 3986: 	}
 3987:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3988: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3989: 	    varpij[i][j][(int)age] = doldm[i][j];
 3990: 
 3991: 	/*printf("\n%d ",(int)age);
 3992: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3993: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3994: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3995: 	  }*/
 3996: 
 3997: 	fprintf(ficresprob,"\n%d ",(int)age);
 3998: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3999: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 4000: 
 4001: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 4002: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 4003: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 4004: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 4005: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 4006: 	}
 4007: 	i=0;
 4008: 	for (k=1; k<=(nlstate);k++){
 4009:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 4010:  	    i++;
 4011: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 4012: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 4013: 	    for (j=1; j<=i;j++){
 4014: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 4015: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 4016: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 4017: 	    }
 4018: 	  }
 4019: 	}/* end of loop for state */
 4020:       } /* end of loop for age */
 4021:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 4022:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 4023:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4024:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4025:       
 4026:       /* Confidence intervalle of pij  */
 4027:       /*
 4028: 	fprintf(ficgp,"\nunset parametric;unset label");
 4029: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 4030: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 4031: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 4032: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 4033: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 4034: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 4035:       */
 4036: 
 4037:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 4038:       first1=1;first2=2;
 4039:       for (k2=1; k2<=(nlstate);k2++){
 4040: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 4041: 	  if(l2==k2) continue;
 4042: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 4043: 	  for (k1=1; k1<=(nlstate);k1++){
 4044: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 4045: 	      if(l1==k1) continue;
 4046: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 4047: 	      if(i<=j) continue;
 4048: 	      for (age=bage; age<=fage; age ++){ 
 4049: 		if ((int)age %5==0){
 4050: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 4051: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4052: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4053: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 4054: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 4055: 		  c12=cv12/sqrt(v1*v2);
 4056: 		  /* Computing eigen value of matrix of covariance */
 4057: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4058: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4059: 		  if ((lc2 <0) || (lc1 <0) ){
 4060: 		    if(first2==1){
 4061: 		      first1=0;
 4062: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 4063: 		    }
 4064: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 4065: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 4066: 		    /* lc2=fabs(lc2); */
 4067: 		  }
 4068: 
 4069: 		  /* Eigen vectors */
 4070: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 4071: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 4072: 		  v21=(lc1-v1)/cv12*v11;
 4073: 		  v12=-v21;
 4074: 		  v22=v11;
 4075: 		  tnalp=v21/v11;
 4076: 		  if(first1==1){
 4077: 		    first1=0;
 4078: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4079: 		  }
 4080: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4081: 		  /*printf(fignu*/
 4082: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 4083: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 4084: 		  if(first==1){
 4085: 		    first=0;
 4086:  		    fprintf(ficgp,"\nset parametric;unset label");
 4087: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 4088: 		    fprintf(ficgp,"\nset ter png small size 320, 240");
 4089: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 4090:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 4091: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 4092: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 4093: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4094: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4095: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 4096: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4097: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4098: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4099: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4100: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4101: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4102: 		  }else{
 4103: 		    first=0;
 4104: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 4105: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4106: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4107: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4108: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4109: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4110: 		  }/* if first */
 4111: 		} /* age mod 5 */
 4112: 	      } /* end loop age */
 4113: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4114: 	      first=1;
 4115: 	    } /*l12 */
 4116: 	  } /* k12 */
 4117: 	} /*l1 */
 4118:       }/* k1 */
 4119:       /* } */ /* loop covariates */
 4120:   }
 4121:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 4122:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 4123:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 4124:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 4125:   free_vector(xp,1,npar);
 4126:   fclose(ficresprob);
 4127:   fclose(ficresprobcov);
 4128:   fclose(ficresprobcor);
 4129:   fflush(ficgp);
 4130:   fflush(fichtmcov);
 4131: }
 4132: 
 4133: 
 4134: /******************* Printing html file ***********/
 4135: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 4136: 		  int lastpass, int stepm, int weightopt, char model[],\
 4137: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 4138: 		  int popforecast, int estepm ,\
 4139: 		  double jprev1, double mprev1,double anprev1, \
 4140: 		  double jprev2, double mprev2,double anprev2){
 4141:   int jj1, k1, i1, cpt;
 4142: 
 4143:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 4144:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 4145: </ul>");
 4146:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 4147:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 4148: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 4149:    fprintf(fichtm,"\
 4150:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 4151: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 4152:    fprintf(fichtm,"\
 4153:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 4154: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 4155:    fprintf(fichtm,"\
 4156:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 4157:    <a href=\"%s\">%s</a> <br>\n",
 4158: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 4159:    fprintf(fichtm,"\
 4160:  - Population projections by age and states: \
 4161:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 4162: 
 4163: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 4164: 
 4165:  m=pow(2,cptcoveff);
 4166:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4167: 
 4168:  jj1=0;
 4169:  for(k1=1; k1<=m;k1++){
 4170:    for(i1=1; i1<=ncodemax[k1];i1++){
 4171:      jj1++;
 4172:      if (cptcovn > 0) {
 4173:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4174:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4175: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4176:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4177:      }
 4178:      /* Pij */
 4179:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
 4180: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 4181:      /* Quasi-incidences */
 4182:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 4183:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
 4184: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 4185:        /* Period (stable) prevalence in each health state */
 4186:        for(cpt=1; cpt<=nlstate;cpt++){
 4187: 	 fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
 4188: <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 4189:        }
 4190:      for(cpt=1; cpt<=nlstate;cpt++) {
 4191:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 4192: <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 4193:      }
 4194:    } /* end i1 */
 4195:  }/* End k1 */
 4196:  fprintf(fichtm,"</ul>");
 4197: 
 4198: 
 4199:  fprintf(fichtm,"\
 4200: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 4201:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 4202: 
 4203:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4204: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 4205:  fprintf(fichtm,"\
 4206:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4207: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 4208: 
 4209:  fprintf(fichtm,"\
 4210:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4211: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 4212:  fprintf(fichtm,"\
 4213:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 4214:    <a href=\"%s\">%s</a> <br>\n</li>",
 4215: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 4216:  fprintf(fichtm,"\
 4217:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 4218:    <a href=\"%s\">%s</a> <br>\n</li>",
 4219: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 4220:  fprintf(fichtm,"\
 4221:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 4222: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 4223:  fprintf(fichtm,"\
 4224:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 4225: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 4226:  fprintf(fichtm,"\
 4227:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 4228: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 4229: 
 4230: /*  if(popforecast==1) fprintf(fichtm,"\n */
 4231: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 4232: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 4233: /* 	<br>",fileres,fileres,fileres,fileres); */
 4234: /*  else  */
 4235: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 4236:  fflush(fichtm);
 4237:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 4238: 
 4239:  m=pow(2,cptcoveff);
 4240:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4241: 
 4242:  jj1=0;
 4243:  for(k1=1; k1<=m;k1++){
 4244:    for(i1=1; i1<=ncodemax[k1];i1++){
 4245:      jj1++;
 4246:      if (cptcovn > 0) {
 4247:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4248:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4249: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4250:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4251:      }
 4252:      for(cpt=1; cpt<=nlstate;cpt++) {
 4253:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 4254: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
 4255: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 4256:      }
 4257:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 4258: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 4259: true period expectancies (those weighted with period prevalences are also\
 4260:  drawn in addition to the population based expectancies computed using\
 4261:  observed and cahotic prevalences: %s%d.png<br>\
 4262: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 4263:    } /* end i1 */
 4264:  }/* End k1 */
 4265:  fprintf(fichtm,"</ul>");
 4266:  fflush(fichtm);
 4267: }
 4268: 
 4269: /******************* Gnuplot file **************/
 4270: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4271: 
 4272:   char dirfileres[132],optfileres[132];
 4273:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 4274:   int ng=0;
 4275: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 4276: /*     printf("Problem with file %s",optionfilegnuplot); */
 4277: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 4278: /*   } */
 4279: 
 4280:   /*#ifdef windows */
 4281:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4282:     /*#endif */
 4283:   m=pow(2,cptcoveff);
 4284: 
 4285:   strcpy(dirfileres,optionfilefiname);
 4286:   strcpy(optfileres,"vpl");
 4287:  /* 1eme*/
 4288:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
 4289:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 4290:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 4291:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 4292:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 4293:      fprintf(ficgp,"set xlabel \"Age\" \n\
 4294: set ylabel \"Probability\" \n\
 4295: set ter png small size 320, 240\n\
 4296: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 4297: 
 4298:      for (i=1; i<= nlstate ; i ++) {
 4299:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4300:        else        fprintf(ficgp," %%*lf (%%*lf)");
 4301:      }
 4302:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 4303:      for (i=1; i<= nlstate ; i ++) {
 4304:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4305:        else fprintf(ficgp," %%*lf (%%*lf)");
 4306:      } 
 4307:      fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4308:      for (i=1; i<= nlstate ; i ++) {
 4309:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4310:        else fprintf(ficgp," %%*lf (%%*lf)");
 4311:      }  
 4312:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4313:    }
 4314:   }
 4315:   /*2 eme*/
 4316:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
 4317:   for (k1=1; k1<= m ; k1 ++) { 
 4318:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 4319:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
 4320:     
 4321:     for (i=1; i<= nlstate+1 ; i ++) {
 4322:       k=2*i;
 4323:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4324:       for (j=1; j<= nlstate+1 ; j ++) {
 4325: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4326: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4327:       }   
 4328:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4329:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4330:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4331:       for (j=1; j<= nlstate+1 ; j ++) {
 4332: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4333: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4334:       }   
 4335:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4336:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4337:       for (j=1; j<= nlstate+1 ; j ++) {
 4338: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4339: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4340:       }   
 4341:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4342:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4343:     }
 4344:   }
 4345:   
 4346:   /*3eme*/
 4347:   
 4348:   for (k1=1; k1<= m ; k1 ++) { 
 4349:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4350:       /*       k=2+nlstate*(2*cpt-2); */
 4351:       k=2+(nlstate+1)*(cpt-1);
 4352:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4353:       fprintf(ficgp,"set ter png small size 320, 240\n\
 4354: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4355:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4356: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4357: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4358: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4359: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4360: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4361: 	
 4362:       */
 4363:       for (i=1; i< nlstate ; i ++) {
 4364: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4365: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4366: 	
 4367:       } 
 4368:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4369:     }
 4370:   }
 4371:   
 4372:   /* CV preval stable (period) */
 4373:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
 4374:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
 4375:       k=3;
 4376:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
 4377:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4378:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4379: set ter png small size 320, 240\n\
 4380: unset log y\n\
 4381: plot [%.f:%.f]  ", ageminpar, agemaxpar);
 4382:       for (i=1; i<= nlstate ; i ++){
 4383: 	if(i==1)
 4384: 	  fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
 4385: 	else
 4386: 	  fprintf(ficgp,", '' ");
 4387: 	l=(nlstate+ndeath)*(i-1)+1;
 4388: 	fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
 4389: 	for (j=1; j<= (nlstate-1) ; j ++)
 4390: 	  fprintf(ficgp,"+$%d",k+l+j);
 4391: 	fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
 4392:       } /* nlstate */
 4393:       fprintf(ficgp,"\n");
 4394:     } /* end cpt state*/ 
 4395:   } /* end covariate */  
 4396:   
 4397:   /* proba elementaires */
 4398:   for(i=1,jk=1; i <=nlstate; i++){
 4399:     for(k=1; k <=(nlstate+ndeath); k++){
 4400:       if (k != i) {
 4401: 	for(j=1; j <=ncovmodel; j++){
 4402: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 4403: 	  jk++; 
 4404: 	  fprintf(ficgp,"\n");
 4405: 	}
 4406:       }
 4407:     }
 4408:    }
 4409:   /*goto avoid;*/
 4410:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4411:      for(jk=1; jk <=m; jk++) {
 4412:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4413:        if (ng==2)
 4414: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4415:        else
 4416: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 4417:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4418:        i=1;
 4419:        for(k2=1; k2<=nlstate; k2++) {
 4420: 	 k3=i;
 4421: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4422: 	   if (k != k2){
 4423: 	     if(ng==2)
 4424: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4425: 	     else
 4426: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4427: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4428: 	     for(j=3; j <=ncovmodel; j++) {
 4429: 	       /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
 4430: 	       /* 	 /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
 4431: 	       /* 	 ij++; */
 4432: 	       /* } */
 4433: 	       /* else */
 4434: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4435: 	     }
 4436: 	     fprintf(ficgp,")/(1");
 4437: 	     
 4438: 	     for(k1=1; k1 <=nlstate; k1++){   
 4439: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4440: 	       ij=1;
 4441: 	       for(j=3; j <=ncovmodel; j++){
 4442: 		 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
 4443: 		 /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
 4444: 		 /*   ij++; */
 4445: 		 /* } */
 4446: 		 /* else */
 4447: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4448: 	       }
 4449: 	       fprintf(ficgp,")");
 4450: 	     }
 4451: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4452: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4453: 	     i=i+ncovmodel;
 4454: 	   }
 4455: 	 } /* end k */
 4456:        } /* end k2 */
 4457:      } /* end jk */
 4458:    } /* end ng */
 4459:  /* avoid: */
 4460:    fflush(ficgp); 
 4461: }  /* end gnuplot */
 4462: 
 4463: 
 4464: /*************** Moving average **************/
 4465: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4466: 
 4467:   int i, cpt, cptcod;
 4468:   int modcovmax =1;
 4469:   int mobilavrange, mob;
 4470:   double age;
 4471: 
 4472:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4473: 			   a covariate has 2 modalities */
 4474:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4475: 
 4476:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4477:     if(mobilav==1) mobilavrange=5; /* default */
 4478:     else mobilavrange=mobilav;
 4479:     for (age=bage; age<=fage; age++)
 4480:       for (i=1; i<=nlstate;i++)
 4481: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4482: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4483:     /* We keep the original values on the extreme ages bage, fage and for 
 4484:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4485:        we use a 5 terms etc. until the borders are no more concerned. 
 4486:     */ 
 4487:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4488:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4489: 	for (i=1; i<=nlstate;i++){
 4490: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4491: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4492: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4493: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4494: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4495: 	      }
 4496: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4497: 	  }
 4498: 	}
 4499:       }/* end age */
 4500:     }/* end mob */
 4501:   }else return -1;
 4502:   return 0;
 4503: }/* End movingaverage */
 4504: 
 4505: 
 4506: /************** Forecasting ******************/
 4507: void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4508:   /* proj1, year, month, day of starting projection 
 4509:      agemin, agemax range of age
 4510:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4511:      anproj2 year of en of projection (same day and month as proj1).
 4512:   */
 4513:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
 4514:   double agec; /* generic age */
 4515:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4516:   double *popeffectif,*popcount;
 4517:   double ***p3mat;
 4518:   double ***mobaverage;
 4519:   char fileresf[FILENAMELENGTH];
 4520: 
 4521:   agelim=AGESUP;
 4522:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4523:  
 4524:   strcpy(fileresf,"f"); 
 4525:   strcat(fileresf,fileres);
 4526:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4527:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4528:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4529:   }
 4530:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4531:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4532: 
 4533:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4534: 
 4535:   if (mobilav!=0) {
 4536:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4537:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4538:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4539:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4540:     }
 4541:   }
 4542: 
 4543:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4544:   if (stepm<=12) stepsize=1;
 4545:   if(estepm < stepm){
 4546:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4547:   }
 4548:   else  hstepm=estepm;   
 4549: 
 4550:   hstepm=hstepm/stepm; 
 4551:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4552:                                fractional in yp1 */
 4553:   anprojmean=yp;
 4554:   yp2=modf((yp1*12),&yp);
 4555:   mprojmean=yp;
 4556:   yp1=modf((yp2*30.5),&yp);
 4557:   jprojmean=yp;
 4558:   if(jprojmean==0) jprojmean=1;
 4559:   if(mprojmean==0) jprojmean=1;
 4560: 
 4561:   i1=cptcoveff;
 4562:   if (cptcovn < 1){i1=1;}
 4563:   
 4564:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4565:   
 4566:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4567: 
 4568: /* 	      if (h==(int)(YEARM*yearp)){ */
 4569:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4570:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4571:       k=k+1;
 4572:       fprintf(ficresf,"\n#******");
 4573:       for(j=1;j<=cptcoveff;j++) {
 4574: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4575:       }
 4576:       fprintf(ficresf,"******\n");
 4577:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4578:       for(j=1; j<=nlstate+ndeath;j++){ 
 4579: 	for(i=1; i<=nlstate;i++) 	      
 4580:           fprintf(ficresf," p%d%d",i,j);
 4581: 	fprintf(ficresf," p.%d",j);
 4582:       }
 4583:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4584: 	fprintf(ficresf,"\n");
 4585: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4586: 
 4587:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4588: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4589: 	  nhstepm = nhstepm/hstepm; 
 4590: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4591: 	  oldm=oldms;savm=savms;
 4592: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4593: 	
 4594: 	  for (h=0; h<=nhstepm; h++){
 4595: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4596:               fprintf(ficresf,"\n");
 4597:               for(j=1;j<=cptcoveff;j++) 
 4598:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4599: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4600: 	    } 
 4601: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4602: 	      ppij=0.;
 4603: 	      for(i=1; i<=nlstate;i++) {
 4604: 		if (mobilav==1) 
 4605: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4606: 		else {
 4607: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4608: 		}
 4609: 		if (h*hstepm/YEARM*stepm== yearp) {
 4610: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4611: 		}
 4612: 	      } /* end i */
 4613: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4614: 		fprintf(ficresf," %.3f", ppij);
 4615: 	      }
 4616: 	    }/* end j */
 4617: 	  } /* end h */
 4618: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4619: 	} /* end agec */
 4620:       } /* end yearp */
 4621:     } /* end cptcod */
 4622:   } /* end  cptcov */
 4623:        
 4624:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4625: 
 4626:   fclose(ficresf);
 4627: }
 4628: 
 4629: /************** Forecasting *****not tested NB*************/
 4630: void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 4631:   
 4632:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 4633:   int *popage;
 4634:   double calagedatem, agelim, kk1, kk2;
 4635:   double *popeffectif,*popcount;
 4636:   double ***p3mat,***tabpop,***tabpopprev;
 4637:   double ***mobaverage;
 4638:   char filerespop[FILENAMELENGTH];
 4639: 
 4640:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4641:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4642:   agelim=AGESUP;
 4643:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 4644:   
 4645:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4646:   
 4647:   
 4648:   strcpy(filerespop,"pop"); 
 4649:   strcat(filerespop,fileres);
 4650:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 4651:     printf("Problem with forecast resultfile: %s\n", filerespop);
 4652:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 4653:   }
 4654:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 4655:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 4656: 
 4657:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4658: 
 4659:   if (mobilav!=0) {
 4660:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4661:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4662:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4663:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4664:     }
 4665:   }
 4666: 
 4667:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4668:   if (stepm<=12) stepsize=1;
 4669:   
 4670:   agelim=AGESUP;
 4671:   
 4672:   hstepm=1;
 4673:   hstepm=hstepm/stepm; 
 4674:   
 4675:   if (popforecast==1) {
 4676:     if((ficpop=fopen(popfile,"r"))==NULL) {
 4677:       printf("Problem with population file : %s\n",popfile);exit(0);
 4678:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 4679:     } 
 4680:     popage=ivector(0,AGESUP);
 4681:     popeffectif=vector(0,AGESUP);
 4682:     popcount=vector(0,AGESUP);
 4683:     
 4684:     i=1;   
 4685:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 4686:    
 4687:     imx=i;
 4688:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 4689:   }
 4690: 
 4691:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 4692:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4693:       k=k+1;
 4694:       fprintf(ficrespop,"\n#******");
 4695:       for(j=1;j<=cptcoveff;j++) {
 4696: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4697:       }
 4698:       fprintf(ficrespop,"******\n");
 4699:       fprintf(ficrespop,"# Age");
 4700:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 4701:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 4702:       
 4703:       for (cpt=0; cpt<=0;cpt++) { 
 4704: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4705: 	
 4706:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4707: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4708: 	  nhstepm = nhstepm/hstepm; 
 4709: 	  
 4710: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4711: 	  oldm=oldms;savm=savms;
 4712: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4713: 	
 4714: 	  for (h=0; h<=nhstepm; h++){
 4715: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4716: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4717: 	    } 
 4718: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4719: 	      kk1=0.;kk2=0;
 4720: 	      for(i=1; i<=nlstate;i++) {	      
 4721: 		if (mobilav==1) 
 4722: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4723: 		else {
 4724: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4725: 		}
 4726: 	      }
 4727: 	      if (h==(int)(calagedatem+12*cpt)){
 4728: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4729: 		  /*fprintf(ficrespop," %.3f", kk1);
 4730: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4731: 	      }
 4732: 	    }
 4733: 	    for(i=1; i<=nlstate;i++){
 4734: 	      kk1=0.;
 4735: 		for(j=1; j<=nlstate;j++){
 4736: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4737: 		}
 4738: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4739: 	    }
 4740: 
 4741: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4742: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4743: 	  }
 4744: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4745: 	}
 4746:       }
 4747:  
 4748:   /******/
 4749: 
 4750:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4751: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4752: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4753: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4754: 	  nhstepm = nhstepm/hstepm; 
 4755: 	  
 4756: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4757: 	  oldm=oldms;savm=savms;
 4758: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4759: 	  for (h=0; h<=nhstepm; h++){
 4760: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4761: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4762: 	    } 
 4763: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4764: 	      kk1=0.;kk2=0;
 4765: 	      for(i=1; i<=nlstate;i++) {	      
 4766: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4767: 	      }
 4768: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4769: 	    }
 4770: 	  }
 4771: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4772: 	}
 4773:       }
 4774:    } 
 4775:   }
 4776:  
 4777:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4778: 
 4779:   if (popforecast==1) {
 4780:     free_ivector(popage,0,AGESUP);
 4781:     free_vector(popeffectif,0,AGESUP);
 4782:     free_vector(popcount,0,AGESUP);
 4783:   }
 4784:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4785:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4786:   fclose(ficrespop);
 4787: } /* End of popforecast */
 4788: 
 4789: int fileappend(FILE *fichier, char *optionfich)
 4790: {
 4791:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4792:     printf("Problem with file: %s\n", optionfich);
 4793:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4794:     return (0);
 4795:   }
 4796:   fflush(fichier);
 4797:   return (1);
 4798: }
 4799: 
 4800: 
 4801: /**************** function prwizard **********************/
 4802: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4803: {
 4804: 
 4805:   /* Wizard to print covariance matrix template */
 4806: 
 4807:   char ca[32], cb[32];
 4808:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
 4809:   int numlinepar;
 4810: 
 4811:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4812:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4813:   for(i=1; i <=nlstate; i++){
 4814:     jj=0;
 4815:     for(j=1; j <=nlstate+ndeath; j++){
 4816:       if(j==i) continue;
 4817:       jj++;
 4818:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4819:       printf("%1d%1d",i,j);
 4820:       fprintf(ficparo,"%1d%1d",i,j);
 4821:       for(k=1; k<=ncovmodel;k++){
 4822: 	/* 	  printf(" %lf",param[i][j][k]); */
 4823: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4824: 	printf(" 0.");
 4825: 	fprintf(ficparo," 0.");
 4826:       }
 4827:       printf("\n");
 4828:       fprintf(ficparo,"\n");
 4829:     }
 4830:   }
 4831:   printf("# Scales (for hessian or gradient estimation)\n");
 4832:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4833:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4834:   for(i=1; i <=nlstate; i++){
 4835:     jj=0;
 4836:     for(j=1; j <=nlstate+ndeath; j++){
 4837:       if(j==i) continue;
 4838:       jj++;
 4839:       fprintf(ficparo,"%1d%1d",i,j);
 4840:       printf("%1d%1d",i,j);
 4841:       fflush(stdout);
 4842:       for(k=1; k<=ncovmodel;k++){
 4843: 	/* 	printf(" %le",delti3[i][j][k]); */
 4844: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4845: 	printf(" 0.");
 4846: 	fprintf(ficparo," 0.");
 4847:       }
 4848:       numlinepar++;
 4849:       printf("\n");
 4850:       fprintf(ficparo,"\n");
 4851:     }
 4852:   }
 4853:   printf("# Covariance matrix\n");
 4854: /* # 121 Var(a12)\n\ */
 4855: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4856: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4857: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4858: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4859: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4860: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4861: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4862:   fflush(stdout);
 4863:   fprintf(ficparo,"# Covariance matrix\n");
 4864:   /* # 121 Var(a12)\n\ */
 4865:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4866:   /* #   ...\n\ */
 4867:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4868:   
 4869:   for(itimes=1;itimes<=2;itimes++){
 4870:     jj=0;
 4871:     for(i=1; i <=nlstate; i++){
 4872:       for(j=1; j <=nlstate+ndeath; j++){
 4873: 	if(j==i) continue;
 4874: 	for(k=1; k<=ncovmodel;k++){
 4875: 	  jj++;
 4876: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4877: 	  if(itimes==1){
 4878: 	    printf("#%1d%1d%d",i,j,k);
 4879: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4880: 	  }else{
 4881: 	    printf("%1d%1d%d",i,j,k);
 4882: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4883: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4884: 	  }
 4885: 	  ll=0;
 4886: 	  for(li=1;li <=nlstate; li++){
 4887: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 4888: 	      if(lj==li) continue;
 4889: 	      for(lk=1;lk<=ncovmodel;lk++){
 4890: 		ll++;
 4891: 		if(ll<=jj){
 4892: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 4893: 		  if(ll<jj){
 4894: 		    if(itimes==1){
 4895: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4896: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4897: 		    }else{
 4898: 		      printf(" 0.");
 4899: 		      fprintf(ficparo," 0.");
 4900: 		    }
 4901: 		  }else{
 4902: 		    if(itimes==1){
 4903: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4904: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4905: 		    }else{
 4906: 		      printf(" 0.");
 4907: 		      fprintf(ficparo," 0.");
 4908: 		    }
 4909: 		  }
 4910: 		}
 4911: 	      } /* end lk */
 4912: 	    } /* end lj */
 4913: 	  } /* end li */
 4914: 	  printf("\n");
 4915: 	  fprintf(ficparo,"\n");
 4916: 	  numlinepar++;
 4917: 	} /* end k*/
 4918:       } /*end j */
 4919:     } /* end i */
 4920:   } /* end itimes */
 4921: 
 4922: } /* end of prwizard */
 4923: /******************* Gompertz Likelihood ******************************/
 4924: double gompertz(double x[])
 4925: { 
 4926:   double A,B,L=0.0,sump=0.,num=0.;
 4927:   int i,n=0; /* n is the size of the sample */
 4928: 
 4929:   for (i=0;i<=imx-1 ; i++) {
 4930:     sump=sump+weight[i];
 4931:     /*    sump=sump+1;*/
 4932:     num=num+1;
 4933:   }
 4934:  
 4935:  
 4936:   /* for (i=0; i<=imx; i++) 
 4937:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4938: 
 4939:   for (i=1;i<=imx ; i++)
 4940:     {
 4941:       if (cens[i] == 1 && wav[i]>1)
 4942: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4943:       
 4944:       if (cens[i] == 0 && wav[i]>1)
 4945: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4946: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4947:       
 4948:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4949:       if (wav[i] > 1 ) { /* ??? */
 4950: 	L=L+A*weight[i];
 4951: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4952:       }
 4953:     }
 4954: 
 4955:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4956:  
 4957:   return -2*L*num/sump;
 4958: }
 4959: 
 4960: #ifdef GSL
 4961: /******************* Gompertz_f Likelihood ******************************/
 4962: double gompertz_f(const gsl_vector *v, void *params)
 4963: { 
 4964:   double A,B,LL=0.0,sump=0.,num=0.;
 4965:   double *x= (double *) v->data;
 4966:   int i,n=0; /* n is the size of the sample */
 4967: 
 4968:   for (i=0;i<=imx-1 ; i++) {
 4969:     sump=sump+weight[i];
 4970:     /*    sump=sump+1;*/
 4971:     num=num+1;
 4972:   }
 4973:  
 4974:  
 4975:   /* for (i=0; i<=imx; i++) 
 4976:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4977:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 4978:   for (i=1;i<=imx ; i++)
 4979:     {
 4980:       if (cens[i] == 1 && wav[i]>1)
 4981: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 4982:       
 4983:       if (cens[i] == 0 && wav[i]>1)
 4984: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 4985: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 4986:       
 4987:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4988:       if (wav[i] > 1 ) { /* ??? */
 4989: 	LL=LL+A*weight[i];
 4990: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4991:       }
 4992:     }
 4993: 
 4994:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4995:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 4996:  
 4997:   return -2*LL*num/sump;
 4998: }
 4999: #endif
 5000: 
 5001: /******************* Printing html file ***********/
 5002: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 5003: 		  int lastpass, int stepm, int weightopt, char model[],\
 5004: 		  int imx,  double p[],double **matcov,double agemortsup){
 5005:   int i,k;
 5006: 
 5007:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 5008:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 5009:   for (i=1;i<=2;i++) 
 5010:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 5011:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 5012:   fprintf(fichtm,"</ul>");
 5013: 
 5014: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 5015: 
 5016:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 5017: 
 5018:  for (k=agegomp;k<(agemortsup-2);k++) 
 5019:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 5020: 
 5021:  
 5022:   fflush(fichtm);
 5023: }
 5024: 
 5025: /******************* Gnuplot file **************/
 5026: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 5027: 
 5028:   char dirfileres[132],optfileres[132];
 5029: 
 5030:   int ng;
 5031: 
 5032: 
 5033:   /*#ifdef windows */
 5034:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 5035:     /*#endif */
 5036: 
 5037: 
 5038:   strcpy(dirfileres,optionfilefiname);
 5039:   strcpy(optfileres,"vpl");
 5040:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 5041:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 5042:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
 5043:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 5044:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 5045: 
 5046: } 
 5047: 
 5048: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 5049: {
 5050: 
 5051:   /*-------- data file ----------*/
 5052:   FILE *fic;
 5053:   char dummy[]="                         ";
 5054:   int i=0, j=0, n=0;
 5055:   int linei, month, year,iout;
 5056:   char line[MAXLINE], linetmp[MAXLINE];
 5057:   char stra[MAXLINE], strb[MAXLINE];
 5058:   char *stratrunc;
 5059:   int lstra;
 5060: 
 5061: 
 5062:   if((fic=fopen(datafile,"r"))==NULL)    {
 5063:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 5064:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 5065:   }
 5066: 
 5067:   i=1;
 5068:   linei=0;
 5069:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 5070:     linei=linei+1;
 5071:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 5072:       if(line[j] == '\t')
 5073: 	line[j] = ' ';
 5074:     }
 5075:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 5076:       ;
 5077:     };
 5078:     line[j+1]=0;  /* Trims blanks at end of line */
 5079:     if(line[0]=='#'){
 5080:       fprintf(ficlog,"Comment line\n%s\n",line);
 5081:       printf("Comment line\n%s\n",line);
 5082:       continue;
 5083:     }
 5084:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 5085:     strcpy(line, linetmp);
 5086:   
 5087: 
 5088:     for (j=maxwav;j>=1;j--){
 5089:       cutv(stra, strb, line, ' '); 
 5090:       if(strb[0]=='.') { /* Missing status */
 5091: 	lval=-1;
 5092:       }else{
 5093: 	errno=0;
 5094: 	lval=strtol(strb,&endptr,10); 
 5095:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 5096: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5097: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 5098: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 5099: 	  return 1;
 5100: 	}
 5101:       }
 5102:       s[j][i]=lval;
 5103:       
 5104:       strcpy(line,stra);
 5105:       cutv(stra, strb,line,' ');
 5106:       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5107:       }
 5108:       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5109: 	month=99;
 5110: 	year=9999;
 5111:       }else{
 5112: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 5113: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 5114: 	return 1;
 5115:       }
 5116:       anint[j][i]= (double) year; 
 5117:       mint[j][i]= (double)month; 
 5118:       strcpy(line,stra);
 5119:     } /* ENd Waves */
 5120:     
 5121:     cutv(stra, strb,line,' '); 
 5122:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5123:     }
 5124:     else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5125:       month=99;
 5126:       year=9999;
 5127:     }else{
 5128:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5129: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5130: 	return 1;
 5131:     }
 5132:     andc[i]=(double) year; 
 5133:     moisdc[i]=(double) month; 
 5134:     strcpy(line,stra);
 5135:     
 5136:     cutv(stra, strb,line,' '); 
 5137:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5138:     }
 5139:     else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
 5140:       month=99;
 5141:       year=9999;
 5142:     }else{
 5143:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5144:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5145: 	return 1;
 5146:     }
 5147:     if (year==9999) {
 5148:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 5149:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5150: 	return 1;
 5151: 
 5152:     }
 5153:     annais[i]=(double)(year);
 5154:     moisnais[i]=(double)(month); 
 5155:     strcpy(line,stra);
 5156:     
 5157:     cutv(stra, strb,line,' '); 
 5158:     errno=0;
 5159:     dval=strtod(strb,&endptr); 
 5160:     if( strb[0]=='\0' || (*endptr != '\0')){
 5161:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5162:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5163:       fflush(ficlog);
 5164:       return 1;
 5165:     }
 5166:     weight[i]=dval; 
 5167:     strcpy(line,stra);
 5168:     
 5169:     for (j=ncovcol;j>=1;j--){
 5170:       cutv(stra, strb,line,' '); 
 5171:       if(strb[0]=='.') { /* Missing status */
 5172: 	lval=-1;
 5173:       }else{
 5174: 	errno=0;
 5175: 	lval=strtol(strb,&endptr,10); 
 5176: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5177: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 5178: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 5179: 	  return 1;
 5180: 	}
 5181:       }
 5182:       if(lval <-1 || lval >1){
 5183: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5184:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5185:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5186:  For example, for multinomial values like 1, 2 and 3,\n \
 5187:  build V1=0 V2=0 for the reference value (1),\n \
 5188:         V1=1 V2=0 for (2) \n \
 5189:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5190:  output of IMaCh is often meaningless.\n \
 5191:  Exiting.\n",lval,linei, i,line,j);
 5192: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5193:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5194:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5195:  For example, for multinomial values like 1, 2 and 3,\n \
 5196:  build V1=0 V2=0 for the reference value (1),\n \
 5197:         V1=1 V2=0 for (2) \n \
 5198:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5199:  output of IMaCh is often meaningless.\n \
 5200:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 5201: 	return 1;
 5202:       }
 5203:       covar[j][i]=(double)(lval);
 5204:       strcpy(line,stra);
 5205:     }  
 5206:     lstra=strlen(stra);
 5207:      
 5208:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 5209:       stratrunc = &(stra[lstra-9]);
 5210:       num[i]=atol(stratrunc);
 5211:     }
 5212:     else
 5213:       num[i]=atol(stra);
 5214:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 5215:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 5216:     
 5217:     i=i+1;
 5218:   } /* End loop reading  data */
 5219: 
 5220:   *imax=i-1; /* Number of individuals */
 5221:   fclose(fic);
 5222:  
 5223:   return (0);
 5224:   /* endread: */
 5225:     printf("Exiting readdata: ");
 5226:     fclose(fic);
 5227:     return (1);
 5228: 
 5229: 
 5230: 
 5231: }
 5232: void removespace(char *str) {
 5233:   char *p1 = str, *p2 = str;
 5234:   do
 5235:     while (*p2 == ' ')
 5236:       p2++;
 5237:   while (*p1++ == *p2++);
 5238: }
 5239: 
 5240: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 5241:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
 5242:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
 5243:    * - cptcovn or number of covariates k of the models excluding age*products =6
 5244:    * - cptcovage number of covariates with age*products =2
 5245:    * - cptcovs number of simple covariates
 5246:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 5247:    *     which is a new column after the 9 (ncovcol) variables. 
 5248:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 5249:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 5250:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 5251:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 5252:  */
 5253: {
 5254:   int i, j, k, ks;
 5255:   int  j1, k1, k2;
 5256:   char modelsav[80];
 5257:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 5258: 
 5259:   /*removespace(model);*/
 5260:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 5261:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 5262:     j=nbocc(model,'+'); /**< j=Number of '+' */
 5263:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
 5264:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
 5265:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
 5266:                   /* including age products which are counted in cptcovage.
 5267: 		  * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
 5268:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 5269:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 5270:     strcpy(modelsav,model); 
 5271:     if (strstr(model,"AGE") !=0){
 5272:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
 5273:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
 5274:       return 1;
 5275:     }
 5276:     if (strstr(model,"v") !=0){
 5277:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 5278:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 5279:       return 1;
 5280:     }
 5281:     
 5282:     /*   Design
 5283:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 5284:      *  <          ncovcol=8                >
 5285:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 5286:      *   k=  1    2      3       4     5       6      7        8
 5287:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 5288:      *  covar[k,i], value of kth covariate if not including age for individual i:
 5289:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 5290:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 5291:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 5292:      *  Tage[++cptcovage]=k
 5293:      *       if products, new covar are created after ncovcol with k1
 5294:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 5295:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 5296:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 5297:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 5298:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 5299:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 5300:      *  <          ncovcol=8                >
 5301:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 5302:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 5303:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5304:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5305:      * p Tprod[1]@2={                         6, 5}
 5306:      *p Tvard[1][1]@4= {7, 8, 5, 6}
 5307:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5308:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5309:      *How to reorganize?
 5310:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5311:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5312:      *       {2,   1,     4,      8,    5,      6,     3,       7}
 5313:      * Struct []
 5314:      */
 5315: 
 5316:     /* This loop fills the array Tvar from the string 'model'.*/
 5317:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5318:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5319:     /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5320:     /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5321:     /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5322:     /* 	k=1 Tvar[1]=2 (from V2) */
 5323:     /* 	k=5 Tvar[5] */
 5324:     /* for (k=1; k<=cptcovn;k++) { */
 5325:     /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 5326:     /* 	} */
 5327:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 5328:     /*
 5329:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5330:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5331:         Tvar[k]=0;
 5332:     cptcovage=0;
 5333:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5334:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5335: 				     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5336:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5337:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5338:       /*scanf("%d",i);*/
 5339:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5340: 	cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5341: 	if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5342: 	  /* covar is not filled and then is empty */
 5343: 	  cptcovprod--;
 5344: 	  cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5345: 	  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
 5346: 	  cptcovage++; /* Sums the number of covariates which include age as a product */
 5347: 	  Tage[cptcovage]=k;  /* Tage[1] = 4 */
 5348: 	  /*printf("stre=%s ", stre);*/
 5349: 	} else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5350: 	  cptcovprod--;
 5351: 	  cutl(stre,strb,strc,'V');
 5352: 	  Tvar[k]=atoi(stre);
 5353: 	  cptcovage++;
 5354: 	  Tage[cptcovage]=k;
 5355: 	} else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5356: 	  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5357: 	  cptcovn++;
 5358: 	  cptcovprodnoage++;k1++;
 5359: 	  cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5360: 	  Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5361: 				  because this model-covariate is a construction we invent a new column
 5362: 				  ncovcol + k1
 5363: 				  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5364: 				  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5365: 	  cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5366: 	  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5367: 	  Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5368: 	  Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5369: 	  k2=k2+2;
 5370: 	  Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5371: 	  Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5372: 	  for (i=1; i<=lastobs;i++){
 5373: 	    /* Computes the new covariate which is a product of
 5374: 	       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5375: 	    covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5376: 	  }
 5377: 	} /* End age is not in the model */
 5378:       } /* End if model includes a product */
 5379:       else { /* no more sum */
 5380: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5381:        /*  scanf("%d",i);*/
 5382: 	cutl(strd,strc,strb,'V');
 5383: 	ks++; /**< Number of simple covariates */
 5384: 	cptcovn++;
 5385: 	Tvar[k]=atoi(strd);
 5386:       }
 5387:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5388:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5389: 	scanf("%d",i);*/
 5390:     } /* end of loop + */
 5391:   } /* end model */
 5392:   
 5393:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5394:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5395: 
 5396:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5397:   printf("cptcovprod=%d ", cptcovprod);
 5398:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5399: 
 5400:   scanf("%d ",i);*/
 5401: 
 5402: 
 5403:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5404:   /*endread:*/
 5405:     printf("Exiting decodemodel: ");
 5406:     return (1);
 5407: }
 5408: 
 5409: int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5410: {
 5411:   int i, m;
 5412: 
 5413:   for (i=1; i<=imx; i++) {
 5414:     for(m=2; (m<= maxwav); m++) {
 5415:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5416: 	anint[m][i]=9999;
 5417: 	s[m][i]=-1;
 5418:       }
 5419:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5420: 	*nberr = *nberr + 1;
 5421: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5422: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5423: 	s[m][i]=-1;
 5424:       }
 5425:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5426: 	(*nberr)++;
 5427: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5428: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5429: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5430:       }
 5431:     }
 5432:   }
 5433: 
 5434:   for (i=1; i<=imx; i++)  {
 5435:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5436:     for(m=firstpass; (m<= lastpass); m++){
 5437:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5438: 	if (s[m][i] >= nlstate+1) {
 5439: 	  if(agedc[i]>0){
 5440: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
 5441: 	      agev[m][i]=agedc[i];
 5442: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5443: 	    }else {
 5444: 	      if ((int)andc[i]!=9999){
 5445: 		nbwarn++;
 5446: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5447: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5448: 		agev[m][i]=-1;
 5449: 	      }
 5450: 	    }
 5451: 	  } /* agedc > 0 */
 5452: 	}
 5453: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5454: 				 years but with the precision of a month */
 5455: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5456: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5457: 	    agev[m][i]=1;
 5458: 	  else if(agev[m][i] < *agemin){ 
 5459: 	    *agemin=agev[m][i];
 5460: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5461: 	  }
 5462: 	  else if(agev[m][i] >*agemax){
 5463: 	    *agemax=agev[m][i];
 5464: 	    /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
 5465: 	  }
 5466: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5467: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5468: 	}
 5469: 	else { /* =9 */
 5470: 	  agev[m][i]=1;
 5471: 	  s[m][i]=-1;
 5472: 	}
 5473:       }
 5474:       else /*= 0 Unknown */
 5475: 	agev[m][i]=1;
 5476:     }
 5477:     
 5478:   }
 5479:   for (i=1; i<=imx; i++)  {
 5480:     for(m=firstpass; (m<=lastpass); m++){
 5481:       if (s[m][i] > (nlstate+ndeath)) {
 5482: 	(*nberr)++;
 5483: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5484: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5485: 	return 1;
 5486:       }
 5487:     }
 5488:   }
 5489: 
 5490:   /*for (i=1; i<=imx; i++){
 5491:   for (m=firstpass; (m<lastpass); m++){
 5492:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5493: }
 5494: 
 5495: }*/
 5496: 
 5497: 
 5498:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5499:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5500: 
 5501:   return (0);
 5502:  /* endread:*/
 5503:     printf("Exiting calandcheckages: ");
 5504:     return (1);
 5505: }
 5506: 
 5507: #if defined(_MSC_VER)
 5508: /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5509: /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5510: //#include "stdafx.h"
 5511: //#include <stdio.h>
 5512: //#include <tchar.h>
 5513: //#include <windows.h>
 5514: //#include <iostream>
 5515: typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
 5516: 
 5517: LPFN_ISWOW64PROCESS fnIsWow64Process;
 5518: 
 5519: BOOL IsWow64()
 5520: {
 5521: 	BOOL bIsWow64 = FALSE;
 5522: 
 5523: 	//typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
 5524: 	//  (HANDLE, PBOOL);
 5525: 
 5526: 	//LPFN_ISWOW64PROCESS fnIsWow64Process;
 5527: 
 5528: 	HMODULE module = GetModuleHandle(_T("kernel32"));
 5529: 	const char funcName[] = "IsWow64Process";
 5530: 	fnIsWow64Process = (LPFN_ISWOW64PROCESS)
 5531: 		GetProcAddress(module, funcName);
 5532: 
 5533: 	if (NULL != fnIsWow64Process)
 5534: 	{
 5535: 		if (!fnIsWow64Process(GetCurrentProcess(),
 5536: 			&bIsWow64))
 5537: 			//throw std::exception("Unknown error");
 5538: 			printf("Unknown error\n");
 5539: 	}
 5540: 	return bIsWow64 != FALSE;
 5541: }
 5542: #endif
 5543: 
 5544: void syscompilerinfo()
 5545:  {
 5546:    /* #include "syscompilerinfo.h"*/
 5547: 
 5548: #if defined __INTEL_COMPILER
 5549: #if defined(__GNUC__)
 5550: 	struct utsname sysInfo;  /* For Intel on Linux and OS/X */
 5551: #endif
 5552: #elif defined(__GNUC__) 
 5553: #ifndef  __APPLE__
 5554: #include <gnu/libc-version.h>  /* Only on gnu */
 5555: #endif
 5556:    struct utsname sysInfo;
 5557:    int cross = CROSS;
 5558:    if (cross){
 5559: 	   printf("Cross-");
 5560: 	   fprintf(ficlog, "Cross-");
 5561:    }
 5562: #endif
 5563: 
 5564: #include <stdint.h>
 5565: 
 5566:    printf("Compiled with:");fprintf(ficlog,"Compiled with:");
 5567: #if defined(__clang__)
 5568:    printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM");	/* Clang/LLVM. ---------------------------------------------- */
 5569: #endif
 5570: #if defined(__ICC) || defined(__INTEL_COMPILER)
 5571:    printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
 5572: #endif
 5573: #if defined(__GNUC__) || defined(__GNUG__)
 5574:    printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
 5575: #endif
 5576: #if defined(__HP_cc) || defined(__HP_aCC)
 5577:    printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
 5578: #endif
 5579: #if defined(__IBMC__) || defined(__IBMCPP__)
 5580:    printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
 5581: #endif
 5582: #if defined(_MSC_VER)
 5583:    printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
 5584: #endif
 5585: #if defined(__PGI)
 5586:    printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
 5587: #endif
 5588: #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
 5589:    printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
 5590: #endif
 5591:    printf(" for ");fprintf(ficlog," for ");
 5592:    
 5593: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
 5594: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
 5595:     // Windows (x64 and x86)
 5596:    printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
 5597: #elif __unix__ // all unices, not all compilers
 5598:     // Unix
 5599:    printf("Unix ");fprintf(ficlog,"Unix ");
 5600: #elif __linux__
 5601:     // linux
 5602:    printf("linux ");fprintf(ficlog,"linux ");
 5603: #elif __APPLE__
 5604:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
 5605:    printf("Mac OS ");fprintf(ficlog,"Mac OS ");
 5606: #endif
 5607: 
 5608: /*  __MINGW32__	  */
 5609: /*  __CYGWIN__	 */
 5610: /* __MINGW64__  */
 5611: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
 5612: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
 5613: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
 5614: /* _WIN64  // Defined for applications for Win64. */
 5615: /* _M_X64 // Defined for compilations that target x64 processors. */
 5616: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
 5617: 
 5618: #if UINTPTR_MAX == 0xffffffff
 5619:    printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
 5620: #elif UINTPTR_MAX == 0xffffffffffffffff
 5621:    printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
 5622: #else
 5623:    printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
 5624: #endif
 5625: 
 5626: #if defined(__GNUC__)
 5627: # if defined(__GNUC_PATCHLEVEL__)
 5628: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 5629:                             + __GNUC_MINOR__ * 100 \
 5630:                             + __GNUC_PATCHLEVEL__)
 5631: # else
 5632: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 5633:                             + __GNUC_MINOR__ * 100)
 5634: # endif
 5635:    printf(" using GNU C version %d.\n", __GNUC_VERSION__);
 5636:    fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
 5637: 
 5638:    if (uname(&sysInfo) != -1) {
 5639:      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 5640:      fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 5641:    }
 5642:    else
 5643:       perror("uname() error");
 5644:    //#ifndef __INTEL_COMPILER 
 5645: #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
 5646:    printf("GNU libc version: %s\n", gnu_get_libc_version()); 
 5647:    fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
 5648: #endif
 5649: #endif
 5650: 
 5651:    //   void main()
 5652:    //   {
 5653: #if defined(_MSC_VER)
 5654:    if (IsWow64()){
 5655: 	   printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 5656: 	   fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 5657:    }
 5658:    else{
 5659: 	   printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 5660: 	   fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 5661:    }
 5662:    //	   printf("\nPress Enter to continue...");
 5663:    //	   getchar();
 5664:    //   }
 5665: 
 5666: #endif
 5667:    
 5668: 
 5669:  }
 5670: 
 5671: int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
 5672:   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 5673:   int i, j, k, i1 ;
 5674:   double ftolpl = 1.e-10;
 5675:   double age, agebase, agelim;
 5676: 
 5677:     strcpy(filerespl,"pl");
 5678:     strcat(filerespl,fileres);
 5679:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 5680:       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 5681:       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 5682:     }
 5683:     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 5684:     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 5685:     pstamp(ficrespl);
 5686:     fprintf(ficrespl,"# Period (stable) prevalence \n");
 5687:     fprintf(ficrespl,"#Age ");
 5688:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5689:     fprintf(ficrespl,"\n");
 5690:   
 5691:     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
 5692: 
 5693:     agebase=ageminpar;
 5694:     agelim=agemaxpar;
 5695: 
 5696:     i1=pow(2,cptcoveff);
 5697:     if (cptcovn < 1){i1=1;}
 5698: 
 5699:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5700:     /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
 5701:       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5702: 	k=k+1;
 5703: 	/* to clean */
 5704: 	//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
 5705: 	fprintf(ficrespl,"\n#******");
 5706: 	printf("\n#******");
 5707: 	fprintf(ficlog,"\n#******");
 5708: 	for(j=1;j<=cptcoveff;j++) {
 5709: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5710: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5711: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5712: 	}
 5713: 	fprintf(ficrespl,"******\n");
 5714: 	printf("******\n");
 5715: 	fprintf(ficlog,"******\n");
 5716: 
 5717: 	fprintf(ficrespl,"#Age ");
 5718: 	for(j=1;j<=cptcoveff;j++) {
 5719: 	  fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5720: 	}
 5721: 	for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5722: 	fprintf(ficrespl,"\n");
 5723: 	
 5724: 	for (age=agebase; age<=agelim; age++){
 5725: 	/* for (age=agebase; age<=agebase; age++){ */
 5726: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5727: 	  fprintf(ficrespl,"%.0f ",age );
 5728: 	  for(j=1;j<=cptcoveff;j++)
 5729: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5730: 	  for(i=1; i<=nlstate;i++)
 5731: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 5732: 	  fprintf(ficrespl,"\n");
 5733: 	} /* Age */
 5734: 	/* was end of cptcod */
 5735:     } /* cptcov */
 5736: }
 5737: 
 5738: int hPijx(double *p, int bage, int fage){
 5739:     /*------------- h Pij x at various ages ------------*/
 5740: 
 5741:   int stepsize;
 5742:   int agelim;
 5743:   int hstepm;
 5744:   int nhstepm;
 5745:   int h, i, i1, j, k;
 5746: 
 5747:   double agedeb;
 5748:   double ***p3mat;
 5749: 
 5750:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 5751:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 5752:       printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
 5753:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
 5754:     }
 5755:     printf("Computing pij: result on file '%s' \n", filerespij);
 5756:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 5757:   
 5758:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 5759:     /*if (stepm<=24) stepsize=2;*/
 5760: 
 5761:     agelim=AGESUP;
 5762:     hstepm=stepsize*YEARM; /* Every year of age */
 5763:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 5764: 
 5765:     /* hstepm=1;   aff par mois*/
 5766:     pstamp(ficrespij);
 5767:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 5768:     i1= pow(2,cptcoveff);
 5769:    for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5770:       /*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 5771:     	k=k+1; 
 5772:     /* for (k=1; k <= (int) pow(2,cptcoveff); k++){*/
 5773: 	fprintf(ficrespij,"\n#****** ");
 5774: 	for(j=1;j<=cptcoveff;j++) 
 5775: 	  fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5776: 	fprintf(ficrespij,"******\n");
 5777: 	
 5778: 	for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 5779: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 5780: 	  nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 5781: 
 5782: 	  /*	  nhstepm=nhstepm*YEARM; aff par mois*/
 5783: 
 5784: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5785: 	  oldm=oldms;savm=savms;
 5786: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5787: 	  fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 5788: 	  for(i=1; i<=nlstate;i++)
 5789: 	    for(j=1; j<=nlstate+ndeath;j++)
 5790: 	      fprintf(ficrespij," %1d-%1d",i,j);
 5791: 	  fprintf(ficrespij,"\n");
 5792: 	  for (h=0; h<=nhstepm; h++){
 5793: 	    /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
 5794: 	    fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
 5795: 	    for(i=1; i<=nlstate;i++)
 5796: 	      for(j=1; j<=nlstate+ndeath;j++)
 5797: 		fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 5798: 	    fprintf(ficrespij,"\n");
 5799: 	  }
 5800: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5801: 	  fprintf(ficrespij,"\n");
 5802: 	}
 5803:       /*}*/
 5804:     }
 5805: }
 5806: 
 5807: 
 5808: /***********************************************/
 5809: /**************** Main Program *****************/
 5810: /***********************************************/
 5811: 
 5812: int main(int argc, char *argv[])
 5813: {
 5814: #ifdef GSL
 5815:   const gsl_multimin_fminimizer_type *T;
 5816:   size_t iteri = 0, it;
 5817:   int rval = GSL_CONTINUE;
 5818:   int status = GSL_SUCCESS;
 5819:   double ssval;
 5820: #endif
 5821:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 5822:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
 5823: 
 5824:   int jj, ll, li, lj, lk;
 5825:   int numlinepar=0; /* Current linenumber of parameter file */
 5826:   int itimes;
 5827:   int NDIM=2;
 5828:   int vpopbased=0;
 5829: 
 5830:   char ca[32], cb[32];
 5831:   /*  FILE *fichtm; *//* Html File */
 5832:   /* FILE *ficgp;*/ /*Gnuplot File */
 5833:   struct stat info;
 5834:   double agedeb;
 5835:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 5836: 
 5837:   double fret;
 5838:   double dum; /* Dummy variable */
 5839:   double ***p3mat;
 5840:   double ***mobaverage;
 5841: 
 5842:   char line[MAXLINE];
 5843:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 5844:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 5845:   char *tok, *val; /* pathtot */
 5846:   int firstobs=1, lastobs=10;
 5847:   int c,  h , cpt;
 5848:   int jl;
 5849:   int i1, j1, jk, stepsize;
 5850:   int *tab; 
 5851:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 5852:   int mobilav=0,popforecast=0;
 5853:   int hstepm, nhstepm;
 5854:   int agemortsup;
 5855:   float  sumlpop=0.;
 5856:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 5857:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 5858: 
 5859:   double bage=0, fage=110, age, agelim, agebase;
 5860:   double ftolpl=FTOL;
 5861:   double **prlim;
 5862:   double ***param; /* Matrix of parameters */
 5863:   double  *p;
 5864:   double **matcov; /* Matrix of covariance */
 5865:   double ***delti3; /* Scale */
 5866:   double *delti; /* Scale */
 5867:   double ***eij, ***vareij;
 5868:   double **varpl; /* Variances of prevalence limits by age */
 5869:   double *epj, vepp;
 5870: 
 5871:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 5872:   double **ximort;
 5873:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 5874:   int *dcwave;
 5875: 
 5876:   char z[1]="c";
 5877: 
 5878:   /*char  *strt;*/
 5879:   char strtend[80];
 5880: 
 5881: 
 5882: /*   setlocale (LC_ALL, ""); */
 5883: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 5884: /*   textdomain (PACKAGE); */
 5885: /*   setlocale (LC_CTYPE, ""); */
 5886: /*   setlocale (LC_MESSAGES, ""); */
 5887: 
 5888:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 5889:   rstart_time = time(NULL);  
 5890:   /*  (void) gettimeofday(&start_time,&tzp);*/
 5891:   start_time = *localtime(&rstart_time);
 5892:   curr_time=start_time;
 5893:   /*tml = *localtime(&start_time.tm_sec);*/
 5894:   /* strcpy(strstart,asctime(&tml)); */
 5895:   strcpy(strstart,asctime(&start_time));
 5896: 
 5897: /*  printf("Localtime (at start)=%s",strstart); */
 5898: /*  tp.tm_sec = tp.tm_sec +86400; */
 5899: /*  tm = *localtime(&start_time.tm_sec); */
 5900: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 5901: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 5902: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 5903: /*   tp.tm_sec = mktime(&tmg); */
 5904: /*   strt=asctime(&tmg); */
 5905: /*   printf("Time(after) =%s",strstart);  */
 5906: /*  (void) time (&time_value);
 5907: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 5908: *  tm = *localtime(&time_value);
 5909: *  strstart=asctime(&tm);
 5910: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 5911: */
 5912: 
 5913:   nberr=0; /* Number of errors and warnings */
 5914:   nbwarn=0;
 5915:   getcwd(pathcd, size);
 5916: 
 5917:   printf("\n%s\n%s",version,fullversion);
 5918:   if(argc <=1){
 5919:     printf("\nEnter the parameter file name: ");
 5920:     fgets(pathr,FILENAMELENGTH,stdin);
 5921:     i=strlen(pathr);
 5922:     if(pathr[i-1]=='\n')
 5923:       pathr[i-1]='\0';
 5924:     i=strlen(pathr);
 5925:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
 5926:       pathr[i-1]='\0';
 5927:    for (tok = pathr; tok != NULL; ){
 5928:       printf("Pathr |%s|\n",pathr);
 5929:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 5930:       printf("val= |%s| pathr=%s\n",val,pathr);
 5931:       strcpy (pathtot, val);
 5932:       if(pathr[0] == '\0') break; /* Dirty */
 5933:     }
 5934:   }
 5935:   else{
 5936:     strcpy(pathtot,argv[1]);
 5937:   }
 5938:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 5939:   /*cygwin_split_path(pathtot,path,optionfile);
 5940:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 5941:   /* cutv(path,optionfile,pathtot,'\\');*/
 5942: 
 5943:   /* Split argv[0], imach program to get pathimach */
 5944:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 5945:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5946:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5947:  /*   strcpy(pathimach,argv[0]); */
 5948:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 5949:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 5950:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 5951:   chdir(path); /* Can be a relative path */
 5952:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 5953:     printf("Current directory %s!\n",pathcd);
 5954:   strcpy(command,"mkdir ");
 5955:   strcat(command,optionfilefiname);
 5956:   if((outcmd=system(command)) != 0){
 5957:     printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
 5958:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 5959:     /* fclose(ficlog); */
 5960: /*     exit(1); */
 5961:   }
 5962: /*   if((imk=mkdir(optionfilefiname))<0){ */
 5963: /*     perror("mkdir"); */
 5964: /*   } */
 5965: 
 5966:   /*-------- arguments in the command line --------*/
 5967: 
 5968:   /* Log file */
 5969:   strcat(filelog, optionfilefiname);
 5970:   strcat(filelog,".log");    /* */
 5971:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 5972:     printf("Problem with logfile %s\n",filelog);
 5973:     goto end;
 5974:   }
 5975:   fprintf(ficlog,"Log filename:%s\n",filelog);
 5976:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 5977:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 5978:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 5979:  path=%s \n\
 5980:  optionfile=%s\n\
 5981:  optionfilext=%s\n\
 5982:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 5983: 
 5984:   syscompilerinfo();
 5985: 
 5986:   printf("Local time (at start):%s",strstart);
 5987:   fprintf(ficlog,"Local time (at start): %s",strstart);
 5988:   fflush(ficlog);
 5989: /*   (void) gettimeofday(&curr_time,&tzp); */
 5990: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
 5991: 
 5992:   /* */
 5993:   strcpy(fileres,"r");
 5994:   strcat(fileres, optionfilefiname);
 5995:   strcat(fileres,".txt");    /* Other files have txt extension */
 5996: 
 5997:   /*---------arguments file --------*/
 5998: 
 5999:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 6000:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 6001:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 6002:     fflush(ficlog);
 6003:     /* goto end; */
 6004:     exit(70); 
 6005:   }
 6006: 
 6007: 
 6008: 
 6009:   strcpy(filereso,"o");
 6010:   strcat(filereso,fileres);
 6011:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 6012:     printf("Problem with Output resultfile: %s\n", filereso);
 6013:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 6014:     fflush(ficlog);
 6015:     goto end;
 6016:   }
 6017: 
 6018:   /* Reads comments: lines beginning with '#' */
 6019:   numlinepar=0;
 6020:   while((c=getc(ficpar))=='#' && c!= EOF){
 6021:     ungetc(c,ficpar);
 6022:     fgets(line, MAXLINE, ficpar);
 6023:     numlinepar++;
 6024:     fputs(line,stdout);
 6025:     fputs(line,ficparo);
 6026:     fputs(line,ficlog);
 6027:   }
 6028:   ungetc(c,ficpar);
 6029: 
 6030:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 6031:   numlinepar++;
 6032:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 6033:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6034:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6035:   fflush(ficlog);
 6036:   while((c=getc(ficpar))=='#' && c!= EOF){
 6037:     ungetc(c,ficpar);
 6038:     fgets(line, MAXLINE, ficpar);
 6039:     numlinepar++;
 6040:     fputs(line, stdout);
 6041:     //puts(line);
 6042:     fputs(line,ficparo);
 6043:     fputs(line,ficlog);
 6044:   }
 6045:   ungetc(c,ficpar);
 6046: 
 6047:    
 6048:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 6049:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 6050:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 6051:      v1+v2*age+v2*v3 makes cptcovn = 3
 6052:   */
 6053:   if (strlen(model)>1) 
 6054:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
 6055:   else
 6056:     ncovmodel=2;
 6057:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 6058:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 6059:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 6060:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 6061:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6062:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6063:     fflush(stdout);
 6064:     fclose (ficlog);
 6065:     goto end;
 6066:   }
 6067:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6068:   delti=delti3[1][1];
 6069:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 6070:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 6071:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6072:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6073:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6074:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6075:     fclose (ficparo);
 6076:     fclose (ficlog);
 6077:     goto end;
 6078:     exit(0);
 6079:   }
 6080:   else if(mle==-3) {
 6081:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6082:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6083:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6084:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6085:     matcov=matrix(1,npar,1,npar);
 6086:   }
 6087:   else{
 6088:     /* Read guessed parameters */
 6089:     /* Reads comments: lines beginning with '#' */
 6090:     while((c=getc(ficpar))=='#' && c!= EOF){
 6091:       ungetc(c,ficpar);
 6092:       fgets(line, MAXLINE, ficpar);
 6093:       numlinepar++;
 6094:       fputs(line,stdout);
 6095:       fputs(line,ficparo);
 6096:       fputs(line,ficlog);
 6097:     }
 6098:     ungetc(c,ficpar);
 6099:     
 6100:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6101:     for(i=1; i <=nlstate; i++){
 6102:       j=0;
 6103:       for(jj=1; jj <=nlstate+ndeath; jj++){
 6104: 	if(jj==i) continue;
 6105: 	j++;
 6106: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6107: 	if ((i1 != i) && (j1 != j)){
 6108: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 6109: It might be a problem of design; if ncovcol and the model are correct\n \
 6110: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 6111: 	  exit(1);
 6112: 	}
 6113: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6114: 	if(mle==1)
 6115: 	  printf("%1d%1d",i,j);
 6116: 	fprintf(ficlog,"%1d%1d",i,j);
 6117: 	for(k=1; k<=ncovmodel;k++){
 6118: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 6119: 	  if(mle==1){
 6120: 	    printf(" %lf",param[i][j][k]);
 6121: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6122: 	  }
 6123: 	  else
 6124: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6125: 	  fprintf(ficparo," %lf",param[i][j][k]);
 6126: 	}
 6127: 	fscanf(ficpar,"\n");
 6128: 	numlinepar++;
 6129: 	if(mle==1)
 6130: 	  printf("\n");
 6131: 	fprintf(ficlog,"\n");
 6132: 	fprintf(ficparo,"\n");
 6133:       }
 6134:     }  
 6135:     fflush(ficlog);
 6136: 
 6137:     /* Reads scales values */
 6138:     p=param[1][1];
 6139:     
 6140:     /* Reads comments: lines beginning with '#' */
 6141:     while((c=getc(ficpar))=='#' && c!= EOF){
 6142:       ungetc(c,ficpar);
 6143:       fgets(line, MAXLINE, ficpar);
 6144:       numlinepar++;
 6145:       fputs(line,stdout);
 6146:       fputs(line,ficparo);
 6147:       fputs(line,ficlog);
 6148:     }
 6149:     ungetc(c,ficpar);
 6150: 
 6151:     for(i=1; i <=nlstate; i++){
 6152:       for(j=1; j <=nlstate+ndeath-1; j++){
 6153: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6154: 	if ( (i1-i) * (j1-j) != 0){
 6155: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 6156: 	  exit(1);
 6157: 	}
 6158: 	printf("%1d%1d",i,j);
 6159: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6160: 	fprintf(ficlog,"%1d%1d",i1,j1);
 6161: 	for(k=1; k<=ncovmodel;k++){
 6162: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 6163: 	  printf(" %le",delti3[i][j][k]);
 6164: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 6165: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 6166: 	}
 6167: 	fscanf(ficpar,"\n");
 6168: 	numlinepar++;
 6169: 	printf("\n");
 6170: 	fprintf(ficparo,"\n");
 6171: 	fprintf(ficlog,"\n");
 6172:       }
 6173:     }
 6174:     fflush(ficlog);
 6175: 
 6176:     /* Reads covariance matrix */
 6177:     delti=delti3[1][1];
 6178: 
 6179: 
 6180:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 6181:   
 6182:     /* Reads comments: lines beginning with '#' */
 6183:     while((c=getc(ficpar))=='#' && c!= EOF){
 6184:       ungetc(c,ficpar);
 6185:       fgets(line, MAXLINE, ficpar);
 6186:       numlinepar++;
 6187:       fputs(line,stdout);
 6188:       fputs(line,ficparo);
 6189:       fputs(line,ficlog);
 6190:     }
 6191:     ungetc(c,ficpar);
 6192:   
 6193:     matcov=matrix(1,npar,1,npar);
 6194:     for(i=1; i <=npar; i++)
 6195:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 6196:       
 6197:     for(i=1; i <=npar; i++){
 6198:       fscanf(ficpar,"%s",str);
 6199:       if(mle==1)
 6200: 	printf("%s",str);
 6201:       fprintf(ficlog,"%s",str);
 6202:       fprintf(ficparo,"%s",str);
 6203:       for(j=1; j <=i; j++){
 6204: 	fscanf(ficpar," %le",&matcov[i][j]);
 6205: 	if(mle==1){
 6206: 	  printf(" %.5le",matcov[i][j]);
 6207: 	}
 6208: 	fprintf(ficlog," %.5le",matcov[i][j]);
 6209: 	fprintf(ficparo," %.5le",matcov[i][j]);
 6210:       }
 6211:       fscanf(ficpar,"\n");
 6212:       numlinepar++;
 6213:       if(mle==1)
 6214: 	printf("\n");
 6215:       fprintf(ficlog,"\n");
 6216:       fprintf(ficparo,"\n");
 6217:     }
 6218:     for(i=1; i <=npar; i++)
 6219:       for(j=i+1;j<=npar;j++)
 6220: 	matcov[i][j]=matcov[j][i];
 6221:     
 6222:     if(mle==1)
 6223:       printf("\n");
 6224:     fprintf(ficlog,"\n");
 6225:     
 6226:     fflush(ficlog);
 6227:     
 6228:     /*-------- Rewriting parameter file ----------*/
 6229:     strcpy(rfileres,"r");    /* "Rparameterfile */
 6230:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 6231:     strcat(rfileres,".");    /* */
 6232:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 6233:     if((ficres =fopen(rfileres,"w"))==NULL) {
 6234:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 6235:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 6236:     }
 6237:     fprintf(ficres,"#%s\n",version);
 6238:   }    /* End of mle != -3 */
 6239: 
 6240: 
 6241:   n= lastobs;
 6242:   num=lvector(1,n);
 6243:   moisnais=vector(1,n);
 6244:   annais=vector(1,n);
 6245:   moisdc=vector(1,n);
 6246:   andc=vector(1,n);
 6247:   agedc=vector(1,n);
 6248:   cod=ivector(1,n);
 6249:   weight=vector(1,n);
 6250:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 6251:   mint=matrix(1,maxwav,1,n);
 6252:   anint=matrix(1,maxwav,1,n);
 6253:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 6254:   tab=ivector(1,NCOVMAX);
 6255:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 6256: 
 6257:   /* Reads data from file datafile */
 6258:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 6259:     goto end;
 6260: 
 6261:   /* Calculation of the number of parameters from char model */
 6262:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 6263: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 6264: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 6265: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 6266: 	k=1 Tvar[1]=2 (from V2)
 6267:     */
 6268:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 6269:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 6270:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 6271:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 6272:   */
 6273:   /* For model-covariate k tells which data-covariate to use but
 6274:     because this model-covariate is a construction we invent a new column
 6275:     ncovcol + k1
 6276:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 6277:     Tvar[3=V1*V4]=4+1 etc */
 6278:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 6279:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 6280:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 6281:   */
 6282:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 6283:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 6284: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 6285: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 6286:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 6287: 			 4 covariates (3 plus signs)
 6288: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 6289: 		      */  
 6290: 
 6291:   if(decodemodel(model, lastobs) == 1)
 6292:     goto end;
 6293: 
 6294:   if((double)(lastobs-imx)/(double)imx > 1.10){
 6295:     nbwarn++;
 6296:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6297:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6298:   }
 6299:     /*  if(mle==1){*/
 6300:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 6301:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 6302:   }
 6303: 
 6304:     /*-calculation of age at interview from date of interview and age at death -*/
 6305:   agev=matrix(1,maxwav,1,imx);
 6306: 
 6307:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 6308:     goto end;
 6309: 
 6310: 
 6311:   agegomp=(int)agemin;
 6312:   free_vector(moisnais,1,n);
 6313:   free_vector(annais,1,n);
 6314:   /* free_matrix(mint,1,maxwav,1,n);
 6315:      free_matrix(anint,1,maxwav,1,n);*/
 6316:   free_vector(moisdc,1,n);
 6317:   free_vector(andc,1,n);
 6318:   /* */
 6319:   
 6320:   wav=ivector(1,imx);
 6321:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 6322:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 6323:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 6324:    
 6325:   /* Concatenates waves */
 6326:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 6327:   /* */
 6328:  
 6329:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 6330: 
 6331:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 6332:   ncodemax[1]=1;
 6333:   Ndum =ivector(-1,NCOVMAX);  
 6334:   if (ncovmodel > 2)
 6335:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 6336: 
 6337:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 6338:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
 6339:   h=0;
 6340: 
 6341: 
 6342:   /*if (cptcovn > 0) */
 6343:       
 6344:  
 6345:   m=pow(2,cptcoveff);
 6346:  
 6347:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 6348:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 6349:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
 6350: 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 6351: 	  h++;
 6352: 	  if (h>m) 
 6353: 	    h=1;
 6354: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 6355: 	   *     h     1     2     3     4
 6356: 	   *______________________________  
 6357: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 6358: 	   *     2     2     1     1     1
 6359: 	   *     3 i=2 1     2     1     1
 6360: 	   *     4     2     2     1     1
 6361: 	   *     5 i=3 1 i=2 1     2     1
 6362: 	   *     6     2     1     2     1
 6363: 	   *     7 i=4 1     2     2     1
 6364: 	   *     8     2     2     2     1
 6365: 	   *     9 i=5 1 i=3 1 i=2 1     1
 6366: 	   *    10     2     1     1     1
 6367: 	   *    11 i=6 1     2     1     1
 6368: 	   *    12     2     2     1     1
 6369: 	   *    13 i=7 1 i=4 1     2     1    
 6370: 	   *    14     2     1     2     1
 6371: 	   *    15 i=8 1     2     2     1
 6372: 	   *    16     2     2     2     1
 6373: 	   */
 6374: 	  codtab[h][k]=j;
 6375: 	  /*codtab[h][Tvar[k]]=j;*/
 6376: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 6377: 	} 
 6378:       }
 6379:     }
 6380:   } 
 6381:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 6382:      codtab[1][2]=1;codtab[2][2]=2; */
 6383:   /* for(i=1; i <=m ;i++){ 
 6384:      for(k=1; k <=cptcovn; k++){
 6385:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 6386:      }
 6387:      printf("\n");
 6388:      }
 6389:      scanf("%d",i);*/
 6390: 
 6391:  free_ivector(Ndum,-1,NCOVMAX);
 6392: 
 6393: 
 6394:     
 6395:   /*------------ gnuplot -------------*/
 6396:   strcpy(optionfilegnuplot,optionfilefiname);
 6397:   if(mle==-3)
 6398:     strcat(optionfilegnuplot,"-mort");
 6399:   strcat(optionfilegnuplot,".gp");
 6400: 
 6401:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 6402:     printf("Problem with file %s",optionfilegnuplot);
 6403:   }
 6404:   else{
 6405:     fprintf(ficgp,"\n# %s\n", version); 
 6406:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 6407:     //fprintf(ficgp,"set missing 'NaNq'\n");
 6408:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 6409:   }
 6410:   /*  fclose(ficgp);*/
 6411:   /*--------- index.htm --------*/
 6412: 
 6413:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 6414:   if(mle==-3)
 6415:     strcat(optionfilehtm,"-mort");
 6416:   strcat(optionfilehtm,".htm");
 6417:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 6418:     printf("Problem with %s \n",optionfilehtm);
 6419:     exit(0);
 6420:   }
 6421: 
 6422:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 6423:   strcat(optionfilehtmcov,"-cov.htm");
 6424:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 6425:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 6426:   }
 6427:   else{
 6428:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6429: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6430: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 6431: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 6432:   }
 6433: 
 6434:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6435: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6436: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 6437: \n\
 6438: <hr  size=\"2\" color=\"#EC5E5E\">\
 6439:  <ul><li><h4>Parameter files</h4>\n\
 6440:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 6441:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 6442:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 6443:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 6444:  - Date and time at start: %s</ul>\n",\
 6445: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 6446: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 6447: 	  fileres,fileres,\
 6448: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 6449:   fflush(fichtm);
 6450: 
 6451:   strcpy(pathr,path);
 6452:   strcat(pathr,optionfilefiname);
 6453:   chdir(optionfilefiname); /* Move to directory named optionfile */
 6454:   
 6455:   /* Calculates basic frequencies. Computes observed prevalence at single age
 6456:      and prints on file fileres'p'. */
 6457:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 6458: 
 6459:   fprintf(fichtm,"\n");
 6460:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 6461: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 6462: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 6463: 	  imx,agemin,agemax,jmin,jmax,jmean);
 6464:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6465:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6466:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6467:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6468:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 6469:     
 6470:    
 6471:   /* For Powell, parameters are in a vector p[] starting at p[1]
 6472:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 6473:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 6474: 
 6475:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 6476: 
 6477:   if (mle==-3){
 6478:     ximort=matrix(1,NDIM,1,NDIM); 
 6479: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 6480:     cens=ivector(1,n);
 6481:     ageexmed=vector(1,n);
 6482:     agecens=vector(1,n);
 6483:     dcwave=ivector(1,n);
 6484:  
 6485:     for (i=1; i<=imx; i++){
 6486:       dcwave[i]=-1;
 6487:       for (m=firstpass; m<=lastpass; m++)
 6488: 	if (s[m][i]>nlstate) {
 6489: 	  dcwave[i]=m;
 6490: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 6491: 	  break;
 6492: 	}
 6493:     }
 6494: 
 6495:     for (i=1; i<=imx; i++) {
 6496:       if (wav[i]>0){
 6497: 	ageexmed[i]=agev[mw[1][i]][i];
 6498: 	j=wav[i];
 6499: 	agecens[i]=1.; 
 6500: 
 6501: 	if (ageexmed[i]> 1 && wav[i] > 0){
 6502: 	  agecens[i]=agev[mw[j][i]][i];
 6503: 	  cens[i]= 1;
 6504: 	}else if (ageexmed[i]< 1) 
 6505: 	  cens[i]= -1;
 6506: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 6507: 	  cens[i]=0 ;
 6508:       }
 6509:       else cens[i]=-1;
 6510:     }
 6511:     
 6512:     for (i=1;i<=NDIM;i++) {
 6513:       for (j=1;j<=NDIM;j++)
 6514: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 6515:     }
 6516:     
 6517:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 6518:     /*printf("%lf %lf", p[1], p[2]);*/
 6519:     
 6520:     
 6521: #ifdef GSL
 6522:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 6523: #else
 6524:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 6525: #endif
 6526:     strcpy(filerespow,"pow-mort"); 
 6527:     strcat(filerespow,fileres);
 6528:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 6529:       printf("Problem with resultfile: %s\n", filerespow);
 6530:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 6531:     }
 6532: #ifdef GSL
 6533:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 6534: #else
 6535:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 6536: #endif
 6537:     /*  for (i=1;i<=nlstate;i++)
 6538: 	for(j=1;j<=nlstate+ndeath;j++)
 6539: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 6540:     */
 6541:     fprintf(ficrespow,"\n");
 6542: #ifdef GSL
 6543:     /* gsl starts here */ 
 6544:     T = gsl_multimin_fminimizer_nmsimplex;
 6545:     gsl_multimin_fminimizer *sfm = NULL;
 6546:     gsl_vector *ss, *x;
 6547:     gsl_multimin_function minex_func;
 6548: 
 6549:     /* Initial vertex size vector */
 6550:     ss = gsl_vector_alloc (NDIM);
 6551:     
 6552:     if (ss == NULL){
 6553:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 6554:     }
 6555:     /* Set all step sizes to 1 */
 6556:     gsl_vector_set_all (ss, 0.001);
 6557: 
 6558:     /* Starting point */
 6559:     
 6560:     x = gsl_vector_alloc (NDIM);
 6561:     
 6562:     if (x == NULL){
 6563:       gsl_vector_free(ss);
 6564:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 6565:     }
 6566:   
 6567:     /* Initialize method and iterate */
 6568:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 6569: /*     gsl_vector_set(x, 0, 0.0268); */
 6570: /*     gsl_vector_set(x, 1, 0.083); */
 6571:     gsl_vector_set(x, 0, p[1]);
 6572:     gsl_vector_set(x, 1, p[2]);
 6573: 
 6574:     minex_func.f = &gompertz_f;
 6575:     minex_func.n = NDIM;
 6576:     minex_func.params = (void *)&p; /* ??? */
 6577:     
 6578:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 6579:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 6580:     
 6581:     printf("Iterations beginning .....\n\n");
 6582:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 6583: 
 6584:     iteri=0;
 6585:     while (rval == GSL_CONTINUE){
 6586:       iteri++;
 6587:       status = gsl_multimin_fminimizer_iterate(sfm);
 6588:       
 6589:       if (status) printf("error: %s\n", gsl_strerror (status));
 6590:       fflush(0);
 6591:       
 6592:       if (status) 
 6593:         break;
 6594:       
 6595:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 6596:       ssval = gsl_multimin_fminimizer_size (sfm);
 6597:       
 6598:       if (rval == GSL_SUCCESS)
 6599:         printf ("converged to a local maximum at\n");
 6600:       
 6601:       printf("%5d ", iteri);
 6602:       for (it = 0; it < NDIM; it++){
 6603: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 6604:       }
 6605:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 6606:     }
 6607:     
 6608:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 6609:     
 6610:     gsl_vector_free(x); /* initial values */
 6611:     gsl_vector_free(ss); /* inital step size */
 6612:     for (it=0; it<NDIM; it++){
 6613:       p[it+1]=gsl_vector_get(sfm->x,it);
 6614:       fprintf(ficrespow," %.12lf", p[it]);
 6615:     }
 6616:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 6617: #endif
 6618: #ifdef POWELL
 6619:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 6620: #endif  
 6621:     fclose(ficrespow);
 6622:     
 6623:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 6624: 
 6625:     for(i=1; i <=NDIM; i++)
 6626:       for(j=i+1;j<=NDIM;j++)
 6627: 	matcov[i][j]=matcov[j][i];
 6628:     
 6629:     printf("\nCovariance matrix\n ");
 6630:     for(i=1; i <=NDIM; i++) {
 6631:       for(j=1;j<=NDIM;j++){ 
 6632: 	printf("%f ",matcov[i][j]);
 6633:       }
 6634:       printf("\n ");
 6635:     }
 6636:     
 6637:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 6638:     for (i=1;i<=NDIM;i++) 
 6639:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 6640: 
 6641:     lsurv=vector(1,AGESUP);
 6642:     lpop=vector(1,AGESUP);
 6643:     tpop=vector(1,AGESUP);
 6644:     lsurv[agegomp]=100000;
 6645:     
 6646:     for (k=agegomp;k<=AGESUP;k++) {
 6647:       agemortsup=k;
 6648:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 6649:     }
 6650:     
 6651:     for (k=agegomp;k<agemortsup;k++)
 6652:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 6653:     
 6654:     for (k=agegomp;k<agemortsup;k++){
 6655:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 6656:       sumlpop=sumlpop+lpop[k];
 6657:     }
 6658:     
 6659:     tpop[agegomp]=sumlpop;
 6660:     for (k=agegomp;k<(agemortsup-3);k++){
 6661:       /*  tpop[k+1]=2;*/
 6662:       tpop[k+1]=tpop[k]-lpop[k];
 6663:     }
 6664:     
 6665:     
 6666:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 6667:     for (k=agegomp;k<(agemortsup-2);k++) 
 6668:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 6669:     
 6670:     
 6671:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6672:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6673:     
 6674:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 6675: 		     stepm, weightopt,\
 6676: 		     model,imx,p,matcov,agemortsup);
 6677:     
 6678:     free_vector(lsurv,1,AGESUP);
 6679:     free_vector(lpop,1,AGESUP);
 6680:     free_vector(tpop,1,AGESUP);
 6681: #ifdef GSL
 6682:     free_ivector(cens,1,n);
 6683:     free_vector(agecens,1,n);
 6684:     free_ivector(dcwave,1,n);
 6685:     free_matrix(ximort,1,NDIM,1,NDIM);
 6686: #endif
 6687:   } /* Endof if mle==-3 */
 6688:   
 6689:   else{ /* For mle >=1 */
 6690:     globpr=0;/* debug */
 6691:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6692:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6693:     for (k=1; k<=npar;k++)
 6694:       printf(" %d %8.5f",k,p[k]);
 6695:     printf("\n");
 6696:     globpr=1; /* to print the contributions */
 6697:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6698:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6699:     for (k=1; k<=npar;k++)
 6700:       printf(" %d %8.5f",k,p[k]);
 6701:     printf("\n");
 6702:     if(mle>=1){ /* Could be 1 or 2 */
 6703:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 6704:     }
 6705:     
 6706:     /*--------- results files --------------*/
 6707:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 6708:     
 6709:     
 6710:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6711:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6712:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6713:     for(i=1,jk=1; i <=nlstate; i++){
 6714:       for(k=1; k <=(nlstate+ndeath); k++){
 6715: 	if (k != i) {
 6716: 	  printf("%d%d ",i,k);
 6717: 	  fprintf(ficlog,"%d%d ",i,k);
 6718: 	  fprintf(ficres,"%1d%1d ",i,k);
 6719: 	  for(j=1; j <=ncovmodel; j++){
 6720: 	    printf("%lf ",p[jk]);
 6721: 	    fprintf(ficlog,"%lf ",p[jk]);
 6722: 	    fprintf(ficres,"%lf ",p[jk]);
 6723: 	    jk++; 
 6724: 	  }
 6725: 	  printf("\n");
 6726: 	  fprintf(ficlog,"\n");
 6727: 	  fprintf(ficres,"\n");
 6728: 	}
 6729:       }
 6730:     }
 6731:     if(mle!=0){
 6732:       /* Computing hessian and covariance matrix */
 6733:       ftolhess=ftol; /* Usually correct */
 6734:       hesscov(matcov, p, npar, delti, ftolhess, func);
 6735:     }
 6736:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 6737:     printf("# Scales (for hessian or gradient estimation)\n");
 6738:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 6739:     for(i=1,jk=1; i <=nlstate; i++){
 6740:       for(j=1; j <=nlstate+ndeath; j++){
 6741: 	if (j!=i) {
 6742: 	  fprintf(ficres,"%1d%1d",i,j);
 6743: 	  printf("%1d%1d",i,j);
 6744: 	  fprintf(ficlog,"%1d%1d",i,j);
 6745: 	  for(k=1; k<=ncovmodel;k++){
 6746: 	    printf(" %.5e",delti[jk]);
 6747: 	    fprintf(ficlog," %.5e",delti[jk]);
 6748: 	    fprintf(ficres," %.5e",delti[jk]);
 6749: 	    jk++;
 6750: 	  }
 6751: 	  printf("\n");
 6752: 	  fprintf(ficlog,"\n");
 6753: 	  fprintf(ficres,"\n");
 6754: 	}
 6755:       }
 6756:     }
 6757:     
 6758:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6759:     if(mle>=1)
 6760:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6761:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6762:     /* # 121 Var(a12)\n\ */
 6763:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 6764:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 6765:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 6766:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 6767:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 6768:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 6769:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 6770:     
 6771:     
 6772:     /* Just to have a covariance matrix which will be more understandable
 6773:        even is we still don't want to manage dictionary of variables
 6774:     */
 6775:     for(itimes=1;itimes<=2;itimes++){
 6776:       jj=0;
 6777:       for(i=1; i <=nlstate; i++){
 6778: 	for(j=1; j <=nlstate+ndeath; j++){
 6779: 	  if(j==i) continue;
 6780: 	  for(k=1; k<=ncovmodel;k++){
 6781: 	    jj++;
 6782: 	    ca[0]= k+'a'-1;ca[1]='\0';
 6783: 	    if(itimes==1){
 6784: 	      if(mle>=1)
 6785: 		printf("#%1d%1d%d",i,j,k);
 6786: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 6787: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 6788: 	    }else{
 6789: 	      if(mle>=1)
 6790: 		printf("%1d%1d%d",i,j,k);
 6791: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 6792: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 6793: 	    }
 6794: 	    ll=0;
 6795: 	    for(li=1;li <=nlstate; li++){
 6796: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 6797: 		if(lj==li) continue;
 6798: 		for(lk=1;lk<=ncovmodel;lk++){
 6799: 		  ll++;
 6800: 		  if(ll<=jj){
 6801: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 6802: 		    if(ll<jj){
 6803: 		      if(itimes==1){
 6804: 			if(mle>=1)
 6805: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6806: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6807: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6808: 		      }else{
 6809: 			if(mle>=1)
 6810: 			  printf(" %.5e",matcov[jj][ll]); 
 6811: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6812: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6813: 		      }
 6814: 		    }else{
 6815: 		      if(itimes==1){
 6816: 			if(mle>=1)
 6817: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 6818: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 6819: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 6820: 		      }else{
 6821: 			if(mle>=1)
 6822: 			  printf(" %.5e",matcov[jj][ll]); 
 6823: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6824: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6825: 		      }
 6826: 		    }
 6827: 		  }
 6828: 		} /* end lk */
 6829: 	      } /* end lj */
 6830: 	    } /* end li */
 6831: 	    if(mle>=1)
 6832: 	      printf("\n");
 6833: 	    fprintf(ficlog,"\n");
 6834: 	    fprintf(ficres,"\n");
 6835: 	    numlinepar++;
 6836: 	  } /* end k*/
 6837: 	} /*end j */
 6838:       } /* end i */
 6839:     } /* end itimes */
 6840:     
 6841:     fflush(ficlog);
 6842:     fflush(ficres);
 6843:     
 6844:     while((c=getc(ficpar))=='#' && c!= EOF){
 6845:       ungetc(c,ficpar);
 6846:       fgets(line, MAXLINE, ficpar);
 6847:       fputs(line,stdout);
 6848:       fputs(line,ficparo);
 6849:     }
 6850:     ungetc(c,ficpar);
 6851:     
 6852:     estepm=0;
 6853:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 6854:     if (estepm==0 || estepm < stepm) estepm=stepm;
 6855:     if (fage <= 2) {
 6856:       bage = ageminpar;
 6857:       fage = agemaxpar;
 6858:     }
 6859:     
 6860:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 6861:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6862:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6863:     
 6864:     while((c=getc(ficpar))=='#' && c!= EOF){
 6865:       ungetc(c,ficpar);
 6866:       fgets(line, MAXLINE, ficpar);
 6867:       fputs(line,stdout);
 6868:       fputs(line,ficparo);
 6869:     }
 6870:     ungetc(c,ficpar);
 6871:     
 6872:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 6873:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6874:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6875:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6876:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6877:     
 6878:     while((c=getc(ficpar))=='#' && c!= EOF){
 6879:       ungetc(c,ficpar);
 6880:       fgets(line, MAXLINE, ficpar);
 6881:       fputs(line,stdout);
 6882:       fputs(line,ficparo);
 6883:     }
 6884:     ungetc(c,ficpar);
 6885:     
 6886:     
 6887:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 6888:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 6889:     
 6890:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 6891:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 6892:     fprintf(ficres,"pop_based=%d\n",popbased);   
 6893:     
 6894:     while((c=getc(ficpar))=='#' && c!= EOF){
 6895:       ungetc(c,ficpar);
 6896:       fgets(line, MAXLINE, ficpar);
 6897:       fputs(line,stdout);
 6898:       fputs(line,ficparo);
 6899:     }
 6900:     ungetc(c,ficpar);
 6901:     
 6902:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 6903:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6904:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6905:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6906:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6907:     /* day and month of proj2 are not used but only year anproj2.*/
 6908:     
 6909:     
 6910:     
 6911:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 6912:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 6913:     
 6914:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6915:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6916:     
 6917:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 6918: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 6919: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 6920:       
 6921:    /*------------ free_vector  -------------*/
 6922:    /*  chdir(path); */
 6923:  
 6924:     free_ivector(wav,1,imx);
 6925:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 6926:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 6927:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 6928:     free_lvector(num,1,n);
 6929:     free_vector(agedc,1,n);
 6930:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 6931:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 6932:     fclose(ficparo);
 6933:     fclose(ficres);
 6934: 
 6935: 
 6936:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 6937:     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
 6938:     prlim=matrix(1,nlstate,1,nlstate);
 6939:     prevalence_limit(p, prlim,  ageminpar, agemaxpar);
 6940:     fclose(ficrespl);
 6941: 
 6942: #ifdef FREEEXIT2
 6943: #include "freeexit2.h"
 6944: #endif
 6945: 
 6946:     /*------------- h Pij x at various ages ------------*/
 6947:     /*#include "hpijx.h"*/
 6948:     hPijx(p, bage, fage);
 6949:     fclose(ficrespij);
 6950: 
 6951:   /*-------------- Variance of one-step probabilities---*/
 6952:     k=1;
 6953:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 6954: 
 6955: 
 6956:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6957:     for(i=1;i<=AGESUP;i++)
 6958:       for(j=1;j<=NCOVMAX;j++)
 6959: 	for(k=1;k<=NCOVMAX;k++)
 6960: 	  probs[i][j][k]=0.;
 6961: 
 6962:     /*---------- Forecasting ------------------*/
 6963:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 6964:     if(prevfcast==1){
 6965:       /*    if(stepm ==1){*/
 6966:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 6967:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 6968:       /*      }  */
 6969:       /*      else{ */
 6970:       /*        erreur=108; */
 6971:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6972:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6973:       /*      } */
 6974:     }
 6975:   
 6976: 
 6977:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 6978: 
 6979:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 6980:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 6981: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 6982:     */
 6983: 
 6984:     if (mobilav!=0) {
 6985:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6986:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 6987: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 6988: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 6989:       }
 6990:     }
 6991: 
 6992: 
 6993:     /*---------- Health expectancies, no variances ------------*/
 6994: 
 6995:     strcpy(filerese,"e");
 6996:     strcat(filerese,fileres);
 6997:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 6998:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6999:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 7000:     }
 7001:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 7002:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 7003:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7004:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7005:           
 7006:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7007: 	fprintf(ficreseij,"\n#****** ");
 7008: 	for(j=1;j<=cptcoveff;j++) {
 7009: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7010: 	}
 7011: 	fprintf(ficreseij,"******\n");
 7012: 
 7013: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7014: 	oldm=oldms;savm=savms;
 7015: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 7016:       
 7017: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7018:       /*}*/
 7019:     }
 7020:     fclose(ficreseij);
 7021: 
 7022: 
 7023:     /*---------- Health expectancies and variances ------------*/
 7024: 
 7025: 
 7026:     strcpy(filerest,"t");
 7027:     strcat(filerest,fileres);
 7028:     if((ficrest=fopen(filerest,"w"))==NULL) {
 7029:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 7030:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 7031:     }
 7032:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7033:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7034: 
 7035: 
 7036:     strcpy(fileresstde,"stde");
 7037:     strcat(fileresstde,fileres);
 7038:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 7039:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7040:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7041:     }
 7042:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7043:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7044: 
 7045:     strcpy(filerescve,"cve");
 7046:     strcat(filerescve,fileres);
 7047:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 7048:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7049:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7050:     }
 7051:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7052:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7053: 
 7054:     strcpy(fileresv,"v");
 7055:     strcat(fileresv,fileres);
 7056:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 7057:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 7058:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 7059:     }
 7060:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7061:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7062: 
 7063:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7064:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7065:           
 7066:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7067:     	fprintf(ficrest,"\n#****** ");
 7068: 	for(j=1;j<=cptcoveff;j++) 
 7069: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7070: 	fprintf(ficrest,"******\n");
 7071: 
 7072: 	fprintf(ficresstdeij,"\n#****** ");
 7073: 	fprintf(ficrescveij,"\n#****** ");
 7074: 	for(j=1;j<=cptcoveff;j++) {
 7075: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7076: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7077: 	}
 7078: 	fprintf(ficresstdeij,"******\n");
 7079: 	fprintf(ficrescveij,"******\n");
 7080: 
 7081: 	fprintf(ficresvij,"\n#****** ");
 7082: 	for(j=1;j<=cptcoveff;j++) 
 7083: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7084: 	fprintf(ficresvij,"******\n");
 7085: 
 7086: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7087: 	oldm=oldms;savm=savms;
 7088: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 7089: 	/*
 7090: 	 */
 7091: 	/* goto endfree; */
 7092:  
 7093: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7094: 	pstamp(ficrest);
 7095: 
 7096: 
 7097: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 7098: 	  oldm=oldms;savm=savms; /* Segmentation fault */
 7099: 	  cptcod= 0; /* To be deleted */
 7100: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
 7101: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 7102: 	  if(vpopbased==1)
 7103: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 7104: 	  else
 7105: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 7106: 	  fprintf(ficrest,"# Age e.. (std) ");
 7107: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 7108: 	  fprintf(ficrest,"\n");
 7109: 
 7110: 	  epj=vector(1,nlstate+1);
 7111: 	  for(age=bage; age <=fage ;age++){
 7112: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 7113: 	    if (vpopbased==1) {
 7114: 	      if(mobilav ==0){
 7115: 		for(i=1; i<=nlstate;i++)
 7116: 		  prlim[i][i]=probs[(int)age][i][k];
 7117: 	      }else{ /* mobilav */ 
 7118: 		for(i=1; i<=nlstate;i++)
 7119: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 7120: 	      }
 7121: 	    }
 7122: 	
 7123: 	    fprintf(ficrest," %4.0f",age);
 7124: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 7125: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 7126: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 7127: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 7128: 	      }
 7129: 	      epj[nlstate+1] +=epj[j];
 7130: 	    }
 7131: 
 7132: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 7133: 	      for(j=1;j <=nlstate;j++)
 7134: 		vepp += vareij[i][j][(int)age];
 7135: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 7136: 	    for(j=1;j <=nlstate;j++){
 7137: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 7138: 	    }
 7139: 	    fprintf(ficrest,"\n");
 7140: 	  }
 7141: 	}
 7142: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7143: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7144: 	free_vector(epj,1,nlstate+1);
 7145:       /*}*/
 7146:     }
 7147:     free_vector(weight,1,n);
 7148:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 7149:     free_imatrix(s,1,maxwav+1,1,n);
 7150:     free_matrix(anint,1,maxwav,1,n); 
 7151:     free_matrix(mint,1,maxwav,1,n);
 7152:     free_ivector(cod,1,n);
 7153:     free_ivector(tab,1,NCOVMAX);
 7154:     fclose(ficresstdeij);
 7155:     fclose(ficrescveij);
 7156:     fclose(ficresvij);
 7157:     fclose(ficrest);
 7158:     fclose(ficpar);
 7159:   
 7160:     /*------- Variance of period (stable) prevalence------*/   
 7161: 
 7162:     strcpy(fileresvpl,"vpl");
 7163:     strcat(fileresvpl,fileres);
 7164:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 7165:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 7166:       exit(0);
 7167:     }
 7168:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 7169: 
 7170:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7171:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7172:           
 7173:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7174:     	fprintf(ficresvpl,"\n#****** ");
 7175: 	for(j=1;j<=cptcoveff;j++) 
 7176: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7177: 	fprintf(ficresvpl,"******\n");
 7178:       
 7179: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 7180: 	oldm=oldms;savm=savms;
 7181: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 7182: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 7183:       /*}*/
 7184:     }
 7185: 
 7186:     fclose(ficresvpl);
 7187: 
 7188:     /*---------- End : free ----------------*/
 7189:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7190:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7191:   }  /* mle==-3 arrives here for freeing */
 7192:  /* endfree:*/
 7193:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 7194:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 7195:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7196:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7197:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7198:     free_matrix(covar,0,NCOVMAX,1,n);
 7199:     free_matrix(matcov,1,npar,1,npar);
 7200:     /*free_vector(delti,1,npar);*/
 7201:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 7202:     free_matrix(agev,1,maxwav,1,imx);
 7203:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 7204: 
 7205:     free_ivector(ncodemax,1,NCOVMAX);
 7206:     free_ivector(Tvar,1,NCOVMAX);
 7207:     free_ivector(Tprod,1,NCOVMAX);
 7208:     free_ivector(Tvaraff,1,NCOVMAX);
 7209:     free_ivector(Tage,1,NCOVMAX);
 7210: 
 7211:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 7212:     free_imatrix(codtab,1,100,1,10);
 7213:   fflush(fichtm);
 7214:   fflush(ficgp);
 7215:   
 7216: 
 7217:   if((nberr >0) || (nbwarn>0)){
 7218:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 7219:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 7220:   }else{
 7221:     printf("End of Imach\n");
 7222:     fprintf(ficlog,"End of Imach\n");
 7223:   }
 7224:   printf("See log file on %s\n",filelog);
 7225:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 7226:   /*(void) gettimeofday(&end_time,&tzp);*/
 7227:   rend_time = time(NULL);  
 7228:   end_time = *localtime(&rend_time);
 7229:   /* tml = *localtime(&end_time.tm_sec); */
 7230:   strcpy(strtend,asctime(&end_time));
 7231:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 7232:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 7233:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7234: 
 7235:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7236:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7237:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7238:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 7239: /*   if(fileappend(fichtm,optionfilehtm)){ */
 7240:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7241:   fclose(fichtm);
 7242:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7243:   fclose(fichtmcov);
 7244:   fclose(ficgp);
 7245:   fclose(ficlog);
 7246:   /*------ End -----------*/
 7247: 
 7248: 
 7249:    printf("Before Current directory %s!\n",pathcd);
 7250:    if(chdir(pathcd) != 0)
 7251:     printf("Can't move to directory %s!\n",path);
 7252:   if(getcwd(pathcd,MAXLINE) > 0)
 7253:     printf("Current directory %s!\n",pathcd);
 7254:   /*strcat(plotcmd,CHARSEPARATOR);*/
 7255:   sprintf(plotcmd,"gnuplot");
 7256: #ifdef _WIN32
 7257:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 7258: #endif
 7259:   if(!stat(plotcmd,&info)){
 7260:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7261:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 7262:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 7263:     }else
 7264:       strcpy(pplotcmd,plotcmd);
 7265: #ifdef __unix
 7266:     strcpy(plotcmd,GNUPLOTPROGRAM);
 7267:     if(!stat(plotcmd,&info)){
 7268:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7269:     }else
 7270:       strcpy(pplotcmd,plotcmd);
 7271: #endif
 7272:   }else
 7273:     strcpy(pplotcmd,plotcmd);
 7274:   
 7275:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 7276:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
 7277: 
 7278:   if((outcmd=system(plotcmd)) != 0){
 7279:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
 7280:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
 7281:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
 7282:     if((outcmd=system(plotcmd)) != 0)
 7283:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
 7284:   }
 7285:   printf(" Successful, please wait...");
 7286:   while (z[0] != 'q') {
 7287:     /* chdir(path); */
 7288:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
 7289:     scanf("%s",z);
 7290: /*     if (z[0] == 'c') system("./imach"); */
 7291:     if (z[0] == 'e') {
 7292: #ifdef __APPLE__
 7293:       sprintf(pplotcmd, "open %s", optionfilehtm);
 7294: #elif __linux
 7295:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
 7296: #else
 7297:       sprintf(pplotcmd, "%s", optionfilehtm);
 7298: #endif
 7299:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
 7300:       system(pplotcmd);
 7301:     }
 7302:     else if (z[0] == 'g') system(plotcmd);
 7303:     else if (z[0] == 'q') exit(0);
 7304:   }
 7305:   end:
 7306:   while (z[0] != 'q') {
 7307:     printf("\nType  q for exiting: ");
 7308:     scanf("%s",z);
 7309:   }
 7310: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>