File:  [Local Repository] / imach / src / imach.c
Revision 1.2: download - view: text, annotated - select for diffs
Tue Mar 13 18:10:26 2001 UTC (23 years, 3 months ago) by lievre
Branches: MAIN
CVS tags: HEAD
Version Rostock: covariables + graphique proba elementaires

    1:     
    2: /*********************** Imach **************************************        
    3:   This program computes Healthy Life Expectancies from cross-longitudinal 
    4:   data. Cross-longitudinal consist in a first survey ("cross") where 
    5:   individuals from different ages are interviewed on their health status
    6:   or degree of  disability. At least a second wave of interviews 
    7:   ("longitudinal") should  measure each new individual health status. 
    8:   Health expectancies are computed from the transistions observed between 
    9:   waves and are computed for each degree of severity of disability (number
   10:   of life states). More degrees you consider, more time is necessary to
   11:   reach the Maximum Likelihood of the parameters involved in the model.
   12:   The simplest model is the multinomial logistic model where pij is
   13:   the probabibility to be observed in state j at the second wave conditional
   14:   to be observed in state i at the first wave. Therefore the model is:
   15:   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex' 
   16:   is a covariate. If you want to have a more complex model than "constant and
   17:   age", you should modify the program where the markup 
   18:     *Covariates have to be included here again* invites you to do it.
   19:   More covariates you add, less is the speed of the convergence.
   20: 
   21:   The advantage that this computer programme claims, comes from that if the 
   22:   delay between waves is not identical for each individual, or if some 
   23:   individual missed an interview, the information is not rounded or lost, but
   24:   taken into account using an interpolation or extrapolation.
   25:   hPijx is the probability to be
   26:   observed in state i at age x+h conditional to the observed state i at age 
   27:   x. The delay 'h' can be split into an exact number (nh*stepm) of 
   28:   unobserved intermediate  states. This elementary transition (by month or 
   29:   quarter trimester, semester or year) is model as a multinomial logistic. 
   30:   The hPx matrix is simply the matrix product of nh*stepm elementary matrices
   31:   and the contribution of each individual to the likelihood is simply hPijx.
   32: 
   33:   Also this programme outputs the covariance matrix of the parameters but also
   34:   of the life expectancies. It also computes the prevalence limits. 
   35:   
   36:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   37:            Institut national d'études démographiques, Paris.
   38:   This software have been partly granted by Euro-REVES, a concerted action
   39:   from the European Union.
   40:   It is copyrighted identically to a GNU software product, ie programme and
   41:   software can be distributed freely for non commercial use. Latest version
   42:   can be accessed at http://euroreves.ined.fr/imach .
   43:   **********************************************************************/
   44:  
   45: #include <math.h>
   46: #include <stdio.h>
   47: #include <stdlib.h>
   48: #include <unistd.h>
   49: 
   50: #define MAXLINE 256
   51: #define FILENAMELENGTH 80
   52: /*#define DEBUG*/
   53: #define windows
   54: 
   55: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   56: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   57: 
   58: #define NINTERVMAX 8
   59: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   60: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   61: #define NCOVMAX 8 /* Maximum number of covariates */
   62: #define MAXN 80000
   63: #define YEARM 12. /* Number of months per year */
   64: #define AGESUP 130
   65: #define AGEBASE 40
   66: 
   67: 
   68: int nvar;
   69: static int cptcov;
   70: int cptcovn;
   71: int npar=NPARMAX;
   72: int nlstate=2; /* Number of live states */
   73: int ndeath=1; /* Number of dead states */
   74: int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   75: 
   76: int *wav; /* Number of waves for this individuual 0 is possible */
   77: int maxwav; /* Maxim number of waves */
   78: int mle, weightopt;
   79: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   80: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   81: double **oldm, **newm, **savm; /* Working pointers to matrices */
   82: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   83: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;
   84: FILE *ficgp, *fichtm;
   85: FILE *ficreseij;
   86:   char filerese[FILENAMELENGTH];
   87:  FILE  *ficresvij;
   88:   char fileresv[FILENAMELENGTH];
   89:  FILE  *ficresvpl;
   90:   char fileresvpl[FILENAMELENGTH];
   91: 
   92: 
   93: 
   94: 
   95: #define NR_END 1
   96: #define FREE_ARG char*
   97: #define FTOL 1.0e-10
   98: 
   99: #define NRANSI 
  100: #define ITMAX 200 
  101: 
  102: #define TOL 2.0e-4 
  103: 
  104: #define CGOLD 0.3819660 
  105: #define ZEPS 1.0e-10 
  106: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  107: 
  108: #define GOLD 1.618034 
  109: #define GLIMIT 100.0 
  110: #define TINY 1.0e-20 
  111: 
  112: static double maxarg1,maxarg2;
  113: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  114: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  115:  
  116: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  117: #define rint(a) floor(a+0.5)
  118: 
  119: static double sqrarg;
  120: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  121: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  122: 
  123: int imx; 
  124: int stepm;
  125: /* Stepm, step in month: minimum step interpolation*/
  126: 
  127: int m,nb;
  128: int *num, firstpass=0, lastpass=4,*cod, *ncodemax;
  129: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  130: double **pmmij;
  131: 
  132: double *weight;
  133: int **s; /* Status */
  134: double *agedc, **covar, idx;
  135: int **nbcode, *Tcode, *Tvar, **codtab;
  136: 
  137: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  138: double ftolhess; /* Tolerance for computing hessian */
  139: 
  140: 
  141: /******************************************/
  142: 
  143: void replace(char *s, char*t)
  144: {
  145:   int i;
  146:   int lg=20;
  147:   i=0;
  148:   lg=strlen(t);
  149:   for(i=0; i<= lg; i++) {
  150:     (s[i] = t[i]);
  151:     if (t[i]== '\\') s[i]='/';
  152:   }
  153: }
  154: 
  155: int nbocc(char *s, char occ)
  156: {
  157:   int i,j=0;
  158:   int lg=20;
  159:   i=0;
  160:   lg=strlen(s);
  161:   for(i=0; i<= lg; i++) {
  162:   if  (s[i] == occ ) j++;
  163:   }
  164:   return j;
  165: }
  166: 
  167: void cutv(char *u,char *v, char*t, char occ)
  168: {
  169:   int i,lg,j,p;
  170:   i=0;
  171:   if (t[0]== occ) p=0;
  172:   for(j=0; j<=strlen(t)-1; j++) {
  173:     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;
  174:   }
  175: 
  176:   lg=strlen(t);
  177:   for(j=0; j<p; j++) {
  178:     (u[j] = t[j]);
  179:     u[p]='\0';
  180:   }
  181: 
  182:    for(j=0; j<= lg; j++) {
  183:     if (j>=(p+1))(v[j-p-1] = t[j]);
  184:   }
  185: }
  186: 
  187: 
  188: /********************** nrerror ********************/
  189: 
  190: void nrerror(char error_text[])
  191: {
  192:   fprintf(stderr,"ERREUR ...\n");
  193:   fprintf(stderr,"%s\n",error_text);
  194:   exit(1);
  195: }
  196: /*********************** vector *******************/
  197: double *vector(int nl, int nh)
  198: {
  199:   double *v;
  200:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  201:   if (!v) nrerror("allocation failure in vector");
  202:   return v-nl+NR_END;
  203: }
  204: 
  205: /************************ free vector ******************/
  206: void free_vector(double*v, int nl, int nh)
  207: {
  208:   free((FREE_ARG)(v+nl-NR_END));
  209: }
  210: 
  211: /************************ivector *******************************/
  212: int *ivector(long nl,long nh)
  213: {
  214:   int *v;
  215:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  216:   if (!v) nrerror("allocation failure in ivector");
  217:   return v-nl+NR_END;
  218: }
  219: 
  220: /******************free ivector **************************/
  221: void free_ivector(int *v, long nl, long nh)
  222: {
  223:   free((FREE_ARG)(v+nl-NR_END));
  224: }
  225: 
  226: /******************* imatrix *******************************/
  227: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  228:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  229: { 
  230:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  231:   int **m; 
  232:   
  233:   /* allocate pointers to rows */ 
  234:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  235:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  236:   m += NR_END; 
  237:   m -= nrl; 
  238:   
  239:   
  240:   /* allocate rows and set pointers to them */ 
  241:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  242:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  243:   m[nrl] += NR_END; 
  244:   m[nrl] -= ncl; 
  245:   
  246:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  247:   
  248:   /* return pointer to array of pointers to rows */ 
  249:   return m; 
  250: } 
  251: 
  252: /****************** free_imatrix *************************/
  253: void free_imatrix(m,nrl,nrh,ncl,nch)
  254:       int **m;
  255:       long nch,ncl,nrh,nrl; 
  256:      /* free an int matrix allocated by imatrix() */ 
  257: { 
  258:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  259:   free((FREE_ARG) (m+nrl-NR_END)); 
  260: } 
  261: 
  262: /******************* matrix *******************************/
  263: double **matrix(long nrl, long nrh, long ncl, long nch)
  264: {
  265:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  266:   double **m;
  267: 
  268:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  269:   if (!m) nrerror("allocation failure 1 in matrix()");
  270:   m += NR_END;
  271:   m -= nrl;
  272: 
  273:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  274:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  275:   m[nrl] += NR_END;
  276:   m[nrl] -= ncl;
  277: 
  278:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  279:   return m;
  280: }
  281: 
  282: /*************************free matrix ************************/
  283: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  284: {
  285:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  286:   free((FREE_ARG)(m+nrl-NR_END));
  287: }
  288: 
  289: /******************* ma3x *******************************/
  290: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  291: {
  292:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  293:   double ***m;
  294: 
  295:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  296:   if (!m) nrerror("allocation failure 1 in matrix()");
  297:   m += NR_END;
  298:   m -= nrl;
  299: 
  300:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  301:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  302:   m[nrl] += NR_END;
  303:   m[nrl] -= ncl;
  304: 
  305:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  306: 
  307:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  308:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  309:   m[nrl][ncl] += NR_END;
  310:   m[nrl][ncl] -= nll;
  311:   for (j=ncl+1; j<=nch; j++) 
  312:     m[nrl][j]=m[nrl][j-1]+nlay;
  313:   
  314:   for (i=nrl+1; i<=nrh; i++) {
  315:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  316:     for (j=ncl+1; j<=nch; j++) 
  317:       m[i][j]=m[i][j-1]+nlay;
  318:   }
  319:   return m;
  320: }
  321: 
  322: /*************************free ma3x ************************/
  323: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  324: {
  325:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  326:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  327:   free((FREE_ARG)(m+nrl-NR_END));
  328: }
  329: 
  330: /***************** f1dim *************************/
  331: extern int ncom; 
  332: extern double *pcom,*xicom;
  333: extern double (*nrfunc)(double []); 
  334:  
  335: double f1dim(double x) 
  336: { 
  337:   int j; 
  338:   double f;
  339:   double *xt; 
  340:  
  341:   xt=vector(1,ncom); 
  342:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  343:   f=(*nrfunc)(xt); 
  344:   free_vector(xt,1,ncom); 
  345:   return f; 
  346: } 
  347: 
  348: /*****************brent *************************/
  349: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  350: { 
  351:   int iter; 
  352:   double a,b,d,etemp;
  353:   double fu,fv,fw,fx;
  354:   double ftemp;
  355:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  356:   double e=0.0; 
  357:  
  358:   a=(ax < cx ? ax : cx); 
  359:   b=(ax > cx ? ax : cx); 
  360:   x=w=v=bx; 
  361:   fw=fv=fx=(*f)(x); 
  362:   for (iter=1;iter<=ITMAX;iter++) { 
  363:     xm=0.5*(a+b); 
  364:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  365:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  366:     printf(".");fflush(stdout);
  367: #ifdef DEBUG
  368:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  369:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  370: #endif
  371:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  372:       *xmin=x; 
  373:       return fx; 
  374:     } 
  375:     ftemp=fu;
  376:     if (fabs(e) > tol1) { 
  377:       r=(x-w)*(fx-fv); 
  378:       q=(x-v)*(fx-fw); 
  379:       p=(x-v)*q-(x-w)*r; 
  380:       q=2.0*(q-r); 
  381:       if (q > 0.0) p = -p; 
  382:       q=fabs(q); 
  383:       etemp=e; 
  384:       e=d; 
  385:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  386: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  387:       else { 
  388: 	d=p/q; 
  389: 	u=x+d; 
  390: 	if (u-a < tol2 || b-u < tol2) 
  391: 	  d=SIGN(tol1,xm-x); 
  392:       } 
  393:     } else { 
  394:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  395:     } 
  396:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  397:     fu=(*f)(u); 
  398:     if (fu <= fx) { 
  399:       if (u >= x) a=x; else b=x; 
  400:       SHFT(v,w,x,u) 
  401: 	SHFT(fv,fw,fx,fu) 
  402: 	} else { 
  403: 	  if (u < x) a=u; else b=u; 
  404: 	  if (fu <= fw || w == x) { 
  405: 	    v=w; 
  406: 	    w=u; 
  407: 	    fv=fw; 
  408: 	    fw=fu; 
  409: 	  } else if (fu <= fv || v == x || v == w) { 
  410: 	    v=u; 
  411: 	    fv=fu; 
  412: 	  } 
  413: 	} 
  414:   } 
  415:   nrerror("Too many iterations in brent"); 
  416:   *xmin=x; 
  417:   return fx; 
  418: } 
  419: 
  420: /****************** mnbrak ***********************/
  421: 
  422: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  423: 	    double (*func)(double)) 
  424: { 
  425:   double ulim,u,r,q, dum;
  426:   double fu; 
  427:  
  428:   *fa=(*func)(*ax); 
  429:   *fb=(*func)(*bx); 
  430:   if (*fb > *fa) { 
  431:     SHFT(dum,*ax,*bx,dum) 
  432:       SHFT(dum,*fb,*fa,dum) 
  433:       } 
  434:   *cx=(*bx)+GOLD*(*bx-*ax); 
  435:   *fc=(*func)(*cx); 
  436:   while (*fb > *fc) { 
  437:     r=(*bx-*ax)*(*fb-*fc); 
  438:     q=(*bx-*cx)*(*fb-*fa); 
  439:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  440:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  441:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  442:     if ((*bx-u)*(u-*cx) > 0.0) { 
  443:       fu=(*func)(u); 
  444:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  445:       fu=(*func)(u); 
  446:       if (fu < *fc) { 
  447: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  448: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  449: 	  } 
  450:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  451:       u=ulim; 
  452:       fu=(*func)(u); 
  453:     } else { 
  454:       u=(*cx)+GOLD*(*cx-*bx); 
  455:       fu=(*func)(u); 
  456:     } 
  457:     SHFT(*ax,*bx,*cx,u) 
  458:       SHFT(*fa,*fb,*fc,fu) 
  459:       } 
  460: } 
  461: 
  462: /*************** linmin ************************/
  463: 
  464: int ncom; 
  465: double *pcom,*xicom;
  466: double (*nrfunc)(double []); 
  467:  
  468: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  469: { 
  470:   double brent(double ax, double bx, double cx, 
  471: 	       double (*f)(double), double tol, double *xmin); 
  472:   double f1dim(double x); 
  473:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  474: 	      double *fc, double (*func)(double)); 
  475:   int j; 
  476:   double xx,xmin,bx,ax; 
  477:   double fx,fb,fa;
  478:  
  479:   ncom=n; 
  480:   pcom=vector(1,n); 
  481:   xicom=vector(1,n); 
  482:   nrfunc=func; 
  483:   for (j=1;j<=n;j++) { 
  484:     pcom[j]=p[j]; 
  485:     xicom[j]=xi[j]; 
  486:   } 
  487:   ax=0.0; 
  488:   xx=1.0; 
  489:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  490:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  491: #ifdef DEBUG
  492:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  493: #endif
  494:   for (j=1;j<=n;j++) { 
  495:     xi[j] *= xmin; 
  496:     p[j] += xi[j]; 
  497:   } 
  498:   free_vector(xicom,1,n); 
  499:   free_vector(pcom,1,n); 
  500: } 
  501: 
  502: /*************** powell ************************/
  503: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  504: 	    double (*func)(double [])) 
  505: { 
  506:   void linmin(double p[], double xi[], int n, double *fret, 
  507: 	      double (*func)(double [])); 
  508:   int i,ibig,j; 
  509:   double del,t,*pt,*ptt,*xit;
  510:   double fp,fptt;
  511:   double *xits;
  512:   pt=vector(1,n); 
  513:   ptt=vector(1,n); 
  514:   xit=vector(1,n); 
  515:   xits=vector(1,n); 
  516:   *fret=(*func)(p); 
  517:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  518:   for (*iter=1;;++(*iter)) { 
  519:     fp=(*fret); 
  520:     ibig=0; 
  521:     del=0.0; 
  522:     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
  523:     for (i=1;i<=n;i++) 
  524:       printf(" %d %.12f",i, p[i]);
  525:     printf("\n");
  526:     for (i=1;i<=n;i++) { 
  527:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  528:       fptt=(*fret); 
  529: #ifdef DEBUG
  530:       printf("fret=%lf \n",*fret);
  531: #endif
  532:       printf("%d",i);fflush(stdout);
  533:       linmin(p,xit,n,fret,func); 
  534:       if (fabs(fptt-(*fret)) > del) { 
  535: 	del=fabs(fptt-(*fret)); 
  536: 	ibig=i; 
  537:       } 
  538: #ifdef DEBUG
  539:       printf("%d %.12e",i,(*fret));
  540:       for (j=1;j<=n;j++) {
  541: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
  542: 	printf(" x(%d)=%.12e",j,xit[j]);
  543:       }
  544:       for(j=1;j<=n;j++) 
  545: 	printf(" p=%.12e",p[j]);
  546:       printf("\n");
  547: #endif
  548:     } 
  549:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
  550: #ifdef DEBUG
  551:       int k[2],l;
  552:       k[0]=1;
  553:       k[1]=-1;
  554:       printf("Max: %.12e",(*func)(p));
  555:       for (j=1;j<=n;j++) 
  556: 	printf(" %.12e",p[j]);
  557:       printf("\n");
  558:       for(l=0;l<=1;l++) {
  559: 	for (j=1;j<=n;j++) {
  560: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
  561: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  562: 	}
  563: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  564:       }
  565: #endif
  566: 
  567: 
  568:       free_vector(xit,1,n); 
  569:       free_vector(xits,1,n); 
  570:       free_vector(ptt,1,n); 
  571:       free_vector(pt,1,n); 
  572:       return; 
  573:     } 
  574:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
  575:     for (j=1;j<=n;j++) { 
  576:       ptt[j]=2.0*p[j]-pt[j]; 
  577:       xit[j]=p[j]-pt[j]; 
  578:       pt[j]=p[j]; 
  579:     } 
  580:     fptt=(*func)(ptt); 
  581:     if (fptt < fp) { 
  582:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
  583:       if (t < 0.0) { 
  584: 	linmin(p,xit,n,fret,func); 
  585: 	for (j=1;j<=n;j++) { 
  586: 	  xi[j][ibig]=xi[j][n]; 
  587: 	  xi[j][n]=xit[j]; 
  588: 	}
  589: #ifdef DEBUG
  590: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  591: 	for(j=1;j<=n;j++)
  592: 	  printf(" %.12e",xit[j]);
  593: 	printf("\n");
  594: #endif
  595:       } 
  596:     } 
  597:   } 
  598: } 
  599: 
  600: /**** Prevalence limit ****************/
  601: 
  602: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
  603: {
  604:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
  605:      matrix by transitions matrix until convergence is reached */
  606: 
  607:   int i, ii,j,k;
  608:   double min, max, maxmin, maxmax,sumnew=0.;
  609:   double **matprod2();
  610:   double **out, cov[NCOVMAX], **pmij();
  611:   double **newm;
  612:   double agefin, delaymax=50 ; /* Max number of years to converge */
  613: 
  614:   for (ii=1;ii<=nlstate+ndeath;ii++)
  615:     for (j=1;j<=nlstate+ndeath;j++){
  616:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  617:     }
  618:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  619:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
  620:     newm=savm;
  621:     /* Covariates have to be included here again */
  622:     cov[1]=1.;
  623:     cov[2]=agefin;
  624:     if (cptcovn>0){
  625:       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}
  626:     }
  627:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
  628: 
  629:     savm=oldm;
  630:     oldm=newm;
  631:     maxmax=0.;
  632:     for(j=1;j<=nlstate;j++){
  633:       min=1.;
  634:       max=0.;
  635:       for(i=1; i<=nlstate; i++) {
  636: 	sumnew=0;
  637: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
  638: 	prlim[i][j]= newm[i][j]/(1-sumnew);
  639: 	max=FMAX(max,prlim[i][j]);
  640: 	min=FMIN(min,prlim[i][j]);
  641:       }
  642:       maxmin=max-min;
  643:       maxmax=FMAX(maxmax,maxmin);
  644:     }
  645:     if(maxmax < ftolpl){
  646:       return prlim;
  647:     }
  648:   }
  649: }
  650: 
  651: /*************** transition probabilities **********/ 
  652: 
  653: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
  654: {
  655:   double s1, s2;
  656:   /*double t34;*/
  657:   int i,j,j1, nc, ii, jj;
  658: 
  659:     for(i=1; i<= nlstate; i++){
  660:     for(j=1; j<i;j++){
  661:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  662: 	/*s2 += param[i][j][nc]*cov[nc];*/
  663: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  664: 	/*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
  665:       }
  666:       ps[i][j]=s2;
  667:       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
  668:     }
  669:     for(j=i+1; j<=nlstate+ndeath;j++){
  670:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  671: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  672: 	/*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
  673:       }
  674:       ps[i][j]=s2;
  675:     }
  676:   }
  677:   for(i=1; i<= nlstate; i++){
  678:      s1=0;
  679:     for(j=1; j<i; j++)
  680:       s1+=exp(ps[i][j]);
  681:     for(j=i+1; j<=nlstate+ndeath; j++)
  682:       s1+=exp(ps[i][j]);
  683:     ps[i][i]=1./(s1+1.);
  684:     for(j=1; j<i; j++)
  685:       ps[i][j]= exp(ps[i][j])*ps[i][i];
  686:     for(j=i+1; j<=nlstate+ndeath; j++)
  687:       ps[i][j]= exp(ps[i][j])*ps[i][i];
  688:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
  689:   } /* end i */
  690: 
  691:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
  692:     for(jj=1; jj<= nlstate+ndeath; jj++){
  693:       ps[ii][jj]=0;
  694:       ps[ii][ii]=1;
  695:     }
  696:   }
  697: 
  698:   /*   for(ii=1; ii<= nlstate+ndeath; ii++){
  699:     for(jj=1; jj<= nlstate+ndeath; jj++){
  700:      printf("%lf ",ps[ii][jj]);
  701:    }
  702:     printf("\n ");
  703:     }
  704:     printf("\n ");printf("%lf ",cov[2]);*/
  705: /*
  706:   for(i=1; i<= npar; i++) printf("%f ",x[i]);
  707:   goto end;*/
  708:     return ps;
  709: }
  710: 
  711: /**************** Product of 2 matrices ******************/
  712: 
  713: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
  714: {
  715:   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
  716:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
  717:   /* in, b, out are matrice of pointers which should have been initialized 
  718:      before: only the contents of out is modified. The function returns
  719:      a pointer to pointers identical to out */
  720:   long i, j, k;
  721:   for(i=nrl; i<= nrh; i++)
  722:     for(k=ncolol; k<=ncoloh; k++)
  723:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
  724: 	out[i][k] +=in[i][j]*b[j][k];
  725: 
  726:   return out;
  727: }
  728: 
  729: 
  730: /************* Higher Matrix Product ***************/
  731: 
  732: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
  733: {
  734:   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month 
  735:      duration (i.e. until
  736:      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. 
  737:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
  738:      (typically every 2 years instead of every month which is too big).
  739:      Model is determined by parameters x and covariates have to be 
  740:      included manually here. 
  741: 
  742:      */
  743: 
  744:   int i, j, d, h, k;
  745:   double **out, cov[NCOVMAX];
  746:   double **newm;
  747: 
  748:   /* Hstepm could be zero and should return the unit matrix */
  749:   for (i=1;i<=nlstate+ndeath;i++)
  750:     for (j=1;j<=nlstate+ndeath;j++){
  751:       oldm[i][j]=(i==j ? 1.0 : 0.0);
  752:       po[i][j][0]=(i==j ? 1.0 : 0.0);
  753:     }
  754:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  755:   for(h=1; h <=nhstepm; h++){
  756:     for(d=1; d <=hstepm; d++){
  757:       newm=savm;
  758:       /* Covariates have to be included here again */
  759:       cov[1]=1.;
  760:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
  761:       if (cptcovn>0){
  762:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];
  763:     }
  764:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
  765:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
  766:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
  767: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
  768:       savm=oldm;
  769:       oldm=newm;
  770:     }
  771:     for(i=1; i<=nlstate+ndeath; i++)
  772:       for(j=1;j<=nlstate+ndeath;j++) {
  773: 	po[i][j][h]=newm[i][j];
  774: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
  775: 	 */
  776:       }
  777:   } /* end h */
  778:   return po;
  779: }
  780: 
  781: 
  782: /*************** log-likelihood *************/
  783: double func( double *x)
  784: {
  785:   int i, ii, j, k, mi, d;
  786:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
  787:   double **out;
  788:   double sw; /* Sum of weights */
  789:   double lli; /* Individual log likelihood */
  790:   long ipmx;
  791:   /*extern weight */
  792:   /* We are differentiating ll according to initial status */
  793:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  794:   /*for(i=1;i<imx;i++) 
  795: printf(" %d\n",s[4][i]);
  796:   */
  797: 
  798:   for(k=1; k<=nlstate; k++) ll[k]=0.;
  799:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  800:        for(mi=1; mi<= wav[i]-1; mi++){
  801:       for (ii=1;ii<=nlstate+ndeath;ii++)
  802: 	for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  803:             for(d=0; d<dh[mi][i]; d++){
  804: 	newm=savm;
  805: 	  cov[1]=1.;
  806: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  807: 	  if (cptcovn>0){
  808: 	    for (k=1; k<=cptcovn;k++) {
  809: 	      cov[2+k]=covar[Tvar[k]][i];
  810: 	      /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/
  811: 	    }
  812: 	    }
  813: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  814: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  815: 	  savm=oldm;
  816: 	  oldm=newm;
  817:       } /* end mult */
  818:    
  819:       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);
  820:       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/
  821:       ipmx +=1;
  822:       sw += weight[i];
  823:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  824:     } /* end of wave */
  825:   } /* end of individual */
  826: 
  827:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  828:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  829:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  830: 
  831:   return -l;
  832: }
  833: 
  834: 
  835: /*********** Maximum Likelihood Estimation ***************/
  836: 
  837: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
  838: {
  839:   int i,j, iter;
  840:   double **xi,*delti;
  841:   double fret;
  842:   xi=matrix(1,npar,1,npar);
  843:   for (i=1;i<=npar;i++)
  844:     for (j=1;j<=npar;j++)
  845:       xi[i][j]=(i==j ? 1.0 : 0.0);
  846:   printf("Powell\n");
  847:   powell(p,xi,npar,ftol,&iter,&fret,func);
  848: 
  849:    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
  850:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));
  851: 
  852: }
  853: 
  854: /**** Computes Hessian and covariance matrix ***/
  855: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
  856: {
  857:   double  **a,**y,*x,pd;
  858:   double **hess;
  859:   int i, j,jk;
  860:   int *indx;
  861: 
  862:   double hessii(double p[], double delta, int theta, double delti[]);
  863:   double hessij(double p[], double delti[], int i, int j);
  864:   void lubksb(double **a, int npar, int *indx, double b[]) ;
  865:   void ludcmp(double **a, int npar, int *indx, double *d) ;
  866: 
  867: 
  868:   hess=matrix(1,npar,1,npar);
  869: 
  870:   printf("\nCalculation of the hessian matrix. Wait...\n");
  871:   for (i=1;i<=npar;i++){
  872:     printf("%d",i);fflush(stdout);
  873:     hess[i][i]=hessii(p,ftolhess,i,delti);
  874:     /*printf(" %f ",p[i]);*/
  875:   }
  876: 
  877:   for (i=1;i<=npar;i++) {
  878:     for (j=1;j<=npar;j++)  {
  879:       if (j>i) { 
  880: 	printf(".%d%d",i,j);fflush(stdout);
  881: 	hess[i][j]=hessij(p,delti,i,j);
  882: 	hess[j][i]=hess[i][j];
  883:       }
  884:     }
  885:   }
  886:   printf("\n");
  887: 
  888:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  889:   
  890:   a=matrix(1,npar,1,npar);
  891:   y=matrix(1,npar,1,npar);
  892:   x=vector(1,npar);
  893:   indx=ivector(1,npar);
  894:   for (i=1;i<=npar;i++)
  895:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
  896:   ludcmp(a,npar,indx,&pd);
  897: 
  898:   for (j=1;j<=npar;j++) {
  899:     for (i=1;i<=npar;i++) x[i]=0;
  900:     x[j]=1;
  901:     lubksb(a,npar,indx,x);
  902:     for (i=1;i<=npar;i++){ 
  903:       matcov[i][j]=x[i];
  904:     }
  905:   }
  906: 
  907:   printf("\n#Hessian matrix#\n");
  908:   for (i=1;i<=npar;i++) { 
  909:     for (j=1;j<=npar;j++) { 
  910:       printf("%.3e ",hess[i][j]);
  911:     }
  912:     printf("\n");
  913:   }
  914: 
  915:   /* Recompute Inverse */
  916:   for (i=1;i<=npar;i++)
  917:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
  918:   ludcmp(a,npar,indx,&pd);
  919: 
  920:   /*  printf("\n#Hessian matrix recomputed#\n");
  921: 
  922:   for (j=1;j<=npar;j++) {
  923:     for (i=1;i<=npar;i++) x[i]=0;
  924:     x[j]=1;
  925:     lubksb(a,npar,indx,x);
  926:     for (i=1;i<=npar;i++){ 
  927:       y[i][j]=x[i];
  928:       printf("%.3e ",y[i][j]);
  929:     }
  930:     printf("\n");
  931:   }
  932:   */
  933: 
  934:   free_matrix(a,1,npar,1,npar);
  935:   free_matrix(y,1,npar,1,npar);
  936:   free_vector(x,1,npar);
  937:   free_ivector(indx,1,npar);
  938:   free_matrix(hess,1,npar,1,npar);
  939: 
  940: 
  941: }
  942: 
  943: /*************** hessian matrix ****************/
  944: double hessii( double x[], double delta, int theta, double delti[])
  945: {
  946:   int i;
  947:   int l=1, lmax=20;
  948:   double k1,k2;
  949:   double p2[NPARMAX+1];
  950:   double res;
  951:   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
  952:   double fx;
  953:   int k=0,kmax=10;
  954:   double l1;
  955: 
  956:   fx=func(x);
  957:   for (i=1;i<=npar;i++) p2[i]=x[i];
  958:   for(l=0 ; l <=lmax; l++){
  959:     l1=pow(10,l);
  960:     delts=delt;
  961:     for(k=1 ; k <kmax; k=k+1){
  962:       delt = delta*(l1*k);
  963:       p2[theta]=x[theta] +delt;
  964:       k1=func(p2)-fx;
  965:       p2[theta]=x[theta]-delt;
  966:       k2=func(p2)-fx;
  967:       /*res= (k1-2.0*fx+k2)/delt/delt; */
  968:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
  969:       
  970: #ifdef DEBUG
  971:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  972: #endif
  973:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
  974:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
  975: 	k=kmax;
  976:       }
  977:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
  978: 	k=kmax; l=lmax*10.;
  979:       }
  980:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
  981: 	delts=delt;
  982:       }
  983:     }
  984:   }
  985:   delti[theta]=delts;
  986:   return res;  
  987: }
  988: 
  989: double hessij( double x[], double delti[], int thetai,int thetaj)
  990: {
  991:   int i;
  992:   int l=1, l1, lmax=20;
  993:   double k1,k2,k3,k4,res,fx;
  994:   double p2[NPARMAX+1];
  995:   int k;
  996: 
  997:   fx=func(x);
  998:   for (k=1; k<=2; k++) {
  999:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1000:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1001:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1002:     k1=func(p2)-fx;
 1003:   
 1004:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1005:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1006:     k2=func(p2)-fx;
 1007:   
 1008:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1009:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1010:     k3=func(p2)-fx;
 1011:   
 1012:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1013:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1014:     k4=func(p2)-fx;
 1015:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1016: #ifdef DEBUG
 1017:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1018: #endif
 1019:   }
 1020:   return res;
 1021: }
 1022: 
 1023: /************** Inverse of matrix **************/
 1024: void ludcmp(double **a, int n, int *indx, double *d) 
 1025: { 
 1026:   int i,imax,j,k; 
 1027:   double big,dum,sum,temp; 
 1028:   double *vv; 
 1029:  
 1030:   vv=vector(1,n); 
 1031:   *d=1.0; 
 1032:   for (i=1;i<=n;i++) { 
 1033:     big=0.0; 
 1034:     for (j=1;j<=n;j++) 
 1035:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1036:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1037:     vv[i]=1.0/big; 
 1038:   } 
 1039:   for (j=1;j<=n;j++) { 
 1040:     for (i=1;i<j;i++) { 
 1041:       sum=a[i][j]; 
 1042:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1043:       a[i][j]=sum; 
 1044:     } 
 1045:     big=0.0; 
 1046:     for (i=j;i<=n;i++) { 
 1047:       sum=a[i][j]; 
 1048:       for (k=1;k<j;k++) 
 1049: 	sum -= a[i][k]*a[k][j]; 
 1050:       a[i][j]=sum; 
 1051:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1052: 	big=dum; 
 1053: 	imax=i; 
 1054:       } 
 1055:     } 
 1056:     if (j != imax) { 
 1057:       for (k=1;k<=n;k++) { 
 1058: 	dum=a[imax][k]; 
 1059: 	a[imax][k]=a[j][k]; 
 1060: 	a[j][k]=dum; 
 1061:       } 
 1062:       *d = -(*d); 
 1063:       vv[imax]=vv[j]; 
 1064:     } 
 1065:     indx[j]=imax; 
 1066:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1067:     if (j != n) { 
 1068:       dum=1.0/(a[j][j]); 
 1069:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1070:     } 
 1071:   } 
 1072:   free_vector(vv,1,n);  /* Doesn't work */
 1073: ;
 1074: } 
 1075: 
 1076: void lubksb(double **a, int n, int *indx, double b[]) 
 1077: { 
 1078:   int i,ii=0,ip,j; 
 1079:   double sum; 
 1080:  
 1081:   for (i=1;i<=n;i++) { 
 1082:     ip=indx[i]; 
 1083:     sum=b[ip]; 
 1084:     b[ip]=b[i]; 
 1085:     if (ii) 
 1086:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1087:     else if (sum) ii=i; 
 1088:     b[i]=sum; 
 1089:   } 
 1090:   for (i=n;i>=1;i--) { 
 1091:     sum=b[i]; 
 1092:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1093:     b[i]=sum/a[i][i]; 
 1094:   } 
 1095: } 
 1096: 
 1097: /************ Frequencies ********************/
 1098: void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)
 1099: {  /* Some frequencies */
 1100:  
 1101:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 1102:   double ***freq; /* Frequencies */
 1103:   double *pp;
 1104:   double pos;
 1105:   FILE *ficresp;
 1106:   char fileresp[FILENAMELENGTH];
 1107: 
 1108:   pp=vector(1,nlstate);
 1109: 
 1110:   strcpy(fileresp,"p");
 1111:   strcat(fileresp,fileres);
 1112:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1113:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1114:     exit(0);
 1115:   }
 1116:   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
 1117:   j1=0;
 1118: 
 1119:   j=cptcovn;
 1120:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1121: 
 1122:   for(k1=1; k1<=j;k1++){
 1123:    for(i1=1; i1<=ncodemax[k1];i1++){
 1124:        j1++;
 1125: 
 1126:         for (i=-1; i<=nlstate+ndeath; i++)  
 1127: 	 for (jk=-1; jk<=nlstate+ndeath; jk++)  
 1128: 	   for(m=agemin; m <= agemax+3; m++)
 1129: 	     freq[i][jk][m]=0;
 1130:        
 1131:        for (i=1; i<=imx; i++) {
 1132: 	 bool=1;
 1133: 	 if  (cptcovn>0) {
 1134: 	   for (z1=1; z1<=cptcovn; z1++) 
 1135: 	     if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;
 1136: 	 }
 1137: 	  if (bool==1) {
 1138: 	   for(m=firstpass; m<=lastpass-1; m++){
 1139: 	     if(agev[m][i]==0) agev[m][i]=agemax+1;
 1140: 	     if(agev[m][i]==1) agev[m][i]=agemax+2;
 1141: 	     freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1142: 	     freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
 1143: 	   }
 1144: 	 }
 1145:        }
 1146:         if  (cptcovn>0) {
 1147: 	 fprintf(ficresp, "\n#Variable"); 
 1148: 	 for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);
 1149:        }
 1150:        fprintf(ficresp, "\n#");
 1151:        for(i=1; i<=nlstate;i++) 
 1152: 	 fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 1153:        fprintf(ficresp, "\n");
 1154:        
 1155:   for(i=(int)agemin; i <= (int)agemax+3; i++){
 1156:     if(i==(int)agemax+3)
 1157:       printf("Total");
 1158:     else
 1159:       printf("Age %d", i);
 1160:     for(jk=1; jk <=nlstate ; jk++){
 1161:       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1162: 	pp[jk] += freq[jk][m][i];
 1163:     }
 1164:     for(jk=1; jk <=nlstate ; jk++){
 1165:       for(m=-1, pos=0; m <=0 ; m++)
 1166: 	pos += freq[jk][m][i];
 1167:       if(pp[jk]>=1.e-10)
 1168: 	printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1169:       else
 1170:         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1171:     }
 1172:     for(jk=1; jk <=nlstate ; jk++){
 1173:       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)
 1174: 	pp[jk] += freq[jk][m][i];
 1175:     }
 1176:     for(jk=1,pos=0; jk <=nlstate ; jk++)
 1177:       pos += pp[jk];
 1178:     for(jk=1; jk <=nlstate ; jk++){
 1179:       if(pos>=1.e-5)
 1180: 	printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1181:       else
 1182: 	printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1183:       if( i <= (int) agemax){
 1184: 	if(pos>=1.e-5)
 1185: 	  fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
 1186:       else
 1187: 	  fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
 1188:       }
 1189:     }
 1190:     for(jk=-1; jk <=nlstate+ndeath; jk++)
 1191:       for(m=-1; m <=nlstate+ndeath; m++)
 1192: 	if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 1193:     if(i <= (int) agemax)
 1194:       fprintf(ficresp,"\n");
 1195:     printf("\n");
 1196:     }
 1197:     }
 1198:  }
 1199:  
 1200:   fclose(ficresp);
 1201:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
 1202:   free_vector(pp,1,nlstate);
 1203: 
 1204: }  /* End of Freq */
 1205: 
 1206: /************* Waves Concatenation ***************/
 1207: 
 1208: void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 1209: {
 1210:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 1211:      Death is a valid wave (if date is known).
 1212:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 1213:      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]
 1214:      and mw[mi+1][i]. dh depends on stepm.
 1215:      */
 1216: 
 1217:   int i, mi, m;
 1218:   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 1219: float sum=0.;
 1220: 
 1221:   for(i=1; i<=imx; i++){
 1222:     mi=0;
 1223:     m=firstpass;
 1224:     while(s[m][i] <= nlstate){
 1225:       if(s[m][i]>=1)
 1226: 	mw[++mi][i]=m;
 1227:       if(m >=lastpass)
 1228: 	break;
 1229:       else
 1230: 	m++;
 1231:     }/* end while */
 1232:     if (s[m][i] > nlstate){
 1233:       mi++;	/* Death is another wave */
 1234:       /* if(mi==0)  never been interviewed correctly before death */
 1235: 	 /* Only death is a correct wave */
 1236:       mw[mi][i]=m;
 1237:     }
 1238: 
 1239:     wav[i]=mi;
 1240:     if(mi==0)
 1241:       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);
 1242:   }
 1243: 
 1244:   for(i=1; i<=imx; i++){
 1245:     for(mi=1; mi<wav[i];mi++){
 1246:       if (stepm <=0)
 1247: 	dh[mi][i]=1;
 1248:       else{
 1249: 	if (s[mw[mi+1][i]][i] > nlstate) {
 1250: 	  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 1251: 	  if(j=0) j=1;  /* Survives at least one month after exam */
 1252: 	}
 1253: 	else{
 1254: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 1255: 	  /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/
 1256: 
 1257: 	  k=k+1;
 1258: 	  if (j >= jmax) jmax=j;
 1259: 	  else if (j <= jmin)jmin=j;
 1260: 	  sum=sum+j;
 1261: 	}
 1262: 	jk= j/stepm;
 1263: 	jl= j -jk*stepm;
 1264: 	ju= j -(jk+1)*stepm;
 1265: 	if(jl <= -ju)
 1266: 	  dh[mi][i]=jk;
 1267: 	else
 1268: 	  dh[mi][i]=jk+1;
 1269: 	if(dh[mi][i]==0)
 1270: 	  dh[mi][i]=1; /* At least one step */
 1271:       }
 1272:     }
 1273:   }
 1274:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);
 1275: }
 1276: /*********** Tricode ****************************/
 1277: void tricode(int *Tvar, int **nbcode, int imx)
 1278: {
 1279:   int Ndum[80],ij, k, j, i;
 1280:   int cptcode=0;
 1281:   for (k=0; k<79; k++) Ndum[k]=0;
 1282:   for (k=1; k<=7; k++) ncodemax[k]=0;
 1283:   
 1284:   for (j=1; j<=cptcovn; j++) {
 1285:     for (i=1; i<=imx; i++) {
 1286:       ij=(int)(covar[Tvar[j]][i]);
 1287:       Ndum[ij]++; 
 1288:       if (ij > cptcode) cptcode=ij; 
 1289:     }
 1290:     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/
 1291:     for (i=0; i<=cptcode; i++) {
 1292:       if(Ndum[i]!=0) ncodemax[j]++;
 1293:     }
 1294:   
 1295:     ij=1; 
 1296:     for (i=1; i<=ncodemax[j]; i++) {
 1297:       for (k=0; k<=79; k++) {
 1298: 	if (Ndum[k] != 0) {
 1299: 	  nbcode[Tvar[j]][ij]=k; 
 1300: 	  ij++;
 1301: 	}
 1302: 	if (ij > ncodemax[j]) break; 
 1303:       }  
 1304:     } 
 1305:   }   
 1306: 
 1307:   }
 1308: 
 1309: /*********** Health Expectancies ****************/
 1310: 
 1311: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)
 1312: {
 1313:   /* Health expectancies */
 1314:   int i, j, nhstepm, hstepm, h;
 1315:   double age, agelim,hf;
 1316:   double ***p3mat;
 1317:   
 1318:   fprintf(ficreseij,"# Health expectancies\n");
 1319:   fprintf(ficreseij,"# Age");
 1320:   for(i=1; i<=nlstate;i++)
 1321:     for(j=1; j<=nlstate;j++)
 1322:       fprintf(ficreseij," %1d-%1d",i,j);
 1323:   fprintf(ficreseij,"\n");
 1324: 
 1325:   hstepm=1*YEARM; /*  Every j years of age (in month) */
 1326:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 1327: 
 1328:   agelim=AGESUP;
 1329:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 1330:     /* nhstepm age range expressed in number of stepm */
 1331:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); 
 1332:     /* Typically if 20 years = 20*12/6=40 stepm */ 
 1333:     if (stepm >= YEARM) hstepm=1;
 1334:     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */
 1335:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1336:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 1337:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 1338:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 1339: 
 1340: 
 1341:     for(i=1; i<=nlstate;i++)
 1342:       for(j=1; j<=nlstate;j++)
 1343: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){
 1344: 	  eij[i][j][(int)age] +=p3mat[i][j][h];
 1345: 	}
 1346:     
 1347:     hf=1;
 1348:     if (stepm >= YEARM) hf=stepm/YEARM;
 1349:     fprintf(ficreseij,"%.0f",age );
 1350:     for(i=1; i<=nlstate;i++)
 1351:       for(j=1; j<=nlstate;j++){
 1352: 	fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);
 1353:       }
 1354:     fprintf(ficreseij,"\n");
 1355:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1356:   }
 1357: }
 1358: 
 1359: /************ Variance ******************/
 1360: void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 1361: {
 1362:   /* Variance of health expectancies */
 1363:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 1364:   double **newm;
 1365:   double **dnewm,**doldm;
 1366:   int i, j, nhstepm, hstepm, h;
 1367:   int k, cptcode;
 1368:    double *xp;
 1369:   double **gp, **gm;
 1370:   double ***gradg, ***trgradg;
 1371:   double ***p3mat;
 1372:   double age,agelim;
 1373:   int theta;
 1374: 
 1375:    fprintf(ficresvij,"# Covariances of life expectancies\n");
 1376:   fprintf(ficresvij,"# Age");
 1377:   for(i=1; i<=nlstate;i++)
 1378:     for(j=1; j<=nlstate;j++)
 1379:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 1380:   fprintf(ficresvij,"\n");
 1381: 
 1382:   xp=vector(1,npar);
 1383:   dnewm=matrix(1,nlstate,1,npar);
 1384:   doldm=matrix(1,nlstate,1,nlstate);
 1385:   
 1386:   hstepm=1*YEARM; /* Every year of age */
 1387:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 1388:   agelim = AGESUP;
 1389:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 1390:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 1391:     if (stepm >= YEARM) hstepm=1;
 1392:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 1393:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1394:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 1395:     gp=matrix(0,nhstepm,1,nlstate);
 1396:     gm=matrix(0,nhstepm,1,nlstate);
 1397: 
 1398:     for(theta=1; theta <=npar; theta++){
 1399:       for(i=1; i<=npar; i++){ /* Computes gradient */
 1400: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 1401:       }
 1402:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 1403:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 1404:       for(j=1; j<= nlstate; j++){
 1405: 	for(h=0; h<=nhstepm; h++){
 1406: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 1407: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 1408: 	}
 1409:       }
 1410:     
 1411:       for(i=1; i<=npar; i++) /* Computes gradient */
 1412: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 1413:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 1414:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 1415:       for(j=1; j<= nlstate; j++){
 1416: 	for(h=0; h<=nhstepm; h++){
 1417: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 1418: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 1419: 	}
 1420:       }
 1421:       for(j=1; j<= nlstate; j++)
 1422: 	for(h=0; h<=nhstepm; h++){
 1423: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 1424: 	}
 1425:     } /* End theta */
 1426: 
 1427:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);
 1428: 
 1429:     for(h=0; h<=nhstepm; h++)
 1430:       for(j=1; j<=nlstate;j++)
 1431: 	for(theta=1; theta <=npar; theta++)
 1432: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 1433: 
 1434:     for(i=1;i<=nlstate;i++)
 1435:       for(j=1;j<=nlstate;j++)
 1436: 	vareij[i][j][(int)age] =0.;
 1437:     for(h=0;h<=nhstepm;h++){
 1438:       for(k=0;k<=nhstepm;k++){
 1439: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 1440: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 1441: 	for(i=1;i<=nlstate;i++)
 1442: 	  for(j=1;j<=nlstate;j++)
 1443: 	    vareij[i][j][(int)age] += doldm[i][j];
 1444:       }
 1445:     }
 1446:     h=1;
 1447:     if (stepm >= YEARM) h=stepm/YEARM;
 1448:     fprintf(ficresvij,"%.0f ",age );
 1449:     for(i=1; i<=nlstate;i++)
 1450:       for(j=1; j<=nlstate;j++){
 1451: 	fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);
 1452:       }
 1453:     fprintf(ficresvij,"\n");
 1454:     free_matrix(gp,0,nhstepm,1,nlstate);
 1455:     free_matrix(gm,0,nhstepm,1,nlstate);
 1456:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 1457:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 1458:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1459:   } /* End age */
 1460:  
 1461:   free_vector(xp,1,npar);
 1462:   free_matrix(doldm,1,nlstate,1,npar);
 1463:   free_matrix(dnewm,1,nlstate,1,nlstate);
 1464: 
 1465: }
 1466: 
 1467: /************ Variance of prevlim ******************/
 1468: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 1469: {
 1470:   /* Variance of prevalence limit */
 1471:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 1472:   double **newm;
 1473:   double **dnewm,**doldm;
 1474:   int i, j, nhstepm, hstepm;
 1475:   int k, cptcode;
 1476:   double *xp;
 1477:   double *gp, *gm;
 1478:   double **gradg, **trgradg;
 1479:   double age,agelim;
 1480:   int theta;
 1481:    
 1482:   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");
 1483:   fprintf(ficresvpl,"# Age");
 1484:   for(i=1; i<=nlstate;i++)
 1485:       fprintf(ficresvpl," %1d-%1d",i,i);
 1486:   fprintf(ficresvpl,"\n");
 1487: 
 1488:   xp=vector(1,npar);
 1489:   dnewm=matrix(1,nlstate,1,npar);
 1490:   doldm=matrix(1,nlstate,1,nlstate);
 1491:   
 1492:   hstepm=1*YEARM; /* Every year of age */
 1493:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 1494:   agelim = AGESUP;
 1495:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 1496:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 1497:     if (stepm >= YEARM) hstepm=1;
 1498:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 1499:     gradg=matrix(1,npar,1,nlstate);
 1500:     gp=vector(1,nlstate);
 1501:     gm=vector(1,nlstate);
 1502: 
 1503:     for(theta=1; theta <=npar; theta++){
 1504:       for(i=1; i<=npar; i++){ /* Computes gradient */
 1505: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 1506:       }
 1507:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 1508:       for(i=1;i<=nlstate;i++)
 1509: 	gp[i] = prlim[i][i];
 1510:     
 1511:       for(i=1; i<=npar; i++) /* Computes gradient */
 1512: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 1513:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 1514:       for(i=1;i<=nlstate;i++)
 1515: 	gm[i] = prlim[i][i];
 1516: 
 1517:       for(i=1;i<=nlstate;i++)
 1518: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 1519:     } /* End theta */
 1520: 
 1521:     trgradg =matrix(1,nlstate,1,npar);
 1522: 
 1523:     for(j=1; j<=nlstate;j++)
 1524:       for(theta=1; theta <=npar; theta++)
 1525: 	trgradg[j][theta]=gradg[theta][j];
 1526: 
 1527:     for(i=1;i<=nlstate;i++)
 1528:       varpl[i][(int)age] =0.;
 1529:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 1530:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 1531:     for(i=1;i<=nlstate;i++)
 1532:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 1533: 
 1534:     fprintf(ficresvpl,"%.0f ",age );
 1535:     for(i=1; i<=nlstate;i++)
 1536:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 1537:     fprintf(ficresvpl,"\n");
 1538:     free_vector(gp,1,nlstate);
 1539:     free_vector(gm,1,nlstate);
 1540:     free_matrix(gradg,1,npar,1,nlstate);
 1541:     free_matrix(trgradg,1,nlstate,1,npar);
 1542:   } /* End age */
 1543: 
 1544:   free_vector(xp,1,npar);
 1545:   free_matrix(doldm,1,nlstate,1,npar);
 1546:   free_matrix(dnewm,1,nlstate,1,nlstate);
 1547: 
 1548: }
 1549: 
 1550: 
 1551: 
 1552: /***********************************************/
 1553: /**************** Main Program *****************/
 1554: /***********************************************/
 1555: 
 1556: /*int main(int argc, char *argv[])*/
 1557: int main()
 1558: {
 1559: 
 1560:   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;
 1561:   double agedeb, agefin,hf;
 1562:   double agemin=1.e20, agemax=-1.e20;
 1563: 
 1564:   double fret;
 1565:   double **xi,tmp,delta;
 1566: 
 1567:   double dum; /* Dummy variable */
 1568:   double ***p3mat;
 1569:   int *indx;
 1570:   char line[MAXLINE], linepar[MAXLINE];
 1571:   char title[MAXLINE];
 1572:   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 1573:   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];
 1574:   char filerest[FILENAMELENGTH];
 1575:   char fileregp[FILENAMELENGTH];
 1576:   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];
 1577:   int firstobs=1, lastobs=10;
 1578:   int sdeb, sfin; /* Status at beginning and end */
 1579:   int c,  h , cpt,l;
 1580:   int ju,jl, mi;
 1581:   int i1,j1, k1,jk,aa,bb, stepsize;
 1582:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;
 1583:   
 1584:   int hstepm, nhstepm;
 1585:   double bage, fage, age, agelim, agebase;
 1586:   double ftolpl=FTOL;
 1587:   double **prlim;
 1588:   double *severity;
 1589:   double ***param; /* Matrix of parameters */
 1590:   double  *p;
 1591:   double **matcov; /* Matrix of covariance */
 1592:   double ***delti3; /* Scale */
 1593:   double *delti; /* Scale */
 1594:   double ***eij, ***vareij;
 1595:   double **varpl; /* Variances of prevalence limits by age */
 1596:   double *epj, vepp;
 1597:   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";
 1598:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 1599:   char z[1]="c", occ;
 1600: #include <sys/time.h>
 1601: #include <time.h>
 1602:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 1603:   /* long total_usecs;
 1604:   struct timeval start_time, end_time;
 1605:   
 1606:   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 1607: 
 1608: 
 1609:   printf("\nIMACH, Version 0.63");
 1610:   printf("\nEnter the parameter file name: ");
 1611: 
 1612: #ifdef windows
 1613:   scanf("%s",pathtot);
 1614:   getcwd(pathcd, size);
 1615:   cutv(path,optionfile,pathtot,'\\');
 1616:   chdir(path);
 1617:   replace(pathc,path);
 1618: #endif
 1619: #ifdef unix
 1620:   scanf("%s",optionfile);
 1621: #endif
 1622: 
 1623: /*-------- arguments in the command line --------*/
 1624: 
 1625:   strcpy(fileres,"r");
 1626:   strcat(fileres, optionfile);
 1627: 
 1628:   /*---------arguments file --------*/
 1629: 
 1630:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 1631:     printf("Problem with optionfile %s\n",optionfile);
 1632:     goto end;
 1633:   }
 1634: 
 1635:   strcpy(filereso,"o");
 1636:   strcat(filereso,fileres);
 1637:   if((ficparo=fopen(filereso,"w"))==NULL) {
 1638:     printf("Problem with Output resultfile: %s\n", filereso);goto end;
 1639:   }
 1640: 
 1641:   /* Reads comments: lines beginning with '#' */
 1642:   while((c=getc(ficpar))=='#' && c!= EOF){
 1643:     ungetc(c,ficpar);
 1644:     fgets(line, MAXLINE, ficpar);
 1645:     puts(line);
 1646:     fputs(line,ficparo);
 1647:   }
 1648:   ungetc(c,ficpar);
 1649: 
 1650:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 1651:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);
 1652:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);
 1653: 
 1654:   covar=matrix(1,NCOVMAX,1,n);    
 1655:   if (strlen(model)<=1) cptcovn=0;
 1656:   else {
 1657:     j=0;
 1658:     j=nbocc(model,'+');
 1659:     cptcovn=j+1;
 1660:   }
 1661: 
 1662:   ncovmodel=2+cptcovn;
 1663:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 1664:   
 1665:   /* Read guess parameters */
 1666:   /* Reads comments: lines beginning with '#' */
 1667:   while((c=getc(ficpar))=='#' && c!= EOF){
 1668:     ungetc(c,ficpar);
 1669:     fgets(line, MAXLINE, ficpar);
 1670:     puts(line);
 1671:     fputs(line,ficparo);
 1672:   }
 1673:   ungetc(c,ficpar);
 1674:   
 1675:   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 1676:     for(i=1; i <=nlstate; i++)
 1677:     for(j=1; j <=nlstate+ndeath-1; j++){
 1678:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 1679:       fprintf(ficparo,"%1d%1d",i1,j1);
 1680:       printf("%1d%1d",i,j);
 1681:       for(k=1; k<=ncovmodel;k++){
 1682: 	fscanf(ficpar," %lf",&param[i][j][k]);
 1683: 	printf(" %lf",param[i][j][k]);
 1684: 	fprintf(ficparo," %lf",param[i][j][k]);
 1685:       }
 1686:       fscanf(ficpar,"\n");
 1687:       printf("\n");
 1688:       fprintf(ficparo,"\n");
 1689:     }
 1690:   
 1691:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;
 1692:   p=param[1][1];
 1693:   
 1694:   /* Reads comments: lines beginning with '#' */
 1695:   while((c=getc(ficpar))=='#' && c!= EOF){
 1696:     ungetc(c,ficpar);
 1697:     fgets(line, MAXLINE, ficpar);
 1698:     puts(line);
 1699:     fputs(line,ficparo);
 1700:   }
 1701:   ungetc(c,ficpar);
 1702: 
 1703:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 1704:   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
 1705:   for(i=1; i <=nlstate; i++){
 1706:     for(j=1; j <=nlstate+ndeath-1; j++){
 1707:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 1708:       printf("%1d%1d",i,j);
 1709:       fprintf(ficparo,"%1d%1d",i1,j1);
 1710:       for(k=1; k<=ncovmodel;k++){
 1711: 	fscanf(ficpar,"%le",&delti3[i][j][k]);
 1712: 	printf(" %le",delti3[i][j][k]);
 1713: 	fprintf(ficparo," %le",delti3[i][j][k]);
 1714:       }
 1715:       fscanf(ficpar,"\n");
 1716:       printf("\n");
 1717:       fprintf(ficparo,"\n");
 1718:     }
 1719:   }
 1720:   delti=delti3[1][1];
 1721:   
 1722:   /* Reads comments: lines beginning with '#' */
 1723:   while((c=getc(ficpar))=='#' && c!= EOF){
 1724:     ungetc(c,ficpar);
 1725:     fgets(line, MAXLINE, ficpar);
 1726:     puts(line);
 1727:     fputs(line,ficparo);
 1728:   }
 1729:   ungetc(c,ficpar);
 1730:   
 1731:   matcov=matrix(1,npar,1,npar);
 1732:   for(i=1; i <=npar; i++){
 1733:     fscanf(ficpar,"%s",&str);
 1734:     printf("%s",str);
 1735:     fprintf(ficparo,"%s",str);
 1736:     for(j=1; j <=i; j++){
 1737:       fscanf(ficpar," %le",&matcov[i][j]);
 1738:       printf(" %.5le",matcov[i][j]);
 1739:       fprintf(ficparo," %.5le",matcov[i][j]);
 1740:     }
 1741:     fscanf(ficpar,"\n");
 1742:     printf("\n");
 1743:     fprintf(ficparo,"\n");
 1744:   }
 1745:   for(i=1; i <=npar; i++)
 1746:     for(j=i+1;j<=npar;j++)
 1747:       matcov[i][j]=matcov[j][i];
 1748:    
 1749:   printf("\n");
 1750: 
 1751: 
 1752:    if(mle==1){
 1753:     /*-------- data file ----------*/
 1754:     if((ficres =fopen(fileres,"w"))==NULL) {
 1755:       printf("Problem with resultfile: %s\n", fileres);goto end;
 1756:     }
 1757:     fprintf(ficres,"#%s\n",version);
 1758:     
 1759:     if((fic=fopen(datafile,"r"))==NULL)    {
 1760:       printf("Problem with datafile: %s\n", datafile);goto end;
 1761:     }
 1762: 
 1763:     n= lastobs;
 1764:     severity = vector(1,maxwav);
 1765:     outcome=imatrix(1,maxwav+1,1,n);
 1766:     num=ivector(1,n);
 1767:     moisnais=vector(1,n);
 1768:     annais=vector(1,n);
 1769:     moisdc=vector(1,n);
 1770:     andc=vector(1,n);
 1771:     agedc=vector(1,n);
 1772:     cod=ivector(1,n);
 1773:     weight=vector(1,n);
 1774:     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 1775:     mint=matrix(1,maxwav,1,n);
 1776:     anint=matrix(1,maxwav,1,n);
 1777:     s=imatrix(1,maxwav+1,1,n);
 1778:     adl=imatrix(1,maxwav+1,1,n);    
 1779:     tab=ivector(1,NCOVMAX);
 1780:     ncodemax=ivector(1,NCOVMAX);
 1781: 
 1782:     i=1; 
 1783:     while (fgets(line, MAXLINE, fic) != NULL)    {
 1784:       if ((i >= firstobs) && (i <=lastobs)) {
 1785: 	
 1786: 	for (j=maxwav;j>=1;j--){
 1787: 	  cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
 1788: 	  strcpy(line,stra);
 1789: 	  cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 1790: 	  cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 1791: 	}
 1792: 	
 1793: 	cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
 1794: 	cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
 1795: 
 1796: 	cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
 1797: 	cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
 1798: 
 1799: 	cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
 1800: 	for (j=ncov;j>=1;j--){
 1801: 	  cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 1802: 	} 
 1803: 	num[i]=atol(stra);
 1804: 
 1805: 	/* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/
 1806: 
 1807: 	/*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/
 1808: 
 1809: 	i=i+1;
 1810:       }
 1811:     } 
 1812:     /*scanf("%d",i);*/
 1813: 
 1814:   imx=i-1; /* Number of individuals */
 1815:  
 1816:   /* Calculation of the number of parameter from char model*/
 1817:   Tvar=ivector(1,8);    
 1818:    
 1819:   if (strlen(model) >1){
 1820:     j=0;
 1821:     j=nbocc(model,'+');
 1822:     cptcovn=j+1;
 1823:  
 1824:     strcpy(modelsav,model); 
 1825:     if (j==0) {
 1826:       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);
 1827:     }
 1828:     else {
 1829:       for(i=j; i>=1;i--){
 1830: 	cutv(stra,strb,modelsav,'+');
 1831: 	if (strchr(strb,'*')) {
 1832: 	  cutv(strd,strc,strb,'*');
 1833: 	  cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;
 1834: 	  cutv(strb,strc,strd,'V'); 
 1835: 	  for (k=1; k<=lastobs;k++) 
 1836: 	    covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 1837: 	}
 1838: 	else {
 1839: 	  cutv(strd,strc,strb,'V');
 1840: 	  Tvar[i+1]=atoi(strc);
 1841: 	}
 1842: 	strcpy(modelsav,stra);  
 1843:       }
 1844:       /*cutv(strd,strc,stra,'V');*/
 1845:       Tvar[1]=atoi(strc);
 1846:     }
 1847:   }
 1848:   /*printf("tvar=%d ",Tvar[1]);*/
 1849:   /*scanf("%d ",i);*/
 1850:     fclose(fic);
 1851: 
 1852:     if (weightopt != 1) { /* Maximisation without weights*/
 1853:       for(i=1;i<=n;i++) weight[i]=1.0;
 1854:     }
 1855:     /*-calculation of age at interview from date of interview and age at death -*/
 1856:     agev=matrix(1,maxwav,1,imx);
 1857:     
 1858:     for (i=1; i<=imx; i++)  {
 1859:       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 1860:       for(m=1; (m<= maxwav); m++){
 1861: 	if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;  
 1862: 	if(s[m][i] >0){
 1863: 	  if (s[m][i] == nlstate+1) {
 1864: 	    if(agedc[i]>0)
 1865: 	      if(moisdc[i]!=99 && andc[i]!=9999)
 1866: 	      agev[m][i]=agedc[i];
 1867: 	    else{
 1868: 	      printf("Warning negative age at death: %d line:%d\n",num[i],i);
 1869: 	      agev[m][i]=-1;
 1870: 	    }
 1871: 	  }
 1872: 	  else if(s[m][i] !=9){ /* Should no more exist */
 1873: 	    agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 1874: 	    if(mint[m][i]==99 || anint[m][i]==9999){
 1875: 	      agev[m][i]=1;
 1876: 	      /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */ 
 1877: 	    }
 1878: 	    else if(agev[m][i] <agemin){ 
 1879: 	      agemin=agev[m][i];
 1880: 	      /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 1881: 	    }
 1882: 	    else if(agev[m][i] >agemax){
 1883: 	      agemax=agev[m][i];
 1884: 	     /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 1885: 	    }
 1886: 	    /*agev[m][i]=anint[m][i]-annais[i];*/
 1887: 	    /*	 agev[m][i] = age[i]+2*m;*/
 1888: 	  }
 1889: 	  else { /* =9 */
 1890: 	    agev[m][i]=1;
 1891: 	    s[m][i]=-1;
 1892: 	  }
 1893: 	}
 1894: 	else /*= 0 Unknown */
 1895: 	  agev[m][i]=1;
 1896:       }
 1897:     
 1898:     }
 1899:     for (i=1; i<=imx; i++)  {
 1900:       for(m=1; (m<= maxwav); m++){
 1901: 	if (s[m][i] > (nlstate+ndeath)) {
 1902: 	  printf("Error: Wrong value in nlstate or ndeath\n");	
 1903: 	  goto end;
 1904: 	}
 1905:       }
 1906:     }
 1907: 
 1908: printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 1909: 
 1910:     free_vector(severity,1,maxwav);
 1911:     free_imatrix(outcome,1,maxwav+1,1,n);
 1912:     free_vector(moisnais,1,n);
 1913:     free_vector(annais,1,n);
 1914:     free_matrix(mint,1,maxwav,1,n);
 1915:     free_matrix(anint,1,maxwav,1,n);
 1916:     free_vector(moisdc,1,n);
 1917:     free_vector(andc,1,n);
 1918: 
 1919:    
 1920:     wav=ivector(1,imx);
 1921:     dh=imatrix(1,lastpass-firstpass+1,1,imx);
 1922:     mw=imatrix(1,lastpass-firstpass+1,1,imx);
 1923:    
 1924:     /* Concatenates waves */
 1925:       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 1926: 
 1927: 
 1928: Tcode=ivector(1,100);
 1929:    nbcode=imatrix(1,nvar,1,8);  
 1930:    ncodemax[1]=1;
 1931:    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 1932:  
 1933:    codtab=imatrix(1,100,1,10);
 1934:    h=0;
 1935:    m=pow(2,cptcovn);
 1936:  
 1937:    for(k=1;k<=cptcovn; k++){
 1938:      for(i=1; i <=(m/pow(2,k));i++){
 1939:        for(j=1; j <= ncodemax[k]; j++){
 1940: 	 for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){
 1941: 	   h++;
 1942: 	   if (h>m) h=1;codtab[h][k]=j;
 1943: 	 } 
 1944:        }
 1945:      }
 1946:    } 
 1947: 
 1948:    /*for(i=1; i <=m ;i++){ 
 1949:      for(k=1; k <=cptcovn; k++){
 1950:        printf("i=%d k=%d %d ",i,k,codtab[i][k]);
 1951:      }
 1952:      printf("\n");
 1953:    }
 1954:   scanf("%d",i);*/
 1955:     
 1956:    /* Calculates basic frequencies. Computes observed prevalence at single age
 1957:        and prints on file fileres'p'. */
 1958:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);
 1959: 
 1960:     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 1961:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 1962:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 1963:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 1964:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 1965:     
 1966:     /* For Powell, parameters are in a vector p[] starting at p[1]
 1967:        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 1968:     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 1969:     /*scanf("%d",i);*/
 1970:     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 1971: 
 1972:     
 1973:     /*--------- results files --------------*/
 1974:     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);
 1975:     
 1976:    jk=1;
 1977:    fprintf(ficres,"# Parameters\n");
 1978:    printf("# Parameters\n");
 1979:    for(i=1,jk=1; i <=nlstate; i++){
 1980:      for(k=1; k <=(nlstate+ndeath); k++){
 1981:        if (k != i) 
 1982: 	 {
 1983: 	   printf("%d%d ",i,k);
 1984: 	   fprintf(ficres,"%1d%1d ",i,k);
 1985: 	   for(j=1; j <=ncovmodel; j++){
 1986: 	     printf("%f ",p[jk]);
 1987: 	     fprintf(ficres,"%f ",p[jk]);
 1988: 	     jk++; 
 1989: 	   }
 1990: 	   printf("\n");
 1991: 	   fprintf(ficres,"\n");
 1992: 	 }
 1993:      }
 1994:    }
 1995: 
 1996:     /* Computing hessian and covariance matrix */
 1997:     ftolhess=ftol; /* Usually correct */
 1998:     hesscov(matcov, p, npar, delti, ftolhess, func);
 1999:     fprintf(ficres,"# Scales\n");
 2000:     printf("# Scales\n");
 2001:      for(i=1,jk=1; i <=nlstate; i++){
 2002:       for(j=1; j <=nlstate+ndeath; j++){
 2003: 	if (j!=i) {
 2004: 	  fprintf(ficres,"%1d%1d",i,j);
 2005: 	  printf("%1d%1d",i,j);
 2006: 	  for(k=1; k<=ncovmodel;k++){
 2007: 	    printf(" %.5e",delti[jk]);
 2008: 	    fprintf(ficres," %.5e",delti[jk]);
 2009: 	    jk++;
 2010: 	  }
 2011: 	  printf("\n");
 2012: 	  fprintf(ficres,"\n");
 2013: 	}
 2014:       }
 2015:       }
 2016:     
 2017:     k=1;
 2018:     fprintf(ficres,"# Covariance\n");
 2019:     printf("# Covariance\n");
 2020:     for(i=1;i<=npar;i++){
 2021:       /*  if (k>nlstate) k=1;
 2022:       i1=(i-1)/(ncovmodel*nlstate)+1; 
 2023:       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
 2024:       printf("%s%d%d",alph[k],i1,tab[i]);*/
 2025:       fprintf(ficres,"%3d",i);
 2026:       printf("%3d",i);
 2027:       for(j=1; j<=i;j++){
 2028: 	fprintf(ficres," %.5e",matcov[i][j]);
 2029: 	printf(" %.5e",matcov[i][j]);
 2030:       }
 2031:       fprintf(ficres,"\n");
 2032:       printf("\n");
 2033:       k++;
 2034:     }
 2035:     
 2036:     while((c=getc(ficpar))=='#' && c!= EOF){
 2037:       ungetc(c,ficpar);
 2038:       fgets(line, MAXLINE, ficpar);
 2039:       puts(line);
 2040:       fputs(line,ficparo);
 2041:     }
 2042:     ungetc(c,ficpar);
 2043:   
 2044:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);
 2045:     
 2046:     if (fage <= 2) {
 2047:       bage = agemin;
 2048:       fage = agemax;
 2049:     }
 2050: 
 2051:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 2052:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);
 2053: /*------------ gnuplot -------------*/
 2054: chdir(pathcd);
 2055:   if((ficgp=fopen("graph.plt","w"))==NULL) {
 2056:     printf("Problem with file graph.gp");goto end;
 2057:   }
 2058: #ifdef windows
 2059:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 2060: #endif
 2061: m=pow(2,cptcovn);
 2062:   
 2063:  /* 1eme*/
 2064:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 2065:    for (k1=1; k1<= m ; k1 ++) {
 2066: 
 2067: #ifdef windows
 2068:     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);
 2069: #endif
 2070: #ifdef unix
 2071: fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);
 2072: #endif
 2073: 
 2074: for (i=1; i<= nlstate ; i ++) {
 2075:   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2076:   else fprintf(ficgp," \%%*lf (\%%*lf)");
 2077: }
 2078:     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
 2079:     for (i=1; i<= nlstate ; i ++) {
 2080:   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2081:   else fprintf(ficgp," \%%*lf (\%%*lf)");
 2082: } 
 2083:   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); 
 2084:      for (i=1; i<= nlstate ; i ++) {
 2085:   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2086:   else fprintf(ficgp," \%%*lf (\%%*lf)");
 2087: }  
 2088:      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
 2089: #ifdef unix
 2090: fprintf(ficgp,"\nset ter gif small size 400,300");
 2091: #endif
 2092: fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
 2093:    }
 2094:   }
 2095:   /*2 eme*/
 2096: 
 2097:   for (k1=1; k1<= m ; k1 ++) { 
 2098:     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);
 2099:     
 2100:     for (i=1; i<= nlstate+1 ; i ++) {
 2101:       k=2*i;
 2102:       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
 2103:       for (j=1; j<= nlstate+1 ; j ++) {
 2104:   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2105:   else fprintf(ficgp," \%%*lf (\%%*lf)");
 2106: }   
 2107:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 2108:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 2109:     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
 2110:       for (j=1; j<= nlstate+1 ; j ++) {
 2111: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2112: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 2113: }   
 2114:       fprintf(ficgp,"\" t\"\" w l 0,");
 2115:      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
 2116:       for (j=1; j<= nlstate+1 ; j ++) {
 2117:   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2118:   else fprintf(ficgp," \%%*lf (\%%*lf)");
 2119: }   
 2120:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 2121:       else fprintf(ficgp,"\" t\"\" w l 0,");
 2122:     }
 2123:     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);
 2124:   }
 2125:  
 2126:   /*3eme*/
 2127: 
 2128:   for (k1=1; k1<= m ; k1 ++) { 
 2129:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 2130:       k=2+nlstate*(cpt-1);
 2131:       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);
 2132:       for (i=1; i< nlstate ; i ++) {
 2133: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);
 2134:       } 
 2135:       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
 2136:     }
 2137:   }
 2138:  
 2139:   /* CV preval stat */
 2140:   for (k1=1; k1<= m ; k1 ++) { 
 2141:     for (cpt=1; cpt<nlstate ; cpt ++) {
 2142:       k=3;
 2143:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);
 2144:       for (i=1; i< nlstate ; i ++)
 2145: 	fprintf(ficgp,"+$%d",k+i+1);
 2146:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 2147:       
 2148:       l=3+(nlstate+ndeath)*cpt;
 2149:       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
 2150:       for (i=1; i< nlstate ; i ++) {
 2151: 	l=3+(nlstate+ndeath)*cpt;
 2152: 	fprintf(ficgp,"+$%d",l+i+1);
 2153:       }
 2154:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 2155:       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
 2156:     } 
 2157:   }
 2158: 
 2159:   /* proba elementaires */
 2160:   for(i=1,jk=1; i <=nlstate; i++){
 2161:     for(k=1; k <=(nlstate+ndeath); k++){
 2162:       if (k != i) {
 2163: 	/*  fprintf(ficgp,"%1d%1d ",i,k);*/
 2164: 	for(j=1; j <=ncovmodel; j++){
 2165: 	  fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);
 2166: 	  jk++; 
 2167: 	  fprintf(ficgp,"\n");
 2168: 	}
 2169:       }
 2170:     }
 2171:   }
 2172:   for(jk=1; jk <=m; jk++) {
 2173:   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);
 2174:   for(i=1; i <=nlstate; i++) {
 2175:     for(k=1; k <=(nlstate+ndeath); k++){
 2176:       if (k != i) {
 2177: 	fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);
 2178: 	for(j=3; j <=ncovmodel; j++) 
 2179: 	  fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 2180: 	fprintf(ficgp,")/(1");
 2181: 	for(k1=1; k1 <=(nlstate+ndeath); k1++) 
 2182: 	  if (k1 != i) {
 2183: 	    fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);
 2184: 	    for(j=3; j <=ncovmodel; j++)
 2185: 	      fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 2186: 	    fprintf(ficgp,")");
 2187: 	  }
 2188: 	fprintf(ficgp,") t \"p%d%d\" ", i,k);
 2189:       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 2190:       }
 2191:     }
 2192:   }
 2193: fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
 2194:   }
 2195:   fclose(ficgp);
 2196:    
 2197: chdir(path);
 2198:     free_matrix(agev,1,maxwav,1,imx);
 2199:     free_ivector(wav,1,imx);
 2200:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 2201:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);
 2202:     
 2203:     free_imatrix(s,1,maxwav+1,1,n);
 2204:     
 2205:     
 2206:     free_ivector(num,1,n);
 2207:     free_vector(agedc,1,n);
 2208:     free_vector(weight,1,n);
 2209:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 2210:     fclose(ficparo);
 2211:     fclose(ficres);
 2212:    }
 2213:    
 2214:    /*________fin mle=1_________*/
 2215:    
 2216: 
 2217:   
 2218:     /* No more information from the sample is required now */
 2219:   /* Reads comments: lines beginning with '#' */
 2220:   while((c=getc(ficpar))=='#' && c!= EOF){
 2221:     ungetc(c,ficpar);
 2222:     fgets(line, MAXLINE, ficpar);
 2223:     puts(line);
 2224:     fputs(line,ficparo);
 2225:   }
 2226:   ungetc(c,ficpar);
 2227:   
 2228:   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);
 2229:   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);
 2230:   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);
 2231: /*--------- index.htm --------*/
 2232: 
 2233:   if((fichtm=fopen("index.htm","w"))==NULL)    {
 2234:     printf("Problem with index.htm \n");goto end;
 2235:   }
 2236: 
 2237:  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n
 2238:         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n
 2239: - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>
 2240:         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>
 2241:         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>
 2242:         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>
 2243:         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>
 2244:         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>
 2245:         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>
 2246:         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);
 2247: 
 2248:  fprintf(fichtm," <li>Graphs</li>\n<p>");
 2249: 
 2250:  m=cptcovn;
 2251:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 2252: 
 2253:  j1=0;
 2254:  for(k1=1; k1<=m;k1++){
 2255:    for(i1=1; i1<=ncodemax[k1];i1++){
 2256:        j1++;
 2257:        if (cptcovn > 0) {
 2258: 	 fprintf(fichtm,"<hr>************ Results for covariates");
 2259: 	 for (cpt=1; cpt<=cptcovn;cpt++) 
 2260: 	   fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);
 2261: 	 fprintf(fichtm," ************\n<hr>");
 2262:        }
 2263:        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>
 2264: <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);     
 2265:        for(cpt=1; cpt<nlstate;cpt++){
 2266: 	 fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>
 2267: <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
 2268:        }
 2269:     for(cpt=1; cpt<=nlstate;cpt++) {
 2270:        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
 2271: interval) in state (%d): v%s%d%d.gif <br>
 2272: <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  
 2273:      }
 2274:      for(cpt=1; cpt<=nlstate;cpt++) {
 2275:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>
 2276: <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
 2277:      }
 2278:      fprintf(fichtm,"\n<br>- Total life expectancy by age and
 2279: health expectancies in states (1) and (2): e%s%d.gif<br>
 2280: <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);
 2281: fprintf(fichtm,"\n</body>");
 2282:    }
 2283:  }
 2284: fclose(fichtm);
 2285: 
 2286:   /*--------------- Prevalence limit --------------*/
 2287:   
 2288:   strcpy(filerespl,"pl");
 2289:   strcat(filerespl,fileres);
 2290:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
 2291:     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;
 2292:   }
 2293:   printf("Computing prevalence limit: result on file '%s' \n", filerespl);
 2294:   fprintf(ficrespl,"#Prevalence limit\n");
 2295:   fprintf(ficrespl,"#Age ");
 2296:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 2297:   fprintf(ficrespl,"\n");
 2298:   
 2299:   prlim=matrix(1,nlstate,1,nlstate);
 2300:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 2301:   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 2302:   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 2303:   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 2304:   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 2305:   k=0;
 2306:   agebase=agemin;
 2307:   agelim=agemax;
 2308:   ftolpl=1.e-10;
 2309:   i1=cptcovn;
 2310:   if (cptcovn < 1){i1=1;}
 2311: 
 2312:   for(cptcov=1;cptcov<=i1;cptcov++){
 2313:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 2314: 	k=k+1;
 2315: 	/*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 2316: 	fprintf(ficrespl,"\n#****** ");
 2317: 	for(j=1;j<=cptcovn;j++) 
 2318: 	  fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);
 2319: 	fprintf(ficrespl,"******\n");
 2320: 	
 2321: 	for (age=agebase; age<=agelim; age++){
 2322: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 2323: 	  fprintf(ficrespl,"%.0f",age );
 2324: 	  for(i=1; i<=nlstate;i++)
 2325: 	  fprintf(ficrespl," %.5f", prlim[i][i]);
 2326: 	  fprintf(ficrespl,"\n");
 2327: 	}
 2328:       }
 2329:     }
 2330:   fclose(ficrespl);
 2331:   /*------------- h Pij x at various ages ------------*/
 2332:   
 2333:   strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 2334:   if((ficrespij=fopen(filerespij,"w"))==NULL) {
 2335:     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 2336:   }
 2337:   printf("Computing pij: result on file '%s' \n", filerespij);
 2338:   
 2339:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 2340:   if (stepm<=24) stepsize=2;
 2341: 
 2342:   agelim=AGESUP;
 2343:   hstepm=stepsize*YEARM; /* Every year of age */
 2344:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 2345:   
 2346:   k=0;
 2347:   for(cptcov=1;cptcov<=i1;cptcov++){
 2348:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 2349:       k=k+1;
 2350: 	fprintf(ficrespij,"\n#****** ");
 2351: 	for(j=1;j<=cptcovn;j++) 
 2352: 	  fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);
 2353: 	fprintf(ficrespij,"******\n");
 2354: 	
 2355: 	for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 2356: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2357: 	  nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 2358: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2359: 	  oldm=oldms;savm=savms;
 2360: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 2361: 	  fprintf(ficrespij,"# Age");
 2362: 	  for(i=1; i<=nlstate;i++)
 2363: 	    for(j=1; j<=nlstate+ndeath;j++)
 2364: 	      fprintf(ficrespij," %1d-%1d",i,j);
 2365: 	  fprintf(ficrespij,"\n");
 2366: 	  for (h=0; h<=nhstepm; h++){
 2367: 	    fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 2368: 	    for(i=1; i<=nlstate;i++)
 2369: 	      for(j=1; j<=nlstate+ndeath;j++)
 2370: 		fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 2371: 	    fprintf(ficrespij,"\n");
 2372: 	  }
 2373: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2374: 	  fprintf(ficrespij,"\n");
 2375: 	}
 2376:     }
 2377:   }
 2378: 
 2379:   fclose(ficrespij);
 2380: 
 2381:   /*---------- Health expectancies and variances ------------*/
 2382: 
 2383:   strcpy(filerest,"t");
 2384:   strcat(filerest,fileres);
 2385:   if((ficrest=fopen(filerest,"w"))==NULL) {
 2386:     printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 2387:   }
 2388:   printf("Computing Total LEs with variances: file '%s' \n", filerest); 
 2389: 
 2390: 
 2391:   strcpy(filerese,"e");
 2392:   strcat(filerese,fileres);
 2393:   if((ficreseij=fopen(filerese,"w"))==NULL) {
 2394:     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 2395:   }
 2396:   printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 2397: 
 2398:  strcpy(fileresv,"v");
 2399:   strcat(fileresv,fileres);
 2400:   if((ficresvij=fopen(fileresv,"w"))==NULL) {
 2401:     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 2402:   }
 2403:   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 2404: 
 2405:   k=0;
 2406:   for(cptcov=1;cptcov<=i1;cptcov++){
 2407:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 2408:       k=k+1;
 2409:       fprintf(ficrest,"\n#****** ");
 2410:       for(j=1;j<=cptcovn;j++) 
 2411: 	fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);
 2412:       fprintf(ficrest,"******\n");
 2413: 
 2414:       fprintf(ficreseij,"\n#****** ");
 2415:       for(j=1;j<=cptcovn;j++) 
 2416: 	fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);
 2417:       fprintf(ficreseij,"******\n");
 2418: 
 2419:       fprintf(ficresvij,"\n#****** ");
 2420:       for(j=1;j<=cptcovn;j++) 
 2421: 	fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);
 2422:       fprintf(ficresvij,"******\n");
 2423: 
 2424:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 2425:       oldm=oldms;savm=savms;
 2426:       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);  
 2427:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 2428:       oldm=oldms;savm=savms;
 2429:       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
 2430:       
 2431:       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
 2432:       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 2433:       fprintf(ficrest,"\n");
 2434: 	
 2435:       hf=1;
 2436:       if (stepm >= YEARM) hf=stepm/YEARM;
 2437:       epj=vector(1,nlstate+1);
 2438:       for(age=bage; age <=fage ;age++){
 2439: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 2440: 	fprintf(ficrest," %.0f",age);
 2441: 	for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 2442: 	  for(i=1, epj[j]=0.;i <=nlstate;i++) {
 2443: 	    epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];
 2444: 	  }
 2445: 	  epj[nlstate+1] +=epj[j];
 2446: 	}
 2447: 	for(i=1, vepp=0.;i <=nlstate;i++)
 2448: 	  for(j=1;j <=nlstate;j++)
 2449: 	    vepp += vareij[i][j][(int)age];
 2450: 	fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));
 2451: 	for(j=1;j <=nlstate;j++){
 2452: 	  fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));
 2453: 	}
 2454: 	fprintf(ficrest,"\n");
 2455:       }
 2456:     }
 2457:   }
 2458: 	
 2459:  fclose(ficreseij);
 2460:  fclose(ficresvij);
 2461:   fclose(ficrest);
 2462:   fclose(ficpar);
 2463:   free_vector(epj,1,nlstate+1);
 2464:   /*  scanf("%d ",i); */
 2465: 
 2466:   /*------- Variance limit prevalence------*/   
 2467: 
 2468: strcpy(fileresvpl,"vpl");
 2469:   strcat(fileresvpl,fileres);
 2470:   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 2471:     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);
 2472:     exit(0);
 2473:   }
 2474:   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);
 2475: 
 2476:  k=0;
 2477:  for(cptcov=1;cptcov<=i1;cptcov++){
 2478:    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 2479:      k=k+1;
 2480:      fprintf(ficresvpl,"\n#****** ");
 2481:      for(j=1;j<=cptcovn;j++) 
 2482:        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);
 2483:      fprintf(ficresvpl,"******\n");
 2484:      
 2485:      varpl=matrix(1,nlstate,(int) bage, (int) fage);
 2486:      oldm=oldms;savm=savms;
 2487:      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
 2488:    }
 2489:  }
 2490: 
 2491:   fclose(ficresvpl);
 2492: 
 2493:   /*---------- End : free ----------------*/
 2494:   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 2495:   
 2496:   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 2497:   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 2498:   
 2499:   
 2500:   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 2501:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 2502:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 2503:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 2504:   
 2505:   free_matrix(matcov,1,npar,1,npar);
 2506:   free_vector(delti,1,npar);
 2507:   
 2508:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 2509: 
 2510:   printf("End of Imach\n");
 2511:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 2512:   
 2513:   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
 2514:   /*printf("Total time was %d uSec.\n", total_usecs);*/
 2515:   /*------ End -----------*/
 2516: 
 2517:  end:
 2518: #ifdef windows
 2519:  chdir(pathcd);
 2520: #endif 
 2521:  system("wgnuplot ../gp37mgw/graph.plt");
 2522: 
 2523: #ifdef windows
 2524:   while (z[0] != 'q') {
 2525:     chdir(pathcd); 
 2526:     printf("\nType e to edit output files, c to start again, and q for exiting: ");
 2527:     scanf("%s",z);
 2528:     if (z[0] == 'c') system("./imach");
 2529:     else if (z[0] == 'e') {
 2530:       chdir(path);
 2531:       system("index.htm");
 2532:     }
 2533:     else if (z[0] == 'q') exit(0);
 2534:   }
 2535: #endif 
 2536: }
 2537: 
 2538: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>