File:  [Local Repository] / imach / src / imach.c
Revision 1.193: download - view: text, annotated - select for diffs
Tue Aug 4 07:17:42 2015 UTC (8 years, 10 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
Summary: 0.98q4

    1: /* $Id: imach.c,v 1.193 2015/08/04 07:17:42 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.193  2015/08/04 07:17:42  brouard
    5:   Summary: 0.98q4
    6: 
    7:   Revision 1.192  2015/07/16 16:49:02  brouard
    8:   Summary: Fixing some outputs
    9: 
   10:   Revision 1.191  2015/07/14 10:00:33  brouard
   11:   Summary: Some fixes
   12: 
   13:   Revision 1.190  2015/05/05 08:51:13  brouard
   14:   Summary: Adding digits in output parameters (7 digits instead of 6)
   15: 
   16:   Fix 1+age+.
   17: 
   18:   Revision 1.189  2015/04/30 14:45:16  brouard
   19:   Summary: 0.98q2
   20: 
   21:   Revision 1.188  2015/04/30 08:27:53  brouard
   22:   *** empty log message ***
   23: 
   24:   Revision 1.187  2015/04/29 09:11:15  brouard
   25:   *** empty log message ***
   26: 
   27:   Revision 1.186  2015/04/23 12:01:52  brouard
   28:   Summary: V1*age is working now, version 0.98q1
   29: 
   30:   Some codes had been disabled in order to simplify and Vn*age was
   31:   working in the optimization phase, ie, giving correct MLE parameters,
   32:   but, as usual, outputs were not correct and program core dumped.
   33: 
   34:   Revision 1.185  2015/03/11 13:26:42  brouard
   35:   Summary: Inclusion of compile and links command line for Intel Compiler
   36: 
   37:   Revision 1.184  2015/03/11 11:52:39  brouard
   38:   Summary: Back from Windows 8. Intel Compiler
   39: 
   40:   Revision 1.183  2015/03/10 20:34:32  brouard
   41:   Summary: 0.98q0, trying with directest, mnbrak fixed
   42: 
   43:   We use directest instead of original Powell test; probably no
   44:   incidence on the results, but better justifications;
   45:   We fixed Numerical Recipes mnbrak routine which was wrong and gave
   46:   wrong results.
   47: 
   48:   Revision 1.182  2015/02/12 08:19:57  brouard
   49:   Summary: Trying to keep directest which seems simpler and more general
   50:   Author: Nicolas Brouard
   51: 
   52:   Revision 1.181  2015/02/11 23:22:24  brouard
   53:   Summary: Comments on Powell added
   54: 
   55:   Author:
   56: 
   57:   Revision 1.180  2015/02/11 17:33:45  brouard
   58:   Summary: Finishing move from main to function (hpijx and prevalence_limit)
   59: 
   60:   Revision 1.179  2015/01/04 09:57:06  brouard
   61:   Summary: back to OS/X
   62: 
   63:   Revision 1.178  2015/01/04 09:35:48  brouard
   64:   *** empty log message ***
   65: 
   66:   Revision 1.177  2015/01/03 18:40:56  brouard
   67:   Summary: Still testing ilc32 on OSX
   68: 
   69:   Revision 1.176  2015/01/03 16:45:04  brouard
   70:   *** empty log message ***
   71: 
   72:   Revision 1.175  2015/01/03 16:33:42  brouard
   73:   *** empty log message ***
   74: 
   75:   Revision 1.174  2015/01/03 16:15:49  brouard
   76:   Summary: Still in cross-compilation
   77: 
   78:   Revision 1.173  2015/01/03 12:06:26  brouard
   79:   Summary: trying to detect cross-compilation
   80: 
   81:   Revision 1.172  2014/12/27 12:07:47  brouard
   82:   Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   83: 
   84:   Revision 1.171  2014/12/23 13:26:59  brouard
   85:   Summary: Back from Visual C
   86: 
   87:   Still problem with utsname.h on Windows
   88: 
   89:   Revision 1.170  2014/12/23 11:17:12  brouard
   90:   Summary: Cleaning some \%% back to %%
   91: 
   92:   The escape was mandatory for a specific compiler (which one?), but too many warnings.
   93: 
   94:   Revision 1.169  2014/12/22 23:08:31  brouard
   95:   Summary: 0.98p
   96: 
   97:   Outputs some informations on compiler used, OS etc. Testing on different platforms.
   98: 
   99:   Revision 1.168  2014/12/22 15:17:42  brouard
  100:   Summary: update
  101: 
  102:   Revision 1.167  2014/12/22 13:50:56  brouard
  103:   Summary: Testing uname and compiler version and if compiled 32 or 64
  104: 
  105:   Testing on Linux 64
  106: 
  107:   Revision 1.166  2014/12/22 11:40:47  brouard
  108:   *** empty log message ***
  109: 
  110:   Revision 1.165  2014/12/16 11:20:36  brouard
  111:   Summary: After compiling on Visual C
  112: 
  113:   * imach.c (Module): Merging 1.61 to 1.162
  114: 
  115:   Revision 1.164  2014/12/16 10:52:11  brouard
  116:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
  117: 
  118:   * imach.c (Module): Merging 1.61 to 1.162
  119: 
  120:   Revision 1.163  2014/12/16 10:30:11  brouard
  121:   * imach.c (Module): Merging 1.61 to 1.162
  122: 
  123:   Revision 1.162  2014/09/25 11:43:39  brouard
  124:   Summary: temporary backup 0.99!
  125: 
  126:   Revision 1.1  2014/09/16 11:06:58  brouard
  127:   Summary: With some code (wrong) for nlopt
  128: 
  129:   Author:
  130: 
  131:   Revision 1.161  2014/09/15 20:41:41  brouard
  132:   Summary: Problem with macro SQR on Intel compiler
  133: 
  134:   Revision 1.160  2014/09/02 09:24:05  brouard
  135:   *** empty log message ***
  136: 
  137:   Revision 1.159  2014/09/01 10:34:10  brouard
  138:   Summary: WIN32
  139:   Author: Brouard
  140: 
  141:   Revision 1.158  2014/08/27 17:11:51  brouard
  142:   *** empty log message ***
  143: 
  144:   Revision 1.157  2014/08/27 16:26:55  brouard
  145:   Summary: Preparing windows Visual studio version
  146:   Author: Brouard
  147: 
  148:   In order to compile on Visual studio, time.h is now correct and time_t
  149:   and tm struct should be used. difftime should be used but sometimes I
  150:   just make the differences in raw time format (time(&now).
  151:   Trying to suppress #ifdef LINUX
  152:   Add xdg-open for __linux in order to open default browser.
  153: 
  154:   Revision 1.156  2014/08/25 20:10:10  brouard
  155:   *** empty log message ***
  156: 
  157:   Revision 1.155  2014/08/25 18:32:34  brouard
  158:   Summary: New compile, minor changes
  159:   Author: Brouard
  160: 
  161:   Revision 1.154  2014/06/20 17:32:08  brouard
  162:   Summary: Outputs now all graphs of convergence to period prevalence
  163: 
  164:   Revision 1.153  2014/06/20 16:45:46  brouard
  165:   Summary: If 3 live state, convergence to period prevalence on same graph
  166:   Author: Brouard
  167: 
  168:   Revision 1.152  2014/06/18 17:54:09  brouard
  169:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
  170: 
  171:   Revision 1.151  2014/06/18 16:43:30  brouard
  172:   *** empty log message ***
  173: 
  174:   Revision 1.150  2014/06/18 16:42:35  brouard
  175:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
  176:   Author: brouard
  177: 
  178:   Revision 1.149  2014/06/18 15:51:14  brouard
  179:   Summary: Some fixes in parameter files errors
  180:   Author: Nicolas Brouard
  181: 
  182:   Revision 1.148  2014/06/17 17:38:48  brouard
  183:   Summary: Nothing new
  184:   Author: Brouard
  185: 
  186:   Just a new packaging for OS/X version 0.98nS
  187: 
  188:   Revision 1.147  2014/06/16 10:33:11  brouard
  189:   *** empty log message ***
  190: 
  191:   Revision 1.146  2014/06/16 10:20:28  brouard
  192:   Summary: Merge
  193:   Author: Brouard
  194: 
  195:   Merge, before building revised version.
  196: 
  197:   Revision 1.145  2014/06/10 21:23:15  brouard
  198:   Summary: Debugging with valgrind
  199:   Author: Nicolas Brouard
  200: 
  201:   Lot of changes in order to output the results with some covariates
  202:   After the Edimburgh REVES conference 2014, it seems mandatory to
  203:   improve the code.
  204:   No more memory valgrind error but a lot has to be done in order to
  205:   continue the work of splitting the code into subroutines.
  206:   Also, decodemodel has been improved. Tricode is still not
  207:   optimal. nbcode should be improved. Documentation has been added in
  208:   the source code.
  209: 
  210:   Revision 1.143  2014/01/26 09:45:38  brouard
  211:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
  212: 
  213:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  214:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
  215: 
  216:   Revision 1.142  2014/01/26 03:57:36  brouard
  217:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
  218: 
  219:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  220: 
  221:   Revision 1.141  2014/01/26 02:42:01  brouard
  222:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  223: 
  224:   Revision 1.140  2011/09/02 10:37:54  brouard
  225:   Summary: times.h is ok with mingw32 now.
  226: 
  227:   Revision 1.139  2010/06/14 07:50:17  brouard
  228:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
  229:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  230: 
  231:   Revision 1.138  2010/04/30 18:19:40  brouard
  232:   *** empty log message ***
  233: 
  234:   Revision 1.137  2010/04/29 18:11:38  brouard
  235:   (Module): Checking covariates for more complex models
  236:   than V1+V2. A lot of change to be done. Unstable.
  237: 
  238:   Revision 1.136  2010/04/26 20:30:53  brouard
  239:   (Module): merging some libgsl code. Fixing computation
  240:   of likelione (using inter/intrapolation if mle = 0) in order to
  241:   get same likelihood as if mle=1.
  242:   Some cleaning of code and comments added.
  243: 
  244:   Revision 1.135  2009/10/29 15:33:14  brouard
  245:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  246: 
  247:   Revision 1.134  2009/10/29 13:18:53  brouard
  248:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  249: 
  250:   Revision 1.133  2009/07/06 10:21:25  brouard
  251:   just nforces
  252: 
  253:   Revision 1.132  2009/07/06 08:22:05  brouard
  254:   Many tings
  255: 
  256:   Revision 1.131  2009/06/20 16:22:47  brouard
  257:   Some dimensions resccaled
  258: 
  259:   Revision 1.130  2009/05/26 06:44:34  brouard
  260:   (Module): Max Covariate is now set to 20 instead of 8. A
  261:   lot of cleaning with variables initialized to 0. Trying to make
  262:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
  263: 
  264:   Revision 1.129  2007/08/31 13:49:27  lievre
  265:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
  266: 
  267:   Revision 1.128  2006/06/30 13:02:05  brouard
  268:   (Module): Clarifications on computing e.j
  269: 
  270:   Revision 1.127  2006/04/28 18:11:50  brouard
  271:   (Module): Yes the sum of survivors was wrong since
  272:   imach-114 because nhstepm was no more computed in the age
  273:   loop. Now we define nhstepma in the age loop.
  274:   (Module): In order to speed up (in case of numerous covariates) we
  275:   compute health expectancies (without variances) in a first step
  276:   and then all the health expectancies with variances or standard
  277:   deviation (needs data from the Hessian matrices) which slows the
  278:   computation.
  279:   In the future we should be able to stop the program is only health
  280:   expectancies and graph are needed without standard deviations.
  281: 
  282:   Revision 1.126  2006/04/28 17:23:28  brouard
  283:   (Module): Yes the sum of survivors was wrong since
  284:   imach-114 because nhstepm was no more computed in the age
  285:   loop. Now we define nhstepma in the age loop.
  286:   Version 0.98h
  287: 
  288:   Revision 1.125  2006/04/04 15:20:31  lievre
  289:   Errors in calculation of health expectancies. Age was not initialized.
  290:   Forecasting file added.
  291: 
  292:   Revision 1.124  2006/03/22 17:13:53  lievre
  293:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  294:   The log-likelihood is printed in the log file
  295: 
  296:   Revision 1.123  2006/03/20 10:52:43  brouard
  297:   * imach.c (Module): <title> changed, corresponds to .htm file
  298:   name. <head> headers where missing.
  299: 
  300:   * imach.c (Module): Weights can have a decimal point as for
  301:   English (a comma might work with a correct LC_NUMERIC environment,
  302:   otherwise the weight is truncated).
  303:   Modification of warning when the covariates values are not 0 or
  304:   1.
  305:   Version 0.98g
  306: 
  307:   Revision 1.122  2006/03/20 09:45:41  brouard
  308:   (Module): Weights can have a decimal point as for
  309:   English (a comma might work with a correct LC_NUMERIC environment,
  310:   otherwise the weight is truncated).
  311:   Modification of warning when the covariates values are not 0 or
  312:   1.
  313:   Version 0.98g
  314: 
  315:   Revision 1.121  2006/03/16 17:45:01  lievre
  316:   * imach.c (Module): Comments concerning covariates added
  317: 
  318:   * imach.c (Module): refinements in the computation of lli if
  319:   status=-2 in order to have more reliable computation if stepm is
  320:   not 1 month. Version 0.98f
  321: 
  322:   Revision 1.120  2006/03/16 15:10:38  lievre
  323:   (Module): refinements in the computation of lli if
  324:   status=-2 in order to have more reliable computation if stepm is
  325:   not 1 month. Version 0.98f
  326: 
  327:   Revision 1.119  2006/03/15 17:42:26  brouard
  328:   (Module): Bug if status = -2, the loglikelihood was
  329:   computed as likelihood omitting the logarithm. Version O.98e
  330: 
  331:   Revision 1.118  2006/03/14 18:20:07  brouard
  332:   (Module): varevsij Comments added explaining the second
  333:   table of variances if popbased=1 .
  334:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  335:   (Module): Function pstamp added
  336:   (Module): Version 0.98d
  337: 
  338:   Revision 1.117  2006/03/14 17:16:22  brouard
  339:   (Module): varevsij Comments added explaining the second
  340:   table of variances if popbased=1 .
  341:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  342:   (Module): Function pstamp added
  343:   (Module): Version 0.98d
  344: 
  345:   Revision 1.116  2006/03/06 10:29:27  brouard
  346:   (Module): Variance-covariance wrong links and
  347:   varian-covariance of ej. is needed (Saito).
  348: 
  349:   Revision 1.115  2006/02/27 12:17:45  brouard
  350:   (Module): One freematrix added in mlikeli! 0.98c
  351: 
  352:   Revision 1.114  2006/02/26 12:57:58  brouard
  353:   (Module): Some improvements in processing parameter
  354:   filename with strsep.
  355: 
  356:   Revision 1.113  2006/02/24 14:20:24  brouard
  357:   (Module): Memory leaks checks with valgrind and:
  358:   datafile was not closed, some imatrix were not freed and on matrix
  359:   allocation too.
  360: 
  361:   Revision 1.112  2006/01/30 09:55:26  brouard
  362:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  363: 
  364:   Revision 1.111  2006/01/25 20:38:18  brouard
  365:   (Module): Lots of cleaning and bugs added (Gompertz)
  366:   (Module): Comments can be added in data file. Missing date values
  367:   can be a simple dot '.'.
  368: 
  369:   Revision 1.110  2006/01/25 00:51:50  brouard
  370:   (Module): Lots of cleaning and bugs added (Gompertz)
  371: 
  372:   Revision 1.109  2006/01/24 19:37:15  brouard
  373:   (Module): Comments (lines starting with a #) are allowed in data.
  374: 
  375:   Revision 1.108  2006/01/19 18:05:42  lievre
  376:   Gnuplot problem appeared...
  377:   To be fixed
  378: 
  379:   Revision 1.107  2006/01/19 16:20:37  brouard
  380:   Test existence of gnuplot in imach path
  381: 
  382:   Revision 1.106  2006/01/19 13:24:36  brouard
  383:   Some cleaning and links added in html output
  384: 
  385:   Revision 1.105  2006/01/05 20:23:19  lievre
  386:   *** empty log message ***
  387: 
  388:   Revision 1.104  2005/09/30 16:11:43  lievre
  389:   (Module): sump fixed, loop imx fixed, and simplifications.
  390:   (Module): If the status is missing at the last wave but we know
  391:   that the person is alive, then we can code his/her status as -2
  392:   (instead of missing=-1 in earlier versions) and his/her
  393:   contributions to the likelihood is 1 - Prob of dying from last
  394:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  395:   the healthy state at last known wave). Version is 0.98
  396: 
  397:   Revision 1.103  2005/09/30 15:54:49  lievre
  398:   (Module): sump fixed, loop imx fixed, and simplifications.
  399: 
  400:   Revision 1.102  2004/09/15 17:31:30  brouard
  401:   Add the possibility to read data file including tab characters.
  402: 
  403:   Revision 1.101  2004/09/15 10:38:38  brouard
  404:   Fix on curr_time
  405: 
  406:   Revision 1.100  2004/07/12 18:29:06  brouard
  407:   Add version for Mac OS X. Just define UNIX in Makefile
  408: 
  409:   Revision 1.99  2004/06/05 08:57:40  brouard
  410:   *** empty log message ***
  411: 
  412:   Revision 1.98  2004/05/16 15:05:56  brouard
  413:   New version 0.97 . First attempt to estimate force of mortality
  414:   directly from the data i.e. without the need of knowing the health
  415:   state at each age, but using a Gompertz model: log u =a + b*age .
  416:   This is the basic analysis of mortality and should be done before any
  417:   other analysis, in order to test if the mortality estimated from the
  418:   cross-longitudinal survey is different from the mortality estimated
  419:   from other sources like vital statistic data.
  420: 
  421:   The same imach parameter file can be used but the option for mle should be -3.
  422: 
  423:   Agnès, who wrote this part of the code, tried to keep most of the
  424:   former routines in order to include the new code within the former code.
  425: 
  426:   The output is very simple: only an estimate of the intercept and of
  427:   the slope with 95% confident intervals.
  428: 
  429:   Current limitations:
  430:   A) Even if you enter covariates, i.e. with the
  431:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  432:   B) There is no computation of Life Expectancy nor Life Table.
  433: 
  434:   Revision 1.97  2004/02/20 13:25:42  lievre
  435:   Version 0.96d. Population forecasting command line is (temporarily)
  436:   suppressed.
  437: 
  438:   Revision 1.96  2003/07/15 15:38:55  brouard
  439:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  440:   rewritten within the same printf. Workaround: many printfs.
  441: 
  442:   Revision 1.95  2003/07/08 07:54:34  brouard
  443:   * imach.c (Repository):
  444:   (Repository): Using imachwizard code to output a more meaningful covariance
  445:   matrix (cov(a12,c31) instead of numbers.
  446: 
  447:   Revision 1.94  2003/06/27 13:00:02  brouard
  448:   Just cleaning
  449: 
  450:   Revision 1.93  2003/06/25 16:33:55  brouard
  451:   (Module): On windows (cygwin) function asctime_r doesn't
  452:   exist so I changed back to asctime which exists.
  453:   (Module): Version 0.96b
  454: 
  455:   Revision 1.92  2003/06/25 16:30:45  brouard
  456:   (Module): On windows (cygwin) function asctime_r doesn't
  457:   exist so I changed back to asctime which exists.
  458: 
  459:   Revision 1.91  2003/06/25 15:30:29  brouard
  460:   * imach.c (Repository): Duplicated warning errors corrected.
  461:   (Repository): Elapsed time after each iteration is now output. It
  462:   helps to forecast when convergence will be reached. Elapsed time
  463:   is stamped in powell.  We created a new html file for the graphs
  464:   concerning matrix of covariance. It has extension -cov.htm.
  465: 
  466:   Revision 1.90  2003/06/24 12:34:15  brouard
  467:   (Module): Some bugs corrected for windows. Also, when
  468:   mle=-1 a template is output in file "or"mypar.txt with the design
  469:   of the covariance matrix to be input.
  470: 
  471:   Revision 1.89  2003/06/24 12:30:52  brouard
  472:   (Module): Some bugs corrected for windows. Also, when
  473:   mle=-1 a template is output in file "or"mypar.txt with the design
  474:   of the covariance matrix to be input.
  475: 
  476:   Revision 1.88  2003/06/23 17:54:56  brouard
  477:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  478: 
  479:   Revision 1.87  2003/06/18 12:26:01  brouard
  480:   Version 0.96
  481: 
  482:   Revision 1.86  2003/06/17 20:04:08  brouard
  483:   (Module): Change position of html and gnuplot routines and added
  484:   routine fileappend.
  485: 
  486:   Revision 1.85  2003/06/17 13:12:43  brouard
  487:   * imach.c (Repository): Check when date of death was earlier that
  488:   current date of interview. It may happen when the death was just
  489:   prior to the death. In this case, dh was negative and likelihood
  490:   was wrong (infinity). We still send an "Error" but patch by
  491:   assuming that the date of death was just one stepm after the
  492:   interview.
  493:   (Repository): Because some people have very long ID (first column)
  494:   we changed int to long in num[] and we added a new lvector for
  495:   memory allocation. But we also truncated to 8 characters (left
  496:   truncation)
  497:   (Repository): No more line truncation errors.
  498: 
  499:   Revision 1.84  2003/06/13 21:44:43  brouard
  500:   * imach.c (Repository): Replace "freqsummary" at a correct
  501:   place. It differs from routine "prevalence" which may be called
  502:   many times. Probs is memory consuming and must be used with
  503:   parcimony.
  504:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  505: 
  506:   Revision 1.83  2003/06/10 13:39:11  lievre
  507:   *** empty log message ***
  508: 
  509:   Revision 1.82  2003/06/05 15:57:20  brouard
  510:   Add log in  imach.c and  fullversion number is now printed.
  511: 
  512: */
  513: /*
  514:    Interpolated Markov Chain
  515: 
  516:   Short summary of the programme:
  517:   
  518:   This program computes Healthy Life Expectancies from
  519:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  520:   first survey ("cross") where individuals from different ages are
  521:   interviewed on their health status or degree of disability (in the
  522:   case of a health survey which is our main interest) -2- at least a
  523:   second wave of interviews ("longitudinal") which measure each change
  524:   (if any) in individual health status.  Health expectancies are
  525:   computed from the time spent in each health state according to a
  526:   model. More health states you consider, more time is necessary to reach the
  527:   Maximum Likelihood of the parameters involved in the model.  The
  528:   simplest model is the multinomial logistic model where pij is the
  529:   probability to be observed in state j at the second wave
  530:   conditional to be observed in state i at the first wave. Therefore
  531:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  532:   'age' is age and 'sex' is a covariate. If you want to have a more
  533:   complex model than "constant and age", you should modify the program
  534:   where the markup *Covariates have to be included here again* invites
  535:   you to do it.  More covariates you add, slower the
  536:   convergence.
  537: 
  538:   The advantage of this computer programme, compared to a simple
  539:   multinomial logistic model, is clear when the delay between waves is not
  540:   identical for each individual. Also, if a individual missed an
  541:   intermediate interview, the information is lost, but taken into
  542:   account using an interpolation or extrapolation.  
  543: 
  544:   hPijx is the probability to be observed in state i at age x+h
  545:   conditional to the observed state i at age x. The delay 'h' can be
  546:   split into an exact number (nh*stepm) of unobserved intermediate
  547:   states. This elementary transition (by month, quarter,
  548:   semester or year) is modelled as a multinomial logistic.  The hPx
  549:   matrix is simply the matrix product of nh*stepm elementary matrices
  550:   and the contribution of each individual to the likelihood is simply
  551:   hPijx.
  552: 
  553:   Also this programme outputs the covariance matrix of the parameters but also
  554:   of the life expectancies. It also computes the period (stable) prevalence. 
  555:   
  556:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  557:            Institut national d'études démographiques, Paris.
  558:   This software have been partly granted by Euro-REVES, a concerted action
  559:   from the European Union.
  560:   It is copyrighted identically to a GNU software product, ie programme and
  561:   software can be distributed freely for non commercial use. Latest version
  562:   can be accessed at http://euroreves.ined.fr/imach .
  563: 
  564:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  565:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  566:   
  567:   **********************************************************************/
  568: /*
  569:   main
  570:   read parameterfile
  571:   read datafile
  572:   concatwav
  573:   freqsummary
  574:   if (mle >= 1)
  575:     mlikeli
  576:   print results files
  577:   if mle==1 
  578:      computes hessian
  579:   read end of parameter file: agemin, agemax, bage, fage, estepm
  580:       begin-prev-date,...
  581:   open gnuplot file
  582:   open html file
  583:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  584:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  585:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  586:     freexexit2 possible for memory heap.
  587: 
  588:   h Pij x                         | pij_nom  ficrestpij
  589:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  590:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  591:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  592: 
  593:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  594:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  595:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  596:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  597:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  598: 
  599:   forecasting if prevfcast==1 prevforecast call prevalence()
  600:   health expectancies
  601:   Variance-covariance of DFLE
  602:   prevalence()
  603:    movingaverage()
  604:   varevsij() 
  605:   if popbased==1 varevsij(,popbased)
  606:   total life expectancies
  607:   Variance of period (stable) prevalence
  608:  end
  609: */
  610: 
  611: /* #define DEBUG */
  612: /* #define DEBUGBRENT */
  613: #define POWELL /* Instead of NLOPT */
  614: #define POWELLF1F3 /* Skip test */
  615: /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
  616: /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
  617: 
  618: #include <math.h>
  619: #include <stdio.h>
  620: #include <stdlib.h>
  621: #include <string.h>
  622: 
  623: #ifdef _WIN32
  624: #include <io.h>
  625: #include <windows.h>
  626: #include <tchar.h>
  627: #else
  628: #include <unistd.h>
  629: #endif
  630: 
  631: #include <limits.h>
  632: #include <sys/types.h>
  633: 
  634: #if defined(__GNUC__)
  635: #include <sys/utsname.h> /* Doesn't work on Windows */
  636: #endif
  637: 
  638: #include <sys/stat.h>
  639: #include <errno.h>
  640: /* extern int errno; */
  641: 
  642: /* #ifdef LINUX */
  643: /* #include <time.h> */
  644: /* #include "timeval.h" */
  645: /* #else */
  646: /* #include <sys/time.h> */
  647: /* #endif */
  648: 
  649: #include <time.h>
  650: 
  651: #ifdef GSL
  652: #include <gsl/gsl_errno.h>
  653: #include <gsl/gsl_multimin.h>
  654: #endif
  655: 
  656: 
  657: #ifdef NLOPT
  658: #include <nlopt.h>
  659: typedef struct {
  660:   double (* function)(double [] );
  661: } myfunc_data ;
  662: #endif
  663: 
  664: /* #include <libintl.h> */
  665: /* #define _(String) gettext (String) */
  666: 
  667: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  668: 
  669: #define GNUPLOTPROGRAM "gnuplot"
  670: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  671: #define FILENAMELENGTH 132
  672: 
  673: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  674: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  675: 
  676: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  677: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  678: 
  679: #define NINTERVMAX 8
  680: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  681: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  682: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  683: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  684: #define MAXN 20000
  685: #define YEARM 12. /**< Number of months per year */
  686: #define AGESUP 130
  687: #define AGEBASE 40
  688: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
  689: #ifdef _WIN32
  690: #define DIRSEPARATOR '\\'
  691: #define CHARSEPARATOR "\\"
  692: #define ODIRSEPARATOR '/'
  693: #else
  694: #define DIRSEPARATOR '/'
  695: #define CHARSEPARATOR "/"
  696: #define ODIRSEPARATOR '\\'
  697: #endif
  698: 
  699: /* $Id: imach.c,v 1.193 2015/08/04 07:17:42 brouard Exp $ */
  700: /* $State: Exp $ */
  701: 
  702: char version[]="Imach version 0.98q4, July 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
  703: char fullversion[]="$Revision: 1.193 $ $Date: 2015/08/04 07:17:42 $"; 
  704: char strstart[80];
  705: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  706: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  707: int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
  708: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  709: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  710: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  711: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  712: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  713: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  714: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  715: int cptcov=0; /* Working variable */
  716: int npar=NPARMAX;
  717: int nlstate=2; /* Number of live states */
  718: int ndeath=1; /* Number of dead states */
  719: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  720: int popbased=0;
  721: 
  722: int *wav; /* Number of waves for this individuual 0 is possible */
  723: int maxwav=0; /* Maxim number of waves */
  724: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  725: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  726: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  727: 		   to the likelihood and the sum of weights (done by funcone)*/
  728: int mle=1, weightopt=0;
  729: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  730: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  731: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  732: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  733: int countcallfunc=0;  /* Count the number of calls to func */
  734: double jmean=1; /* Mean space between 2 waves */
  735: double **matprod2(); /* test */
  736: double **oldm, **newm, **savm; /* Working pointers to matrices */
  737: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  738: /*FILE *fic ; */ /* Used in readdata only */
  739: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  740: FILE *ficlog, *ficrespow;
  741: int globpr=0; /* Global variable for printing or not */
  742: double fretone; /* Only one call to likelihood */
  743: long ipmx=0; /* Number of contributions */
  744: double sw; /* Sum of weights */
  745: char filerespow[FILENAMELENGTH];
  746: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  747: FILE *ficresilk;
  748: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  749: FILE *ficresprobmorprev;
  750: FILE *fichtm, *fichtmcov; /* Html File */
  751: FILE *ficreseij;
  752: char filerese[FILENAMELENGTH];
  753: FILE *ficresstdeij;
  754: char fileresstde[FILENAMELENGTH];
  755: FILE *ficrescveij;
  756: char filerescve[FILENAMELENGTH];
  757: FILE  *ficresvij;
  758: char fileresv[FILENAMELENGTH];
  759: FILE  *ficresvpl;
  760: char fileresvpl[FILENAMELENGTH];
  761: char title[MAXLINE];
  762: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  763: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  764: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  765: char command[FILENAMELENGTH];
  766: int  outcmd=0;
  767: 
  768: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  769: 
  770: char filelog[FILENAMELENGTH]; /* Log file */
  771: char filerest[FILENAMELENGTH];
  772: char fileregp[FILENAMELENGTH];
  773: char popfile[FILENAMELENGTH];
  774: 
  775: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  776: 
  777: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
  778: /* struct timezone tzp; */
  779: /* extern int gettimeofday(); */
  780: struct tm tml, *gmtime(), *localtime();
  781: 
  782: extern time_t time();
  783: 
  784: struct tm start_time, end_time, curr_time, last_time, forecast_time;
  785: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
  786: struct tm tm;
  787: 
  788: char strcurr[80], strfor[80];
  789: 
  790: char *endptr;
  791: long lval;
  792: double dval;
  793: 
  794: #define NR_END 1
  795: #define FREE_ARG char*
  796: #define FTOL 1.0e-10
  797: 
  798: #define NRANSI 
  799: #define ITMAX 200 
  800: 
  801: #define TOL 2.0e-4 
  802: 
  803: #define CGOLD 0.3819660 
  804: #define ZEPS 1.0e-10 
  805: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  806: 
  807: #define GOLD 1.618034 
  808: #define GLIMIT 100.0 
  809: #define TINY 1.0e-20 
  810: 
  811: static double maxarg1,maxarg2;
  812: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  813: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  814:   
  815: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  816: #define rint(a) floor(a+0.5)
  817: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
  818: #define mytinydouble 1.0e-16
  819: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
  820: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
  821: /* static double dsqrarg; */
  822: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
  823: static double sqrarg;
  824: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  825: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  826: int agegomp= AGEGOMP;
  827: 
  828: int imx; 
  829: int stepm=1;
  830: /* Stepm, step in month: minimum step interpolation*/
  831: 
  832: int estepm;
  833: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  834: 
  835: int m,nb;
  836: long *num;
  837: int firstpass=0, lastpass=4,*cod, *Tage,*cens;
  838: int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
  839: 		   covariate for which somebody answered excluding 
  840: 		   undefined. Usually 2: 0 and 1. */
  841: int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
  842: 			     covariate for which somebody answered including 
  843: 			     undefined. Usually 3: -1, 0 and 1. */
  844: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  845: double **pmmij, ***probs;
  846: double *ageexmed,*agecens;
  847: double dateintmean=0;
  848: 
  849: double *weight;
  850: int **s; /* Status */
  851: double *agedc;
  852: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  853: 		  * covar=matrix(0,NCOVMAX,1,n); 
  854: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
  855: double  idx; 
  856: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  857: int *Ndum; /** Freq of modality (tricode */
  858: int **codtab; /**< codtab=imatrix(1,100,1,10); */
  859: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  860: double *lsurv, *lpop, *tpop;
  861: 
  862: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  863: double ftolhess; /**< Tolerance for computing hessian */
  864: 
  865: /**************** split *************************/
  866: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  867: {
  868:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  869:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  870:   */ 
  871:   char	*ss;				/* pointer */
  872:   int	l1=0, l2=0;				/* length counters */
  873: 
  874:   l1 = strlen(path );			/* length of path */
  875:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  876:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  877:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  878:     strcpy( name, path );		/* we got the fullname name because no directory */
  879:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  880:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  881:     /* get current working directory */
  882:     /*    extern  char* getcwd ( char *buf , int len);*/
  883: #ifdef WIN32
  884:     if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
  885: #else
  886: 	if (getcwd(dirc, FILENAME_MAX) == NULL) {
  887: #endif
  888:       return( GLOCK_ERROR_GETCWD );
  889:     }
  890:     /* got dirc from getcwd*/
  891:     printf(" DIRC = %s \n",dirc);
  892:   } else {				/* strip direcotry from path */
  893:     ss++;				/* after this, the filename */
  894:     l2 = strlen( ss );			/* length of filename */
  895:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  896:     strcpy( name, ss );		/* save file name */
  897:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  898:     dirc[l1-l2] = '\0';			/* add zero */
  899:     printf(" DIRC2 = %s \n",dirc);
  900:   }
  901:   /* We add a separator at the end of dirc if not exists */
  902:   l1 = strlen( dirc );			/* length of directory */
  903:   if( dirc[l1-1] != DIRSEPARATOR ){
  904:     dirc[l1] =  DIRSEPARATOR;
  905:     dirc[l1+1] = 0; 
  906:     printf(" DIRC3 = %s \n",dirc);
  907:   }
  908:   ss = strrchr( name, '.' );		/* find last / */
  909:   if (ss >0){
  910:     ss++;
  911:     strcpy(ext,ss);			/* save extension */
  912:     l1= strlen( name);
  913:     l2= strlen(ss)+1;
  914:     strncpy( finame, name, l1-l2);
  915:     finame[l1-l2]= 0;
  916:   }
  917: 
  918:   return( 0 );				/* we're done */
  919: }
  920: 
  921: 
  922: /******************************************/
  923: 
  924: void replace_back_to_slash(char *s, char*t)
  925: {
  926:   int i;
  927:   int lg=0;
  928:   i=0;
  929:   lg=strlen(t);
  930:   for(i=0; i<= lg; i++) {
  931:     (s[i] = t[i]);
  932:     if (t[i]== '\\') s[i]='/';
  933:   }
  934: }
  935: 
  936: char *trimbb(char *out, char *in)
  937: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  938:   char *s;
  939:   s=out;
  940:   while (*in != '\0'){
  941:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  942:       in++;
  943:     }
  944:     *out++ = *in++;
  945:   }
  946:   *out='\0';
  947:   return s;
  948: }
  949: 
  950: /* char *substrchaine(char *out, char *in, char *chain) */
  951: /* { */
  952: /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
  953: /*   char *s, *t; */
  954: /*   t=in;s=out; */
  955: /*   while ((*in != *chain) && (*in != '\0')){ */
  956: /*     *out++ = *in++; */
  957: /*   } */
  958: 
  959: /*   /\* *in matches *chain *\/ */
  960: /*   while ((*in++ == *chain++) && (*in != '\0')){ */
  961: /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
  962: /*   } */
  963: /*   in--; chain--; */
  964: /*   while ( (*in != '\0')){ */
  965: /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
  966: /*     *out++ = *in++; */
  967: /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
  968: /*   } */
  969: /*   *out='\0'; */
  970: /*   out=s; */
  971: /*   return out; */
  972: /* } */
  973: char *substrchaine(char *out, char *in, char *chain)
  974: {
  975:   /* Substract chain 'chain' from 'in', return and output 'out' */
  976:   /* in="V1+V1*age+age*age+V2", chain="age*age" */
  977: 
  978:   char *strloc;
  979: 
  980:   strcpy (out, in); 
  981:   strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
  982:   printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
  983:   if(strloc != NULL){ 
  984:     /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
  985:     memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
  986:     /* strcpy (strloc, strloc +strlen(chain));*/
  987:   }
  988:   printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
  989:   return out;
  990: }
  991: 
  992: 
  993: char *cutl(char *blocc, char *alocc, char *in, char occ)
  994: {
  995:   /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
  996:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  997:      gives blocc="abcdef" and alocc="ghi2j".
  998:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
  999:   */
 1000:   char *s, *t;
 1001:   t=in;s=in;
 1002:   while ((*in != occ) && (*in != '\0')){
 1003:     *alocc++ = *in++;
 1004:   }
 1005:   if( *in == occ){
 1006:     *(alocc)='\0';
 1007:     s=++in;
 1008:   }
 1009:  
 1010:   if (s == t) {/* occ not found */
 1011:     *(alocc-(in-s))='\0';
 1012:     in=s;
 1013:   }
 1014:   while ( *in != '\0'){
 1015:     *blocc++ = *in++;
 1016:   }
 1017: 
 1018:   *blocc='\0';
 1019:   return t;
 1020: }
 1021: char *cutv(char *blocc, char *alocc, char *in, char occ)
 1022: {
 1023:   /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
 1024:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 1025:      gives blocc="abcdef2ghi" and alocc="j".
 1026:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
 1027:   */
 1028:   char *s, *t;
 1029:   t=in;s=in;
 1030:   while (*in != '\0'){
 1031:     while( *in == occ){
 1032:       *blocc++ = *in++;
 1033:       s=in;
 1034:     }
 1035:     *blocc++ = *in++;
 1036:   }
 1037:   if (s == t) /* occ not found */
 1038:     *(blocc-(in-s))='\0';
 1039:   else
 1040:     *(blocc-(in-s)-1)='\0';
 1041:   in=s;
 1042:   while ( *in != '\0'){
 1043:     *alocc++ = *in++;
 1044:   }
 1045: 
 1046:   *alocc='\0';
 1047:   return s;
 1048: }
 1049: 
 1050: int nbocc(char *s, char occ)
 1051: {
 1052:   int i,j=0;
 1053:   int lg=20;
 1054:   i=0;
 1055:   lg=strlen(s);
 1056:   for(i=0; i<= lg; i++) {
 1057:   if  (s[i] == occ ) j++;
 1058:   }
 1059:   return j;
 1060: }
 1061: 
 1062: /* void cutv(char *u,char *v, char*t, char occ) */
 1063: /* { */
 1064: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 1065: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 1066: /*      gives u="abcdef2ghi" and v="j" *\/ */
 1067: /*   int i,lg,j,p=0; */
 1068: /*   i=0; */
 1069: /*   lg=strlen(t); */
 1070: /*   for(j=0; j<=lg-1; j++) { */
 1071: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
 1072: /*   } */
 1073: 
 1074: /*   for(j=0; j<p; j++) { */
 1075: /*     (u[j] = t[j]); */
 1076: /*   } */
 1077: /*      u[p]='\0'; */
 1078: 
 1079: /*    for(j=0; j<= lg; j++) { */
 1080: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 1081: /*   } */
 1082: /* } */
 1083: 
 1084: #ifdef _WIN32
 1085: char * strsep(char **pp, const char *delim)
 1086: {
 1087:   char *p, *q;
 1088:          
 1089:   if ((p = *pp) == NULL)
 1090:     return 0;
 1091:   if ((q = strpbrk (p, delim)) != NULL)
 1092:   {
 1093:     *pp = q + 1;
 1094:     *q = '\0';
 1095:   }
 1096:   else
 1097:     *pp = 0;
 1098:   return p;
 1099: }
 1100: #endif
 1101: 
 1102: /********************** nrerror ********************/
 1103: 
 1104: void nrerror(char error_text[])
 1105: {
 1106:   fprintf(stderr,"ERREUR ...\n");
 1107:   fprintf(stderr,"%s\n",error_text);
 1108:   exit(EXIT_FAILURE);
 1109: }
 1110: /*********************** vector *******************/
 1111: double *vector(int nl, int nh)
 1112: {
 1113:   double *v;
 1114:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 1115:   if (!v) nrerror("allocation failure in vector");
 1116:   return v-nl+NR_END;
 1117: }
 1118: 
 1119: /************************ free vector ******************/
 1120: void free_vector(double*v, int nl, int nh)
 1121: {
 1122:   free((FREE_ARG)(v+nl-NR_END));
 1123: }
 1124: 
 1125: /************************ivector *******************************/
 1126: int *ivector(long nl,long nh)
 1127: {
 1128:   int *v;
 1129:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 1130:   if (!v) nrerror("allocation failure in ivector");
 1131:   return v-nl+NR_END;
 1132: }
 1133: 
 1134: /******************free ivector **************************/
 1135: void free_ivector(int *v, long nl, long nh)
 1136: {
 1137:   free((FREE_ARG)(v+nl-NR_END));
 1138: }
 1139: 
 1140: /************************lvector *******************************/
 1141: long *lvector(long nl,long nh)
 1142: {
 1143:   long *v;
 1144:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 1145:   if (!v) nrerror("allocation failure in ivector");
 1146:   return v-nl+NR_END;
 1147: }
 1148: 
 1149: /******************free lvector **************************/
 1150: void free_lvector(long *v, long nl, long nh)
 1151: {
 1152:   free((FREE_ARG)(v+nl-NR_END));
 1153: }
 1154: 
 1155: /******************* imatrix *******************************/
 1156: int **imatrix(long nrl, long nrh, long ncl, long nch) 
 1157:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 1158: { 
 1159:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 1160:   int **m; 
 1161:   
 1162:   /* allocate pointers to rows */ 
 1163:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 1164:   if (!m) nrerror("allocation failure 1 in matrix()"); 
 1165:   m += NR_END; 
 1166:   m -= nrl; 
 1167:   
 1168:   
 1169:   /* allocate rows and set pointers to them */ 
 1170:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 1171:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 1172:   m[nrl] += NR_END; 
 1173:   m[nrl] -= ncl; 
 1174:   
 1175:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 1176:   
 1177:   /* return pointer to array of pointers to rows */ 
 1178:   return m; 
 1179: } 
 1180: 
 1181: /****************** free_imatrix *************************/
 1182: void free_imatrix(m,nrl,nrh,ncl,nch)
 1183:       int **m;
 1184:       long nch,ncl,nrh,nrl; 
 1185:      /* free an int matrix allocated by imatrix() */ 
 1186: { 
 1187:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 1188:   free((FREE_ARG) (m+nrl-NR_END)); 
 1189: } 
 1190: 
 1191: /******************* matrix *******************************/
 1192: double **matrix(long nrl, long nrh, long ncl, long nch)
 1193: {
 1194:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 1195:   double **m;
 1196: 
 1197:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1198:   if (!m) nrerror("allocation failure 1 in matrix()");
 1199:   m += NR_END;
 1200:   m -= nrl;
 1201: 
 1202:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1203:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1204:   m[nrl] += NR_END;
 1205:   m[nrl] -= ncl;
 1206: 
 1207:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1208:   return m;
 1209:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 1210: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 1211: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 1212:    */
 1213: }
 1214: 
 1215: /*************************free matrix ************************/
 1216: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 1217: {
 1218:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1219:   free((FREE_ARG)(m+nrl-NR_END));
 1220: }
 1221: 
 1222: /******************* ma3x *******************************/
 1223: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 1224: {
 1225:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 1226:   double ***m;
 1227: 
 1228:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1229:   if (!m) nrerror("allocation failure 1 in matrix()");
 1230:   m += NR_END;
 1231:   m -= nrl;
 1232: 
 1233:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1234:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1235:   m[nrl] += NR_END;
 1236:   m[nrl] -= ncl;
 1237: 
 1238:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1239: 
 1240:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 1241:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 1242:   m[nrl][ncl] += NR_END;
 1243:   m[nrl][ncl] -= nll;
 1244:   for (j=ncl+1; j<=nch; j++) 
 1245:     m[nrl][j]=m[nrl][j-1]+nlay;
 1246:   
 1247:   for (i=nrl+1; i<=nrh; i++) {
 1248:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 1249:     for (j=ncl+1; j<=nch; j++) 
 1250:       m[i][j]=m[i][j-1]+nlay;
 1251:   }
 1252:   return m; 
 1253:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 1254:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 1255:   */
 1256: }
 1257: 
 1258: /*************************free ma3x ************************/
 1259: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 1260: {
 1261:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 1262:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1263:   free((FREE_ARG)(m+nrl-NR_END));
 1264: }
 1265: 
 1266: /*************** function subdirf ***********/
 1267: char *subdirf(char fileres[])
 1268: {
 1269:   /* Caution optionfilefiname is hidden */
 1270:   strcpy(tmpout,optionfilefiname);
 1271:   strcat(tmpout,"/"); /* Add to the right */
 1272:   strcat(tmpout,fileres);
 1273:   return tmpout;
 1274: }
 1275: 
 1276: /*************** function subdirf2 ***********/
 1277: char *subdirf2(char fileres[], char *preop)
 1278: {
 1279:   
 1280:   /* Caution optionfilefiname is hidden */
 1281:   strcpy(tmpout,optionfilefiname);
 1282:   strcat(tmpout,"/");
 1283:   strcat(tmpout,preop);
 1284:   strcat(tmpout,fileres);
 1285:   return tmpout;
 1286: }
 1287: 
 1288: /*************** function subdirf3 ***********/
 1289: char *subdirf3(char fileres[], char *preop, char *preop2)
 1290: {
 1291:   
 1292:   /* Caution optionfilefiname is hidden */
 1293:   strcpy(tmpout,optionfilefiname);
 1294:   strcat(tmpout,"/");
 1295:   strcat(tmpout,preop);
 1296:   strcat(tmpout,preop2);
 1297:   strcat(tmpout,fileres);
 1298:   return tmpout;
 1299: }
 1300: 
 1301: char *asc_diff_time(long time_sec, char ascdiff[])
 1302: {
 1303:   long sec_left, days, hours, minutes;
 1304:   days = (time_sec) / (60*60*24);
 1305:   sec_left = (time_sec) % (60*60*24);
 1306:   hours = (sec_left) / (60*60) ;
 1307:   sec_left = (sec_left) %(60*60);
 1308:   minutes = (sec_left) /60;
 1309:   sec_left = (sec_left) % (60);
 1310:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1311:   return ascdiff;
 1312: }
 1313: 
 1314: /***************** f1dim *************************/
 1315: extern int ncom; 
 1316: extern double *pcom,*xicom;
 1317: extern double (*nrfunc)(double []); 
 1318:  
 1319: double f1dim(double x) 
 1320: { 
 1321:   int j; 
 1322:   double f;
 1323:   double *xt; 
 1324:  
 1325:   xt=vector(1,ncom); 
 1326:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1327:   f=(*nrfunc)(xt); 
 1328:   free_vector(xt,1,ncom); 
 1329:   return f; 
 1330: } 
 1331: 
 1332: /*****************brent *************************/
 1333: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1334: {
 1335:   /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
 1336:    * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
 1337:    * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
 1338:    * the minimum is returned as xmin, and the minimum function value is returned as brent , the
 1339:    * returned function value. 
 1340:   */
 1341:   int iter; 
 1342:   double a,b,d,etemp;
 1343:   double fu=0,fv,fw,fx;
 1344:   double ftemp=0.;
 1345:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1346:   double e=0.0; 
 1347:  
 1348:   a=(ax < cx ? ax : cx); 
 1349:   b=(ax > cx ? ax : cx); 
 1350:   x=w=v=bx; 
 1351:   fw=fv=fx=(*f)(x); 
 1352:   for (iter=1;iter<=ITMAX;iter++) { 
 1353:     xm=0.5*(a+b); 
 1354:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1355:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1356:     printf(".");fflush(stdout);
 1357:     fprintf(ficlog,".");fflush(ficlog);
 1358: #ifdef DEBUGBRENT
 1359:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1360:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1361:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1362: #endif
 1363:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1364:       *xmin=x; 
 1365:       return fx; 
 1366:     } 
 1367:     ftemp=fu;
 1368:     if (fabs(e) > tol1) { 
 1369:       r=(x-w)*(fx-fv); 
 1370:       q=(x-v)*(fx-fw); 
 1371:       p=(x-v)*q-(x-w)*r; 
 1372:       q=2.0*(q-r); 
 1373:       if (q > 0.0) p = -p; 
 1374:       q=fabs(q); 
 1375:       etemp=e; 
 1376:       e=d; 
 1377:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1378: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1379:       else { 
 1380: 	d=p/q; 
 1381: 	u=x+d; 
 1382: 	if (u-a < tol2 || b-u < tol2) 
 1383: 	  d=SIGN(tol1,xm-x); 
 1384:       } 
 1385:     } else { 
 1386:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1387:     } 
 1388:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1389:     fu=(*f)(u); 
 1390:     if (fu <= fx) { 
 1391:       if (u >= x) a=x; else b=x; 
 1392:       SHFT(v,w,x,u) 
 1393:       SHFT(fv,fw,fx,fu) 
 1394:     } else { 
 1395:       if (u < x) a=u; else b=u; 
 1396:       if (fu <= fw || w == x) { 
 1397: 	v=w; 
 1398: 	w=u; 
 1399: 	fv=fw; 
 1400: 	fw=fu; 
 1401:       } else if (fu <= fv || v == x || v == w) { 
 1402: 	v=u; 
 1403: 	fv=fu; 
 1404:       } 
 1405:     } 
 1406:   } 
 1407:   nrerror("Too many iterations in brent"); 
 1408:   *xmin=x; 
 1409:   return fx; 
 1410: } 
 1411: 
 1412: /****************** mnbrak ***********************/
 1413: 
 1414: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1415: 	    double (*func)(double)) 
 1416: { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
 1417: the downhill direction (defined by the function as evaluated at the initial points) and returns
 1418: new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
 1419: values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
 1420:    */
 1421:   double ulim,u,r,q, dum;
 1422:   double fu; 
 1423: 
 1424:   double scale=10.;
 1425:   int iterscale=0;
 1426: 
 1427:   *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
 1428:   *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
 1429: 
 1430: 
 1431:   /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
 1432:   /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
 1433:   /*   *bx = *ax - (*ax - *bx)/scale; */
 1434:   /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
 1435:   /* } */
 1436: 
 1437:   if (*fb > *fa) { 
 1438:     SHFT(dum,*ax,*bx,dum) 
 1439:     SHFT(dum,*fb,*fa,dum) 
 1440:   } 
 1441:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1442:   *fc=(*func)(*cx); 
 1443: #ifdef DEBUG
 1444:   printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
 1445:   fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
 1446: #endif
 1447:   while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
 1448:     r=(*bx-*ax)*(*fb-*fc); 
 1449:     q=(*bx-*cx)*(*fb-*fa); 
 1450:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1451:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
 1452:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
 1453:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
 1454:       fu=(*func)(u); 
 1455: #ifdef DEBUG
 1456:       /* f(x)=A(x-u)**2+f(u) */
 1457:       double A, fparabu; 
 1458:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
 1459:       fparabu= *fa - A*(*ax-u)*(*ax-u);
 1460:       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1461:       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1462:       /* And thus,it can be that fu > *fc even if fparabu < *fc */
 1463:       /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
 1464:         (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
 1465:       /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
 1466: #endif 
 1467: #ifdef MNBRAKORIGINAL
 1468: #else
 1469: /*       if (fu > *fc) { */
 1470: /* #ifdef DEBUG */
 1471: /*       printf("mnbrak4  fu > fc \n"); */
 1472: /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
 1473: /* #endif */
 1474: /* 	/\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
 1475: /* 	/\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
 1476: /* 	dum=u; /\* Shifting c and u *\/ */
 1477: /* 	u = *cx; */
 1478: /* 	*cx = dum; */
 1479: /* 	dum = fu; */
 1480: /* 	fu = *fc; */
 1481: /* 	*fc =dum; */
 1482: /*       } else { /\* end *\/ */
 1483: /* #ifdef DEBUG */
 1484: /*       printf("mnbrak3  fu < fc \n"); */
 1485: /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
 1486: /* #endif */
 1487: /* 	dum=u; /\* Shifting c and u *\/ */
 1488: /* 	u = *cx; */
 1489: /* 	*cx = dum; */
 1490: /* 	dum = fu; */
 1491: /* 	fu = *fc; */
 1492: /* 	*fc =dum; */
 1493: /*       } */
 1494: #ifdef DEBUG
 1495:       printf("mnbrak34  fu < or >= fc \n");
 1496:       fprintf(ficlog, "mnbrak34 fu < fc\n");
 1497: #endif
 1498:       dum=u; /* Shifting c and u */
 1499:       u = *cx;
 1500:       *cx = dum;
 1501:       dum = fu;
 1502:       fu = *fc;
 1503:       *fc =dum;
 1504: #endif
 1505:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 1506: #ifdef DEBUG
 1507:       printf("mnbrak2  u after c but before ulim\n");
 1508:       fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
 1509: #endif
 1510:       fu=(*func)(u); 
 1511:       if (fu < *fc) { 
 1512: #ifdef DEBUG
 1513:       printf("mnbrak2  u after c but before ulim AND fu < fc\n");
 1514:       fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
 1515: #endif
 1516: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1517: 	SHFT(*fb,*fc,fu,(*func)(u)) 
 1518:       } 
 1519:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 1520: #ifdef DEBUG
 1521:       printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
 1522:       fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
 1523: #endif
 1524:       u=ulim; 
 1525:       fu=(*func)(u); 
 1526:     } else { /* u could be left to b (if r > q parabola has a maximum) */
 1527: #ifdef DEBUG
 1528:       printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 1529:       fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 1530: #endif
 1531:       u=(*cx)+GOLD*(*cx-*bx); 
 1532:       fu=(*func)(u); 
 1533:     } /* end tests */
 1534:     SHFT(*ax,*bx,*cx,u) 
 1535:     SHFT(*fa,*fb,*fc,fu) 
 1536: #ifdef DEBUG
 1537:       printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 1538:       fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 1539: #endif
 1540:   } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
 1541: } 
 1542: 
 1543: /*************** linmin ************************/
 1544: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 1545: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
 1546: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 1547: the value of func at the returned location p . This is actually all accomplished by calling the
 1548: routines mnbrak and brent .*/
 1549: int ncom; 
 1550: double *pcom,*xicom;
 1551: double (*nrfunc)(double []); 
 1552:  
 1553: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1554: { 
 1555:   double brent(double ax, double bx, double cx, 
 1556: 	       double (*f)(double), double tol, double *xmin); 
 1557:   double f1dim(double x); 
 1558:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1559: 	      double *fc, double (*func)(double)); 
 1560:   int j; 
 1561:   double xx,xmin,bx,ax; 
 1562:   double fx,fb,fa;
 1563: 
 1564:   double scale=10., axs, xxs, xxss; /* Scale added for infinity */
 1565:  
 1566:   ncom=n; 
 1567:   pcom=vector(1,n); 
 1568:   xicom=vector(1,n); 
 1569:   nrfunc=func; 
 1570:   for (j=1;j<=n;j++) { 
 1571:     pcom[j]=p[j]; 
 1572:     xicom[j]=xi[j]; 
 1573:   } 
 1574: 
 1575:   /* axs=0.0; */
 1576:   /* xxss=1; /\* 1 and using scale *\/ */
 1577:   xxs=1;
 1578:   /* do{ */
 1579:     ax=0.;
 1580:     xx= xxs;
 1581:     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
 1582:     /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
 1583:     /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
 1584:     /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
 1585:     /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
 1586:     /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
 1587:     /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
 1588:   /*   if (fx != fx){ */
 1589:   /* 	xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */
 1590:   /* 	printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx); */
 1591:   /*   } */
 1592:   /* }while(fx != fx); */
 1593: 
 1594: #ifdef DEBUGLINMIN
 1595:   printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
 1596: #endif
 1597:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
 1598:   /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
 1599:   /* fmin = f(p[j] + xmin * xi[j]) */
 1600:   /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
 1601:   /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
 1602: #ifdef DEBUG
 1603:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1604:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1605: #endif
 1606: #ifdef DEBUGLINMIN
 1607:   printf("linmin end ");
 1608: #endif
 1609:   for (j=1;j<=n;j++) { 
 1610:     /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
 1611:     xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
 1612:     /* if(xxs <1.0) */
 1613:     /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
 1614:     p[j] += xi[j]; /* Parameters values are updated accordingly */
 1615:   } 
 1616:   /* printf("\n"); */
 1617: #ifdef DEBUGLINMIN
 1618:   printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
 1619:   for (j=1;j<=n;j++) { 
 1620:     printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]);
 1621:     if(j % ncovmodel == 0)
 1622:       printf("\n");
 1623:   }
 1624: #endif
 1625:   free_vector(xicom,1,n); 
 1626:   free_vector(pcom,1,n); 
 1627: } 
 1628: 
 1629: 
 1630: /*************** powell ************************/
 1631: /*
 1632: Minimization of a function func of n variables. Input consists of an initial starting point
 1633: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 1634: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
 1635: such that failure to decrease by more than this amount on one iteration signals doneness. On
 1636: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 1637: function value at p , and iter is the number of iterations taken. The routine linmin is used.
 1638:  */
 1639: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1640: 	    double (*func)(double [])) 
 1641: { 
 1642:   void linmin(double p[], double xi[], int n, double *fret, 
 1643: 	      double (*func)(double [])); 
 1644:   int i,ibig,j; 
 1645:   double del,t,*pt,*ptt,*xit;
 1646:   double directest;
 1647:   double fp,fptt;
 1648:   double *xits;
 1649:   int niterf, itmp;
 1650: 
 1651:   pt=vector(1,n); 
 1652:   ptt=vector(1,n); 
 1653:   xit=vector(1,n); 
 1654:   xits=vector(1,n); 
 1655:   *fret=(*func)(p); 
 1656:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1657:     rcurr_time = time(NULL);  
 1658:   for (*iter=1;;++(*iter)) { 
 1659:     fp=(*fret); /* From former iteration or initial value */
 1660:     ibig=0; 
 1661:     del=0.0; 
 1662:     rlast_time=rcurr_time;
 1663:     /* (void) gettimeofday(&curr_time,&tzp); */
 1664:     rcurr_time = time(NULL);  
 1665:     curr_time = *localtime(&rcurr_time);
 1666:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 1667:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 1668: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 1669:     for (i=1;i<=n;i++) {
 1670:       printf(" %d %.12f",i, p[i]);
 1671:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1672:       fprintf(ficrespow," %.12lf", p[i]);
 1673:     }
 1674:     printf("\n");
 1675:     fprintf(ficlog,"\n");
 1676:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1677:     if(*iter <=3){
 1678:       tml = *localtime(&rcurr_time);
 1679:       strcpy(strcurr,asctime(&tml));
 1680:       rforecast_time=rcurr_time; 
 1681:       itmp = strlen(strcurr);
 1682:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1683: 	strcurr[itmp-1]='\0';
 1684:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1685:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1686:       for(niterf=10;niterf<=30;niterf+=10){
 1687: 	rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 1688: 	forecast_time = *localtime(&rforecast_time);
 1689: 	strcpy(strfor,asctime(&forecast_time));
 1690: 	itmp = strlen(strfor);
 1691: 	if(strfor[itmp-1]=='\n')
 1692: 	strfor[itmp-1]='\0';
 1693: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1694: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1695:       }
 1696:     }
 1697:     for (i=1;i<=n;i++) { /* For each direction i */
 1698:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
 1699:       fptt=(*fret); 
 1700: #ifdef DEBUG
 1701: 	  printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1702: 	  fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1703: #endif
 1704: 	  printf("%d",i);fflush(stdout); /* print direction (parameter) i */
 1705:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1706:       linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
 1707: 				    /* Outputs are fret(new point p) p is updated and xit rescaled */
 1708:       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
 1709: 	/* because that direction will be replaced unless the gain del is small */
 1710: 	/* in comparison with the 'probable' gain, mu^2, with the last average direction. */
 1711: 	/* Unless the n directions are conjugate some gain in the determinant may be obtained */
 1712: 	/* with the new direction. */
 1713: 	del=fabs(fptt-(*fret)); 
 1714: 	ibig=i; 
 1715:       } 
 1716: #ifdef DEBUG
 1717:       printf("%d %.12e",i,(*fret));
 1718:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1719:       for (j=1;j<=n;j++) {
 1720: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1721: 	printf(" x(%d)=%.12e",j,xit[j]);
 1722: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1723:       }
 1724:       for(j=1;j<=n;j++) {
 1725: 	printf(" p(%d)=%.12e",j,p[j]);
 1726: 	fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 1727:       }
 1728:       printf("\n");
 1729:       fprintf(ficlog,"\n");
 1730: #endif
 1731:     } /* end loop on each direction i */
 1732:     /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
 1733:     /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
 1734:     /* New value of last point Pn is not computed, P(n-1) */
 1735:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
 1736:       /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
 1737:       /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
 1738:       /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
 1739:       /* decreased of more than 3.84  */
 1740:       /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
 1741:       /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
 1742:       /* By adding 10 parameters more the gain should be 18.31 */
 1743: 
 1744:       /* Starting the program with initial values given by a former maximization will simply change */
 1745:       /* the scales of the directions and the directions, because the are reset to canonical directions */
 1746:       /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
 1747:       /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
 1748: #ifdef DEBUG
 1749:       int k[2],l;
 1750:       k[0]=1;
 1751:       k[1]=-1;
 1752:       printf("Max: %.12e",(*func)(p));
 1753:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1754:       for (j=1;j<=n;j++) {
 1755: 	printf(" %.12e",p[j]);
 1756: 	fprintf(ficlog," %.12e",p[j]);
 1757:       }
 1758:       printf("\n");
 1759:       fprintf(ficlog,"\n");
 1760:       for(l=0;l<=1;l++) {
 1761: 	for (j=1;j<=n;j++) {
 1762: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1763: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1764: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1765: 	}
 1766: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1767: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1768:       }
 1769: #endif
 1770: 
 1771: 
 1772:       free_vector(xit,1,n); 
 1773:       free_vector(xits,1,n); 
 1774:       free_vector(ptt,1,n); 
 1775:       free_vector(pt,1,n); 
 1776:       return; 
 1777:     } /* enough precision */ 
 1778:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1779:     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
 1780:       ptt[j]=2.0*p[j]-pt[j]; 
 1781:       xit[j]=p[j]-pt[j]; 
 1782:       pt[j]=p[j]; 
 1783:     } 
 1784:     fptt=(*func)(ptt); /* f_3 */
 1785: #ifdef POWELLF1F3
 1786: #else
 1787:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 1788: #endif
 1789:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 1790:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 1791:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
 1792:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
 1793:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 1794:       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
 1795:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
 1796: #ifdef NRCORIGINAL
 1797:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
 1798: #else
 1799:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
 1800:       t= t- del*SQR(fp-fptt);
 1801: #endif
 1802:       directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
 1803: #ifdef DEBUG
 1804:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1805:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1806:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1807: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1808:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1809: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1810:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1811:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1812: #endif
 1813: #ifdef POWELLORIGINAL
 1814:       if (t < 0.0) { /* Then we use it for new direction */
 1815: #else
 1816:       if (directest*t < 0.0) { /* Contradiction between both tests */
 1817: 	printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
 1818:         printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
 1819:         fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
 1820:         fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
 1821:       } 
 1822:       if (directest < 0.0) { /* Then we use it for new direction */
 1823: #endif
 1824: #ifdef DEBUGLINMIN
 1825: 	printf("Before linmin in direction P%d-P0\n",n);
 1826: 	for (j=1;j<=n;j++) { 
 1827: 	  printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
 1828: 	  if(j % ncovmodel == 0)
 1829: 	    printf("\n");
 1830: 	}
 1831: #endif
 1832: 	linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
 1833: #ifdef DEBUGLINMIN
 1834: 	for (j=1;j<=n;j++) { 
 1835: 	  printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
 1836: 	  if(j % ncovmodel == 0)
 1837: 	    printf("\n");
 1838: 	}
 1839: #endif
 1840: 	for (j=1;j<=n;j++) { 
 1841: 	  xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
 1842: 	  xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
 1843: 	}
 1844: 	printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1845: 	fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1846: 
 1847: #ifdef DEBUG
 1848: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1849: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1850: 	for(j=1;j<=n;j++){
 1851: 	  printf(" %.12e",xit[j]);
 1852: 	  fprintf(ficlog," %.12e",xit[j]);
 1853: 	}
 1854: 	printf("\n");
 1855: 	fprintf(ficlog,"\n");
 1856: #endif
 1857:       } /* end of t or directest negative */
 1858: #ifdef POWELLF1F3
 1859: #else
 1860:     } /* end if (fptt < fp)  */
 1861: #endif
 1862:   } /* loop iteration */ 
 1863: } 
 1864: 
 1865: /**** Prevalence limit (stable or period prevalence)  ****************/
 1866: 
 1867: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1868: {
 1869:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1870:      matrix by transitions matrix until convergence is reached */
 1871:   
 1872:   int i, ii,j,k;
 1873:   double min, max, maxmin, maxmax,sumnew=0.;
 1874:   /* double **matprod2(); */ /* test */
 1875:   double **out, cov[NCOVMAX+1], **pmij();
 1876:   double **newm;
 1877:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1878:   
 1879:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1880:     for (j=1;j<=nlstate+ndeath;j++){
 1881:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1882:     }
 1883:   
 1884:   cov[1]=1.;
 1885:   
 1886:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1887:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1888:     newm=savm;
 1889:     /* Covariates have to be included here again */
 1890:     cov[2]=agefin;
 1891:     if(nagesqr==1)
 1892:       cov[3]= agefin*agefin;;
 1893:     for (k=1; k<=cptcovn;k++) {
 1894:       cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1895:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 1896:     }
 1897:     /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1898:     for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
 1899:     for (k=1; k<=cptcovprod;k++) /* Useless */
 1900:       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1901:     
 1902:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1903:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1904:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1905:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1906:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1907:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1908:     
 1909:     savm=oldm;
 1910:     oldm=newm;
 1911:     maxmax=0.;
 1912:     for(j=1;j<=nlstate;j++){
 1913:       min=1.;
 1914:       max=0.;
 1915:       for(i=1; i<=nlstate; i++) {
 1916: 	sumnew=0;
 1917: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1918: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1919:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1920: 	max=FMAX(max,prlim[i][j]);
 1921: 	min=FMIN(min,prlim[i][j]);
 1922:       }
 1923:       maxmin=max-min;
 1924:       maxmax=FMAX(maxmax,maxmin);
 1925:     } /* j loop */
 1926:     if(maxmax < ftolpl){
 1927:       return prlim;
 1928:     }
 1929:   } /* age loop */
 1930:   return prlim; /* should not reach here */
 1931: }
 1932: 
 1933: /*************** transition probabilities ***************/ 
 1934: 
 1935: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1936: {
 1937:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1938:      computes the probability to be observed in state j being in state i by appying the
 1939:      model to the ncovmodel covariates (including constant and age).
 1940:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1941:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1942:      ncth covariate in the global vector x is given by the formula:
 1943:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1944:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1945:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1946:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1947:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1948:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1949:   */
 1950:   double s1, lnpijopii;
 1951:   /*double t34;*/
 1952:   int i,j, nc, ii, jj;
 1953: 
 1954:     for(i=1; i<= nlstate; i++){
 1955:       for(j=1; j<i;j++){
 1956: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1957: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1958: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1959: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1960: 	}
 1961: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1962: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1963:       }
 1964:       for(j=i+1; j<=nlstate+ndeath;j++){
 1965: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1966: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1967: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1968: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1969: 	}
 1970: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1971:       }
 1972:     }
 1973:     
 1974:     for(i=1; i<= nlstate; i++){
 1975:       s1=0;
 1976:       for(j=1; j<i; j++){
 1977: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1978: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1979:       }
 1980:       for(j=i+1; j<=nlstate+ndeath; j++){
 1981: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1982: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1983:       }
 1984:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1985:       ps[i][i]=1./(s1+1.);
 1986:       /* Computing other pijs */
 1987:       for(j=1; j<i; j++)
 1988: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1989:       for(j=i+1; j<=nlstate+ndeath; j++)
 1990: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1991:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1992:     } /* end i */
 1993:     
 1994:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1995:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1996: 	ps[ii][jj]=0;
 1997: 	ps[ii][ii]=1;
 1998:       }
 1999:     }
 2000:     
 2001:     
 2002:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 2003:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 2004:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 2005:     /*   } */
 2006:     /*   printf("\n "); */
 2007:     /* } */
 2008:     /* printf("\n ");printf("%lf ",cov[2]);*/
 2009:     /*
 2010:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 2011:       goto end;*/
 2012:     return ps;
 2013: }
 2014: 
 2015: /**************** Product of 2 matrices ******************/
 2016: 
 2017: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 2018: {
 2019:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 2020:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 2021:   /* in, b, out are matrice of pointers which should have been initialized 
 2022:      before: only the contents of out is modified. The function returns
 2023:      a pointer to pointers identical to out */
 2024:   int i, j, k;
 2025:   for(i=nrl; i<= nrh; i++)
 2026:     for(k=ncolol; k<=ncoloh; k++){
 2027:       out[i][k]=0.;
 2028:       for(j=ncl; j<=nch; j++)
 2029:   	out[i][k] +=in[i][j]*b[j][k];
 2030:     }
 2031:   return out;
 2032: }
 2033: 
 2034: 
 2035: /************* Higher Matrix Product ***************/
 2036: 
 2037: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 2038: {
 2039:   /* Computes the transition matrix starting at age 'age' over 
 2040:      'nhstepm*hstepm*stepm' months (i.e. until
 2041:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 2042:      nhstepm*hstepm matrices. 
 2043:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 2044:      (typically every 2 years instead of every month which is too big 
 2045:      for the memory).
 2046:      Model is determined by parameters x and covariates have to be 
 2047:      included manually here. 
 2048: 
 2049:      */
 2050: 
 2051:   int i, j, d, h, k;
 2052:   double **out, cov[NCOVMAX+1];
 2053:   double **newm;
 2054:   double agexact;
 2055: 
 2056:   /* Hstepm could be zero and should return the unit matrix */
 2057:   for (i=1;i<=nlstate+ndeath;i++)
 2058:     for (j=1;j<=nlstate+ndeath;j++){
 2059:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 2060:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 2061:     }
 2062:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 2063:   for(h=1; h <=nhstepm; h++){
 2064:     for(d=1; d <=hstepm; d++){
 2065:       newm=savm;
 2066:       /* Covariates have to be included here again */
 2067:       cov[1]=1.;
 2068:       agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 2069:       cov[2]=agexact;
 2070:       if(nagesqr==1)
 2071: 	cov[3]= agexact*agexact;
 2072:       for (k=1; k<=cptcovn;k++) 
 2073: 	cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 2074:       for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
 2075: 	/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 2076: 	cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
 2077:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 2078: 	cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 2079: 
 2080: 
 2081:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 2082:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 2083:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 2084: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 2085:       savm=oldm;
 2086:       oldm=newm;
 2087:     }
 2088:     for(i=1; i<=nlstate+ndeath; i++)
 2089:       for(j=1;j<=nlstate+ndeath;j++) {
 2090: 	po[i][j][h]=newm[i][j];
 2091: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 2092:       }
 2093:     /*printf("h=%d ",h);*/
 2094:   } /* end h */
 2095: /*     printf("\n H=%d \n",h); */
 2096:   return po;
 2097: }
 2098: 
 2099: #ifdef NLOPT
 2100:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
 2101:   double fret;
 2102:   double *xt;
 2103:   int j;
 2104:   myfunc_data *d2 = (myfunc_data *) pd;
 2105: /* xt = (p1-1); */
 2106:   xt=vector(1,n); 
 2107:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
 2108: 
 2109:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
 2110:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 2111:   printf("Function = %.12lf ",fret);
 2112:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 2113:   printf("\n");
 2114:  free_vector(xt,1,n);
 2115:   return fret;
 2116: }
 2117: #endif
 2118: 
 2119: /*************** log-likelihood *************/
 2120: double func( double *x)
 2121: {
 2122:   int i, ii, j, k, mi, d, kk;
 2123:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 2124:   double **out;
 2125:   double sw; /* Sum of weights */
 2126:   double lli; /* Individual log likelihood */
 2127:   int s1, s2;
 2128:   double bbh, survp;
 2129:   long ipmx;
 2130:   double agexact;
 2131:   /*extern weight */
 2132:   /* We are differentiating ll according to initial status */
 2133:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 2134:   /*for(i=1;i<imx;i++) 
 2135:     printf(" %d\n",s[4][i]);
 2136:   */
 2137: 
 2138:   ++countcallfunc;
 2139: 
 2140:   cov[1]=1.;
 2141: 
 2142:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 2143: 
 2144:   if(mle==1){
 2145:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2146:       /* Computes the values of the ncovmodel covariates of the model
 2147: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 2148: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 2149: 	 to be observed in j being in i according to the model.
 2150:        */
 2151:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 2152: 	  cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2153:       }
 2154:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 2155: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 2156: 	 has been calculated etc */
 2157:       for(mi=1; mi<= wav[i]-1; mi++){
 2158: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2159: 	  for (j=1;j<=nlstate+ndeath;j++){
 2160: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2161: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2162: 	  }
 2163: 	for(d=0; d<dh[mi][i]; d++){
 2164: 	  newm=savm;
 2165: 	  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2166: 	  cov[2]=agexact;
 2167: 	  if(nagesqr==1)
 2168: 	    cov[3]= agexact*agexact;
 2169: 	  for (kk=1; kk<=cptcovage;kk++) {
 2170: 	    cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
 2171: 	  }
 2172: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2173: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2174: 	  savm=oldm;
 2175: 	  oldm=newm;
 2176: 	} /* end mult */
 2177:       
 2178: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 2179: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 2180: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 2181: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 2182: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 2183: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 2184: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 2185: 	 * probability in order to take into account the bias as a fraction of the way
 2186: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 2187: 	 * -stepm/2 to stepm/2 .
 2188: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 2189: 	 * For stepm > 1 the results are less biased than in previous versions. 
 2190: 	 */
 2191: 	s1=s[mw[mi][i]][i];
 2192: 	s2=s[mw[mi+1][i]][i];
 2193: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2194: 	/* bias bh is positive if real duration
 2195: 	 * is higher than the multiple of stepm and negative otherwise.
 2196: 	 */
 2197: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 2198: 	if( s2 > nlstate){ 
 2199: 	  /* i.e. if s2 is a death state and if the date of death is known 
 2200: 	     then the contribution to the likelihood is the probability to 
 2201: 	     die between last step unit time and current  step unit time, 
 2202: 	     which is also equal to probability to die before dh 
 2203: 	     minus probability to die before dh-stepm . 
 2204: 	     In version up to 0.92 likelihood was computed
 2205: 	as if date of death was unknown. Death was treated as any other
 2206: 	health state: the date of the interview describes the actual state
 2207: 	and not the date of a change in health state. The former idea was
 2208: 	to consider that at each interview the state was recorded
 2209: 	(healthy, disable or death) and IMaCh was corrected; but when we
 2210: 	introduced the exact date of death then we should have modified
 2211: 	the contribution of an exact death to the likelihood. This new
 2212: 	contribution is smaller and very dependent of the step unit
 2213: 	stepm. It is no more the probability to die between last interview
 2214: 	and month of death but the probability to survive from last
 2215: 	interview up to one month before death multiplied by the
 2216: 	probability to die within a month. Thanks to Chris
 2217: 	Jackson for correcting this bug.  Former versions increased
 2218: 	mortality artificially. The bad side is that we add another loop
 2219: 	which slows down the processing. The difference can be up to 10%
 2220: 	lower mortality.
 2221: 	  */
 2222: 	/* If, at the beginning of the maximization mostly, the
 2223: 	   cumulative probability or probability to be dead is
 2224: 	   constant (ie = 1) over time d, the difference is equal to
 2225: 	   0.  out[s1][3] = savm[s1][3]: probability, being at state
 2226: 	   s1 at precedent wave, to be dead a month before current
 2227: 	   wave is equal to probability, being at state s1 at
 2228: 	   precedent wave, to be dead at mont of the current
 2229: 	   wave. Then the observed probability (that this person died)
 2230: 	   is null according to current estimated parameter. In fact,
 2231: 	   it should be very low but not zero otherwise the log go to
 2232: 	   infinity.
 2233: 	*/
 2234: /* #ifdef INFINITYORIGINAL */
 2235: /* 	    lli=log(out[s1][s2] - savm[s1][s2]); */
 2236: /* #else */
 2237: /* 	  if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
 2238: /* 	    lli=log(mytinydouble); */
 2239: /* 	  else */
 2240: /* 	    lli=log(out[s1][s2] - savm[s1][s2]); */
 2241: /* #endif */
 2242: 	    lli=log(out[s1][s2] - savm[s1][s2]);
 2243: 
 2244: 	} else if  (s2==-2) {
 2245: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 2246: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2247: 	  /*survp += out[s1][j]; */
 2248: 	  lli= log(survp);
 2249: 	}
 2250: 	
 2251:  	else if  (s2==-4) { 
 2252: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 2253: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2254:  	  lli= log(survp); 
 2255:  	} 
 2256: 
 2257:  	else if  (s2==-5) { 
 2258:  	  for (j=1,survp=0. ; j<=2; j++)  
 2259: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2260:  	  lli= log(survp); 
 2261:  	} 
 2262: 	
 2263: 	else{
 2264: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2265: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 2266: 	} 
 2267: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 2268: 	/*if(lli ==000.0)*/
 2269: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 2270:   	ipmx +=1;
 2271: 	sw += weight[i];
 2272: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2273: 	/* if (lli < log(mytinydouble)){ */
 2274: 	/*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
 2275: 	/*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
 2276: 	/* } */
 2277:       } /* end of wave */
 2278:     } /* end of individual */
 2279:   }  else if(mle==2){
 2280:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2281:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2282:       for(mi=1; mi<= wav[i]-1; mi++){
 2283: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2284: 	  for (j=1;j<=nlstate+ndeath;j++){
 2285: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2286: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2287: 	  }
 2288: 	for(d=0; d<=dh[mi][i]; d++){
 2289: 	  newm=savm;
 2290: 	  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2291: 	  cov[2]=agexact;
 2292: 	  if(nagesqr==1)
 2293: 	    cov[3]= agexact*agexact;
 2294: 	  for (kk=1; kk<=cptcovage;kk++) {
 2295: 	    cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 2296: 	  }
 2297: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2298: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2299: 	  savm=oldm;
 2300: 	  oldm=newm;
 2301: 	} /* end mult */
 2302:       
 2303: 	s1=s[mw[mi][i]][i];
 2304: 	s2=s[mw[mi+1][i]][i];
 2305: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2306: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2307: 	ipmx +=1;
 2308: 	sw += weight[i];
 2309: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2310:       } /* end of wave */
 2311:     } /* end of individual */
 2312:   }  else if(mle==3){  /* exponential inter-extrapolation */
 2313:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2314:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2315:       for(mi=1; mi<= wav[i]-1; mi++){
 2316: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2317: 	  for (j=1;j<=nlstate+ndeath;j++){
 2318: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2319: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2320: 	  }
 2321: 	for(d=0; d<dh[mi][i]; d++){
 2322: 	  newm=savm;
 2323: 	  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2324: 	  cov[2]=agexact;
 2325: 	  if(nagesqr==1)
 2326: 	    cov[3]= agexact*agexact;
 2327: 	  for (kk=1; kk<=cptcovage;kk++) {
 2328: 	    cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 2329: 	  }
 2330: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2331: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2332: 	  savm=oldm;
 2333: 	  oldm=newm;
 2334: 	} /* end mult */
 2335:       
 2336: 	s1=s[mw[mi][i]][i];
 2337: 	s2=s[mw[mi+1][i]][i];
 2338: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2339: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2340: 	ipmx +=1;
 2341: 	sw += weight[i];
 2342: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2343:       } /* end of wave */
 2344:     } /* end of individual */
 2345:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 2346:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2347:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2348:       for(mi=1; mi<= wav[i]-1; mi++){
 2349: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2350: 	  for (j=1;j<=nlstate+ndeath;j++){
 2351: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2352: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2353: 	  }
 2354: 	for(d=0; d<dh[mi][i]; d++){
 2355: 	  newm=savm;
 2356: 	  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2357: 	  cov[2]=agexact;
 2358: 	  if(nagesqr==1)
 2359: 	    cov[3]= agexact*agexact;
 2360: 	  for (kk=1; kk<=cptcovage;kk++) {
 2361: 	    cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 2362: 	  }
 2363: 	
 2364: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2365: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2366: 	  savm=oldm;
 2367: 	  oldm=newm;
 2368: 	} /* end mult */
 2369:       
 2370: 	s1=s[mw[mi][i]][i];
 2371: 	s2=s[mw[mi+1][i]][i];
 2372: 	if( s2 > nlstate){ 
 2373: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 2374: 	}else{
 2375: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2376: 	}
 2377: 	ipmx +=1;
 2378: 	sw += weight[i];
 2379: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2380: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2381:       } /* end of wave */
 2382:     } /* end of individual */
 2383:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 2384:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2385:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2386:       for(mi=1; mi<= wav[i]-1; mi++){
 2387: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2388: 	  for (j=1;j<=nlstate+ndeath;j++){
 2389: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2390: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2391: 	  }
 2392: 	for(d=0; d<dh[mi][i]; d++){
 2393: 	  newm=savm;
 2394: 	  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2395: 	  cov[2]=agexact;
 2396: 	  if(nagesqr==1)
 2397: 	    cov[3]= agexact*agexact;
 2398: 	  for (kk=1; kk<=cptcovage;kk++) {
 2399: 	    cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 2400: 	  }
 2401: 	
 2402: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2403: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2404: 	  savm=oldm;
 2405: 	  oldm=newm;
 2406: 	} /* end mult */
 2407:       
 2408: 	s1=s[mw[mi][i]][i];
 2409: 	s2=s[mw[mi+1][i]][i];
 2410: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2411: 	ipmx +=1;
 2412: 	sw += weight[i];
 2413: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2414: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 2415:       } /* end of wave */
 2416:     } /* end of individual */
 2417:   } /* End of if */
 2418:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2419:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2420:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2421:   return -l;
 2422: }
 2423: 
 2424: /*************** log-likelihood *************/
 2425: double funcone( double *x)
 2426: {
 2427:   /* Same as likeli but slower because of a lot of printf and if */
 2428:   int i, ii, j, k, mi, d, kk;
 2429:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 2430:   double **out;
 2431:   double lli; /* Individual log likelihood */
 2432:   double llt;
 2433:   int s1, s2;
 2434:   double bbh, survp;
 2435:   double agexact;
 2436:   /*extern weight */
 2437:   /* We are differentiating ll according to initial status */
 2438:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 2439:   /*for(i=1;i<imx;i++) 
 2440:     printf(" %d\n",s[4][i]);
 2441:   */
 2442:   cov[1]=1.;
 2443: 
 2444:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 2445: 
 2446:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2447:     for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2448:     for(mi=1; mi<= wav[i]-1; mi++){
 2449:       for (ii=1;ii<=nlstate+ndeath;ii++)
 2450: 	for (j=1;j<=nlstate+ndeath;j++){
 2451: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2452: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2453: 	}
 2454:       for(d=0; d<dh[mi][i]; d++){
 2455: 	newm=savm;
 2456: 	agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2457: 	cov[2]=agexact;
 2458: 	if(nagesqr==1)
 2459: 	  cov[3]= agexact*agexact;
 2460: 	for (kk=1; kk<=cptcovage;kk++) {
 2461: 	  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 2462: 	}
 2463: 
 2464: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 2465: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2466: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2467: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 2468: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 2469: 	savm=oldm;
 2470: 	oldm=newm;
 2471:       } /* end mult */
 2472:       
 2473:       s1=s[mw[mi][i]][i];
 2474:       s2=s[mw[mi+1][i]][i];
 2475:       bbh=(double)bh[mi][i]/(double)stepm; 
 2476:       /* bias is positive if real duration
 2477:        * is higher than the multiple of stepm and negative otherwise.
 2478:        */
 2479:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 2480: 	lli=log(out[s1][s2] - savm[s1][s2]);
 2481:       } else if  (s2==-2) {
 2482: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 2483: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2484: 	lli= log(survp);
 2485:       }else if (mle==1){
 2486: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2487:       } else if(mle==2){
 2488: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2489:       } else if(mle==3){  /* exponential inter-extrapolation */
 2490: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2491:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 2492: 	lli=log(out[s1][s2]); /* Original formula */
 2493:       } else{  /* mle=0 back to 1 */
 2494: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2495: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 2496:       } /* End of if */
 2497:       ipmx +=1;
 2498:       sw += weight[i];
 2499:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2500:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2501:       if(globpr){
 2502: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 2503:  %11.6f %11.6f %11.6f ", \
 2504: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 2505: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 2506: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 2507: 	  llt +=ll[k]*gipmx/gsw;
 2508: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 2509: 	}
 2510: 	fprintf(ficresilk," %10.6f\n", -llt);
 2511:       }
 2512:     } /* end of wave */
 2513:   } /* end of individual */
 2514:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2515:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2516:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2517:   if(globpr==0){ /* First time we count the contributions and weights */
 2518:     gipmx=ipmx;
 2519:     gsw=sw;
 2520:   }
 2521:   return -l;
 2522: }
 2523: 
 2524: 
 2525: /*************** function likelione ***********/
 2526: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 2527: {
 2528:   /* This routine should help understanding what is done with 
 2529:      the selection of individuals/waves and
 2530:      to check the exact contribution to the likelihood.
 2531:      Plotting could be done.
 2532:    */
 2533:   int k;
 2534: 
 2535:   if(*globpri !=0){ /* Just counts and sums, no printings */
 2536:     strcpy(fileresilk,"ilk"); 
 2537:     strcat(fileresilk,fileres);
 2538:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 2539:       printf("Problem with resultfile: %s\n", fileresilk);
 2540:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 2541:     }
 2542:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 2543:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 2544:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 2545:     for(k=1; k<=nlstate; k++) 
 2546:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 2547:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 2548:   }
 2549: 
 2550:   *fretone=(*funcone)(p);
 2551:   if(*globpri !=0){
 2552:     fclose(ficresilk);
 2553:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 2554:     fflush(fichtm); 
 2555:   } 
 2556:   return;
 2557: }
 2558: 
 2559: 
 2560: /*********** Maximum Likelihood Estimation ***************/
 2561: 
 2562: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 2563: {
 2564:   int i,j, iter=0;
 2565:   double **xi;
 2566:   double fret;
 2567:   double fretone; /* Only one call to likelihood */
 2568:   /*  char filerespow[FILENAMELENGTH];*/
 2569: 
 2570: #ifdef NLOPT
 2571:   int creturn;
 2572:   nlopt_opt opt;
 2573:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 2574:   double *lb;
 2575:   double minf; /* the minimum objective value, upon return */
 2576:   double * p1; /* Shifted parameters from 0 instead of 1 */
 2577:   myfunc_data dinst, *d = &dinst;
 2578: #endif
 2579: 
 2580: 
 2581:   xi=matrix(1,npar,1,npar);
 2582:   for (i=1;i<=npar;i++)
 2583:     for (j=1;j<=npar;j++)
 2584:       xi[i][j]=(i==j ? 1.0 : 0.0);
 2585:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 2586:   strcpy(filerespow,"pow"); 
 2587:   strcat(filerespow,fileres);
 2588:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 2589:     printf("Problem with resultfile: %s\n", filerespow);
 2590:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 2591:   }
 2592:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 2593:   for (i=1;i<=nlstate;i++)
 2594:     for(j=1;j<=nlstate+ndeath;j++)
 2595:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2596:   fprintf(ficrespow,"\n");
 2597: #ifdef POWELL
 2598:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2599: #endif
 2600: 
 2601: #ifdef NLOPT
 2602: #ifdef NEWUOA
 2603:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
 2604: #else
 2605:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
 2606: #endif
 2607:   lb=vector(0,npar-1);
 2608:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 2609:   nlopt_set_lower_bounds(opt, lb);
 2610:   nlopt_set_initial_step1(opt, 0.1);
 2611:   
 2612:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 2613:   d->function = func;
 2614:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
 2615:   nlopt_set_min_objective(opt, myfunc, d);
 2616:   nlopt_set_xtol_rel(opt, ftol);
 2617:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 2618:     printf("nlopt failed! %d\n",creturn); 
 2619:   }
 2620:   else {
 2621:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
 2622:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 2623:     iter=1; /* not equal */
 2624:   }
 2625:   nlopt_destroy(opt);
 2626: #endif
 2627:   free_matrix(xi,1,npar,1,npar);
 2628:   fclose(ficrespow);
 2629:   printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2630:   fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2631:   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2632: 
 2633: }
 2634: 
 2635: /**** Computes Hessian and covariance matrix ***/
 2636: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2637: {
 2638:   double  **a,**y,*x,pd;
 2639:   double **hess;
 2640:   int i, j;
 2641:   int *indx;
 2642: 
 2643:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2644:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2645:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2646:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2647:   double gompertz(double p[]);
 2648:   hess=matrix(1,npar,1,npar);
 2649: 
 2650:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2651:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2652:   for (i=1;i<=npar;i++){
 2653:     printf("%d",i);fflush(stdout);
 2654:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2655:    
 2656:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2657:     
 2658:     /*  printf(" %f ",p[i]);
 2659: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2660:   }
 2661:   
 2662:   for (i=1;i<=npar;i++) {
 2663:     for (j=1;j<=npar;j++)  {
 2664:       if (j>i) { 
 2665: 	printf(".%d%d",i,j);fflush(stdout);
 2666: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2667: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2668: 	
 2669: 	hess[j][i]=hess[i][j];    
 2670: 	/*printf(" %lf ",hess[i][j]);*/
 2671:       }
 2672:     }
 2673:   }
 2674:   printf("\n");
 2675:   fprintf(ficlog,"\n");
 2676: 
 2677:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2678:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2679:   
 2680:   a=matrix(1,npar,1,npar);
 2681:   y=matrix(1,npar,1,npar);
 2682:   x=vector(1,npar);
 2683:   indx=ivector(1,npar);
 2684:   for (i=1;i<=npar;i++)
 2685:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2686:   ludcmp(a,npar,indx,&pd);
 2687: 
 2688:   for (j=1;j<=npar;j++) {
 2689:     for (i=1;i<=npar;i++) x[i]=0;
 2690:     x[j]=1;
 2691:     lubksb(a,npar,indx,x);
 2692:     for (i=1;i<=npar;i++){ 
 2693:       matcov[i][j]=x[i];
 2694:     }
 2695:   }
 2696: 
 2697:   printf("\n#Hessian matrix#\n");
 2698:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2699:   for (i=1;i<=npar;i++) { 
 2700:     for (j=1;j<=npar;j++) { 
 2701:       printf("%.3e ",hess[i][j]);
 2702:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2703:     }
 2704:     printf("\n");
 2705:     fprintf(ficlog,"\n");
 2706:   }
 2707: 
 2708:   /* Recompute Inverse */
 2709:   for (i=1;i<=npar;i++)
 2710:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2711:   ludcmp(a,npar,indx,&pd);
 2712: 
 2713:   /*  printf("\n#Hessian matrix recomputed#\n");
 2714: 
 2715:   for (j=1;j<=npar;j++) {
 2716:     for (i=1;i<=npar;i++) x[i]=0;
 2717:     x[j]=1;
 2718:     lubksb(a,npar,indx,x);
 2719:     for (i=1;i<=npar;i++){ 
 2720:       y[i][j]=x[i];
 2721:       printf("%.3e ",y[i][j]);
 2722:       fprintf(ficlog,"%.3e ",y[i][j]);
 2723:     }
 2724:     printf("\n");
 2725:     fprintf(ficlog,"\n");
 2726:   }
 2727:   */
 2728: 
 2729:   free_matrix(a,1,npar,1,npar);
 2730:   free_matrix(y,1,npar,1,npar);
 2731:   free_vector(x,1,npar);
 2732:   free_ivector(indx,1,npar);
 2733:   free_matrix(hess,1,npar,1,npar);
 2734: 
 2735: 
 2736: }
 2737: 
 2738: /*************** hessian matrix ****************/
 2739: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2740: {
 2741:   int i;
 2742:   int l=1, lmax=20;
 2743:   double k1,k2;
 2744:   double p2[MAXPARM+1]; /* identical to x */
 2745:   double res;
 2746:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2747:   double fx;
 2748:   int k=0,kmax=10;
 2749:   double l1;
 2750: 
 2751:   fx=func(x);
 2752:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2753:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2754:     l1=pow(10,l);
 2755:     delts=delt;
 2756:     for(k=1 ; k <kmax; k=k+1){
 2757:       delt = delta*(l1*k);
 2758:       p2[theta]=x[theta] +delt;
 2759:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2760:       p2[theta]=x[theta]-delt;
 2761:       k2=func(p2)-fx;
 2762:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2763:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2764:       
 2765: #ifdef DEBUGHESS
 2766:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2767:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2768: #endif
 2769:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2770:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2771: 	k=kmax;
 2772:       }
 2773:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2774: 	k=kmax; l=lmax*10;
 2775:       }
 2776:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2777: 	delts=delt;
 2778:       }
 2779:     }
 2780:   }
 2781:   delti[theta]=delts;
 2782:   return res; 
 2783:   
 2784: }
 2785: 
 2786: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2787: {
 2788:   int i;
 2789:   int l=1, lmax=20;
 2790:   double k1,k2,k3,k4,res,fx;
 2791:   double p2[MAXPARM+1];
 2792:   int k;
 2793: 
 2794:   fx=func(x);
 2795:   for (k=1; k<=2; k++) {
 2796:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2797:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2798:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2799:     k1=func(p2)-fx;
 2800:   
 2801:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2802:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2803:     k2=func(p2)-fx;
 2804:   
 2805:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2806:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2807:     k3=func(p2)-fx;
 2808:   
 2809:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2810:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2811:     k4=func(p2)-fx;
 2812:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2813: #ifdef DEBUG
 2814:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2815:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2816: #endif
 2817:   }
 2818:   return res;
 2819: }
 2820: 
 2821: /************** Inverse of matrix **************/
 2822: void ludcmp(double **a, int n, int *indx, double *d) 
 2823: { 
 2824:   int i,imax,j,k; 
 2825:   double big,dum,sum,temp; 
 2826:   double *vv; 
 2827:  
 2828:   vv=vector(1,n); 
 2829:   *d=1.0; 
 2830:   for (i=1;i<=n;i++) { 
 2831:     big=0.0; 
 2832:     for (j=1;j<=n;j++) 
 2833:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2834:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2835:     vv[i]=1.0/big; 
 2836:   } 
 2837:   for (j=1;j<=n;j++) { 
 2838:     for (i=1;i<j;i++) { 
 2839:       sum=a[i][j]; 
 2840:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2841:       a[i][j]=sum; 
 2842:     } 
 2843:     big=0.0; 
 2844:     for (i=j;i<=n;i++) { 
 2845:       sum=a[i][j]; 
 2846:       for (k=1;k<j;k++) 
 2847: 	sum -= a[i][k]*a[k][j]; 
 2848:       a[i][j]=sum; 
 2849:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2850: 	big=dum; 
 2851: 	imax=i; 
 2852:       } 
 2853:     } 
 2854:     if (j != imax) { 
 2855:       for (k=1;k<=n;k++) { 
 2856: 	dum=a[imax][k]; 
 2857: 	a[imax][k]=a[j][k]; 
 2858: 	a[j][k]=dum; 
 2859:       } 
 2860:       *d = -(*d); 
 2861:       vv[imax]=vv[j]; 
 2862:     } 
 2863:     indx[j]=imax; 
 2864:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2865:     if (j != n) { 
 2866:       dum=1.0/(a[j][j]); 
 2867:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2868:     } 
 2869:   } 
 2870:   free_vector(vv,1,n);  /* Doesn't work */
 2871: ;
 2872: } 
 2873: 
 2874: void lubksb(double **a, int n, int *indx, double b[]) 
 2875: { 
 2876:   int i,ii=0,ip,j; 
 2877:   double sum; 
 2878:  
 2879:   for (i=1;i<=n;i++) { 
 2880:     ip=indx[i]; 
 2881:     sum=b[ip]; 
 2882:     b[ip]=b[i]; 
 2883:     if (ii) 
 2884:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2885:     else if (sum) ii=i; 
 2886:     b[i]=sum; 
 2887:   } 
 2888:   for (i=n;i>=1;i--) { 
 2889:     sum=b[i]; 
 2890:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2891:     b[i]=sum/a[i][i]; 
 2892:   } 
 2893: } 
 2894: 
 2895: void pstamp(FILE *fichier)
 2896: {
 2897:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2898: }
 2899: 
 2900: /************ Frequencies ********************/
 2901: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2902: {  /* Some frequencies */
 2903:   
 2904:   int i, m, jk, j1, bool, z1,j;
 2905:   int first;
 2906:   double ***freq; /* Frequencies */
 2907:   double *pp, **prop;
 2908:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2909:   char fileresp[FILENAMELENGTH];
 2910:   
 2911:   pp=vector(1,nlstate);
 2912:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2913:   strcpy(fileresp,"p");
 2914:   strcat(fileresp,fileres);
 2915:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2916:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2917:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2918:     exit(0);
 2919:   }
 2920:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2921:   j1=0;
 2922:   
 2923:   j=cptcoveff;
 2924:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2925: 
 2926:   first=1;
 2927: 
 2928:   /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
 2929:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
 2930:   /*    j1++; */
 2931:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2932:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2933: 	scanf("%d", i);*/
 2934:       for (i=-5; i<=nlstate+ndeath; i++)  
 2935: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2936: 	  for(m=iagemin; m <= iagemax+3; m++)
 2937: 	    freq[i][jk][m]=0;
 2938:       
 2939:       for (i=1; i<=nlstate; i++)  
 2940: 	for(m=iagemin; m <= iagemax+3; m++)
 2941: 	  prop[i][m]=0;
 2942:       
 2943:       dateintsum=0;
 2944:       k2cpt=0;
 2945:       for (i=1; i<=imx; i++) {
 2946: 	bool=1;
 2947: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2948: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2949:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 2950:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2951:               bool=0;
 2952:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 2953:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 2954:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 2955:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 2956:             } 
 2957: 	}
 2958:  
 2959: 	if (bool==1){
 2960: 	  for(m=firstpass; m<=lastpass; m++){
 2961: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2962: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2963: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2964: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2965: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2966: 	      if (m<lastpass) {
 2967: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2968: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2969: 	      }
 2970: 	      
 2971: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2972: 		dateintsum=dateintsum+k2;
 2973: 		k2cpt++;
 2974: 	      }
 2975: 	      /*}*/
 2976: 	  }
 2977: 	}
 2978:       } /* end i */
 2979:        
 2980:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2981:       pstamp(ficresp);
 2982:       if  (cptcovn>0) {
 2983: 	fprintf(ficresp, "\n#********** Variable "); 
 2984: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2985: 	fprintf(ficresp, "**********\n#");
 2986: 	fprintf(ficlog, "\n#********** Variable "); 
 2987: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2988: 	fprintf(ficlog, "**********\n#");
 2989:       }
 2990:       for(i=1; i<=nlstate;i++) 
 2991: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2992:       fprintf(ficresp, "\n");
 2993:       
 2994:       for(i=iagemin; i <= iagemax+3; i++){
 2995: 	if(i==iagemax+3){
 2996: 	  fprintf(ficlog,"Total");
 2997: 	}else{
 2998: 	  if(first==1){
 2999: 	    first=0;
 3000: 	    printf("See log file for details...\n");
 3001: 	  }
 3002: 	  fprintf(ficlog,"Age %d", i);
 3003: 	}
 3004: 	for(jk=1; jk <=nlstate ; jk++){
 3005: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 3006: 	    pp[jk] += freq[jk][m][i]; 
 3007: 	}
 3008: 	for(jk=1; jk <=nlstate ; jk++){
 3009: 	  for(m=-1, pos=0; m <=0 ; m++)
 3010: 	    pos += freq[jk][m][i];
 3011: 	  if(pp[jk]>=1.e-10){
 3012: 	    if(first==1){
 3013: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 3014: 	    }
 3015: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 3016: 	  }else{
 3017: 	    if(first==1)
 3018: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 3019: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 3020: 	  }
 3021: 	}
 3022: 
 3023: 	for(jk=1; jk <=nlstate ; jk++){
 3024: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 3025: 	    pp[jk] += freq[jk][m][i];
 3026: 	}	
 3027: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 3028: 	  pos += pp[jk];
 3029: 	  posprop += prop[jk][i];
 3030: 	}
 3031: 	for(jk=1; jk <=nlstate ; jk++){
 3032: 	  if(pos>=1.e-5){
 3033: 	    if(first==1)
 3034: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 3035: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 3036: 	  }else{
 3037: 	    if(first==1)
 3038: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 3039: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 3040: 	  }
 3041: 	  if( i <= iagemax){
 3042: 	    if(pos>=1.e-5){
 3043: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 3044: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 3045: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 3046: 	    }
 3047: 	    else
 3048: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 3049: 	  }
 3050: 	}
 3051: 	
 3052: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 3053: 	  for(m=-1; m <=nlstate+ndeath; m++)
 3054: 	    if(freq[jk][m][i] !=0 ) {
 3055: 	    if(first==1)
 3056: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 3057: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 3058: 	    }
 3059: 	if(i <= iagemax)
 3060: 	  fprintf(ficresp,"\n");
 3061: 	if(first==1)
 3062: 	  printf("Others in log...\n");
 3063: 	fprintf(ficlog,"\n");
 3064:       }
 3065:       /*}*/
 3066:   }
 3067:   dateintmean=dateintsum/k2cpt; 
 3068:  
 3069:   fclose(ficresp);
 3070:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 3071:   free_vector(pp,1,nlstate);
 3072:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 3073:   /* End of Freq */
 3074: }
 3075: 
 3076: /************ Prevalence ********************/
 3077: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 3078: {  
 3079:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 3080:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 3081:      We still use firstpass and lastpass as another selection.
 3082:   */
 3083:  
 3084:   int i, m, jk, j1, bool, z1,j;
 3085: 
 3086:   double **prop;
 3087:   double posprop; 
 3088:   double  y2; /* in fractional years */
 3089:   int iagemin, iagemax;
 3090:   int first; /** to stop verbosity which is redirected to log file */
 3091: 
 3092:   iagemin= (int) agemin;
 3093:   iagemax= (int) agemax;
 3094:   /*pp=vector(1,nlstate);*/
 3095:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 3096:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 3097:   j1=0;
 3098:   
 3099:   /*j=cptcoveff;*/
 3100:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 3101:   
 3102:   first=1;
 3103:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 3104:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 3105:       j1++;*/
 3106:       
 3107:       for (i=1; i<=nlstate; i++)  
 3108: 	for(m=iagemin; m <= iagemax+3; m++)
 3109: 	  prop[i][m]=0.0;
 3110:      
 3111:       for (i=1; i<=imx; i++) { /* Each individual */
 3112: 	bool=1;
 3113: 	if  (cptcovn>0) {
 3114: 	  for (z1=1; z1<=cptcoveff; z1++) 
 3115: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 3116: 	      bool=0;
 3117: 	} 
 3118: 	if (bool==1) { 
 3119: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 3120: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 3121: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 3122: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 3123: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 3124: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 3125:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 3126: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 3127:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 3128:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 3129:  	      } 
 3130: 	    }
 3131: 	  } /* end selection of waves */
 3132: 	}
 3133:       }
 3134:       for(i=iagemin; i <= iagemax+3; i++){  
 3135:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 3136:  	  posprop += prop[jk][i]; 
 3137:  	} 
 3138: 	
 3139:  	for(jk=1; jk <=nlstate ; jk++){	    
 3140:  	  if( i <=  iagemax){ 
 3141:  	    if(posprop>=1.e-5){ 
 3142:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 3143:  	    } else{
 3144: 	      if(first==1){
 3145: 		first=0;
 3146: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 3147: 	      }
 3148: 	    }
 3149:  	  } 
 3150:  	}/* end jk */ 
 3151:       }/* end i */ 
 3152:     /*} *//* end i1 */
 3153:   } /* end j1 */
 3154:   
 3155:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 3156:   /*free_vector(pp,1,nlstate);*/
 3157:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 3158: }  /* End of prevalence */
 3159: 
 3160: /************* Waves Concatenation ***************/
 3161: 
 3162: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 3163: {
 3164:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 3165:      Death is a valid wave (if date is known).
 3166:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 3167:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 3168:      and mw[mi+1][i]. dh depends on stepm.
 3169:      */
 3170: 
 3171:   int i, mi, m;
 3172:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 3173:      double sum=0., jmean=0.;*/
 3174:   int first;
 3175:   int j, k=0,jk, ju, jl;
 3176:   double sum=0.;
 3177:   first=0;
 3178:   jmin=100000;
 3179:   jmax=-1;
 3180:   jmean=0.;
 3181:   for(i=1; i<=imx; i++){
 3182:     mi=0;
 3183:     m=firstpass;
 3184:     while(s[m][i] <= nlstate){
 3185:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 3186: 	mw[++mi][i]=m;
 3187:       if(m >=lastpass)
 3188: 	break;
 3189:       else
 3190: 	m++;
 3191:     }/* end while */
 3192:     if (s[m][i] > nlstate){
 3193:       mi++;	/* Death is another wave */
 3194:       /* if(mi==0)  never been interviewed correctly before death */
 3195: 	 /* Only death is a correct wave */
 3196:       mw[mi][i]=m;
 3197:     }
 3198: 
 3199:     wav[i]=mi;
 3200:     if(mi==0){
 3201:       nbwarn++;
 3202:       if(first==0){
 3203: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 3204: 	first=1;
 3205:       }
 3206:       if(first==1){
 3207: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 3208:       }
 3209:     } /* end mi==0 */
 3210:   } /* End individuals */
 3211: 
 3212:   for(i=1; i<=imx; i++){
 3213:     for(mi=1; mi<wav[i];mi++){
 3214:       if (stepm <=0)
 3215: 	dh[mi][i]=1;
 3216:       else{
 3217: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 3218: 	  if (agedc[i] < 2*AGESUP) {
 3219: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 3220: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 3221: 	    else if(j<0){
 3222: 	      nberr++;
 3223: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3224: 	      j=1; /* Temporary Dangerous patch */
 3225: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 3226: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3227: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 3228: 	    }
 3229: 	    k=k+1;
 3230: 	    if (j >= jmax){
 3231: 	      jmax=j;
 3232: 	      ijmax=i;
 3233: 	    }
 3234: 	    if (j <= jmin){
 3235: 	      jmin=j;
 3236: 	      ijmin=i;
 3237: 	    }
 3238: 	    sum=sum+j;
 3239: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 3240: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 3241: 	  }
 3242: 	}
 3243: 	else{
 3244: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 3245: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 3246: 
 3247: 	  k=k+1;
 3248: 	  if (j >= jmax) {
 3249: 	    jmax=j;
 3250: 	    ijmax=i;
 3251: 	  }
 3252: 	  else if (j <= jmin){
 3253: 	    jmin=j;
 3254: 	    ijmin=i;
 3255: 	  }
 3256: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 3257: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 3258: 	  if(j<0){
 3259: 	    nberr++;
 3260: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3261: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3262: 	  }
 3263: 	  sum=sum+j;
 3264: 	}
 3265: 	jk= j/stepm;
 3266: 	jl= j -jk*stepm;
 3267: 	ju= j -(jk+1)*stepm;
 3268: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 3269: 	  if(jl==0){
 3270: 	    dh[mi][i]=jk;
 3271: 	    bh[mi][i]=0;
 3272: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 3273: 		  * to avoid the price of an extra matrix product in likelihood */
 3274: 	    dh[mi][i]=jk+1;
 3275: 	    bh[mi][i]=ju;
 3276: 	  }
 3277: 	}else{
 3278: 	  if(jl <= -ju){
 3279: 	    dh[mi][i]=jk;
 3280: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 3281: 				 * is higher than the multiple of stepm and negative otherwise.
 3282: 				 */
 3283: 	  }
 3284: 	  else{
 3285: 	    dh[mi][i]=jk+1;
 3286: 	    bh[mi][i]=ju;
 3287: 	  }
 3288: 	  if(dh[mi][i]==0){
 3289: 	    dh[mi][i]=1; /* At least one step */
 3290: 	    bh[mi][i]=ju; /* At least one step */
 3291: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 3292: 	  }
 3293: 	} /* end if mle */
 3294:       }
 3295:     } /* end wave */
 3296:   }
 3297:   jmean=sum/k;
 3298:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 3299:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 3300:  }
 3301: 
 3302: /*********** Tricode ****************************/
 3303: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 3304: {
 3305:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 3306:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 3307:    * Boring subroutine which should only output nbcode[Tvar[j]][k]
 3308:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 3309:    * nbcode[Tvar[j]][1]= 
 3310:   */
 3311: 
 3312:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 3313:   int modmaxcovj=0; /* Modality max of covariates j */
 3314:   int cptcode=0; /* Modality max of covariates j */
 3315:   int modmincovj=0; /* Modality min of covariates j */
 3316: 
 3317: 
 3318:   cptcoveff=0; 
 3319:  
 3320:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 3321: 
 3322:   /* Loop on covariates without age and products */
 3323:   for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
 3324:     for (k=-1; k < maxncov; k++) Ndum[k]=0;
 3325:     for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
 3326: 			       modality of this covariate Vj*/ 
 3327:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 3328: 				    * If product of Vn*Vm, still boolean *:
 3329: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 3330: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 3331:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 3332: 				      modality of the nth covariate of individual i. */
 3333:       if (ij > modmaxcovj)
 3334:         modmaxcovj=ij; 
 3335:       else if (ij < modmincovj) 
 3336: 	modmincovj=ij; 
 3337:       if ((ij < -1) && (ij > NCOVMAX)){
 3338: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 3339: 	exit(1);
 3340:       }else
 3341:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 3342:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 3343:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 3344:       /* getting the maximum value of the modality of the covariate
 3345: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 3346: 	 female is 1, then modmaxcovj=1.*/
 3347:     } /* end for loop on individuals i */
 3348:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 3349:     fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 3350:     cptcode=modmaxcovj;
 3351:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 3352:    /*for (i=0; i<=cptcode; i++) {*/
 3353:     for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
 3354:       printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
 3355:       fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
 3356:       if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
 3357: 	if( k != -1){
 3358: 	  ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
 3359: 			     covariate for which somebody answered excluding 
 3360: 			     undefined. Usually 2: 0 and 1. */
 3361: 	}
 3362: 	ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
 3363: 			     covariate for which somebody answered including 
 3364: 			     undefined. Usually 3: -1, 0 and 1. */
 3365:       }
 3366:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 3367: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 3368:     } /* Ndum[-1] number of undefined modalities */
 3369: 
 3370:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 3371:     /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
 3372:        If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
 3373:        modmincovj=3; modmaxcovj = 7;
 3374:        There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
 3375:        which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
 3376:        defining two dummy variables: variables V1_1 and V1_2.
 3377:        nbcode[Tvar[j]][ij]=k;
 3378:        nbcode[Tvar[j]][1]=0;
 3379:        nbcode[Tvar[j]][2]=1;
 3380:        nbcode[Tvar[j]][3]=2;
 3381:     */
 3382:     ij=0; /* ij is similar to i but can jumps over null modalities */
 3383:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 to 1*/
 3384:     	if (Ndum[i] == 0) { /* If at least one individual responded to this modality k */
 3385: 	  break;
 3386: 	}
 3387: 	ij++;
 3388: 	nbcode[Tvar[j]][ij]=i;  /* stores the original modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
 3389: 	cptcode = ij; /* New max modality for covar j */
 3390:     } /* end of loop on modality i=-1 to 1 or more */
 3391:       
 3392:     /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
 3393:     /* 	/\*recode from 0 *\/ */
 3394:     /* 				     k is a modality. If we have model=V1+V1*sex  */
 3395:     /* 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 3396:     /* 				  But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
 3397:     /* 	} */
 3398:     /* 	/\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
 3399:     /* 	if (ij > ncodemax[j]) { */
 3400:     /* 	  printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
 3401:     /* 	  fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
 3402:     /* 	  break; */
 3403:     /* 	} */
 3404:     /*   }  /\* end of loop on modality k *\/ */
 3405:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 3406:   
 3407:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 3408:   
 3409:   for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
 3410:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 3411:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 3412:    Ndum[ij]++; /* Might be supersed V1 + V1*age */
 3413:  } 
 3414: 
 3415:  ij=0;
 3416:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 3417:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 3418:    if((Ndum[i]!=0) && (i<=ncovcol)){
 3419:      ij++;
 3420:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 3421:      Tvaraff[ij]=i; /*For printing (unclear) */
 3422:    }else{
 3423:        /* Tvaraff[ij]=0; */
 3424:    }
 3425:  }
 3426:  /* ij--; */
 3427:  cptcoveff=ij; /*Number of total covariates*/
 3428: 
 3429: }
 3430: 
 3431: 
 3432: /*********** Health Expectancies ****************/
 3433: 
 3434: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 3435: 
 3436: {
 3437:   /* Health expectancies, no variances */
 3438:   int i, j, nhstepm, hstepm, h, nstepm;
 3439:   int nhstepma, nstepma; /* Decreasing with age */
 3440:   double age, agelim, hf;
 3441:   double ***p3mat;
 3442:   double eip;
 3443: 
 3444:   pstamp(ficreseij);
 3445:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 3446:   fprintf(ficreseij,"# Age");
 3447:   for(i=1; i<=nlstate;i++){
 3448:     for(j=1; j<=nlstate;j++){
 3449:       fprintf(ficreseij," e%1d%1d ",i,j);
 3450:     }
 3451:     fprintf(ficreseij," e%1d. ",i);
 3452:   }
 3453:   fprintf(ficreseij,"\n");
 3454: 
 3455:   
 3456:   if(estepm < stepm){
 3457:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3458:   }
 3459:   else  hstepm=estepm;   
 3460:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3461:    * This is mainly to measure the difference between two models: for example
 3462:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3463:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3464:    * progression in between and thus overestimating or underestimating according
 3465:    * to the curvature of the survival function. If, for the same date, we 
 3466:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3467:    * to compare the new estimate of Life expectancy with the same linear 
 3468:    * hypothesis. A more precise result, taking into account a more precise
 3469:    * curvature will be obtained if estepm is as small as stepm. */
 3470: 
 3471:   /* For example we decided to compute the life expectancy with the smallest unit */
 3472:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3473:      nhstepm is the number of hstepm from age to agelim 
 3474:      nstepm is the number of stepm from age to agelin. 
 3475:      Look at hpijx to understand the reason of that which relies in memory size
 3476:      and note for a fixed period like estepm months */
 3477:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3478:      survival function given by stepm (the optimization length). Unfortunately it
 3479:      means that if the survival funtion is printed only each two years of age and if
 3480:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3481:      results. So we changed our mind and took the option of the best precision.
 3482:   */
 3483:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3484: 
 3485:   agelim=AGESUP;
 3486:   /* If stepm=6 months */
 3487:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 3488:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 3489:     
 3490: /* nhstepm age range expressed in number of stepm */
 3491:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3492:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3493:   /* if (stepm >= YEARM) hstepm=1;*/
 3494:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3495:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3496: 
 3497:   for (age=bage; age<=fage; age ++){ 
 3498:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3499:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3500:     /* if (stepm >= YEARM) hstepm=1;*/
 3501:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3502: 
 3503:     /* If stepm=6 months */
 3504:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3505:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3506:     
 3507:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3508:     
 3509:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3510:     
 3511:     printf("%d|",(int)age);fflush(stdout);
 3512:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3513:     
 3514:     /* Computing expectancies */
 3515:     for(i=1; i<=nlstate;i++)
 3516:       for(j=1; j<=nlstate;j++)
 3517: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3518: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 3519: 	  
 3520: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3521: 
 3522: 	}
 3523: 
 3524:     fprintf(ficreseij,"%3.0f",age );
 3525:     for(i=1; i<=nlstate;i++){
 3526:       eip=0;
 3527:       for(j=1; j<=nlstate;j++){
 3528: 	eip +=eij[i][j][(int)age];
 3529: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 3530:       }
 3531:       fprintf(ficreseij,"%9.4f", eip );
 3532:     }
 3533:     fprintf(ficreseij,"\n");
 3534:     
 3535:   }
 3536:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3537:   printf("\n");
 3538:   fprintf(ficlog,"\n");
 3539:   
 3540: }
 3541: 
 3542: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 3543: 
 3544: {
 3545:   /* Covariances of health expectancies eij and of total life expectancies according
 3546:    to initial status i, ei. .
 3547:   */
 3548:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 3549:   int nhstepma, nstepma; /* Decreasing with age */
 3550:   double age, agelim, hf;
 3551:   double ***p3matp, ***p3matm, ***varhe;
 3552:   double **dnewm,**doldm;
 3553:   double *xp, *xm;
 3554:   double **gp, **gm;
 3555:   double ***gradg, ***trgradg;
 3556:   int theta;
 3557: 
 3558:   double eip, vip;
 3559: 
 3560:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 3561:   xp=vector(1,npar);
 3562:   xm=vector(1,npar);
 3563:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 3564:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 3565:   
 3566:   pstamp(ficresstdeij);
 3567:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 3568:   fprintf(ficresstdeij,"# Age");
 3569:   for(i=1; i<=nlstate;i++){
 3570:     for(j=1; j<=nlstate;j++)
 3571:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 3572:     fprintf(ficresstdeij," e%1d. ",i);
 3573:   }
 3574:   fprintf(ficresstdeij,"\n");
 3575: 
 3576:   pstamp(ficrescveij);
 3577:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 3578:   fprintf(ficrescveij,"# Age");
 3579:   for(i=1; i<=nlstate;i++)
 3580:     for(j=1; j<=nlstate;j++){
 3581:       cptj= (j-1)*nlstate+i;
 3582:       for(i2=1; i2<=nlstate;i2++)
 3583: 	for(j2=1; j2<=nlstate;j2++){
 3584: 	  cptj2= (j2-1)*nlstate+i2;
 3585: 	  if(cptj2 <= cptj)
 3586: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 3587: 	}
 3588:     }
 3589:   fprintf(ficrescveij,"\n");
 3590:   
 3591:   if(estepm < stepm){
 3592:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3593:   }
 3594:   else  hstepm=estepm;   
 3595:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3596:    * This is mainly to measure the difference between two models: for example
 3597:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3598:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3599:    * progression in between and thus overestimating or underestimating according
 3600:    * to the curvature of the survival function. If, for the same date, we 
 3601:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3602:    * to compare the new estimate of Life expectancy with the same linear 
 3603:    * hypothesis. A more precise result, taking into account a more precise
 3604:    * curvature will be obtained if estepm is as small as stepm. */
 3605: 
 3606:   /* For example we decided to compute the life expectancy with the smallest unit */
 3607:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3608:      nhstepm is the number of hstepm from age to agelim 
 3609:      nstepm is the number of stepm from age to agelin. 
 3610:      Look at hpijx to understand the reason of that which relies in memory size
 3611:      and note for a fixed period like estepm months */
 3612:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3613:      survival function given by stepm (the optimization length). Unfortunately it
 3614:      means that if the survival funtion is printed only each two years of age and if
 3615:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3616:      results. So we changed our mind and took the option of the best precision.
 3617:   */
 3618:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3619: 
 3620:   /* If stepm=6 months */
 3621:   /* nhstepm age range expressed in number of stepm */
 3622:   agelim=AGESUP;
 3623:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 3624:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3625:   /* if (stepm >= YEARM) hstepm=1;*/
 3626:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3627:   
 3628:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3629:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3630:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 3631:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 3632:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 3633:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 3634: 
 3635:   for (age=bage; age<=fage; age ++){ 
 3636:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3637:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3638:     /* if (stepm >= YEARM) hstepm=1;*/
 3639:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3640: 
 3641:     /* If stepm=6 months */
 3642:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3643:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3644:     
 3645:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3646: 
 3647:     /* Computing  Variances of health expectancies */
 3648:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3649:        decrease memory allocation */
 3650:     for(theta=1; theta <=npar; theta++){
 3651:       for(i=1; i<=npar; i++){ 
 3652: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3653: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3654:       }
 3655:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3656:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3657:   
 3658:       for(j=1; j<= nlstate; j++){
 3659: 	for(i=1; i<=nlstate; i++){
 3660: 	  for(h=0; h<=nhstepm-1; h++){
 3661: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3662: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3663: 	  }
 3664: 	}
 3665:       }
 3666:      
 3667:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3668: 	for(h=0; h<=nhstepm-1; h++){
 3669: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3670: 	}
 3671:     }/* End theta */
 3672:     
 3673:     
 3674:     for(h=0; h<=nhstepm-1; h++)
 3675:       for(j=1; j<=nlstate*nlstate;j++)
 3676: 	for(theta=1; theta <=npar; theta++)
 3677: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3678:     
 3679: 
 3680:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3681:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3682: 	varhe[ij][ji][(int)age] =0.;
 3683: 
 3684:      printf("%d|",(int)age);fflush(stdout);
 3685:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3686:      for(h=0;h<=nhstepm-1;h++){
 3687:       for(k=0;k<=nhstepm-1;k++){
 3688: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3689: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3690: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3691: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3692: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3693:       }
 3694:     }
 3695: 
 3696:     /* Computing expectancies */
 3697:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3698:     for(i=1; i<=nlstate;i++)
 3699:       for(j=1; j<=nlstate;j++)
 3700: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3701: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3702: 	  
 3703: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3704: 
 3705: 	}
 3706: 
 3707:     fprintf(ficresstdeij,"%3.0f",age );
 3708:     for(i=1; i<=nlstate;i++){
 3709:       eip=0.;
 3710:       vip=0.;
 3711:       for(j=1; j<=nlstate;j++){
 3712: 	eip += eij[i][j][(int)age];
 3713: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3714: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3715: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3716:       }
 3717:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3718:     }
 3719:     fprintf(ficresstdeij,"\n");
 3720: 
 3721:     fprintf(ficrescveij,"%3.0f",age );
 3722:     for(i=1; i<=nlstate;i++)
 3723:       for(j=1; j<=nlstate;j++){
 3724: 	cptj= (j-1)*nlstate+i;
 3725: 	for(i2=1; i2<=nlstate;i2++)
 3726: 	  for(j2=1; j2<=nlstate;j2++){
 3727: 	    cptj2= (j2-1)*nlstate+i2;
 3728: 	    if(cptj2 <= cptj)
 3729: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3730: 	  }
 3731:       }
 3732:     fprintf(ficrescveij,"\n");
 3733:    
 3734:   }
 3735:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3736:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3737:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3738:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3739:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3740:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3741:   printf("\n");
 3742:   fprintf(ficlog,"\n");
 3743: 
 3744:   free_vector(xm,1,npar);
 3745:   free_vector(xp,1,npar);
 3746:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3747:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3748:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3749: }
 3750: 
 3751: /************ Variance ******************/
 3752: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3753: {
 3754:   /* Variance of health expectancies */
 3755:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3756:   /* double **newm;*/
 3757:   /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
 3758:   
 3759:   int movingaverage();
 3760:   double **dnewm,**doldm;
 3761:   double **dnewmp,**doldmp;
 3762:   int i, j, nhstepm, hstepm, h, nstepm ;
 3763:   int k;
 3764:   double *xp;
 3765:   double **gp, **gm;  /* for var eij */
 3766:   double ***gradg, ***trgradg; /*for var eij */
 3767:   double **gradgp, **trgradgp; /* for var p point j */
 3768:   double *gpp, *gmp; /* for var p point j */
 3769:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3770:   double ***p3mat;
 3771:   double age,agelim, hf;
 3772:   double ***mobaverage;
 3773:   int theta;
 3774:   char digit[4];
 3775:   char digitp[25];
 3776: 
 3777:   char fileresprobmorprev[FILENAMELENGTH];
 3778: 
 3779:   if(popbased==1){
 3780:     if(mobilav!=0)
 3781:       strcpy(digitp,"-populbased-mobilav-");
 3782:     else strcpy(digitp,"-populbased-nomobil-");
 3783:   }
 3784:   else 
 3785:     strcpy(digitp,"-stablbased-");
 3786: 
 3787:   if (mobilav!=0) {
 3788:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3789:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3790:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3791:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3792:     }
 3793:   }
 3794: 
 3795:   strcpy(fileresprobmorprev,"prmorprev"); 
 3796:   sprintf(digit,"%-d",ij);
 3797:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3798:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3799:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3800:   strcat(fileresprobmorprev,fileres);
 3801:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3802:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3803:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3804:   }
 3805:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3806:  
 3807:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3808:   pstamp(ficresprobmorprev);
 3809:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3810:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3811:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3812:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3813:     for(i=1; i<=nlstate;i++)
 3814:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3815:   }  
 3816:   fprintf(ficresprobmorprev,"\n");
 3817:   fprintf(ficgp,"\n# Routine varevsij");
 3818:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3819:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3820:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3821: /*   } */
 3822:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3823:   pstamp(ficresvij);
 3824:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3825:   if(popbased==1)
 3826:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3827:   else
 3828:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3829:   fprintf(ficresvij,"# Age");
 3830:   for(i=1; i<=nlstate;i++)
 3831:     for(j=1; j<=nlstate;j++)
 3832:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3833:   fprintf(ficresvij,"\n");
 3834: 
 3835:   xp=vector(1,npar);
 3836:   dnewm=matrix(1,nlstate,1,npar);
 3837:   doldm=matrix(1,nlstate,1,nlstate);
 3838:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3839:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3840: 
 3841:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3842:   gpp=vector(nlstate+1,nlstate+ndeath);
 3843:   gmp=vector(nlstate+1,nlstate+ndeath);
 3844:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3845:   
 3846:   if(estepm < stepm){
 3847:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3848:   }
 3849:   else  hstepm=estepm;   
 3850:   /* For example we decided to compute the life expectancy with the smallest unit */
 3851:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3852:      nhstepm is the number of hstepm from age to agelim 
 3853:      nstepm is the number of stepm from age to agelin. 
 3854:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3855:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3856:      survival function given by stepm (the optimization length). Unfortunately it
 3857:      means that if the survival funtion is printed every two years of age and if
 3858:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3859:      results. So we changed our mind and took the option of the best precision.
 3860:   */
 3861:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3862:   agelim = AGESUP;
 3863:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3864:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3865:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3866:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3867:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3868:     gp=matrix(0,nhstepm,1,nlstate);
 3869:     gm=matrix(0,nhstepm,1,nlstate);
 3870: 
 3871: 
 3872:     for(theta=1; theta <=npar; theta++){
 3873:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3874: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3875:       }
 3876:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3877:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3878: 
 3879:       if (popbased==1) {
 3880: 	if(mobilav ==0){
 3881: 	  for(i=1; i<=nlstate;i++)
 3882: 	    prlim[i][i]=probs[(int)age][i][ij];
 3883: 	}else{ /* mobilav */ 
 3884: 	  for(i=1; i<=nlstate;i++)
 3885: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3886: 	}
 3887:       }
 3888:   
 3889:       for(j=1; j<= nlstate; j++){
 3890: 	for(h=0; h<=nhstepm; h++){
 3891: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3892: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3893: 	}
 3894:       }
 3895:       /* This for computing probability of death (h=1 means
 3896:          computed over hstepm matrices product = hstepm*stepm months) 
 3897:          as a weighted average of prlim.
 3898:       */
 3899:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3900: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3901: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3902:       }    
 3903:       /* end probability of death */
 3904: 
 3905:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3906: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3907:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3908:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3909:  
 3910:       if (popbased==1) {
 3911: 	if(mobilav ==0){
 3912: 	  for(i=1; i<=nlstate;i++)
 3913: 	    prlim[i][i]=probs[(int)age][i][ij];
 3914: 	}else{ /* mobilav */ 
 3915: 	  for(i=1; i<=nlstate;i++)
 3916: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3917: 	}
 3918:       }
 3919: 
 3920:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3921: 	for(h=0; h<=nhstepm; h++){
 3922: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3923: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3924: 	}
 3925:       }
 3926:       /* This for computing probability of death (h=1 means
 3927:          computed over hstepm matrices product = hstepm*stepm months) 
 3928:          as a weighted average of prlim.
 3929:       */
 3930:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3931: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3932:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3933:       }    
 3934:       /* end probability of death */
 3935: 
 3936:       for(j=1; j<= nlstate; j++) /* vareij */
 3937: 	for(h=0; h<=nhstepm; h++){
 3938: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3939: 	}
 3940: 
 3941:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3942: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3943:       }
 3944: 
 3945:     } /* End theta */
 3946: 
 3947:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3948: 
 3949:     for(h=0; h<=nhstepm; h++) /* veij */
 3950:       for(j=1; j<=nlstate;j++)
 3951: 	for(theta=1; theta <=npar; theta++)
 3952: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3953: 
 3954:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3955:       for(theta=1; theta <=npar; theta++)
 3956: 	trgradgp[j][theta]=gradgp[theta][j];
 3957:   
 3958: 
 3959:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3960:     for(i=1;i<=nlstate;i++)
 3961:       for(j=1;j<=nlstate;j++)
 3962: 	vareij[i][j][(int)age] =0.;
 3963: 
 3964:     for(h=0;h<=nhstepm;h++){
 3965:       for(k=0;k<=nhstepm;k++){
 3966: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3967: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3968: 	for(i=1;i<=nlstate;i++)
 3969: 	  for(j=1;j<=nlstate;j++)
 3970: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3971:       }
 3972:     }
 3973:   
 3974:     /* pptj */
 3975:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3976:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3977:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3978:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3979: 	varppt[j][i]=doldmp[j][i];
 3980:     /* end ppptj */
 3981:     /*  x centered again */
 3982:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3983:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3984:  
 3985:     if (popbased==1) {
 3986:       if(mobilav ==0){
 3987: 	for(i=1; i<=nlstate;i++)
 3988: 	  prlim[i][i]=probs[(int)age][i][ij];
 3989:       }else{ /* mobilav */ 
 3990: 	for(i=1; i<=nlstate;i++)
 3991: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3992:       }
 3993:     }
 3994:              
 3995:     /* This for computing probability of death (h=1 means
 3996:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3997:        as a weighted average of prlim.
 3998:     */
 3999:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 4000:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 4001: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 4002:     }    
 4003:     /* end probability of death */
 4004: 
 4005:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 4006:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 4007:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 4008:       for(i=1; i<=nlstate;i++){
 4009: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 4010:       }
 4011:     } 
 4012:     fprintf(ficresprobmorprev,"\n");
 4013: 
 4014:     fprintf(ficresvij,"%.0f ",age );
 4015:     for(i=1; i<=nlstate;i++)
 4016:       for(j=1; j<=nlstate;j++){
 4017: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 4018:       }
 4019:     fprintf(ficresvij,"\n");
 4020:     free_matrix(gp,0,nhstepm,1,nlstate);
 4021:     free_matrix(gm,0,nhstepm,1,nlstate);
 4022:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 4023:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 4024:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4025:   } /* End age */
 4026:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 4027:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 4028:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 4029:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 4030:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 4031:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 4032:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 4033: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 4034: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 4035: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 4036:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 4037:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 4038:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 4039:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 4040:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 4041:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 4042: */
 4043: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 4044:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 4045: 
 4046:   free_vector(xp,1,npar);
 4047:   free_matrix(doldm,1,nlstate,1,nlstate);
 4048:   free_matrix(dnewm,1,nlstate,1,npar);
 4049:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 4050:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 4051:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 4052:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4053:   fclose(ficresprobmorprev);
 4054:   fflush(ficgp);
 4055:   fflush(fichtm); 
 4056: }  /* end varevsij */
 4057: 
 4058: /************ Variance of prevlim ******************/
 4059: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 4060: {
 4061:   /* Variance of prevalence limit */
 4062:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 4063: 
 4064:   double **dnewm,**doldm;
 4065:   int i, j, nhstepm, hstepm;
 4066:   double *xp;
 4067:   double *gp, *gm;
 4068:   double **gradg, **trgradg;
 4069:   double age,agelim;
 4070:   int theta;
 4071:   
 4072:   pstamp(ficresvpl);
 4073:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 4074:   fprintf(ficresvpl,"# Age");
 4075:   for(i=1; i<=nlstate;i++)
 4076:       fprintf(ficresvpl," %1d-%1d",i,i);
 4077:   fprintf(ficresvpl,"\n");
 4078: 
 4079:   xp=vector(1,npar);
 4080:   dnewm=matrix(1,nlstate,1,npar);
 4081:   doldm=matrix(1,nlstate,1,nlstate);
 4082:   
 4083:   hstepm=1*YEARM; /* Every year of age */
 4084:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 4085:   agelim = AGESUP;
 4086:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 4087:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 4088:     if (stepm >= YEARM) hstepm=1;
 4089:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 4090:     gradg=matrix(1,npar,1,nlstate);
 4091:     gp=vector(1,nlstate);
 4092:     gm=vector(1,nlstate);
 4093: 
 4094:     for(theta=1; theta <=npar; theta++){
 4095:       for(i=1; i<=npar; i++){ /* Computes gradient */
 4096: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 4097:       }
 4098:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 4099:       for(i=1;i<=nlstate;i++)
 4100: 	gp[i] = prlim[i][i];
 4101:     
 4102:       for(i=1; i<=npar; i++) /* Computes gradient */
 4103: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 4104:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 4105:       for(i=1;i<=nlstate;i++)
 4106: 	gm[i] = prlim[i][i];
 4107: 
 4108:       for(i=1;i<=nlstate;i++)
 4109: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 4110:     } /* End theta */
 4111: 
 4112:     trgradg =matrix(1,nlstate,1,npar);
 4113: 
 4114:     for(j=1; j<=nlstate;j++)
 4115:       for(theta=1; theta <=npar; theta++)
 4116: 	trgradg[j][theta]=gradg[theta][j];
 4117: 
 4118:     for(i=1;i<=nlstate;i++)
 4119:       varpl[i][(int)age] =0.;
 4120:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 4121:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 4122:     for(i=1;i<=nlstate;i++)
 4123:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 4124: 
 4125:     fprintf(ficresvpl,"%.0f ",age );
 4126:     for(i=1; i<=nlstate;i++)
 4127:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 4128:     fprintf(ficresvpl,"\n");
 4129:     free_vector(gp,1,nlstate);
 4130:     free_vector(gm,1,nlstate);
 4131:     free_matrix(gradg,1,npar,1,nlstate);
 4132:     free_matrix(trgradg,1,nlstate,1,npar);
 4133:   } /* End age */
 4134: 
 4135:   free_vector(xp,1,npar);
 4136:   free_matrix(doldm,1,nlstate,1,npar);
 4137:   free_matrix(dnewm,1,nlstate,1,nlstate);
 4138: 
 4139: }
 4140: 
 4141: /************ Variance of one-step probabilities  ******************/
 4142: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 4143: {
 4144:   int i, j=0,  k1, l1, tj;
 4145:   int k2, l2, j1,  z1;
 4146:   int k=0, l;
 4147:   int first=1, first1, first2;
 4148:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 4149:   double **dnewm,**doldm;
 4150:   double *xp;
 4151:   double *gp, *gm;
 4152:   double **gradg, **trgradg;
 4153:   double **mu;
 4154:   double age, cov[NCOVMAX+1];
 4155:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 4156:   int theta;
 4157:   char fileresprob[FILENAMELENGTH];
 4158:   char fileresprobcov[FILENAMELENGTH];
 4159:   char fileresprobcor[FILENAMELENGTH];
 4160:   double ***varpij;
 4161: 
 4162:   strcpy(fileresprob,"prob"); 
 4163:   strcat(fileresprob,fileres);
 4164:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 4165:     printf("Problem with resultfile: %s\n", fileresprob);
 4166:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 4167:   }
 4168:   strcpy(fileresprobcov,"probcov"); 
 4169:   strcat(fileresprobcov,fileres);
 4170:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 4171:     printf("Problem with resultfile: %s\n", fileresprobcov);
 4172:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 4173:   }
 4174:   strcpy(fileresprobcor,"probcor"); 
 4175:   strcat(fileresprobcor,fileres);
 4176:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 4177:     printf("Problem with resultfile: %s\n", fileresprobcor);
 4178:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 4179:   }
 4180:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 4181:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 4182:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 4183:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 4184:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 4185:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 4186:   pstamp(ficresprob);
 4187:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 4188:   fprintf(ficresprob,"# Age");
 4189:   pstamp(ficresprobcov);
 4190:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 4191:   fprintf(ficresprobcov,"# Age");
 4192:   pstamp(ficresprobcor);
 4193:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 4194:   fprintf(ficresprobcor,"# Age");
 4195: 
 4196: 
 4197:   for(i=1; i<=nlstate;i++)
 4198:     for(j=1; j<=(nlstate+ndeath);j++){
 4199:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 4200:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 4201:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 4202:     }  
 4203:  /* fprintf(ficresprob,"\n");
 4204:   fprintf(ficresprobcov,"\n");
 4205:   fprintf(ficresprobcor,"\n");
 4206:  */
 4207:   xp=vector(1,npar);
 4208:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 4209:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 4210:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 4211:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 4212:   first=1;
 4213:   fprintf(ficgp,"\n# Routine varprob");
 4214:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 4215:   fprintf(fichtm,"\n");
 4216: 
 4217:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 4218:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 4219:   file %s<br>\n",optionfilehtmcov);
 4220:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 4221: and drawn. It helps understanding how is the covariance between two incidences.\
 4222:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 4223:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 4224: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 4225: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 4226: standard deviations wide on each axis. <br>\
 4227:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 4228:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 4229: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 4230: 
 4231:   cov[1]=1;
 4232:   /* tj=cptcoveff; */
 4233:   tj = (int) pow(2,cptcoveff);
 4234:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 4235:   j1=0;
 4236:   for(j1=1; j1<=tj;j1++){
 4237:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 4238:     /*j1++;*/
 4239:       if  (cptcovn>0) {
 4240: 	fprintf(ficresprob, "\n#********** Variable "); 
 4241: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4242: 	fprintf(ficresprob, "**********\n#\n");
 4243: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 4244: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4245: 	fprintf(ficresprobcov, "**********\n#\n");
 4246: 	
 4247: 	fprintf(ficgp, "\n#********** Variable "); 
 4248: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4249: 	fprintf(ficgp, "**********\n#\n");
 4250: 	
 4251: 	
 4252: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 4253: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4254: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 4255: 	
 4256: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 4257: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4258: 	fprintf(ficresprobcor, "**********\n#");    
 4259:       }
 4260:       
 4261:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 4262:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 4263:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 4264:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 4265:       for (age=bage; age<=fage; age ++){ 
 4266: 	cov[2]=age;
 4267: 	if(nagesqr==1)
 4268: 	  cov[3]= age*age;
 4269: 	for (k=1; k<=cptcovn;k++) {
 4270: 	  cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
 4271: 							 * 1  1 1 1 1
 4272: 							 * 2  2 1 1 1
 4273: 							 * 3  1 2 1 1
 4274: 							 */
 4275: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 4276: 	}
 4277: 	/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 4278: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
 4279: 	for (k=1; k<=cptcovprod;k++)
 4280: 	  cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 4281: 	
 4282:     
 4283: 	for(theta=1; theta <=npar; theta++){
 4284: 	  for(i=1; i<=npar; i++)
 4285: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 4286: 	  
 4287: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 4288: 	  
 4289: 	  k=0;
 4290: 	  for(i=1; i<= (nlstate); i++){
 4291: 	    for(j=1; j<=(nlstate+ndeath);j++){
 4292: 	      k=k+1;
 4293: 	      gp[k]=pmmij[i][j];
 4294: 	    }
 4295: 	  }
 4296: 	  
 4297: 	  for(i=1; i<=npar; i++)
 4298: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 4299:     
 4300: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 4301: 	  k=0;
 4302: 	  for(i=1; i<=(nlstate); i++){
 4303: 	    for(j=1; j<=(nlstate+ndeath);j++){
 4304: 	      k=k+1;
 4305: 	      gm[k]=pmmij[i][j];
 4306: 	    }
 4307: 	  }
 4308:      
 4309: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 4310: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 4311: 	}
 4312: 
 4313: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 4314: 	  for(theta=1; theta <=npar; theta++)
 4315: 	    trgradg[j][theta]=gradg[theta][j];
 4316: 	
 4317: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 4318: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 4319: 
 4320: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 4321: 	
 4322: 	k=0;
 4323: 	for(i=1; i<=(nlstate); i++){
 4324: 	  for(j=1; j<=(nlstate+ndeath);j++){
 4325: 	    k=k+1;
 4326: 	    mu[k][(int) age]=pmmij[i][j];
 4327: 	  }
 4328: 	}
 4329:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 4330: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 4331: 	    varpij[i][j][(int)age] = doldm[i][j];
 4332: 
 4333: 	/*printf("\n%d ",(int)age);
 4334: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 4335: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 4336: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 4337: 	  }*/
 4338: 
 4339: 	fprintf(ficresprob,"\n%d ",(int)age);
 4340: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 4341: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 4342: 
 4343: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 4344: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 4345: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 4346: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 4347: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 4348: 	}
 4349: 	i=0;
 4350: 	for (k=1; k<=(nlstate);k++){
 4351:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 4352:  	    i++;
 4353: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 4354: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 4355: 	    for (j=1; j<=i;j++){
 4356: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 4357: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 4358: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 4359: 	    }
 4360: 	  }
 4361: 	}/* end of loop for state */
 4362:       } /* end of loop for age */
 4363:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 4364:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 4365:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4366:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4367:       
 4368:       /* Confidence intervalle of pij  */
 4369:       /*
 4370: 	fprintf(ficgp,"\nunset parametric;unset label");
 4371: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 4372: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 4373: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 4374: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 4375: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 4376: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 4377:       */
 4378: 
 4379:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 4380:       first1=1;first2=2;
 4381:       for (k2=1; k2<=(nlstate);k2++){
 4382: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 4383: 	  if(l2==k2) continue;
 4384: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 4385: 	  for (k1=1; k1<=(nlstate);k1++){
 4386: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 4387: 	      if(l1==k1) continue;
 4388: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 4389: 	      if(i<=j) continue;
 4390: 	      for (age=bage; age<=fage; age ++){ 
 4391: 		if ((int)age %5==0){
 4392: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 4393: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4394: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4395: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 4396: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 4397: 		  c12=cv12/sqrt(v1*v2);
 4398: 		  /* Computing eigen value of matrix of covariance */
 4399: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4400: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4401: 		  if ((lc2 <0) || (lc1 <0) ){
 4402: 		    if(first2==1){
 4403: 		      first1=0;
 4404: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 4405: 		    }
 4406: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 4407: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 4408: 		    /* lc2=fabs(lc2); */
 4409: 		  }
 4410: 
 4411: 		  /* Eigen vectors */
 4412: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 4413: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 4414: 		  v21=(lc1-v1)/cv12*v11;
 4415: 		  v12=-v21;
 4416: 		  v22=v11;
 4417: 		  tnalp=v21/v11;
 4418: 		  if(first1==1){
 4419: 		    first1=0;
 4420: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4421: 		  }
 4422: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4423: 		  /*printf(fignu*/
 4424: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 4425: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 4426: 		  if(first==1){
 4427: 		    first=0;
 4428:  		    fprintf(ficgp,"\nset parametric;unset label");
 4429: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 4430: 		    fprintf(ficgp,"\nset ter png small size 320, 240");
 4431: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 4432:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 4433: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 4434: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 4435: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4436: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4437: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 4438: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4439: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4440: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4441: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4442: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4443: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4444: 		  }else{
 4445: 		    first=0;
 4446: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 4447: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4448: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4449: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4450: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4451: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4452: 		  }/* if first */
 4453: 		} /* age mod 5 */
 4454: 	      } /* end loop age */
 4455: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4456: 	      first=1;
 4457: 	    } /*l12 */
 4458: 	  } /* k12 */
 4459: 	} /*l1 */
 4460:       }/* k1 */
 4461:       /* } */ /* loop covariates */
 4462:   }
 4463:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 4464:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 4465:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 4466:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 4467:   free_vector(xp,1,npar);
 4468:   fclose(ficresprob);
 4469:   fclose(ficresprobcov);
 4470:   fclose(ficresprobcor);
 4471:   fflush(ficgp);
 4472:   fflush(fichtmcov);
 4473: }
 4474: 
 4475: 
 4476: /******************* Printing html file ***********/
 4477: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 4478: 		  int lastpass, int stepm, int weightopt, char model[],\
 4479: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 4480: 		  int popforecast, int estepm ,\
 4481: 		  double jprev1, double mprev1,double anprev1, \
 4482: 		  double jprev2, double mprev2,double anprev2){
 4483:   int jj1, k1, i1, cpt;
 4484: 
 4485:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 4486:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 4487: </ul>");
 4488:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 4489:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 4490: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 4491:    fprintf(fichtm,"\
 4492:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 4493: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 4494:    fprintf(fichtm,"\
 4495:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 4496: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 4497:    fprintf(fichtm,"\
 4498:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 4499:    <a href=\"%s\">%s</a> <br>\n",
 4500: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 4501:    fprintf(fichtm,"\
 4502:  - Population projections by age and states: \
 4503:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 4504: 
 4505: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 4506: 
 4507:  m=pow(2,cptcoveff);
 4508:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4509: 
 4510:  jj1=0;
 4511:  for(k1=1; k1<=m;k1++){
 4512:    /* for(i1=1; i1<=ncodemax[k1];i1++){ */
 4513:      jj1++;
 4514:      if (cptcovn > 0) {
 4515:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4516:        for (cpt=1; cpt<=cptcoveff;cpt++){ 
 4517: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4518: 	 printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);fflush(stdout);
 4519:        }
 4520:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4521:      }
 4522:      /* Pij */
 4523:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
 4524: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 4525:      /* Quasi-incidences */
 4526:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 4527:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
 4528: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 4529:        /* Period (stable) prevalence in each health state */
 4530:        for(cpt=1; cpt<=nlstate;cpt++){
 4531: 	 fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
 4532: <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 4533:        }
 4534:      for(cpt=1; cpt<=nlstate;cpt++) {
 4535:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 4536: <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 4537:      }
 4538:    /* } /\* end i1 *\/ */
 4539:  }/* End k1 */
 4540:  fprintf(fichtm,"</ul>");
 4541: 
 4542:  fprintf(fichtm,"\
 4543: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 4544:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
 4545:  - 95%% confidence intervals and T statistics are in the log file.<br>\n", rfileres,rfileres);
 4546: 
 4547:  fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4548: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 4549:  fprintf(fichtm,"\
 4550:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4551: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 4552: 
 4553:  fprintf(fichtm,"\
 4554:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4555: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 4556:  fprintf(fichtm,"\
 4557:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 4558:    <a href=\"%s\">%s</a> <br>\n</li>",
 4559: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 4560:  fprintf(fichtm,"\
 4561:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 4562:    <a href=\"%s\">%s</a> <br>\n</li>",
 4563: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 4564:  fprintf(fichtm,"\
 4565:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 4566: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 4567:  fprintf(fichtm,"\
 4568:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 4569: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 4570:  fprintf(fichtm,"\
 4571:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 4572: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 4573: 
 4574: /*  if(popforecast==1) fprintf(fichtm,"\n */
 4575: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 4576: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 4577: /* 	<br>",fileres,fileres,fileres,fileres); */
 4578: /*  else  */
 4579: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 4580:  fflush(fichtm);
 4581:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 4582: 
 4583:  m=pow(2,cptcoveff);
 4584:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4585: 
 4586:  jj1=0;
 4587:  for(k1=1; k1<=m;k1++){
 4588:    /* for(i1=1; i1<=ncodemax[k1];i1++){ */
 4589:      jj1++;
 4590:      if (cptcovn > 0) {
 4591:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4592:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4593: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4594:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4595:      }
 4596:      for(cpt=1; cpt<=nlstate;cpt++) {
 4597:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 4598: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
 4599: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 4600:      }
 4601:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 4602: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 4603: true period expectancies (those weighted with period prevalences are also\
 4604:  drawn in addition to the population based expectancies computed using\
 4605:  observed and cahotic prevalences: %s%d.png<br>\
 4606: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 4607:    /* } /\* end i1 *\/ */
 4608:  }/* End k1 */
 4609:  fprintf(fichtm,"</ul>");
 4610:  fflush(fichtm);
 4611: }
 4612: 
 4613: /******************* Gnuplot file **************/
 4614: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4615: 
 4616:   char dirfileres[132],optfileres[132];
 4617:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 4618:   int ng=0;
 4619: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 4620: /*     printf("Problem with file %s",optionfilegnuplot); */
 4621: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 4622: /*   } */
 4623: 
 4624:   /*#ifdef windows */
 4625:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4626:     /*#endif */
 4627:   m=pow(2,cptcoveff);
 4628: 
 4629:   strcpy(dirfileres,optionfilefiname);
 4630:   strcpy(optfileres,"vpl");
 4631:  /* 1eme*/
 4632:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
 4633:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 4634:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 4635:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 4636:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 4637:      fprintf(ficgp,"set xlabel \"Age\" \n\
 4638: set ylabel \"Probability\" \n\
 4639: set ter png small size 320, 240\n\
 4640: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 4641: 
 4642:      for (i=1; i<= nlstate ; i ++) {
 4643:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4644:        else        fprintf(ficgp," %%*lf (%%*lf)");
 4645:      }
 4646:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 4647:      for (i=1; i<= nlstate ; i ++) {
 4648:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4649:        else fprintf(ficgp," %%*lf (%%*lf)");
 4650:      } 
 4651:      fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4652:      for (i=1; i<= nlstate ; i ++) {
 4653:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4654:        else fprintf(ficgp," %%*lf (%%*lf)");
 4655:      }  
 4656:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4657:    }
 4658:   }
 4659:   /*2 eme*/
 4660:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
 4661:   for (k1=1; k1<= m ; k1 ++) { 
 4662:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 4663:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
 4664:     
 4665:     for (i=1; i<= nlstate+1 ; i ++) {
 4666:       k=2*i;
 4667:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4668:       for (j=1; j<= nlstate+1 ; j ++) {
 4669: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4670: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4671:       }   
 4672:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4673:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4674:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4675:       for (j=1; j<= nlstate+1 ; j ++) {
 4676: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4677: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4678:       }   
 4679:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4680:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4681:       for (j=1; j<= nlstate+1 ; j ++) {
 4682: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4683: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4684:       }   
 4685:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4686:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4687:     }
 4688:   }
 4689:   
 4690:   /*3eme*/
 4691:   
 4692:   for (k1=1; k1<= m ; k1 ++) { 
 4693:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4694:       /*       k=2+nlstate*(2*cpt-2); */
 4695:       k=2+(nlstate+1)*(cpt-1);
 4696:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4697:       fprintf(ficgp,"set ter png small size 320, 240\n\
 4698: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4699:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4700: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4701: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4702: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4703: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4704: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4705: 	
 4706:       */
 4707:       for (i=1; i< nlstate ; i ++) {
 4708: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4709: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4710: 	
 4711:       } 
 4712:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4713:     }
 4714:   }
 4715:   
 4716:   /* CV preval stable (period) */
 4717:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
 4718:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
 4719:       k=3;
 4720:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
 4721:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4722:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4723: set ter png small size 320, 240\n\
 4724: unset log y\n\
 4725: plot [%.f:%.f]  ", ageminpar, agemaxpar);
 4726:       for (i=1; i<= nlstate ; i ++){
 4727: 	if(i==1)
 4728: 	  fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
 4729: 	else
 4730: 	  fprintf(ficgp,", '' ");
 4731: 	l=(nlstate+ndeath)*(i-1)+1;
 4732: 	fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
 4733: 	for (j=1; j<= (nlstate-1) ; j ++)
 4734: 	  fprintf(ficgp,"+$%d",k+l+j);
 4735: 	fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
 4736:       } /* nlstate */
 4737:       fprintf(ficgp,"\n");
 4738:     } /* end cpt state*/ 
 4739:   } /* end covariate */  
 4740:   
 4741:   /* proba elementaires */
 4742:   fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
 4743:   for(i=1,jk=1; i <=nlstate; i++){
 4744:     fprintf(ficgp,"# initial state %d\n",i);
 4745:     for(k=1; k <=(nlstate+ndeath); k++){
 4746:       if (k != i) {
 4747: 	fprintf(ficgp,"#   current state %d\n",k);
 4748: 	for(j=1; j <=ncovmodel; j++){
 4749: 	  fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
 4750: 	  jk++; 
 4751: 	}
 4752: 	fprintf(ficgp,"\n");
 4753:       }
 4754:     }
 4755:    }
 4756:   fprintf(ficgp,"##############\n#\n");
 4757: 
 4758:   /*goto avoid;*/
 4759:   fprintf(ficgp,"\n##############\n#Graphics of of probabilities or incidences\n#############\n");
 4760:   fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
 4761:   fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
 4762:   fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
 4763:   fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
 4764:   fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
 4765:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
 4766:   fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
 4767:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
 4768:   fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
 4769:   fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
 4770:   fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
 4771:   fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
 4772:   fprintf(ficgp,"#\n");
 4773:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4774:      fprintf(ficgp,"# ng=%d\n",ng);
 4775:      fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
 4776:      for(jk=1; jk <=m; jk++) {
 4777:        fprintf(ficgp,"#    jk=%d\n",jk);
 4778:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4779:        if (ng==2)
 4780: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4781:        else
 4782: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 4783:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4784:        i=1;
 4785:        for(k2=1; k2<=nlstate; k2++) {
 4786: 	 k3=i;
 4787: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4788: 	   if (k != k2){
 4789: 	     if(ng==2)
 4790: 	       if(nagesqr==0)
 4791: 		 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4792: 	       else /* nagesqr =1 */
 4793: 		 fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
 4794: 	     else
 4795: 	       if(nagesqr==0)
 4796: 		 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4797: 	       else /* nagesqr =1 */
 4798: 		 fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
 4799: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4800: 	     for(j=3; j <=ncovmodel-nagesqr; j++) {
 4801: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
 4802: 	       	 fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 4803: 	       	 ij++;
 4804: 	       }
 4805: 	       else
 4806: 		 fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4807: 	     }
 4808: 	     fprintf(ficgp,")/(1");
 4809: 	     
 4810: 	     for(k1=1; k1 <=nlstate; k1++){ 
 4811: 	       if(nagesqr==0)
 4812: 		 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4813: 	       else /* nagesqr =1 */
 4814: 		 fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
 4815:   
 4816: 	       ij=1;
 4817: 	       for(j=3; j <=ncovmodel-nagesqr; j++){
 4818: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 4819: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 4820: 		   ij++;
 4821: 		 }
 4822: 		 else
 4823: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4824: 	       }
 4825: 	       fprintf(ficgp,")");
 4826: 	     }
 4827: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4828: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4829: 	     i=i+ncovmodel;
 4830: 	   }
 4831: 	 } /* end k */
 4832:        } /* end k2 */
 4833:      } /* end jk */
 4834:    } /* end ng */
 4835:  /* avoid: */
 4836:    fflush(ficgp); 
 4837: }  /* end gnuplot */
 4838: 
 4839: 
 4840: /*************** Moving average **************/
 4841: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4842: 
 4843:   int i, cpt, cptcod;
 4844:   int modcovmax =1;
 4845:   int mobilavrange, mob;
 4846:   double age;
 4847: 
 4848:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4849: 			   a covariate has 2 modalities */
 4850:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4851: 
 4852:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4853:     if(mobilav==1) mobilavrange=5; /* default */
 4854:     else mobilavrange=mobilav;
 4855:     for (age=bage; age<=fage; age++)
 4856:       for (i=1; i<=nlstate;i++)
 4857: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4858: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4859:     /* We keep the original values on the extreme ages bage, fage and for 
 4860:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4861:        we use a 5 terms etc. until the borders are no more concerned. 
 4862:     */ 
 4863:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4864:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4865: 	for (i=1; i<=nlstate;i++){
 4866: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4867: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4868: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4869: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4870: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4871: 	      }
 4872: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4873: 	  }
 4874: 	}
 4875:       }/* end age */
 4876:     }/* end mob */
 4877:   }else return -1;
 4878:   return 0;
 4879: }/* End movingaverage */
 4880: 
 4881: 
 4882: /************** Forecasting ******************/
 4883: void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4884:   /* proj1, year, month, day of starting projection 
 4885:      agemin, agemax range of age
 4886:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4887:      anproj2 year of en of projection (same day and month as proj1).
 4888:   */
 4889:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
 4890:   double agec; /* generic age */
 4891:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4892:   double *popeffectif,*popcount;
 4893:   double ***p3mat;
 4894:   double ***mobaverage;
 4895:   char fileresf[FILENAMELENGTH];
 4896: 
 4897:   agelim=AGESUP;
 4898:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4899:  
 4900:   strcpy(fileresf,"f"); 
 4901:   strcat(fileresf,fileres);
 4902:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4903:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4904:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4905:   }
 4906:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4907:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4908: 
 4909:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4910: 
 4911:   if (mobilav!=0) {
 4912:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4913:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4914:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4915:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4916:     }
 4917:   }
 4918: 
 4919:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4920:   if (stepm<=12) stepsize=1;
 4921:   if(estepm < stepm){
 4922:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4923:   }
 4924:   else  hstepm=estepm;   
 4925: 
 4926:   hstepm=hstepm/stepm; 
 4927:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4928:                                fractional in yp1 */
 4929:   anprojmean=yp;
 4930:   yp2=modf((yp1*12),&yp);
 4931:   mprojmean=yp;
 4932:   yp1=modf((yp2*30.5),&yp);
 4933:   jprojmean=yp;
 4934:   if(jprojmean==0) jprojmean=1;
 4935:   if(mprojmean==0) jprojmean=1;
 4936: 
 4937:   i1=cptcoveff;
 4938:   if (cptcovn < 1){i1=1;}
 4939:   
 4940:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4941:   
 4942:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4943: 
 4944: /* 	      if (h==(int)(YEARM*yearp)){ */
 4945:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4946:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4947:       k=k+1;
 4948:       fprintf(ficresf,"\n#******");
 4949:       for(j=1;j<=cptcoveff;j++) {
 4950: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4951:       }
 4952:       fprintf(ficresf,"******\n");
 4953:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4954:       for(j=1; j<=nlstate+ndeath;j++){ 
 4955: 	for(i=1; i<=nlstate;i++) 	      
 4956:           fprintf(ficresf," p%d%d",i,j);
 4957: 	fprintf(ficresf," p.%d",j);
 4958:       }
 4959:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4960: 	fprintf(ficresf,"\n");
 4961: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4962: 
 4963:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4964: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4965: 	  nhstepm = nhstepm/hstepm; 
 4966: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4967: 	  oldm=oldms;savm=savms;
 4968: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4969: 	
 4970: 	  for (h=0; h<=nhstepm; h++){
 4971: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4972:               fprintf(ficresf,"\n");
 4973:               for(j=1;j<=cptcoveff;j++) 
 4974:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4975: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4976: 	    } 
 4977: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4978: 	      ppij=0.;
 4979: 	      for(i=1; i<=nlstate;i++) {
 4980: 		if (mobilav==1) 
 4981: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4982: 		else {
 4983: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4984: 		}
 4985: 		if (h*hstepm/YEARM*stepm== yearp) {
 4986: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4987: 		}
 4988: 	      } /* end i */
 4989: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4990: 		fprintf(ficresf," %.3f", ppij);
 4991: 	      }
 4992: 	    }/* end j */
 4993: 	  } /* end h */
 4994: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4995: 	} /* end agec */
 4996:       } /* end yearp */
 4997:     } /* end cptcod */
 4998:   } /* end  cptcov */
 4999:        
 5000:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5001: 
 5002:   fclose(ficresf);
 5003: }
 5004: 
 5005: /************** Forecasting *****not tested NB*************/
 5006: void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 5007:   
 5008:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 5009:   int *popage;
 5010:   double calagedatem, agelim, kk1, kk2;
 5011:   double *popeffectif,*popcount;
 5012:   double ***p3mat,***tabpop,***tabpopprev;
 5013:   double ***mobaverage;
 5014:   char filerespop[FILENAMELENGTH];
 5015: 
 5016:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5017:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5018:   agelim=AGESUP;
 5019:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 5020:   
 5021:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 5022:   
 5023:   
 5024:   strcpy(filerespop,"pop"); 
 5025:   strcat(filerespop,fileres);
 5026:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 5027:     printf("Problem with forecast resultfile: %s\n", filerespop);
 5028:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 5029:   }
 5030:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 5031:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 5032: 
 5033:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 5034: 
 5035:   if (mobilav!=0) {
 5036:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5037:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 5038:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 5039:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 5040:     }
 5041:   }
 5042: 
 5043:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 5044:   if (stepm<=12) stepsize=1;
 5045:   
 5046:   agelim=AGESUP;
 5047:   
 5048:   hstepm=1;
 5049:   hstepm=hstepm/stepm; 
 5050:   
 5051:   if (popforecast==1) {
 5052:     if((ficpop=fopen(popfile,"r"))==NULL) {
 5053:       printf("Problem with population file : %s\n",popfile);exit(0);
 5054:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 5055:     } 
 5056:     popage=ivector(0,AGESUP);
 5057:     popeffectif=vector(0,AGESUP);
 5058:     popcount=vector(0,AGESUP);
 5059:     
 5060:     i=1;   
 5061:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 5062:    
 5063:     imx=i;
 5064:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 5065:   }
 5066: 
 5067:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 5068:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 5069:       k=k+1;
 5070:       fprintf(ficrespop,"\n#******");
 5071:       for(j=1;j<=cptcoveff;j++) {
 5072: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5073:       }
 5074:       fprintf(ficrespop,"******\n");
 5075:       fprintf(ficrespop,"# Age");
 5076:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 5077:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 5078:       
 5079:       for (cpt=0; cpt<=0;cpt++) { 
 5080: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 5081: 	
 5082:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 5083: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 5084: 	  nhstepm = nhstepm/hstepm; 
 5085: 	  
 5086: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5087: 	  oldm=oldms;savm=savms;
 5088: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5089: 	
 5090: 	  for (h=0; h<=nhstepm; h++){
 5091: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 5092: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 5093: 	    } 
 5094: 	    for(j=1; j<=nlstate+ndeath;j++) {
 5095: 	      kk1=0.;kk2=0;
 5096: 	      for(i=1; i<=nlstate;i++) {	      
 5097: 		if (mobilav==1) 
 5098: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 5099: 		else {
 5100: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 5101: 		}
 5102: 	      }
 5103: 	      if (h==(int)(calagedatem+12*cpt)){
 5104: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 5105: 		  /*fprintf(ficrespop," %.3f", kk1);
 5106: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 5107: 	      }
 5108: 	    }
 5109: 	    for(i=1; i<=nlstate;i++){
 5110: 	      kk1=0.;
 5111: 		for(j=1; j<=nlstate;j++){
 5112: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 5113: 		}
 5114: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 5115: 	    }
 5116: 
 5117: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 5118: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 5119: 	  }
 5120: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5121: 	}
 5122:       }
 5123:  
 5124:   /******/
 5125: 
 5126:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 5127: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 5128: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 5129: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 5130: 	  nhstepm = nhstepm/hstepm; 
 5131: 	  
 5132: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5133: 	  oldm=oldms;savm=savms;
 5134: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5135: 	  for (h=0; h<=nhstepm; h++){
 5136: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 5137: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 5138: 	    } 
 5139: 	    for(j=1; j<=nlstate+ndeath;j++) {
 5140: 	      kk1=0.;kk2=0;
 5141: 	      for(i=1; i<=nlstate;i++) {	      
 5142: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 5143: 	      }
 5144: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 5145: 	    }
 5146: 	  }
 5147: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5148: 	}
 5149:       }
 5150:    } 
 5151:   }
 5152:  
 5153:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5154: 
 5155:   if (popforecast==1) {
 5156:     free_ivector(popage,0,AGESUP);
 5157:     free_vector(popeffectif,0,AGESUP);
 5158:     free_vector(popcount,0,AGESUP);
 5159:   }
 5160:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5161:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5162:   fclose(ficrespop);
 5163: } /* End of popforecast */
 5164: 
 5165: int fileappend(FILE *fichier, char *optionfich)
 5166: {
 5167:   if((fichier=fopen(optionfich,"a"))==NULL) {
 5168:     printf("Problem with file: %s\n", optionfich);
 5169:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 5170:     return (0);
 5171:   }
 5172:   fflush(fichier);
 5173:   return (1);
 5174: }
 5175: 
 5176: 
 5177: /**************** function prwizard **********************/
 5178: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 5179: {
 5180: 
 5181:   /* Wizard to print covariance matrix template */
 5182: 
 5183:   char ca[32], cb[32];
 5184:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
 5185:   int numlinepar;
 5186: 
 5187:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5188:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5189:   for(i=1; i <=nlstate; i++){
 5190:     jj=0;
 5191:     for(j=1; j <=nlstate+ndeath; j++){
 5192:       if(j==i) continue;
 5193:       jj++;
 5194:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 5195:       printf("%1d%1d",i,j);
 5196:       fprintf(ficparo,"%1d%1d",i,j);
 5197:       for(k=1; k<=ncovmodel;k++){
 5198: 	/* 	  printf(" %lf",param[i][j][k]); */
 5199: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 5200: 	printf(" 0.");
 5201: 	fprintf(ficparo," 0.");
 5202:       }
 5203:       printf("\n");
 5204:       fprintf(ficparo,"\n");
 5205:     }
 5206:   }
 5207:   printf("# Scales (for hessian or gradient estimation)\n");
 5208:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 5209:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 5210:   for(i=1; i <=nlstate; i++){
 5211:     jj=0;
 5212:     for(j=1; j <=nlstate+ndeath; j++){
 5213:       if(j==i) continue;
 5214:       jj++;
 5215:       fprintf(ficparo,"%1d%1d",i,j);
 5216:       printf("%1d%1d",i,j);
 5217:       fflush(stdout);
 5218:       for(k=1; k<=ncovmodel;k++){
 5219: 	/* 	printf(" %le",delti3[i][j][k]); */
 5220: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 5221: 	printf(" 0.");
 5222: 	fprintf(ficparo," 0.");
 5223:       }
 5224:       numlinepar++;
 5225:       printf("\n");
 5226:       fprintf(ficparo,"\n");
 5227:     }
 5228:   }
 5229:   printf("# Covariance matrix\n");
 5230: /* # 121 Var(a12)\n\ */
 5231: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 5232: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 5233: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 5234: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 5235: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 5236: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 5237: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 5238:   fflush(stdout);
 5239:   fprintf(ficparo,"# Covariance matrix\n");
 5240:   /* # 121 Var(a12)\n\ */
 5241:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 5242:   /* #   ...\n\ */
 5243:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 5244:   
 5245:   for(itimes=1;itimes<=2;itimes++){
 5246:     jj=0;
 5247:     for(i=1; i <=nlstate; i++){
 5248:       for(j=1; j <=nlstate+ndeath; j++){
 5249: 	if(j==i) continue;
 5250: 	for(k=1; k<=ncovmodel;k++){
 5251: 	  jj++;
 5252: 	  ca[0]= k+'a'-1;ca[1]='\0';
 5253: 	  if(itimes==1){
 5254: 	    printf("#%1d%1d%d",i,j,k);
 5255: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 5256: 	  }else{
 5257: 	    printf("%1d%1d%d",i,j,k);
 5258: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 5259: 	    /* 	printf(" %.5le",matcov[i][j]); */
 5260: 	  }
 5261: 	  ll=0;
 5262: 	  for(li=1;li <=nlstate; li++){
 5263: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 5264: 	      if(lj==li) continue;
 5265: 	      for(lk=1;lk<=ncovmodel;lk++){
 5266: 		ll++;
 5267: 		if(ll<=jj){
 5268: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 5269: 		  if(ll<jj){
 5270: 		    if(itimes==1){
 5271: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5272: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5273: 		    }else{
 5274: 		      printf(" 0.");
 5275: 		      fprintf(ficparo," 0.");
 5276: 		    }
 5277: 		  }else{
 5278: 		    if(itimes==1){
 5279: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 5280: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 5281: 		    }else{
 5282: 		      printf(" 0.");
 5283: 		      fprintf(ficparo," 0.");
 5284: 		    }
 5285: 		  }
 5286: 		}
 5287: 	      } /* end lk */
 5288: 	    } /* end lj */
 5289: 	  } /* end li */
 5290: 	  printf("\n");
 5291: 	  fprintf(ficparo,"\n");
 5292: 	  numlinepar++;
 5293: 	} /* end k*/
 5294:       } /*end j */
 5295:     } /* end i */
 5296:   } /* end itimes */
 5297: 
 5298: } /* end of prwizard */
 5299: /******************* Gompertz Likelihood ******************************/
 5300: double gompertz(double x[])
 5301: { 
 5302:   double A,B,L=0.0,sump=0.,num=0.;
 5303:   int i,n=0; /* n is the size of the sample */
 5304: 
 5305:   for (i=0;i<=imx-1 ; i++) {
 5306:     sump=sump+weight[i];
 5307:     /*    sump=sump+1;*/
 5308:     num=num+1;
 5309:   }
 5310:  
 5311:  
 5312:   /* for (i=0; i<=imx; i++) 
 5313:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 5314: 
 5315:   for (i=1;i<=imx ; i++)
 5316:     {
 5317:       if (cens[i] == 1 && wav[i]>1)
 5318: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 5319:       
 5320:       if (cens[i] == 0 && wav[i]>1)
 5321: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 5322: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 5323:       
 5324:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 5325:       if (wav[i] > 1 ) { /* ??? */
 5326: 	L=L+A*weight[i];
 5327: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 5328:       }
 5329:     }
 5330: 
 5331:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 5332:  
 5333:   return -2*L*num/sump;
 5334: }
 5335: 
 5336: #ifdef GSL
 5337: /******************* Gompertz_f Likelihood ******************************/
 5338: double gompertz_f(const gsl_vector *v, void *params)
 5339: { 
 5340:   double A,B,LL=0.0,sump=0.,num=0.;
 5341:   double *x= (double *) v->data;
 5342:   int i,n=0; /* n is the size of the sample */
 5343: 
 5344:   for (i=0;i<=imx-1 ; i++) {
 5345:     sump=sump+weight[i];
 5346:     /*    sump=sump+1;*/
 5347:     num=num+1;
 5348:   }
 5349:  
 5350:  
 5351:   /* for (i=0; i<=imx; i++) 
 5352:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 5353:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 5354:   for (i=1;i<=imx ; i++)
 5355:     {
 5356:       if (cens[i] == 1 && wav[i]>1)
 5357: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 5358:       
 5359:       if (cens[i] == 0 && wav[i]>1)
 5360: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 5361: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 5362:       
 5363:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 5364:       if (wav[i] > 1 ) { /* ??? */
 5365: 	LL=LL+A*weight[i];
 5366: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 5367:       }
 5368:     }
 5369: 
 5370:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 5371:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 5372:  
 5373:   return -2*LL*num/sump;
 5374: }
 5375: #endif
 5376: 
 5377: /******************* Printing html file ***********/
 5378: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 5379: 		  int lastpass, int stepm, int weightopt, char model[],\
 5380: 		  int imx,  double p[],double **matcov,double agemortsup){
 5381:   int i,k;
 5382: 
 5383:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 5384:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 5385:   for (i=1;i<=2;i++) 
 5386:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 5387:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 5388:   fprintf(fichtm,"</ul>");
 5389: 
 5390: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 5391: 
 5392:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 5393: 
 5394:  for (k=agegomp;k<(agemortsup-2);k++) 
 5395:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 5396: 
 5397:  
 5398:   fflush(fichtm);
 5399: }
 5400: 
 5401: /******************* Gnuplot file **************/
 5402: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 5403: 
 5404:   char dirfileres[132],optfileres[132];
 5405: 
 5406:   int ng;
 5407: 
 5408: 
 5409:   /*#ifdef windows */
 5410:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 5411:     /*#endif */
 5412: 
 5413: 
 5414:   strcpy(dirfileres,optionfilefiname);
 5415:   strcpy(optfileres,"vpl");
 5416:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 5417:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 5418:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
 5419:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 5420:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 5421: 
 5422: } 
 5423: 
 5424: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 5425: {
 5426: 
 5427:   /*-------- data file ----------*/
 5428:   FILE *fic;
 5429:   char dummy[]="                         ";
 5430:   int i=0, j=0, n=0;
 5431:   int linei, month, year,iout;
 5432:   char line[MAXLINE], linetmp[MAXLINE];
 5433:   char stra[MAXLINE], strb[MAXLINE];
 5434:   char *stratrunc;
 5435:   int lstra;
 5436: 
 5437: 
 5438:   if((fic=fopen(datafile,"r"))==NULL)    {
 5439:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 5440:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 5441:   }
 5442: 
 5443:   i=1;
 5444:   linei=0;
 5445:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 5446:     linei=linei+1;
 5447:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 5448:       if(line[j] == '\t')
 5449: 	line[j] = ' ';
 5450:     }
 5451:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 5452:       ;
 5453:     };
 5454:     line[j+1]=0;  /* Trims blanks at end of line */
 5455:     if(line[0]=='#'){
 5456:       fprintf(ficlog,"Comment line\n%s\n",line);
 5457:       printf("Comment line\n%s\n",line);
 5458:       continue;
 5459:     }
 5460:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 5461:     strcpy(line, linetmp);
 5462:   
 5463: 
 5464:     for (j=maxwav;j>=1;j--){
 5465:       cutv(stra, strb, line, ' '); 
 5466:       if(strb[0]=='.') { /* Missing status */
 5467: 	lval=-1;
 5468:       }else{
 5469: 	errno=0;
 5470: 	lval=strtol(strb,&endptr,10); 
 5471:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 5472: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5473: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 5474: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 5475: 	  return 1;
 5476: 	}
 5477:       }
 5478:       s[j][i]=lval;
 5479:       
 5480:       strcpy(line,stra);
 5481:       cutv(stra, strb,line,' ');
 5482:       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5483:       }
 5484:       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5485: 	month=99;
 5486: 	year=9999;
 5487:       }else{
 5488: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 5489: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 5490: 	return 1;
 5491:       }
 5492:       anint[j][i]= (double) year; 
 5493:       mint[j][i]= (double)month; 
 5494:       strcpy(line,stra);
 5495:     } /* ENd Waves */
 5496:     
 5497:     cutv(stra, strb,line,' '); 
 5498:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5499:     }
 5500:     else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5501:       month=99;
 5502:       year=9999;
 5503:     }else{
 5504:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5505: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5506: 	return 1;
 5507:     }
 5508:     andc[i]=(double) year; 
 5509:     moisdc[i]=(double) month; 
 5510:     strcpy(line,stra);
 5511:     
 5512:     cutv(stra, strb,line,' '); 
 5513:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5514:     }
 5515:     else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
 5516:       month=99;
 5517:       year=9999;
 5518:     }else{
 5519:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5520:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5521: 	return 1;
 5522:     }
 5523:     if (year==9999) {
 5524:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 5525:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5526: 	return 1;
 5527: 
 5528:     }
 5529:     annais[i]=(double)(year);
 5530:     moisnais[i]=(double)(month); 
 5531:     strcpy(line,stra);
 5532:     
 5533:     cutv(stra, strb,line,' '); 
 5534:     errno=0;
 5535:     dval=strtod(strb,&endptr); 
 5536:     if( strb[0]=='\0' || (*endptr != '\0')){
 5537:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5538:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5539:       fflush(ficlog);
 5540:       return 1;
 5541:     }
 5542:     weight[i]=dval; 
 5543:     strcpy(line,stra);
 5544:     
 5545:     for (j=ncovcol;j>=1;j--){
 5546:       cutv(stra, strb,line,' '); 
 5547:       if(strb[0]=='.') { /* Missing status */
 5548: 	lval=-1;
 5549:       }else{
 5550: 	errno=0;
 5551: 	lval=strtol(strb,&endptr,10); 
 5552: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5553: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 5554: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 5555: 	  return 1;
 5556: 	}
 5557:       }
 5558:       if(lval <-1 || lval >1){
 5559: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5560:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5561:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5562:  For example, for multinomial values like 1, 2 and 3,\n \
 5563:  build V1=0 V2=0 for the reference value (1),\n \
 5564:         V1=1 V2=0 for (2) \n \
 5565:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5566:  output of IMaCh is often meaningless.\n \
 5567:  Exiting.\n",lval,linei, i,line,j);
 5568: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5569:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5570:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5571:  For example, for multinomial values like 1, 2 and 3,\n \
 5572:  build V1=0 V2=0 for the reference value (1),\n \
 5573:         V1=1 V2=0 for (2) \n \
 5574:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5575:  output of IMaCh is often meaningless.\n \
 5576:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 5577: 	return 1;
 5578:       }
 5579:       covar[j][i]=(double)(lval);
 5580:       strcpy(line,stra);
 5581:     }  
 5582:     lstra=strlen(stra);
 5583:      
 5584:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 5585:       stratrunc = &(stra[lstra-9]);
 5586:       num[i]=atol(stratrunc);
 5587:     }
 5588:     else
 5589:       num[i]=atol(stra);
 5590:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 5591:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 5592:     
 5593:     i=i+1;
 5594:   } /* End loop reading  data */
 5595: 
 5596:   *imax=i-1; /* Number of individuals */
 5597:   fclose(fic);
 5598:  
 5599:   return (0);
 5600:   /* endread: */
 5601:     printf("Exiting readdata: ");
 5602:     fclose(fic);
 5603:     return (1);
 5604: 
 5605: 
 5606: 
 5607: }
 5608: void removespace(char *str) {
 5609:   char *p1 = str, *p2 = str;
 5610:   do
 5611:     while (*p2 == ' ')
 5612:       p2++;
 5613:   while (*p1++ == *p2++);
 5614: }
 5615: 
 5616: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 5617:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
 5618:    * - nagesqr = 1 if age*age in the model, otherwise 0.
 5619:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
 5620:    * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
 5621:    * - cptcovage number of covariates with age*products =2
 5622:    * - cptcovs number of simple covariates
 5623:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 5624:    *     which is a new column after the 9 (ncovcol) variables. 
 5625:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 5626:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 5627:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 5628:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 5629:  */
 5630: {
 5631:   int i, j, k, ks;
 5632:   int  j1, k1, k2;
 5633:   char modelsav[80];
 5634:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 5635:   char *strpt;
 5636: 
 5637:   /*removespace(model);*/
 5638:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 5639:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 5640:     if (strstr(model,"AGE") !=0){
 5641:       printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
 5642:       fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
 5643:       return 1;
 5644:     }
 5645:     if (strstr(model,"v") !=0){
 5646:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 5647:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 5648:       return 1;
 5649:     }
 5650:     strcpy(modelsav,model); 
 5651:     if ((strpt=strstr(model,"age*age")) !=0){
 5652:       printf(" strpt=%s, model=%s\n",strpt, model);
 5653:       if(strpt != model){
 5654:       printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
 5655:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
 5656:  corresponding column of parameters.\n",model);
 5657:       fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
 5658:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
 5659:  corresponding column of parameters.\n",model); fflush(ficlog);
 5660:       return 1;
 5661:     }
 5662: 
 5663:       nagesqr=1;
 5664:       if (strstr(model,"+age*age") !=0)
 5665: 	substrchaine(modelsav, model, "+age*age");
 5666:       else if (strstr(model,"age*age+") !=0)
 5667: 	substrchaine(modelsav, model, "age*age+");
 5668:       else 
 5669: 	substrchaine(modelsav, model, "age*age");
 5670:     }else
 5671:       nagesqr=0;
 5672:     if (strlen(modelsav) >1){
 5673:       j=nbocc(modelsav,'+'); /**< j=Number of '+' */
 5674:       j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
 5675:       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
 5676:       cptcovt= j+1; /* Number of total covariates in the model, not including
 5677: 		   * cst, age and age*age 
 5678: 		   * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
 5679:                   /* including age products which are counted in cptcovage.
 5680: 		  * but the covariates which are products must be treated 
 5681: 		  * separately: ncovn=4- 2=2 (V1+V3). */
 5682:       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 5683:       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 5684: 
 5685:     
 5686:       /*   Design
 5687:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 5688:        *  <          ncovcol=8                >
 5689:        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 5690:        *   k=  1    2      3       4     5       6      7        8
 5691:        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 5692:        *  covar[k,i], value of kth covariate if not including age for individual i:
 5693:        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 5694:        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 5695:        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 5696:        *  Tage[++cptcovage]=k
 5697:        *       if products, new covar are created after ncovcol with k1
 5698:        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 5699:        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 5700:        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 5701:        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 5702:        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 5703:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 5704:        *  <          ncovcol=8                >
 5705:        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 5706:        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 5707:        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5708:        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5709:        * p Tprod[1]@2={                         6, 5}
 5710:        *p Tvard[1][1]@4= {7, 8, 5, 6}
 5711:        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5712:        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5713:        *How to reorganize?
 5714:        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5715:        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5716:        *       {2,   1,     4,      8,    5,      6,     3,       7}
 5717:        * Struct []
 5718:        */
 5719: 
 5720:       /* This loop fills the array Tvar from the string 'model'.*/
 5721:       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5722:       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5723:       /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5724:       /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5725:       /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5726:       /* 	k=1 Tvar[1]=2 (from V2) */
 5727:       /* 	k=5 Tvar[5] */
 5728:       /* for (k=1; k<=cptcovn;k++) { */
 5729:       /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 5730:       /* 	} */
 5731:       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
 5732:       /*
 5733:        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5734:       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5735:         Tvar[k]=0;
 5736:       cptcovage=0;
 5737:       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5738: 	cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5739: 					 modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5740: 	if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5741: 	/*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5742: 	/*scanf("%d",i);*/
 5743: 	if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5744: 	  cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5745: 	  if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5746: 	    /* covar is not filled and then is empty */
 5747: 	    cptcovprod--;
 5748: 	    cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5749: 	    Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
 5750: 	    cptcovage++; /* Sums the number of covariates which include age as a product */
 5751: 	    Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
 5752: 	    /*printf("stre=%s ", stre);*/
 5753: 	  } else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5754: 	    cptcovprod--;
 5755: 	    cutl(stre,strb,strc,'V');
 5756: 	    Tvar[k]=atoi(stre);
 5757: 	    cptcovage++;
 5758: 	    Tage[cptcovage]=k;
 5759: 	  } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5760: 	    /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5761: 	    cptcovn++;
 5762: 	    cptcovprodnoage++;k1++;
 5763: 	    cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5764: 	    Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5765: 				   because this model-covariate is a construction we invent a new column
 5766: 				   ncovcol + k1
 5767: 				   If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5768: 				   Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5769: 	    cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5770: 	    Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5771: 	    Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5772: 	    Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5773: 	    k2=k2+2;
 5774: 	    Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5775: 	    Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5776: 	    for (i=1; i<=lastobs;i++){
 5777: 	      /* Computes the new covariate which is a product of
 5778: 		 covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5779: 	      covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5780: 	    }
 5781: 	  } /* End age is not in the model */
 5782: 	} /* End if model includes a product */
 5783: 	else { /* no more sum */
 5784: 	  /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5785: 	  /*  scanf("%d",i);*/
 5786: 	  cutl(strd,strc,strb,'V');
 5787: 	  ks++; /**< Number of simple covariates */
 5788: 	  cptcovn++;
 5789: 	  Tvar[k]=atoi(strd);
 5790: 	}
 5791: 	strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5792: 	/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5793: 	  scanf("%d",i);*/
 5794:       } /* end of loop + on total covariates */
 5795:     } /* end if strlen(modelsave == 0) age*age might exist */
 5796:   } /* end if strlen(model == 0) */
 5797:   
 5798:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5799:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5800: 
 5801:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5802:   printf("cptcovprod=%d ", cptcovprod);
 5803:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5804: 
 5805:   scanf("%d ",i);*/
 5806: 
 5807: 
 5808:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5809:   /*endread:*/
 5810:     printf("Exiting decodemodel: ");
 5811:     return (1);
 5812: }
 5813: 
 5814: int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5815: {
 5816:   int i, m;
 5817: 
 5818:   for (i=1; i<=imx; i++) {
 5819:     for(m=2; (m<= maxwav); m++) {
 5820:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5821: 	anint[m][i]=9999;
 5822: 	s[m][i]=-1;
 5823:       }
 5824:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5825: 	*nberr = *nberr + 1;
 5826: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5827: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5828: 	s[m][i]=-1;
 5829:       }
 5830:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5831: 	(*nberr)++;
 5832: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5833: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5834: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5835:       }
 5836:     }
 5837:   }
 5838: 
 5839:   for (i=1; i<=imx; i++)  {
 5840:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5841:     for(m=firstpass; (m<= lastpass); m++){
 5842:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5843: 	if (s[m][i] >= nlstate+1) {
 5844: 	  if(agedc[i]>0){
 5845: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
 5846: 	      agev[m][i]=agedc[i];
 5847: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5848: 	    }else {
 5849: 	      if ((int)andc[i]!=9999){
 5850: 		nbwarn++;
 5851: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5852: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5853: 		agev[m][i]=-1;
 5854: 	      }
 5855: 	    }
 5856: 	  } /* agedc > 0 */
 5857: 	}
 5858: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5859: 				 years but with the precision of a month */
 5860: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5861: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5862: 	    agev[m][i]=1;
 5863: 	  else if(agev[m][i] < *agemin){ 
 5864: 	    *agemin=agev[m][i];
 5865: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5866: 	  }
 5867: 	  else if(agev[m][i] >*agemax){
 5868: 	    *agemax=agev[m][i];
 5869: 	    /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
 5870: 	  }
 5871: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5872: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5873: 	}
 5874: 	else { /* =9 */
 5875: 	  agev[m][i]=1;
 5876: 	  s[m][i]=-1;
 5877: 	}
 5878:       }
 5879:       else /*= 0 Unknown */
 5880: 	agev[m][i]=1;
 5881:     }
 5882:     
 5883:   }
 5884:   for (i=1; i<=imx; i++)  {
 5885:     for(m=firstpass; (m<=lastpass); m++){
 5886:       if (s[m][i] > (nlstate+ndeath)) {
 5887: 	(*nberr)++;
 5888: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5889: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5890: 	return 1;
 5891:       }
 5892:     }
 5893:   }
 5894: 
 5895:   /*for (i=1; i<=imx; i++){
 5896:   for (m=firstpass; (m<lastpass); m++){
 5897:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5898: }
 5899: 
 5900: }*/
 5901: 
 5902: 
 5903:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5904:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5905: 
 5906:   return (0);
 5907:  /* endread:*/
 5908:     printf("Exiting calandcheckages: ");
 5909:     return (1);
 5910: }
 5911: 
 5912: #if defined(_MSC_VER)
 5913: /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5914: /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5915: //#include "stdafx.h"
 5916: //#include <stdio.h>
 5917: //#include <tchar.h>
 5918: //#include <windows.h>
 5919: //#include <iostream>
 5920: typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
 5921: 
 5922: LPFN_ISWOW64PROCESS fnIsWow64Process;
 5923: 
 5924: BOOL IsWow64()
 5925: {
 5926: 	BOOL bIsWow64 = FALSE;
 5927: 
 5928: 	//typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
 5929: 	//  (HANDLE, PBOOL);
 5930: 
 5931: 	//LPFN_ISWOW64PROCESS fnIsWow64Process;
 5932: 
 5933: 	HMODULE module = GetModuleHandle(_T("kernel32"));
 5934: 	const char funcName[] = "IsWow64Process";
 5935: 	fnIsWow64Process = (LPFN_ISWOW64PROCESS)
 5936: 		GetProcAddress(module, funcName);
 5937: 
 5938: 	if (NULL != fnIsWow64Process)
 5939: 	{
 5940: 		if (!fnIsWow64Process(GetCurrentProcess(),
 5941: 			&bIsWow64))
 5942: 			//throw std::exception("Unknown error");
 5943: 			printf("Unknown error\n");
 5944: 	}
 5945: 	return bIsWow64 != FALSE;
 5946: }
 5947: #endif
 5948: 
 5949: void syscompilerinfo(int logged)
 5950:  {
 5951:    /* #include "syscompilerinfo.h"*/
 5952:    /* command line Intel compiler 32bit windows, XP compatible:*/
 5953:    /* /GS /W3 /Gy
 5954:       /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
 5955:       "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
 5956:       "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
 5957:       /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
 5958:    */ 
 5959:    /* 64 bits */
 5960:    /*
 5961:      /GS /W3 /Gy
 5962:      /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
 5963:      /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
 5964:      /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
 5965:      "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
 5966:    /* Optimization are useless and O3 is slower than O2 */
 5967:    /*
 5968:      /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
 5969:      /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
 5970:      /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
 5971:      /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
 5972:    */
 5973:    /* Link is */ /* /OUT:"visual studio
 5974:       2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
 5975:       /PDB:"visual studio
 5976:       2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
 5977:       "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
 5978:       "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
 5979:       "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
 5980:       /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
 5981:       /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
 5982:       uiAccess='false'"
 5983:       /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
 5984:       /NOLOGO /TLBID:1
 5985:    */
 5986: #if defined __INTEL_COMPILER
 5987: #if defined(__GNUC__)
 5988: 	struct utsname sysInfo;  /* For Intel on Linux and OS/X */
 5989: #endif
 5990: #elif defined(__GNUC__) 
 5991: #ifndef  __APPLE__
 5992: #include <gnu/libc-version.h>  /* Only on gnu */
 5993: #endif
 5994:    struct utsname sysInfo;
 5995:    int cross = CROSS;
 5996:    if (cross){
 5997: 	   printf("Cross-");
 5998: 	   if(logged) fprintf(ficlog, "Cross-");
 5999:    }
 6000: #endif
 6001: 
 6002: #include <stdint.h>
 6003: 
 6004:    printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
 6005: #if defined(__clang__)
 6006:    printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");	/* Clang/LLVM. ---------------------------------------------- */
 6007: #endif
 6008: #if defined(__ICC) || defined(__INTEL_COMPILER)
 6009:    printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
 6010: #endif
 6011: #if defined(__GNUC__) || defined(__GNUG__)
 6012:    printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
 6013: #endif
 6014: #if defined(__HP_cc) || defined(__HP_aCC)
 6015:    printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
 6016: #endif
 6017: #if defined(__IBMC__) || defined(__IBMCPP__)
 6018:    printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
 6019: #endif
 6020: #if defined(_MSC_VER)
 6021:    printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
 6022: #endif
 6023: #if defined(__PGI)
 6024:    printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
 6025: #endif
 6026: #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
 6027:    printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
 6028: #endif
 6029:    printf(" for "); if (logged) fprintf(ficlog, " for ");
 6030:    
 6031: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
 6032: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
 6033:     // Windows (x64 and x86)
 6034:    printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
 6035: #elif __unix__ // all unices, not all compilers
 6036:     // Unix
 6037:    printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
 6038: #elif __linux__
 6039:     // linux
 6040:    printf("linux ");if(logged) fprintf(ficlog,"linux ");
 6041: #elif __APPLE__
 6042:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
 6043:    printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
 6044: #endif
 6045: 
 6046: /*  __MINGW32__	  */
 6047: /*  __CYGWIN__	 */
 6048: /* __MINGW64__  */
 6049: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
 6050: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
 6051: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
 6052: /* _WIN64  // Defined for applications for Win64. */
 6053: /* _M_X64 // Defined for compilations that target x64 processors. */
 6054: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
 6055: 
 6056: #if UINTPTR_MAX == 0xffffffff
 6057:    printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
 6058: #elif UINTPTR_MAX == 0xffffffffffffffff
 6059:    printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
 6060: #else
 6061:    printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
 6062: #endif
 6063: 
 6064: #if defined(__GNUC__)
 6065: # if defined(__GNUC_PATCHLEVEL__)
 6066: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 6067:                             + __GNUC_MINOR__ * 100 \
 6068:                             + __GNUC_PATCHLEVEL__)
 6069: # else
 6070: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 6071:                             + __GNUC_MINOR__ * 100)
 6072: # endif
 6073:    printf(" using GNU C version %d.\n", __GNUC_VERSION__);
 6074:    if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
 6075: 
 6076:    if (uname(&sysInfo) != -1) {
 6077:      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 6078: 	 if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 6079:    }
 6080:    else
 6081:       perror("uname() error");
 6082:    //#ifndef __INTEL_COMPILER 
 6083: #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
 6084:    printf("GNU libc version: %s\n", gnu_get_libc_version()); 
 6085:    if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
 6086: #endif
 6087: #endif
 6088: 
 6089:    //   void main()
 6090:    //   {
 6091: #if defined(_MSC_VER)
 6092:    if (IsWow64()){
 6093: 	   printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 6094: 	   if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 6095:    }
 6096:    else{
 6097: 	   printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 6098: 	   if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 6099:    }
 6100:    //	   printf("\nPress Enter to continue...");
 6101:    //	   getchar();
 6102:    //   }
 6103: 
 6104: #endif
 6105:    
 6106: 
 6107:  }
 6108: 
 6109: int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
 6110:   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 6111:   int i, j, k, i1 ;
 6112:   double ftolpl = 1.e-10;
 6113:   double age, agebase, agelim;
 6114: 
 6115:     strcpy(filerespl,"pl");
 6116:     strcat(filerespl,fileres);
 6117:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 6118:       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 6119:       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 6120:     }
 6121:     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 6122:     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 6123:     pstamp(ficrespl);
 6124:     fprintf(ficrespl,"# Period (stable) prevalence \n");
 6125:     fprintf(ficrespl,"#Age ");
 6126:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 6127:     fprintf(ficrespl,"\n");
 6128:   
 6129:     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
 6130: 
 6131:     agebase=ageminpar;
 6132:     agelim=agemaxpar;
 6133: 
 6134:     i1=pow(2,cptcoveff);
 6135:     if (cptcovn < 1){i1=1;}
 6136: 
 6137:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6138:     /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
 6139:       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 6140: 	k=k+1;
 6141: 	/* to clean */
 6142: 	//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
 6143: 	fprintf(ficrespl,"\n#******");
 6144: 	printf("\n#******");
 6145: 	fprintf(ficlog,"\n#******");
 6146: 	for(j=1;j<=cptcoveff;j++) {
 6147: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6148: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6149: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6150: 	}
 6151: 	fprintf(ficrespl,"******\n");
 6152: 	printf("******\n");
 6153: 	fprintf(ficlog,"******\n");
 6154: 
 6155: 	fprintf(ficrespl,"#Age ");
 6156: 	for(j=1;j<=cptcoveff;j++) {
 6157: 	  fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6158: 	}
 6159: 	for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 6160: 	fprintf(ficrespl,"\n");
 6161: 	
 6162: 	for (age=agebase; age<=agelim; age++){
 6163: 	/* for (age=agebase; age<=agebase; age++){ */
 6164: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 6165: 	  fprintf(ficrespl,"%.0f ",age );
 6166: 	  for(j=1;j<=cptcoveff;j++)
 6167: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6168: 	  for(i=1; i<=nlstate;i++)
 6169: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 6170: 	  fprintf(ficrespl,"\n");
 6171: 	} /* Age */
 6172: 	/* was end of cptcod */
 6173:     } /* cptcov */
 6174: 	return 0;
 6175: }
 6176: 
 6177: int hPijx(double *p, int bage, int fage){
 6178:     /*------------- h Pij x at various ages ------------*/
 6179: 
 6180:   int stepsize;
 6181:   int agelim;
 6182:   int hstepm;
 6183:   int nhstepm;
 6184:   int h, i, i1, j, k;
 6185: 
 6186:   double agedeb;
 6187:   double ***p3mat;
 6188: 
 6189:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 6190:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 6191:       printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
 6192:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
 6193:     }
 6194:     printf("Computing pij: result on file '%s' \n", filerespij);
 6195:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 6196:   
 6197:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 6198:     /*if (stepm<=24) stepsize=2;*/
 6199: 
 6200:     agelim=AGESUP;
 6201:     hstepm=stepsize*YEARM; /* Every year of age */
 6202:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 6203: 
 6204:     /* hstepm=1;   aff par mois*/
 6205:     pstamp(ficrespij);
 6206:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 6207:     i1= pow(2,cptcoveff);
 6208:    /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
 6209:    /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
 6210:    /*  	k=k+1;  */
 6211:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6212:       fprintf(ficrespij,"\n#****** ");
 6213:       for(j=1;j<=cptcoveff;j++) 
 6214: 	fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6215:       fprintf(ficrespij,"******\n");
 6216:       
 6217:       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 6218: 	nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 6219: 	nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 6220: 	
 6221: 	/*	  nhstepm=nhstepm*YEARM; aff par mois*/
 6222: 	
 6223: 	p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 6224: 	oldm=oldms;savm=savms;
 6225: 	hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 6226: 	fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 6227: 	for(i=1; i<=nlstate;i++)
 6228: 	  for(j=1; j<=nlstate+ndeath;j++)
 6229: 	    fprintf(ficrespij," %1d-%1d",i,j);
 6230: 	fprintf(ficrespij,"\n");
 6231: 	for (h=0; h<=nhstepm; h++){
 6232: 	  /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
 6233: 	  fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
 6234: 	  for(i=1; i<=nlstate;i++)
 6235: 	    for(j=1; j<=nlstate+ndeath;j++)
 6236: 	      fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 6237: 	  fprintf(ficrespij,"\n");
 6238: 	}
 6239: 	free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 6240: 	fprintf(ficrespij,"\n");
 6241:       }
 6242:       /*}*/
 6243:     }
 6244: 	return 0;
 6245: }
 6246: 
 6247: 
 6248: /***********************************************/
 6249: /**************** Main Program *****************/
 6250: /***********************************************/
 6251: 
 6252: int main(int argc, char *argv[])
 6253: {
 6254: #ifdef GSL
 6255:   const gsl_multimin_fminimizer_type *T;
 6256:   size_t iteri = 0, it;
 6257:   int rval = GSL_CONTINUE;
 6258:   int status = GSL_SUCCESS;
 6259:   double ssval;
 6260: #endif
 6261:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 6262:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
 6263: 
 6264:   int jj, ll, li, lj, lk;
 6265:   int numlinepar=0; /* Current linenumber of parameter file */
 6266:   int itimes;
 6267:   int NDIM=2;
 6268:   int vpopbased=0;
 6269: 
 6270:   char ca[32], cb[32];
 6271:   /*  FILE *fichtm; *//* Html File */
 6272:   /* FILE *ficgp;*/ /*Gnuplot File */
 6273:   struct stat info;
 6274:   double agedeb=0.;
 6275:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 6276: 
 6277:   double fret;
 6278:   double dum=0.; /* Dummy variable */
 6279:   double ***p3mat;
 6280:   double ***mobaverage;
 6281: 
 6282:   char line[MAXLINE];
 6283:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 6284:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 6285:   char *tok, *val; /* pathtot */
 6286:   int firstobs=1, lastobs=10;
 6287:   int c,  h , cpt;
 6288:   int jl=0;
 6289:   int i1, j1, jk, stepsize=0;
 6290:   int *tab; 
 6291:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 6292:   int mobilav=0,popforecast=0;
 6293:   int hstepm=0, nhstepm=0;
 6294:   int agemortsup;
 6295:   float  sumlpop=0.;
 6296:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 6297:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 6298: 
 6299:   double bage=0, fage=110., age, agelim=0., agebase=0.;
 6300:   double ftolpl=FTOL;
 6301:   double **prlim;
 6302:   double ***param; /* Matrix of parameters */
 6303:   double  *p;
 6304:   double **matcov; /* Matrix of covariance */
 6305:   double ***delti3; /* Scale */
 6306:   double *delti; /* Scale */
 6307:   double ***eij, ***vareij;
 6308:   double **varpl; /* Variances of prevalence limits by age */
 6309:   double *epj, vepp;
 6310: 
 6311:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 6312:   double **ximort;
 6313:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 6314:   int *dcwave;
 6315: 
 6316:   char z[1]="c";
 6317: 
 6318:   /*char  *strt;*/
 6319:   char strtend[80];
 6320: 
 6321: 
 6322: /*   setlocale (LC_ALL, ""); */
 6323: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 6324: /*   textdomain (PACKAGE); */
 6325: /*   setlocale (LC_CTYPE, ""); */
 6326: /*   setlocale (LC_MESSAGES, ""); */
 6327: 
 6328:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 6329:   rstart_time = time(NULL);  
 6330:   /*  (void) gettimeofday(&start_time,&tzp);*/
 6331:   start_time = *localtime(&rstart_time);
 6332:   curr_time=start_time;
 6333:   /*tml = *localtime(&start_time.tm_sec);*/
 6334:   /* strcpy(strstart,asctime(&tml)); */
 6335:   strcpy(strstart,asctime(&start_time));
 6336: 
 6337: /*  printf("Localtime (at start)=%s",strstart); */
 6338: /*  tp.tm_sec = tp.tm_sec +86400; */
 6339: /*  tm = *localtime(&start_time.tm_sec); */
 6340: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 6341: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 6342: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 6343: /*   tp.tm_sec = mktime(&tmg); */
 6344: /*   strt=asctime(&tmg); */
 6345: /*   printf("Time(after) =%s",strstart);  */
 6346: /*  (void) time (&time_value);
 6347: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 6348: *  tm = *localtime(&time_value);
 6349: *  strstart=asctime(&tm);
 6350: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 6351: */
 6352: 
 6353:   nberr=0; /* Number of errors and warnings */
 6354:   nbwarn=0;
 6355: #ifdef WIN32
 6356:   _getcwd(pathcd, size);
 6357: #else
 6358:   getcwd(pathcd, size);
 6359: #endif
 6360:   syscompilerinfo(0);
 6361:   printf("\n%s\n%s",version,fullversion);
 6362:   if(argc <=1){
 6363:     printf("\nEnter the parameter file name: ");
 6364:     fgets(pathr,FILENAMELENGTH,stdin);
 6365:     i=strlen(pathr);
 6366:     if(pathr[i-1]=='\n')
 6367:       pathr[i-1]='\0';
 6368:     i=strlen(pathr);
 6369:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
 6370:       pathr[i-1]='\0';
 6371:    for (tok = pathr; tok != NULL; ){
 6372:       printf("Pathr |%s|\n",pathr);
 6373:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 6374:       printf("val= |%s| pathr=%s\n",val,pathr);
 6375:       strcpy (pathtot, val);
 6376:       if(pathr[0] == '\0') break; /* Dirty */
 6377:     }
 6378:   }
 6379:   else{
 6380:     strcpy(pathtot,argv[1]);
 6381:   }
 6382:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 6383:   /*cygwin_split_path(pathtot,path,optionfile);
 6384:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 6385:   /* cutv(path,optionfile,pathtot,'\\');*/
 6386: 
 6387:   /* Split argv[0], imach program to get pathimach */
 6388:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 6389:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 6390:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 6391:  /*   strcpy(pathimach,argv[0]); */
 6392:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 6393:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 6394:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 6395: #ifdef WIN32
 6396:   _chdir(path); /* Can be a relative path */
 6397:   if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 6398: #else
 6399:   chdir(path); /* Can be a relative path */
 6400:   if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
 6401: #endif
 6402:   printf("Current directory %s!\n",pathcd);
 6403:   strcpy(command,"mkdir ");
 6404:   strcat(command,optionfilefiname);
 6405:   if((outcmd=system(command)) != 0){
 6406:     printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
 6407:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 6408:     /* fclose(ficlog); */
 6409: /*     exit(1); */
 6410:   }
 6411: /*   if((imk=mkdir(optionfilefiname))<0){ */
 6412: /*     perror("mkdir"); */
 6413: /*   } */
 6414: 
 6415:   /*-------- arguments in the command line --------*/
 6416: 
 6417:   /* Main Log file */
 6418:   strcat(filelog, optionfilefiname);
 6419:   strcat(filelog,".log");    /* */
 6420:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 6421:     printf("Problem with logfile %s\n",filelog);
 6422:     goto end;
 6423:   }
 6424:   fprintf(ficlog,"Log filename:%s\n",filelog);
 6425:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 6426:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 6427:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 6428:  path=%s \n\
 6429:  optionfile=%s\n\
 6430:  optionfilext=%s\n\
 6431:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 6432: 
 6433:   syscompilerinfo(0);
 6434: 
 6435:   printf("Local time (at start):%s",strstart);
 6436:   fprintf(ficlog,"Local time (at start): %s",strstart);
 6437:   fflush(ficlog);
 6438: /*   (void) gettimeofday(&curr_time,&tzp); */
 6439: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
 6440: 
 6441:   /* */
 6442:   strcpy(fileres,"r");
 6443:   strcat(fileres, optionfilefiname);
 6444:   strcat(fileres,".txt");    /* Other files have txt extension */
 6445: 
 6446:   /* Main ---------arguments file --------*/
 6447: 
 6448:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 6449:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 6450:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 6451:     fflush(ficlog);
 6452:     /* goto end; */
 6453:     exit(70); 
 6454:   }
 6455: 
 6456: 
 6457: 
 6458:   strcpy(filereso,"o");
 6459:   strcat(filereso,fileres);
 6460:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 6461:     printf("Problem with Output resultfile: %s\n", filereso);
 6462:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 6463:     fflush(ficlog);
 6464:     goto end;
 6465:   }
 6466: 
 6467:   /* Reads comments: lines beginning with '#' */
 6468:   numlinepar=0;
 6469:   while((c=getc(ficpar))=='#' && c!= EOF){
 6470:     ungetc(c,ficpar);
 6471:     fgets(line, MAXLINE, ficpar);
 6472:     numlinepar++;
 6473:     fputs(line,stdout);
 6474:     fputs(line,ficparo);
 6475:     fputs(line,ficlog);
 6476:   }
 6477:   ungetc(c,ficpar);
 6478: 
 6479:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 6480:   numlinepar++;
 6481:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 6482:   if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
 6483:     model[strlen(model)-1]='\0';
 6484:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6485:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6486:   fflush(ficlog);
 6487:   /* if(model[0]=='#'|| model[0]== '\0'){ */
 6488:   if(model[0]=='#'){
 6489:     printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
 6490:  'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
 6491:  'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");		\
 6492:     if(mle != -1){
 6493:       printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
 6494:       exit(1);
 6495:     }
 6496:   }
 6497:   while((c=getc(ficpar))=='#' && c!= EOF){
 6498:     ungetc(c,ficpar);
 6499:     fgets(line, MAXLINE, ficpar);
 6500:     numlinepar++;
 6501:     fputs(line, stdout);
 6502:     //puts(line);
 6503:     fputs(line,ficparo);
 6504:     fputs(line,ficlog);
 6505:   }
 6506:   ungetc(c,ficpar);
 6507: 
 6508:    
 6509:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 6510:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 6511:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 6512:      v1+v2*age+v2*v3 makes cptcovn = 3
 6513:   */
 6514:   if (strlen(model)>1) 
 6515:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
 6516:   else
 6517:     ncovmodel=2; /* Constant and age */
 6518:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 6519:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 6520:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 6521:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6522:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6523:     fflush(stdout);
 6524:     fclose (ficlog);
 6525:     goto end;
 6526:   }
 6527:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6528:   delti=delti3[1][1];
 6529:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 6530:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 6531:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6532:     printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6533:     fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6534:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6535:     fclose (ficparo);
 6536:     fclose (ficlog);
 6537:     goto end;
 6538:     exit(0);
 6539:   }
 6540:   else if(mle==-3) { /* Main Wizard */
 6541:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6542:     printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6543:     fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6544:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6545:     matcov=matrix(1,npar,1,npar);
 6546:   }
 6547:   else{
 6548:     /* Read guessed parameters */
 6549:     /* Reads comments: lines beginning with '#' */
 6550:     while((c=getc(ficpar))=='#' && c!= EOF){
 6551:       ungetc(c,ficpar);
 6552:       fgets(line, MAXLINE, ficpar);
 6553:       numlinepar++;
 6554:       fputs(line,stdout);
 6555:       fputs(line,ficparo);
 6556:       fputs(line,ficlog);
 6557:     }
 6558:     ungetc(c,ficpar);
 6559:     
 6560:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6561:     for(i=1; i <=nlstate; i++){
 6562:       j=0;
 6563:       for(jj=1; jj <=nlstate+ndeath; jj++){
 6564: 	if(jj==i) continue;
 6565: 	j++;
 6566: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6567: 	if ((i1 != i) || (j1 != jj)){
 6568: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 6569: It might be a problem of design; if ncovcol and the model are correct\n \
 6570: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 6571: 	  exit(1);
 6572: 	}
 6573: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6574: 	if(mle==1)
 6575: 	  printf("%1d%1d",i,jj);
 6576: 	fprintf(ficlog,"%1d%1d",i,jj);
 6577: 	for(k=1; k<=ncovmodel;k++){
 6578: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 6579: 	  if(mle==1){
 6580: 	    printf(" %lf",param[i][j][k]);
 6581: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6582: 	  }
 6583: 	  else
 6584: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6585: 	  fprintf(ficparo," %lf",param[i][j][k]);
 6586: 	}
 6587: 	fscanf(ficpar,"\n");
 6588: 	numlinepar++;
 6589: 	if(mle==1)
 6590: 	  printf("\n");
 6591: 	fprintf(ficlog,"\n");
 6592: 	fprintf(ficparo,"\n");
 6593:       }
 6594:     }  
 6595:     fflush(ficlog);
 6596: 
 6597:     /* Reads scales values */
 6598:     p=param[1][1];
 6599:     
 6600:     /* Reads comments: lines beginning with '#' */
 6601:     while((c=getc(ficpar))=='#' && c!= EOF){
 6602:       ungetc(c,ficpar);
 6603:       fgets(line, MAXLINE, ficpar);
 6604:       numlinepar++;
 6605:       fputs(line,stdout);
 6606:       fputs(line,ficparo);
 6607:       fputs(line,ficlog);
 6608:     }
 6609:     ungetc(c,ficpar);
 6610: 
 6611:     for(i=1; i <=nlstate; i++){
 6612:       for(j=1; j <=nlstate+ndeath-1; j++){
 6613: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6614: 	if ( (i1-i) * (j1-j) != 0){
 6615: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 6616: 	  exit(1);
 6617: 	}
 6618: 	printf("%1d%1d",i,j);
 6619: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6620: 	fprintf(ficlog,"%1d%1d",i1,j1);
 6621: 	for(k=1; k<=ncovmodel;k++){
 6622: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 6623: 	  printf(" %le",delti3[i][j][k]);
 6624: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 6625: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 6626: 	}
 6627: 	fscanf(ficpar,"\n");
 6628: 	numlinepar++;
 6629: 	printf("\n");
 6630: 	fprintf(ficparo,"\n");
 6631: 	fprintf(ficlog,"\n");
 6632:       }
 6633:     }
 6634:     fflush(ficlog);
 6635: 
 6636:     /* Reads covariance matrix */
 6637:     delti=delti3[1][1];
 6638: 
 6639: 
 6640:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 6641:   
 6642:     /* Reads comments: lines beginning with '#' */
 6643:     while((c=getc(ficpar))=='#' && c!= EOF){
 6644:       ungetc(c,ficpar);
 6645:       fgets(line, MAXLINE, ficpar);
 6646:       numlinepar++;
 6647:       fputs(line,stdout);
 6648:       fputs(line,ficparo);
 6649:       fputs(line,ficlog);
 6650:     }
 6651:     ungetc(c,ficpar);
 6652:   
 6653:     matcov=matrix(1,npar,1,npar);
 6654:     for(i=1; i <=npar; i++)
 6655:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 6656:       
 6657:     for(i=1; i <=npar; i++){
 6658:       fscanf(ficpar,"%s",str);
 6659:       if(mle==1)
 6660: 	printf("%s",str);
 6661:       fprintf(ficlog,"%s",str);
 6662:       fprintf(ficparo,"%s",str);
 6663:       for(j=1; j <=i; j++){
 6664: 	fscanf(ficpar," %le",&matcov[i][j]);
 6665: 	if(mle==1){
 6666: 	  printf(" %.5le",matcov[i][j]);
 6667: 	}
 6668: 	fprintf(ficlog," %.5le",matcov[i][j]);
 6669: 	fprintf(ficparo," %.5le",matcov[i][j]);
 6670:       }
 6671:       fscanf(ficpar,"\n");
 6672:       numlinepar++;
 6673:       if(mle==1)
 6674: 	printf("\n");
 6675:       fprintf(ficlog,"\n");
 6676:       fprintf(ficparo,"\n");
 6677:     }
 6678:     for(i=1; i <=npar; i++)
 6679:       for(j=i+1;j<=npar;j++)
 6680: 	matcov[i][j]=matcov[j][i];
 6681:     
 6682:     if(mle==1)
 6683:       printf("\n");
 6684:     fprintf(ficlog,"\n");
 6685:     
 6686:     fflush(ficlog);
 6687:     
 6688:     /*-------- Rewriting parameter file ----------*/
 6689:     strcpy(rfileres,"r");    /* "Rparameterfile */
 6690:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 6691:     strcat(rfileres,".");    /* */
 6692:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 6693:     if((ficres =fopen(rfileres,"w"))==NULL) {
 6694:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 6695:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 6696:     }
 6697:     fprintf(ficres,"#%s\n",version);
 6698:   }    /* End of mle != -3 */
 6699: 
 6700:   /*  Main data
 6701:    */
 6702:   n= lastobs;
 6703:   num=lvector(1,n);
 6704:   moisnais=vector(1,n);
 6705:   annais=vector(1,n);
 6706:   moisdc=vector(1,n);
 6707:   andc=vector(1,n);
 6708:   agedc=vector(1,n);
 6709:   cod=ivector(1,n);
 6710:   weight=vector(1,n);
 6711:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 6712:   mint=matrix(1,maxwav,1,n);
 6713:   anint=matrix(1,maxwav,1,n);
 6714:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 6715:   tab=ivector(1,NCOVMAX);
 6716:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 6717:   ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 6718: 
 6719:   /* Reads data from file datafile */
 6720:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 6721:     goto end;
 6722: 
 6723:   /* Calculation of the number of parameters from char model */
 6724:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 6725: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 6726: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 6727: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 6728: 	k=1 Tvar[1]=2 (from V2)
 6729:     */
 6730:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 6731:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 6732:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 6733:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 6734:   */
 6735:   /* For model-covariate k tells which data-covariate to use but
 6736:     because this model-covariate is a construction we invent a new column
 6737:     ncovcol + k1
 6738:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 6739:     Tvar[3=V1*V4]=4+1 etc */
 6740:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 6741:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 6742:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 6743:   */
 6744:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 6745:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 6746: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 6747: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 6748:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 6749: 			 4 covariates (3 plus signs)
 6750: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 6751: 		      */  
 6752: 
 6753: /* Main decodemodel */
 6754: 
 6755: 
 6756:   if(decodemodel(model, lastobs) == 1)
 6757:     goto end;
 6758: 
 6759:   if((double)(lastobs-imx)/(double)imx > 1.10){
 6760:     nbwarn++;
 6761:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6762:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6763:   }
 6764:     /*  if(mle==1){*/
 6765:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 6766:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 6767:   }
 6768: 
 6769:     /*-calculation of age at interview from date of interview and age at death -*/
 6770:   agev=matrix(1,maxwav,1,imx);
 6771: 
 6772:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 6773:     goto end;
 6774: 
 6775: 
 6776:   agegomp=(int)agemin;
 6777:   free_vector(moisnais,1,n);
 6778:   free_vector(annais,1,n);
 6779:   /* free_matrix(mint,1,maxwav,1,n);
 6780:      free_matrix(anint,1,maxwav,1,n);*/
 6781:   free_vector(moisdc,1,n);
 6782:   free_vector(andc,1,n);
 6783:   /* */
 6784:   
 6785:   wav=ivector(1,imx);
 6786:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 6787:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 6788:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 6789:    
 6790:   /* Concatenates waves */
 6791:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 6792:   /* */
 6793:  
 6794:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 6795: 
 6796:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 6797:   ncodemax[1]=1;
 6798:   Ndum =ivector(-1,NCOVMAX);  
 6799:   if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
 6800:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 6801:   /* Nbcode gives the value of the lth modality of jth covariate, in
 6802:      V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
 6803:   /* 1 to ncodemax[j] is the maximum value of this jth covariate */
 6804: 
 6805:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 6806:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
 6807:   /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
 6808:   h=0;
 6809: 
 6810: 
 6811:   /*if (cptcovn > 0) */
 6812:       
 6813:  
 6814:   m=pow(2,cptcoveff);
 6815:  
 6816:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 6817:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 6818:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
 6819: 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 6820: 	  h++;
 6821: 	  if (h>m) 
 6822: 	    h=1;
 6823: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 6824: 	   * For k=4 covariates, h goes from 1 to 2**k
 6825: 	   * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
 6826: 	   *     h\k   1     2     3     4
 6827: 	   *______________________________  
 6828: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 6829: 	   *     2     2     1     1     1
 6830: 	   *     3 i=2 1     2     1     1
 6831: 	   *     4     2     2     1     1
 6832: 	   *     5 i=3 1 i=2 1     2     1
 6833: 	   *     6     2     1     2     1
 6834: 	   *     7 i=4 1     2     2     1
 6835: 	   *     8     2     2     2     1
 6836: 	   *     9 i=5 1 i=3 1 i=2 1     1
 6837: 	   *    10     2     1     1     1
 6838: 	   *    11 i=6 1     2     1     1
 6839: 	   *    12     2     2     1     1
 6840: 	   *    13 i=7 1 i=4 1     2     1    
 6841: 	   *    14     2     1     2     1
 6842: 	   *    15 i=8 1     2     2     1
 6843: 	   *    16     2     2     2     1
 6844: 	   */
 6845: 	  codtab[h][k]=j;
 6846: 	  /* codtab[12][3]=1; */
 6847: 	  /*codtab[h][Tvar[k]]=j;*/
 6848: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 6849: 	} 
 6850:       }
 6851:     }
 6852:   } 
 6853:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 6854:      codtab[1][2]=1;codtab[2][2]=2; */
 6855:   /* for(i=1; i <=m ;i++){ 
 6856:      for(k=1; k <=cptcovn; k++){
 6857:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 6858:      }
 6859:      printf("\n");
 6860:      }
 6861:      scanf("%d",i);*/
 6862: 
 6863:  free_ivector(Ndum,-1,NCOVMAX);
 6864: 
 6865: 
 6866:     
 6867:   /* Initialisation of ----------- gnuplot -------------*/
 6868:   strcpy(optionfilegnuplot,optionfilefiname);
 6869:   if(mle==-3)
 6870:     strcat(optionfilegnuplot,"-mort");
 6871:   strcat(optionfilegnuplot,".gp");
 6872: 
 6873:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 6874:     printf("Problem with file %s",optionfilegnuplot);
 6875:   }
 6876:   else{
 6877:     fprintf(ficgp,"\n# %s\n", version); 
 6878:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 6879:     //fprintf(ficgp,"set missing 'NaNq'\n");
 6880:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 6881:   }
 6882:   /*  fclose(ficgp);*/
 6883: 
 6884: 
 6885:   /* Initialisation of --------- index.htm --------*/
 6886: 
 6887:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 6888:   if(mle==-3)
 6889:     strcat(optionfilehtm,"-mort");
 6890:   strcat(optionfilehtm,".htm");
 6891:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 6892:     printf("Problem with %s \n",optionfilehtm);
 6893:     exit(0);
 6894:   }
 6895: 
 6896:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 6897:   strcat(optionfilehtmcov,"-cov.htm");
 6898:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 6899:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 6900:   }
 6901:   else{
 6902:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6903: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6904: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 6905: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 6906:   }
 6907: 
 6908:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6909: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6910: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 6911: \n\
 6912: <hr  size=\"2\" color=\"#EC5E5E\">\
 6913:  <ul><li><h4>Parameter files</h4>\n\
 6914:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 6915:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 6916:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 6917:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 6918:  - Date and time at start: %s</ul>\n",\
 6919: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 6920: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 6921: 	  fileres,fileres,\
 6922: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 6923:   fflush(fichtm);
 6924: 
 6925:   strcpy(pathr,path);
 6926:   strcat(pathr,optionfilefiname);
 6927: #ifdef WIN32
 6928:   _chdir(optionfilefiname); /* Move to directory named optionfile */
 6929: #else
 6930:   chdir(optionfilefiname); /* Move to directory named optionfile */
 6931: #endif
 6932: 	  
 6933:   
 6934:   /* Calculates basic frequencies. Computes observed prevalence at single age
 6935:      and prints on file fileres'p'. */
 6936:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 6937: 
 6938:   fprintf(fichtm,"\n");
 6939:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 6940: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 6941: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 6942: 	  imx,agemin,agemax,jmin,jmax,jmean);
 6943:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6944:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6945:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6946:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6947:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 6948:     
 6949:    
 6950:   /* For Powell, parameters are in a vector p[] starting at p[1]
 6951:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 6952:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 6953: 
 6954:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 6955:   /* For mortality only */
 6956:   if (mle==-3){
 6957:     ximort=matrix(1,NDIM,1,NDIM); 
 6958:     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 6959:     cens=ivector(1,n);
 6960:     ageexmed=vector(1,n);
 6961:     agecens=vector(1,n);
 6962:     dcwave=ivector(1,n);
 6963:  
 6964:     for (i=1; i<=imx; i++){
 6965:       dcwave[i]=-1;
 6966:       for (m=firstpass; m<=lastpass; m++)
 6967: 	if (s[m][i]>nlstate) {
 6968: 	  dcwave[i]=m;
 6969: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 6970: 	  break;
 6971: 	}
 6972:     }
 6973: 
 6974:     for (i=1; i<=imx; i++) {
 6975:       if (wav[i]>0){
 6976: 	ageexmed[i]=agev[mw[1][i]][i];
 6977: 	j=wav[i];
 6978: 	agecens[i]=1.; 
 6979: 
 6980: 	if (ageexmed[i]> 1 && wav[i] > 0){
 6981: 	  agecens[i]=agev[mw[j][i]][i];
 6982: 	  cens[i]= 1;
 6983: 	}else if (ageexmed[i]< 1) 
 6984: 	  cens[i]= -1;
 6985: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 6986: 	  cens[i]=0 ;
 6987:       }
 6988:       else cens[i]=-1;
 6989:     }
 6990:     
 6991:     for (i=1;i<=NDIM;i++) {
 6992:       for (j=1;j<=NDIM;j++)
 6993: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 6994:     }
 6995:     
 6996:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 6997:     /*printf("%lf %lf", p[1], p[2]);*/
 6998:     
 6999:     
 7000: #ifdef GSL
 7001:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 7002: #else
 7003:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 7004: #endif
 7005:     strcpy(filerespow,"pow-mort"); 
 7006:     strcat(filerespow,fileres);
 7007:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 7008:       printf("Problem with resultfile: %s\n", filerespow);
 7009:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 7010:     }
 7011: #ifdef GSL
 7012:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 7013: #else
 7014:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 7015: #endif
 7016:     /*  for (i=1;i<=nlstate;i++)
 7017: 	for(j=1;j<=nlstate+ndeath;j++)
 7018: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 7019:     */
 7020:     fprintf(ficrespow,"\n");
 7021: #ifdef GSL
 7022:     /* gsl starts here */ 
 7023:     T = gsl_multimin_fminimizer_nmsimplex;
 7024:     gsl_multimin_fminimizer *sfm = NULL;
 7025:     gsl_vector *ss, *x;
 7026:     gsl_multimin_function minex_func;
 7027: 
 7028:     /* Initial vertex size vector */
 7029:     ss = gsl_vector_alloc (NDIM);
 7030:     
 7031:     if (ss == NULL){
 7032:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 7033:     }
 7034:     /* Set all step sizes to 1 */
 7035:     gsl_vector_set_all (ss, 0.001);
 7036: 
 7037:     /* Starting point */
 7038:     
 7039:     x = gsl_vector_alloc (NDIM);
 7040:     
 7041:     if (x == NULL){
 7042:       gsl_vector_free(ss);
 7043:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 7044:     }
 7045:   
 7046:     /* Initialize method and iterate */
 7047:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 7048:     /*     gsl_vector_set(x, 0, 0.0268); */
 7049:     /*     gsl_vector_set(x, 1, 0.083); */
 7050:     gsl_vector_set(x, 0, p[1]);
 7051:     gsl_vector_set(x, 1, p[2]);
 7052: 
 7053:     minex_func.f = &gompertz_f;
 7054:     minex_func.n = NDIM;
 7055:     minex_func.params = (void *)&p; /* ??? */
 7056:     
 7057:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 7058:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 7059:     
 7060:     printf("Iterations beginning .....\n\n");
 7061:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 7062: 
 7063:     iteri=0;
 7064:     while (rval == GSL_CONTINUE){
 7065:       iteri++;
 7066:       status = gsl_multimin_fminimizer_iterate(sfm);
 7067:       
 7068:       if (status) printf("error: %s\n", gsl_strerror (status));
 7069:       fflush(0);
 7070:       
 7071:       if (status) 
 7072:         break;
 7073:       
 7074:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 7075:       ssval = gsl_multimin_fminimizer_size (sfm);
 7076:       
 7077:       if (rval == GSL_SUCCESS)
 7078:         printf ("converged to a local maximum at\n");
 7079:       
 7080:       printf("%5d ", iteri);
 7081:       for (it = 0; it < NDIM; it++){
 7082: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 7083:       }
 7084:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 7085:     }
 7086:     
 7087:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 7088:     
 7089:     gsl_vector_free(x); /* initial values */
 7090:     gsl_vector_free(ss); /* inital step size */
 7091:     for (it=0; it<NDIM; it++){
 7092:       p[it+1]=gsl_vector_get(sfm->x,it);
 7093:       fprintf(ficrespow," %.12lf", p[it]);
 7094:     }
 7095:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 7096: #endif
 7097: #ifdef POWELL
 7098:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 7099: #endif  
 7100:     fclose(ficrespow);
 7101:     
 7102:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 7103: 
 7104:     for(i=1; i <=NDIM; i++)
 7105:       for(j=i+1;j<=NDIM;j++)
 7106: 	matcov[i][j]=matcov[j][i];
 7107:     
 7108:     printf("\nCovariance matrix\n ");
 7109:     for(i=1; i <=NDIM; i++) {
 7110:       for(j=1;j<=NDIM;j++){ 
 7111: 	printf("%f ",matcov[i][j]);
 7112:       }
 7113:       printf("\n ");
 7114:     }
 7115:     
 7116:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 7117:     for (i=1;i<=NDIM;i++) {
 7118:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 7119:       fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 7120:     }
 7121:     lsurv=vector(1,AGESUP);
 7122:     lpop=vector(1,AGESUP);
 7123:     tpop=vector(1,AGESUP);
 7124:     lsurv[agegomp]=100000;
 7125:     
 7126:     for (k=agegomp;k<=AGESUP;k++) {
 7127:       agemortsup=k;
 7128:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 7129:     }
 7130:     
 7131:     for (k=agegomp;k<agemortsup;k++)
 7132:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 7133:     
 7134:     for (k=agegomp;k<agemortsup;k++){
 7135:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 7136:       sumlpop=sumlpop+lpop[k];
 7137:     }
 7138:     
 7139:     tpop[agegomp]=sumlpop;
 7140:     for (k=agegomp;k<(agemortsup-3);k++){
 7141:       /*  tpop[k+1]=2;*/
 7142:       tpop[k+1]=tpop[k]-lpop[k];
 7143:     }
 7144:     
 7145:     
 7146:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 7147:     for (k=agegomp;k<(agemortsup-2);k++) 
 7148:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 7149:     
 7150:     
 7151:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 7152:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 7153:     
 7154:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 7155: 		     stepm, weightopt,\
 7156: 		     model,imx,p,matcov,agemortsup);
 7157:     
 7158:     free_vector(lsurv,1,AGESUP);
 7159:     free_vector(lpop,1,AGESUP);
 7160:     free_vector(tpop,1,AGESUP);
 7161: #ifdef GSL
 7162:     free_ivector(cens,1,n);
 7163:     free_vector(agecens,1,n);
 7164:     free_ivector(dcwave,1,n);
 7165:     free_matrix(ximort,1,NDIM,1,NDIM);
 7166: #endif
 7167:   } /* Endof if mle==-3 mortality only */
 7168:   /* Standard maximisation */
 7169:   else{ /* For mle >=1 */
 7170:     globpr=0;/* debug */
 7171:     /* Computes likelihood for initial parameters */
 7172:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 7173:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 7174:     for (k=1; k<=npar;k++)
 7175:       printf(" %d %8.5f",k,p[k]);
 7176:     printf("\n");
 7177:     globpr=1; /* again, to print the contributions */
 7178:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 7179:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 7180:     for (k=1; k<=npar;k++)
 7181:       printf(" %d %8.5f",k,p[k]);
 7182:     printf("\n");
 7183:     if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
 7184:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 7185:     }
 7186:     
 7187:     /*--------- results files --------------*/
 7188:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 7189:     
 7190:     
 7191:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 7192:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 7193:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 7194:     for(i=1,jk=1; i <=nlstate; i++){
 7195:       for(k=1; k <=(nlstate+ndeath); k++){
 7196: 	if (k != i) {
 7197: 	  printf("%d%d ",i,k);
 7198: 	  fprintf(ficlog,"%d%d ",i,k);
 7199: 	  fprintf(ficres,"%1d%1d ",i,k);
 7200: 	  for(j=1; j <=ncovmodel; j++){
 7201: 	    printf("%12.7f ",p[jk]);
 7202: 	    fprintf(ficlog,"%12.7f ",p[jk]);
 7203: 	    fprintf(ficres,"%12.7f ",p[jk]);
 7204: 	    jk++; 
 7205: 	  }
 7206: 	  printf("\n");
 7207: 	  fprintf(ficlog,"\n");
 7208: 	  fprintf(ficres,"\n");
 7209: 	}
 7210:       }
 7211:     }
 7212:     if(mle!=0){
 7213:       /* Computing hessian and covariance matrix */
 7214:       ftolhess=ftol; /* Usually correct */
 7215:       hesscov(matcov, p, npar, delti, ftolhess, func);
 7216:     }
 7217:     printf("Parameters and 95%% confidence intervals\n");
 7218:     fprintf(ficlog, "Parameters, T and confidence intervals\n");
 7219:     for(i=1,jk=1; i <=nlstate; i++){
 7220:       for(k=1; k <=(nlstate+ndeath); k++){
 7221: 	if (k != i) {
 7222: 	  printf("%d%d ",i,k);
 7223: 	  fprintf(ficlog,"%d%d ",i,k);
 7224: 	  for(j=1; j <=ncovmodel; j++){
 7225: 	    printf("%12.7f T=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-2*sqrt(matcov[jk][jk]),p[jk]+2*sqrt(matcov[jk][jk]));
 7226: 	    fprintf(ficlog,"%12.7f T=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-2*sqrt(matcov[jk][jk]),p[jk]+2*sqrt(matcov[jk][jk]));
 7227: 	    jk++; 
 7228: 	  }
 7229: 	  printf("\n");
 7230: 	  fprintf(ficlog,"\n");
 7231: 	}
 7232:       }
 7233:     }
 7234: 
 7235:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 7236:     printf("# Scales (for hessian or gradient estimation)\n");
 7237:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 7238:     for(i=1,jk=1; i <=nlstate; i++){
 7239:       for(j=1; j <=nlstate+ndeath; j++){
 7240: 	if (j!=i) {
 7241: 	  fprintf(ficres,"%1d%1d",i,j);
 7242: 	  printf("%1d%1d",i,j);
 7243: 	  fprintf(ficlog,"%1d%1d",i,j);
 7244: 	  for(k=1; k<=ncovmodel;k++){
 7245: 	    printf(" %.5e",delti[jk]);
 7246: 	    fprintf(ficlog," %.5e",delti[jk]);
 7247: 	    fprintf(ficres," %.5e",delti[jk]);
 7248: 	    jk++;
 7249: 	  }
 7250: 	  printf("\n");
 7251: 	  fprintf(ficlog,"\n");
 7252: 	  fprintf(ficres,"\n");
 7253: 	}
 7254:       }
 7255:     }
 7256:     
 7257:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 7258:     if(mle>=1)
 7259:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 7260:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 7261:     /* # 121 Var(a12)\n\ */
 7262:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 7263:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 7264:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 7265:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 7266:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 7267:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 7268:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 7269:     
 7270:     
 7271:     /* Just to have a covariance matrix which will be more understandable
 7272:        even is we still don't want to manage dictionary of variables
 7273:     */
 7274:     for(itimes=1;itimes<=2;itimes++){
 7275:       jj=0;
 7276:       for(i=1; i <=nlstate; i++){
 7277: 	for(j=1; j <=nlstate+ndeath; j++){
 7278: 	  if(j==i) continue;
 7279: 	  for(k=1; k<=ncovmodel;k++){
 7280: 	    jj++;
 7281: 	    ca[0]= k+'a'-1;ca[1]='\0';
 7282: 	    if(itimes==1){
 7283: 	      if(mle>=1)
 7284: 		printf("#%1d%1d%d",i,j,k);
 7285: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 7286: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 7287: 	    }else{
 7288: 	      if(mle>=1)
 7289: 		printf("%1d%1d%d",i,j,k);
 7290: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 7291: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 7292: 	    }
 7293: 	    ll=0;
 7294: 	    for(li=1;li <=nlstate; li++){
 7295: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 7296: 		if(lj==li) continue;
 7297: 		for(lk=1;lk<=ncovmodel;lk++){
 7298: 		  ll++;
 7299: 		  if(ll<=jj){
 7300: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 7301: 		    if(ll<jj){
 7302: 		      if(itimes==1){
 7303: 			if(mle>=1)
 7304: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 7305: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 7306: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 7307: 		      }else{
 7308: 			if(mle>=1)
 7309: 			  printf(" %.5e",matcov[jj][ll]); 
 7310: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 7311: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 7312: 		      }
 7313: 		    }else{
 7314: 		      if(itimes==1){
 7315: 			if(mle>=1)
 7316: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 7317: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 7318: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 7319: 		      }else{
 7320: 			if(mle>=1)
 7321: 			  printf(" %.5e",matcov[jj][ll]); 
 7322: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 7323: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 7324: 		      }
 7325: 		    }
 7326: 		  }
 7327: 		} /* end lk */
 7328: 	      } /* end lj */
 7329: 	    } /* end li */
 7330: 	    if(mle>=1)
 7331: 	      printf("\n");
 7332: 	    fprintf(ficlog,"\n");
 7333: 	    fprintf(ficres,"\n");
 7334: 	    numlinepar++;
 7335: 	  } /* end k*/
 7336: 	} /*end j */
 7337:       } /* end i */
 7338:     } /* end itimes */
 7339:     
 7340:     fflush(ficlog);
 7341:     fflush(ficres);
 7342:     
 7343:     while((c=getc(ficpar))=='#' && c!= EOF){
 7344:       ungetc(c,ficpar);
 7345:       fgets(line, MAXLINE, ficpar);
 7346:       fputs(line,stdout);
 7347:       fputs(line,ficparo);
 7348:     }
 7349:     ungetc(c,ficpar);
 7350:     
 7351:     estepm=0;
 7352:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 7353:     if (estepm==0 || estepm < stepm) estepm=stepm;
 7354:     if (fage <= 2) {
 7355:       bage = ageminpar;
 7356:       fage = agemaxpar;
 7357:     }
 7358:     
 7359:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 7360:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 7361:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 7362: 
 7363:     /* Other stuffs, more or less useful */    
 7364:     while((c=getc(ficpar))=='#' && c!= EOF){
 7365:       ungetc(c,ficpar);
 7366:       fgets(line, MAXLINE, ficpar);
 7367:       fputs(line,stdout);
 7368:       fputs(line,ficparo);
 7369:     }
 7370:     ungetc(c,ficpar);
 7371:     
 7372:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 7373:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7374:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7375:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7376:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7377:     
 7378:     while((c=getc(ficpar))=='#' && c!= EOF){
 7379:       ungetc(c,ficpar);
 7380:       fgets(line, MAXLINE, ficpar);
 7381:       fputs(line,stdout);
 7382:       fputs(line,ficparo);
 7383:     }
 7384:     ungetc(c,ficpar);
 7385:     
 7386:     
 7387:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 7388:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 7389:     
 7390:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 7391:     fprintf(ficlog,"pop_based=%d\n",popbased);
 7392:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 7393:     fprintf(ficres,"pop_based=%d\n",popbased);   
 7394:     
 7395:     while((c=getc(ficpar))=='#' && c!= EOF){
 7396:       ungetc(c,ficpar);
 7397:       fgets(line, MAXLINE, ficpar);
 7398:       fputs(line,stdout);
 7399:       fputs(line,ficparo);
 7400:     }
 7401:     ungetc(c,ficpar);
 7402:     
 7403:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 7404:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7405:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7406:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7407:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7408:     /* day and month of proj2 are not used but only year anproj2.*/
 7409:     
 7410:     
 7411:     
 7412:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 7413:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 7414:     
 7415:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 7416:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 7417:     
 7418:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 7419: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 7420: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 7421:       
 7422:    /*------------ free_vector  -------------*/
 7423:    /*  chdir(path); */
 7424:  
 7425:     free_ivector(wav,1,imx);
 7426:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 7427:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 7428:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 7429:     free_lvector(num,1,n);
 7430:     free_vector(agedc,1,n);
 7431:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 7432:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 7433:     fclose(ficparo);
 7434:     fclose(ficres);
 7435: 
 7436: 
 7437:     /* Other results (useful)*/
 7438: 
 7439: 
 7440:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 7441:     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
 7442:     prlim=matrix(1,nlstate,1,nlstate);
 7443:     prevalence_limit(p, prlim,  ageminpar, agemaxpar);
 7444:     fclose(ficrespl);
 7445: 
 7446: #ifdef FREEEXIT2
 7447: #include "freeexit2.h"
 7448: #endif
 7449: 
 7450:     /*------------- h Pij x at various ages ------------*/
 7451:     /*#include "hpijx.h"*/
 7452:     hPijx(p, bage, fage);
 7453:     fclose(ficrespij);
 7454: 
 7455:   /*-------------- Variance of one-step probabilities---*/
 7456:     k=1;
 7457:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 7458: 
 7459: 
 7460:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7461:     for(i=1;i<=AGESUP;i++)
 7462:       for(j=1;j<=NCOVMAX;j++)
 7463: 	for(k=1;k<=NCOVMAX;k++)
 7464: 	  probs[i][j][k]=0.;
 7465: 
 7466:     /*---------- Forecasting ------------------*/
 7467:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 7468:     if(prevfcast==1){
 7469:       /*    if(stepm ==1){*/
 7470:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 7471:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 7472:       /*      }  */
 7473:       /*      else{ */
 7474:       /*        erreur=108; */
 7475:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 7476:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 7477:       /*      } */
 7478:     }
 7479:  
 7480:     /* ------ Other prevalence ratios------------ */
 7481: 
 7482:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 7483: 
 7484:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 7485:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 7486: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 7487:     */
 7488: 
 7489:     if (mobilav!=0) {
 7490:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7491:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 7492: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 7493: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 7494:       }
 7495:     }
 7496: 
 7497: 
 7498:     /*---------- Health expectancies, no variances ------------*/
 7499: 
 7500:     strcpy(filerese,"e");
 7501:     strcat(filerese,fileres);
 7502:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 7503:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 7504:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 7505:     }
 7506:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 7507:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 7508:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7509:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7510:           
 7511:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7512: 	fprintf(ficreseij,"\n#****** ");
 7513: 	for(j=1;j<=cptcoveff;j++) {
 7514: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7515: 	}
 7516: 	fprintf(ficreseij,"******\n");
 7517: 
 7518: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7519: 	oldm=oldms;savm=savms;
 7520: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 7521:       
 7522: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7523:       /*}*/
 7524:     }
 7525:     fclose(ficreseij);
 7526: 
 7527: 
 7528:     /*---------- Health expectancies and variances ------------*/
 7529: 
 7530: 
 7531:     strcpy(filerest,"t");
 7532:     strcat(filerest,fileres);
 7533:     if((ficrest=fopen(filerest,"w"))==NULL) {
 7534:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 7535:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 7536:     }
 7537:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7538:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7539: 
 7540: 
 7541:     strcpy(fileresstde,"stde");
 7542:     strcat(fileresstde,fileres);
 7543:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 7544:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7545:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7546:     }
 7547:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7548:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7549: 
 7550:     strcpy(filerescve,"cve");
 7551:     strcat(filerescve,fileres);
 7552:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 7553:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7554:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7555:     }
 7556:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7557:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7558: 
 7559:     strcpy(fileresv,"v");
 7560:     strcat(fileresv,fileres);
 7561:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 7562:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 7563:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 7564:     }
 7565:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7566:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7567: 
 7568:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7569:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7570:           
 7571:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7572:     	fprintf(ficrest,"\n#****** ");
 7573: 	for(j=1;j<=cptcoveff;j++) 
 7574: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7575: 	fprintf(ficrest,"******\n");
 7576: 
 7577: 	fprintf(ficresstdeij,"\n#****** ");
 7578: 	fprintf(ficrescveij,"\n#****** ");
 7579: 	for(j=1;j<=cptcoveff;j++) {
 7580: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7581: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7582: 	}
 7583: 	fprintf(ficresstdeij,"******\n");
 7584: 	fprintf(ficrescveij,"******\n");
 7585: 
 7586: 	fprintf(ficresvij,"\n#****** ");
 7587: 	for(j=1;j<=cptcoveff;j++) 
 7588: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7589: 	fprintf(ficresvij,"******\n");
 7590: 
 7591: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7592: 	oldm=oldms;savm=savms;
 7593: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 7594: 	/*
 7595: 	 */
 7596: 	/* goto endfree; */
 7597:  
 7598: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7599: 	pstamp(ficrest);
 7600: 
 7601: 
 7602: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 7603: 	  oldm=oldms;savm=savms; /* Segmentation fault */
 7604: 	  cptcod= 0; /* To be deleted */
 7605: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
 7606: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 7607: 	  if(vpopbased==1)
 7608: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 7609: 	  else
 7610: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 7611: 	  fprintf(ficrest,"# Age e.. (std) ");
 7612: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 7613: 	  fprintf(ficrest,"\n");
 7614: 
 7615: 	  epj=vector(1,nlstate+1);
 7616: 	  for(age=bage; age <=fage ;age++){
 7617: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 7618: 	    if (vpopbased==1) {
 7619: 	      if(mobilav ==0){
 7620: 		for(i=1; i<=nlstate;i++)
 7621: 		  prlim[i][i]=probs[(int)age][i][k];
 7622: 	      }else{ /* mobilav */ 
 7623: 		for(i=1; i<=nlstate;i++)
 7624: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 7625: 	      }
 7626: 	    }
 7627: 	
 7628: 	    fprintf(ficrest," %4.0f",age);
 7629: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 7630: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 7631: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 7632: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 7633: 	      }
 7634: 	      epj[nlstate+1] +=epj[j];
 7635: 	    }
 7636: 
 7637: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 7638: 	      for(j=1;j <=nlstate;j++)
 7639: 		vepp += vareij[i][j][(int)age];
 7640: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 7641: 	    for(j=1;j <=nlstate;j++){
 7642: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 7643: 	    }
 7644: 	    fprintf(ficrest,"\n");
 7645: 	  }
 7646: 	}
 7647: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7648: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7649: 	free_vector(epj,1,nlstate+1);
 7650:       /*}*/
 7651:     }
 7652:     free_vector(weight,1,n);
 7653:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 7654:     free_imatrix(s,1,maxwav+1,1,n);
 7655:     free_matrix(anint,1,maxwav,1,n); 
 7656:     free_matrix(mint,1,maxwav,1,n);
 7657:     free_ivector(cod,1,n);
 7658:     free_ivector(tab,1,NCOVMAX);
 7659:     fclose(ficresstdeij);
 7660:     fclose(ficrescveij);
 7661:     fclose(ficresvij);
 7662:     fclose(ficrest);
 7663:     fclose(ficpar);
 7664:   
 7665:     /*------- Variance of period (stable) prevalence------*/   
 7666: 
 7667:     strcpy(fileresvpl,"vpl");
 7668:     strcat(fileresvpl,fileres);
 7669:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 7670:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 7671:       exit(0);
 7672:     }
 7673:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 7674: 
 7675:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7676:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7677:           
 7678:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7679:     	fprintf(ficresvpl,"\n#****** ");
 7680: 	for(j=1;j<=cptcoveff;j++) 
 7681: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7682: 	fprintf(ficresvpl,"******\n");
 7683:       
 7684: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 7685: 	oldm=oldms;savm=savms;
 7686: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 7687: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 7688:       /*}*/
 7689:     }
 7690: 
 7691:     fclose(ficresvpl);
 7692: 
 7693:     /*---------- End : free ----------------*/
 7694:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7695:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7696:   }  /* mle==-3 arrives here for freeing */
 7697:  /* endfree:*/
 7698:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 7699:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 7700:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7701:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7702:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7703:     free_matrix(covar,0,NCOVMAX,1,n);
 7704:     free_matrix(matcov,1,npar,1,npar);
 7705:     /*free_vector(delti,1,npar);*/
 7706:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 7707:     free_matrix(agev,1,maxwav,1,imx);
 7708:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 7709: 
 7710:     free_ivector(ncodemax,1,NCOVMAX);
 7711:     free_ivector(ncodemaxwundef,1,NCOVMAX);
 7712:     free_ivector(Tvar,1,NCOVMAX);
 7713:     free_ivector(Tprod,1,NCOVMAX);
 7714:     free_ivector(Tvaraff,1,NCOVMAX);
 7715:     free_ivector(Tage,1,NCOVMAX);
 7716: 
 7717:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 7718:     free_imatrix(codtab,1,100,1,10);
 7719:   fflush(fichtm);
 7720:   fflush(ficgp);
 7721:   
 7722: 
 7723:   if((nberr >0) || (nbwarn>0)){
 7724:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 7725:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 7726:   }else{
 7727:     printf("End of Imach\n");
 7728:     fprintf(ficlog,"End of Imach\n");
 7729:   }
 7730:   printf("See log file on %s\n",filelog);
 7731:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 7732:   /*(void) gettimeofday(&end_time,&tzp);*/
 7733:   rend_time = time(NULL);  
 7734:   end_time = *localtime(&rend_time);
 7735:   /* tml = *localtime(&end_time.tm_sec); */
 7736:   strcpy(strtend,asctime(&end_time));
 7737:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 7738:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 7739:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7740: 
 7741:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7742:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7743:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7744:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 7745: /*   if(fileappend(fichtm,optionfilehtm)){ */
 7746:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7747:   fclose(fichtm);
 7748:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7749:   fclose(fichtmcov);
 7750:   fclose(ficgp);
 7751:   fclose(ficlog);
 7752:   /*------ End -----------*/
 7753: 
 7754: 
 7755:    printf("Before Current directory %s!\n",pathcd);
 7756: #ifdef WIN32
 7757:    if (_chdir(pathcd) != 0)
 7758: 	   printf("Can't move to directory %s!\n",path);
 7759:    if(_getcwd(pathcd,MAXLINE) > 0)
 7760: #else
 7761:    if(chdir(pathcd) != 0)
 7762: 	   printf("Can't move to directory %s!\n", path);
 7763:    if (getcwd(pathcd, MAXLINE) > 0)
 7764: #endif 
 7765:     printf("Current directory %s!\n",pathcd);
 7766:   /*strcat(plotcmd,CHARSEPARATOR);*/
 7767:   sprintf(plotcmd,"gnuplot");
 7768: #ifdef _WIN32
 7769:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 7770: #endif
 7771:   if(!stat(plotcmd,&info)){
 7772:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7773:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 7774:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 7775:     }else
 7776:       strcpy(pplotcmd,plotcmd);
 7777: #ifdef __unix
 7778:     strcpy(plotcmd,GNUPLOTPROGRAM);
 7779:     if(!stat(plotcmd,&info)){
 7780:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7781:     }else
 7782:       strcpy(pplotcmd,plotcmd);
 7783: #endif
 7784:   }else
 7785:     strcpy(pplotcmd,plotcmd);
 7786:   
 7787:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 7788:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
 7789: 
 7790:   if((outcmd=system(plotcmd)) != 0){
 7791:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
 7792:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
 7793:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
 7794:     if((outcmd=system(plotcmd)) != 0)
 7795:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
 7796:   }
 7797:   printf(" Successful, please wait...");
 7798:   while (z[0] != 'q') {
 7799:     /* chdir(path); */
 7800:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
 7801:     scanf("%s",z);
 7802: /*     if (z[0] == 'c') system("./imach"); */
 7803:     if (z[0] == 'e') {
 7804: #ifdef __APPLE__
 7805:       sprintf(pplotcmd, "open %s", optionfilehtm);
 7806: #elif __linux
 7807:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
 7808: #else
 7809:       sprintf(pplotcmd, "%s", optionfilehtm);
 7810: #endif
 7811:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
 7812:       system(pplotcmd);
 7813:     }
 7814:     else if (z[0] == 'g') system(plotcmd);
 7815:     else if (z[0] == 'q') exit(0);
 7816:   }
 7817:   end:
 7818:   while (z[0] != 'q') {
 7819:     printf("\nType  q for exiting: ");
 7820:     scanf("%s",z);
 7821:   }
 7822: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>