File:  [Local Repository] / imach / src / imach.c
Revision 1.183: download - view: text, annotated - select for diffs
Tue Mar 10 20:34:32 2015 UTC (9 years, 3 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
Summary: 0.98q0, trying with directest, mnbrak fixed

We use directest instead of original Powell test; probably no
incidence on the results, but better justifications;
We fixed Numerical Recipes mnbrak routine which was wrong and gave
wrong results.

    1: /* $Id: imach.c,v 1.183 2015/03/10 20:34:32 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.183  2015/03/10 20:34:32  brouard
    5:   Summary: 0.98q0, trying with directest, mnbrak fixed
    6: 
    7:   We use directest instead of original Powell test; probably no
    8:   incidence on the results, but better justifications;
    9:   We fixed Numerical Recipes mnbrak routine which was wrong and gave
   10:   wrong results.
   11: 
   12:   Revision 1.182  2015/02/12 08:19:57  brouard
   13:   Summary: Trying to keep directest which seems simpler and more general
   14:   Author: Nicolas Brouard
   15: 
   16:   Revision 1.181  2015/02/11 23:22:24  brouard
   17:   Summary: Comments on Powell added
   18: 
   19:   Author:
   20: 
   21:   Revision 1.180  2015/02/11 17:33:45  brouard
   22:   Summary: Finishing move from main to function (hpijx and prevalence_limit)
   23: 
   24:   Revision 1.179  2015/01/04 09:57:06  brouard
   25:   Summary: back to OS/X
   26: 
   27:   Revision 1.178  2015/01/04 09:35:48  brouard
   28:   *** empty log message ***
   29: 
   30:   Revision 1.177  2015/01/03 18:40:56  brouard
   31:   Summary: Still testing ilc32 on OSX
   32: 
   33:   Revision 1.176  2015/01/03 16:45:04  brouard
   34:   *** empty log message ***
   35: 
   36:   Revision 1.175  2015/01/03 16:33:42  brouard
   37:   *** empty log message ***
   38: 
   39:   Revision 1.174  2015/01/03 16:15:49  brouard
   40:   Summary: Still in cross-compilation
   41: 
   42:   Revision 1.173  2015/01/03 12:06:26  brouard
   43:   Summary: trying to detect cross-compilation
   44: 
   45:   Revision 1.172  2014/12/27 12:07:47  brouard
   46:   Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   47: 
   48:   Revision 1.171  2014/12/23 13:26:59  brouard
   49:   Summary: Back from Visual C
   50: 
   51:   Still problem with utsname.h on Windows
   52: 
   53:   Revision 1.170  2014/12/23 11:17:12  brouard
   54:   Summary: Cleaning some \%% back to %%
   55: 
   56:   The escape was mandatory for a specific compiler (which one?), but too many warnings.
   57: 
   58:   Revision 1.169  2014/12/22 23:08:31  brouard
   59:   Summary: 0.98p
   60: 
   61:   Outputs some informations on compiler used, OS etc. Testing on different platforms.
   62: 
   63:   Revision 1.168  2014/12/22 15:17:42  brouard
   64:   Summary: update
   65: 
   66:   Revision 1.167  2014/12/22 13:50:56  brouard
   67:   Summary: Testing uname and compiler version and if compiled 32 or 64
   68: 
   69:   Testing on Linux 64
   70: 
   71:   Revision 1.166  2014/12/22 11:40:47  brouard
   72:   *** empty log message ***
   73: 
   74:   Revision 1.165  2014/12/16 11:20:36  brouard
   75:   Summary: After compiling on Visual C
   76: 
   77:   * imach.c (Module): Merging 1.61 to 1.162
   78: 
   79:   Revision 1.164  2014/12/16 10:52:11  brouard
   80:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   81: 
   82:   * imach.c (Module): Merging 1.61 to 1.162
   83: 
   84:   Revision 1.163  2014/12/16 10:30:11  brouard
   85:   * imach.c (Module): Merging 1.61 to 1.162
   86: 
   87:   Revision 1.162  2014/09/25 11:43:39  brouard
   88:   Summary: temporary backup 0.99!
   89: 
   90:   Revision 1.1  2014/09/16 11:06:58  brouard
   91:   Summary: With some code (wrong) for nlopt
   92: 
   93:   Author:
   94: 
   95:   Revision 1.161  2014/09/15 20:41:41  brouard
   96:   Summary: Problem with macro SQR on Intel compiler
   97: 
   98:   Revision 1.160  2014/09/02 09:24:05  brouard
   99:   *** empty log message ***
  100: 
  101:   Revision 1.159  2014/09/01 10:34:10  brouard
  102:   Summary: WIN32
  103:   Author: Brouard
  104: 
  105:   Revision 1.158  2014/08/27 17:11:51  brouard
  106:   *** empty log message ***
  107: 
  108:   Revision 1.157  2014/08/27 16:26:55  brouard
  109:   Summary: Preparing windows Visual studio version
  110:   Author: Brouard
  111: 
  112:   In order to compile on Visual studio, time.h is now correct and time_t
  113:   and tm struct should be used. difftime should be used but sometimes I
  114:   just make the differences in raw time format (time(&now).
  115:   Trying to suppress #ifdef LINUX
  116:   Add xdg-open for __linux in order to open default browser.
  117: 
  118:   Revision 1.156  2014/08/25 20:10:10  brouard
  119:   *** empty log message ***
  120: 
  121:   Revision 1.155  2014/08/25 18:32:34  brouard
  122:   Summary: New compile, minor changes
  123:   Author: Brouard
  124: 
  125:   Revision 1.154  2014/06/20 17:32:08  brouard
  126:   Summary: Outputs now all graphs of convergence to period prevalence
  127: 
  128:   Revision 1.153  2014/06/20 16:45:46  brouard
  129:   Summary: If 3 live state, convergence to period prevalence on same graph
  130:   Author: Brouard
  131: 
  132:   Revision 1.152  2014/06/18 17:54:09  brouard
  133:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
  134: 
  135:   Revision 1.151  2014/06/18 16:43:30  brouard
  136:   *** empty log message ***
  137: 
  138:   Revision 1.150  2014/06/18 16:42:35  brouard
  139:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
  140:   Author: brouard
  141: 
  142:   Revision 1.149  2014/06/18 15:51:14  brouard
  143:   Summary: Some fixes in parameter files errors
  144:   Author: Nicolas Brouard
  145: 
  146:   Revision 1.148  2014/06/17 17:38:48  brouard
  147:   Summary: Nothing new
  148:   Author: Brouard
  149: 
  150:   Just a new packaging for OS/X version 0.98nS
  151: 
  152:   Revision 1.147  2014/06/16 10:33:11  brouard
  153:   *** empty log message ***
  154: 
  155:   Revision 1.146  2014/06/16 10:20:28  brouard
  156:   Summary: Merge
  157:   Author: Brouard
  158: 
  159:   Merge, before building revised version.
  160: 
  161:   Revision 1.145  2014/06/10 21:23:15  brouard
  162:   Summary: Debugging with valgrind
  163:   Author: Nicolas Brouard
  164: 
  165:   Lot of changes in order to output the results with some covariates
  166:   After the Edimburgh REVES conference 2014, it seems mandatory to
  167:   improve the code.
  168:   No more memory valgrind error but a lot has to be done in order to
  169:   continue the work of splitting the code into subroutines.
  170:   Also, decodemodel has been improved. Tricode is still not
  171:   optimal. nbcode should be improved. Documentation has been added in
  172:   the source code.
  173: 
  174:   Revision 1.143  2014/01/26 09:45:38  brouard
  175:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
  176: 
  177:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  178:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
  179: 
  180:   Revision 1.142  2014/01/26 03:57:36  brouard
  181:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
  182: 
  183:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  184: 
  185:   Revision 1.141  2014/01/26 02:42:01  brouard
  186:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  187: 
  188:   Revision 1.140  2011/09/02 10:37:54  brouard
  189:   Summary: times.h is ok with mingw32 now.
  190: 
  191:   Revision 1.139  2010/06/14 07:50:17  brouard
  192:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
  193:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  194: 
  195:   Revision 1.138  2010/04/30 18:19:40  brouard
  196:   *** empty log message ***
  197: 
  198:   Revision 1.137  2010/04/29 18:11:38  brouard
  199:   (Module): Checking covariates for more complex models
  200:   than V1+V2. A lot of change to be done. Unstable.
  201: 
  202:   Revision 1.136  2010/04/26 20:30:53  brouard
  203:   (Module): merging some libgsl code. Fixing computation
  204:   of likelione (using inter/intrapolation if mle = 0) in order to
  205:   get same likelihood as if mle=1.
  206:   Some cleaning of code and comments added.
  207: 
  208:   Revision 1.135  2009/10/29 15:33:14  brouard
  209:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  210: 
  211:   Revision 1.134  2009/10/29 13:18:53  brouard
  212:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  213: 
  214:   Revision 1.133  2009/07/06 10:21:25  brouard
  215:   just nforces
  216: 
  217:   Revision 1.132  2009/07/06 08:22:05  brouard
  218:   Many tings
  219: 
  220:   Revision 1.131  2009/06/20 16:22:47  brouard
  221:   Some dimensions resccaled
  222: 
  223:   Revision 1.130  2009/05/26 06:44:34  brouard
  224:   (Module): Max Covariate is now set to 20 instead of 8. A
  225:   lot of cleaning with variables initialized to 0. Trying to make
  226:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
  227: 
  228:   Revision 1.129  2007/08/31 13:49:27  lievre
  229:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
  230: 
  231:   Revision 1.128  2006/06/30 13:02:05  brouard
  232:   (Module): Clarifications on computing e.j
  233: 
  234:   Revision 1.127  2006/04/28 18:11:50  brouard
  235:   (Module): Yes the sum of survivors was wrong since
  236:   imach-114 because nhstepm was no more computed in the age
  237:   loop. Now we define nhstepma in the age loop.
  238:   (Module): In order to speed up (in case of numerous covariates) we
  239:   compute health expectancies (without variances) in a first step
  240:   and then all the health expectancies with variances or standard
  241:   deviation (needs data from the Hessian matrices) which slows the
  242:   computation.
  243:   In the future we should be able to stop the program is only health
  244:   expectancies and graph are needed without standard deviations.
  245: 
  246:   Revision 1.126  2006/04/28 17:23:28  brouard
  247:   (Module): Yes the sum of survivors was wrong since
  248:   imach-114 because nhstepm was no more computed in the age
  249:   loop. Now we define nhstepma in the age loop.
  250:   Version 0.98h
  251: 
  252:   Revision 1.125  2006/04/04 15:20:31  lievre
  253:   Errors in calculation of health expectancies. Age was not initialized.
  254:   Forecasting file added.
  255: 
  256:   Revision 1.124  2006/03/22 17:13:53  lievre
  257:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  258:   The log-likelihood is printed in the log file
  259: 
  260:   Revision 1.123  2006/03/20 10:52:43  brouard
  261:   * imach.c (Module): <title> changed, corresponds to .htm file
  262:   name. <head> headers where missing.
  263: 
  264:   * imach.c (Module): Weights can have a decimal point as for
  265:   English (a comma might work with a correct LC_NUMERIC environment,
  266:   otherwise the weight is truncated).
  267:   Modification of warning when the covariates values are not 0 or
  268:   1.
  269:   Version 0.98g
  270: 
  271:   Revision 1.122  2006/03/20 09:45:41  brouard
  272:   (Module): Weights can have a decimal point as for
  273:   English (a comma might work with a correct LC_NUMERIC environment,
  274:   otherwise the weight is truncated).
  275:   Modification of warning when the covariates values are not 0 or
  276:   1.
  277:   Version 0.98g
  278: 
  279:   Revision 1.121  2006/03/16 17:45:01  lievre
  280:   * imach.c (Module): Comments concerning covariates added
  281: 
  282:   * imach.c (Module): refinements in the computation of lli if
  283:   status=-2 in order to have more reliable computation if stepm is
  284:   not 1 month. Version 0.98f
  285: 
  286:   Revision 1.120  2006/03/16 15:10:38  lievre
  287:   (Module): refinements in the computation of lli if
  288:   status=-2 in order to have more reliable computation if stepm is
  289:   not 1 month. Version 0.98f
  290: 
  291:   Revision 1.119  2006/03/15 17:42:26  brouard
  292:   (Module): Bug if status = -2, the loglikelihood was
  293:   computed as likelihood omitting the logarithm. Version O.98e
  294: 
  295:   Revision 1.118  2006/03/14 18:20:07  brouard
  296:   (Module): varevsij Comments added explaining the second
  297:   table of variances if popbased=1 .
  298:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  299:   (Module): Function pstamp added
  300:   (Module): Version 0.98d
  301: 
  302:   Revision 1.117  2006/03/14 17:16:22  brouard
  303:   (Module): varevsij Comments added explaining the second
  304:   table of variances if popbased=1 .
  305:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  306:   (Module): Function pstamp added
  307:   (Module): Version 0.98d
  308: 
  309:   Revision 1.116  2006/03/06 10:29:27  brouard
  310:   (Module): Variance-covariance wrong links and
  311:   varian-covariance of ej. is needed (Saito).
  312: 
  313:   Revision 1.115  2006/02/27 12:17:45  brouard
  314:   (Module): One freematrix added in mlikeli! 0.98c
  315: 
  316:   Revision 1.114  2006/02/26 12:57:58  brouard
  317:   (Module): Some improvements in processing parameter
  318:   filename with strsep.
  319: 
  320:   Revision 1.113  2006/02/24 14:20:24  brouard
  321:   (Module): Memory leaks checks with valgrind and:
  322:   datafile was not closed, some imatrix were not freed and on matrix
  323:   allocation too.
  324: 
  325:   Revision 1.112  2006/01/30 09:55:26  brouard
  326:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  327: 
  328:   Revision 1.111  2006/01/25 20:38:18  brouard
  329:   (Module): Lots of cleaning and bugs added (Gompertz)
  330:   (Module): Comments can be added in data file. Missing date values
  331:   can be a simple dot '.'.
  332: 
  333:   Revision 1.110  2006/01/25 00:51:50  brouard
  334:   (Module): Lots of cleaning and bugs added (Gompertz)
  335: 
  336:   Revision 1.109  2006/01/24 19:37:15  brouard
  337:   (Module): Comments (lines starting with a #) are allowed in data.
  338: 
  339:   Revision 1.108  2006/01/19 18:05:42  lievre
  340:   Gnuplot problem appeared...
  341:   To be fixed
  342: 
  343:   Revision 1.107  2006/01/19 16:20:37  brouard
  344:   Test existence of gnuplot in imach path
  345: 
  346:   Revision 1.106  2006/01/19 13:24:36  brouard
  347:   Some cleaning and links added in html output
  348: 
  349:   Revision 1.105  2006/01/05 20:23:19  lievre
  350:   *** empty log message ***
  351: 
  352:   Revision 1.104  2005/09/30 16:11:43  lievre
  353:   (Module): sump fixed, loop imx fixed, and simplifications.
  354:   (Module): If the status is missing at the last wave but we know
  355:   that the person is alive, then we can code his/her status as -2
  356:   (instead of missing=-1 in earlier versions) and his/her
  357:   contributions to the likelihood is 1 - Prob of dying from last
  358:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  359:   the healthy state at last known wave). Version is 0.98
  360: 
  361:   Revision 1.103  2005/09/30 15:54:49  lievre
  362:   (Module): sump fixed, loop imx fixed, and simplifications.
  363: 
  364:   Revision 1.102  2004/09/15 17:31:30  brouard
  365:   Add the possibility to read data file including tab characters.
  366: 
  367:   Revision 1.101  2004/09/15 10:38:38  brouard
  368:   Fix on curr_time
  369: 
  370:   Revision 1.100  2004/07/12 18:29:06  brouard
  371:   Add version for Mac OS X. Just define UNIX in Makefile
  372: 
  373:   Revision 1.99  2004/06/05 08:57:40  brouard
  374:   *** empty log message ***
  375: 
  376:   Revision 1.98  2004/05/16 15:05:56  brouard
  377:   New version 0.97 . First attempt to estimate force of mortality
  378:   directly from the data i.e. without the need of knowing the health
  379:   state at each age, but using a Gompertz model: log u =a + b*age .
  380:   This is the basic analysis of mortality and should be done before any
  381:   other analysis, in order to test if the mortality estimated from the
  382:   cross-longitudinal survey is different from the mortality estimated
  383:   from other sources like vital statistic data.
  384: 
  385:   The same imach parameter file can be used but the option for mle should be -3.
  386: 
  387:   Agnès, who wrote this part of the code, tried to keep most of the
  388:   former routines in order to include the new code within the former code.
  389: 
  390:   The output is very simple: only an estimate of the intercept and of
  391:   the slope with 95% confident intervals.
  392: 
  393:   Current limitations:
  394:   A) Even if you enter covariates, i.e. with the
  395:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  396:   B) There is no computation of Life Expectancy nor Life Table.
  397: 
  398:   Revision 1.97  2004/02/20 13:25:42  lievre
  399:   Version 0.96d. Population forecasting command line is (temporarily)
  400:   suppressed.
  401: 
  402:   Revision 1.96  2003/07/15 15:38:55  brouard
  403:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  404:   rewritten within the same printf. Workaround: many printfs.
  405: 
  406:   Revision 1.95  2003/07/08 07:54:34  brouard
  407:   * imach.c (Repository):
  408:   (Repository): Using imachwizard code to output a more meaningful covariance
  409:   matrix (cov(a12,c31) instead of numbers.
  410: 
  411:   Revision 1.94  2003/06/27 13:00:02  brouard
  412:   Just cleaning
  413: 
  414:   Revision 1.93  2003/06/25 16:33:55  brouard
  415:   (Module): On windows (cygwin) function asctime_r doesn't
  416:   exist so I changed back to asctime which exists.
  417:   (Module): Version 0.96b
  418: 
  419:   Revision 1.92  2003/06/25 16:30:45  brouard
  420:   (Module): On windows (cygwin) function asctime_r doesn't
  421:   exist so I changed back to asctime which exists.
  422: 
  423:   Revision 1.91  2003/06/25 15:30:29  brouard
  424:   * imach.c (Repository): Duplicated warning errors corrected.
  425:   (Repository): Elapsed time after each iteration is now output. It
  426:   helps to forecast when convergence will be reached. Elapsed time
  427:   is stamped in powell.  We created a new html file for the graphs
  428:   concerning matrix of covariance. It has extension -cov.htm.
  429: 
  430:   Revision 1.90  2003/06/24 12:34:15  brouard
  431:   (Module): Some bugs corrected for windows. Also, when
  432:   mle=-1 a template is output in file "or"mypar.txt with the design
  433:   of the covariance matrix to be input.
  434: 
  435:   Revision 1.89  2003/06/24 12:30:52  brouard
  436:   (Module): Some bugs corrected for windows. Also, when
  437:   mle=-1 a template is output in file "or"mypar.txt with the design
  438:   of the covariance matrix to be input.
  439: 
  440:   Revision 1.88  2003/06/23 17:54:56  brouard
  441:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  442: 
  443:   Revision 1.87  2003/06/18 12:26:01  brouard
  444:   Version 0.96
  445: 
  446:   Revision 1.86  2003/06/17 20:04:08  brouard
  447:   (Module): Change position of html and gnuplot routines and added
  448:   routine fileappend.
  449: 
  450:   Revision 1.85  2003/06/17 13:12:43  brouard
  451:   * imach.c (Repository): Check when date of death was earlier that
  452:   current date of interview. It may happen when the death was just
  453:   prior to the death. In this case, dh was negative and likelihood
  454:   was wrong (infinity). We still send an "Error" but patch by
  455:   assuming that the date of death was just one stepm after the
  456:   interview.
  457:   (Repository): Because some people have very long ID (first column)
  458:   we changed int to long in num[] and we added a new lvector for
  459:   memory allocation. But we also truncated to 8 characters (left
  460:   truncation)
  461:   (Repository): No more line truncation errors.
  462: 
  463:   Revision 1.84  2003/06/13 21:44:43  brouard
  464:   * imach.c (Repository): Replace "freqsummary" at a correct
  465:   place. It differs from routine "prevalence" which may be called
  466:   many times. Probs is memory consuming and must be used with
  467:   parcimony.
  468:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  469: 
  470:   Revision 1.83  2003/06/10 13:39:11  lievre
  471:   *** empty log message ***
  472: 
  473:   Revision 1.82  2003/06/05 15:57:20  brouard
  474:   Add log in  imach.c and  fullversion number is now printed.
  475: 
  476: */
  477: /*
  478:    Interpolated Markov Chain
  479: 
  480:   Short summary of the programme:
  481:   
  482:   This program computes Healthy Life Expectancies from
  483:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  484:   first survey ("cross") where individuals from different ages are
  485:   interviewed on their health status or degree of disability (in the
  486:   case of a health survey which is our main interest) -2- at least a
  487:   second wave of interviews ("longitudinal") which measure each change
  488:   (if any) in individual health status.  Health expectancies are
  489:   computed from the time spent in each health state according to a
  490:   model. More health states you consider, more time is necessary to reach the
  491:   Maximum Likelihood of the parameters involved in the model.  The
  492:   simplest model is the multinomial logistic model where pij is the
  493:   probability to be observed in state j at the second wave
  494:   conditional to be observed in state i at the first wave. Therefore
  495:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  496:   'age' is age and 'sex' is a covariate. If you want to have a more
  497:   complex model than "constant and age", you should modify the program
  498:   where the markup *Covariates have to be included here again* invites
  499:   you to do it.  More covariates you add, slower the
  500:   convergence.
  501: 
  502:   The advantage of this computer programme, compared to a simple
  503:   multinomial logistic model, is clear when the delay between waves is not
  504:   identical for each individual. Also, if a individual missed an
  505:   intermediate interview, the information is lost, but taken into
  506:   account using an interpolation or extrapolation.  
  507: 
  508:   hPijx is the probability to be observed in state i at age x+h
  509:   conditional to the observed state i at age x. The delay 'h' can be
  510:   split into an exact number (nh*stepm) of unobserved intermediate
  511:   states. This elementary transition (by month, quarter,
  512:   semester or year) is modelled as a multinomial logistic.  The hPx
  513:   matrix is simply the matrix product of nh*stepm elementary matrices
  514:   and the contribution of each individual to the likelihood is simply
  515:   hPijx.
  516: 
  517:   Also this programme outputs the covariance matrix of the parameters but also
  518:   of the life expectancies. It also computes the period (stable) prevalence. 
  519:   
  520:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  521:            Institut national d'études démographiques, Paris.
  522:   This software have been partly granted by Euro-REVES, a concerted action
  523:   from the European Union.
  524:   It is copyrighted identically to a GNU software product, ie programme and
  525:   software can be distributed freely for non commercial use. Latest version
  526:   can be accessed at http://euroreves.ined.fr/imach .
  527: 
  528:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  529:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  530:   
  531:   **********************************************************************/
  532: /*
  533:   main
  534:   read parameterfile
  535:   read datafile
  536:   concatwav
  537:   freqsummary
  538:   if (mle >= 1)
  539:     mlikeli
  540:   print results files
  541:   if mle==1 
  542:      computes hessian
  543:   read end of parameter file: agemin, agemax, bage, fage, estepm
  544:       begin-prev-date,...
  545:   open gnuplot file
  546:   open html file
  547:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  548:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  549:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  550:     freexexit2 possible for memory heap.
  551: 
  552:   h Pij x                         | pij_nom  ficrestpij
  553:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  554:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  555:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  556: 
  557:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  558:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  559:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  560:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  561:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  562: 
  563:   forecasting if prevfcast==1 prevforecast call prevalence()
  564:   health expectancies
  565:   Variance-covariance of DFLE
  566:   prevalence()
  567:    movingaverage()
  568:   varevsij() 
  569:   if popbased==1 varevsij(,popbased)
  570:   total life expectancies
  571:   Variance of period (stable) prevalence
  572:  end
  573: */
  574: 
  575: #define POWELL /* Instead of NLOPT */
  576: /* #define POWELLORIGINAL */ /* Don't use Directest to decide new direction but original Powell test */
  577: 
  578: #include <math.h>
  579: #include <stdio.h>
  580: #include <stdlib.h>
  581: #include <string.h>
  582: 
  583: #ifdef _WIN32
  584: #include <io.h>
  585: #include <windows.h>
  586: #include <tchar.h>
  587: #else
  588: #include <unistd.h>
  589: #endif
  590: 
  591: #include <limits.h>
  592: #include <sys/types.h>
  593: 
  594: #if defined(__GNUC__)
  595: #include <sys/utsname.h> /* Doesn't work on Windows */
  596: #endif
  597: 
  598: #include <sys/stat.h>
  599: #include <errno.h>
  600: /* extern int errno; */
  601: 
  602: /* #ifdef LINUX */
  603: /* #include <time.h> */
  604: /* #include "timeval.h" */
  605: /* #else */
  606: /* #include <sys/time.h> */
  607: /* #endif */
  608: 
  609: #include <time.h>
  610: 
  611: #ifdef GSL
  612: #include <gsl/gsl_errno.h>
  613: #include <gsl/gsl_multimin.h>
  614: #endif
  615: 
  616: 
  617: #ifdef NLOPT
  618: #include <nlopt.h>
  619: typedef struct {
  620:   double (* function)(double [] );
  621: } myfunc_data ;
  622: #endif
  623: 
  624: /* #include <libintl.h> */
  625: /* #define _(String) gettext (String) */
  626: 
  627: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  628: 
  629: #define GNUPLOTPROGRAM "gnuplot"
  630: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  631: #define FILENAMELENGTH 132
  632: 
  633: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  634: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  635: 
  636: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  637: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  638: 
  639: #define NINTERVMAX 8
  640: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  641: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  642: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  643: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  644: #define MAXN 20000
  645: #define YEARM 12. /**< Number of months per year */
  646: #define AGESUP 130
  647: #define AGEBASE 40
  648: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
  649: #ifdef _WIN32
  650: #define DIRSEPARATOR '\\'
  651: #define CHARSEPARATOR "\\"
  652: #define ODIRSEPARATOR '/'
  653: #else
  654: #define DIRSEPARATOR '/'
  655: #define CHARSEPARATOR "/"
  656: #define ODIRSEPARATOR '\\'
  657: #endif
  658: 
  659: /* $Id: imach.c,v 1.183 2015/03/10 20:34:32 brouard Exp $ */
  660: /* $State: Exp $ */
  661: 
  662: char version[]="Imach version 0.98q0, March 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
  663: char fullversion[]="$Revision: 1.183 $ $Date: 2015/03/10 20:34:32 $"; 
  664: char strstart[80];
  665: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  666: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  667: int nvar=0, nforce=0; /* Number of variables, number of forces */
  668: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  669: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  670: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  671: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  672: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  673: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  674: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  675: int cptcov=0; /* Working variable */
  676: int npar=NPARMAX;
  677: int nlstate=2; /* Number of live states */
  678: int ndeath=1; /* Number of dead states */
  679: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  680: int popbased=0;
  681: 
  682: int *wav; /* Number of waves for this individuual 0 is possible */
  683: int maxwav=0; /* Maxim number of waves */
  684: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  685: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  686: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  687: 		   to the likelihood and the sum of weights (done by funcone)*/
  688: int mle=1, weightopt=0;
  689: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  690: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  691: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  692: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  693: int countcallfunc=0;  /* Count the number of calls to func */
  694: double jmean=1; /* Mean space between 2 waves */
  695: double **matprod2(); /* test */
  696: double **oldm, **newm, **savm; /* Working pointers to matrices */
  697: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  698: /*FILE *fic ; */ /* Used in readdata only */
  699: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  700: FILE *ficlog, *ficrespow;
  701: int globpr=0; /* Global variable for printing or not */
  702: double fretone; /* Only one call to likelihood */
  703: long ipmx=0; /* Number of contributions */
  704: double sw; /* Sum of weights */
  705: char filerespow[FILENAMELENGTH];
  706: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  707: FILE *ficresilk;
  708: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  709: FILE *ficresprobmorprev;
  710: FILE *fichtm, *fichtmcov; /* Html File */
  711: FILE *ficreseij;
  712: char filerese[FILENAMELENGTH];
  713: FILE *ficresstdeij;
  714: char fileresstde[FILENAMELENGTH];
  715: FILE *ficrescveij;
  716: char filerescve[FILENAMELENGTH];
  717: FILE  *ficresvij;
  718: char fileresv[FILENAMELENGTH];
  719: FILE  *ficresvpl;
  720: char fileresvpl[FILENAMELENGTH];
  721: char title[MAXLINE];
  722: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  723: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  724: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  725: char command[FILENAMELENGTH];
  726: int  outcmd=0;
  727: 
  728: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  729: 
  730: char filelog[FILENAMELENGTH]; /* Log file */
  731: char filerest[FILENAMELENGTH];
  732: char fileregp[FILENAMELENGTH];
  733: char popfile[FILENAMELENGTH];
  734: 
  735: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  736: 
  737: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
  738: /* struct timezone tzp; */
  739: /* extern int gettimeofday(); */
  740: struct tm tml, *gmtime(), *localtime();
  741: 
  742: extern time_t time();
  743: 
  744: struct tm start_time, end_time, curr_time, last_time, forecast_time;
  745: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
  746: struct tm tm;
  747: 
  748: char strcurr[80], strfor[80];
  749: 
  750: char *endptr;
  751: long lval;
  752: double dval;
  753: 
  754: #define NR_END 1
  755: #define FREE_ARG char*
  756: #define FTOL 1.0e-10
  757: 
  758: #define NRANSI 
  759: #define ITMAX 200 
  760: 
  761: #define TOL 2.0e-4 
  762: 
  763: #define CGOLD 0.3819660 
  764: #define ZEPS 1.0e-10 
  765: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  766: 
  767: #define GOLD 1.618034 
  768: #define GLIMIT 100.0 
  769: #define TINY 1.0e-20 
  770: 
  771: static double maxarg1,maxarg2;
  772: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  773: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  774:   
  775: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  776: #define rint(a) floor(a+0.5)
  777: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
  778: #define mytinydouble 1.0e-16
  779: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
  780: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
  781: /* static double dsqrarg; */
  782: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
  783: static double sqrarg;
  784: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  785: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  786: int agegomp= AGEGOMP;
  787: 
  788: int imx; 
  789: int stepm=1;
  790: /* Stepm, step in month: minimum step interpolation*/
  791: 
  792: int estepm;
  793: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  794: 
  795: int m,nb;
  796: long *num;
  797: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  798: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  799: double **pmmij, ***probs;
  800: double *ageexmed,*agecens;
  801: double dateintmean=0;
  802: 
  803: double *weight;
  804: int **s; /* Status */
  805: double *agedc;
  806: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  807: 		  * covar=matrix(0,NCOVMAX,1,n); 
  808: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
  809: double  idx; 
  810: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  811: int *Ndum; /** Freq of modality (tricode */
  812: int **codtab; /**< codtab=imatrix(1,100,1,10); */
  813: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  814: double *lsurv, *lpop, *tpop;
  815: 
  816: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  817: double ftolhess; /**< Tolerance for computing hessian */
  818: 
  819: /**************** split *************************/
  820: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  821: {
  822:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  823:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  824:   */ 
  825:   char	*ss;				/* pointer */
  826:   int	l1, l2;				/* length counters */
  827: 
  828:   l1 = strlen(path );			/* length of path */
  829:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  830:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  831:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  832:     strcpy( name, path );		/* we got the fullname name because no directory */
  833:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  834:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  835:     /* get current working directory */
  836:     /*    extern  char* getcwd ( char *buf , int len);*/
  837:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  838:       return( GLOCK_ERROR_GETCWD );
  839:     }
  840:     /* got dirc from getcwd*/
  841:     printf(" DIRC = %s \n",dirc);
  842:   } else {				/* strip direcotry from path */
  843:     ss++;				/* after this, the filename */
  844:     l2 = strlen( ss );			/* length of filename */
  845:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  846:     strcpy( name, ss );		/* save file name */
  847:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  848:     dirc[l1-l2] = 0;			/* add zero */
  849:     printf(" DIRC2 = %s \n",dirc);
  850:   }
  851:   /* We add a separator at the end of dirc if not exists */
  852:   l1 = strlen( dirc );			/* length of directory */
  853:   if( dirc[l1-1] != DIRSEPARATOR ){
  854:     dirc[l1] =  DIRSEPARATOR;
  855:     dirc[l1+1] = 0; 
  856:     printf(" DIRC3 = %s \n",dirc);
  857:   }
  858:   ss = strrchr( name, '.' );		/* find last / */
  859:   if (ss >0){
  860:     ss++;
  861:     strcpy(ext,ss);			/* save extension */
  862:     l1= strlen( name);
  863:     l2= strlen(ss)+1;
  864:     strncpy( finame, name, l1-l2);
  865:     finame[l1-l2]= 0;
  866:   }
  867: 
  868:   return( 0 );				/* we're done */
  869: }
  870: 
  871: 
  872: /******************************************/
  873: 
  874: void replace_back_to_slash(char *s, char*t)
  875: {
  876:   int i;
  877:   int lg=0;
  878:   i=0;
  879:   lg=strlen(t);
  880:   for(i=0; i<= lg; i++) {
  881:     (s[i] = t[i]);
  882:     if (t[i]== '\\') s[i]='/';
  883:   }
  884: }
  885: 
  886: char *trimbb(char *out, char *in)
  887: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  888:   char *s;
  889:   s=out;
  890:   while (*in != '\0'){
  891:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  892:       in++;
  893:     }
  894:     *out++ = *in++;
  895:   }
  896:   *out='\0';
  897:   return s;
  898: }
  899: 
  900: char *cutl(char *blocc, char *alocc, char *in, char occ)
  901: {
  902:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
  903:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  904:      gives blocc="abcdef2ghi" and alocc="j".
  905:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
  906:   */
  907:   char *s, *t;
  908:   t=in;s=in;
  909:   while ((*in != occ) && (*in != '\0')){
  910:     *alocc++ = *in++;
  911:   }
  912:   if( *in == occ){
  913:     *(alocc)='\0';
  914:     s=++in;
  915:   }
  916:  
  917:   if (s == t) {/* occ not found */
  918:     *(alocc-(in-s))='\0';
  919:     in=s;
  920:   }
  921:   while ( *in != '\0'){
  922:     *blocc++ = *in++;
  923:   }
  924: 
  925:   *blocc='\0';
  926:   return t;
  927: }
  928: char *cutv(char *blocc, char *alocc, char *in, char occ)
  929: {
  930:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  931:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  932:      gives blocc="abcdef2ghi" and alocc="j".
  933:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
  934:   */
  935:   char *s, *t;
  936:   t=in;s=in;
  937:   while (*in != '\0'){
  938:     while( *in == occ){
  939:       *blocc++ = *in++;
  940:       s=in;
  941:     }
  942:     *blocc++ = *in++;
  943:   }
  944:   if (s == t) /* occ not found */
  945:     *(blocc-(in-s))='\0';
  946:   else
  947:     *(blocc-(in-s)-1)='\0';
  948:   in=s;
  949:   while ( *in != '\0'){
  950:     *alocc++ = *in++;
  951:   }
  952: 
  953:   *alocc='\0';
  954:   return s;
  955: }
  956: 
  957: int nbocc(char *s, char occ)
  958: {
  959:   int i,j=0;
  960:   int lg=20;
  961:   i=0;
  962:   lg=strlen(s);
  963:   for(i=0; i<= lg; i++) {
  964:   if  (s[i] == occ ) j++;
  965:   }
  966:   return j;
  967: }
  968: 
  969: /* void cutv(char *u,char *v, char*t, char occ) */
  970: /* { */
  971: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  972: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
  973: /*      gives u="abcdef2ghi" and v="j" *\/ */
  974: /*   int i,lg,j,p=0; */
  975: /*   i=0; */
  976: /*   lg=strlen(t); */
  977: /*   for(j=0; j<=lg-1; j++) { */
  978: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
  979: /*   } */
  980: 
  981: /*   for(j=0; j<p; j++) { */
  982: /*     (u[j] = t[j]); */
  983: /*   } */
  984: /*      u[p]='\0'; */
  985: 
  986: /*    for(j=0; j<= lg; j++) { */
  987: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
  988: /*   } */
  989: /* } */
  990: 
  991: #ifdef _WIN32
  992: char * strsep(char **pp, const char *delim)
  993: {
  994:   char *p, *q;
  995:          
  996:   if ((p = *pp) == NULL)
  997:     return 0;
  998:   if ((q = strpbrk (p, delim)) != NULL)
  999:   {
 1000:     *pp = q + 1;
 1001:     *q = '\0';
 1002:   }
 1003:   else
 1004:     *pp = 0;
 1005:   return p;
 1006: }
 1007: #endif
 1008: 
 1009: /********************** nrerror ********************/
 1010: 
 1011: void nrerror(char error_text[])
 1012: {
 1013:   fprintf(stderr,"ERREUR ...\n");
 1014:   fprintf(stderr,"%s\n",error_text);
 1015:   exit(EXIT_FAILURE);
 1016: }
 1017: /*********************** vector *******************/
 1018: double *vector(int nl, int nh)
 1019: {
 1020:   double *v;
 1021:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 1022:   if (!v) nrerror("allocation failure in vector");
 1023:   return v-nl+NR_END;
 1024: }
 1025: 
 1026: /************************ free vector ******************/
 1027: void free_vector(double*v, int nl, int nh)
 1028: {
 1029:   free((FREE_ARG)(v+nl-NR_END));
 1030: }
 1031: 
 1032: /************************ivector *******************************/
 1033: int *ivector(long nl,long nh)
 1034: {
 1035:   int *v;
 1036:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 1037:   if (!v) nrerror("allocation failure in ivector");
 1038:   return v-nl+NR_END;
 1039: }
 1040: 
 1041: /******************free ivector **************************/
 1042: void free_ivector(int *v, long nl, long nh)
 1043: {
 1044:   free((FREE_ARG)(v+nl-NR_END));
 1045: }
 1046: 
 1047: /************************lvector *******************************/
 1048: long *lvector(long nl,long nh)
 1049: {
 1050:   long *v;
 1051:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 1052:   if (!v) nrerror("allocation failure in ivector");
 1053:   return v-nl+NR_END;
 1054: }
 1055: 
 1056: /******************free lvector **************************/
 1057: void free_lvector(long *v, long nl, long nh)
 1058: {
 1059:   free((FREE_ARG)(v+nl-NR_END));
 1060: }
 1061: 
 1062: /******************* imatrix *******************************/
 1063: int **imatrix(long nrl, long nrh, long ncl, long nch) 
 1064:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 1065: { 
 1066:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 1067:   int **m; 
 1068:   
 1069:   /* allocate pointers to rows */ 
 1070:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 1071:   if (!m) nrerror("allocation failure 1 in matrix()"); 
 1072:   m += NR_END; 
 1073:   m -= nrl; 
 1074:   
 1075:   
 1076:   /* allocate rows and set pointers to them */ 
 1077:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 1078:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 1079:   m[nrl] += NR_END; 
 1080:   m[nrl] -= ncl; 
 1081:   
 1082:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 1083:   
 1084:   /* return pointer to array of pointers to rows */ 
 1085:   return m; 
 1086: } 
 1087: 
 1088: /****************** free_imatrix *************************/
 1089: void free_imatrix(m,nrl,nrh,ncl,nch)
 1090:       int **m;
 1091:       long nch,ncl,nrh,nrl; 
 1092:      /* free an int matrix allocated by imatrix() */ 
 1093: { 
 1094:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 1095:   free((FREE_ARG) (m+nrl-NR_END)); 
 1096: } 
 1097: 
 1098: /******************* matrix *******************************/
 1099: double **matrix(long nrl, long nrh, long ncl, long nch)
 1100: {
 1101:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 1102:   double **m;
 1103: 
 1104:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1105:   if (!m) nrerror("allocation failure 1 in matrix()");
 1106:   m += NR_END;
 1107:   m -= nrl;
 1108: 
 1109:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1110:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1111:   m[nrl] += NR_END;
 1112:   m[nrl] -= ncl;
 1113: 
 1114:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1115:   return m;
 1116:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 1117: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 1118: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 1119:    */
 1120: }
 1121: 
 1122: /*************************free matrix ************************/
 1123: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 1124: {
 1125:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1126:   free((FREE_ARG)(m+nrl-NR_END));
 1127: }
 1128: 
 1129: /******************* ma3x *******************************/
 1130: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 1131: {
 1132:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 1133:   double ***m;
 1134: 
 1135:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1136:   if (!m) nrerror("allocation failure 1 in matrix()");
 1137:   m += NR_END;
 1138:   m -= nrl;
 1139: 
 1140:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1141:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1142:   m[nrl] += NR_END;
 1143:   m[nrl] -= ncl;
 1144: 
 1145:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1146: 
 1147:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 1148:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 1149:   m[nrl][ncl] += NR_END;
 1150:   m[nrl][ncl] -= nll;
 1151:   for (j=ncl+1; j<=nch; j++) 
 1152:     m[nrl][j]=m[nrl][j-1]+nlay;
 1153:   
 1154:   for (i=nrl+1; i<=nrh; i++) {
 1155:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 1156:     for (j=ncl+1; j<=nch; j++) 
 1157:       m[i][j]=m[i][j-1]+nlay;
 1158:   }
 1159:   return m; 
 1160:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 1161:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 1162:   */
 1163: }
 1164: 
 1165: /*************************free ma3x ************************/
 1166: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 1167: {
 1168:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 1169:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1170:   free((FREE_ARG)(m+nrl-NR_END));
 1171: }
 1172: 
 1173: /*************** function subdirf ***********/
 1174: char *subdirf(char fileres[])
 1175: {
 1176:   /* Caution optionfilefiname is hidden */
 1177:   strcpy(tmpout,optionfilefiname);
 1178:   strcat(tmpout,"/"); /* Add to the right */
 1179:   strcat(tmpout,fileres);
 1180:   return tmpout;
 1181: }
 1182: 
 1183: /*************** function subdirf2 ***********/
 1184: char *subdirf2(char fileres[], char *preop)
 1185: {
 1186:   
 1187:   /* Caution optionfilefiname is hidden */
 1188:   strcpy(tmpout,optionfilefiname);
 1189:   strcat(tmpout,"/");
 1190:   strcat(tmpout,preop);
 1191:   strcat(tmpout,fileres);
 1192:   return tmpout;
 1193: }
 1194: 
 1195: /*************** function subdirf3 ***********/
 1196: char *subdirf3(char fileres[], char *preop, char *preop2)
 1197: {
 1198:   
 1199:   /* Caution optionfilefiname is hidden */
 1200:   strcpy(tmpout,optionfilefiname);
 1201:   strcat(tmpout,"/");
 1202:   strcat(tmpout,preop);
 1203:   strcat(tmpout,preop2);
 1204:   strcat(tmpout,fileres);
 1205:   return tmpout;
 1206: }
 1207: 
 1208: char *asc_diff_time(long time_sec, char ascdiff[])
 1209: {
 1210:   long sec_left, days, hours, minutes;
 1211:   days = (time_sec) / (60*60*24);
 1212:   sec_left = (time_sec) % (60*60*24);
 1213:   hours = (sec_left) / (60*60) ;
 1214:   sec_left = (sec_left) %(60*60);
 1215:   minutes = (sec_left) /60;
 1216:   sec_left = (sec_left) % (60);
 1217:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1218:   return ascdiff;
 1219: }
 1220: 
 1221: /***************** f1dim *************************/
 1222: extern int ncom; 
 1223: extern double *pcom,*xicom;
 1224: extern double (*nrfunc)(double []); 
 1225:  
 1226: double f1dim(double x) 
 1227: { 
 1228:   int j; 
 1229:   double f;
 1230:   double *xt; 
 1231:  
 1232:   xt=vector(1,ncom); 
 1233:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1234:   f=(*nrfunc)(xt); 
 1235:   free_vector(xt,1,ncom); 
 1236:   return f; 
 1237: } 
 1238: 
 1239: /*****************brent *************************/
 1240: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1241: { 
 1242:   int iter; 
 1243:   double a,b,d,etemp;
 1244:   double fu=0,fv,fw,fx;
 1245:   double ftemp=0.;
 1246:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1247:   double e=0.0; 
 1248:  
 1249:   a=(ax < cx ? ax : cx); 
 1250:   b=(ax > cx ? ax : cx); 
 1251:   x=w=v=bx; 
 1252:   fw=fv=fx=(*f)(x); 
 1253:   for (iter=1;iter<=ITMAX;iter++) { 
 1254:     xm=0.5*(a+b); 
 1255:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1256:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1257:     printf(".");fflush(stdout);
 1258:     fprintf(ficlog,".");fflush(ficlog);
 1259: #ifdef DEBUGBRENT
 1260:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1261:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1262:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1263: #endif
 1264:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1265:       *xmin=x; 
 1266:       return fx; 
 1267:     } 
 1268:     ftemp=fu;
 1269:     if (fabs(e) > tol1) { 
 1270:       r=(x-w)*(fx-fv); 
 1271:       q=(x-v)*(fx-fw); 
 1272:       p=(x-v)*q-(x-w)*r; 
 1273:       q=2.0*(q-r); 
 1274:       if (q > 0.0) p = -p; 
 1275:       q=fabs(q); 
 1276:       etemp=e; 
 1277:       e=d; 
 1278:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1279: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1280:       else { 
 1281: 	d=p/q; 
 1282: 	u=x+d; 
 1283: 	if (u-a < tol2 || b-u < tol2) 
 1284: 	  d=SIGN(tol1,xm-x); 
 1285:       } 
 1286:     } else { 
 1287:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1288:     } 
 1289:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1290:     fu=(*f)(u); 
 1291:     if (fu <= fx) { 
 1292:       if (u >= x) a=x; else b=x; 
 1293:       SHFT(v,w,x,u) 
 1294:       SHFT(fv,fw,fx,fu) 
 1295:     } else { 
 1296:       if (u < x) a=u; else b=u; 
 1297:       if (fu <= fw || w == x) { 
 1298: 	v=w; 
 1299: 	w=u; 
 1300: 	fv=fw; 
 1301: 	fw=fu; 
 1302:       } else if (fu <= fv || v == x || v == w) { 
 1303: 	v=u; 
 1304: 	fv=fu; 
 1305:       } 
 1306:     } 
 1307:   } 
 1308:   nrerror("Too many iterations in brent"); 
 1309:   *xmin=x; 
 1310:   return fx; 
 1311: } 
 1312: 
 1313: /****************** mnbrak ***********************/
 1314: 
 1315: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1316: 	    double (*func)(double)) 
 1317: { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
 1318: the downhill direction (defined by the function as evaluated at the initial points) and returns
 1319: new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
 1320: values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
 1321:    */
 1322:   double ulim,u,r,q, dum;
 1323:   double fu; 
 1324:  
 1325:   *fa=(*func)(*ax); 
 1326:   *fb=(*func)(*bx); 
 1327:   if (*fb > *fa) { 
 1328:     SHFT(dum,*ax,*bx,dum) 
 1329:     SHFT(dum,*fb,*fa,dum) 
 1330:   } 
 1331:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1332:   *fc=(*func)(*cx); 
 1333: #ifdef DEBUG
 1334:   printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
 1335:   fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
 1336: #endif
 1337:   while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
 1338:     r=(*bx-*ax)*(*fb-*fc); 
 1339:     q=(*bx-*cx)*(*fb-*fa); 
 1340:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1341:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
 1342:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
 1343:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
 1344:       fu=(*func)(u); 
 1345: #ifdef DEBUG
 1346:       /* f(x)=A(x-u)**2+f(u) */
 1347:       double A, fparabu; 
 1348:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
 1349:       fparabu= *fa - A*(*ax-u)*(*ax-u);
 1350:       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1351:       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1352:       /* And thus,it can be that fu > *fc even if fparabu < *fc */
 1353:       /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
 1354:         (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
 1355:       /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
 1356: #endif 
 1357: #ifdef MNBRAKORI
 1358: #else
 1359:       if (fu > *fc) {
 1360: #ifdef DEBUG
 1361:       printf("mnbrak4  fu > fc \n");
 1362:       fprintf(ficlog, "mnbrak4 fu > fc\n");
 1363: #endif
 1364: 	/* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
 1365: 	/* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
 1366: 	dum=u; /* Shifting c and u */
 1367: 	u = *cx;
 1368: 	*cx = dum;
 1369: 	dum = fu;
 1370: 	fu = *fc;
 1371: 	*fc =dum;
 1372:       } else { /* end */
 1373: #ifdef DEBUG
 1374:       printf("mnbrak3  fu < fc \n");
 1375:       fprintf(ficlog, "mnbrak3 fu < fc\n");
 1376: #endif
 1377: 	dum=u; /* Shifting c and u */
 1378: 	u = *cx;
 1379: 	*cx = dum;
 1380: 	dum = fu;
 1381: 	fu = *fc;
 1382: 	*fc =dum;
 1383:       }
 1384: #endif
 1385:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 1386: #ifdef DEBUG
 1387:       printf("mnbrak2  u after c but before ulim\n");
 1388:       fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
 1389: #endif
 1390:       fu=(*func)(u); 
 1391:       if (fu < *fc) { 
 1392: #ifdef DEBUG
 1393:       printf("mnbrak2  u after c but before ulim AND fu < fc\n");
 1394:       fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
 1395: #endif
 1396: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1397: 	SHFT(*fb,*fc,fu,(*func)(u)) 
 1398:       } 
 1399:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 1400: #ifdef DEBUG
 1401:       printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
 1402:       fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
 1403: #endif
 1404:       u=ulim; 
 1405:       fu=(*func)(u); 
 1406:     } else { /* u could be left to b (if r > q parabola has a maximum) */
 1407: #ifdef DEBUG
 1408:       printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 1409:       fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 1410: #endif
 1411:       u=(*cx)+GOLD*(*cx-*bx); 
 1412:       fu=(*func)(u); 
 1413:     } /* end tests */
 1414:     SHFT(*ax,*bx,*cx,u) 
 1415:     SHFT(*fa,*fb,*fc,fu) 
 1416: #ifdef DEBUG
 1417:       printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 1418:       fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 1419: #endif
 1420:   } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
 1421: } 
 1422: 
 1423: /*************** linmin ************************/
 1424: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 1425: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
 1426: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 1427: the value of func at the returned location p . This is actually all accomplished by calling the
 1428: routines mnbrak and brent .*/
 1429: int ncom; 
 1430: double *pcom,*xicom;
 1431: double (*nrfunc)(double []); 
 1432:  
 1433: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1434: { 
 1435:   double brent(double ax, double bx, double cx, 
 1436: 	       double (*f)(double), double tol, double *xmin); 
 1437:   double f1dim(double x); 
 1438:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1439: 	      double *fc, double (*func)(double)); 
 1440:   int j; 
 1441:   double xx,xmin,bx,ax; 
 1442:   double fx,fb,fa;
 1443:  
 1444:   ncom=n; 
 1445:   pcom=vector(1,n); 
 1446:   xicom=vector(1,n); 
 1447:   nrfunc=func; 
 1448:   for (j=1;j<=n;j++) { 
 1449:     pcom[j]=p[j]; 
 1450:     xicom[j]=xi[j]; 
 1451:   } 
 1452:   ax=0.0; 
 1453:   xx=1.0; 
 1454:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
 1455:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
 1456: #ifdef DEBUG
 1457:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1458:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1459: #endif
 1460:   for (j=1;j<=n;j++) { 
 1461:     xi[j] *= xmin; 
 1462:     p[j] += xi[j]; 
 1463:   } 
 1464:   free_vector(xicom,1,n); 
 1465:   free_vector(pcom,1,n); 
 1466: } 
 1467: 
 1468: 
 1469: /*************** powell ************************/
 1470: /*
 1471: Minimization of a function func of n variables. Input consists of an initial starting point
 1472: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 1473: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
 1474: such that failure to decrease by more than this amount on one iteration signals doneness. On
 1475: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 1476: function value at p , and iter is the number of iterations taken. The routine linmin is used.
 1477:  */
 1478: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1479: 	    double (*func)(double [])) 
 1480: { 
 1481:   void linmin(double p[], double xi[], int n, double *fret, 
 1482: 	      double (*func)(double [])); 
 1483:   int i,ibig,j; 
 1484:   double del,t,*pt,*ptt,*xit;
 1485:   double directest;
 1486:   double fp,fptt;
 1487:   double *xits;
 1488:   int niterf, itmp;
 1489: 
 1490:   pt=vector(1,n); 
 1491:   ptt=vector(1,n); 
 1492:   xit=vector(1,n); 
 1493:   xits=vector(1,n); 
 1494:   *fret=(*func)(p); 
 1495:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1496:     rcurr_time = time(NULL);  
 1497:   for (*iter=1;;++(*iter)) { 
 1498:     fp=(*fret); 
 1499:     ibig=0; 
 1500:     del=0.0; 
 1501:     rlast_time=rcurr_time;
 1502:     /* (void) gettimeofday(&curr_time,&tzp); */
 1503:     rcurr_time = time(NULL);  
 1504:     curr_time = *localtime(&rcurr_time);
 1505:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 1506:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 1507: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 1508:    for (i=1;i<=n;i++) {
 1509:       printf(" %d %.12f",i, p[i]);
 1510:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1511:       fprintf(ficrespow," %.12lf", p[i]);
 1512:     }
 1513:     printf("\n");
 1514:     fprintf(ficlog,"\n");
 1515:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1516:     if(*iter <=3){
 1517:       tml = *localtime(&rcurr_time);
 1518:       strcpy(strcurr,asctime(&tml));
 1519:       rforecast_time=rcurr_time; 
 1520:       itmp = strlen(strcurr);
 1521:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1522: 	strcurr[itmp-1]='\0';
 1523:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1524:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1525:       for(niterf=10;niterf<=30;niterf+=10){
 1526: 	rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 1527: 	forecast_time = *localtime(&rforecast_time);
 1528: 	strcpy(strfor,asctime(&forecast_time));
 1529: 	itmp = strlen(strfor);
 1530: 	if(strfor[itmp-1]=='\n')
 1531: 	strfor[itmp-1]='\0';
 1532: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1533: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1534:       }
 1535:     }
 1536:     for (i=1;i<=n;i++) { 
 1537:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1538:       fptt=(*fret); 
 1539: #ifdef DEBUG
 1540: 	  printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1541: 	  fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1542: #endif
 1543:       printf("%d",i);fflush(stdout);
 1544:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1545:       linmin(p,xit,n,fret,func); /* xit[n] has been loaded for direction i */
 1546:       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
 1547: 				       because that direction will be replaced unless the gain del is small
 1548: 				      in comparison with the 'probable' gain, mu^2, with the last average direction.
 1549: 				      Unless the n directions are conjugate some gain in the determinant may be obtained
 1550: 				      with the new direction.
 1551: 				      */
 1552: 	del=fabs(fptt-(*fret)); 
 1553: 	ibig=i; 
 1554:       } 
 1555: #ifdef DEBUG
 1556:       printf("%d %.12e",i,(*fret));
 1557:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1558:       for (j=1;j<=n;j++) {
 1559: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1560: 	printf(" x(%d)=%.12e",j,xit[j]);
 1561: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1562:       }
 1563:       for(j=1;j<=n;j++) {
 1564: 	printf(" p(%d)=%.12e",j,p[j]);
 1565: 	fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 1566:       }
 1567:       printf("\n");
 1568:       fprintf(ficlog,"\n");
 1569: #endif
 1570:     } /* end i */
 1571:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
 1572: #ifdef DEBUG
 1573:       int k[2],l;
 1574:       k[0]=1;
 1575:       k[1]=-1;
 1576:       printf("Max: %.12e",(*func)(p));
 1577:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1578:       for (j=1;j<=n;j++) {
 1579: 	printf(" %.12e",p[j]);
 1580: 	fprintf(ficlog," %.12e",p[j]);
 1581:       }
 1582:       printf("\n");
 1583:       fprintf(ficlog,"\n");
 1584:       for(l=0;l<=1;l++) {
 1585: 	for (j=1;j<=n;j++) {
 1586: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1587: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1588: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1589: 	}
 1590: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1591: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1592:       }
 1593: #endif
 1594: 
 1595: 
 1596:       free_vector(xit,1,n); 
 1597:       free_vector(xits,1,n); 
 1598:       free_vector(ptt,1,n); 
 1599:       free_vector(pt,1,n); 
 1600:       return; 
 1601:     } 
 1602:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1603:     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
 1604:       ptt[j]=2.0*p[j]-pt[j]; 
 1605:       xit[j]=p[j]-pt[j]; 
 1606:       pt[j]=p[j]; 
 1607:     } 
 1608:     fptt=(*func)(ptt); /* f_3 */
 1609:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 1610:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 1611:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 1612:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
 1613:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
 1614:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 1615:       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
 1616:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
 1617: #ifdef NRCORIGINAL
 1618:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
 1619: #else
 1620:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
 1621:       t= t- del*SQR(fp-fptt);
 1622: #endif
 1623:       directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
 1624: #ifdef DEBUG
 1625:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1626:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1627:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1628: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1629:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1630: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1631:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1632:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1633: #endif
 1634: #ifdef POWELLORIGINAL
 1635:       if (t < 0.0) { /* Then we use it for new direction */
 1636: #else
 1637:       if (directest*t < 0.0) { /* Contradiction between both tests */
 1638:       printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt);
 1639:       printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
 1640:       fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt);
 1641:       fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
 1642:     } 
 1643:       if (directest < 0.0) { /* Then we use it for new direction */
 1644: #endif
 1645: 	linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
 1646: 	for (j=1;j<=n;j++) { 
 1647: 	  xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
 1648: 	  xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
 1649: 	}
 1650: 	printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1651: 	fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1652: 
 1653: #ifdef DEBUG
 1654: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1655: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1656: 	for(j=1;j<=n;j++){
 1657: 	  printf(" %.12e",xit[j]);
 1658: 	  fprintf(ficlog," %.12e",xit[j]);
 1659: 	}
 1660: 	printf("\n");
 1661: 	fprintf(ficlog,"\n");
 1662: #endif
 1663:       } /* end of t negative */
 1664:     } /* end if (fptt < fp)  */
 1665:   } 
 1666: } 
 1667: 
 1668: /**** Prevalence limit (stable or period prevalence)  ****************/
 1669: 
 1670: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1671: {
 1672:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1673:      matrix by transitions matrix until convergence is reached */
 1674:   
 1675:   int i, ii,j,k;
 1676:   double min, max, maxmin, maxmax,sumnew=0.;
 1677:   /* double **matprod2(); */ /* test */
 1678:   double **out, cov[NCOVMAX+1], **pmij();
 1679:   double **newm;
 1680:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1681:   
 1682:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1683:     for (j=1;j<=nlstate+ndeath;j++){
 1684:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1685:     }
 1686:   
 1687:   cov[1]=1.;
 1688:   
 1689:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1690:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1691:     newm=savm;
 1692:     /* Covariates have to be included here again */
 1693:     cov[2]=agefin;
 1694:     
 1695:     for (k=1; k<=cptcovn;k++) {
 1696:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1697:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 1698:     }
 1699:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1700:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 1701:     /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
 1702:     
 1703:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1704:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1705:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1706:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1707:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1708:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1709:     
 1710:     savm=oldm;
 1711:     oldm=newm;
 1712:     maxmax=0.;
 1713:     for(j=1;j<=nlstate;j++){
 1714:       min=1.;
 1715:       max=0.;
 1716:       for(i=1; i<=nlstate; i++) {
 1717: 	sumnew=0;
 1718: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1719: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1720:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1721: 	max=FMAX(max,prlim[i][j]);
 1722: 	min=FMIN(min,prlim[i][j]);
 1723:       }
 1724:       maxmin=max-min;
 1725:       maxmax=FMAX(maxmax,maxmin);
 1726:     } /* j loop */
 1727:     if(maxmax < ftolpl){
 1728:       return prlim;
 1729:     }
 1730:   } /* age loop */
 1731:   return prlim; /* should not reach here */
 1732: }
 1733: 
 1734: /*************** transition probabilities ***************/ 
 1735: 
 1736: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1737: {
 1738:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1739:      computes the probability to be observed in state j being in state i by appying the
 1740:      model to the ncovmodel covariates (including constant and age).
 1741:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1742:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1743:      ncth covariate in the global vector x is given by the formula:
 1744:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1745:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1746:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1747:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1748:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1749:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1750:   */
 1751:   double s1, lnpijopii;
 1752:   /*double t34;*/
 1753:   int i,j, nc, ii, jj;
 1754: 
 1755:     for(i=1; i<= nlstate; i++){
 1756:       for(j=1; j<i;j++){
 1757: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1758: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1759: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1760: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1761: 	}
 1762: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1763: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1764:       }
 1765:       for(j=i+1; j<=nlstate+ndeath;j++){
 1766: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1767: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1768: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1769: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1770: 	}
 1771: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1772:       }
 1773:     }
 1774:     
 1775:     for(i=1; i<= nlstate; i++){
 1776:       s1=0;
 1777:       for(j=1; j<i; j++){
 1778: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1779: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1780:       }
 1781:       for(j=i+1; j<=nlstate+ndeath; j++){
 1782: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1783: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1784:       }
 1785:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1786:       ps[i][i]=1./(s1+1.);
 1787:       /* Computing other pijs */
 1788:       for(j=1; j<i; j++)
 1789: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1790:       for(j=i+1; j<=nlstate+ndeath; j++)
 1791: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1792:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1793:     } /* end i */
 1794:     
 1795:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1796:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1797: 	ps[ii][jj]=0;
 1798: 	ps[ii][ii]=1;
 1799:       }
 1800:     }
 1801:     
 1802:     
 1803:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1804:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1805:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 1806:     /*   } */
 1807:     /*   printf("\n "); */
 1808:     /* } */
 1809:     /* printf("\n ");printf("%lf ",cov[2]);*/
 1810:     /*
 1811:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1812:       goto end;*/
 1813:     return ps;
 1814: }
 1815: 
 1816: /**************** Product of 2 matrices ******************/
 1817: 
 1818: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 1819: {
 1820:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1821:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1822:   /* in, b, out are matrice of pointers which should have been initialized 
 1823:      before: only the contents of out is modified. The function returns
 1824:      a pointer to pointers identical to out */
 1825:   int i, j, k;
 1826:   for(i=nrl; i<= nrh; i++)
 1827:     for(k=ncolol; k<=ncoloh; k++){
 1828:       out[i][k]=0.;
 1829:       for(j=ncl; j<=nch; j++)
 1830:   	out[i][k] +=in[i][j]*b[j][k];
 1831:     }
 1832:   return out;
 1833: }
 1834: 
 1835: 
 1836: /************* Higher Matrix Product ***************/
 1837: 
 1838: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1839: {
 1840:   /* Computes the transition matrix starting at age 'age' over 
 1841:      'nhstepm*hstepm*stepm' months (i.e. until
 1842:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1843:      nhstepm*hstepm matrices. 
 1844:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1845:      (typically every 2 years instead of every month which is too big 
 1846:      for the memory).
 1847:      Model is determined by parameters x and covariates have to be 
 1848:      included manually here. 
 1849: 
 1850:      */
 1851: 
 1852:   int i, j, d, h, k;
 1853:   double **out, cov[NCOVMAX+1];
 1854:   double **newm;
 1855: 
 1856:   /* Hstepm could be zero and should return the unit matrix */
 1857:   for (i=1;i<=nlstate+ndeath;i++)
 1858:     for (j=1;j<=nlstate+ndeath;j++){
 1859:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1860:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1861:     }
 1862:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1863:   for(h=1; h <=nhstepm; h++){
 1864:     for(d=1; d <=hstepm; d++){
 1865:       newm=savm;
 1866:       /* Covariates have to be included here again */
 1867:       cov[1]=1.;
 1868:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1869:       for (k=1; k<=cptcovn;k++) 
 1870: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1871:       for (k=1; k<=cptcovage;k++)
 1872: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1873:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 1874: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1875: 
 1876: 
 1877:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1878:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1879:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1880: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1881:       savm=oldm;
 1882:       oldm=newm;
 1883:     }
 1884:     for(i=1; i<=nlstate+ndeath; i++)
 1885:       for(j=1;j<=nlstate+ndeath;j++) {
 1886: 	po[i][j][h]=newm[i][j];
 1887: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 1888:       }
 1889:     /*printf("h=%d ",h);*/
 1890:   } /* end h */
 1891: /*     printf("\n H=%d \n",h); */
 1892:   return po;
 1893: }
 1894: 
 1895: #ifdef NLOPT
 1896:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
 1897:   double fret;
 1898:   double *xt;
 1899:   int j;
 1900:   myfunc_data *d2 = (myfunc_data *) pd;
 1901: /* xt = (p1-1); */
 1902:   xt=vector(1,n); 
 1903:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
 1904: 
 1905:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
 1906:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 1907:   printf("Function = %.12lf ",fret);
 1908:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 1909:   printf("\n");
 1910:  free_vector(xt,1,n);
 1911:   return fret;
 1912: }
 1913: #endif
 1914: 
 1915: /*************** log-likelihood *************/
 1916: double func( double *x)
 1917: {
 1918:   int i, ii, j, k, mi, d, kk;
 1919:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1920:   double **out;
 1921:   double sw; /* Sum of weights */
 1922:   double lli; /* Individual log likelihood */
 1923:   int s1, s2;
 1924:   double bbh, survp;
 1925:   long ipmx;
 1926:   /*extern weight */
 1927:   /* We are differentiating ll according to initial status */
 1928:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1929:   /*for(i=1;i<imx;i++) 
 1930:     printf(" %d\n",s[4][i]);
 1931:   */
 1932: 
 1933:   ++countcallfunc;
 1934: 
 1935:   cov[1]=1.;
 1936: 
 1937:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1938: 
 1939:   if(mle==1){
 1940:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1941:       /* Computes the values of the ncovmodel covariates of the model
 1942: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 1943: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 1944: 	 to be observed in j being in i according to the model.
 1945:        */
 1946:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 1947: 	cov[2+k]=covar[Tvar[k]][i];
 1948:       }
 1949:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 1950: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 1951: 	 has been calculated etc */
 1952:       for(mi=1; mi<= wav[i]-1; mi++){
 1953: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1954: 	  for (j=1;j<=nlstate+ndeath;j++){
 1955: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1956: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1957: 	  }
 1958: 	for(d=0; d<dh[mi][i]; d++){
 1959: 	  newm=savm;
 1960: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1961: 	  for (kk=1; kk<=cptcovage;kk++) {
 1962: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 1963: 	  }
 1964: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1965: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1966: 	  savm=oldm;
 1967: 	  oldm=newm;
 1968: 	} /* end mult */
 1969:       
 1970: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1971: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1972: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1973: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1974: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1975: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1976: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1977: 	 * probability in order to take into account the bias as a fraction of the way
 1978: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1979: 	 * -stepm/2 to stepm/2 .
 1980: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1981: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1982: 	 */
 1983: 	s1=s[mw[mi][i]][i];
 1984: 	s2=s[mw[mi+1][i]][i];
 1985: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1986: 	/* bias bh is positive if real duration
 1987: 	 * is higher than the multiple of stepm and negative otherwise.
 1988: 	 */
 1989: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1990: 	if( s2 > nlstate){ 
 1991: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1992: 	     then the contribution to the likelihood is the probability to 
 1993: 	     die between last step unit time and current  step unit time, 
 1994: 	     which is also equal to probability to die before dh 
 1995: 	     minus probability to die before dh-stepm . 
 1996: 	     In version up to 0.92 likelihood was computed
 1997: 	as if date of death was unknown. Death was treated as any other
 1998: 	health state: the date of the interview describes the actual state
 1999: 	and not the date of a change in health state. The former idea was
 2000: 	to consider that at each interview the state was recorded
 2001: 	(healthy, disable or death) and IMaCh was corrected; but when we
 2002: 	introduced the exact date of death then we should have modified
 2003: 	the contribution of an exact death to the likelihood. This new
 2004: 	contribution is smaller and very dependent of the step unit
 2005: 	stepm. It is no more the probability to die between last interview
 2006: 	and month of death but the probability to survive from last
 2007: 	interview up to one month before death multiplied by the
 2008: 	probability to die within a month. Thanks to Chris
 2009: 	Jackson for correcting this bug.  Former versions increased
 2010: 	mortality artificially. The bad side is that we add another loop
 2011: 	which slows down the processing. The difference can be up to 10%
 2012: 	lower mortality.
 2013: 	  */
 2014: 	/* If, at the beginning of the maximization mostly, the
 2015: 	   cumulative probability or probability to be dead is
 2016: 	   constant (ie = 1) over time d, the difference is equal to
 2017: 	   0.  out[s1][3] = savm[s1][3]: probability, being at state
 2018: 	   s1 at precedent wave, to be dead a month before current
 2019: 	   wave is equal to probability, being at state s1 at
 2020: 	   precedent wave, to be dead at mont of the current
 2021: 	   wave. Then the observed probability (that this person died)
 2022: 	   is null according to current estimated parameter. In fact,
 2023: 	   it should be very low but not zero otherwise the log go to
 2024: 	   infinity.
 2025: 	*/
 2026: /* #ifdef INFINITYORIGINAL */
 2027: /* 	    lli=log(out[s1][s2] - savm[s1][s2]); */
 2028: /* #else */
 2029: /* 	  if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
 2030: /* 	    lli=log(mytinydouble); */
 2031: /* 	  else */
 2032: /* 	    lli=log(out[s1][s2] - savm[s1][s2]); */
 2033: /* #endif */
 2034: 	    lli=log(out[s1][s2] - savm[s1][s2]);
 2035: 
 2036: 	} else if  (s2==-2) {
 2037: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 2038: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2039: 	  /*survp += out[s1][j]; */
 2040: 	  lli= log(survp);
 2041: 	}
 2042: 	
 2043:  	else if  (s2==-4) { 
 2044: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 2045: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2046:  	  lli= log(survp); 
 2047:  	} 
 2048: 
 2049:  	else if  (s2==-5) { 
 2050:  	  for (j=1,survp=0. ; j<=2; j++)  
 2051: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2052:  	  lli= log(survp); 
 2053:  	} 
 2054: 	
 2055: 	else{
 2056: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2057: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 2058: 	} 
 2059: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 2060: 	/*if(lli ==000.0)*/
 2061: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 2062:   	ipmx +=1;
 2063: 	sw += weight[i];
 2064: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2065: 	/* if (lli < log(mytinydouble)){ */
 2066: 	/*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
 2067: 	/*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
 2068: 	/* } */
 2069:       } /* end of wave */
 2070:     } /* end of individual */
 2071:   }  else if(mle==2){
 2072:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2073:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2074:       for(mi=1; mi<= wav[i]-1; mi++){
 2075: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2076: 	  for (j=1;j<=nlstate+ndeath;j++){
 2077: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2078: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2079: 	  }
 2080: 	for(d=0; d<=dh[mi][i]; d++){
 2081: 	  newm=savm;
 2082: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2083: 	  for (kk=1; kk<=cptcovage;kk++) {
 2084: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2085: 	  }
 2086: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2087: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2088: 	  savm=oldm;
 2089: 	  oldm=newm;
 2090: 	} /* end mult */
 2091:       
 2092: 	s1=s[mw[mi][i]][i];
 2093: 	s2=s[mw[mi+1][i]][i];
 2094: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2095: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2096: 	ipmx +=1;
 2097: 	sw += weight[i];
 2098: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2099:       } /* end of wave */
 2100:     } /* end of individual */
 2101:   }  else if(mle==3){  /* exponential inter-extrapolation */
 2102:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2103:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2104:       for(mi=1; mi<= wav[i]-1; mi++){
 2105: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2106: 	  for (j=1;j<=nlstate+ndeath;j++){
 2107: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2108: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2109: 	  }
 2110: 	for(d=0; d<dh[mi][i]; d++){
 2111: 	  newm=savm;
 2112: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2113: 	  for (kk=1; kk<=cptcovage;kk++) {
 2114: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2115: 	  }
 2116: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2117: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2118: 	  savm=oldm;
 2119: 	  oldm=newm;
 2120: 	} /* end mult */
 2121:       
 2122: 	s1=s[mw[mi][i]][i];
 2123: 	s2=s[mw[mi+1][i]][i];
 2124: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2125: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2126: 	ipmx +=1;
 2127: 	sw += weight[i];
 2128: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2129:       } /* end of wave */
 2130:     } /* end of individual */
 2131:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 2132:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2133:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2134:       for(mi=1; mi<= wav[i]-1; mi++){
 2135: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2136: 	  for (j=1;j<=nlstate+ndeath;j++){
 2137: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2138: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2139: 	  }
 2140: 	for(d=0; d<dh[mi][i]; d++){
 2141: 	  newm=savm;
 2142: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2143: 	  for (kk=1; kk<=cptcovage;kk++) {
 2144: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2145: 	  }
 2146: 	
 2147: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2148: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2149: 	  savm=oldm;
 2150: 	  oldm=newm;
 2151: 	} /* end mult */
 2152:       
 2153: 	s1=s[mw[mi][i]][i];
 2154: 	s2=s[mw[mi+1][i]][i];
 2155: 	if( s2 > nlstate){ 
 2156: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 2157: 	}else{
 2158: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2159: 	}
 2160: 	ipmx +=1;
 2161: 	sw += weight[i];
 2162: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2163: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2164:       } /* end of wave */
 2165:     } /* end of individual */
 2166:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 2167:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2168:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2169:       for(mi=1; mi<= wav[i]-1; mi++){
 2170: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2171: 	  for (j=1;j<=nlstate+ndeath;j++){
 2172: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2173: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2174: 	  }
 2175: 	for(d=0; d<dh[mi][i]; d++){
 2176: 	  newm=savm;
 2177: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2178: 	  for (kk=1; kk<=cptcovage;kk++) {
 2179: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2180: 	  }
 2181: 	
 2182: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2183: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2184: 	  savm=oldm;
 2185: 	  oldm=newm;
 2186: 	} /* end mult */
 2187:       
 2188: 	s1=s[mw[mi][i]][i];
 2189: 	s2=s[mw[mi+1][i]][i];
 2190: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2191: 	ipmx +=1;
 2192: 	sw += weight[i];
 2193: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2194: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 2195:       } /* end of wave */
 2196:     } /* end of individual */
 2197:   } /* End of if */
 2198:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2199:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2200:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2201:   return -l;
 2202: }
 2203: 
 2204: /*************** log-likelihood *************/
 2205: double funcone( double *x)
 2206: {
 2207:   /* Same as likeli but slower because of a lot of printf and if */
 2208:   int i, ii, j, k, mi, d, kk;
 2209:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 2210:   double **out;
 2211:   double lli; /* Individual log likelihood */
 2212:   double llt;
 2213:   int s1, s2;
 2214:   double bbh, survp;
 2215:   /*extern weight */
 2216:   /* We are differentiating ll according to initial status */
 2217:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 2218:   /*for(i=1;i<imx;i++) 
 2219:     printf(" %d\n",s[4][i]);
 2220:   */
 2221:   cov[1]=1.;
 2222: 
 2223:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 2224: 
 2225:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2226:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2227:     for(mi=1; mi<= wav[i]-1; mi++){
 2228:       for (ii=1;ii<=nlstate+ndeath;ii++)
 2229: 	for (j=1;j<=nlstate+ndeath;j++){
 2230: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2231: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2232: 	}
 2233:       for(d=0; d<dh[mi][i]; d++){
 2234: 	newm=savm;
 2235: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2236: 	for (kk=1; kk<=cptcovage;kk++) {
 2237: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2238: 	}
 2239: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 2240: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2241: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2242: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 2243: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 2244: 	savm=oldm;
 2245: 	oldm=newm;
 2246:       } /* end mult */
 2247:       
 2248:       s1=s[mw[mi][i]][i];
 2249:       s2=s[mw[mi+1][i]][i];
 2250:       bbh=(double)bh[mi][i]/(double)stepm; 
 2251:       /* bias is positive if real duration
 2252:        * is higher than the multiple of stepm and negative otherwise.
 2253:        */
 2254:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 2255: 	lli=log(out[s1][s2] - savm[s1][s2]);
 2256:       } else if  (s2==-2) {
 2257: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 2258: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2259: 	lli= log(survp);
 2260:       }else if (mle==1){
 2261: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2262:       } else if(mle==2){
 2263: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2264:       } else if(mle==3){  /* exponential inter-extrapolation */
 2265: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2266:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 2267: 	lli=log(out[s1][s2]); /* Original formula */
 2268:       } else{  /* mle=0 back to 1 */
 2269: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2270: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 2271:       } /* End of if */
 2272:       ipmx +=1;
 2273:       sw += weight[i];
 2274:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2275:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2276:       if(globpr){
 2277: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 2278:  %11.6f %11.6f %11.6f ", \
 2279: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 2280: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 2281: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 2282: 	  llt +=ll[k]*gipmx/gsw;
 2283: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 2284: 	}
 2285: 	fprintf(ficresilk," %10.6f\n", -llt);
 2286:       }
 2287:     } /* end of wave */
 2288:   } /* end of individual */
 2289:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2290:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2291:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2292:   if(globpr==0){ /* First time we count the contributions and weights */
 2293:     gipmx=ipmx;
 2294:     gsw=sw;
 2295:   }
 2296:   return -l;
 2297: }
 2298: 
 2299: 
 2300: /*************** function likelione ***********/
 2301: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 2302: {
 2303:   /* This routine should help understanding what is done with 
 2304:      the selection of individuals/waves and
 2305:      to check the exact contribution to the likelihood.
 2306:      Plotting could be done.
 2307:    */
 2308:   int k;
 2309: 
 2310:   if(*globpri !=0){ /* Just counts and sums, no printings */
 2311:     strcpy(fileresilk,"ilk"); 
 2312:     strcat(fileresilk,fileres);
 2313:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 2314:       printf("Problem with resultfile: %s\n", fileresilk);
 2315:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 2316:     }
 2317:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 2318:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 2319:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 2320:     for(k=1; k<=nlstate; k++) 
 2321:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 2322:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 2323:   }
 2324: 
 2325:   *fretone=(*funcone)(p);
 2326:   if(*globpri !=0){
 2327:     fclose(ficresilk);
 2328:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 2329:     fflush(fichtm); 
 2330:   } 
 2331:   return;
 2332: }
 2333: 
 2334: 
 2335: /*********** Maximum Likelihood Estimation ***************/
 2336: 
 2337: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 2338: {
 2339:   int i,j, iter=0;
 2340:   double **xi;
 2341:   double fret;
 2342:   double fretone; /* Only one call to likelihood */
 2343:   /*  char filerespow[FILENAMELENGTH];*/
 2344: 
 2345: #ifdef NLOPT
 2346:   int creturn;
 2347:   nlopt_opt opt;
 2348:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 2349:   double *lb;
 2350:   double minf; /* the minimum objective value, upon return */
 2351:   double * p1; /* Shifted parameters from 0 instead of 1 */
 2352:   myfunc_data dinst, *d = &dinst;
 2353: #endif
 2354: 
 2355: 
 2356:   xi=matrix(1,npar,1,npar);
 2357:   for (i=1;i<=npar;i++)
 2358:     for (j=1;j<=npar;j++)
 2359:       xi[i][j]=(i==j ? 1.0 : 0.0);
 2360:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 2361:   strcpy(filerespow,"pow"); 
 2362:   strcat(filerespow,fileres);
 2363:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 2364:     printf("Problem with resultfile: %s\n", filerespow);
 2365:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 2366:   }
 2367:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 2368:   for (i=1;i<=nlstate;i++)
 2369:     for(j=1;j<=nlstate+ndeath;j++)
 2370:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2371:   fprintf(ficrespow,"\n");
 2372: #ifdef POWELL
 2373:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2374: #endif
 2375: 
 2376: #ifdef NLOPT
 2377: #ifdef NEWUOA
 2378:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
 2379: #else
 2380:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
 2381: #endif
 2382:   lb=vector(0,npar-1);
 2383:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 2384:   nlopt_set_lower_bounds(opt, lb);
 2385:   nlopt_set_initial_step1(opt, 0.1);
 2386:   
 2387:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 2388:   d->function = func;
 2389:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
 2390:   nlopt_set_min_objective(opt, myfunc, d);
 2391:   nlopt_set_xtol_rel(opt, ftol);
 2392:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 2393:     printf("nlopt failed! %d\n",creturn); 
 2394:   }
 2395:   else {
 2396:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
 2397:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 2398:     iter=1; /* not equal */
 2399:   }
 2400:   nlopt_destroy(opt);
 2401: #endif
 2402:   free_matrix(xi,1,npar,1,npar);
 2403:   fclose(ficrespow);
 2404:   printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2405:   fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2406:   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2407: 
 2408: }
 2409: 
 2410: /**** Computes Hessian and covariance matrix ***/
 2411: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2412: {
 2413:   double  **a,**y,*x,pd;
 2414:   double **hess;
 2415:   int i, j;
 2416:   int *indx;
 2417: 
 2418:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2419:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2420:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2421:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2422:   double gompertz(double p[]);
 2423:   hess=matrix(1,npar,1,npar);
 2424: 
 2425:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2426:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2427:   for (i=1;i<=npar;i++){
 2428:     printf("%d",i);fflush(stdout);
 2429:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2430:    
 2431:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2432:     
 2433:     /*  printf(" %f ",p[i]);
 2434: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2435:   }
 2436:   
 2437:   for (i=1;i<=npar;i++) {
 2438:     for (j=1;j<=npar;j++)  {
 2439:       if (j>i) { 
 2440: 	printf(".%d%d",i,j);fflush(stdout);
 2441: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2442: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2443: 	
 2444: 	hess[j][i]=hess[i][j];    
 2445: 	/*printf(" %lf ",hess[i][j]);*/
 2446:       }
 2447:     }
 2448:   }
 2449:   printf("\n");
 2450:   fprintf(ficlog,"\n");
 2451: 
 2452:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2453:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2454:   
 2455:   a=matrix(1,npar,1,npar);
 2456:   y=matrix(1,npar,1,npar);
 2457:   x=vector(1,npar);
 2458:   indx=ivector(1,npar);
 2459:   for (i=1;i<=npar;i++)
 2460:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2461:   ludcmp(a,npar,indx,&pd);
 2462: 
 2463:   for (j=1;j<=npar;j++) {
 2464:     for (i=1;i<=npar;i++) x[i]=0;
 2465:     x[j]=1;
 2466:     lubksb(a,npar,indx,x);
 2467:     for (i=1;i<=npar;i++){ 
 2468:       matcov[i][j]=x[i];
 2469:     }
 2470:   }
 2471: 
 2472:   printf("\n#Hessian matrix#\n");
 2473:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2474:   for (i=1;i<=npar;i++) { 
 2475:     for (j=1;j<=npar;j++) { 
 2476:       printf("%.3e ",hess[i][j]);
 2477:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2478:     }
 2479:     printf("\n");
 2480:     fprintf(ficlog,"\n");
 2481:   }
 2482: 
 2483:   /* Recompute Inverse */
 2484:   for (i=1;i<=npar;i++)
 2485:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2486:   ludcmp(a,npar,indx,&pd);
 2487: 
 2488:   /*  printf("\n#Hessian matrix recomputed#\n");
 2489: 
 2490:   for (j=1;j<=npar;j++) {
 2491:     for (i=1;i<=npar;i++) x[i]=0;
 2492:     x[j]=1;
 2493:     lubksb(a,npar,indx,x);
 2494:     for (i=1;i<=npar;i++){ 
 2495:       y[i][j]=x[i];
 2496:       printf("%.3e ",y[i][j]);
 2497:       fprintf(ficlog,"%.3e ",y[i][j]);
 2498:     }
 2499:     printf("\n");
 2500:     fprintf(ficlog,"\n");
 2501:   }
 2502:   */
 2503: 
 2504:   free_matrix(a,1,npar,1,npar);
 2505:   free_matrix(y,1,npar,1,npar);
 2506:   free_vector(x,1,npar);
 2507:   free_ivector(indx,1,npar);
 2508:   free_matrix(hess,1,npar,1,npar);
 2509: 
 2510: 
 2511: }
 2512: 
 2513: /*************** hessian matrix ****************/
 2514: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2515: {
 2516:   int i;
 2517:   int l=1, lmax=20;
 2518:   double k1,k2;
 2519:   double p2[MAXPARM+1]; /* identical to x */
 2520:   double res;
 2521:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2522:   double fx;
 2523:   int k=0,kmax=10;
 2524:   double l1;
 2525: 
 2526:   fx=func(x);
 2527:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2528:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2529:     l1=pow(10,l);
 2530:     delts=delt;
 2531:     for(k=1 ; k <kmax; k=k+1){
 2532:       delt = delta*(l1*k);
 2533:       p2[theta]=x[theta] +delt;
 2534:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2535:       p2[theta]=x[theta]-delt;
 2536:       k2=func(p2)-fx;
 2537:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2538:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2539:       
 2540: #ifdef DEBUGHESS
 2541:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2542:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2543: #endif
 2544:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2545:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2546: 	k=kmax;
 2547:       }
 2548:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2549: 	k=kmax; l=lmax*10;
 2550:       }
 2551:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2552: 	delts=delt;
 2553:       }
 2554:     }
 2555:   }
 2556:   delti[theta]=delts;
 2557:   return res; 
 2558:   
 2559: }
 2560: 
 2561: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2562: {
 2563:   int i;
 2564:   int l=1, lmax=20;
 2565:   double k1,k2,k3,k4,res,fx;
 2566:   double p2[MAXPARM+1];
 2567:   int k;
 2568: 
 2569:   fx=func(x);
 2570:   for (k=1; k<=2; k++) {
 2571:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2572:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2573:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2574:     k1=func(p2)-fx;
 2575:   
 2576:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2577:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2578:     k2=func(p2)-fx;
 2579:   
 2580:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2581:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2582:     k3=func(p2)-fx;
 2583:   
 2584:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2585:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2586:     k4=func(p2)-fx;
 2587:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2588: #ifdef DEBUG
 2589:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2590:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2591: #endif
 2592:   }
 2593:   return res;
 2594: }
 2595: 
 2596: /************** Inverse of matrix **************/
 2597: void ludcmp(double **a, int n, int *indx, double *d) 
 2598: { 
 2599:   int i,imax,j,k; 
 2600:   double big,dum,sum,temp; 
 2601:   double *vv; 
 2602:  
 2603:   vv=vector(1,n); 
 2604:   *d=1.0; 
 2605:   for (i=1;i<=n;i++) { 
 2606:     big=0.0; 
 2607:     for (j=1;j<=n;j++) 
 2608:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2609:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2610:     vv[i]=1.0/big; 
 2611:   } 
 2612:   for (j=1;j<=n;j++) { 
 2613:     for (i=1;i<j;i++) { 
 2614:       sum=a[i][j]; 
 2615:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2616:       a[i][j]=sum; 
 2617:     } 
 2618:     big=0.0; 
 2619:     for (i=j;i<=n;i++) { 
 2620:       sum=a[i][j]; 
 2621:       for (k=1;k<j;k++) 
 2622: 	sum -= a[i][k]*a[k][j]; 
 2623:       a[i][j]=sum; 
 2624:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2625: 	big=dum; 
 2626: 	imax=i; 
 2627:       } 
 2628:     } 
 2629:     if (j != imax) { 
 2630:       for (k=1;k<=n;k++) { 
 2631: 	dum=a[imax][k]; 
 2632: 	a[imax][k]=a[j][k]; 
 2633: 	a[j][k]=dum; 
 2634:       } 
 2635:       *d = -(*d); 
 2636:       vv[imax]=vv[j]; 
 2637:     } 
 2638:     indx[j]=imax; 
 2639:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2640:     if (j != n) { 
 2641:       dum=1.0/(a[j][j]); 
 2642:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2643:     } 
 2644:   } 
 2645:   free_vector(vv,1,n);  /* Doesn't work */
 2646: ;
 2647: } 
 2648: 
 2649: void lubksb(double **a, int n, int *indx, double b[]) 
 2650: { 
 2651:   int i,ii=0,ip,j; 
 2652:   double sum; 
 2653:  
 2654:   for (i=1;i<=n;i++) { 
 2655:     ip=indx[i]; 
 2656:     sum=b[ip]; 
 2657:     b[ip]=b[i]; 
 2658:     if (ii) 
 2659:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2660:     else if (sum) ii=i; 
 2661:     b[i]=sum; 
 2662:   } 
 2663:   for (i=n;i>=1;i--) { 
 2664:     sum=b[i]; 
 2665:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2666:     b[i]=sum/a[i][i]; 
 2667:   } 
 2668: } 
 2669: 
 2670: void pstamp(FILE *fichier)
 2671: {
 2672:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2673: }
 2674: 
 2675: /************ Frequencies ********************/
 2676: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2677: {  /* Some frequencies */
 2678:   
 2679:   int i, m, jk, j1, bool, z1,j;
 2680:   int first;
 2681:   double ***freq; /* Frequencies */
 2682:   double *pp, **prop;
 2683:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2684:   char fileresp[FILENAMELENGTH];
 2685:   
 2686:   pp=vector(1,nlstate);
 2687:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2688:   strcpy(fileresp,"p");
 2689:   strcat(fileresp,fileres);
 2690:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2691:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2692:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2693:     exit(0);
 2694:   }
 2695:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2696:   j1=0;
 2697:   
 2698:   j=cptcoveff;
 2699:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2700: 
 2701:   first=1;
 2702: 
 2703:   /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
 2704:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
 2705:   /*    j1++; */
 2706:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2707:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2708: 	scanf("%d", i);*/
 2709:       for (i=-5; i<=nlstate+ndeath; i++)  
 2710: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2711: 	  for(m=iagemin; m <= iagemax+3; m++)
 2712: 	    freq[i][jk][m]=0;
 2713:       
 2714:       for (i=1; i<=nlstate; i++)  
 2715: 	for(m=iagemin; m <= iagemax+3; m++)
 2716: 	  prop[i][m]=0;
 2717:       
 2718:       dateintsum=0;
 2719:       k2cpt=0;
 2720:       for (i=1; i<=imx; i++) {
 2721: 	bool=1;
 2722: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2723: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2724:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 2725:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2726:               bool=0;
 2727:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 2728:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 2729:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 2730:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 2731:             } 
 2732: 	}
 2733:  
 2734: 	if (bool==1){
 2735: 	  for(m=firstpass; m<=lastpass; m++){
 2736: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2737: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2738: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2739: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2740: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2741: 	      if (m<lastpass) {
 2742: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2743: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2744: 	      }
 2745: 	      
 2746: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2747: 		dateintsum=dateintsum+k2;
 2748: 		k2cpt++;
 2749: 	      }
 2750: 	      /*}*/
 2751: 	  }
 2752: 	}
 2753:       } /* end i */
 2754:        
 2755:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2756:       pstamp(ficresp);
 2757:       if  (cptcovn>0) {
 2758: 	fprintf(ficresp, "\n#********** Variable "); 
 2759: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2760: 	fprintf(ficresp, "**********\n#");
 2761: 	fprintf(ficlog, "\n#********** Variable "); 
 2762: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2763: 	fprintf(ficlog, "**********\n#");
 2764:       }
 2765:       for(i=1; i<=nlstate;i++) 
 2766: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2767:       fprintf(ficresp, "\n");
 2768:       
 2769:       for(i=iagemin; i <= iagemax+3; i++){
 2770: 	if(i==iagemax+3){
 2771: 	  fprintf(ficlog,"Total");
 2772: 	}else{
 2773: 	  if(first==1){
 2774: 	    first=0;
 2775: 	    printf("See log file for details...\n");
 2776: 	  }
 2777: 	  fprintf(ficlog,"Age %d", i);
 2778: 	}
 2779: 	for(jk=1; jk <=nlstate ; jk++){
 2780: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2781: 	    pp[jk] += freq[jk][m][i]; 
 2782: 	}
 2783: 	for(jk=1; jk <=nlstate ; jk++){
 2784: 	  for(m=-1, pos=0; m <=0 ; m++)
 2785: 	    pos += freq[jk][m][i];
 2786: 	  if(pp[jk]>=1.e-10){
 2787: 	    if(first==1){
 2788: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2789: 	    }
 2790: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2791: 	  }else{
 2792: 	    if(first==1)
 2793: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2794: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2795: 	  }
 2796: 	}
 2797: 
 2798: 	for(jk=1; jk <=nlstate ; jk++){
 2799: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2800: 	    pp[jk] += freq[jk][m][i];
 2801: 	}	
 2802: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2803: 	  pos += pp[jk];
 2804: 	  posprop += prop[jk][i];
 2805: 	}
 2806: 	for(jk=1; jk <=nlstate ; jk++){
 2807: 	  if(pos>=1.e-5){
 2808: 	    if(first==1)
 2809: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2810: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2811: 	  }else{
 2812: 	    if(first==1)
 2813: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2814: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2815: 	  }
 2816: 	  if( i <= iagemax){
 2817: 	    if(pos>=1.e-5){
 2818: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2819: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2820: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2821: 	    }
 2822: 	    else
 2823: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2824: 	  }
 2825: 	}
 2826: 	
 2827: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2828: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2829: 	    if(freq[jk][m][i] !=0 ) {
 2830: 	    if(first==1)
 2831: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2832: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2833: 	    }
 2834: 	if(i <= iagemax)
 2835: 	  fprintf(ficresp,"\n");
 2836: 	if(first==1)
 2837: 	  printf("Others in log...\n");
 2838: 	fprintf(ficlog,"\n");
 2839:       }
 2840:       /*}*/
 2841:   }
 2842:   dateintmean=dateintsum/k2cpt; 
 2843:  
 2844:   fclose(ficresp);
 2845:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2846:   free_vector(pp,1,nlstate);
 2847:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2848:   /* End of Freq */
 2849: }
 2850: 
 2851: /************ Prevalence ********************/
 2852: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2853: {  
 2854:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2855:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2856:      We still use firstpass and lastpass as another selection.
 2857:   */
 2858:  
 2859:   int i, m, jk, j1, bool, z1,j;
 2860: 
 2861:   double **prop;
 2862:   double posprop; 
 2863:   double  y2; /* in fractional years */
 2864:   int iagemin, iagemax;
 2865:   int first; /** to stop verbosity which is redirected to log file */
 2866: 
 2867:   iagemin= (int) agemin;
 2868:   iagemax= (int) agemax;
 2869:   /*pp=vector(1,nlstate);*/
 2870:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2871:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2872:   j1=0;
 2873:   
 2874:   /*j=cptcoveff;*/
 2875:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2876:   
 2877:   first=1;
 2878:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 2879:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 2880:       j1++;*/
 2881:       
 2882:       for (i=1; i<=nlstate; i++)  
 2883: 	for(m=iagemin; m <= iagemax+3; m++)
 2884: 	  prop[i][m]=0.0;
 2885:      
 2886:       for (i=1; i<=imx; i++) { /* Each individual */
 2887: 	bool=1;
 2888: 	if  (cptcovn>0) {
 2889: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2890: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2891: 	      bool=0;
 2892: 	} 
 2893: 	if (bool==1) { 
 2894: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2895: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2896: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2897: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2898: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2899: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2900:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2901: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2902:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2903:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2904:  	      } 
 2905: 	    }
 2906: 	  } /* end selection of waves */
 2907: 	}
 2908:       }
 2909:       for(i=iagemin; i <= iagemax+3; i++){  
 2910:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2911:  	  posprop += prop[jk][i]; 
 2912:  	} 
 2913: 	
 2914:  	for(jk=1; jk <=nlstate ; jk++){	    
 2915:  	  if( i <=  iagemax){ 
 2916:  	    if(posprop>=1.e-5){ 
 2917:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2918:  	    } else{
 2919: 	      if(first==1){
 2920: 		first=0;
 2921: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 2922: 	      }
 2923: 	    }
 2924:  	  } 
 2925:  	}/* end jk */ 
 2926:       }/* end i */ 
 2927:     /*} *//* end i1 */
 2928:   } /* end j1 */
 2929:   
 2930:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2931:   /*free_vector(pp,1,nlstate);*/
 2932:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2933: }  /* End of prevalence */
 2934: 
 2935: /************* Waves Concatenation ***************/
 2936: 
 2937: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2938: {
 2939:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2940:      Death is a valid wave (if date is known).
 2941:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2942:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2943:      and mw[mi+1][i]. dh depends on stepm.
 2944:      */
 2945: 
 2946:   int i, mi, m;
 2947:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2948:      double sum=0., jmean=0.;*/
 2949:   int first;
 2950:   int j, k=0,jk, ju, jl;
 2951:   double sum=0.;
 2952:   first=0;
 2953:   jmin=100000;
 2954:   jmax=-1;
 2955:   jmean=0.;
 2956:   for(i=1; i<=imx; i++){
 2957:     mi=0;
 2958:     m=firstpass;
 2959:     while(s[m][i] <= nlstate){
 2960:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2961: 	mw[++mi][i]=m;
 2962:       if(m >=lastpass)
 2963: 	break;
 2964:       else
 2965: 	m++;
 2966:     }/* end while */
 2967:     if (s[m][i] > nlstate){
 2968:       mi++;	/* Death is another wave */
 2969:       /* if(mi==0)  never been interviewed correctly before death */
 2970: 	 /* Only death is a correct wave */
 2971:       mw[mi][i]=m;
 2972:     }
 2973: 
 2974:     wav[i]=mi;
 2975:     if(mi==0){
 2976:       nbwarn++;
 2977:       if(first==0){
 2978: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2979: 	first=1;
 2980:       }
 2981:       if(first==1){
 2982: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2983:       }
 2984:     } /* end mi==0 */
 2985:   } /* End individuals */
 2986: 
 2987:   for(i=1; i<=imx; i++){
 2988:     for(mi=1; mi<wav[i];mi++){
 2989:       if (stepm <=0)
 2990: 	dh[mi][i]=1;
 2991:       else{
 2992: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2993: 	  if (agedc[i] < 2*AGESUP) {
 2994: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2995: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2996: 	    else if(j<0){
 2997: 	      nberr++;
 2998: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2999: 	      j=1; /* Temporary Dangerous patch */
 3000: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 3001: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3002: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 3003: 	    }
 3004: 	    k=k+1;
 3005: 	    if (j >= jmax){
 3006: 	      jmax=j;
 3007: 	      ijmax=i;
 3008: 	    }
 3009: 	    if (j <= jmin){
 3010: 	      jmin=j;
 3011: 	      ijmin=i;
 3012: 	    }
 3013: 	    sum=sum+j;
 3014: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 3015: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 3016: 	  }
 3017: 	}
 3018: 	else{
 3019: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 3020: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 3021: 
 3022: 	  k=k+1;
 3023: 	  if (j >= jmax) {
 3024: 	    jmax=j;
 3025: 	    ijmax=i;
 3026: 	  }
 3027: 	  else if (j <= jmin){
 3028: 	    jmin=j;
 3029: 	    ijmin=i;
 3030: 	  }
 3031: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 3032: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 3033: 	  if(j<0){
 3034: 	    nberr++;
 3035: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3036: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3037: 	  }
 3038: 	  sum=sum+j;
 3039: 	}
 3040: 	jk= j/stepm;
 3041: 	jl= j -jk*stepm;
 3042: 	ju= j -(jk+1)*stepm;
 3043: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 3044: 	  if(jl==0){
 3045: 	    dh[mi][i]=jk;
 3046: 	    bh[mi][i]=0;
 3047: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 3048: 		  * to avoid the price of an extra matrix product in likelihood */
 3049: 	    dh[mi][i]=jk+1;
 3050: 	    bh[mi][i]=ju;
 3051: 	  }
 3052: 	}else{
 3053: 	  if(jl <= -ju){
 3054: 	    dh[mi][i]=jk;
 3055: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 3056: 				 * is higher than the multiple of stepm and negative otherwise.
 3057: 				 */
 3058: 	  }
 3059: 	  else{
 3060: 	    dh[mi][i]=jk+1;
 3061: 	    bh[mi][i]=ju;
 3062: 	  }
 3063: 	  if(dh[mi][i]==0){
 3064: 	    dh[mi][i]=1; /* At least one step */
 3065: 	    bh[mi][i]=ju; /* At least one step */
 3066: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 3067: 	  }
 3068: 	} /* end if mle */
 3069:       }
 3070:     } /* end wave */
 3071:   }
 3072:   jmean=sum/k;
 3073:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 3074:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 3075:  }
 3076: 
 3077: /*********** Tricode ****************************/
 3078: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 3079: {
 3080:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 3081:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 3082:    * Boring subroutine which should only output nbcode[Tvar[j]][k]
 3083:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 3084:    * nbcode[Tvar[j]][1]= 
 3085:   */
 3086: 
 3087:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 3088:   int modmaxcovj=0; /* Modality max of covariates j */
 3089:   int cptcode=0; /* Modality max of covariates j */
 3090:   int modmincovj=0; /* Modality min of covariates j */
 3091: 
 3092: 
 3093:   cptcoveff=0; 
 3094:  
 3095:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
 3096:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 3097: 
 3098:   /* Loop on covariates without age and products */
 3099:   for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
 3100:     for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 3101: 			       modality of this covariate Vj*/ 
 3102:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 3103: 				    * If product of Vn*Vm, still boolean *:
 3104: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 3105: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 3106:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 3107: 				      modality of the nth covariate of individual i. */
 3108:       if (ij > modmaxcovj)
 3109:         modmaxcovj=ij; 
 3110:       else if (ij < modmincovj) 
 3111: 	modmincovj=ij; 
 3112:       if ((ij < -1) && (ij > NCOVMAX)){
 3113: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 3114: 	exit(1);
 3115:       }else
 3116:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 3117:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 3118:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 3119:       /* getting the maximum value of the modality of the covariate
 3120: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 3121: 	 female is 1, then modmaxcovj=1.*/
 3122:     }
 3123:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 3124:     cptcode=modmaxcovj;
 3125:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 3126:    /*for (i=0; i<=cptcode; i++) {*/
 3127:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 3128:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
 3129:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 3130: 	ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
 3131:       }
 3132:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 3133: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 3134:     } /* Ndum[-1] number of undefined modalities */
 3135: 
 3136:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 3137:     /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 3138:     /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
 3139:        modmincovj=3; modmaxcovj = 7;
 3140:        There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 3141:        which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 3142:        variables V1_1 and V1_2.
 3143:        nbcode[Tvar[j]][ij]=k;
 3144:        nbcode[Tvar[j]][1]=0;
 3145:        nbcode[Tvar[j]][2]=1;
 3146:        nbcode[Tvar[j]][3]=2;
 3147:     */
 3148:     ij=1; /* ij is similar to i but can jumps over null modalities */
 3149:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
 3150:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
 3151: 	/*recode from 0 */
 3152: 	if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 3153: 	  nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 3154: 				     k is a modality. If we have model=V1+V1*sex 
 3155: 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 3156: 	  ij++;
 3157: 	}
 3158: 	if (ij > ncodemax[j]) break; 
 3159:       }  /* end of loop on */
 3160:     } /* end of loop on modality */ 
 3161:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 3162:   
 3163:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 3164:   
 3165:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
 3166:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 3167:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 3168:    Ndum[ij]++; 
 3169:  } 
 3170: 
 3171:  ij=1;
 3172:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 3173:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 3174:    if((Ndum[i]!=0) && (i<=ncovcol)){
 3175:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 3176:      Tvaraff[ij]=i; /*For printing (unclear) */
 3177:      ij++;
 3178:    }else
 3179:        Tvaraff[ij]=0;
 3180:  }
 3181:  ij--;
 3182:  cptcoveff=ij; /*Number of total covariates*/
 3183: 
 3184: }
 3185: 
 3186: 
 3187: /*********** Health Expectancies ****************/
 3188: 
 3189: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 3190: 
 3191: {
 3192:   /* Health expectancies, no variances */
 3193:   int i, j, nhstepm, hstepm, h, nstepm;
 3194:   int nhstepma, nstepma; /* Decreasing with age */
 3195:   double age, agelim, hf;
 3196:   double ***p3mat;
 3197:   double eip;
 3198: 
 3199:   pstamp(ficreseij);
 3200:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 3201:   fprintf(ficreseij,"# Age");
 3202:   for(i=1; i<=nlstate;i++){
 3203:     for(j=1; j<=nlstate;j++){
 3204:       fprintf(ficreseij," e%1d%1d ",i,j);
 3205:     }
 3206:     fprintf(ficreseij," e%1d. ",i);
 3207:   }
 3208:   fprintf(ficreseij,"\n");
 3209: 
 3210:   
 3211:   if(estepm < stepm){
 3212:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3213:   }
 3214:   else  hstepm=estepm;   
 3215:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3216:    * This is mainly to measure the difference between two models: for example
 3217:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3218:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3219:    * progression in between and thus overestimating or underestimating according
 3220:    * to the curvature of the survival function. If, for the same date, we 
 3221:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3222:    * to compare the new estimate of Life expectancy with the same linear 
 3223:    * hypothesis. A more precise result, taking into account a more precise
 3224:    * curvature will be obtained if estepm is as small as stepm. */
 3225: 
 3226:   /* For example we decided to compute the life expectancy with the smallest unit */
 3227:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3228:      nhstepm is the number of hstepm from age to agelim 
 3229:      nstepm is the number of stepm from age to agelin. 
 3230:      Look at hpijx to understand the reason of that which relies in memory size
 3231:      and note for a fixed period like estepm months */
 3232:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3233:      survival function given by stepm (the optimization length). Unfortunately it
 3234:      means that if the survival funtion is printed only each two years of age and if
 3235:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3236:      results. So we changed our mind and took the option of the best precision.
 3237:   */
 3238:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3239: 
 3240:   agelim=AGESUP;
 3241:   /* If stepm=6 months */
 3242:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 3243:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 3244:     
 3245: /* nhstepm age range expressed in number of stepm */
 3246:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3247:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3248:   /* if (stepm >= YEARM) hstepm=1;*/
 3249:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3250:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3251: 
 3252:   for (age=bage; age<=fage; age ++){ 
 3253:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3254:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3255:     /* if (stepm >= YEARM) hstepm=1;*/
 3256:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3257: 
 3258:     /* If stepm=6 months */
 3259:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3260:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3261:     
 3262:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3263:     
 3264:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3265:     
 3266:     printf("%d|",(int)age);fflush(stdout);
 3267:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3268:     
 3269:     /* Computing expectancies */
 3270:     for(i=1; i<=nlstate;i++)
 3271:       for(j=1; j<=nlstate;j++)
 3272: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3273: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 3274: 	  
 3275: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3276: 
 3277: 	}
 3278: 
 3279:     fprintf(ficreseij,"%3.0f",age );
 3280:     for(i=1; i<=nlstate;i++){
 3281:       eip=0;
 3282:       for(j=1; j<=nlstate;j++){
 3283: 	eip +=eij[i][j][(int)age];
 3284: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 3285:       }
 3286:       fprintf(ficreseij,"%9.4f", eip );
 3287:     }
 3288:     fprintf(ficreseij,"\n");
 3289:     
 3290:   }
 3291:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3292:   printf("\n");
 3293:   fprintf(ficlog,"\n");
 3294:   
 3295: }
 3296: 
 3297: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 3298: 
 3299: {
 3300:   /* Covariances of health expectancies eij and of total life expectancies according
 3301:    to initial status i, ei. .
 3302:   */
 3303:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 3304:   int nhstepma, nstepma; /* Decreasing with age */
 3305:   double age, agelim, hf;
 3306:   double ***p3matp, ***p3matm, ***varhe;
 3307:   double **dnewm,**doldm;
 3308:   double *xp, *xm;
 3309:   double **gp, **gm;
 3310:   double ***gradg, ***trgradg;
 3311:   int theta;
 3312: 
 3313:   double eip, vip;
 3314: 
 3315:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 3316:   xp=vector(1,npar);
 3317:   xm=vector(1,npar);
 3318:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 3319:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 3320:   
 3321:   pstamp(ficresstdeij);
 3322:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 3323:   fprintf(ficresstdeij,"# Age");
 3324:   for(i=1; i<=nlstate;i++){
 3325:     for(j=1; j<=nlstate;j++)
 3326:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 3327:     fprintf(ficresstdeij," e%1d. ",i);
 3328:   }
 3329:   fprintf(ficresstdeij,"\n");
 3330: 
 3331:   pstamp(ficrescveij);
 3332:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 3333:   fprintf(ficrescveij,"# Age");
 3334:   for(i=1; i<=nlstate;i++)
 3335:     for(j=1; j<=nlstate;j++){
 3336:       cptj= (j-1)*nlstate+i;
 3337:       for(i2=1; i2<=nlstate;i2++)
 3338: 	for(j2=1; j2<=nlstate;j2++){
 3339: 	  cptj2= (j2-1)*nlstate+i2;
 3340: 	  if(cptj2 <= cptj)
 3341: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 3342: 	}
 3343:     }
 3344:   fprintf(ficrescveij,"\n");
 3345:   
 3346:   if(estepm < stepm){
 3347:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3348:   }
 3349:   else  hstepm=estepm;   
 3350:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3351:    * This is mainly to measure the difference between two models: for example
 3352:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3353:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3354:    * progression in between and thus overestimating or underestimating according
 3355:    * to the curvature of the survival function. If, for the same date, we 
 3356:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3357:    * to compare the new estimate of Life expectancy with the same linear 
 3358:    * hypothesis. A more precise result, taking into account a more precise
 3359:    * curvature will be obtained if estepm is as small as stepm. */
 3360: 
 3361:   /* For example we decided to compute the life expectancy with the smallest unit */
 3362:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3363:      nhstepm is the number of hstepm from age to agelim 
 3364:      nstepm is the number of stepm from age to agelin. 
 3365:      Look at hpijx to understand the reason of that which relies in memory size
 3366:      and note for a fixed period like estepm months */
 3367:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3368:      survival function given by stepm (the optimization length). Unfortunately it
 3369:      means that if the survival funtion is printed only each two years of age and if
 3370:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3371:      results. So we changed our mind and took the option of the best precision.
 3372:   */
 3373:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3374: 
 3375:   /* If stepm=6 months */
 3376:   /* nhstepm age range expressed in number of stepm */
 3377:   agelim=AGESUP;
 3378:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 3379:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3380:   /* if (stepm >= YEARM) hstepm=1;*/
 3381:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3382:   
 3383:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3384:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3385:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 3386:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 3387:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 3388:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 3389: 
 3390:   for (age=bage; age<=fage; age ++){ 
 3391:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3392:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3393:     /* if (stepm >= YEARM) hstepm=1;*/
 3394:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3395: 
 3396:     /* If stepm=6 months */
 3397:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3398:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3399:     
 3400:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3401: 
 3402:     /* Computing  Variances of health expectancies */
 3403:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3404:        decrease memory allocation */
 3405:     for(theta=1; theta <=npar; theta++){
 3406:       for(i=1; i<=npar; i++){ 
 3407: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3408: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3409:       }
 3410:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3411:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3412:   
 3413:       for(j=1; j<= nlstate; j++){
 3414: 	for(i=1; i<=nlstate; i++){
 3415: 	  for(h=0; h<=nhstepm-1; h++){
 3416: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3417: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3418: 	  }
 3419: 	}
 3420:       }
 3421:      
 3422:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3423: 	for(h=0; h<=nhstepm-1; h++){
 3424: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3425: 	}
 3426:     }/* End theta */
 3427:     
 3428:     
 3429:     for(h=0; h<=nhstepm-1; h++)
 3430:       for(j=1; j<=nlstate*nlstate;j++)
 3431: 	for(theta=1; theta <=npar; theta++)
 3432: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3433:     
 3434: 
 3435:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3436:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3437: 	varhe[ij][ji][(int)age] =0.;
 3438: 
 3439:      printf("%d|",(int)age);fflush(stdout);
 3440:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3441:      for(h=0;h<=nhstepm-1;h++){
 3442:       for(k=0;k<=nhstepm-1;k++){
 3443: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3444: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3445: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3446: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3447: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3448:       }
 3449:     }
 3450: 
 3451:     /* Computing expectancies */
 3452:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3453:     for(i=1; i<=nlstate;i++)
 3454:       for(j=1; j<=nlstate;j++)
 3455: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3456: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3457: 	  
 3458: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3459: 
 3460: 	}
 3461: 
 3462:     fprintf(ficresstdeij,"%3.0f",age );
 3463:     for(i=1; i<=nlstate;i++){
 3464:       eip=0.;
 3465:       vip=0.;
 3466:       for(j=1; j<=nlstate;j++){
 3467: 	eip += eij[i][j][(int)age];
 3468: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3469: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3470: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3471:       }
 3472:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3473:     }
 3474:     fprintf(ficresstdeij,"\n");
 3475: 
 3476:     fprintf(ficrescveij,"%3.0f",age );
 3477:     for(i=1; i<=nlstate;i++)
 3478:       for(j=1; j<=nlstate;j++){
 3479: 	cptj= (j-1)*nlstate+i;
 3480: 	for(i2=1; i2<=nlstate;i2++)
 3481: 	  for(j2=1; j2<=nlstate;j2++){
 3482: 	    cptj2= (j2-1)*nlstate+i2;
 3483: 	    if(cptj2 <= cptj)
 3484: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3485: 	  }
 3486:       }
 3487:     fprintf(ficrescveij,"\n");
 3488:    
 3489:   }
 3490:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3491:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3492:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3493:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3494:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3495:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3496:   printf("\n");
 3497:   fprintf(ficlog,"\n");
 3498: 
 3499:   free_vector(xm,1,npar);
 3500:   free_vector(xp,1,npar);
 3501:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3502:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3503:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3504: }
 3505: 
 3506: /************ Variance ******************/
 3507: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3508: {
 3509:   /* Variance of health expectancies */
 3510:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3511:   /* double **newm;*/
 3512:   /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
 3513:   
 3514:   int movingaverage();
 3515:   double **dnewm,**doldm;
 3516:   double **dnewmp,**doldmp;
 3517:   int i, j, nhstepm, hstepm, h, nstepm ;
 3518:   int k;
 3519:   double *xp;
 3520:   double **gp, **gm;  /* for var eij */
 3521:   double ***gradg, ***trgradg; /*for var eij */
 3522:   double **gradgp, **trgradgp; /* for var p point j */
 3523:   double *gpp, *gmp; /* for var p point j */
 3524:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3525:   double ***p3mat;
 3526:   double age,agelim, hf;
 3527:   double ***mobaverage;
 3528:   int theta;
 3529:   char digit[4];
 3530:   char digitp[25];
 3531: 
 3532:   char fileresprobmorprev[FILENAMELENGTH];
 3533: 
 3534:   if(popbased==1){
 3535:     if(mobilav!=0)
 3536:       strcpy(digitp,"-populbased-mobilav-");
 3537:     else strcpy(digitp,"-populbased-nomobil-");
 3538:   }
 3539:   else 
 3540:     strcpy(digitp,"-stablbased-");
 3541: 
 3542:   if (mobilav!=0) {
 3543:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3544:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3545:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3546:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3547:     }
 3548:   }
 3549: 
 3550:   strcpy(fileresprobmorprev,"prmorprev"); 
 3551:   sprintf(digit,"%-d",ij);
 3552:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3553:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3554:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3555:   strcat(fileresprobmorprev,fileres);
 3556:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3557:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3558:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3559:   }
 3560:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3561:  
 3562:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3563:   pstamp(ficresprobmorprev);
 3564:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3565:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3566:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3567:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3568:     for(i=1; i<=nlstate;i++)
 3569:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3570:   }  
 3571:   fprintf(ficresprobmorprev,"\n");
 3572:   fprintf(ficgp,"\n# Routine varevsij");
 3573:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3574:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3575:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3576: /*   } */
 3577:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3578:   pstamp(ficresvij);
 3579:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3580:   if(popbased==1)
 3581:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3582:   else
 3583:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3584:   fprintf(ficresvij,"# Age");
 3585:   for(i=1; i<=nlstate;i++)
 3586:     for(j=1; j<=nlstate;j++)
 3587:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3588:   fprintf(ficresvij,"\n");
 3589: 
 3590:   xp=vector(1,npar);
 3591:   dnewm=matrix(1,nlstate,1,npar);
 3592:   doldm=matrix(1,nlstate,1,nlstate);
 3593:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3594:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3595: 
 3596:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3597:   gpp=vector(nlstate+1,nlstate+ndeath);
 3598:   gmp=vector(nlstate+1,nlstate+ndeath);
 3599:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3600:   
 3601:   if(estepm < stepm){
 3602:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3603:   }
 3604:   else  hstepm=estepm;   
 3605:   /* For example we decided to compute the life expectancy with the smallest unit */
 3606:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3607:      nhstepm is the number of hstepm from age to agelim 
 3608:      nstepm is the number of stepm from age to agelin. 
 3609:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3610:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3611:      survival function given by stepm (the optimization length). Unfortunately it
 3612:      means that if the survival funtion is printed every two years of age and if
 3613:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3614:      results. So we changed our mind and took the option of the best precision.
 3615:   */
 3616:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3617:   agelim = AGESUP;
 3618:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3619:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3620:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3621:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3622:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3623:     gp=matrix(0,nhstepm,1,nlstate);
 3624:     gm=matrix(0,nhstepm,1,nlstate);
 3625: 
 3626: 
 3627:     for(theta=1; theta <=npar; theta++){
 3628:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3629: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3630:       }
 3631:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3632:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3633: 
 3634:       if (popbased==1) {
 3635: 	if(mobilav ==0){
 3636: 	  for(i=1; i<=nlstate;i++)
 3637: 	    prlim[i][i]=probs[(int)age][i][ij];
 3638: 	}else{ /* mobilav */ 
 3639: 	  for(i=1; i<=nlstate;i++)
 3640: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3641: 	}
 3642:       }
 3643:   
 3644:       for(j=1; j<= nlstate; j++){
 3645: 	for(h=0; h<=nhstepm; h++){
 3646: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3647: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3648: 	}
 3649:       }
 3650:       /* This for computing probability of death (h=1 means
 3651:          computed over hstepm matrices product = hstepm*stepm months) 
 3652:          as a weighted average of prlim.
 3653:       */
 3654:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3655: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3656: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3657:       }    
 3658:       /* end probability of death */
 3659: 
 3660:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3661: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3662:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3663:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3664:  
 3665:       if (popbased==1) {
 3666: 	if(mobilav ==0){
 3667: 	  for(i=1; i<=nlstate;i++)
 3668: 	    prlim[i][i]=probs[(int)age][i][ij];
 3669: 	}else{ /* mobilav */ 
 3670: 	  for(i=1; i<=nlstate;i++)
 3671: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3672: 	}
 3673:       }
 3674: 
 3675:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3676: 	for(h=0; h<=nhstepm; h++){
 3677: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3678: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3679: 	}
 3680:       }
 3681:       /* This for computing probability of death (h=1 means
 3682:          computed over hstepm matrices product = hstepm*stepm months) 
 3683:          as a weighted average of prlim.
 3684:       */
 3685:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3686: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3687:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3688:       }    
 3689:       /* end probability of death */
 3690: 
 3691:       for(j=1; j<= nlstate; j++) /* vareij */
 3692: 	for(h=0; h<=nhstepm; h++){
 3693: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3694: 	}
 3695: 
 3696:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3697: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3698:       }
 3699: 
 3700:     } /* End theta */
 3701: 
 3702:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3703: 
 3704:     for(h=0; h<=nhstepm; h++) /* veij */
 3705:       for(j=1; j<=nlstate;j++)
 3706: 	for(theta=1; theta <=npar; theta++)
 3707: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3708: 
 3709:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3710:       for(theta=1; theta <=npar; theta++)
 3711: 	trgradgp[j][theta]=gradgp[theta][j];
 3712:   
 3713: 
 3714:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3715:     for(i=1;i<=nlstate;i++)
 3716:       for(j=1;j<=nlstate;j++)
 3717: 	vareij[i][j][(int)age] =0.;
 3718: 
 3719:     for(h=0;h<=nhstepm;h++){
 3720:       for(k=0;k<=nhstepm;k++){
 3721: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3722: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3723: 	for(i=1;i<=nlstate;i++)
 3724: 	  for(j=1;j<=nlstate;j++)
 3725: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3726:       }
 3727:     }
 3728:   
 3729:     /* pptj */
 3730:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3731:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3732:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3733:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3734: 	varppt[j][i]=doldmp[j][i];
 3735:     /* end ppptj */
 3736:     /*  x centered again */
 3737:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3738:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3739:  
 3740:     if (popbased==1) {
 3741:       if(mobilav ==0){
 3742: 	for(i=1; i<=nlstate;i++)
 3743: 	  prlim[i][i]=probs[(int)age][i][ij];
 3744:       }else{ /* mobilav */ 
 3745: 	for(i=1; i<=nlstate;i++)
 3746: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3747:       }
 3748:     }
 3749:              
 3750:     /* This for computing probability of death (h=1 means
 3751:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3752:        as a weighted average of prlim.
 3753:     */
 3754:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3755:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 3756: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 3757:     }    
 3758:     /* end probability of death */
 3759: 
 3760:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 3761:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3762:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 3763:       for(i=1; i<=nlstate;i++){
 3764: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 3765:       }
 3766:     } 
 3767:     fprintf(ficresprobmorprev,"\n");
 3768: 
 3769:     fprintf(ficresvij,"%.0f ",age );
 3770:     for(i=1; i<=nlstate;i++)
 3771:       for(j=1; j<=nlstate;j++){
 3772: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 3773:       }
 3774:     fprintf(ficresvij,"\n");
 3775:     free_matrix(gp,0,nhstepm,1,nlstate);
 3776:     free_matrix(gm,0,nhstepm,1,nlstate);
 3777:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 3778:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 3779:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3780:   } /* End age */
 3781:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 3782:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 3783:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3784:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3785:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 3786:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3787:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3788: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3789: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3790: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3791:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 3792:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 3793:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 3794:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3795:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3796:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3797: */
 3798: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3799:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3800: 
 3801:   free_vector(xp,1,npar);
 3802:   free_matrix(doldm,1,nlstate,1,nlstate);
 3803:   free_matrix(dnewm,1,nlstate,1,npar);
 3804:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3805:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3806:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3807:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3808:   fclose(ficresprobmorprev);
 3809:   fflush(ficgp);
 3810:   fflush(fichtm); 
 3811: }  /* end varevsij */
 3812: 
 3813: /************ Variance of prevlim ******************/
 3814: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3815: {
 3816:   /* Variance of prevalence limit */
 3817:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3818: 
 3819:   double **dnewm,**doldm;
 3820:   int i, j, nhstepm, hstepm;
 3821:   double *xp;
 3822:   double *gp, *gm;
 3823:   double **gradg, **trgradg;
 3824:   double age,agelim;
 3825:   int theta;
 3826:   
 3827:   pstamp(ficresvpl);
 3828:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3829:   fprintf(ficresvpl,"# Age");
 3830:   for(i=1; i<=nlstate;i++)
 3831:       fprintf(ficresvpl," %1d-%1d",i,i);
 3832:   fprintf(ficresvpl,"\n");
 3833: 
 3834:   xp=vector(1,npar);
 3835:   dnewm=matrix(1,nlstate,1,npar);
 3836:   doldm=matrix(1,nlstate,1,nlstate);
 3837:   
 3838:   hstepm=1*YEARM; /* Every year of age */
 3839:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3840:   agelim = AGESUP;
 3841:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3842:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3843:     if (stepm >= YEARM) hstepm=1;
 3844:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3845:     gradg=matrix(1,npar,1,nlstate);
 3846:     gp=vector(1,nlstate);
 3847:     gm=vector(1,nlstate);
 3848: 
 3849:     for(theta=1; theta <=npar; theta++){
 3850:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3851: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3852:       }
 3853:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3854:       for(i=1;i<=nlstate;i++)
 3855: 	gp[i] = prlim[i][i];
 3856:     
 3857:       for(i=1; i<=npar; i++) /* Computes gradient */
 3858: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3859:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3860:       for(i=1;i<=nlstate;i++)
 3861: 	gm[i] = prlim[i][i];
 3862: 
 3863:       for(i=1;i<=nlstate;i++)
 3864: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3865:     } /* End theta */
 3866: 
 3867:     trgradg =matrix(1,nlstate,1,npar);
 3868: 
 3869:     for(j=1; j<=nlstate;j++)
 3870:       for(theta=1; theta <=npar; theta++)
 3871: 	trgradg[j][theta]=gradg[theta][j];
 3872: 
 3873:     for(i=1;i<=nlstate;i++)
 3874:       varpl[i][(int)age] =0.;
 3875:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3876:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3877:     for(i=1;i<=nlstate;i++)
 3878:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3879: 
 3880:     fprintf(ficresvpl,"%.0f ",age );
 3881:     for(i=1; i<=nlstate;i++)
 3882:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3883:     fprintf(ficresvpl,"\n");
 3884:     free_vector(gp,1,nlstate);
 3885:     free_vector(gm,1,nlstate);
 3886:     free_matrix(gradg,1,npar,1,nlstate);
 3887:     free_matrix(trgradg,1,nlstate,1,npar);
 3888:   } /* End age */
 3889: 
 3890:   free_vector(xp,1,npar);
 3891:   free_matrix(doldm,1,nlstate,1,npar);
 3892:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3893: 
 3894: }
 3895: 
 3896: /************ Variance of one-step probabilities  ******************/
 3897: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3898: {
 3899:   int i, j=0,  k1, l1, tj;
 3900:   int k2, l2, j1,  z1;
 3901:   int k=0, l;
 3902:   int first=1, first1, first2;
 3903:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3904:   double **dnewm,**doldm;
 3905:   double *xp;
 3906:   double *gp, *gm;
 3907:   double **gradg, **trgradg;
 3908:   double **mu;
 3909:   double age, cov[NCOVMAX+1];
 3910:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3911:   int theta;
 3912:   char fileresprob[FILENAMELENGTH];
 3913:   char fileresprobcov[FILENAMELENGTH];
 3914:   char fileresprobcor[FILENAMELENGTH];
 3915:   double ***varpij;
 3916: 
 3917:   strcpy(fileresprob,"prob"); 
 3918:   strcat(fileresprob,fileres);
 3919:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3920:     printf("Problem with resultfile: %s\n", fileresprob);
 3921:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3922:   }
 3923:   strcpy(fileresprobcov,"probcov"); 
 3924:   strcat(fileresprobcov,fileres);
 3925:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3926:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3927:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3928:   }
 3929:   strcpy(fileresprobcor,"probcor"); 
 3930:   strcat(fileresprobcor,fileres);
 3931:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3932:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3933:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3934:   }
 3935:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3936:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3937:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3938:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3939:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3940:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3941:   pstamp(ficresprob);
 3942:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3943:   fprintf(ficresprob,"# Age");
 3944:   pstamp(ficresprobcov);
 3945:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3946:   fprintf(ficresprobcov,"# Age");
 3947:   pstamp(ficresprobcor);
 3948:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3949:   fprintf(ficresprobcor,"# Age");
 3950: 
 3951: 
 3952:   for(i=1; i<=nlstate;i++)
 3953:     for(j=1; j<=(nlstate+ndeath);j++){
 3954:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3955:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3956:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3957:     }  
 3958:  /* fprintf(ficresprob,"\n");
 3959:   fprintf(ficresprobcov,"\n");
 3960:   fprintf(ficresprobcor,"\n");
 3961:  */
 3962:   xp=vector(1,npar);
 3963:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3964:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3965:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3966:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3967:   first=1;
 3968:   fprintf(ficgp,"\n# Routine varprob");
 3969:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3970:   fprintf(fichtm,"\n");
 3971: 
 3972:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3973:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3974:   file %s<br>\n",optionfilehtmcov);
 3975:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3976: and drawn. It helps understanding how is the covariance between two incidences.\
 3977:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3978:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3979: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3980: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3981: standard deviations wide on each axis. <br>\
 3982:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3983:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3984: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3985: 
 3986:   cov[1]=1;
 3987:   /* tj=cptcoveff; */
 3988:   tj = (int) pow(2,cptcoveff);
 3989:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3990:   j1=0;
 3991:   for(j1=1; j1<=tj;j1++){
 3992:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 3993:     /*j1++;*/
 3994:       if  (cptcovn>0) {
 3995: 	fprintf(ficresprob, "\n#********** Variable "); 
 3996: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3997: 	fprintf(ficresprob, "**********\n#\n");
 3998: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3999: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4000: 	fprintf(ficresprobcov, "**********\n#\n");
 4001: 	
 4002: 	fprintf(ficgp, "\n#********** Variable "); 
 4003: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4004: 	fprintf(ficgp, "**********\n#\n");
 4005: 	
 4006: 	
 4007: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 4008: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4009: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 4010: 	
 4011: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 4012: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4013: 	fprintf(ficresprobcor, "**********\n#");    
 4014:       }
 4015:       
 4016:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 4017:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 4018:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 4019:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 4020:       for (age=bage; age<=fage; age ++){ 
 4021: 	cov[2]=age;
 4022: 	for (k=1; k<=cptcovn;k++) {
 4023: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
 4024: 							 * 1  1 1 1 1
 4025: 							 * 2  2 1 1 1
 4026: 							 * 3  1 2 1 1
 4027: 							 */
 4028: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 4029: 	}
 4030: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 4031: 	for (k=1; k<=cptcovprod;k++)
 4032: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 4033: 	
 4034:     
 4035: 	for(theta=1; theta <=npar; theta++){
 4036: 	  for(i=1; i<=npar; i++)
 4037: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 4038: 	  
 4039: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 4040: 	  
 4041: 	  k=0;
 4042: 	  for(i=1; i<= (nlstate); i++){
 4043: 	    for(j=1; j<=(nlstate+ndeath);j++){
 4044: 	      k=k+1;
 4045: 	      gp[k]=pmmij[i][j];
 4046: 	    }
 4047: 	  }
 4048: 	  
 4049: 	  for(i=1; i<=npar; i++)
 4050: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 4051:     
 4052: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 4053: 	  k=0;
 4054: 	  for(i=1; i<=(nlstate); i++){
 4055: 	    for(j=1; j<=(nlstate+ndeath);j++){
 4056: 	      k=k+1;
 4057: 	      gm[k]=pmmij[i][j];
 4058: 	    }
 4059: 	  }
 4060:      
 4061: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 4062: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 4063: 	}
 4064: 
 4065: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 4066: 	  for(theta=1; theta <=npar; theta++)
 4067: 	    trgradg[j][theta]=gradg[theta][j];
 4068: 	
 4069: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 4070: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 4071: 
 4072: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 4073: 	
 4074: 	k=0;
 4075: 	for(i=1; i<=(nlstate); i++){
 4076: 	  for(j=1; j<=(nlstate+ndeath);j++){
 4077: 	    k=k+1;
 4078: 	    mu[k][(int) age]=pmmij[i][j];
 4079: 	  }
 4080: 	}
 4081:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 4082: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 4083: 	    varpij[i][j][(int)age] = doldm[i][j];
 4084: 
 4085: 	/*printf("\n%d ",(int)age);
 4086: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 4087: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 4088: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 4089: 	  }*/
 4090: 
 4091: 	fprintf(ficresprob,"\n%d ",(int)age);
 4092: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 4093: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 4094: 
 4095: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 4096: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 4097: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 4098: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 4099: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 4100: 	}
 4101: 	i=0;
 4102: 	for (k=1; k<=(nlstate);k++){
 4103:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 4104:  	    i++;
 4105: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 4106: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 4107: 	    for (j=1; j<=i;j++){
 4108: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 4109: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 4110: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 4111: 	    }
 4112: 	  }
 4113: 	}/* end of loop for state */
 4114:       } /* end of loop for age */
 4115:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 4116:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 4117:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4118:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4119:       
 4120:       /* Confidence intervalle of pij  */
 4121:       /*
 4122: 	fprintf(ficgp,"\nunset parametric;unset label");
 4123: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 4124: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 4125: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 4126: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 4127: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 4128: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 4129:       */
 4130: 
 4131:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 4132:       first1=1;first2=2;
 4133:       for (k2=1; k2<=(nlstate);k2++){
 4134: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 4135: 	  if(l2==k2) continue;
 4136: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 4137: 	  for (k1=1; k1<=(nlstate);k1++){
 4138: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 4139: 	      if(l1==k1) continue;
 4140: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 4141: 	      if(i<=j) continue;
 4142: 	      for (age=bage; age<=fage; age ++){ 
 4143: 		if ((int)age %5==0){
 4144: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 4145: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4146: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4147: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 4148: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 4149: 		  c12=cv12/sqrt(v1*v2);
 4150: 		  /* Computing eigen value of matrix of covariance */
 4151: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4152: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4153: 		  if ((lc2 <0) || (lc1 <0) ){
 4154: 		    if(first2==1){
 4155: 		      first1=0;
 4156: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 4157: 		    }
 4158: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 4159: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 4160: 		    /* lc2=fabs(lc2); */
 4161: 		  }
 4162: 
 4163: 		  /* Eigen vectors */
 4164: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 4165: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 4166: 		  v21=(lc1-v1)/cv12*v11;
 4167: 		  v12=-v21;
 4168: 		  v22=v11;
 4169: 		  tnalp=v21/v11;
 4170: 		  if(first1==1){
 4171: 		    first1=0;
 4172: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4173: 		  }
 4174: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4175: 		  /*printf(fignu*/
 4176: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 4177: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 4178: 		  if(first==1){
 4179: 		    first=0;
 4180:  		    fprintf(ficgp,"\nset parametric;unset label");
 4181: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 4182: 		    fprintf(ficgp,"\nset ter png small size 320, 240");
 4183: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 4184:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 4185: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 4186: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 4187: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4188: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4189: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 4190: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4191: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4192: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4193: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4194: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4195: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4196: 		  }else{
 4197: 		    first=0;
 4198: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 4199: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4200: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4201: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4202: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4203: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4204: 		  }/* if first */
 4205: 		} /* age mod 5 */
 4206: 	      } /* end loop age */
 4207: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4208: 	      first=1;
 4209: 	    } /*l12 */
 4210: 	  } /* k12 */
 4211: 	} /*l1 */
 4212:       }/* k1 */
 4213:       /* } */ /* loop covariates */
 4214:   }
 4215:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 4216:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 4217:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 4218:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 4219:   free_vector(xp,1,npar);
 4220:   fclose(ficresprob);
 4221:   fclose(ficresprobcov);
 4222:   fclose(ficresprobcor);
 4223:   fflush(ficgp);
 4224:   fflush(fichtmcov);
 4225: }
 4226: 
 4227: 
 4228: /******************* Printing html file ***********/
 4229: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 4230: 		  int lastpass, int stepm, int weightopt, char model[],\
 4231: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 4232: 		  int popforecast, int estepm ,\
 4233: 		  double jprev1, double mprev1,double anprev1, \
 4234: 		  double jprev2, double mprev2,double anprev2){
 4235:   int jj1, k1, i1, cpt;
 4236: 
 4237:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 4238:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 4239: </ul>");
 4240:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 4241:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 4242: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 4243:    fprintf(fichtm,"\
 4244:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 4245: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 4246:    fprintf(fichtm,"\
 4247:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 4248: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 4249:    fprintf(fichtm,"\
 4250:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 4251:    <a href=\"%s\">%s</a> <br>\n",
 4252: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 4253:    fprintf(fichtm,"\
 4254:  - Population projections by age and states: \
 4255:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 4256: 
 4257: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 4258: 
 4259:  m=pow(2,cptcoveff);
 4260:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4261: 
 4262:  jj1=0;
 4263:  for(k1=1; k1<=m;k1++){
 4264:    for(i1=1; i1<=ncodemax[k1];i1++){
 4265:      jj1++;
 4266:      if (cptcovn > 0) {
 4267:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4268:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4269: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4270:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4271:      }
 4272:      /* Pij */
 4273:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
 4274: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 4275:      /* Quasi-incidences */
 4276:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 4277:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
 4278: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 4279:        /* Period (stable) prevalence in each health state */
 4280:        for(cpt=1; cpt<=nlstate;cpt++){
 4281: 	 fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
 4282: <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 4283:        }
 4284:      for(cpt=1; cpt<=nlstate;cpt++) {
 4285:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 4286: <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 4287:      }
 4288:    } /* end i1 */
 4289:  }/* End k1 */
 4290:  fprintf(fichtm,"</ul>");
 4291: 
 4292: 
 4293:  fprintf(fichtm,"\
 4294: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 4295:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 4296: 
 4297:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4298: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 4299:  fprintf(fichtm,"\
 4300:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4301: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 4302: 
 4303:  fprintf(fichtm,"\
 4304:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4305: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 4306:  fprintf(fichtm,"\
 4307:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 4308:    <a href=\"%s\">%s</a> <br>\n</li>",
 4309: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 4310:  fprintf(fichtm,"\
 4311:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 4312:    <a href=\"%s\">%s</a> <br>\n</li>",
 4313: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 4314:  fprintf(fichtm,"\
 4315:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 4316: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 4317:  fprintf(fichtm,"\
 4318:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 4319: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 4320:  fprintf(fichtm,"\
 4321:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 4322: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 4323: 
 4324: /*  if(popforecast==1) fprintf(fichtm,"\n */
 4325: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 4326: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 4327: /* 	<br>",fileres,fileres,fileres,fileres); */
 4328: /*  else  */
 4329: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 4330:  fflush(fichtm);
 4331:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 4332: 
 4333:  m=pow(2,cptcoveff);
 4334:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4335: 
 4336:  jj1=0;
 4337:  for(k1=1; k1<=m;k1++){
 4338:    for(i1=1; i1<=ncodemax[k1];i1++){
 4339:      jj1++;
 4340:      if (cptcovn > 0) {
 4341:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4342:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4343: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4344:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4345:      }
 4346:      for(cpt=1; cpt<=nlstate;cpt++) {
 4347:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 4348: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
 4349: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 4350:      }
 4351:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 4352: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 4353: true period expectancies (those weighted with period prevalences are also\
 4354:  drawn in addition to the population based expectancies computed using\
 4355:  observed and cahotic prevalences: %s%d.png<br>\
 4356: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 4357:    } /* end i1 */
 4358:  }/* End k1 */
 4359:  fprintf(fichtm,"</ul>");
 4360:  fflush(fichtm);
 4361: }
 4362: 
 4363: /******************* Gnuplot file **************/
 4364: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4365: 
 4366:   char dirfileres[132],optfileres[132];
 4367:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 4368:   int ng=0;
 4369: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 4370: /*     printf("Problem with file %s",optionfilegnuplot); */
 4371: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 4372: /*   } */
 4373: 
 4374:   /*#ifdef windows */
 4375:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4376:     /*#endif */
 4377:   m=pow(2,cptcoveff);
 4378: 
 4379:   strcpy(dirfileres,optionfilefiname);
 4380:   strcpy(optfileres,"vpl");
 4381:  /* 1eme*/
 4382:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
 4383:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 4384:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 4385:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 4386:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 4387:      fprintf(ficgp,"set xlabel \"Age\" \n\
 4388: set ylabel \"Probability\" \n\
 4389: set ter png small size 320, 240\n\
 4390: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 4391: 
 4392:      for (i=1; i<= nlstate ; i ++) {
 4393:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4394:        else        fprintf(ficgp," %%*lf (%%*lf)");
 4395:      }
 4396:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 4397:      for (i=1; i<= nlstate ; i ++) {
 4398:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4399:        else fprintf(ficgp," %%*lf (%%*lf)");
 4400:      } 
 4401:      fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4402:      for (i=1; i<= nlstate ; i ++) {
 4403:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4404:        else fprintf(ficgp," %%*lf (%%*lf)");
 4405:      }  
 4406:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4407:    }
 4408:   }
 4409:   /*2 eme*/
 4410:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
 4411:   for (k1=1; k1<= m ; k1 ++) { 
 4412:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 4413:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
 4414:     
 4415:     for (i=1; i<= nlstate+1 ; i ++) {
 4416:       k=2*i;
 4417:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4418:       for (j=1; j<= nlstate+1 ; j ++) {
 4419: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4420: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4421:       }   
 4422:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4423:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4424:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4425:       for (j=1; j<= nlstate+1 ; j ++) {
 4426: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4427: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4428:       }   
 4429:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4430:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4431:       for (j=1; j<= nlstate+1 ; j ++) {
 4432: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4433: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4434:       }   
 4435:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4436:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4437:     }
 4438:   }
 4439:   
 4440:   /*3eme*/
 4441:   
 4442:   for (k1=1; k1<= m ; k1 ++) { 
 4443:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4444:       /*       k=2+nlstate*(2*cpt-2); */
 4445:       k=2+(nlstate+1)*(cpt-1);
 4446:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4447:       fprintf(ficgp,"set ter png small size 320, 240\n\
 4448: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4449:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4450: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4451: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4452: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4453: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4454: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4455: 	
 4456:       */
 4457:       for (i=1; i< nlstate ; i ++) {
 4458: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4459: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4460: 	
 4461:       } 
 4462:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4463:     }
 4464:   }
 4465:   
 4466:   /* CV preval stable (period) */
 4467:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
 4468:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
 4469:       k=3;
 4470:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
 4471:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4472:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4473: set ter png small size 320, 240\n\
 4474: unset log y\n\
 4475: plot [%.f:%.f]  ", ageminpar, agemaxpar);
 4476:       for (i=1; i<= nlstate ; i ++){
 4477: 	if(i==1)
 4478: 	  fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
 4479: 	else
 4480: 	  fprintf(ficgp,", '' ");
 4481: 	l=(nlstate+ndeath)*(i-1)+1;
 4482: 	fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
 4483: 	for (j=1; j<= (nlstate-1) ; j ++)
 4484: 	  fprintf(ficgp,"+$%d",k+l+j);
 4485: 	fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
 4486:       } /* nlstate */
 4487:       fprintf(ficgp,"\n");
 4488:     } /* end cpt state*/ 
 4489:   } /* end covariate */  
 4490:   
 4491:   /* proba elementaires */
 4492:   for(i=1,jk=1; i <=nlstate; i++){
 4493:     for(k=1; k <=(nlstate+ndeath); k++){
 4494:       if (k != i) {
 4495: 	for(j=1; j <=ncovmodel; j++){
 4496: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 4497: 	  jk++; 
 4498: 	  fprintf(ficgp,"\n");
 4499: 	}
 4500:       }
 4501:     }
 4502:    }
 4503:   /*goto avoid;*/
 4504:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4505:      for(jk=1; jk <=m; jk++) {
 4506:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4507:        if (ng==2)
 4508: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4509:        else
 4510: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 4511:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4512:        i=1;
 4513:        for(k2=1; k2<=nlstate; k2++) {
 4514: 	 k3=i;
 4515: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4516: 	   if (k != k2){
 4517: 	     if(ng==2)
 4518: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4519: 	     else
 4520: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4521: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4522: 	     for(j=3; j <=ncovmodel; j++) {
 4523: 	       /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
 4524: 	       /* 	 /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
 4525: 	       /* 	 ij++; */
 4526: 	       /* } */
 4527: 	       /* else */
 4528: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4529: 	     }
 4530: 	     fprintf(ficgp,")/(1");
 4531: 	     
 4532: 	     for(k1=1; k1 <=nlstate; k1++){   
 4533: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4534: 	       ij=1;
 4535: 	       for(j=3; j <=ncovmodel; j++){
 4536: 		 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
 4537: 		 /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
 4538: 		 /*   ij++; */
 4539: 		 /* } */
 4540: 		 /* else */
 4541: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4542: 	       }
 4543: 	       fprintf(ficgp,")");
 4544: 	     }
 4545: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4546: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4547: 	     i=i+ncovmodel;
 4548: 	   }
 4549: 	 } /* end k */
 4550:        } /* end k2 */
 4551:      } /* end jk */
 4552:    } /* end ng */
 4553:  /* avoid: */
 4554:    fflush(ficgp); 
 4555: }  /* end gnuplot */
 4556: 
 4557: 
 4558: /*************** Moving average **************/
 4559: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4560: 
 4561:   int i, cpt, cptcod;
 4562:   int modcovmax =1;
 4563:   int mobilavrange, mob;
 4564:   double age;
 4565: 
 4566:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4567: 			   a covariate has 2 modalities */
 4568:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4569: 
 4570:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4571:     if(mobilav==1) mobilavrange=5; /* default */
 4572:     else mobilavrange=mobilav;
 4573:     for (age=bage; age<=fage; age++)
 4574:       for (i=1; i<=nlstate;i++)
 4575: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4576: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4577:     /* We keep the original values on the extreme ages bage, fage and for 
 4578:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4579:        we use a 5 terms etc. until the borders are no more concerned. 
 4580:     */ 
 4581:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4582:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4583: 	for (i=1; i<=nlstate;i++){
 4584: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4585: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4586: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4587: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4588: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4589: 	      }
 4590: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4591: 	  }
 4592: 	}
 4593:       }/* end age */
 4594:     }/* end mob */
 4595:   }else return -1;
 4596:   return 0;
 4597: }/* End movingaverage */
 4598: 
 4599: 
 4600: /************** Forecasting ******************/
 4601: void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4602:   /* proj1, year, month, day of starting projection 
 4603:      agemin, agemax range of age
 4604:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4605:      anproj2 year of en of projection (same day and month as proj1).
 4606:   */
 4607:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
 4608:   double agec; /* generic age */
 4609:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4610:   double *popeffectif,*popcount;
 4611:   double ***p3mat;
 4612:   double ***mobaverage;
 4613:   char fileresf[FILENAMELENGTH];
 4614: 
 4615:   agelim=AGESUP;
 4616:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4617:  
 4618:   strcpy(fileresf,"f"); 
 4619:   strcat(fileresf,fileres);
 4620:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4621:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4622:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4623:   }
 4624:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4625:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4626: 
 4627:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4628: 
 4629:   if (mobilav!=0) {
 4630:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4631:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4632:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4633:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4634:     }
 4635:   }
 4636: 
 4637:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4638:   if (stepm<=12) stepsize=1;
 4639:   if(estepm < stepm){
 4640:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4641:   }
 4642:   else  hstepm=estepm;   
 4643: 
 4644:   hstepm=hstepm/stepm; 
 4645:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4646:                                fractional in yp1 */
 4647:   anprojmean=yp;
 4648:   yp2=modf((yp1*12),&yp);
 4649:   mprojmean=yp;
 4650:   yp1=modf((yp2*30.5),&yp);
 4651:   jprojmean=yp;
 4652:   if(jprojmean==0) jprojmean=1;
 4653:   if(mprojmean==0) jprojmean=1;
 4654: 
 4655:   i1=cptcoveff;
 4656:   if (cptcovn < 1){i1=1;}
 4657:   
 4658:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4659:   
 4660:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4661: 
 4662: /* 	      if (h==(int)(YEARM*yearp)){ */
 4663:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4664:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4665:       k=k+1;
 4666:       fprintf(ficresf,"\n#******");
 4667:       for(j=1;j<=cptcoveff;j++) {
 4668: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4669:       }
 4670:       fprintf(ficresf,"******\n");
 4671:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4672:       for(j=1; j<=nlstate+ndeath;j++){ 
 4673: 	for(i=1; i<=nlstate;i++) 	      
 4674:           fprintf(ficresf," p%d%d",i,j);
 4675: 	fprintf(ficresf," p.%d",j);
 4676:       }
 4677:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4678: 	fprintf(ficresf,"\n");
 4679: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4680: 
 4681:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4682: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4683: 	  nhstepm = nhstepm/hstepm; 
 4684: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4685: 	  oldm=oldms;savm=savms;
 4686: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4687: 	
 4688: 	  for (h=0; h<=nhstepm; h++){
 4689: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4690:               fprintf(ficresf,"\n");
 4691:               for(j=1;j<=cptcoveff;j++) 
 4692:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4693: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4694: 	    } 
 4695: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4696: 	      ppij=0.;
 4697: 	      for(i=1; i<=nlstate;i++) {
 4698: 		if (mobilav==1) 
 4699: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4700: 		else {
 4701: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4702: 		}
 4703: 		if (h*hstepm/YEARM*stepm== yearp) {
 4704: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4705: 		}
 4706: 	      } /* end i */
 4707: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4708: 		fprintf(ficresf," %.3f", ppij);
 4709: 	      }
 4710: 	    }/* end j */
 4711: 	  } /* end h */
 4712: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4713: 	} /* end agec */
 4714:       } /* end yearp */
 4715:     } /* end cptcod */
 4716:   } /* end  cptcov */
 4717:        
 4718:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4719: 
 4720:   fclose(ficresf);
 4721: }
 4722: 
 4723: /************** Forecasting *****not tested NB*************/
 4724: void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 4725:   
 4726:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 4727:   int *popage;
 4728:   double calagedatem, agelim, kk1, kk2;
 4729:   double *popeffectif,*popcount;
 4730:   double ***p3mat,***tabpop,***tabpopprev;
 4731:   double ***mobaverage;
 4732:   char filerespop[FILENAMELENGTH];
 4733: 
 4734:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4735:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4736:   agelim=AGESUP;
 4737:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 4738:   
 4739:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4740:   
 4741:   
 4742:   strcpy(filerespop,"pop"); 
 4743:   strcat(filerespop,fileres);
 4744:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 4745:     printf("Problem with forecast resultfile: %s\n", filerespop);
 4746:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 4747:   }
 4748:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 4749:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 4750: 
 4751:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4752: 
 4753:   if (mobilav!=0) {
 4754:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4755:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4756:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4757:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4758:     }
 4759:   }
 4760: 
 4761:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4762:   if (stepm<=12) stepsize=1;
 4763:   
 4764:   agelim=AGESUP;
 4765:   
 4766:   hstepm=1;
 4767:   hstepm=hstepm/stepm; 
 4768:   
 4769:   if (popforecast==1) {
 4770:     if((ficpop=fopen(popfile,"r"))==NULL) {
 4771:       printf("Problem with population file : %s\n",popfile);exit(0);
 4772:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 4773:     } 
 4774:     popage=ivector(0,AGESUP);
 4775:     popeffectif=vector(0,AGESUP);
 4776:     popcount=vector(0,AGESUP);
 4777:     
 4778:     i=1;   
 4779:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 4780:    
 4781:     imx=i;
 4782:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 4783:   }
 4784: 
 4785:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 4786:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4787:       k=k+1;
 4788:       fprintf(ficrespop,"\n#******");
 4789:       for(j=1;j<=cptcoveff;j++) {
 4790: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4791:       }
 4792:       fprintf(ficrespop,"******\n");
 4793:       fprintf(ficrespop,"# Age");
 4794:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 4795:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 4796:       
 4797:       for (cpt=0; cpt<=0;cpt++) { 
 4798: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4799: 	
 4800:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4801: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4802: 	  nhstepm = nhstepm/hstepm; 
 4803: 	  
 4804: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4805: 	  oldm=oldms;savm=savms;
 4806: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4807: 	
 4808: 	  for (h=0; h<=nhstepm; h++){
 4809: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4810: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4811: 	    } 
 4812: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4813: 	      kk1=0.;kk2=0;
 4814: 	      for(i=1; i<=nlstate;i++) {	      
 4815: 		if (mobilav==1) 
 4816: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4817: 		else {
 4818: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4819: 		}
 4820: 	      }
 4821: 	      if (h==(int)(calagedatem+12*cpt)){
 4822: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4823: 		  /*fprintf(ficrespop," %.3f", kk1);
 4824: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4825: 	      }
 4826: 	    }
 4827: 	    for(i=1; i<=nlstate;i++){
 4828: 	      kk1=0.;
 4829: 		for(j=1; j<=nlstate;j++){
 4830: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4831: 		}
 4832: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4833: 	    }
 4834: 
 4835: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4836: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4837: 	  }
 4838: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4839: 	}
 4840:       }
 4841:  
 4842:   /******/
 4843: 
 4844:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4845: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4846: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4847: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4848: 	  nhstepm = nhstepm/hstepm; 
 4849: 	  
 4850: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4851: 	  oldm=oldms;savm=savms;
 4852: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4853: 	  for (h=0; h<=nhstepm; h++){
 4854: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4855: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4856: 	    } 
 4857: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4858: 	      kk1=0.;kk2=0;
 4859: 	      for(i=1; i<=nlstate;i++) {	      
 4860: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4861: 	      }
 4862: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4863: 	    }
 4864: 	  }
 4865: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4866: 	}
 4867:       }
 4868:    } 
 4869:   }
 4870:  
 4871:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4872: 
 4873:   if (popforecast==1) {
 4874:     free_ivector(popage,0,AGESUP);
 4875:     free_vector(popeffectif,0,AGESUP);
 4876:     free_vector(popcount,0,AGESUP);
 4877:   }
 4878:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4879:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4880:   fclose(ficrespop);
 4881: } /* End of popforecast */
 4882: 
 4883: int fileappend(FILE *fichier, char *optionfich)
 4884: {
 4885:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4886:     printf("Problem with file: %s\n", optionfich);
 4887:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4888:     return (0);
 4889:   }
 4890:   fflush(fichier);
 4891:   return (1);
 4892: }
 4893: 
 4894: 
 4895: /**************** function prwizard **********************/
 4896: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4897: {
 4898: 
 4899:   /* Wizard to print covariance matrix template */
 4900: 
 4901:   char ca[32], cb[32];
 4902:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
 4903:   int numlinepar;
 4904: 
 4905:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4906:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4907:   for(i=1; i <=nlstate; i++){
 4908:     jj=0;
 4909:     for(j=1; j <=nlstate+ndeath; j++){
 4910:       if(j==i) continue;
 4911:       jj++;
 4912:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4913:       printf("%1d%1d",i,j);
 4914:       fprintf(ficparo,"%1d%1d",i,j);
 4915:       for(k=1; k<=ncovmodel;k++){
 4916: 	/* 	  printf(" %lf",param[i][j][k]); */
 4917: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4918: 	printf(" 0.");
 4919: 	fprintf(ficparo," 0.");
 4920:       }
 4921:       printf("\n");
 4922:       fprintf(ficparo,"\n");
 4923:     }
 4924:   }
 4925:   printf("# Scales (for hessian or gradient estimation)\n");
 4926:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4927:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4928:   for(i=1; i <=nlstate; i++){
 4929:     jj=0;
 4930:     for(j=1; j <=nlstate+ndeath; j++){
 4931:       if(j==i) continue;
 4932:       jj++;
 4933:       fprintf(ficparo,"%1d%1d",i,j);
 4934:       printf("%1d%1d",i,j);
 4935:       fflush(stdout);
 4936:       for(k=1; k<=ncovmodel;k++){
 4937: 	/* 	printf(" %le",delti3[i][j][k]); */
 4938: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4939: 	printf(" 0.");
 4940: 	fprintf(ficparo," 0.");
 4941:       }
 4942:       numlinepar++;
 4943:       printf("\n");
 4944:       fprintf(ficparo,"\n");
 4945:     }
 4946:   }
 4947:   printf("# Covariance matrix\n");
 4948: /* # 121 Var(a12)\n\ */
 4949: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4950: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4951: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4952: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4953: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4954: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4955: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4956:   fflush(stdout);
 4957:   fprintf(ficparo,"# Covariance matrix\n");
 4958:   /* # 121 Var(a12)\n\ */
 4959:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4960:   /* #   ...\n\ */
 4961:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4962:   
 4963:   for(itimes=1;itimes<=2;itimes++){
 4964:     jj=0;
 4965:     for(i=1; i <=nlstate; i++){
 4966:       for(j=1; j <=nlstate+ndeath; j++){
 4967: 	if(j==i) continue;
 4968: 	for(k=1; k<=ncovmodel;k++){
 4969: 	  jj++;
 4970: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4971: 	  if(itimes==1){
 4972: 	    printf("#%1d%1d%d",i,j,k);
 4973: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4974: 	  }else{
 4975: 	    printf("%1d%1d%d",i,j,k);
 4976: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4977: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4978: 	  }
 4979: 	  ll=0;
 4980: 	  for(li=1;li <=nlstate; li++){
 4981: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 4982: 	      if(lj==li) continue;
 4983: 	      for(lk=1;lk<=ncovmodel;lk++){
 4984: 		ll++;
 4985: 		if(ll<=jj){
 4986: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 4987: 		  if(ll<jj){
 4988: 		    if(itimes==1){
 4989: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4990: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4991: 		    }else{
 4992: 		      printf(" 0.");
 4993: 		      fprintf(ficparo," 0.");
 4994: 		    }
 4995: 		  }else{
 4996: 		    if(itimes==1){
 4997: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4998: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4999: 		    }else{
 5000: 		      printf(" 0.");
 5001: 		      fprintf(ficparo," 0.");
 5002: 		    }
 5003: 		  }
 5004: 		}
 5005: 	      } /* end lk */
 5006: 	    } /* end lj */
 5007: 	  } /* end li */
 5008: 	  printf("\n");
 5009: 	  fprintf(ficparo,"\n");
 5010: 	  numlinepar++;
 5011: 	} /* end k*/
 5012:       } /*end j */
 5013:     } /* end i */
 5014:   } /* end itimes */
 5015: 
 5016: } /* end of prwizard */
 5017: /******************* Gompertz Likelihood ******************************/
 5018: double gompertz(double x[])
 5019: { 
 5020:   double A,B,L=0.0,sump=0.,num=0.;
 5021:   int i,n=0; /* n is the size of the sample */
 5022: 
 5023:   for (i=0;i<=imx-1 ; i++) {
 5024:     sump=sump+weight[i];
 5025:     /*    sump=sump+1;*/
 5026:     num=num+1;
 5027:   }
 5028:  
 5029:  
 5030:   /* for (i=0; i<=imx; i++) 
 5031:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 5032: 
 5033:   for (i=1;i<=imx ; i++)
 5034:     {
 5035:       if (cens[i] == 1 && wav[i]>1)
 5036: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 5037:       
 5038:       if (cens[i] == 0 && wav[i]>1)
 5039: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 5040: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 5041:       
 5042:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 5043:       if (wav[i] > 1 ) { /* ??? */
 5044: 	L=L+A*weight[i];
 5045: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 5046:       }
 5047:     }
 5048: 
 5049:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 5050:  
 5051:   return -2*L*num/sump;
 5052: }
 5053: 
 5054: #ifdef GSL
 5055: /******************* Gompertz_f Likelihood ******************************/
 5056: double gompertz_f(const gsl_vector *v, void *params)
 5057: { 
 5058:   double A,B,LL=0.0,sump=0.,num=0.;
 5059:   double *x= (double *) v->data;
 5060:   int i,n=0; /* n is the size of the sample */
 5061: 
 5062:   for (i=0;i<=imx-1 ; i++) {
 5063:     sump=sump+weight[i];
 5064:     /*    sump=sump+1;*/
 5065:     num=num+1;
 5066:   }
 5067:  
 5068:  
 5069:   /* for (i=0; i<=imx; i++) 
 5070:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 5071:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 5072:   for (i=1;i<=imx ; i++)
 5073:     {
 5074:       if (cens[i] == 1 && wav[i]>1)
 5075: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 5076:       
 5077:       if (cens[i] == 0 && wav[i]>1)
 5078: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 5079: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 5080:       
 5081:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 5082:       if (wav[i] > 1 ) { /* ??? */
 5083: 	LL=LL+A*weight[i];
 5084: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 5085:       }
 5086:     }
 5087: 
 5088:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 5089:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 5090:  
 5091:   return -2*LL*num/sump;
 5092: }
 5093: #endif
 5094: 
 5095: /******************* Printing html file ***********/
 5096: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 5097: 		  int lastpass, int stepm, int weightopt, char model[],\
 5098: 		  int imx,  double p[],double **matcov,double agemortsup){
 5099:   int i,k;
 5100: 
 5101:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 5102:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 5103:   for (i=1;i<=2;i++) 
 5104:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 5105:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 5106:   fprintf(fichtm,"</ul>");
 5107: 
 5108: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 5109: 
 5110:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 5111: 
 5112:  for (k=agegomp;k<(agemortsup-2);k++) 
 5113:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 5114: 
 5115:  
 5116:   fflush(fichtm);
 5117: }
 5118: 
 5119: /******************* Gnuplot file **************/
 5120: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 5121: 
 5122:   char dirfileres[132],optfileres[132];
 5123: 
 5124:   int ng;
 5125: 
 5126: 
 5127:   /*#ifdef windows */
 5128:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 5129:     /*#endif */
 5130: 
 5131: 
 5132:   strcpy(dirfileres,optionfilefiname);
 5133:   strcpy(optfileres,"vpl");
 5134:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 5135:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 5136:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
 5137:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 5138:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 5139: 
 5140: } 
 5141: 
 5142: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 5143: {
 5144: 
 5145:   /*-------- data file ----------*/
 5146:   FILE *fic;
 5147:   char dummy[]="                         ";
 5148:   int i=0, j=0, n=0;
 5149:   int linei, month, year,iout;
 5150:   char line[MAXLINE], linetmp[MAXLINE];
 5151:   char stra[MAXLINE], strb[MAXLINE];
 5152:   char *stratrunc;
 5153:   int lstra;
 5154: 
 5155: 
 5156:   if((fic=fopen(datafile,"r"))==NULL)    {
 5157:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 5158:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 5159:   }
 5160: 
 5161:   i=1;
 5162:   linei=0;
 5163:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 5164:     linei=linei+1;
 5165:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 5166:       if(line[j] == '\t')
 5167: 	line[j] = ' ';
 5168:     }
 5169:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 5170:       ;
 5171:     };
 5172:     line[j+1]=0;  /* Trims blanks at end of line */
 5173:     if(line[0]=='#'){
 5174:       fprintf(ficlog,"Comment line\n%s\n",line);
 5175:       printf("Comment line\n%s\n",line);
 5176:       continue;
 5177:     }
 5178:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 5179:     strcpy(line, linetmp);
 5180:   
 5181: 
 5182:     for (j=maxwav;j>=1;j--){
 5183:       cutv(stra, strb, line, ' '); 
 5184:       if(strb[0]=='.') { /* Missing status */
 5185: 	lval=-1;
 5186:       }else{
 5187: 	errno=0;
 5188: 	lval=strtol(strb,&endptr,10); 
 5189:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 5190: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5191: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 5192: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 5193: 	  return 1;
 5194: 	}
 5195:       }
 5196:       s[j][i]=lval;
 5197:       
 5198:       strcpy(line,stra);
 5199:       cutv(stra, strb,line,' ');
 5200:       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5201:       }
 5202:       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5203: 	month=99;
 5204: 	year=9999;
 5205:       }else{
 5206: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 5207: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 5208: 	return 1;
 5209:       }
 5210:       anint[j][i]= (double) year; 
 5211:       mint[j][i]= (double)month; 
 5212:       strcpy(line,stra);
 5213:     } /* ENd Waves */
 5214:     
 5215:     cutv(stra, strb,line,' '); 
 5216:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5217:     }
 5218:     else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5219:       month=99;
 5220:       year=9999;
 5221:     }else{
 5222:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5223: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5224: 	return 1;
 5225:     }
 5226:     andc[i]=(double) year; 
 5227:     moisdc[i]=(double) month; 
 5228:     strcpy(line,stra);
 5229:     
 5230:     cutv(stra, strb,line,' '); 
 5231:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5232:     }
 5233:     else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
 5234:       month=99;
 5235:       year=9999;
 5236:     }else{
 5237:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5238:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5239: 	return 1;
 5240:     }
 5241:     if (year==9999) {
 5242:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 5243:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5244: 	return 1;
 5245: 
 5246:     }
 5247:     annais[i]=(double)(year);
 5248:     moisnais[i]=(double)(month); 
 5249:     strcpy(line,stra);
 5250:     
 5251:     cutv(stra, strb,line,' '); 
 5252:     errno=0;
 5253:     dval=strtod(strb,&endptr); 
 5254:     if( strb[0]=='\0' || (*endptr != '\0')){
 5255:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5256:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5257:       fflush(ficlog);
 5258:       return 1;
 5259:     }
 5260:     weight[i]=dval; 
 5261:     strcpy(line,stra);
 5262:     
 5263:     for (j=ncovcol;j>=1;j--){
 5264:       cutv(stra, strb,line,' '); 
 5265:       if(strb[0]=='.') { /* Missing status */
 5266: 	lval=-1;
 5267:       }else{
 5268: 	errno=0;
 5269: 	lval=strtol(strb,&endptr,10); 
 5270: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5271: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 5272: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 5273: 	  return 1;
 5274: 	}
 5275:       }
 5276:       if(lval <-1 || lval >1){
 5277: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5278:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5279:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5280:  For example, for multinomial values like 1, 2 and 3,\n \
 5281:  build V1=0 V2=0 for the reference value (1),\n \
 5282:         V1=1 V2=0 for (2) \n \
 5283:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5284:  output of IMaCh is often meaningless.\n \
 5285:  Exiting.\n",lval,linei, i,line,j);
 5286: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5287:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5288:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5289:  For example, for multinomial values like 1, 2 and 3,\n \
 5290:  build V1=0 V2=0 for the reference value (1),\n \
 5291:         V1=1 V2=0 for (2) \n \
 5292:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5293:  output of IMaCh is often meaningless.\n \
 5294:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 5295: 	return 1;
 5296:       }
 5297:       covar[j][i]=(double)(lval);
 5298:       strcpy(line,stra);
 5299:     }  
 5300:     lstra=strlen(stra);
 5301:      
 5302:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 5303:       stratrunc = &(stra[lstra-9]);
 5304:       num[i]=atol(stratrunc);
 5305:     }
 5306:     else
 5307:       num[i]=atol(stra);
 5308:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 5309:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 5310:     
 5311:     i=i+1;
 5312:   } /* End loop reading  data */
 5313: 
 5314:   *imax=i-1; /* Number of individuals */
 5315:   fclose(fic);
 5316:  
 5317:   return (0);
 5318:   /* endread: */
 5319:     printf("Exiting readdata: ");
 5320:     fclose(fic);
 5321:     return (1);
 5322: 
 5323: 
 5324: 
 5325: }
 5326: void removespace(char *str) {
 5327:   char *p1 = str, *p2 = str;
 5328:   do
 5329:     while (*p2 == ' ')
 5330:       p2++;
 5331:   while (*p1++ == *p2++);
 5332: }
 5333: 
 5334: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 5335:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
 5336:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
 5337:    * - cptcovn or number of covariates k of the models excluding age*products =6
 5338:    * - cptcovage number of covariates with age*products =2
 5339:    * - cptcovs number of simple covariates
 5340:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 5341:    *     which is a new column after the 9 (ncovcol) variables. 
 5342:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 5343:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 5344:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 5345:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 5346:  */
 5347: {
 5348:   int i, j, k, ks;
 5349:   int  j1, k1, k2;
 5350:   char modelsav[80];
 5351:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 5352: 
 5353:   /*removespace(model);*/
 5354:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 5355:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 5356:     j=nbocc(model,'+'); /**< j=Number of '+' */
 5357:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
 5358:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
 5359:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
 5360:                   /* including age products which are counted in cptcovage.
 5361: 		  * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
 5362:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 5363:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 5364:     strcpy(modelsav,model); 
 5365:     if (strstr(model,"AGE") !=0){
 5366:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
 5367:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
 5368:       return 1;
 5369:     }
 5370:     if (strstr(model,"v") !=0){
 5371:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 5372:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 5373:       return 1;
 5374:     }
 5375:     
 5376:     /*   Design
 5377:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 5378:      *  <          ncovcol=8                >
 5379:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 5380:      *   k=  1    2      3       4     5       6      7        8
 5381:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 5382:      *  covar[k,i], value of kth covariate if not including age for individual i:
 5383:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 5384:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 5385:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 5386:      *  Tage[++cptcovage]=k
 5387:      *       if products, new covar are created after ncovcol with k1
 5388:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 5389:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 5390:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 5391:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 5392:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 5393:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 5394:      *  <          ncovcol=8                >
 5395:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 5396:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 5397:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5398:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5399:      * p Tprod[1]@2={                         6, 5}
 5400:      *p Tvard[1][1]@4= {7, 8, 5, 6}
 5401:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5402:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5403:      *How to reorganize?
 5404:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5405:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5406:      *       {2,   1,     4,      8,    5,      6,     3,       7}
 5407:      * Struct []
 5408:      */
 5409: 
 5410:     /* This loop fills the array Tvar from the string 'model'.*/
 5411:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5412:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5413:     /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5414:     /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5415:     /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5416:     /* 	k=1 Tvar[1]=2 (from V2) */
 5417:     /* 	k=5 Tvar[5] */
 5418:     /* for (k=1; k<=cptcovn;k++) { */
 5419:     /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 5420:     /* 	} */
 5421:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 5422:     /*
 5423:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5424:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5425:         Tvar[k]=0;
 5426:     cptcovage=0;
 5427:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5428:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5429: 				     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5430:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5431:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5432:       /*scanf("%d",i);*/
 5433:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5434: 	cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5435: 	if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5436: 	  /* covar is not filled and then is empty */
 5437: 	  cptcovprod--;
 5438: 	  cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5439: 	  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
 5440: 	  cptcovage++; /* Sums the number of covariates which include age as a product */
 5441: 	  Tage[cptcovage]=k;  /* Tage[1] = 4 */
 5442: 	  /*printf("stre=%s ", stre);*/
 5443: 	} else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5444: 	  cptcovprod--;
 5445: 	  cutl(stre,strb,strc,'V');
 5446: 	  Tvar[k]=atoi(stre);
 5447: 	  cptcovage++;
 5448: 	  Tage[cptcovage]=k;
 5449: 	} else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5450: 	  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5451: 	  cptcovn++;
 5452: 	  cptcovprodnoage++;k1++;
 5453: 	  cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5454: 	  Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5455: 				  because this model-covariate is a construction we invent a new column
 5456: 				  ncovcol + k1
 5457: 				  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5458: 				  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5459: 	  cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5460: 	  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5461: 	  Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5462: 	  Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5463: 	  k2=k2+2;
 5464: 	  Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5465: 	  Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5466: 	  for (i=1; i<=lastobs;i++){
 5467: 	    /* Computes the new covariate which is a product of
 5468: 	       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5469: 	    covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5470: 	  }
 5471: 	} /* End age is not in the model */
 5472:       } /* End if model includes a product */
 5473:       else { /* no more sum */
 5474: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5475:        /*  scanf("%d",i);*/
 5476: 	cutl(strd,strc,strb,'V');
 5477: 	ks++; /**< Number of simple covariates */
 5478: 	cptcovn++;
 5479: 	Tvar[k]=atoi(strd);
 5480:       }
 5481:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5482:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5483: 	scanf("%d",i);*/
 5484:     } /* end of loop + */
 5485:   } /* end model */
 5486:   
 5487:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5488:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5489: 
 5490:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5491:   printf("cptcovprod=%d ", cptcovprod);
 5492:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5493: 
 5494:   scanf("%d ",i);*/
 5495: 
 5496: 
 5497:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5498:   /*endread:*/
 5499:     printf("Exiting decodemodel: ");
 5500:     return (1);
 5501: }
 5502: 
 5503: int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5504: {
 5505:   int i, m;
 5506: 
 5507:   for (i=1; i<=imx; i++) {
 5508:     for(m=2; (m<= maxwav); m++) {
 5509:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5510: 	anint[m][i]=9999;
 5511: 	s[m][i]=-1;
 5512:       }
 5513:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5514: 	*nberr = *nberr + 1;
 5515: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5516: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5517: 	s[m][i]=-1;
 5518:       }
 5519:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5520: 	(*nberr)++;
 5521: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5522: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5523: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5524:       }
 5525:     }
 5526:   }
 5527: 
 5528:   for (i=1; i<=imx; i++)  {
 5529:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5530:     for(m=firstpass; (m<= lastpass); m++){
 5531:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5532: 	if (s[m][i] >= nlstate+1) {
 5533: 	  if(agedc[i]>0){
 5534: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
 5535: 	      agev[m][i]=agedc[i];
 5536: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5537: 	    }else {
 5538: 	      if ((int)andc[i]!=9999){
 5539: 		nbwarn++;
 5540: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5541: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5542: 		agev[m][i]=-1;
 5543: 	      }
 5544: 	    }
 5545: 	  } /* agedc > 0 */
 5546: 	}
 5547: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5548: 				 years but with the precision of a month */
 5549: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5550: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5551: 	    agev[m][i]=1;
 5552: 	  else if(agev[m][i] < *agemin){ 
 5553: 	    *agemin=agev[m][i];
 5554: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5555: 	  }
 5556: 	  else if(agev[m][i] >*agemax){
 5557: 	    *agemax=agev[m][i];
 5558: 	    /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
 5559: 	  }
 5560: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5561: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5562: 	}
 5563: 	else { /* =9 */
 5564: 	  agev[m][i]=1;
 5565: 	  s[m][i]=-1;
 5566: 	}
 5567:       }
 5568:       else /*= 0 Unknown */
 5569: 	agev[m][i]=1;
 5570:     }
 5571:     
 5572:   }
 5573:   for (i=1; i<=imx; i++)  {
 5574:     for(m=firstpass; (m<=lastpass); m++){
 5575:       if (s[m][i] > (nlstate+ndeath)) {
 5576: 	(*nberr)++;
 5577: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5578: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5579: 	return 1;
 5580:       }
 5581:     }
 5582:   }
 5583: 
 5584:   /*for (i=1; i<=imx; i++){
 5585:   for (m=firstpass; (m<lastpass); m++){
 5586:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5587: }
 5588: 
 5589: }*/
 5590: 
 5591: 
 5592:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5593:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5594: 
 5595:   return (0);
 5596:  /* endread:*/
 5597:     printf("Exiting calandcheckages: ");
 5598:     return (1);
 5599: }
 5600: 
 5601: #if defined(_MSC_VER)
 5602: /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5603: /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5604: //#include "stdafx.h"
 5605: //#include <stdio.h>
 5606: //#include <tchar.h>
 5607: //#include <windows.h>
 5608: //#include <iostream>
 5609: typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
 5610: 
 5611: LPFN_ISWOW64PROCESS fnIsWow64Process;
 5612: 
 5613: BOOL IsWow64()
 5614: {
 5615: 	BOOL bIsWow64 = FALSE;
 5616: 
 5617: 	//typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
 5618: 	//  (HANDLE, PBOOL);
 5619: 
 5620: 	//LPFN_ISWOW64PROCESS fnIsWow64Process;
 5621: 
 5622: 	HMODULE module = GetModuleHandle(_T("kernel32"));
 5623: 	const char funcName[] = "IsWow64Process";
 5624: 	fnIsWow64Process = (LPFN_ISWOW64PROCESS)
 5625: 		GetProcAddress(module, funcName);
 5626: 
 5627: 	if (NULL != fnIsWow64Process)
 5628: 	{
 5629: 		if (!fnIsWow64Process(GetCurrentProcess(),
 5630: 			&bIsWow64))
 5631: 			//throw std::exception("Unknown error");
 5632: 			printf("Unknown error\n");
 5633: 	}
 5634: 	return bIsWow64 != FALSE;
 5635: }
 5636: #endif
 5637: 
 5638: void syscompilerinfo()
 5639:  {
 5640:    /* #include "syscompilerinfo.h"*/
 5641: 
 5642: #if defined __INTEL_COMPILER
 5643: #if defined(__GNUC__)
 5644: 	struct utsname sysInfo;  /* For Intel on Linux and OS/X */
 5645: #endif
 5646: #elif defined(__GNUC__) 
 5647: #ifndef  __APPLE__
 5648: #include <gnu/libc-version.h>  /* Only on gnu */
 5649: #endif
 5650:    struct utsname sysInfo;
 5651:    int cross = CROSS;
 5652:    if (cross){
 5653: 	   printf("Cross-");
 5654: 	   fprintf(ficlog, "Cross-");
 5655:    }
 5656: #endif
 5657: 
 5658: #include <stdint.h>
 5659: 
 5660:    printf("Compiled with:");fprintf(ficlog,"Compiled with:");
 5661: #if defined(__clang__)
 5662:    printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM");	/* Clang/LLVM. ---------------------------------------------- */
 5663: #endif
 5664: #if defined(__ICC) || defined(__INTEL_COMPILER)
 5665:    printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
 5666: #endif
 5667: #if defined(__GNUC__) || defined(__GNUG__)
 5668:    printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
 5669: #endif
 5670: #if defined(__HP_cc) || defined(__HP_aCC)
 5671:    printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
 5672: #endif
 5673: #if defined(__IBMC__) || defined(__IBMCPP__)
 5674:    printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
 5675: #endif
 5676: #if defined(_MSC_VER)
 5677:    printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
 5678: #endif
 5679: #if defined(__PGI)
 5680:    printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
 5681: #endif
 5682: #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
 5683:    printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
 5684: #endif
 5685:    printf(" for ");fprintf(ficlog," for ");
 5686:    
 5687: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
 5688: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
 5689:     // Windows (x64 and x86)
 5690:    printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
 5691: #elif __unix__ // all unices, not all compilers
 5692:     // Unix
 5693:    printf("Unix ");fprintf(ficlog,"Unix ");
 5694: #elif __linux__
 5695:     // linux
 5696:    printf("linux ");fprintf(ficlog,"linux ");
 5697: #elif __APPLE__
 5698:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
 5699:    printf("Mac OS ");fprintf(ficlog,"Mac OS ");
 5700: #endif
 5701: 
 5702: /*  __MINGW32__	  */
 5703: /*  __CYGWIN__	 */
 5704: /* __MINGW64__  */
 5705: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
 5706: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
 5707: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
 5708: /* _WIN64  // Defined for applications for Win64. */
 5709: /* _M_X64 // Defined for compilations that target x64 processors. */
 5710: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
 5711: 
 5712: #if UINTPTR_MAX == 0xffffffff
 5713:    printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
 5714: #elif UINTPTR_MAX == 0xffffffffffffffff
 5715:    printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
 5716: #else
 5717:    printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
 5718: #endif
 5719: 
 5720: #if defined(__GNUC__)
 5721: # if defined(__GNUC_PATCHLEVEL__)
 5722: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 5723:                             + __GNUC_MINOR__ * 100 \
 5724:                             + __GNUC_PATCHLEVEL__)
 5725: # else
 5726: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 5727:                             + __GNUC_MINOR__ * 100)
 5728: # endif
 5729:    printf(" using GNU C version %d.\n", __GNUC_VERSION__);
 5730:    fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
 5731: 
 5732:    if (uname(&sysInfo) != -1) {
 5733:      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 5734:      fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 5735:    }
 5736:    else
 5737:       perror("uname() error");
 5738:    //#ifndef __INTEL_COMPILER 
 5739: #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
 5740:    printf("GNU libc version: %s\n", gnu_get_libc_version()); 
 5741:    fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
 5742: #endif
 5743: #endif
 5744: 
 5745:    //   void main()
 5746:    //   {
 5747: #if defined(_MSC_VER)
 5748:    if (IsWow64()){
 5749: 	   printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 5750: 	   fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 5751:    }
 5752:    else{
 5753: 	   printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 5754: 	   fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 5755:    }
 5756:    //	   printf("\nPress Enter to continue...");
 5757:    //	   getchar();
 5758:    //   }
 5759: 
 5760: #endif
 5761:    
 5762: 
 5763:  }
 5764: 
 5765: int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
 5766:   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 5767:   int i, j, k, i1 ;
 5768:   double ftolpl = 1.e-10;
 5769:   double age, agebase, agelim;
 5770: 
 5771:     strcpy(filerespl,"pl");
 5772:     strcat(filerespl,fileres);
 5773:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 5774:       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 5775:       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 5776:     }
 5777:     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 5778:     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 5779:     pstamp(ficrespl);
 5780:     fprintf(ficrespl,"# Period (stable) prevalence \n");
 5781:     fprintf(ficrespl,"#Age ");
 5782:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5783:     fprintf(ficrespl,"\n");
 5784:   
 5785:     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
 5786: 
 5787:     agebase=ageminpar;
 5788:     agelim=agemaxpar;
 5789: 
 5790:     i1=pow(2,cptcoveff);
 5791:     if (cptcovn < 1){i1=1;}
 5792: 
 5793:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5794:     /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
 5795:       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5796: 	k=k+1;
 5797: 	/* to clean */
 5798: 	//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
 5799: 	fprintf(ficrespl,"\n#******");
 5800: 	printf("\n#******");
 5801: 	fprintf(ficlog,"\n#******");
 5802: 	for(j=1;j<=cptcoveff;j++) {
 5803: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5804: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5805: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5806: 	}
 5807: 	fprintf(ficrespl,"******\n");
 5808: 	printf("******\n");
 5809: 	fprintf(ficlog,"******\n");
 5810: 
 5811: 	fprintf(ficrespl,"#Age ");
 5812: 	for(j=1;j<=cptcoveff;j++) {
 5813: 	  fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5814: 	}
 5815: 	for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5816: 	fprintf(ficrespl,"\n");
 5817: 	
 5818: 	for (age=agebase; age<=agelim; age++){
 5819: 	/* for (age=agebase; age<=agebase; age++){ */
 5820: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5821: 	  fprintf(ficrespl,"%.0f ",age );
 5822: 	  for(j=1;j<=cptcoveff;j++)
 5823: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5824: 	  for(i=1; i<=nlstate;i++)
 5825: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 5826: 	  fprintf(ficrespl,"\n");
 5827: 	} /* Age */
 5828: 	/* was end of cptcod */
 5829:     } /* cptcov */
 5830: }
 5831: 
 5832: int hPijx(double *p, int bage, int fage){
 5833:     /*------------- h Pij x at various ages ------------*/
 5834: 
 5835:   int stepsize;
 5836:   int agelim;
 5837:   int hstepm;
 5838:   int nhstepm;
 5839:   int h, i, i1, j, k;
 5840: 
 5841:   double agedeb;
 5842:   double ***p3mat;
 5843: 
 5844:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 5845:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 5846:       printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
 5847:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
 5848:     }
 5849:     printf("Computing pij: result on file '%s' \n", filerespij);
 5850:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 5851:   
 5852:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 5853:     /*if (stepm<=24) stepsize=2;*/
 5854: 
 5855:     agelim=AGESUP;
 5856:     hstepm=stepsize*YEARM; /* Every year of age */
 5857:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 5858: 
 5859:     /* hstepm=1;   aff par mois*/
 5860:     pstamp(ficrespij);
 5861:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 5862:     i1= pow(2,cptcoveff);
 5863:    /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
 5864:    /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
 5865:    /*  	k=k+1;  */
 5866:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 5867:       fprintf(ficrespij,"\n#****** ");
 5868:       for(j=1;j<=cptcoveff;j++) 
 5869: 	fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5870:       fprintf(ficrespij,"******\n");
 5871:       
 5872:       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 5873: 	nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 5874: 	nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 5875: 	
 5876: 	/*	  nhstepm=nhstepm*YEARM; aff par mois*/
 5877: 	
 5878: 	p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5879: 	oldm=oldms;savm=savms;
 5880: 	hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5881: 	fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 5882: 	for(i=1; i<=nlstate;i++)
 5883: 	  for(j=1; j<=nlstate+ndeath;j++)
 5884: 	    fprintf(ficrespij," %1d-%1d",i,j);
 5885: 	fprintf(ficrespij,"\n");
 5886: 	for (h=0; h<=nhstepm; h++){
 5887: 	  /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
 5888: 	  fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
 5889: 	  for(i=1; i<=nlstate;i++)
 5890: 	    for(j=1; j<=nlstate+ndeath;j++)
 5891: 	      fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 5892: 	  fprintf(ficrespij,"\n");
 5893: 	}
 5894: 	free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5895: 	fprintf(ficrespij,"\n");
 5896:       }
 5897:       /*}*/
 5898:     }
 5899: }
 5900: 
 5901: 
 5902: /***********************************************/
 5903: /**************** Main Program *****************/
 5904: /***********************************************/
 5905: 
 5906: int main(int argc, char *argv[])
 5907: {
 5908: #ifdef GSL
 5909:   const gsl_multimin_fminimizer_type *T;
 5910:   size_t iteri = 0, it;
 5911:   int rval = GSL_CONTINUE;
 5912:   int status = GSL_SUCCESS;
 5913:   double ssval;
 5914: #endif
 5915:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 5916:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
 5917: 
 5918:   int jj, ll, li, lj, lk;
 5919:   int numlinepar=0; /* Current linenumber of parameter file */
 5920:   int itimes;
 5921:   int NDIM=2;
 5922:   int vpopbased=0;
 5923: 
 5924:   char ca[32], cb[32];
 5925:   /*  FILE *fichtm; *//* Html File */
 5926:   /* FILE *ficgp;*/ /*Gnuplot File */
 5927:   struct stat info;
 5928:   double agedeb;
 5929:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 5930: 
 5931:   double fret;
 5932:   double dum; /* Dummy variable */
 5933:   double ***p3mat;
 5934:   double ***mobaverage;
 5935: 
 5936:   char line[MAXLINE];
 5937:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 5938:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 5939:   char *tok, *val; /* pathtot */
 5940:   int firstobs=1, lastobs=10;
 5941:   int c,  h , cpt;
 5942:   int jl;
 5943:   int i1, j1, jk, stepsize;
 5944:   int *tab; 
 5945:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 5946:   int mobilav=0,popforecast=0;
 5947:   int hstepm, nhstepm;
 5948:   int agemortsup;
 5949:   float  sumlpop=0.;
 5950:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 5951:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 5952: 
 5953:   double bage=0, fage=110, age, agelim, agebase;
 5954:   double ftolpl=FTOL;
 5955:   double **prlim;
 5956:   double ***param; /* Matrix of parameters */
 5957:   double  *p;
 5958:   double **matcov; /* Matrix of covariance */
 5959:   double ***delti3; /* Scale */
 5960:   double *delti; /* Scale */
 5961:   double ***eij, ***vareij;
 5962:   double **varpl; /* Variances of prevalence limits by age */
 5963:   double *epj, vepp;
 5964: 
 5965:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 5966:   double **ximort;
 5967:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 5968:   int *dcwave;
 5969: 
 5970:   char z[1]="c";
 5971: 
 5972:   /*char  *strt;*/
 5973:   char strtend[80];
 5974: 
 5975: 
 5976: /*   setlocale (LC_ALL, ""); */
 5977: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 5978: /*   textdomain (PACKAGE); */
 5979: /*   setlocale (LC_CTYPE, ""); */
 5980: /*   setlocale (LC_MESSAGES, ""); */
 5981: 
 5982:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 5983:   rstart_time = time(NULL);  
 5984:   /*  (void) gettimeofday(&start_time,&tzp);*/
 5985:   start_time = *localtime(&rstart_time);
 5986:   curr_time=start_time;
 5987:   /*tml = *localtime(&start_time.tm_sec);*/
 5988:   /* strcpy(strstart,asctime(&tml)); */
 5989:   strcpy(strstart,asctime(&start_time));
 5990: 
 5991: /*  printf("Localtime (at start)=%s",strstart); */
 5992: /*  tp.tm_sec = tp.tm_sec +86400; */
 5993: /*  tm = *localtime(&start_time.tm_sec); */
 5994: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 5995: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 5996: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 5997: /*   tp.tm_sec = mktime(&tmg); */
 5998: /*   strt=asctime(&tmg); */
 5999: /*   printf("Time(after) =%s",strstart);  */
 6000: /*  (void) time (&time_value);
 6001: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 6002: *  tm = *localtime(&time_value);
 6003: *  strstart=asctime(&tm);
 6004: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 6005: */
 6006: 
 6007:   nberr=0; /* Number of errors and warnings */
 6008:   nbwarn=0;
 6009:   getcwd(pathcd, size);
 6010: 
 6011:   printf("\n%s\n%s",version,fullversion);
 6012:   if(argc <=1){
 6013:     printf("\nEnter the parameter file name: ");
 6014:     fgets(pathr,FILENAMELENGTH,stdin);
 6015:     i=strlen(pathr);
 6016:     if(pathr[i-1]=='\n')
 6017:       pathr[i-1]='\0';
 6018:     i=strlen(pathr);
 6019:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
 6020:       pathr[i-1]='\0';
 6021:    for (tok = pathr; tok != NULL; ){
 6022:       printf("Pathr |%s|\n",pathr);
 6023:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 6024:       printf("val= |%s| pathr=%s\n",val,pathr);
 6025:       strcpy (pathtot, val);
 6026:       if(pathr[0] == '\0') break; /* Dirty */
 6027:     }
 6028:   }
 6029:   else{
 6030:     strcpy(pathtot,argv[1]);
 6031:   }
 6032:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 6033:   /*cygwin_split_path(pathtot,path,optionfile);
 6034:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 6035:   /* cutv(path,optionfile,pathtot,'\\');*/
 6036: 
 6037:   /* Split argv[0], imach program to get pathimach */
 6038:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 6039:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 6040:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 6041:  /*   strcpy(pathimach,argv[0]); */
 6042:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 6043:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 6044:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 6045:   chdir(path); /* Can be a relative path */
 6046:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 6047:     printf("Current directory %s!\n",pathcd);
 6048:   strcpy(command,"mkdir ");
 6049:   strcat(command,optionfilefiname);
 6050:   if((outcmd=system(command)) != 0){
 6051:     printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
 6052:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 6053:     /* fclose(ficlog); */
 6054: /*     exit(1); */
 6055:   }
 6056: /*   if((imk=mkdir(optionfilefiname))<0){ */
 6057: /*     perror("mkdir"); */
 6058: /*   } */
 6059: 
 6060:   /*-------- arguments in the command line --------*/
 6061: 
 6062:   /* Log file */
 6063:   strcat(filelog, optionfilefiname);
 6064:   strcat(filelog,".log");    /* */
 6065:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 6066:     printf("Problem with logfile %s\n",filelog);
 6067:     goto end;
 6068:   }
 6069:   fprintf(ficlog,"Log filename:%s\n",filelog);
 6070:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 6071:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 6072:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 6073:  path=%s \n\
 6074:  optionfile=%s\n\
 6075:  optionfilext=%s\n\
 6076:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 6077: 
 6078:   syscompilerinfo();
 6079: 
 6080:   printf("Local time (at start):%s",strstart);
 6081:   fprintf(ficlog,"Local time (at start): %s",strstart);
 6082:   fflush(ficlog);
 6083: /*   (void) gettimeofday(&curr_time,&tzp); */
 6084: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
 6085: 
 6086:   /* */
 6087:   strcpy(fileres,"r");
 6088:   strcat(fileres, optionfilefiname);
 6089:   strcat(fileres,".txt");    /* Other files have txt extension */
 6090: 
 6091:   /*---------arguments file --------*/
 6092: 
 6093:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 6094:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 6095:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 6096:     fflush(ficlog);
 6097:     /* goto end; */
 6098:     exit(70); 
 6099:   }
 6100: 
 6101: 
 6102: 
 6103:   strcpy(filereso,"o");
 6104:   strcat(filereso,fileres);
 6105:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 6106:     printf("Problem with Output resultfile: %s\n", filereso);
 6107:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 6108:     fflush(ficlog);
 6109:     goto end;
 6110:   }
 6111: 
 6112:   /* Reads comments: lines beginning with '#' */
 6113:   numlinepar=0;
 6114:   while((c=getc(ficpar))=='#' && c!= EOF){
 6115:     ungetc(c,ficpar);
 6116:     fgets(line, MAXLINE, ficpar);
 6117:     numlinepar++;
 6118:     fputs(line,stdout);
 6119:     fputs(line,ficparo);
 6120:     fputs(line,ficlog);
 6121:   }
 6122:   ungetc(c,ficpar);
 6123: 
 6124:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 6125:   numlinepar++;
 6126:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 6127:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6128:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6129:   fflush(ficlog);
 6130:   while((c=getc(ficpar))=='#' && c!= EOF){
 6131:     ungetc(c,ficpar);
 6132:     fgets(line, MAXLINE, ficpar);
 6133:     numlinepar++;
 6134:     fputs(line, stdout);
 6135:     //puts(line);
 6136:     fputs(line,ficparo);
 6137:     fputs(line,ficlog);
 6138:   }
 6139:   ungetc(c,ficpar);
 6140: 
 6141:    
 6142:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 6143:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 6144:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 6145:      v1+v2*age+v2*v3 makes cptcovn = 3
 6146:   */
 6147:   if (strlen(model)>1) 
 6148:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
 6149:   else
 6150:     ncovmodel=2;
 6151:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 6152:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 6153:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 6154:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 6155:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6156:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6157:     fflush(stdout);
 6158:     fclose (ficlog);
 6159:     goto end;
 6160:   }
 6161:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6162:   delti=delti3[1][1];
 6163:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 6164:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 6165:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6166:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6167:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6168:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6169:     fclose (ficparo);
 6170:     fclose (ficlog);
 6171:     goto end;
 6172:     exit(0);
 6173:   }
 6174:   else if(mle==-3) {
 6175:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6176:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6177:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6178:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6179:     matcov=matrix(1,npar,1,npar);
 6180:   }
 6181:   else{
 6182:     /* Read guessed parameters */
 6183:     /* Reads comments: lines beginning with '#' */
 6184:     while((c=getc(ficpar))=='#' && c!= EOF){
 6185:       ungetc(c,ficpar);
 6186:       fgets(line, MAXLINE, ficpar);
 6187:       numlinepar++;
 6188:       fputs(line,stdout);
 6189:       fputs(line,ficparo);
 6190:       fputs(line,ficlog);
 6191:     }
 6192:     ungetc(c,ficpar);
 6193:     
 6194:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6195:     for(i=1; i <=nlstate; i++){
 6196:       j=0;
 6197:       for(jj=1; jj <=nlstate+ndeath; jj++){
 6198: 	if(jj==i) continue;
 6199: 	j++;
 6200: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6201: 	if ((i1 != i) && (j1 != j)){
 6202: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 6203: It might be a problem of design; if ncovcol and the model are correct\n \
 6204: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 6205: 	  exit(1);
 6206: 	}
 6207: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6208: 	if(mle==1)
 6209: 	  printf("%1d%1d",i,j);
 6210: 	fprintf(ficlog,"%1d%1d",i,j);
 6211: 	for(k=1; k<=ncovmodel;k++){
 6212: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 6213: 	  if(mle==1){
 6214: 	    printf(" %lf",param[i][j][k]);
 6215: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6216: 	  }
 6217: 	  else
 6218: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6219: 	  fprintf(ficparo," %lf",param[i][j][k]);
 6220: 	}
 6221: 	fscanf(ficpar,"\n");
 6222: 	numlinepar++;
 6223: 	if(mle==1)
 6224: 	  printf("\n");
 6225: 	fprintf(ficlog,"\n");
 6226: 	fprintf(ficparo,"\n");
 6227:       }
 6228:     }  
 6229:     fflush(ficlog);
 6230: 
 6231:     /* Reads scales values */
 6232:     p=param[1][1];
 6233:     
 6234:     /* Reads comments: lines beginning with '#' */
 6235:     while((c=getc(ficpar))=='#' && c!= EOF){
 6236:       ungetc(c,ficpar);
 6237:       fgets(line, MAXLINE, ficpar);
 6238:       numlinepar++;
 6239:       fputs(line,stdout);
 6240:       fputs(line,ficparo);
 6241:       fputs(line,ficlog);
 6242:     }
 6243:     ungetc(c,ficpar);
 6244: 
 6245:     for(i=1; i <=nlstate; i++){
 6246:       for(j=1; j <=nlstate+ndeath-1; j++){
 6247: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6248: 	if ( (i1-i) * (j1-j) != 0){
 6249: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 6250: 	  exit(1);
 6251: 	}
 6252: 	printf("%1d%1d",i,j);
 6253: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6254: 	fprintf(ficlog,"%1d%1d",i1,j1);
 6255: 	for(k=1; k<=ncovmodel;k++){
 6256: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 6257: 	  printf(" %le",delti3[i][j][k]);
 6258: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 6259: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 6260: 	}
 6261: 	fscanf(ficpar,"\n");
 6262: 	numlinepar++;
 6263: 	printf("\n");
 6264: 	fprintf(ficparo,"\n");
 6265: 	fprintf(ficlog,"\n");
 6266:       }
 6267:     }
 6268:     fflush(ficlog);
 6269: 
 6270:     /* Reads covariance matrix */
 6271:     delti=delti3[1][1];
 6272: 
 6273: 
 6274:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 6275:   
 6276:     /* Reads comments: lines beginning with '#' */
 6277:     while((c=getc(ficpar))=='#' && c!= EOF){
 6278:       ungetc(c,ficpar);
 6279:       fgets(line, MAXLINE, ficpar);
 6280:       numlinepar++;
 6281:       fputs(line,stdout);
 6282:       fputs(line,ficparo);
 6283:       fputs(line,ficlog);
 6284:     }
 6285:     ungetc(c,ficpar);
 6286:   
 6287:     matcov=matrix(1,npar,1,npar);
 6288:     for(i=1; i <=npar; i++)
 6289:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 6290:       
 6291:     for(i=1; i <=npar; i++){
 6292:       fscanf(ficpar,"%s",str);
 6293:       if(mle==1)
 6294: 	printf("%s",str);
 6295:       fprintf(ficlog,"%s",str);
 6296:       fprintf(ficparo,"%s",str);
 6297:       for(j=1; j <=i; j++){
 6298: 	fscanf(ficpar," %le",&matcov[i][j]);
 6299: 	if(mle==1){
 6300: 	  printf(" %.5le",matcov[i][j]);
 6301: 	}
 6302: 	fprintf(ficlog," %.5le",matcov[i][j]);
 6303: 	fprintf(ficparo," %.5le",matcov[i][j]);
 6304:       }
 6305:       fscanf(ficpar,"\n");
 6306:       numlinepar++;
 6307:       if(mle==1)
 6308: 	printf("\n");
 6309:       fprintf(ficlog,"\n");
 6310:       fprintf(ficparo,"\n");
 6311:     }
 6312:     for(i=1; i <=npar; i++)
 6313:       for(j=i+1;j<=npar;j++)
 6314: 	matcov[i][j]=matcov[j][i];
 6315:     
 6316:     if(mle==1)
 6317:       printf("\n");
 6318:     fprintf(ficlog,"\n");
 6319:     
 6320:     fflush(ficlog);
 6321:     
 6322:     /*-------- Rewriting parameter file ----------*/
 6323:     strcpy(rfileres,"r");    /* "Rparameterfile */
 6324:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 6325:     strcat(rfileres,".");    /* */
 6326:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 6327:     if((ficres =fopen(rfileres,"w"))==NULL) {
 6328:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 6329:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 6330:     }
 6331:     fprintf(ficres,"#%s\n",version);
 6332:   }    /* End of mle != -3 */
 6333: 
 6334: 
 6335:   n= lastobs;
 6336:   num=lvector(1,n);
 6337:   moisnais=vector(1,n);
 6338:   annais=vector(1,n);
 6339:   moisdc=vector(1,n);
 6340:   andc=vector(1,n);
 6341:   agedc=vector(1,n);
 6342:   cod=ivector(1,n);
 6343:   weight=vector(1,n);
 6344:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 6345:   mint=matrix(1,maxwav,1,n);
 6346:   anint=matrix(1,maxwav,1,n);
 6347:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 6348:   tab=ivector(1,NCOVMAX);
 6349:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 6350: 
 6351:   /* Reads data from file datafile */
 6352:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 6353:     goto end;
 6354: 
 6355:   /* Calculation of the number of parameters from char model */
 6356:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 6357: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 6358: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 6359: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 6360: 	k=1 Tvar[1]=2 (from V2)
 6361:     */
 6362:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 6363:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 6364:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 6365:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 6366:   */
 6367:   /* For model-covariate k tells which data-covariate to use but
 6368:     because this model-covariate is a construction we invent a new column
 6369:     ncovcol + k1
 6370:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 6371:     Tvar[3=V1*V4]=4+1 etc */
 6372:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 6373:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 6374:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 6375:   */
 6376:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 6377:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 6378: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 6379: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 6380:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 6381: 			 4 covariates (3 plus signs)
 6382: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 6383: 		      */  
 6384: 
 6385:   if(decodemodel(model, lastobs) == 1)
 6386:     goto end;
 6387: 
 6388:   if((double)(lastobs-imx)/(double)imx > 1.10){
 6389:     nbwarn++;
 6390:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6391:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6392:   }
 6393:     /*  if(mle==1){*/
 6394:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 6395:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 6396:   }
 6397: 
 6398:     /*-calculation of age at interview from date of interview and age at death -*/
 6399:   agev=matrix(1,maxwav,1,imx);
 6400: 
 6401:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 6402:     goto end;
 6403: 
 6404: 
 6405:   agegomp=(int)agemin;
 6406:   free_vector(moisnais,1,n);
 6407:   free_vector(annais,1,n);
 6408:   /* free_matrix(mint,1,maxwav,1,n);
 6409:      free_matrix(anint,1,maxwav,1,n);*/
 6410:   free_vector(moisdc,1,n);
 6411:   free_vector(andc,1,n);
 6412:   /* */
 6413:   
 6414:   wav=ivector(1,imx);
 6415:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 6416:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 6417:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 6418:    
 6419:   /* Concatenates waves */
 6420:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 6421:   /* */
 6422:  
 6423:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 6424: 
 6425:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 6426:   ncodemax[1]=1;
 6427:   Ndum =ivector(-1,NCOVMAX);  
 6428:   if (ncovmodel > 2)
 6429:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 6430: 
 6431:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 6432:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
 6433:   h=0;
 6434: 
 6435: 
 6436:   /*if (cptcovn > 0) */
 6437:       
 6438:  
 6439:   m=pow(2,cptcoveff);
 6440:  
 6441:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 6442:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 6443:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
 6444: 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 6445: 	  h++;
 6446: 	  if (h>m) 
 6447: 	    h=1;
 6448: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 6449: 	   *     h     1     2     3     4
 6450: 	   *______________________________  
 6451: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 6452: 	   *     2     2     1     1     1
 6453: 	   *     3 i=2 1     2     1     1
 6454: 	   *     4     2     2     1     1
 6455: 	   *     5 i=3 1 i=2 1     2     1
 6456: 	   *     6     2     1     2     1
 6457: 	   *     7 i=4 1     2     2     1
 6458: 	   *     8     2     2     2     1
 6459: 	   *     9 i=5 1 i=3 1 i=2 1     1
 6460: 	   *    10     2     1     1     1
 6461: 	   *    11 i=6 1     2     1     1
 6462: 	   *    12     2     2     1     1
 6463: 	   *    13 i=7 1 i=4 1     2     1    
 6464: 	   *    14     2     1     2     1
 6465: 	   *    15 i=8 1     2     2     1
 6466: 	   *    16     2     2     2     1
 6467: 	   */
 6468: 	  codtab[h][k]=j;
 6469: 	  /*codtab[h][Tvar[k]]=j;*/
 6470: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 6471: 	} 
 6472:       }
 6473:     }
 6474:   } 
 6475:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 6476:      codtab[1][2]=1;codtab[2][2]=2; */
 6477:   /* for(i=1; i <=m ;i++){ 
 6478:      for(k=1; k <=cptcovn; k++){
 6479:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 6480:      }
 6481:      printf("\n");
 6482:      }
 6483:      scanf("%d",i);*/
 6484: 
 6485:  free_ivector(Ndum,-1,NCOVMAX);
 6486: 
 6487: 
 6488:     
 6489:   /*------------ gnuplot -------------*/
 6490:   strcpy(optionfilegnuplot,optionfilefiname);
 6491:   if(mle==-3)
 6492:     strcat(optionfilegnuplot,"-mort");
 6493:   strcat(optionfilegnuplot,".gp");
 6494: 
 6495:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 6496:     printf("Problem with file %s",optionfilegnuplot);
 6497:   }
 6498:   else{
 6499:     fprintf(ficgp,"\n# %s\n", version); 
 6500:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 6501:     //fprintf(ficgp,"set missing 'NaNq'\n");
 6502:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 6503:   }
 6504:   /*  fclose(ficgp);*/
 6505:   /*--------- index.htm --------*/
 6506: 
 6507:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 6508:   if(mle==-3)
 6509:     strcat(optionfilehtm,"-mort");
 6510:   strcat(optionfilehtm,".htm");
 6511:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 6512:     printf("Problem with %s \n",optionfilehtm);
 6513:     exit(0);
 6514:   }
 6515: 
 6516:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 6517:   strcat(optionfilehtmcov,"-cov.htm");
 6518:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 6519:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 6520:   }
 6521:   else{
 6522:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6523: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6524: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 6525: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 6526:   }
 6527: 
 6528:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6529: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6530: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 6531: \n\
 6532: <hr  size=\"2\" color=\"#EC5E5E\">\
 6533:  <ul><li><h4>Parameter files</h4>\n\
 6534:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 6535:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 6536:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 6537:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 6538:  - Date and time at start: %s</ul>\n",\
 6539: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 6540: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 6541: 	  fileres,fileres,\
 6542: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 6543:   fflush(fichtm);
 6544: 
 6545:   strcpy(pathr,path);
 6546:   strcat(pathr,optionfilefiname);
 6547:   chdir(optionfilefiname); /* Move to directory named optionfile */
 6548:   
 6549:   /* Calculates basic frequencies. Computes observed prevalence at single age
 6550:      and prints on file fileres'p'. */
 6551:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 6552: 
 6553:   fprintf(fichtm,"\n");
 6554:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 6555: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 6556: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 6557: 	  imx,agemin,agemax,jmin,jmax,jmean);
 6558:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6559:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6560:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6561:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6562:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 6563:     
 6564:    
 6565:   /* For Powell, parameters are in a vector p[] starting at p[1]
 6566:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 6567:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 6568: 
 6569:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 6570: 
 6571:   if (mle==-3){
 6572:     ximort=matrix(1,NDIM,1,NDIM); 
 6573: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 6574:     cens=ivector(1,n);
 6575:     ageexmed=vector(1,n);
 6576:     agecens=vector(1,n);
 6577:     dcwave=ivector(1,n);
 6578:  
 6579:     for (i=1; i<=imx; i++){
 6580:       dcwave[i]=-1;
 6581:       for (m=firstpass; m<=lastpass; m++)
 6582: 	if (s[m][i]>nlstate) {
 6583: 	  dcwave[i]=m;
 6584: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 6585: 	  break;
 6586: 	}
 6587:     }
 6588: 
 6589:     for (i=1; i<=imx; i++) {
 6590:       if (wav[i]>0){
 6591: 	ageexmed[i]=agev[mw[1][i]][i];
 6592: 	j=wav[i];
 6593: 	agecens[i]=1.; 
 6594: 
 6595: 	if (ageexmed[i]> 1 && wav[i] > 0){
 6596: 	  agecens[i]=agev[mw[j][i]][i];
 6597: 	  cens[i]= 1;
 6598: 	}else if (ageexmed[i]< 1) 
 6599: 	  cens[i]= -1;
 6600: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 6601: 	  cens[i]=0 ;
 6602:       }
 6603:       else cens[i]=-1;
 6604:     }
 6605:     
 6606:     for (i=1;i<=NDIM;i++) {
 6607:       for (j=1;j<=NDIM;j++)
 6608: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 6609:     }
 6610:     
 6611:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 6612:     /*printf("%lf %lf", p[1], p[2]);*/
 6613:     
 6614:     
 6615: #ifdef GSL
 6616:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 6617: #else
 6618:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 6619: #endif
 6620:     strcpy(filerespow,"pow-mort"); 
 6621:     strcat(filerespow,fileres);
 6622:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 6623:       printf("Problem with resultfile: %s\n", filerespow);
 6624:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 6625:     }
 6626: #ifdef GSL
 6627:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 6628: #else
 6629:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 6630: #endif
 6631:     /*  for (i=1;i<=nlstate;i++)
 6632: 	for(j=1;j<=nlstate+ndeath;j++)
 6633: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 6634:     */
 6635:     fprintf(ficrespow,"\n");
 6636: #ifdef GSL
 6637:     /* gsl starts here */ 
 6638:     T = gsl_multimin_fminimizer_nmsimplex;
 6639:     gsl_multimin_fminimizer *sfm = NULL;
 6640:     gsl_vector *ss, *x;
 6641:     gsl_multimin_function minex_func;
 6642: 
 6643:     /* Initial vertex size vector */
 6644:     ss = gsl_vector_alloc (NDIM);
 6645:     
 6646:     if (ss == NULL){
 6647:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 6648:     }
 6649:     /* Set all step sizes to 1 */
 6650:     gsl_vector_set_all (ss, 0.001);
 6651: 
 6652:     /* Starting point */
 6653:     
 6654:     x = gsl_vector_alloc (NDIM);
 6655:     
 6656:     if (x == NULL){
 6657:       gsl_vector_free(ss);
 6658:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 6659:     }
 6660:   
 6661:     /* Initialize method and iterate */
 6662:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 6663: /*     gsl_vector_set(x, 0, 0.0268); */
 6664: /*     gsl_vector_set(x, 1, 0.083); */
 6665:     gsl_vector_set(x, 0, p[1]);
 6666:     gsl_vector_set(x, 1, p[2]);
 6667: 
 6668:     minex_func.f = &gompertz_f;
 6669:     minex_func.n = NDIM;
 6670:     minex_func.params = (void *)&p; /* ??? */
 6671:     
 6672:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 6673:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 6674:     
 6675:     printf("Iterations beginning .....\n\n");
 6676:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 6677: 
 6678:     iteri=0;
 6679:     while (rval == GSL_CONTINUE){
 6680:       iteri++;
 6681:       status = gsl_multimin_fminimizer_iterate(sfm);
 6682:       
 6683:       if (status) printf("error: %s\n", gsl_strerror (status));
 6684:       fflush(0);
 6685:       
 6686:       if (status) 
 6687:         break;
 6688:       
 6689:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 6690:       ssval = gsl_multimin_fminimizer_size (sfm);
 6691:       
 6692:       if (rval == GSL_SUCCESS)
 6693:         printf ("converged to a local maximum at\n");
 6694:       
 6695:       printf("%5d ", iteri);
 6696:       for (it = 0; it < NDIM; it++){
 6697: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 6698:       }
 6699:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 6700:     }
 6701:     
 6702:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 6703:     
 6704:     gsl_vector_free(x); /* initial values */
 6705:     gsl_vector_free(ss); /* inital step size */
 6706:     for (it=0; it<NDIM; it++){
 6707:       p[it+1]=gsl_vector_get(sfm->x,it);
 6708:       fprintf(ficrespow," %.12lf", p[it]);
 6709:     }
 6710:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 6711: #endif
 6712: #ifdef POWELL
 6713:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 6714: #endif  
 6715:     fclose(ficrespow);
 6716:     
 6717:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 6718: 
 6719:     for(i=1; i <=NDIM; i++)
 6720:       for(j=i+1;j<=NDIM;j++)
 6721: 	matcov[i][j]=matcov[j][i];
 6722:     
 6723:     printf("\nCovariance matrix\n ");
 6724:     for(i=1; i <=NDIM; i++) {
 6725:       for(j=1;j<=NDIM;j++){ 
 6726: 	printf("%f ",matcov[i][j]);
 6727:       }
 6728:       printf("\n ");
 6729:     }
 6730:     
 6731:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 6732:     for (i=1;i<=NDIM;i++) 
 6733:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 6734: 
 6735:     lsurv=vector(1,AGESUP);
 6736:     lpop=vector(1,AGESUP);
 6737:     tpop=vector(1,AGESUP);
 6738:     lsurv[agegomp]=100000;
 6739:     
 6740:     for (k=agegomp;k<=AGESUP;k++) {
 6741:       agemortsup=k;
 6742:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 6743:     }
 6744:     
 6745:     for (k=agegomp;k<agemortsup;k++)
 6746:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 6747:     
 6748:     for (k=agegomp;k<agemortsup;k++){
 6749:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 6750:       sumlpop=sumlpop+lpop[k];
 6751:     }
 6752:     
 6753:     tpop[agegomp]=sumlpop;
 6754:     for (k=agegomp;k<(agemortsup-3);k++){
 6755:       /*  tpop[k+1]=2;*/
 6756:       tpop[k+1]=tpop[k]-lpop[k];
 6757:     }
 6758:     
 6759:     
 6760:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 6761:     for (k=agegomp;k<(agemortsup-2);k++) 
 6762:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 6763:     
 6764:     
 6765:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6766:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6767:     
 6768:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 6769: 		     stepm, weightopt,\
 6770: 		     model,imx,p,matcov,agemortsup);
 6771:     
 6772:     free_vector(lsurv,1,AGESUP);
 6773:     free_vector(lpop,1,AGESUP);
 6774:     free_vector(tpop,1,AGESUP);
 6775: #ifdef GSL
 6776:     free_ivector(cens,1,n);
 6777:     free_vector(agecens,1,n);
 6778:     free_ivector(dcwave,1,n);
 6779:     free_matrix(ximort,1,NDIM,1,NDIM);
 6780: #endif
 6781:   } /* Endof if mle==-3 */
 6782:   
 6783:   else{ /* For mle >=1 */
 6784:     globpr=0;/* debug */
 6785:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6786:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6787:     for (k=1; k<=npar;k++)
 6788:       printf(" %d %8.5f",k,p[k]);
 6789:     printf("\n");
 6790:     globpr=1; /* to print the contributions */
 6791:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6792:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6793:     for (k=1; k<=npar;k++)
 6794:       printf(" %d %8.5f",k,p[k]);
 6795:     printf("\n");
 6796:     if(mle>=1){ /* Could be 1 or 2 */
 6797:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 6798:     }
 6799:     
 6800:     /*--------- results files --------------*/
 6801:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 6802:     
 6803:     
 6804:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6805:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6806:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6807:     for(i=1,jk=1; i <=nlstate; i++){
 6808:       for(k=1; k <=(nlstate+ndeath); k++){
 6809: 	if (k != i) {
 6810: 	  printf("%d%d ",i,k);
 6811: 	  fprintf(ficlog,"%d%d ",i,k);
 6812: 	  fprintf(ficres,"%1d%1d ",i,k);
 6813: 	  for(j=1; j <=ncovmodel; j++){
 6814: 	    printf("%lf ",p[jk]);
 6815: 	    fprintf(ficlog,"%lf ",p[jk]);
 6816: 	    fprintf(ficres,"%lf ",p[jk]);
 6817: 	    jk++; 
 6818: 	  }
 6819: 	  printf("\n");
 6820: 	  fprintf(ficlog,"\n");
 6821: 	  fprintf(ficres,"\n");
 6822: 	}
 6823:       }
 6824:     }
 6825:     if(mle!=0){
 6826:       /* Computing hessian and covariance matrix */
 6827:       ftolhess=ftol; /* Usually correct */
 6828:       hesscov(matcov, p, npar, delti, ftolhess, func);
 6829:     }
 6830:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 6831:     printf("# Scales (for hessian or gradient estimation)\n");
 6832:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 6833:     for(i=1,jk=1; i <=nlstate; i++){
 6834:       for(j=1; j <=nlstate+ndeath; j++){
 6835: 	if (j!=i) {
 6836: 	  fprintf(ficres,"%1d%1d",i,j);
 6837: 	  printf("%1d%1d",i,j);
 6838: 	  fprintf(ficlog,"%1d%1d",i,j);
 6839: 	  for(k=1; k<=ncovmodel;k++){
 6840: 	    printf(" %.5e",delti[jk]);
 6841: 	    fprintf(ficlog," %.5e",delti[jk]);
 6842: 	    fprintf(ficres," %.5e",delti[jk]);
 6843: 	    jk++;
 6844: 	  }
 6845: 	  printf("\n");
 6846: 	  fprintf(ficlog,"\n");
 6847: 	  fprintf(ficres,"\n");
 6848: 	}
 6849:       }
 6850:     }
 6851:     
 6852:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6853:     if(mle>=1)
 6854:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6855:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6856:     /* # 121 Var(a12)\n\ */
 6857:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 6858:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 6859:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 6860:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 6861:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 6862:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 6863:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 6864:     
 6865:     
 6866:     /* Just to have a covariance matrix which will be more understandable
 6867:        even is we still don't want to manage dictionary of variables
 6868:     */
 6869:     for(itimes=1;itimes<=2;itimes++){
 6870:       jj=0;
 6871:       for(i=1; i <=nlstate; i++){
 6872: 	for(j=1; j <=nlstate+ndeath; j++){
 6873: 	  if(j==i) continue;
 6874: 	  for(k=1; k<=ncovmodel;k++){
 6875: 	    jj++;
 6876: 	    ca[0]= k+'a'-1;ca[1]='\0';
 6877: 	    if(itimes==1){
 6878: 	      if(mle>=1)
 6879: 		printf("#%1d%1d%d",i,j,k);
 6880: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 6881: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 6882: 	    }else{
 6883: 	      if(mle>=1)
 6884: 		printf("%1d%1d%d",i,j,k);
 6885: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 6886: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 6887: 	    }
 6888: 	    ll=0;
 6889: 	    for(li=1;li <=nlstate; li++){
 6890: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 6891: 		if(lj==li) continue;
 6892: 		for(lk=1;lk<=ncovmodel;lk++){
 6893: 		  ll++;
 6894: 		  if(ll<=jj){
 6895: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 6896: 		    if(ll<jj){
 6897: 		      if(itimes==1){
 6898: 			if(mle>=1)
 6899: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6900: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6901: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6902: 		      }else{
 6903: 			if(mle>=1)
 6904: 			  printf(" %.5e",matcov[jj][ll]); 
 6905: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6906: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6907: 		      }
 6908: 		    }else{
 6909: 		      if(itimes==1){
 6910: 			if(mle>=1)
 6911: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 6912: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 6913: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 6914: 		      }else{
 6915: 			if(mle>=1)
 6916: 			  printf(" %.5e",matcov[jj][ll]); 
 6917: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6918: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6919: 		      }
 6920: 		    }
 6921: 		  }
 6922: 		} /* end lk */
 6923: 	      } /* end lj */
 6924: 	    } /* end li */
 6925: 	    if(mle>=1)
 6926: 	      printf("\n");
 6927: 	    fprintf(ficlog,"\n");
 6928: 	    fprintf(ficres,"\n");
 6929: 	    numlinepar++;
 6930: 	  } /* end k*/
 6931: 	} /*end j */
 6932:       } /* end i */
 6933:     } /* end itimes */
 6934:     
 6935:     fflush(ficlog);
 6936:     fflush(ficres);
 6937:     
 6938:     while((c=getc(ficpar))=='#' && c!= EOF){
 6939:       ungetc(c,ficpar);
 6940:       fgets(line, MAXLINE, ficpar);
 6941:       fputs(line,stdout);
 6942:       fputs(line,ficparo);
 6943:     }
 6944:     ungetc(c,ficpar);
 6945:     
 6946:     estepm=0;
 6947:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 6948:     if (estepm==0 || estepm < stepm) estepm=stepm;
 6949:     if (fage <= 2) {
 6950:       bage = ageminpar;
 6951:       fage = agemaxpar;
 6952:     }
 6953:     
 6954:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 6955:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6956:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6957:     
 6958:     while((c=getc(ficpar))=='#' && c!= EOF){
 6959:       ungetc(c,ficpar);
 6960:       fgets(line, MAXLINE, ficpar);
 6961:       fputs(line,stdout);
 6962:       fputs(line,ficparo);
 6963:     }
 6964:     ungetc(c,ficpar);
 6965:     
 6966:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 6967:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6968:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6969:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6970:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6971:     
 6972:     while((c=getc(ficpar))=='#' && c!= EOF){
 6973:       ungetc(c,ficpar);
 6974:       fgets(line, MAXLINE, ficpar);
 6975:       fputs(line,stdout);
 6976:       fputs(line,ficparo);
 6977:     }
 6978:     ungetc(c,ficpar);
 6979:     
 6980:     
 6981:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 6982:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 6983:     
 6984:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 6985:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 6986:     fprintf(ficres,"pop_based=%d\n",popbased);   
 6987:     
 6988:     while((c=getc(ficpar))=='#' && c!= EOF){
 6989:       ungetc(c,ficpar);
 6990:       fgets(line, MAXLINE, ficpar);
 6991:       fputs(line,stdout);
 6992:       fputs(line,ficparo);
 6993:     }
 6994:     ungetc(c,ficpar);
 6995:     
 6996:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 6997:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6998:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6999:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7000:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7001:     /* day and month of proj2 are not used but only year anproj2.*/
 7002:     
 7003:     
 7004:     
 7005:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 7006:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 7007:     
 7008:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 7009:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 7010:     
 7011:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 7012: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 7013: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 7014:       
 7015:    /*------------ free_vector  -------------*/
 7016:    /*  chdir(path); */
 7017:  
 7018:     free_ivector(wav,1,imx);
 7019:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 7020:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 7021:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 7022:     free_lvector(num,1,n);
 7023:     free_vector(agedc,1,n);
 7024:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 7025:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 7026:     fclose(ficparo);
 7027:     fclose(ficres);
 7028: 
 7029: 
 7030:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 7031:     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
 7032:     prlim=matrix(1,nlstate,1,nlstate);
 7033:     prevalence_limit(p, prlim,  ageminpar, agemaxpar);
 7034:     fclose(ficrespl);
 7035: 
 7036: #ifdef FREEEXIT2
 7037: #include "freeexit2.h"
 7038: #endif
 7039: 
 7040:     /*------------- h Pij x at various ages ------------*/
 7041:     /*#include "hpijx.h"*/
 7042:     hPijx(p, bage, fage);
 7043:     fclose(ficrespij);
 7044: 
 7045:   /*-------------- Variance of one-step probabilities---*/
 7046:     k=1;
 7047:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 7048: 
 7049: 
 7050:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7051:     for(i=1;i<=AGESUP;i++)
 7052:       for(j=1;j<=NCOVMAX;j++)
 7053: 	for(k=1;k<=NCOVMAX;k++)
 7054: 	  probs[i][j][k]=0.;
 7055: 
 7056:     /*---------- Forecasting ------------------*/
 7057:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 7058:     if(prevfcast==1){
 7059:       /*    if(stepm ==1){*/
 7060:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 7061:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 7062:       /*      }  */
 7063:       /*      else{ */
 7064:       /*        erreur=108; */
 7065:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 7066:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 7067:       /*      } */
 7068:     }
 7069:   
 7070: 
 7071:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 7072: 
 7073:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 7074:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 7075: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 7076:     */
 7077: 
 7078:     if (mobilav!=0) {
 7079:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7080:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 7081: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 7082: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 7083:       }
 7084:     }
 7085: 
 7086: 
 7087:     /*---------- Health expectancies, no variances ------------*/
 7088: 
 7089:     strcpy(filerese,"e");
 7090:     strcat(filerese,fileres);
 7091:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 7092:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 7093:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 7094:     }
 7095:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 7096:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 7097:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7098:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7099:           
 7100:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7101: 	fprintf(ficreseij,"\n#****** ");
 7102: 	for(j=1;j<=cptcoveff;j++) {
 7103: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7104: 	}
 7105: 	fprintf(ficreseij,"******\n");
 7106: 
 7107: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7108: 	oldm=oldms;savm=savms;
 7109: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 7110:       
 7111: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7112:       /*}*/
 7113:     }
 7114:     fclose(ficreseij);
 7115: 
 7116: 
 7117:     /*---------- Health expectancies and variances ------------*/
 7118: 
 7119: 
 7120:     strcpy(filerest,"t");
 7121:     strcat(filerest,fileres);
 7122:     if((ficrest=fopen(filerest,"w"))==NULL) {
 7123:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 7124:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 7125:     }
 7126:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7127:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7128: 
 7129: 
 7130:     strcpy(fileresstde,"stde");
 7131:     strcat(fileresstde,fileres);
 7132:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 7133:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7134:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7135:     }
 7136:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7137:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7138: 
 7139:     strcpy(filerescve,"cve");
 7140:     strcat(filerescve,fileres);
 7141:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 7142:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7143:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7144:     }
 7145:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7146:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7147: 
 7148:     strcpy(fileresv,"v");
 7149:     strcat(fileresv,fileres);
 7150:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 7151:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 7152:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 7153:     }
 7154:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7155:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7156: 
 7157:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7158:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7159:           
 7160:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7161:     	fprintf(ficrest,"\n#****** ");
 7162: 	for(j=1;j<=cptcoveff;j++) 
 7163: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7164: 	fprintf(ficrest,"******\n");
 7165: 
 7166: 	fprintf(ficresstdeij,"\n#****** ");
 7167: 	fprintf(ficrescveij,"\n#****** ");
 7168: 	for(j=1;j<=cptcoveff;j++) {
 7169: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7170: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7171: 	}
 7172: 	fprintf(ficresstdeij,"******\n");
 7173: 	fprintf(ficrescveij,"******\n");
 7174: 
 7175: 	fprintf(ficresvij,"\n#****** ");
 7176: 	for(j=1;j<=cptcoveff;j++) 
 7177: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7178: 	fprintf(ficresvij,"******\n");
 7179: 
 7180: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7181: 	oldm=oldms;savm=savms;
 7182: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 7183: 	/*
 7184: 	 */
 7185: 	/* goto endfree; */
 7186:  
 7187: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7188: 	pstamp(ficrest);
 7189: 
 7190: 
 7191: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 7192: 	  oldm=oldms;savm=savms; /* Segmentation fault */
 7193: 	  cptcod= 0; /* To be deleted */
 7194: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
 7195: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 7196: 	  if(vpopbased==1)
 7197: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 7198: 	  else
 7199: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 7200: 	  fprintf(ficrest,"# Age e.. (std) ");
 7201: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 7202: 	  fprintf(ficrest,"\n");
 7203: 
 7204: 	  epj=vector(1,nlstate+1);
 7205: 	  for(age=bage; age <=fage ;age++){
 7206: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 7207: 	    if (vpopbased==1) {
 7208: 	      if(mobilav ==0){
 7209: 		for(i=1; i<=nlstate;i++)
 7210: 		  prlim[i][i]=probs[(int)age][i][k];
 7211: 	      }else{ /* mobilav */ 
 7212: 		for(i=1; i<=nlstate;i++)
 7213: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 7214: 	      }
 7215: 	    }
 7216: 	
 7217: 	    fprintf(ficrest," %4.0f",age);
 7218: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 7219: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 7220: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 7221: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 7222: 	      }
 7223: 	      epj[nlstate+1] +=epj[j];
 7224: 	    }
 7225: 
 7226: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 7227: 	      for(j=1;j <=nlstate;j++)
 7228: 		vepp += vareij[i][j][(int)age];
 7229: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 7230: 	    for(j=1;j <=nlstate;j++){
 7231: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 7232: 	    }
 7233: 	    fprintf(ficrest,"\n");
 7234: 	  }
 7235: 	}
 7236: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7237: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7238: 	free_vector(epj,1,nlstate+1);
 7239:       /*}*/
 7240:     }
 7241:     free_vector(weight,1,n);
 7242:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 7243:     free_imatrix(s,1,maxwav+1,1,n);
 7244:     free_matrix(anint,1,maxwav,1,n); 
 7245:     free_matrix(mint,1,maxwav,1,n);
 7246:     free_ivector(cod,1,n);
 7247:     free_ivector(tab,1,NCOVMAX);
 7248:     fclose(ficresstdeij);
 7249:     fclose(ficrescveij);
 7250:     fclose(ficresvij);
 7251:     fclose(ficrest);
 7252:     fclose(ficpar);
 7253:   
 7254:     /*------- Variance of period (stable) prevalence------*/   
 7255: 
 7256:     strcpy(fileresvpl,"vpl");
 7257:     strcat(fileresvpl,fileres);
 7258:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 7259:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 7260:       exit(0);
 7261:     }
 7262:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 7263: 
 7264:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7265:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7266:           
 7267:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7268:     	fprintf(ficresvpl,"\n#****** ");
 7269: 	for(j=1;j<=cptcoveff;j++) 
 7270: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7271: 	fprintf(ficresvpl,"******\n");
 7272:       
 7273: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 7274: 	oldm=oldms;savm=savms;
 7275: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 7276: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 7277:       /*}*/
 7278:     }
 7279: 
 7280:     fclose(ficresvpl);
 7281: 
 7282:     /*---------- End : free ----------------*/
 7283:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7284:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7285:   }  /* mle==-3 arrives here for freeing */
 7286:  /* endfree:*/
 7287:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 7288:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 7289:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7290:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7291:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7292:     free_matrix(covar,0,NCOVMAX,1,n);
 7293:     free_matrix(matcov,1,npar,1,npar);
 7294:     /*free_vector(delti,1,npar);*/
 7295:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 7296:     free_matrix(agev,1,maxwav,1,imx);
 7297:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 7298: 
 7299:     free_ivector(ncodemax,1,NCOVMAX);
 7300:     free_ivector(Tvar,1,NCOVMAX);
 7301:     free_ivector(Tprod,1,NCOVMAX);
 7302:     free_ivector(Tvaraff,1,NCOVMAX);
 7303:     free_ivector(Tage,1,NCOVMAX);
 7304: 
 7305:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 7306:     free_imatrix(codtab,1,100,1,10);
 7307:   fflush(fichtm);
 7308:   fflush(ficgp);
 7309:   
 7310: 
 7311:   if((nberr >0) || (nbwarn>0)){
 7312:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 7313:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 7314:   }else{
 7315:     printf("End of Imach\n");
 7316:     fprintf(ficlog,"End of Imach\n");
 7317:   }
 7318:   printf("See log file on %s\n",filelog);
 7319:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 7320:   /*(void) gettimeofday(&end_time,&tzp);*/
 7321:   rend_time = time(NULL);  
 7322:   end_time = *localtime(&rend_time);
 7323:   /* tml = *localtime(&end_time.tm_sec); */
 7324:   strcpy(strtend,asctime(&end_time));
 7325:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 7326:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 7327:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7328: 
 7329:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7330:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7331:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7332:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 7333: /*   if(fileappend(fichtm,optionfilehtm)){ */
 7334:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7335:   fclose(fichtm);
 7336:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7337:   fclose(fichtmcov);
 7338:   fclose(ficgp);
 7339:   fclose(ficlog);
 7340:   /*------ End -----------*/
 7341: 
 7342: 
 7343:    printf("Before Current directory %s!\n",pathcd);
 7344:    if(chdir(pathcd) != 0)
 7345:     printf("Can't move to directory %s!\n",path);
 7346:   if(getcwd(pathcd,MAXLINE) > 0)
 7347:     printf("Current directory %s!\n",pathcd);
 7348:   /*strcat(plotcmd,CHARSEPARATOR);*/
 7349:   sprintf(plotcmd,"gnuplot");
 7350: #ifdef _WIN32
 7351:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 7352: #endif
 7353:   if(!stat(plotcmd,&info)){
 7354:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7355:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 7356:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 7357:     }else
 7358:       strcpy(pplotcmd,plotcmd);
 7359: #ifdef __unix
 7360:     strcpy(plotcmd,GNUPLOTPROGRAM);
 7361:     if(!stat(plotcmd,&info)){
 7362:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7363:     }else
 7364:       strcpy(pplotcmd,plotcmd);
 7365: #endif
 7366:   }else
 7367:     strcpy(pplotcmd,plotcmd);
 7368:   
 7369:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 7370:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
 7371: 
 7372:   if((outcmd=system(plotcmd)) != 0){
 7373:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
 7374:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
 7375:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
 7376:     if((outcmd=system(plotcmd)) != 0)
 7377:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
 7378:   }
 7379:   printf(" Successful, please wait...");
 7380:   while (z[0] != 'q') {
 7381:     /* chdir(path); */
 7382:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
 7383:     scanf("%s",z);
 7384: /*     if (z[0] == 'c') system("./imach"); */
 7385:     if (z[0] == 'e') {
 7386: #ifdef __APPLE__
 7387:       sprintf(pplotcmd, "open %s", optionfilehtm);
 7388: #elif __linux
 7389:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
 7390: #else
 7391:       sprintf(pplotcmd, "%s", optionfilehtm);
 7392: #endif
 7393:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
 7394:       system(pplotcmd);
 7395:     }
 7396:     else if (z[0] == 'g') system(plotcmd);
 7397:     else if (z[0] == 'q') exit(0);
 7398:   }
 7399:   end:
 7400:   while (z[0] != 'q') {
 7401:     printf("\nType  q for exiting: ");
 7402:     scanf("%s",z);
 7403:   }
 7404: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>